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ABSTRACT

Shallow sediment cores extracted from three locations in Guana Island Pond were
analyzed using multiple paleolimnological techniques, including sediment description, grain-
size analyses, X-Ray Fluorescence, elemental analyses, scanning electron microscopy, and
fossil identification. These data were used to define six depositional units (1-6) that mark
the change in paleoenvironment of the lake. Two radiocarbon dates on organic material
from 27 cm and 65 cm depth in the cores yielded calibrated ages of 720 + 40 yr BP and 1307
t 46 yr BP, respectively. Approximately 2200 yr BP, Guana Island Pond was likely a tidal
estuary with sandy storm deposits. By 1500-900 yr BP, an abundance of Chara fibrosa
oogonia (a freshwater algae) suggest the pond closed off from the sea and runoff exceeded
evaporation in a regional wetter climate phase. At this time, the lake was possibly a viable
source of potable fresh water for pre-Columbian native peoples and early European settlers.
After about 900-700 yr BP, the lake alternated between marine to brackish to freshwater
conditions. The uppermost layer of the lake sediment contains high levels of Fe, Ti, and Si
indicating an increase in watershed erosion and soil runoff, likely from development of the

island from the Quaker settlement period (18th century) through the 20" century.
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CHAPTER 1

INTRODUCTION

Islands are especially useful when studying past climates and environments, as they
are inherently isolated from outside impact. In particular, inland lakes and ponds on islands
are excellent sources of data for sediment analyses as the physical, chemical, mineralogical,
and biological variations of the sediment trapped in the basin can be measured and used to
study changes in the depositional environment over time. Lake and pond sediments can be
proxies for changes in climatic conditions such as precipitation and evaporation. For
example, high levels of rainfall may increase sediment runoff into the pond, or high
temperatures and increased evaporation rates can cause changes in water chemistry.
Preservation of lake sediments can be impacted by a number of factors that are especially
pronounced in small shallow lakes, as they are subjective to desiccation, erosion by wind
deflation, and anthropogenic influences.

This study focuses on Guana Island Pond located on the southwest portion of Guana
Island in the British Virgin Islands (BVI). It is a eutrophic pond and covers an area of about
1.9 hectares. The lake is approximately triangular in shape and is currently saline. Guana
Island Pond was historically a seasonally dry lake (Jarecki, 2003). The pond is surrounded on
the west, north, and east by mountains that reach elevations from 226 m to 806 m. Guana
Island Pond is separated from White Bay on the Caribbean Sea to the southwest by a 180-
m-wide vegetated sand plain (Jarecki, 2003). The plain effectively prevents sea water inflow

into the pond, except during extreme storm events.



The main objective of this study of Guana Island is to analyze sediment from cores
collected from Guana Island Pond. It is hypothesized that the pond was once a tidal estuary
and became an isolated lake in part due to a change in climate and land use. This study will
also investigate whether Guana Island Pond was once a viable source of potable fresh water
for pre-Columbian native peoples and early European settlers. Factors potentially
influencing the paleoenvironment of the pond include the development and potential
migration of the berms on the sand plain; whether the pond was once a tidal estuary, and if
so, when it closed; the climate change on the scale of decades to centuries; and the size and
recurrence of large storms over time.

Twelve soft sediment cores were collected from ten locations in Guana Island Pond
in October 2012, along two approximately east-west transects perpendicular to the
shoreline where the ruins of an 18" century Quaker sugar mill are located. Analyses of the
sediment from four core locations using techniques including sediment description, X-ray
fluorescence (XRF), scanning electron microscopy (SEM), microfossil identification, grain-
size analysis, and radiocarbon dating are used to define six depositional units and to

interpret the changes in environment of Guana Island Pond over time.



CHAPTER 2
BACKGROUND

Study Area

The British Virgin Islands (BVI) are a British territory located in the Caribbean Sea,
directly north and east of the United States Virgin Islands (USVI), and are composed of four
large and numerous small islands. Guana Island is located in the BVI, just north of the
largest island, Tortola (Figure 2.1). The island is approximately 850 acres in area. The only
habitation on the island is the structures of the Guana Island Resort that lie along the west
ridge between White Bay to the south and Muskmelon Bay to the north (Figure 2.2). The
island and its resort are privately owned and boast of being a sanctuary for both the flora
and fauna found naturally on the island. The occupational history of Guana Island will be

discussed later in this chapter.
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Figure 2.1 British Virgin Islands with the location of Guana Island outlined by a box
(Encyclopzedia Britannica, Inc.)



The pond was previously a seasonal pond that would fill with water during the rainy
season, and evaporate until it was a dry pond bed during the dry season. In 1990, a
desalination plant was built on the west side of the pond. Seawater is pumped into the
reverse osmosis plant and the hypersaline brine outflow is pumped into Guana Island Pond,

causing it to be inundated during both the rainy and dry seasons (Jarecki, 2003).
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Figure 2.2 Google Earth Satellite Image of Guana Island with White Bay, Muskmelon
Bay and North Bay visible. Red box outlines location of Guana Island Pond.

Further modifying the natural conditions of the pond is a round fountain on an
island that was installed in the center of the pond. The purpose of the fountain is purported
to aerate the water to lessen the stagnation. According to verbal reports from scientists and
staff of the island, storm surges from large storms do occasionally breach the berm along

the western side of the plain that separates the pond from White Bay. These overwash



events cause ocean water to enter the pond and also bring fish and other marine organisms
into the pond. These organisms are said to live for a short while until the water salinity

increases by evaporation thus causing a massive fish die-off.

Figure 2.3 View of Guana Island Pond, looking to the southeast from the ridge where
the Guana Island Resort housing units are located.

In October 2012, our water depth soundings show that Guana Island Pond (Figure
2.3) is very shallow and varies from 13 cm to 36 cm in depth. Influx of water into the pond
comes from rainfall, seawater overflow during storm events, and hypersaline brine outflow
from the desalination plant located on the northwest side of the pond.

Temperatures in the Caribbean are generally hot and humid. The climate of the BVI
is no exception, and is considered subtropical. Temperatures average 25.6°C year round,
with the dry season occurring from February to April and the rainy season occurring May to

November; though it is not uncommon for year-round pop-up rainclouds to briefly pass



over the island before departing. Guana Island Pond would fill during the rainy season, and
evaporate during the dry season prior to the installation of the desalination plant on the
island in 1990. Since the installation of the desalination plant, the pond no longer
evaporates completely, but does decrease in overall size during the dry season. A shrinking
of the surface area of the pond and a wider beach on the south shore of the pond can be
seen during times of low rainfall, such as in August 2012 as compared to times of high

rainfall, such as February 2014 using historical imagery in Google Earth (Figure 2.4).

Figure 2.4 August 29, 2012 aerial image (left) during the low rainfall and February
28, 2014 aerial image (right) during the high rainfall. A wider beach can be seen along the
southern side of Guana Island Pond in the August 2012 image.

Tectonic Setting
The BVI are located on the Caribbean Tectonic Plate, which is situated between the

North American Plate and South American Plates, and east of the Cocos, Nazca, and
Panama Plates. Pindell and Barrett (1990) posit that during the Late Triassic to Early
Jurassic, the North and South American plates separated, the Yucatan block migrated

towards its present location in the Gulf of Mexico, and continental fragments near Florida



migrated southeast and now underlie the south Florida shelf and western Bahamian
platform (Figure 2.5a).

In the Early Cretaceous (Valanginian), 130 Ma, seafloor spreading in the Gulf of
Mexico ceased and caused the Yucatan block to become part of the North American Plate
(Pindell and Barrett, 1990). At this time, the basement of the Greater Antilles likely formed,
and the Farallon Plate subducted to the southeast, beneath the South American Plate
(Figure 2.5b).

At the beginning of the Late Cretaceous (Cenomanian), 95 Ma, seafloor spreading
had created a wide proto-Caribbean seaway. A thick buoyant lithospheric block entered the
north-dipping proto-Greater Antilles subduction zone with a flip in polarity. The south-
dipping subduction began on the northern side of the Greater Antilles arc, allowing for the
migration of the Greater Antilles into the proto-Caribbean area. The Farallon Plate
continued to be subducted to the northeast towards the North American Plate (Figure 2.5c)
(Pindell and Barrett, 1990). By the middle of the Late Cretaceous (80 Ma), seafloor
spreading had ceased, with the Caribbean Plate migrating northeast into the gap between
North and South America, led by the Greater Antilles subduction (Figure 2.5d).

In the Paleocene (59 Ma), the Caribbean Plate continued to migrate to the
northeast, though the proto-Caribbean Sea was wider than the gap between Colombia and
the southern Yucatan, likely causing two back-arc spreading events, which formed the
Yucatan and Grenada basins. During this time, the collision between the Cuban frontal arc

complex and the Bahamas margin begins (Figure 2.5e) (Pindell and Barrett, 1990).



NORTH AMERICA

Valanginian: about 130 Ma

n: about B0 Ma

Cenomanian: about 95 Ma

....

Paleocene: about 59 Ma

Figure 2.5 Tectonic evolution of the Caribbean Plate from the Late Triassic to

present. A. Late Triassic to Early Jurassic; B. Valanginian; C. Cenomanian; D. Campanian; E.
Paleocene; F. Middle Eocene; G. Miocene; H. Present. (Pindell and Barrett, 1990).

In the Middle Eocene (49 Ma), the Yucatan and Grenada basins were fully opened;

the Cuba-Bahamas collision was complete, with the capture of Cuba to the North American



Plate. The northern Caribbean plate boundary zone is defined by the eastern movement
along the Cayman Trough (Figure 2.5f).

By the Miocene (20 Ma), the Caribbean Plate had migrated approximately half the
length of the Cayman Trough and Puerto Rico had separated from southeastern Hispaniola.
Most strike-slip motion in the northern Caribbean occurred along the Oriente Fault and
Puerto Rico Trench (Figure 2.5g) (Pindell and Barrett, 1990).

The BVI is located on the northern side of the Caribbean plate close to the boundary
with the North American Plate. This tectonic boundary is marked by the Puerto Rico Trench
which is also the geographical boundary between the Caribbean Sea and the Atlantic Ocean.
The deepest part of the Puerto Rico Trench is located approximately 120 km north of San
Juan, Puerto Rico. Geographically, the trench can be divided into two different areas at
approximately the 65-66° longitude line. West of this point, the boundary is 10-15 km wide,
water depths are deep (ca. 8 km), plate motion is obligue and accommodated on a
transform fault. East of this point, the trench shallows to 7.6-7.7 km and the North
American Plate is subducted beneath the Caribbean Plate (Brink et al., 2004).

The Puerto Rico Trench located between the American and Caribbean Plates is
unique. Although called a trench, this plate boundary is largely a transform boundary with
only a small area of subduction measured along the eastern boundary of the trench. Here
the western edge of the North American Plate is being subducted under the eastern edge of

the Caribbean Plate, along the Lesser Antilles.



Relative to the Caribbean Plate, the North American Plate is moving westward at a
rate of approximately 2 cm/yr. Relative to the North American Plate, the Caribbean Plate is
moving eastward (Figure 2.6) (Nealon and Dillon, 2001). The Puerto Rico Trench and the
Anegada Trough are along the boundary between the Caribbean and North American
Plates. The Anegada Trough is an area of deep ocean bathymetry to the southeast of the
island of Anegada. The Virgin Islands Trough is located on the Caribbean Plate, and is an
area of deep bathymetry, directly south of the USVI and BVI, but north of St. Croix, USVI.
The Muertos Trough is located south of Puerto Rico, and north of the Venezuelan Basin and
Plain on the Caribbean Plate. At the latitude of the BVI, the North American Plate is being

subducted under the Caribbean Plate along the Antilles Arc.
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Figure 2.6 Bathymetry of the seafloor and relative plate motion along the Caribbean-
North American Plate boundary. Magenta and deep blue colors indicate deep bathymetry
and yellow and orange colors indicate shallow bathymetry. (Nealon and Dillon, 2001).

10



The Antilles Island Chain marks a western boundary of the North American Plate as
it is being subducted beneath the Caribbean Plate. The Greater Antilles (Figure 2.7),
generally classified as including Cuba, Hispaniola, Jamaica, and Puerto Rico are volcanic and
metamorphic in their basement rocks, but are overlain with thick carbonate sedimentary
rocks. The exposure of igneous basement rocks in the Greater Antilles indicates that the
subduction volcanism that formed the Greater Antilles arc ended in the past.

The Lesser Antilles (Figure 2.7), generally classified as stretching from the U.S. Virgin
Islands to Trinidad and Tobago to the south and Aruba to the west are volcanic in nature.
Volcanism is ongoing along the eastern boundary between the North American and
Caribbean Plates, which formed the Lesser Antilles Island Chain. As the Lesser Antilles Island
Chain continues southward towards South America, there is a second area of subduction. At
this point, the South American Plate is being subducted under the Caribbean Plate,
continuing island growth in the Lesser Antilles.

As a result, most of the BVI are uplifted volcanic rocks, consisting of large fractured
breccias and tuffs (Figure 2.9). One exception is Anegada which is predominantly a
limestone island with a maximum elevation of only 8 m above sea level (Helsley, 1960). The
Lesser Antilles Island chain is made up of two Cenozoic volcanic arcs, formed approximately
during the early Eocene to mid-Oligocene and the Miocene to present (Bouysse, 1990).

During the late Pleistocene, sea levels were far lower than present day, and the
Puerto Rican Plateau was a large land mass that encompassed the present-day island of
Puerto Rico, as well as the entirety of the Virgin Islands, with the exception of St. Croix

(Island Resources Foundation and Jost Van Dykes (BVI) Preservation Society, 2009). While

11



geographically the British Virgin Islands belong to the Lesser Antilles, geologically they
belong to the Greater Antilles, rising from the Puerto Rican Plateau, located 65 m below

present day sea level, with basement plutonic rocks overlain with volcanic breccia tuffs.
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Figure 2.7 Map of Greater and Lesser Antilles islands. Image courtesy of Google
Earth.

Helsley (1960) mapped the stratigraphy of the BVI. The oldest bed encountered was
the Water Island Formation, with an unknown age. The Water Island, Louisenhoj, Outer
Brass Limestone, Tutu, and Tortola Formations are described in general. The Water Island
Formation consists of volcanic flows and breccias interbedded with altered basic to
intermediate, volcanic or subvolcanic rocks. The Louisenhoj Formation consists of coarse
breccias interbedded with finer tuffs. The Outer Brass Limestone Formation consists of dark

grey carbonaceous limestone. The Tutu Formation consists of tuffaceous wacke sandstone

12



interbedded with coarser clastic rocks. The Tortola Formation is composed of breccias, tuffs,
and volcanic sandstones.

Above the Tortola Formation is the intrusion of the Virgin Gorda Batholith. Above
the batholith is the Necker Formation (Helsley, 1960). Helsley (1960) states that the Necker
Formation is present on Mosquito, Prickly Pear, Eustatia, Little Saba, Necker, Guana, and
Great Camanoe Islands, the Seal Dogs, Cockroach Dog, and George Dog.

North of Virgin Gorda, the Necker Formation is pyroclastic in nature, with fine tuffs
that are less deformed than those in the Tortola Formation. The basal tuffs are light blue
green to green, very fine tuffs with poor bedding, and are interbedded with a few
moderately well sorted green lithic coarse tuffs (Helsley, 1960). Helsley (1960) posits that
the Necker Formation was likely deposited as subaerial ash that was later mildly altered or
metamorphosed. Above the basal tuffs are lithic coarse tuffs and lithic lapilli tuffs, which
range in color from whitish green to dark green and contain dark green chloritic fragments
that were likely originally glass.

On Guana Island, Helsley (1960) records a wide variety of rock types which were
deposited subaerially with the exception of one thinly bedded very fine porcellaneous tuff,
which may be a subaqueous deposit (Figure 2.8). All breccias and tuffs were weathered
shortly after deposition without reworking, and some are cut with later porphyritic basalt
dikes and sills. The entire section has undergone alteration, with the original rock being
replaced with a metaconglomerate of quartz, chlorite, and calcite. The southern units show
overturned bedding with steep dips, while the northern units show gentle folding and dips

of 10°-20° (Helsley, 1960). Helsley (1960) approximates the unit to be approximately 2,000’
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thick and include welded tuffs interbedded with lithic lapilli and coarse tuffs, with the unit
being highly altered and weathered. In thin section, the welded tuffs contain oriented and
highly altered plagioclase phenocrysts in an aphanitic matrix, which has been replaced by

calcite and silica.

'GUANA
ISLAND

49 44"

:[ g ¢ .-.: 1 ; - — i k

[~ N18°27°51.847

1 km

Figure 2.8 Helsley’s 1960 Geologic Map of Guana Island. Thp is porphyritic basalt, Tn
is the Necker Formation, and Qal is unconsolidated alluvium. Legend present in Appendix A.
Box indicates location of Guana Island Pond.

Above the welded tuffs, Helsley (1960) notes an approximately 3,000’ thick sequence of
volcanic breccias and tuffs containing several welded tuff units. These breccias vary in color
from green to brown to purple, consist of large blocks imbedded mostly in a coarse tuff and

seldom a lapilli tuff. This unit is also present on Great Camanoe Island. The third unit
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consists of tuffs, both coarse and fine, lapilli tuffs, and a few breccias, with exposures being
present along the north and western shores of Guana Island (Helsley, 1960). Helsley (1960)
interprets that this unit was deposited as subaerial ashes, because tuffaceous mudballs are
present. No fossils were found in the Necker Formation. The Necker Formation is assigned a
middle to late Eocene age because it overlies the Shark Bay Member of the Tortola
Formation (Helsley, 1960).

The Rogue’s Bay Calcarenite sits above the Necker Formation and Helsley (1960)
describes it as being named after its source location, at the eastern edge of Rogue’s Bay on
the north shore of Tortola. The calcarenite is exposed over an area of approximately 10,000
square yards and has a total thickness of 30’-40’, and is composed of well sorted pelecepod,
gastropod, and peneroplid shell fragments (Helsley, 1960). Helsley (1960) states the
calcarenite is cemented with calcite to form a limestone with approximately 10% porosity,
with very few silicates with plagioclase and epidote being the only ones present at less than
1% of the total rock. The age of the unit is late Miocene to present, and the unit dips away
from the Virgin Gorda Batholith, indicating the area of the unit has risen approximately 15°
since the late Miocene (Helsley, 1960).

The youngest layer encountered by Helsley (1960) is Quaternary Alluvium, which has
a maximum thickness of 150’, and is comprised of valley fill, beach, and mangrove deposits.

While performing the study of the BVI, Helsley (1960) took particular note of the
geology of Guana Island. The bedrock of the island consists mostly of the Necker Formation

(Figure 2.9), with the area on the northwestern portion of the island, between North Bay
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and Muskmelon Bay being composed of porphyritic basalt, and the area of Guana Island

Pond being classified as Quaternary Alluvium.

Figure 2.9 Igneous rock outcrop along the shoreline of Guana Island showing the
Necker Formation. Image taken from White Bay (Figure 2.2) looking west.

Within the Necker Formation, Helsley (1960) hypothesized that a major fracture or
fault set exists; creating the northwest-southeast trend of shorelines and ridges which are
not controlled by stratigraphic variations, as the strikes of these potential faults is nearly
east-west. He describes the coves on many of the islands consisting of mainly gravel or
boulder size rocks, with the exception of locations where offshore reefs create a slight
barrier to prevent storm waves from removing the sand. Helsley’s geologic map of Guana

Island can also be found in Appendix A.
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Cultural History

Pre-Columbian Occupation

The Caribbean has a long history of occupation. The first historical documentation is
from the Spanish, led by Christopher Columbus, arriving on what is now San Salvador Island
in the Bahamas in 1492. The Spanish found three major indigenous groups of people
occupying the Caribbean — the Ciboney, the Arawak, and the Carib (Rogozinski, 1999). These
native people are thought to have originated from South America. The Ciboney were found
on the northwestern parts of Cuba and Hispaniola, while the Arawak (sometimes known as
the Lucayans) dominated the Bahamian archipelago, and the Carib occupied the Virgin
Islands, much of the Lesser Antilles, and the northern portion of Trinidad. According to
reports of the Spanish, the Arawak followed after the Ciboney and were being chased by
the Carib (Rogoziniski, 1999). Other scholars posit that the Taino, a subclass of the Arawak,
occupied Puerto Rico, and shared a war-torn existence with the Carib of the Virgin Islands
(Figueredo, 2006).

According to the National Park Service, occupation in the Caribbean can be divided
into three major units: Paleoindian Period (9500-5000 B.C.), Mesoindian Period (5000 B.C.-
A.D. 1), and the Neoindian Period (A.D. 1-A.D. 1500). The Paleoindian Period is identified at
the El Jobo site in Venezuela, but no Paleoindian Period sites have been identified in the
Caribbean Islands. These people are believed to be big game hunters. The Mesoindian
Period people are the peoples that the early Spanish explorers described as the Ciboney,
who were a hunter gatherer people. Their sites tended to be coastal shell middens found on

or near the coast, and have evidence of stone tools, such as flake points and knives. Within
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the Mesoindian Period are two ceramic subcultures: the Casimiroid Culture and the
Ortoiroid Culture. The Ortioiroid Culture is further broken down into the Krum Bay
Subseries and Coroso Subseries (Prehistory of the Caribbean Culture Area, U.S. National
Park Service). The youngest unit is the Neoindian Period, the peoples of which came after
the Mesoindian groups, and eventually pushed the Mesoindians into western Cuba. Part of
this group was the Ostionoid agricultural culture, which migrated out of the Orinoco area of
Columbia and Venezuela into the Antilles. Part of this culture is the Elenan-Ostionoid
subseries, which has been dated from A.D. 600-1200, and pottery has been found on the
eastern half of Puerto Rico. These Elenan-Ostionoid culture sites such as Tibes, Collores, and
El Bronce in Puerto Rico, have multiple plazas and ball courts (Prehistory of the Caribbean
Culture Area, U.S. National Park Service).

Pottery excavated from a site on Guana Island suggest habitation as far back as 600-
1500 A.D. These early people are identified as the Ostionoids, an evolutionary predecessor
to the Taino (Saunders, 2005). The Ostionoids were a culture built upon pottery and
villages, including large settlements. They also had well established cultural customs and
beliefs, many of which were later incorporated into the Taino culture. Davis (2011)
proposed that Guana Island was used by the pre-Columbian natives as a ceremonial or
religious location, without being a location that was permanently occupied.

The discovery of pottery from differing times and native groups goes to further
support the idea of repeated occupation of Guana Island before European arrival, though
evidence for continual occupation is still being investigated. In 2008, while performing a

shovel test on Guana Island, Joshua Kehrburg discovered an almost entirely intact bowl
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dating back to the Elenan-Ostionoid style (Figure 2.10), which was dated to approximately

1100-1400 A.D. by Elizabeth Righter during the excavation (Righter, 2008).

Figure 2.10 Nearly intact Elenan-Ostionoid style bowl. From Righter, 2008. No scale
present.

The arrival of Europeans in the Caribbean in the 155 Century brought diseases that
decimated the population of the native peoples. Many islanders also succumbed to these
diseases, ultimately leading to the eventual eradication of the native peoples. The diseases
brought to the Americas by European explorers include smallpox, hepatitis, measles,
encephalitis, typhus, tuberculosis, diphtheria, whooping cough, mumps, and influenza
(Mann, 2011). Africans coming to the Caribbean had some immunity to European diseases,
but brought diseases of their own, such as malaria and yellow fever, neither of which
Europeans or pre-Columbian peoples had immunity to. Rogozinski (1999) suggests that
when Columbus landed in 1492, the Caribbean was home to at least a quarter of a million

Arawaks and Caribs. Some archaeological estimates have that population closer to 6 million
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natives (Rogozinski, 1999). Within 20 years of European contact, almost all native

Americans had perished or had been enslaved (Rogozinski, 1999).

European Occupation

After the discovery of the islands, Europeans quickly conquered the region.
Columbus landed in the Bahamas and then sailed south to Cuba, under the guide of several
Lucayans, and from Cuba he ventured to what is now known as Hispaniola (Rogozinski,
1999). Since the early 16™ century, the Virgin Islands were under European control and
have suffered conflict associated with the islands changing hands from one controlling
country to another; as fights and battles often occurred during changes in power. European
wars often determined who controlled the islands. In the 1620s, Europeans outside of Spain
were able to establish colonies in the Eastern Caribbean, before eventually moving west
into the Greater Antilles (Figure 2.7). All new colonies depended on the goods transported
by Dutch traders, and the Dutch West India Company was born (Rogozinski, 1999). In 1648,
Dutch pirates settled on Tortola, which was attacked and overtaken by the British in both
1665 and 1672. The British Virgin Islands have remained in British control ever since (Peffer,
2001; Rogozinski, 1999).

According to the surviving records of the Tortola Society of Friends, in the early-
1700s, two Quaker families, the Lake and Parke families (Jenkins, 1923), settled on Guana
Island as part of “the Quaker Experiment”, also known as the Religious Society of Friends,
which lasted for almost 50 years. The goal of “the Quaker Experiment” was to spread

equality, simplicity, and peace, but these ideals were difficult to encourage in a region of
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slavery (Chenoweth, 2014). The Lake and Parke families grew sugarcane and used African
slaves to work the fields. The sugarcane was processed at a mill whose ruins mark the
eastern side of Guana Island Pond on the island (Figure 2.11).

The British used Tortola and other islands for sugarcane production. While initially
highly profitable on other islands, it failed to take off in the Virgin Islands due in large part
to the aridity of the islands. Sugar production in the Virgin Islands declined and eventually
ended in the 1830s, following the end of British slave trade in 1808 and the abolition of

slavery in 1833 (Rogozinski, 1999), though the islands remained a British territory.

Figure 2.11 Ruins of late 18" Century Quaker Sugar Mill on the east side of Guana
Island Pond. No scale present.
Current Occupation

There is a marked hiatus in the history of the island from the 18 Century Quakers

until the 20™ Century ownership of the island. After European occupation and ownership
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for close to 450 years, Guana Island was purchased by Beth and Louis Bigelow of
Massachusetts in 1925. The Bigelow’s guests were travelers, intellectuals, and professionals,
and came to stay on the island for months at a time (www.guana.com). In 1975, Henry and
Gloria Jarecki purchased Guana Island from the Bigelow’s, and immediately began
improving and updating the accommodations and facilities on the island. The Jarecki’s were
believers in preserving the natural, undeveloped beauty of Guana Island, and began a
program to preserve and reintroduce many of the flora and fauna of Guana Island
(www.guana.com). The Jarecki’s also updated the structures on the island, as well as
installing a desalination plant in 1990, fulfilling the freshwater needs of the island’s resort,
as well as sprawling gardens and orchard.

Guana Island is still owned by the Jarecki family today. Guana Island is prized to this
day as a piece of paradise essentially untouched by the development and construction
associated with large scale resorts, such as those on Tortola and many of the islands in the
United States Virgin Islands. And by being one of the few islands in the Caribbean that is
both privately owned and open to the public, the Jarecki’s plan to share their piece of

paradise with generations to come.

Climate

With the exception of the northernmost Bahamian Islands, the Caribbean lies
entirely south of the Tropic of Cancer. This allows the region to have a warm and humid
climate. The temperatures rise to peak around noon and decrease as the afternoon

progresses. Humidity is highest, sometimes 90%, at dawn, before tapering off during late
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afternoon. Humidity can drop to as low as 50%, but is generally not any lower than 70%
(Rogozinski, 1999). The tropical climate of the Caribbean, caused by average temperatures
not differing by more than a few degrees throughout the entire year, is due in large part to
the Trade Winds. The British Virgin Islands (BVIs) lie within the northeast trade winds, with
winds coming from east-northeast from December to February, from the east from March
to May, from the east-southeast from June to August, and from the south-southeast from
September through November. Jarecki (2003) writes that this climate is subtropical with a
long dry season, with average temperatures ranging from 26° to 31°C in the summer and
22° to 28°C in the winter months. The northeast trade winds, which originate in the
Bermuda-Azores high-pressure cell, are the main meteorological cause of weather in the
Caribbean and Gulf of Mexico. These winds blow at a constant 15 to 25 knots, with very
little change in direction noted from day to day. They begin at the latitude of Bermuda and
then shift clockwise to the northeast, eventually becoming the mid-latitude westerlies that
travel back across the Atlantic towards England, France, and northern Europe (Rogozinski,
1999). The combination of the trade winds and the ocean currents that follow them in the
Caribbean lend themselves to the formation and locomotion of many tropical hurricanes.
Islands in the Caribbean usually experience both a “rainy season”, which occurs from
May to November, and a “dry season”, which occurs from February to April (Rogozinski,
1999). Mean rainfall from 1991 through 2001 was 104 cm/yr, and ranged from 69 cm in
1994 to 157 cm in 1998 (Jarecki, 2003). Reports from local BVI islanders state that 40 to 50
years ago the climate was rainier than present, and this idea is corroborated by a 1959

report stating an average of 135 cm/yr, ranging from 76 cm and 250 cm between 1901 and
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the time of publication. Additionally, due to orographic effects (i.e. mountains), rainfall can
vary greatly across and between islands, such as Tortola and Guana Island. It is said that
rainfall on Tortola can be up to 25% higher than on Guana Island, with its large surface area

and high peak at Mount Sage, than on smaller, flatter, neighboring islands (Jarecki, 2003).
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CHAPTER 3

METHODOLOGY

Field Procedures

Twelve soft-sediment cores were collected from ten locations from Guana Island
Pond. Fieldwork was conducted on Guana Island during October 2-12, 2012. The cores were
collected using a Bolivia-type, drive-rod piston corer purchased from LacCore at The
University of Minnesota (www. http://Irc.geo.umn.edu/laccore/). With this coring system, a
piston attached to a cable is placed inside a clear 1.25-m-long polycarbonate tube, i.e. the
core barrel. The core barrel is then attached to a housing and a rod. Two or three people
push the piston corer into the sediment while an additional person keeps tension on the
piston cable. As the corer is pushed into the sediment, the piston moves up the tube and
the sediment moves into the core barrel and the core is collected.

Cores were labeled for “Gl” for Guana Island, “12” for the year 2012, “FP” for
Flamingo Pond (the pond’s nickname), followed by the core number, and letter A, B, C, if
deeper sediment was recovered from the same core location.

Cores GI12FP6A/B/C, GI12FP7, GI12FP8, and GI12FP10 (i.e. cores 6, 7, 8, and 10)
form a roughly east-west transect across the northern portion of the pond, while cores
GI12FP1, GI12FP2, GI12FP3, GI12FP4, GI12FP5, and GI12FP9 (i.e. cores 1, 2, 3, 4, 5, and 9)
create a second east-west transect across the southern portion of the pond (Figure 3.1).
Core collection data for locations 6, 7, 8, and 10, including UTM coordinates, initial core
barrel length, percent recovery, and distance from benchmark core GI12FP6A/B/C can be

found in Table 3.1. Additional data on all cores can be found in Appendix B.
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During core collection, cores 6A, 6B, and 6C were all collected from the same boring

in an attempt to recover sediment of the deeper stratigraphic layers. Upon visual

observation, it was determined that the lowest core, 6C, correlated with the bottom

sediment in core 6B rather than the base of core 6B.

Compaction of sediment is common during piston coring. Therefore, the core tube

length and core recovery are important to document. By dividing the length of the core

recovered by the initial core barrel length pushed into the substrate, the percent of the core

recovered can be calculated. The percent recovery defines both potential compaction of

sediment and loss of sediment during the coring process, and is a quantifiable value.

Additional information on core collection can be found in Appendix B.

Table 3.1: Core location, barrel length, core recovered, percent recovered, and
distance from core GI12FP6ABC. Information on other cores can be found in Appendix B.

Barrel Percent Distance
Core UTM Length Recovered Recovered from
GI12FP6
20Q 0333705
GI12FPeA | 2043798 (+\- 5m) | 155 ¢m 17 cm 13% 0
20Q 0333705
Gl12FPeB | 2043798 (+\-5m) | 198 cm 88 cm 81% 0
20Q 0333705
Gl12FPeC | 2043798 (+\-5m) | 55 o m 32 cm 61% 0
20Q 0333659
GI12FP7 20?'3778 (+/-5m) | 125 cm 89 cm 71% tshlen;,vtv0
20Q 0333606 s
crizgrpg | 2043767 (#/-5M) | g5 cm 80 cm 91% SW
20Q 0333563 oo
Grizrpio | 2043724 (#/-4m) | 63 cm 38 cm 60% SW
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Figure 3.1 ArcGIS Image of Guana Island Pond core locations. Satellite image date:
pre-2005. Line of section A-A’ shown in red, and location of Quaker Sugar Mill Ruins boxed.

Bathymetric and sediment bottom type data were collected across Guana Island
Pond. From a canoe, water depth was measured at points using a pole marked in 2 cm
increments. GPS coordinates were recorded on a Panasonic Toughbook CF-19. Bathymetric
measurements were made in conjunction with sediment bottom type observations. When

inserting the measurement pole to measure water depth, an evaluation of the bottom
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sediment composition was recorded. Sediments were classified by texture as sand, clay
(firm, medium firm, soft), or sandy clay.

Water depth and GPS location data were input into the ESRI company ArcGIS
software program and a bathymetric map was generated using the topography, hillshade,
and contour tools (Figure 3.2). Water salinity, pH, and temperature data were also taken at

bathymetric points in Guana Island Pond, and can be found in Appendix C.
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Figure 3.2 ArcGIS map of bathymetry of Guana Island Pond. GIS digitization by
Andrew (2012).
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Laboratory Procedures

The Guana Island Pond cores were transported from the British Virgin Islands to the
University of Missouri-Kansas City (UMKC) as checked luggage. They are stored in a walk-in
cooler at 4°C for preservation. In January 2014, core 6A, 6B, 6C, 7, 8, and 10 were shipped
to the National Lacustrine Core Facility (LacCore) located at the University of Minnesota-
Minneapolis. Analyses conducted at LacCore on the Guana Island Pond cores are described
below.

The cores were run through the LacCore Multi-Sensor Logger. This equipment allows
for photographs to be taken before the core is split, as well as after it is split. The Multi-
Sensor Logger also allows for the viewing of internal stratigraphic structures before splitting
and cleaning of the cores, as well as testing for magnetic susceptibility. After the cores are
split and cleaned, smear slides were made. Smear slides contain a thin layer of
unconsolidated sediment spread on a glass slide for petrographic microscopic analysis.
Smear slides are useful for sediment classification and identification of any microfossils that
are present in the core. In addition to the smear slides prepared by LacCore, three smear
slides were made at UMKC, without optical cement or cover slide to allow scanning electron
microscope (SEM) images to be taken to help identify diatoms present in multiple smear
slides and diatoms smaller than visible under 10x magnification.

Visual descriptions of the cores include the location of sediment boundaries based
on color change using the Munsell Soil Color Chart and description of sediment grain size

and composition. Color and sediment descriptions were recorded every centimeter. These
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descriptions can be found in Appendix D. Cores are photographed to allow for correlation
between units (Appendix E).

A 3.5 cm? subsample was taken every 5 cm along the length of the cores for grain-
size analysis. Samples were weighed before and after drying 24 hours in an oven set at
105°C. The samples are then placed in 125 mL Nalgene bottles with a 1% Calgon solution
and left for at least 24 hours to disperse the sediment into individual grains. Samples were
then wet sieved through a sieve stack of 250 um (= medium sand), 125 um (fine sand), and
63 um (very fine sand) mesh, and when dried, the sand-size fractions were weighed.
Sediment below very fine sand (63 um) was not retained, but the weight percent of this size
fraction was calculated. The average grain-size weight percent values used in the unit
descriptions were calculated by adding the weight percent values of all grain-size data
together and then dividing the sum by the total number of samples in the unit. The grain-

size data can be found in Appendix F.

X-Ray Fluorescence

X-ray fluorescence (XRF) was performed at the Large Lakes Observatory at the
University of Minnesota-Duluth. The split cores were scanned at 1 cm increments for 60
seconds using the Cox Analytical Itrax XRF Core Scanner. The principle behind XRF is that a
surface is saturated with X-rays, which then emit a secondary X-ray, characteristic of the
element which emitted them. This secondary X-ray allows for the trends of elements to be
plotted, permitting an approximate unitless concentration to be calculated and plotted

(Marshall et al., 2012). XRF data are plotted in Excel and used to measure the elemental
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trends down the length of the cores. All XRF data was normalized by dividing each sample
by the highest value/trend of each element in each core. Each core then had a scale from
0.0-1.0 for each element.

The elements focused on for this study include: aluminum (Al), silicon (Si), titanium
(Ti), iron (Fe), and zirconium (Zr) that represent proxies for terrestrial sediment input; and
sulfur (S), chlorine (Cl), calcium (Ca), bromine (Br), and strontium (Sr) that are derived from
a marine source.

Terrestrial proxies act as indicators of land input into the sediments, such as large
precipitation events that can lead to increased erosion and soil runoff from bedrock sources
into the pond (e.g. Nearing et al., 2005). Changes in the watershed due to deforestation or
other land use practices caused by humans may also increase terrestrial runoff (e.g. Brenner
and Binford, 1988). Marine proxies act as indicators of seawater influx into the pond, such
as storm surges that could breach the berm during large storm events, or may indicate a
lagoonal environment.

For XRF terrestrial proxies into Guana Island Pond, aluminum and silicon were
selected due to their abundance in igneous rocks. The bedrock of the island of Guana is part
of the Necker Formation, and contains quartz-andesite tuffs and breccias with minor
welded tuffs. There is also porphyritic basalt on the north end of the island, but it is not part
of the Guana Island Pond watershed (Helsley, 1960). Titanium and zirconium were selected
due to their high density, relative immobility, and concentration during transport via water

or wind (e.g. Marshall et al., 2012), and the tendency of titanium to settle into clays and
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zirconium into silt to fine sands (Oldfield et al., 2003). Dellwig et al. (2001) indicate iron is an
indicator of terrestrial runoff as opposed to seawater influence.

For XRF marine proxies, sulfur was selected due to seawater sulfate ion being the
main source of sulfur (Dellwig et al., 2001). Chlorine was selected due to seawater, and
subsequent evaporites, being the only source of chloride (Whitaker and Smart, 2007). A
decrease in chlorine would indicate marine influence, as it would dilute the hypersaline
chlorine concentrations normally found in the pond. Calcium was selected due to its
increased presence in carbonate environments (Shamberger and Foos, 2004), such as the
coral reefs in White Bay and North Bay, and its ability to act as a proxy for storm deposits.
Bromine was selected due to its relatively high concentrations in seawater and saline lakes
(approximately 65mg/l) and its extremely low concentrations in freshwater (Song and
Miller, 1993), and strontium was selected due to the fact that concentrations are higher in
seawater than freshwater (Reinhardt et al., 1998). Core GI12FP8 XRF data can be seen in
Figures 3.3 and 3.4 as an example of elemental trends in Guana Island Pond. XRF data for

each core analyzed can be found in Appendix G.

Shells and Microfossils

Sediment samples from wet sieving were viewed under 3x stereo microscope
magnification. Visible microfossils from the 250 um samples were picked and placed on
microfossil microscope slides. Sediment samples from other wet-sieved size fractions were

not analyzed. The percent of carbonate sediment and percent siliclastic sediment were
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Figure 3.4 Core 8 Marine XRF Graphs with depositional units marked.
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estimated visually under magnification. Matte grey sediment was classified as carbonate
and and reflective/glossy sediment was classified as siliclastic based on a 5% HCI solution
test and visual observations.

Microfossils from Guana Island Pond sediment were imaged using UMKC's Vega3 LM
Tescan Scanning Electron Microscope. SEM irradiates the area to be analyzed with a beam
of finely focused electrons in order to create data that can be interpreted as an image with
visible depth of field (Goldstein et al., 2003). Images were taken using the secondary
detector, rather than the primary detector, as contrast by topography was desired, as
opposed to contrast by composition. SEM images can be found in Appendix H. Dr. Jeffery
Stone from the Indiana State University Paleolimnology Laboratory was consulted to assist
in diatom identification. The microfossil assemblages and photo plates can be found in
Appendix |, and select microfossil SEM images can be found in Appendix H.

Smear slides were created by LacCore during the initial core splitting, cleaning, and
imaging. Smear slides were remade for three samples containing an unidentified diatom,
without using optical cement or cover slides. These smear slides were then viewed using a
Nikon Optiphot-Pol microscope with a Lumenera camera, and areas with the unidentified
diatom were circled directly on the slide. The slides were then examined using Tescan Vega
3 LMU scanning electron microscope, which allowed the diatom to be viewed with great
depth of field. By using the secondary electron detector rather than the back-scattered
electron detector, images with great depth of field were created. Two diatoms were located

and photographed.
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Microfossil Analysis

Micro fossils and shells are divided up into three groups: freshwater, brackish water,
and marine species.

Freshwater species identified include Chara fibrosa oogonia (Figure 3.5), the diatom
Campylodiscus clypeus (Figure 3.6), and the gastropod Pyrgophorus platyrachis (Figure 3.7).
Chara fibrosa is a species of freshwater green algae (AlgaeBase), Campylodiscus clypeus is a
species of diatom found in Units 3-5 that can live in both freshwater and marine
environments (AlgaeBase), and Pyrgophorus platyrachis is a species of gastropod, closely
related to the Pyrgophorus parvulus, which can live in fresh or brackish water (WoRMS).

The only exclusively brackish species identified during the study is the gastropod
Cerithideopsis costata (Figure 3.8), which only one specimen was found (WoRMS).

Marine species identified include the diatom Tryblionella compressa (Figure 3.9), the
gastropods Pyrgophorus parvulus (Figure 3.10) and Cerithium lutosum (Figure 3.11), and
ostracods interpreted to be part of the Cyprideis sp., possibly Cyprideis Americana and
Cyprideis torosa (Figure 3.12). Tryblionella compressa is a marine diatom found only in Unit
5/6 (AlgaeBase), Pyrgophorus parvulus is a gastropod found only in marine environments,
Cerithium lutosum is an exclusively marine gastropod identified in only two specimens,
Cyprideis sp. is a genus and Cyprideis Americana is a species of ostracods that can live in
brackish to marine waters, and Cyprideis torosa is a species of ostracod that live in marine

waters (WoRMS).
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Figure 3.5 Freshwater algae Chara Figure 3.6 Marine or freshwater
fibrosa oogonia. Scale = 3.0 mm. Campylodiscus clypeus diatom.

Figure 3.7 Brackish to freshwater Figure 3.8 Brackish Cerithideopsis

Pyrgophorus platyrachis gastropod. costata gastropod. Scale = 3.0 mm.
Scale = 3.0 mm.
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Figure 3.9 Marine Tryblionella Figure 3.10 Marine Pyrgophorus
compressa diatom. parvulus gastropod. Scale = 3.0 mm.
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Figure 3.11 Marine Cerithium Figure 3.12 Cyprideis sp. ostracod.
lutosum gastropod. Scale = 3.0 mm Scale = 3.0 mm.
Radiocarbon Analysis

Wood and peat fragments were collected for radiocarbon dating and sent to
Lawrence Livermore National Laboratory for dating using Accelerator Mass Spectrometry
(AMS). The age of the sample is based on ¢ having a half-life of 5,730 years. After the ¢
data was received, the data was calibratd. Calibration is necessary because atmospheric **C
has not been constant over time. The CALIB software converts data from radiocarbon age to
calibrated years by calculating the probability distribution of the sample’s true age. By
measuring the radiocarbon age of tree rings of known independently dated samples,
calibrated **C values are obtained (Reimer et al., 2004). The calibration dataset used for the
Guana Island Pond **C samples was the IntCal13 database. This was selected due to the
Guana Island Pond samples being non-marine. For the Guana Island Pond samples, the
calibration was based on tree-ring **C measurements (Stuiver and Reimer, 1993). This data

can be found in Table 3.2 and Appendix J.
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A sedimentation rate was calculated by plotting the median probability age of the

two radiocarbon dates at depths of 28 cm and 63 cm, respectively. A least squares

regression line was plotted to the data (Figure 3.13). The data show a 0.5 mm/yr average

sediment accumulation rate. Core 6 extends an additional 45 cm below the radiocarbon

date of 1307 + 46 yr BP in core 7. Using a sedimentation rate of 0.5 mm/yr and a core

thickness of 450 mm, the age at the base of the deepest core, core 6, at 110 cm, is

approximately 900 yr older than the radiocarbon date at ~63 cm in core 7. Thus, the age of

the oldest sediment recovered in this study is likely 2200 yr BP.

Table 3.2: Radiocarbon sample number, type, depth,

and age. Additional

information can be found in Appendix J. *There was an error in the *C reporting. The updated
age is in the table below.

Calibrated Age

Calendar Age AD +

Sample No. Sample Type Depth (cm) | *C Age 20 20
GI12FP8 wood 27-28.5 805 + 25* 720 £ 40 yr BP 1230+40
GI12FP7 wood 62-65 1380+ 35 | 1307 +46 yr BP 643 + 46

Year BP
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Figure 3.13 Sedimentation rate plot for samples GI12FP8 and GI12FP7.
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CHAPTER 4

RESULTS

Six depositional units were defined in the core stratigraphy based on sediment
composition, color, grain-size weight percent, age, elemental analyses, and shell and
microfossil identification (Table 4.1). Cores 6, 7, 8, and 10 are aligned along an
approximately east-west transect (see Figure 3.1 for location), perpendicular to the
shoreline of the abandoned sugar mill on the east side of Guana Island Pond (Figure 2.11).

Unit Descriptions

Unit 6

Unit 6 is a very dark grey to black, medium to fine sand unit with organics. The
maximum thickness of Unit 6 is 28 cm in Core 10. The unit was encountered at the base of
cores 7, 8, and 10, and is believed to be interbedded with Unit 4 in core 8 (Figure 4.1). The
average grain-size weight percent for Unit 6 is 30% silt/clay, 6.3% very fine sand, 31% fine
sand, and 33% coarse to medium sand (Table 4.1). Unit 6 is interpreted as a shallow marine
storm deposit based on the uniform coarseness and broken fossils found in the unit. XRF of
Unit 6 shows low levels of Si, Ti, and Fe and high levels of Cl, Ca, Sr, and Br that suggest a
marine water input; and high levels of zirconium are potentially due to Unit 6 being
predominantly sand. Shells found in Unit 6 include Cerithium lutosum, a marine gastropod

identified in Unit 6 of Core 10.
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Table 4.1 The six depositional units of Guana Island Pond with defining features and

associated radiocarbon ages.

Grain Size
Radiocarbon Thickness (average wt Elemental Depositional
Age (yr BP) Unit (cm) Description %) Analysis Environment
—
Very dark grey 93% silt/clay,
. 1.9% very
to dark greyish ) :
demto9 | brown firm cla fine sand, Fresh/marine
. R Y| 2.9% fine High Sr, Ti, Fe | mixed
Silt cgarseynin sand, 1.9% shallow water
with depth ® | medium
pth. sand
Very dark grey 93% silt/clay,
to dark grey clay | 2.9% very
8 cm to to silty clay to fine sand, Hich Sr. Ti Fe Fresh/

13 em silt with fine 2.3% fine Cag' IowICI, Brl Brackish
angular sand, sand, 2.0% ! ! shallow water
coarsening with | medium
depth. sand
Dark t 78% silt/cl

arkgreyto %silt/clay, Zr decreases
very dark 7.2% very with depth:
2cmto7 greyish brown fine sand, high Cl l:I)E&r'llow Marine
720 + 40 yr BP sandy silt with | 3.7% fine gn % Bh;
cm . Ca, Sr but shallow water
organics, sand, 10% increases with
coarsening with medium depth
depth. sand P
Dark grey to 91% silt/clay,
dark olive grey 3.8% very
clayey silt tosilt | fine sand, . Fresh shallow
20cm to . . Low Cl, Br; High | water;

40 cm with 3.1% fine Ca, Sr, Si carbonate
interbedded sand, 2.4% e facies
carbonate facies | medium
and organics. sand
Dark grey to
black organic 85% silt/clay,
sandy silt, 3.8% very Lo
coarsening and fine sand, Low Fe; mid .

1307 £ 46 yr 4 cmto ) . level Zr; pulses | Marine
increased 5.1% fine .
BP 44 cm ) . in Cl, Ca, Br, Sr, | shallow water
organics with sand, 5.4% Si Ti- high S
depth. Oldest medium AR
unit in Cores 6B sand
and 6C.
30% silt/cl
Very dark grey %silt/clay,
. 6.3% very .
to black medium | _. - Marine
. fine sand, Low Si, Ti, Fe;
8cmto sand with 31% fine Hich Cl. Zr Ca shallow

28 cm organics. Oldest sans:l 33% SrgBr T water/ storm
unit in Cores 7, medi’um ? ! deposit
8, and 10.

sand
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Figure 4.1 Cross section of east-west transect of cores 6A, 6B, 6C, 7, 8, and 10 with
vertical exaggeration of approximately 10x. The cross section reflects the correct placement
of core GI12FP6C adjacent to core GI12FP6B rather than below it. Red dots mark **C
locations.
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Unit 5

Unit 5 is a dark grey to black, carbonate silty clay with approximately 10% to 25%
sand. The maximum thickness of the unit is 44 cm and the unit thins westward from 6B/C.
Unit 5 is approximately 90% carbonate sand and 10% siliclastic sand, and a spot test using
5% HCI solution confirmed the presence of calcium carbonate in the sand. The average
grain-size weight percent for Unit 5 is 85% silt/clay, 3.8% very fine sand, 5.1% fine sand, and
5.4% coarse to medium sand.

Microfossils found in Unit 5 include diatoms identified as likely being Campylodiscus
clypeus and Tryblionella compessa (Dr. Jeffery Stone, Indiana State University, pers. comm.);
142 intact and 228 half ostracods identified as likely being in the Cyprideis sp., possibly
Cyprideis americana (Dr. Andrew Cohen, University of Arizona, pers. comm.) or Cyprideis
torosa; and ten charophyte oogonia identified as likely being Chara fibrosa (AlgaeBase), an
exclusively freshwater species. Macrofossils found in Unit 5 include 52 gastropods identified
as likely being Pyrgophorus platyrachis or Pyrgophorus parvulus [World Register of Marine
Species (WoRMS)].

XRF of Unit 5 shows high levels of Ca, Sr, and S and low levels of the terrestrial
elements. Unit 5 is interpreted as shallow marine water due to the presence of the diatom
Tryblionella compressa, which can only live in a marine environment. In addition, low levels
of Fe combined with high levels of S further indicate a marine environment. Unit 5 has a
wood age of 1307 = 46 yr BP. It is likely that the gastropods found in Unit 5 belong to

Pyrgophorus parvulus, a marine species, rather than Pyrgophorus platyrachis, a fresh to
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brackish water species. Additionally, the presence of Chara fibrosa oogonia suggests some

mixing of freshwater.

Unit 4

Unit 4 is a dark grey to dark olive grey, carbonate mud with interbeds of fine-to-
medium-grained sand layers and organic material. The maximum thickness of the unit is 40
cm. Sand is predominantly carbonate sediment (85%) with 15% siliclastic sand. The average
grain-size weight percent for Unit 4 is 91% silt/clay, 3.8% very fine sand, 3.1% fine sand, and
2.4% coarse to medium sand.

Microfossils found in Unit 4 include the diatom identified as likely being the fresh or
marine water diatom Campylodiscus clypeus; 77 intact and 200 half ostracods identified as
likely being in the Cyprideis sp., possibly Cyprideis americana or Cyprideis torosa; and 125
freshwater charophyte oogonia identified as likely being Chara fibrosa (AlgaeBase).
Macrofossils found in Unit 4 include 124 gastropods identified as likely being Pyrgophorus
platyrachis or Pyrgophorus parvulus (WoRMS).

XRF of Unit 4 shows low levels of Cl and Br, suggesting low input of saline water.
High levels of Ca and Sr indicate the presence of carbonate mud and microfossils. Si present
throughout the unit may indicate the presence of diatoms or siliclastic sand.

Unit 4 is interpreted as shallow fresh water due to the presence of 125 Chara fibrosa
oogonia, indicating a freshwater environment, as Chara fibrosa is an exclusively freshwater
species. The diatom Tryblionella compressa, which can live only in a marine environment,

was absent in Unit 4, and the diatom Campylodiscus clypeus was present in Unit 4, and can
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live in either fresh or marine waters. The 124 gastropods were found in Unit 4 and are likely
Pyrgophorus platyrachis, a fresh to brackish species, rather than the marine Pyrgophorus
parvulus. XRF of Unit 4 shows low levels of chlorine and bromine combined with the
relatively high levels of silicon indicate a freshwater environment for Unit 4, indicating a

period of high precipitation and subsequent terrestrial erosion.

Unit 3

Unit 3 is a thin (2-10 cm) dark grey, silt to sandy silt, and is approximately 90%
carbonate sand and 10% siliclastic sand. The average grain-size weight percent for Unit 3 is
78% silt/clay, 7.2% very fine sand, 3.7% fine sand, and 10% coarse to medium sand.

Microfossils found in Unit 3 include the diatom identified as likely being the fresh or
marine water diatom Campylodiscus clypeus; six intact and ten half ostracods identified as
likely being in the Cyprideis sp., possibly Cyprideis americana or Cyprideis torosa; and two
freshwater charophyte oogonia identified as likely being Chara fibrosa (AlgaeBase).
Macrofossils found in Unit 3 include 13 gastropods identified as likely being Pyrgophorus
platyrachis or Pyrgophorus parvulus (WoRMS).

XRF of Unit 3 shows high levels of Cl and Br, initially high levels of Zr and low levels
of Ca and Sr. Zr decreases with depth, potentially indicating a high level of sand in the upper
portion of Unit. Ca and Sr increase with depth towards the Unit 4 boundary.

Unit 3 is interpreted as shallow marine water due to the presence of only two Chara
fibrosa oogonia and only 13 gastropods, likely Pyrgophorus platyrachis or Pyrgophorus

parvulus. P. platyrachis lives in fresh to brackish water, and P. parvulus lives in marine
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water, making it likely that the gastropods found in Unit 3 belong to Pyrgophorus parvulus
rather than Pyrgophorus platyrachis. The diatom Campylodiscus clypeus was present in Unit
3, and can live in either fresh or marine waters. The limited number of Chara fibrosa
oogonia and gastropods suggest a subtidal to intertidal marine environment for Unit 3, with

a wood age of 720 + 40 yr BP.

Unit 2

Unit 2 is a thin (8-13 cm) dark grey silty clay with fine angular sand, coarsening with
depth, and is approximately 85% carbonate sand and 15% siliclastic sand. The average
grain-size weight percent for Unit 2 is 93% silt/clay, 2.9% very fine sand, 2.3% fine sand, and
2.0% coarse to medium sand.

Microfossils found in Unit 2 include 29 intact and 60 half ostracods identified as
likely being in the Cyprideis sp., possibly Cyprideis americana or Cyprideis torosa and 61
charophyte oogonia identified as likely being Chara fibrosa (AlgaeBase). Macrofossils found
in Unit 2 include 112 gastropods identified as likely being Pyrgophorus platyrachis or
Pyrgophorus parvulus (WoRMS) and one gastropod identified as likely being Cerithideopsis
costata (WoRMS).

XRF of Unit 2 shows high Ca and Sr from carbonate sand and mud, high Si, Ti, and Fe
from terrestrial runoff, and low levels of Cl and Br indicate limited saltwater input.

Unit 2 is interpreted as shallow fresh to brackish water due to the presence of 61
Chara fibrosa oogonia and 112 gastropods, likely Pyrgophorus platyrachis rather than the

marine Pyrgophorus parvulus. There was also one gastropod identified as likely being
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Cerithideopsis costata in Unit 2, which lives exclusively in a brackish environment. Minimal
marine proxies and elevated terrestrial proxies further support the fresh to brackish water
interpretation of Unit 2.

Unit 1

Unit 1 is the upper 4-9 cm in cores GI12FP6A, GI12FP7, and GI12FP8 and is a dark
greyish brown, firm silty clay, and is approximately 85% carbonate sand and 15% siliclastic
sand. The average grain-size weight percent for Unit 1 is 93% silt/clay, 1.9% very fine sand,
2.9% fine sand, and 1.9% coarse to medium sand.

Microfossils found in Unit 1 include 7 intact and 25 half ostracods identified as likely
being in the Cyprideis sp., possibly Cyprideis americana or Cyprideis torosa and ten
charophyte oogonia identified as likely being Chara fibrosa (AlgaeBase). Macrofossils found
in Unit 1 include 34 gastropods identified as likely being Pyrgophorus platyrachis or
Pyrgophorus parvulus (WoRMS).

XRF of Unit 1 shows high levels of Sr, Ti, Fe, Zr, Si, and Ca; and mid-range levels of Cl.
High levels of marine proxies indicate carbonates, and high levels of terrestrial proxies
indicate terrestrial runoff from precipitation. The prevalence of both terrestrial and marine
XRF proxies indicate a unit of mixed freshwater and marine deposition, and is therefore
interpreted as a shallow fresh/marine mixed unit. Unit 1 was classified as mixed due to the
presence of 34 gastropods, likely Pyrgophorus platyrachis or Pyrgophorus parvulus. P.
platyrachis lives in fresh to brackish water, and P. parvulus lives in marine water, making it
equally likely that the gastropods found in Unit 1 could belong to either species. There were

also 10 Chara fibrosa oogonia in Unit 1, indicating a more freshwater environment.
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CHAPTER 5
DISCUSSION

Six depositional units interpreted from the sediment core data are used to
investigate and define the change in climate and land use on Guana Island over time. All
units coarsen westward, with core 6 containing the smallest weight percent of coarse to
medium sand, and core 10 containing the highest weight percent of coarse to medium sand.
The coarsening westward is likely due to berm-breaching storm events.

During the early to mid-Holocene locations at mid latitudes appear to have been
warmer in the past 5,000 years, while at lower latitude locations, temperature averages
were cooler (Rimbu et al., 2003). In the Caribbean, wet conditions persisted through the
mid-Holocene (Hodell et al., 1991) and were replaced by drier conditions in the late
Holocene (Haug et al., 2001), due to a shift in the position of the Inter-Tropical Convergence
Zone (ITCZ). When the ITCZ is in the northward position, it causes Belize, Saint-Martin,
Barbados, and the Cariaco Basin to be humid and Haiti to be dry. This is reversed when the
ITCZ is in the southward position; when Haiti is humid and Belize, Saint-Martin, Barbados,
and the Cariaco Basin are dry (Figure 5.1, Malaizé et al., 2011).

Tedesco and Thunell (2003) present data on increases in planktonic foraminifera
50 isotopes leads to an increase in salinity and decreases in sea surface temperature.
These increases are centered at 5,500 yr BP, and coincide with development of arid
conditions in the Caribbean region and the end of the “African humid period”, which

indicates a global drying of the northern tropics at the time.
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Figure 5.1 Northward (a) and southward (b) positions of the Inter-tropical
Convergence Zone (ITCZ). Dark grey/blue indicates humid conditions and light grey/yellow
indicates dry conditions. Belize (Bel.), US Atlantic Coast (Atl), Puerto Rico (PR), Saint-Martin
(StM), Barbados (Barb). (Malaizé et al., 2011).

During the drying of the northern tropics, wetter conditions were occurring in the Altiplano
of Bolivia/Peru, which are attributed to the southern positioning of the ITCZ. This placement
would have resulted in decreased precipitation and increased strength of the trade winds in

the Caribbean while increasing rainfall over the Altiplano (Tedesco and Thunell, 2003).
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During boreal winter and spring, the ITCZ is in its most southerly position; rainfall is at a
minimum and strong easterly winds cause intense upwelling of deep, nutrient rich, cold
seawater along the Venezuela coast. When the ITCZ moves north during the boreal
summer, the trade winds diminish, upwelling ceases, and precipitation increases. Therefore,
when the Cariaco Basin region or northern tropics are dry, the southern tropical region of
South America is wet, and vice versa (Tedesco and Thunell, 2003).

In their study of the planktonic foraminifera 50 isotope record, Tedesco and
Thunell (2003) determined the highest salinities and coolest ocean temperatures are
recorded from 6,000 to 5,000 yr BP, followed by a long term warming and freshening. The
largest increase in 50 planktonic foraminifera that they found occurred from 3,500 to
3,000 yr BP, which coincides with the aridity of the Caribbean (Hodell et al., 1991; Haug et
al., 2001). In the Cariaco basin and northern Amazon the climate became progressively drier
since the mid-Holocene due to a southward migration of the ITCZ (Haug et al.,, 2001).
Decreased metal concentrations in the Cariaco Basin sediments correlate to less runoff from
precipitation and drier conditions. Cooler and drier conditions developed in the Cariaco
Basin from 3,800 to 3,500 yr BP. In the Kilimanjaro ice core 60 record at a latitude of
3°05’S suggests a period of most severe drought in tropical Africa during historical/human
times (Thompson et al., 2002). Pollen records from Lake Miragoane, in Haiti indicate the
lake filled in the early Holocene and remained high until the development of arid conditions
at approximately 3,400 yr BP (Hodell et al., 1991).

Tedesco and Thunell (2003) interpreted that an increase in seasonality and a

southward displacement of the ITCZ combined with an intensification of the South

49



American summer monsoon would have changed the moisture balance of the Caribbean
region.

Malaizé et al. (2011) studied cores from the Grand-Case Pond, a shallow ~1.5-m-
deep pond isolated from the sea by sand berm in Saint-Martin (Malaizé et al., 2011), making
it very similar to Guana Island Pond. Preliminary sedimentological study on the latest
Grand-Case core showed three different phases: a dry period from 4,500 to 2,350 yr BP,
indicated by carbonate mud deposition and gypsum layers; a wet phase from 2,350 to 1,100
yr BP, indicated by pyrite-rich organic mud in connection with high lake levels; and an
overall dry phase from 1,100 yr BP to present, indicated by carbonates and detrital inputs
due to human activities (Malaizé et al., 2011).

Malaizé et al. (2011) compiled regional data from multiple sites in the Caribbean in
order to create a model for the paleoclimate pattern in the eastern Caribbean islands. On a
regional scale, there are parallels between the Grand-Case Pond data and those found
elsewhere in the Caribbean, such as Barbados, the Cariaco Basin, Belize, and Haiti. In the
Cariaco Basin, bulk titanium content is linked with increased rainfall and consequent
increase in erosion. Low Ti values are thus correlated to droughts. In the Cariaco Basin,
periods of increased precipitation occurred between 3,800 to 2,600 yr BP following
droughts between 2,600-1,250 yr BP and a wetter climate from 1,250 yr BP to present
(Haug et al., 2003). Tedesco and Thunell’s (2003) data on planktonic foraminifera 50
isotope values show high frequency of arid conditions between 3,800 to 3,200, 3,000 to
2,800, and 1,200 to 800 yr BP. High Ti levels in the Cariaco basin coincide with the drier

evaporite layers found in the Grand-Case sediments (Malaizé et al., 2011).
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Figure 5.2 Compilation of Caribbean climate studies (Malaizé et al., 2011). (a) shows grain
size data from Puerto Rico (Donnelly and Woodruff, 2007), (b) shows ostracod isotope composition
from Lake Miragoane, Haiti (Hodell et al., 1991), (c) shows climate data from fossil corals in Belize
(Gischler and Storz, 2009), (d) shows hurricane strike records from Belize (McCloskey and Keller,
2009), (e) shows stalagmite data from Barbados (Mangini et al., 2007), (f) shows Cariaco Basin
climate records (Tedesco and Thunell, 2003), (g) shows Cariaco Basin Ti levels (Haug et al., 2003), (h)
shows hydrological balance and hurricane history of Saint-Martin (Malaizé et al., 2011), (i) shows
grain size in core GC6 from Saint-Martin (Malaizé et al., 2011), (j) shows ostracod abundance in core
GC6 from Saint-Martin (Malaizé et al., 2011), and (k) shows carbon isotope composition of ostracods
from GC6 from Saint-Martin (Malaizé et al., 2011). From Malaizé et al., 2011. (I) shows Guana Island
Pond study data. Box indicates dates present in Guana Island Pond samples and radiocarbon ages.
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Pollen data and fossil coral reefs from the Turneffe Islands in Belize and speleothems
in Barbados also indicate a drier climate between 3,900 and approximately 3,200 yrs B.P.
(Wooller et al., 2009; Gischler and Storz, 2009; Mangini et al., 2007). Ostracod data from
Lake Miragoane, Haiti suggests the opposite climate as those determined for Barbados. In
Lake Miragoane, ostracod data shows the lowest 50 levels between 7,000 and 5,300 yr BP
(Hodell et al., 1991), while the Barbados speleothem data shows the highest 50 levels
(Mangini et al., 2007). Low 50 levels relative to 80 levels indicate warm climates,
whereas high 520 levels relative to §'°0 levels indicate cold climates. This contrast can be
explained by the seasonal shifts in the ITCZ. A more stable northern position of the ITCZ
from 2,400 to 1,250 yr BP could have maintained a long-lasting humid climate in the
southern Caribbean, but not in Haiti (Malaizé et al., 2011). This compiled data can be seen
in Figure 5.2.

The storm deposit interpreted in Guana Island Pond Unit 6 predates Unit 5’s age of
1307 * 46 yr BP. Using a sedimentation rate of 0.5 mm/yr, the base of Unit 6 likely date to
2200 to 1300 yr BP. This unit may correlate to the hurricane sand layers referenced by
Malaizé et al. (2011) from the Saint-Martin Island core data. These authors identify
hurricane landfalls via sand layers within the lake mud, which are interpreted as coastal
sand barrier over wash. Unit 6 in Guana Island Pond appears to correlate with a warmer
wetter climate, interpreted on Saint-Marten, approximately 2,000 yr BP. It is also possible
that during the time of deposition of Unit 6, Guana Island Pond was still a tidal estuary

partially open to White Bay.
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Shallow marine or intertidal lagoonal conditions are interpreted for Guana Island
Pond Unit 5, which were deposited ca. 1300 yr BP. These data suggest a cooler, drier
climactic time period with possible hypersaline lake conditions that are supported by high
levels of elemental bromine, strontium, and chlorine, and low levels of iron, titanium, and
silicon. Guana Island Pond Unit 5 does not appear to have a high input of terrestrial
elements, which suggest minimal runoff and minimal anthropogenic disturbance of the
watershed.

Shallow freshwater lacustrine conditions prevailed in Guana Island Pond sometime
between 1200 at 800 yr BP based on low levels of elemental chlorine and bromine and an
abundance of freshwater algae. Relatively high levels of silicon also suggest an increase in
watershed erosion (Figures 3.3 and 3.4). Precipitation rates were likely higher than
evaporation rates, thus enabling a freshwater environment. Based on 60 ostracod levels
from Lake Miragoane, Haiti, Hodell et al. (1991) interpret a brief period of wetter
conditions, from 1500 to 900 yr BP, which correlates to the age of Unit 4 on Guana Island
Pond. Brenner and Binford (1988), in discussing Lake Miragoane, suggest that the pre-
history of the region is poorly known, but ceramic evidence indicates the presence of
Arawak settlements as early as 600 CE (1350 yr BP), with two additional episodes of Arawak
occupation that date to between 900 (1050 yr BP) and 1500 CE (450 yr BP). If Arawak
occupation was occurring in the Caribbean as early as 600 CE (1350 yr BP), it is likely that
Guana Island Pond was used as a viable source of potable water for the pre-Columbian

native peoples.
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By about 800 yr BP, Guana Island Pond appears to have been dominated by shallow
marine water conditions based on increases in calcium, strontium, chlorine, and bromine,
and low levels of titanium, zirconium, and lead. Data from Lake Miragoane indicate that
following a brief wet period that occurred from approximately 1500 to 900 yr BP, there was
a progressive increase in the ratio of evaporation to precipitation, indicating a cooler drier
climate for Unit 3.

Since about 700 yr BP or later, Guana Island Pond has been a fresh to brackish water
lake environment. Elemental data from Unit 2 shows high levels of chlorine and calcium
which would normally indicate a marine environment. However, the repeatedly high levels
of silicon, titanium, and iron indicate high inputs of terrestrial runoff. The presence of
plentiful freshwater Chara fibrosa oogonia supports a freshwater environment for Unit 2. It
is likely that during this time, there was marginally more precipitation than evaporation.
These lacustrine sediments correlate to the arrival or Europeans (ca. 500 yr BP) to the
Caribbean region. High levels of terrestrial derived elements to the lake suggest an increase
in erosion and soil runoff that was likely caused by extensive land clearing beginning with
the Quaker settlement around 300 yr BP.

The uppermost layer in Guana Island Pond, represented by Unit 1, is influenced by
constant marine water inflow into Guana Island Pond from the reverse osmosis plant and
local runoff. High levels of terrestrial elemental proxies in sediments of Unit 1 are likely
from 20" century land clearing and development. The depositional environment of Unit 1
has nearly an equal ratio of evaporation to precipitation, thus maintaining marine to

brackish water conditions as measured in October 2012.
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CHAPTER 6
CONCLUSION

This study focused on interpreting the sedimentary record of cores extracted from
Guana Island Pond located on the southwest portion of Guana Island in the British Virgin
Islands (BVI). The lake is a eutrophic pond covering an area of about 1.9 hectares. ltis
surrounded on the west, north, and east by mountains that present a viable source for
terrestrial runoff into the pond. The main objective of this study of cores from Guana Island
Pond is to determine how the environment has changed on the island over the past. From
the sediment analyses of sediment from four shallow (15-100 cm) cores from the lake, six
stratigraphic units were defined based on the grain-size, elemental concentration, and
micro- and macrofossil identifications. A sedimentation rate of 0.5 mm/yr was calculated for
the Guana Island Pond cores within a tidal estuary.

The oldest sediment from this study (Unit 6), deposited ca 2200 yr BP suggests that
the island was dominated by storm deposit. The climate was warmer and wetter, as evident
at other paleoclimate sites at this latitude in the Caribbean.

Overlying the storm deposits are shallow marine sediments (Unit 5), deposited ca
1307 + 46 yr BP. These data correlate to a regional cooler and drier time period with more
evaporation than precipitation.

Analysis of Unit 4 sediment from Guana Island Pond support a shallow freshwater
environment of the lake during 1200 to 800 yr BP. This interpretation is supported by low
levels of chlorine and bromine combined with relatively high levels of silicon, indicating the

rate of precipitation exceeds evaporation. The timing of migration of pre-Columbian native
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peoples into the Caribbean islands is unknown. Various lines of evidence suggest that by
600 CE (1350 yr BP), native peoples were in the Lesser Antilles and possibly utilizing Guana
Island Pond as a viable source of potable water. These data correlate to a brief (1500 to 900
yr BP) wet period documented at Lake Miragoane in Haiti.

Around 800 yr BP, Guana Island Pond reverted to shallow marine conditions for the
deposition of Unit 3. These data correlate to a progressive increase in the ratio of
evaporation to precipitation in Haiti after 900 yr BP.

By 800 yr BP (Unit 2) the lake becomes fresh to brackish. The repeatedly high levels
of silicon, titanium, and iron indicate a freshwater environment. It is likely that during the
time of deposition, there was marginally more precipitation than evaporation. It is possible
that Unit 2 dates back to European arrival and conquest of the Caribbean, which could
account for the high levels of terrestrial derived elements, due to land clearing and soil
erosion.

The uppermost layer (Unit 1) represents mixed fresh, brackish, and marine
conditions. Sedimentation is currently controlled by constant marine water inflow into
Guana Island Pond from the reverse osmosis plant that was installed on the island in 1990.
Storm overwash also occurs. It is likely that the depositional environment of Unit 1 has a
nearly equal ratio of evaporation to precipitation.

Based on the depositional environments defined in Units 1-6 in Guana Island Pond,
the lake was once a tidal estuary before becoming isolated from White Bay. It could have
been a viable source of potable fresh water for pre-Columbian native peoples and early

European settlers ca 1300 to 800 yr BP. Paleolimnological analyses of soft sediment cores
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from Guana Island Pond show the paleoenvironmental changes the pond has undergone

throughout six depositional units; from a tidal estuary to an inland pond.

57



APPENDIX A

GEOLOGIC MAP OF GUANA ISLAND (HELSLEY, 1960)

fne A GUANA
83— ISLAND

— N18°27'51.84"

|

1 km
(box marts approximate location of Guana Island Pond)

Geologic Map

British Virgin Islands

Geology by C.E. Helsley (1960)
Qal: Alluvium: Valley fill, Beach rock, and Mangrove Deposits (recent)
Tn: Necker Formation: Quartz-andesite tuffs and Breccias with minor Welded Tuffs (Late Eocene}

Tpb: Porphyritic Basalt (Middle Eocene)

SYMBOLS
STRIKE AND DIP OF BEDDING
— 7 A L +
N.rmaol Cverturned Vertical Horizontal

FOLIATION IN GRANITIC ROCKS
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APPENDIX B
FIELD NOTES ON CORE COLLECTION

Barrell Percent Distance from
Core UTM Length Recovered Recovered GI12FP6 Notes
GI12FP1 ;8233323592 not recorded |not recorded |not recorded [135 m to the WSW
GI12FP2 20Q 0333667 not recorded |not recorded [not recorded |75 m to the SW core was
2043733 compressed
GI12FP3 ;85%3??3580 not recorded |not recorded |not recorded [150 m to the WSW
20Q 0333734 bent upper tube
GI12FP4 5043737 125cm 73cm 58% 67 mto the SE when pushing in
piston slipped.
First 15m from
bank, 20cm deep
layer of organics;
under organics
roughly 5cm sandy
gravel with some
larger rocks, starts
at 20cm depth. 15-
30m from bank
GI12FP5 20Q 0333709 125cm 57cm 45% 43 m to the SSE black organics
2043757 I .
ayer thins to
roughly 10cm,
sand layer gets
less gravelly and
firmer, water
depth shallows. 30-
45m from bank,
black organic layer
thickens and
deepens.
top layer is black;
20Q 0333705 Isgfi?fesetl?dltclcfh?asive
GI12FP6A |2043798 (+\- 125cm 17cm 13% 0 X
5m) grey cla_y that is
preventing further
penetration
20Q 0333705
GI12FP6B |2043798 (+\- 108cm 88cm 81% 0
5m)
tension of the
20Q 0333705 piston was lost.
GI12FP6C |2043798 (+\- 52cm 32cm 61% 0 Possible slough
5m) from top of hole at
the top of 6C
20Q 0333659
GI12FP7 2043778 (+/- 125cm 89cm 71% 50 mto the WSW
5m)
20Q 0333606
GI12FP8 2043767 (+/- 88cm 80cm 91% 104 m to the WSwW
5m)
shore at this
location has signs
of previous
mangroves
growing farther to
the North-
submerged. Also
200 0333633 e
GI12FP9 2043734 (+/- not recorded [73cm not recorded |96 m to the SW £
5m) and mortar rom.
an old structure;
appears to be
isolated. Today
west of flamingo
feeding area was a
large dead fish and
a dead rat on the
shore
20Q 0333563 water between
GI12FP10 |2043724 (+/- 63cm 38cm 60% 160 m to the SW piston and core
4m) top
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APPENDIX C
SEDIMENT BOUNDARY AND WATER CHEMISTRY DATA
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BATHYMETRIC DATA

(0]

Water Depth

It UTM (cm below
#
surface)

1 |20Q 0333802 2073742 32
2 | 20Q 0333680 2043794 28
3 | 20Q 0333668 2043811 25
4 |20Q 0333658 2043811 21
5 |20Q 0333646 2043809 20
6 | 20Q 0333637 2043805 28
7 | 20Q 0333627 2043804 20
8 |20Q 0333612 2043793 23
9 | 20Q 0333589 2043777 20
10 | 20Q 0333570 2043763 23
11 | 20Q 0333545 2043747 23
12 | 20Q 0333536 2043736 20
13 | 20Q 0333533 2043728 18
14 | 20Q 0333550 2043717 18
15 | 20Q 0333564 2043716 15
16 | 20Q 0333555 2043735 24
17 | 20Q 0333579 2043738 26
18 | 20Q 0333598 2043759 33
19 | 20Q 0333606 2043745 33
20 | 20Q 0333613 2043734 26
21 | 20Q 0333615 2043724 14
22 | 20Q 0333629 2043719 13
23 | 20Q 0333633 2043732 29
24 | 20Q 0333626 2043753 30
25 | 20Q 0333621 2043776 33
26 | 20Q 0333634 2043789 31
27 | 20Q 0333643 2043764 35
28 | 20Q 0333652 2043752 29
29 | 20Q 0333658 2043739 32
30 | 20Q 0333656 2043721 18
31 | 20Q 0333676 2043722 16
32 | 20Q 0333672 2043747 34
33 | 20Q 0333667 2043756 34
34 | 20Q 0333660 2043770 33
35 | 20Q 0333656 2043783 36
36 | 20Q 0333658 2043792 33
37 | 20Q 0333663 2043777 28
38 | 20Q 0333671 2043769 31
39 | 20Q 0333686 2043742 33
40 | 20Q 0333691 2043729 29
41 | 20Q 0333699 2043719 16
42 | 20Q 0333689 2043752 33
43 | 20Q 0333702 2043733 30
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44 | 20Q 0333711 2043721 16
45 | 20Q 0333719 2043716 17
46 | 20Q 0333730 2043723 23
47 | 20Q 0333741 2043717 17
48 | 20Q 0333739 2043731 23
49 | 20Q 0333726 2043758 29
50 | 20Q 0333727 2043772 33
51 |20Q 0333719 2073775 31
52 120Q 0333714 2043793 34
53 | 20Q 0333698 2043807 29
54 | 20Q 0333693 2043815 24
55 | 20Q 0333684 2043823 19
56 | 20Q 0333666 2043825 24
57 | 20Q 0333689 2043800 33
58 | 20Q 0333700 2043788 35
59 | 20Q 0333693 2043782 35
60 | 20Q 0333718 2043746 30
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APPENDIX D

CORE LOGS
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APPENDIX E
CORE IMAGES/ CORE CORRELATION
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APPENDIX F
WEIGHT PERCENT DATA

Depth in Core (cm)

~

[y
N

17

Core 6A

Weight Percent

0 10 20 30 40 50 60 70 80 90 100

> Medium Sand
M Fine Sand

= Very Fine Sand
= Silt/Clay




Depth in Core (cm)

Core 6B

Weight Percent

0 10 20 30 40 50 60 70 80 90 100

B > Medium Sand
M Fine Sand

= Very Fine Sand
m Silt/Clay
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Depth in Core (cm)

N

~
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N

[y
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N
N

N
~

w
N

Core 6C

Weight Percent
0 10 20 30 40 50 60 70 80 90 100

B > Medium Sand
® Fine Sand
= Very Fine Sand

11 Silt/Clay
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Depth in Core (cm)

Core 7

Weight Percent

0 10 20 30 40 50 60 70 80 90 100

B > Medium Sand
® Fine Sand
= Very Fine Sand

11 Silt/Clay
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Depth in Core (cm)

Core 8

Weight Percent

0 10 20 30 40 50 60 70 80 90 100

® > Medium Sand
M Fine Sand
= Very Fine Sand

m Silt/Clay

Depth in Core (cm)
w N N [y =
[ o = o [N w =

w
(e}

Core 10

Weight Percent

0 10 20 30 40 50 60 70 80 90 100

> Medium Sand
H Fine Sand

= Very Fine Sand
= Silt/Clay
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GI12FP6A Grain Size Weight Percent Data

Depth in Core (cm)

Medium Sand (> 250 micron)

Fine Sand (125 micron)

Very Fine Sand (63 micron)

Silt/Clay (<63 micron)

2 0.16 3.72 0.58 95.53
7 0.18 1.61 0.84 97.37
12 0.81 1.44 3.87 93.87
17 0.26 0.98 1.26 97.50

GI12FP6B Grain Size Weight Percent Data

Depth in Core (cm)

Medium Sand (> 250 micron)

Fine Sand (125 micron)

Very Fine Sand (63 micron)

Silt/Clay (<63 micron)

2 0.75 2.52 4.25 92.48
7 0.12 1.28 1.59 97.00
12 0.68 2.08 2.77 94.48
17 0.97 1.53 3.32 94.19
22 4.02 3.79 3.65 88.54
27 2.13 2.83 4.09 90.95
32 2.09 1.81 2.36 93.73
37 0.86 2.19 2.53 94.43
42 1.70 3.08 3.80 91.41
47 1.63 2.98 2.98 92.41
52 0.54 0.84 1.22 97.41
57 3.47 2.66 4.32 89.55
62 5.38 3.18 2.95 88.49
67 4.35 3.89 3.94 87.82
72 3.87 3.24 2.31 90.58
77 2.34 3.06 3.01 91.59
82 5.02 3.61 2.07 89.30
87 2.83 3.97 3.20 90.01

GI12FP6C Grain Size Weight Percent Data

Depth in Core (cm)

Medium Sand (> 250 micron)

Fine Sand (125 micron)

Very Fine Sand (63 micron)

Silt/Clay (<63 micron)

2 0.68 1.83 2.49 95.00
7 1.84 2.53 2.30 93.33
12 1.28 2.27 1.94 94.52
17 1.36 1.84 1.98 94.82
22 5.47 5.72 4.85 83.96
27 9.15 6.19 5.82 78.85
32 7.42 6.17 6.00 80.41

GI12FP7 Grain Size Weight Percent Data

Depth in Core (cm)

Medium Sand (> 250 micron)

Fine Sand (125 micron)

Very Fine Sand (63 micron)

Silt/Clay (<63 micron)

2 3.96 2.38 2.53 91.13
7 1.50 1.70 1.93 94.87
12 3.17 3.15 3.78 89.90
17 2.49 2.41 3.16 91.94
22 3.60 2.62 3.50 90.28
27 2.71 4.08 2.86 90.35
32 2.59 2.57 1.66 93.18
37 1.19 2.01 2.25 94.55
42 2.15 2.19 2.05 93.61
47 3.51 3.49 5.01 87.99
52 4.21 3.64 3.72 88.42
57 7.01 10.01 5.64 77.35
62 11.66 8.97 3.96 75.41
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67 4.22 4.37 3.68 87.73
72 9.16 7.94 3.23 79.67
77 8.10 8.72 4.41 78.78
82 18.75 16.08 6.94 58.22
87 27.38 22.58 7.72 42.33

GI12FP8 Grain Size Weight Percent Data

Depth in Core (cm)

Medium Sand (> 250 micron) [ Fine Sand (125 micron)

Very Fine Sand (63 micron)

Silt/Clay (<63 micron)

3 3.30 3.91 3.80 88.99

8 3.63 2.83 2.60 90.95
13 2.07 2.00 2.99 92.94
18 2.82 4.21 4.44 88.54
23 20.20 4.99 10.15 64.65
28 6.50 9.19 15.42 68.89
33 5.83 5.71 8.68 79.78
38 3.22 5.42 6.45 84.91
43 4.30 3.99 4.63 87.08
48 3.92 3.34 3.04 89.70
53 9.85 10.15 4.70 75.30
58 29.66 18.34 6.45 45.55
63 32.25 19.39 7.89 40.48
68 40.80 20.95 6.88 31.37

GI12FP10 Grain Size Weight Percent Data

Depth in Core (cm)

Medium Sand (> 250 micron) | Fine Sand (125 micron)

Very Fine Sand (63 micron)

Silt/Clay (<63 micron)

1 32.83 38.90 4.81 23.45
6 26.27 34.63 6.66 32.43
11 29.12 39.54 8.08 23.25
16 34.02 37.16 7.18 21.63
21 34.27 38.02 5.65 22.06
26 42.40 37.35 4.57 15.68
31 39.47 39.22 4.75 16.56
36 41.58 41.09 3.96 13.37
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APPENDIX G
XRF CHARTS AND DATA

Unit

Elemental
Analysis

Depositional
Environment

High Sr, Ti, Fe,
Zr, Si, Ca; mid-
range Cl

Fresh/marine
mixed
shallow water

High Sr, Ti, Fe,
Ca; low Cl, Br

Fresh/
Brackish
shallow water

Zr decreases
with depth;
high Cl, Br; low
Ca, Sr but
increases with
depth

Marine
shallow water

Fresh shallow

Low Cl, Br; water;

High Ca, Sr, Si carbonate
facies

Low Fe; mid-

level Zr; pulses | Marine

in Cl, Ca, Br, Sr,
Si, Ti

shallow water

Low Si, Ti, Fe;
High Cl, Zr, Ca,
Sr

Marine
shallow
water/ storm
deposit
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GI12FPEA

GI12FP6A

Al Si Ti Fe u
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1 1 1 1
- 2 2 2 2
3 3 3 3
4 4 4 4
5 51 5+ 5
T 6 6 6~ 64
¥ 7 7 7
8 8 8 8
10 10 10 10
1 1 1 1
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- 13 13 13 13 +
1 14 1 14
15 15 15 15
0 05 1 0 05 1 0 05 1 0 05 05
Core 6A Terrestrial Elemental Proxies
S 4] Br Ca Sr
0 0 0 0
1 1 > § 1
2 2 2 2
3 3 - | 3
4 4 4 4
5 5 5 S
6 6 [ 6
7 7 7 7
> 8 8 8 8
10 10 10 10
1 1 1 1
12+ 12 n 12
> 13 13 13 13
14 14 1 14
15 15 15 15
05 1 0 05 1 0 05 1 0 05 05

Core 6A Marine Elemental Proxies
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Al Si Ti Fe Ir
GI12FP6B
0 0 0 0
o 2 / s /
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15 15 15 15
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APPENDIX H
SEM IMAGES

£

SEM HV: 20.0 kV WD: 11.76 mm

SEM MAG: 1.66 kx |Date(m/d/y): 10/27/16

Campylodiscus clypeus, Core GI12FP7, Unit 5

SEM HV: 20.0 kV WD: 11.71 mm ' VEGA3 TESCAN
SEM MAG: 1.38 kx  Date(m/dly): 10/27/16 UMKC

Campylodiscus clypeus, Core GI12FP7, Unit 5
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SEM HV: 10.0 kV WD: 12.30 mm VEGA3 TESCAN

SEM MAG: 1.38 kx Date{m/dly): 10/27/16 UMKC

Campylodiscus clypeus, Core GI12FP7, Unit 5

" SEMHV: 10.0 kv WD: 1226 mm ' VEGA3 TESCAN

Viewseis 150ym_vese  zom
w Date(m/dly): 10/27/16 UMKC

Campylodiscus clypeus, Core GI12FP7, Unit 5
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N ¥
SEM HV: 10.0 kV WD: 11.74 mm VEGA3 TESCAN
SEM MAG: 10.4 kx Date{m/dl/y): 10/27/16 UMKC

Tryblionella compressa, Core GI12FP7, Unit 5

. :_ d

SEM HV: 10.0 kV WD: 12.28 mm VEGA3 TESCAN

View field: 200pym |~ Det:SE  5pym
SEM MAG: 10.4kx Date(m/dly): 10/27/16 UMKC

Tryblionella compressa, Core GI12FP7, Unit 5
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SEM MAG: 2.08 kx Date{m/dly): 10/27/16 UMKC

Campylodiscus clypeus, Core GI12FP8, Unit 5

VEGA3 TESCAN

SEM MAG: 1.66 kx |Date(m/dly): 10/27/16 UMKC

Campylodiscus clypeus, Core GI12FP8, Unit 5
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SEM HV: 10.0 kV WD: 11.69 mm VEGA3 TESCAN

SEM MAG: 1.38 kx Date{m/dly): 10/27/16 UMKC

Campylodiscus clypeus, Core GI12FP8, Unit 3

SEM HV: 10.0 kV WD: 11.71 mm VEGA3 TESCAN

| Viewreis: soym | petse
Campylodiscus clypeus, Core GI12FP8, Unit 3
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APPENDIX |
MICROFOSSIL ASSEMBLAGES AND PHOTO PLATES

Unit Core Name Photo Environment
#

1 GI12FP6A | Pyrgophorus parvulus 1 marine
GI12FP6A Cyprodeis sp. 2 marine
GI12FP6A Cyprodeis sp. 3 marine

GI12FP7 Pyrgophorus parvulus 4 marine
GI12FP7 Pyrgophorus parvulus 5 marine
GI12FP7 Pyrgophorus parvulus 6 marine
GI12FP7 Pyrgophorus parvulus 7 marine
GI12FP7 Cyprodeis sp. 8 marine
GI12FP7 Cyprodeis sp. 9 marine
GI12FP8 Chara fibrosa 10 freshwater
GI12FP8 Chara fibrosa 11 freshwater
GI12FP8 Pyrgophorus parvulus 12 marine
GI12GPS8 Cyprodeis sp. 13 brackish/marine
GI12FP8 Cyprodeis sp. 14 brackish/marine

2 GI12FP6A Chara fibrosa 15 freshwater
GI12FP6A | Pyrgophorus platyrachis 16 brackish/fresh
GI12FP6A | Pyrgophorus platyrachis 17 brackish/fresh
GI12FP6A Cyprodeis sp. 18 brackish/marine
GI12FP6A Cyprodeis sp. 19 brackish/marine
GI12FP6A Cyprodeis sp. 20 brackish/marine

GI12FP7 Chara fibrosa 21 freshwater
GI12FP7 Chara fibrosa 22 freshwater
GI12FP7 | Pyrgophorus platyrachis 23 brackish/fresh
GI12FP7 | Pyrgophorus platyrachis 24 brackish/fresh
GI12FP7 Cyprodeis sp. 25 brackish/marine
GI12FP7 Cyprodeis sp. 26 brackish/marine
GI12FP8 Chara fibrosa 27 freshwater
GI12FP8 Chara fibrosa 28 freshwater
GI12FP8 Chara fibrosa 29 freshwater
GI12FP8 Chara fibrosa 30 freshwater
GI12FP8 | Pyrgophorus platyrachis 31 brackish/fresh
GI12FP8 | Pyrgophorus platyrachis 32 brackish/fresh
GI12FP8 | Pyrgophorus platyrachis 33 brackish/fresh
GI12FP8 | Pyrgophorus platyrachis 34 brackish/fresh
GI12FP8 Cyprodeis sp. 35 brackish/marine
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GI12FP8 Cyprodeis sp. 36 brackish/marine
GI12FP8 Cyprodeis sp. 37 brackish/marine
GI12FP8 Cyprodeis sp. 38 brackish/marine
GI12FP10 | Cerithideopsis costata 39 brackish
GI12FP10 Chara fibrosa 40 freshwater
GI12FP10 Chara fibrosa 41 freshwater
GI12FP10 Chara fibrosa 42 freshwater
GI12FP10 Chara fibrosa 43 freshwater
GI12FP10 | Pyrgophorus platyrachis | 44 brackish/fresh
GI12FP10 | Pyrgophorus platyrachis | 45 brackish/fresh
GI12FP10 | Pyrgophorus platyrachis | 46 brackish/fresh
GI12FP10 | Pyrgophorus platyrachis | 47 brackish/fresh
GI12FP10 | Pyrgophorus platyrachis | 48 brackish/fresh
GI12FP10 | Pyrgophorus platyrachis | 49 brackish/fresh
GI12FP10 | Pyrgophorus platyrachis | 50 brackish/fresh
GI12FP10 Cyprodeis sp. 51 brackish/marine
GI12FP10 Cyprodeis sp. 52 brackish/marine
GI12FP6B Chara fibrosa 53 freshwater
GI12FP6B Cyprodeis sp. 54 brackish/marine
GI12FP6B Cyprodeis sp. 55 brackish/marine
GI12FP8 Pyrgophorus parvulus 56 freshwater
GI12FP8 Cyprodeis sp. 57 brackish/marine
GI12FP8 Cyprodeis sp. 58 brackish/marine
GI12FP10 Chara fibrosa 59 freshwater
GI12FP10 | Pyrgophorus parvulus 60 marine
GI12FP10 | Pyrgophorus parvulus 61 marine
GI12FP10 | Pyrgophorus parvulus 62 marine
GI12FP10 Cyprodeis sp. 63 brackish/marine
GI12FP6B Chara fibrosa 64 freshwater
GI12FP6B Chara fibrosa 65 freshwater
GI12FP6B Chara fibrosa 66 freshwater
GI12FP6B Chara fibrosa 67 freshwater
GI12FP6B Chara fibrosa 68 freshwater
GI12FP6B Chara fibrosa 69 freshwater
GI12FP6B | Pyrgophorus platyrachis 70 brackish/fresh
GI12FP6B | Pyrgophorus platyrachis 71 brackish/fresh
GI12FP6B | Pyrgophorus platyrachis 72 brackish/fresh
GI12FP6B | Pyrgophorus platyrachis | 73 brackish/fresh
GI12FP6B | Pyrgophorus platyrachis 74 brackish/fresh
GI12FP6B | Pyrgophorus platyrachis 75 brackish/fresh
GI12FP6B | Pyrgophorus platyrachis | 76 brackish/fresh
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GI12FP6B Cyprodeis sp. 77 brackish/marine
GI12FP6B Cyprodeis sp. 78 brackish/marine
GI12FP6B Cyprodeis sp. 79 brackish/marine
GI12FP6B Cyprodeis sp. 80 brackish/marine
GI12FP6B Cyprodeis sp. 81 brackish/marine
GI12FP6B Cyprodeis sp. 82 brackish/marine
GI12FP6B Cyprodeis sp. 83 brackish/marine
GI12FP6B Cyprodeis sp. 84 brackish/marine
GI12FP6C Chara fibrosa 85 freshwater
GI12FP6C Chara fibrosa 86 freshwater
GI12FP6C Chara fibrosa 87 freshwater
GI12FP6C Chara fibrosa 88 freshwater
GI12FP6C | Pyrgophorus platyrachis 89 brackish/fresh
GI12FP6C | Pyrgophorus platyrachis | 90 brackish/fresh
GI12FP6C | Pyrgophorus platyrachis | 91 brackish/fresh
GI12FP6C Cyprodeis sp. 92 brackish/marine
GI12FP6C Cyprodeis sp. 93 brackish/marine
GI12FP6C Cyprodeis sp. 94 brackish/marine
GI12FP6C Cyprodeis sp. 95 brackish/marine
GI12FP6C Cyprodeis sp. 96 brackish/marine
GI12FP6C Cyprodeis sp. 97 brackish/marine
GI12FP7 Chara fibrosa 98 freshwater
GI12FP7 | Pyrgophorus platyrachis 99 brackish/fresh
GI12FP7 | Pyrgophorus platyrachis | 100 brackish/fresh
GI12FP7 Cyprodeis sp. 101 brackish/marine
GI12FP7 Cyprodeis sp. 102 brackish/marine
GI12FP7 Cyprodeis sp. 103 brackish/marine
GI12FP7 Cyprodeis sp. 104 brackish/marine
GI12FP7 Cyprodeis sp. 105 brackish/marine
GI12FP8 Chara fibrosa 106 freshwater
GI12FP8 Chara fibrosa 107 freshwater
GI12FP8 Chara fibrosa 108 freshwater
GI12FP8 Chara fibrosa 109 freshwater
GI12FP8 Chara fibrosa 110 freshwater
GI12FP8 Chara fibrosa 111 freshwater
GI12FP8 Chara fibrosa 112 freshwater
GI12FP8 Chara fibrosa 113 freshwater
GI12FP8 Chara fibrosa 114 freshwater
GI12FP8 | Pyrgophorus platyrachis | 115 brackish/fresh
GI12FP8 | Pyrgophorus platyrachis | 116 brackish/fresh
GI12FP8 | Pyrgophorus platyrachis | 117 brackish/fresh
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GI12FP8 | Pyrgophorus platyrachis | 118 brackish/fresh
GI12FP8 | Pyrgophorus platyrachis | 119 brackish/fresh
GI12FP8 | Pyrgophorus platyrachis | 120 brackish/fresh
GI12FP8 Cyprodeis sp. 121 brackish/marine
GI12FP8 Cyprodeis sp. 122 brackish/marine
GI12FP8 Cyprodeis sp. 123 brackish/marine
GI12FP8 Cyprodeis sp. 124 brackish/marine
GI12FP8 Cyprodeis sp. 125 brackish/marine
GI12FP8 Cyprodeis sp. 126 brackish/marine
GI12FP8 Cyprodeis sp. 127 brackish/marine
GI12FP8 Cyprodeis sp. 128 brackish/marine
GI12FP8 Cyprodeis sp. 129 brackish/marine
GI12FP10 | Pyrgophorus platyrachis | 130 brackish/fresh
GI12FP10 | Pyrgophorus platyrachis | 131 brackish/fresh
GI12FP10 | Pyrgophorus platyrachis | 132 brackish/fresh
GI12FP10 | Pyrgophorus platyrachis | 133 brackish/fresh
GI12FP10 Cyprodeis sp. 134 brackish/marine
GI12FP6B Chara fibrosa 135 freshwater
GI12FP6B | Pyrgophorus parvulus 136 marine
GI12FP6B | Pyrgophorus parvulus 137 marine
GI12FP6B Cyprodeis sp. 138 brackish/marine
GI12FP6B Cyprodeis sp. 139 brackish/marine
GI12FP6B Cyprodeis sp. 140 brackish/marine
GI12FP6B Cyprodeis sp. 141 brackish/marine
GI12FP6B Cyprodeis sp. 142 brackish/marine
GI12FP6B Cyprodeis sp. 143 brackish/marine
GI12FP6B Cyprodeis sp. 144 brackish/marine
GI12FP6B Cyprodeis sp. 145 brackish/marine
GI12FP6B Cyprodeis sp. 146 brackish/marine
GI12FP6B Cyprodeis sp. 147 brackish/marine
GI12FP6B Cyprodeis sp. 148 brackish/marine
GI12FP6B Cyprodeis sp. 149 brackish/marine
GI12FP6C Chara fibrosa 150 freshwater
GI12FP6C | Pyrgophorus parvulus 151 marine
GI12FP6C | Pyrgophorus parvulus 152 marine
GI12FP6C Cyprodeis sp. 153 brackish/marine
GI12FP6C Cyprodeis sp. 154 brackish/marine
GI12FP6C Cyprodeis sp. 155 brackish/marine
GI12FP6C Cyprodeis sp. 156 brackish/marine
GI12FP6C Cyprodeis sp. 157 brackish/marine
GI12FP7 Chara fibrosa 158 freshwater
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GI12FP7 Pyrgophorus parvulus 159 marine
GI12FP7 Cerithium lutosum 160 marine
GI12FP7 Cyprodeis sp. 161 brackish/marine
GI12FP7 Cyprodeis sp. 162 brackish/marine
GI12FP7 Cyprodeis sp. 163 brackish/marine
GI12FP7 Cyprodeis sp. 164 brackish/marine
GI12FP7 Cyprodeis sp. 165 brackish/marine
GI12FP7 Cyprodeis sp. 166 brackish/marine
GI12FP7 Cyprodeis sp. 167 brackish/marine
GI12FP8 Chara fibrosa 168 freshwater
GI12FP8 Pyrgophorus parvulus 169 marine
GI12FP8 Pyrgophorus parvulus 170 marine
GI12FP8 Pyrgophorus parvulus 171 marine
GI12FP8 Pyrgophorus parvulus 172 marine
GI12FP8 Cyprodeis sp. 173 brackish/marine
GI12FP8 Cyprodeis sp. 174 brackish/marine
GI12FP8 Cyprodeis sp. 175 brackish/marine
GI12FP8 Cyprodeis sp. 176 brackish/marine
GI12FP8 Cyprodeis sp. 177 brackish/marine
GI12FP8 Cyprodeis sp. 178 brackish/marine
GI12FP10 Cerithium lutosum 179 marine
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Microfossil Plate 1

3.0mm
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Microfossil Plate 2

3.0mm
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Microfossil Plate 3

3.0mm
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Microfossil Plate 4

3.0mm
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Microfossil Plate 5

3.0mm
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Microfossil Plate 6

3.0mm
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Microfossil Plate 7

3.0mm
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Microfossil Plate 8

144

143

141

3.0mm

119



Microfossil Plate 9

179

3.0mm
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APPENDIX J
RADIOCARBON DATA

2 RADIOCARBON CALIBRATION PROGRAM*
CALIB REV7.1.0
Copyright 1986-2016 M Stuiver and PJ Reimer
*To be used in conjunction with:
Stuiver, M., and Reimer, P.J., 1993, Radiocarbon, 35, 215-230.

FP7 62-65

Lab Code

Sample Description

Radiocarbon Age BP 1380 +/- 35

Calibration data set: intcal13.14c # Reimer et al. 2013
% area enclosed  cal BP age ranges relative area under
probability distribution
68.3 (1sigma) cal BP1280-1317 1.000
95.4 (2 sigma) calBP 1194 -1196 0.002
1261 - 1353 0.998

Median Probability: 1300

FP8 27-28.5

Lab Code

Sample Description

Radiocarbon Age BP 830 +/- 30

Calibration data set: intcal13.14c # Reimer et al. 2013
% area enclosed  cal BP age ranges relative area under
probability distribution
68.3 (1 sigma) cal BP 700 - 761 1.000
95.4 (2 sigma) cal BP 688 - 789 1.000

Median Probability: 737

References for calibration datasets:

Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE
Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H,
Hajdas I, Hatté C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B,

Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM,
van der Plicht J.

IntCall3 and MARINE13 radiocarbon age calibration curves 0-50000 years calBP
Radiocarbon 55(4). DOI: 10.2458/azu_js_rc.55.16947

Comments:
* This standard deviation (error) includes a lab error multiplier.
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** 1 sigma = square root of (sample std. dev.A2 + curve std. dev.*2)

** 2 sigma = 2 x square root of (sample std. dev.”2 + curve std. dev.”2)
where A2 = quantity squared.

[ ] = calibrated range impinges on end of calibration data set

0* represents a "negative" age BP

1955* or 1960* denote influence of nuclear testing C-14

NOTE: Cal ages and ranges are rounded to the nearest year which
may be too precise in many instances. Users are advised to
round results to the nearest 10 yr for samples with standard
deviation in the radiocarbon age greater than 50 yr.
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