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ABSTRACT

A fundamental problem in Riemannian Geometry and related areas is to determine

whether two diffeomorphic compact Riemannian manifolds (M, gM) and (N, gN) are

isometric; that is, if there exists a diffeomorphism h : M → N such that h∗gN −gM =

0, where h∗gN denotes the pullback of gN by h. If no such diffeomorphism exists,

it is important to know whether there exists a diffeomorphism that most closely

resembles an isometry. This is accomplished by minimization of the deformation

energy functional

Φ(h) =
∫
M
‖h∗gN − gM‖2.

We also propose other measures of the distortion produced by some classes of

diffeomorphisms and isotopies between two isotopic Riemannian n-manifolds and,

with respect to these classes, prove the existence of minimal distortion morphs and

diffeomorphisms. In particular, we prove the existence of minimal diffeomorphisms

and morphs with respect to distortion due to change of volume. Also, we consider

the class of time-dependent vector fields (on an open subset Ω of Rn+1 in which the

manifolds are embedded) that generate morphs between two manifolds M and N via

an evolution equation, define the bending and the morphing distortion energies for

these morphs, and prove the existence of minimizers of the corresponding functionals

in the set of time-dependent vector fields that generate morphs between M and N

and are L2 functions from [0, 1] to the Sobolev space W k,2
0 (Ω;Rn+1).



Chapter 1

INTRODUCTION

A fundamental problem in Riemannian Geometry and related areas is to determine

whether two diffeomorphic compact Riemannian manifolds (M, gM) and (N, gN) are

isometric; that is, if there exists a diffeomorphism h : M → N such that h∗gN −gM =

0, where h∗gN denotes the pull-back of gN by h. If no such diffeomorphism exists,

it is important to know whether there exists a diffeomorphism that most closely

resembles an isometry. This is accomplished by minimization of the deformation

energy functional

Φ(h) =

∫
M

‖h∗gN − gM‖2 ωM (1.1)

over the space Diff(M,N) of diffeomorphisms between M and N . In chapters 4

and 5, we prove the existence of minimizers of the above functional in the restricted

admissible set of all diffeomorphisms generated by time-dependent vector fields on

the ambient space Ω in which the manifolds M and N are embedded.

The minimization of the functional Φ takes on added significance once the physical

interpretation of the tensor h∗gN−gM is recognized: it is exactly the (nonlinear) strain

tensor corresponding to the deformation caused by h in case gM and gN are Rieman-

nian metrics inherited from Euclidean space. Thus, it is clear that this functional and

its variants must occur in physical problems. Indeed, the minimal distortion problem

arises, for example, in manufacturing [44], computer graphics [38], movie making, and

medical imaging [11, 17, 40].
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From now on, assume that M and N are compact and orientable smooth isotopic

Riemannian n-manifolds isometrically embedded into Rn+1. In chapter 4 we show

that in the special case where M and N are regular closed curves with the length

L(N) of N smaller than the length L(M) of M , the functional Φ has no minimizer.

The latter result can be illustrated by the example of “wrapping” the curve M of

larger length around N without stretching, possibly covering some parts N several

times. The deformation energy of such a map is zero, and it can be approximated by

smooth maps whose deformation energies converge to zero. Therefore, the infimum of

Φ over the admissible set C∞(M,N) is not attained. For the case where the domain

of Φ is the space Diff(M,N), the nonexistence of minimizers of the functional Φ

follows from a stronger inequality L(N) < (1/
√

3)L(M), which is incompatible with

the positive second variation condition for Φ at a local minimizer. Thus, a solution

of the general problem must take into account at least some global properties of the

metric structures of the manifolds M and N .

The general problem of the existence of minimizers of Φ in the admissible set

Diff(M,N) is open. On the other hand, we have proved the existence of minimiz-

ers in several cases, where the admissible set is restricted (see theorem 1.0.1 and

corollary 1.0.6).

For the case where M and N are Riemann spheres or compact Riemann surfaces

of genus greater than one and the admissible set is HD(M,N) = {h ∈ Diff(M,N) :

h is a holomorphic map} (see chapter 5), we prove the following result.

Theorem 1.0.1. (i) Let hR : R3 → R3 be the radial map given by hR(p) = Rp

for some number R > 0. If M = S2 is the 2-dimensional unit sphere isometrically

embedded into R3 and N = hR(M), then h := f ◦ hR|M is a global minimum of the

functional Φ, restricted to the admissible set HD(M,N), whenever f is an isometry

of N .

(ii) Let M and N be compact Riemann surfaces. If HD(M,N) is not empty and

3



the genus of M is at least two, then there exists a minimizer of the functional Φ in

HD(M,N).

A key idea in the proof of this theorem is to reduce the functional Φ to a func-

tion defined on the homogeneous space of all Möbius transformations (which repre-

sent holomorphic diffeomorphisms of the Riemann sphere) modulo compositions with

isometries of the extended complex plane.

One of the difficulties encountered in attempts to minimize Φ over Diff(M,N)

is the lack of a complete understanding of the structure of this infinite-dimensional

manifold. The natural new approach is to linearize; that is, replace the manifold

Diff(M,N) with a subset of a linear function space. Using this approach, which

already appears in the literature on image deformation (see [11, 17, 40]), the distortion

energy functional is redefined on time-dependent vector fields that generate isotopies

between the manifolds M and N .

Consider time-dependent vector fields on an open ball Ω ⊂ Rn+1 that contains the

manifolds M and N (see Fig. 5.1). A time-dependent vector field v : Ω × [0, 1] →

Rn+1 with appropriate regularity properties generates an evolution operator ηv(t; s, x),

where t, s ∈ [0, 1] and x ∈ Ω, via the differential equation dq/dt = v(q, t). More

precisely the function t 7→ ηv(t; s, x) solves the differential equation dq/dt = v(q, t)

with the initial condition q(s) = x. If the vector field v is such that the manifold M is

mapped to the manifold N by the time-one map φv(x) = η(1; 0, x), then v generates

the isotopy F (x, t) = ηv(t; 0, x), where (x, t) ∈ M × [0, 1], between the manifolds M

and N .

We study both diffeomorphisms and isotopies between the manifolds M and N

that produce minimal distortion. The isotopies of minimal distortion appear in the

problems of computer graphics and animation, and are called morphs (see [43]).

Definition 1.0.2. Let M and N be isotopic compact connected smooth n-manifolds

(perhaps with boundary) embedded in Rn+1 such that M is oriented. A C∞ isotopy

4
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Figure 1.1: The time-dependent vector field v : Ω×[0, 1]→ Rn+1 generates the morph
F v(p, t), which is the solution of the initial value problem dq/dt = v(q, t), q(0) = p.

F : M × [0, 1] → Rn+1 together with all the intermediate manifolds M t := F (M, t),

equipped with the orientations induced by the maps f t = F (·, t) : M → M t and the

Riemannian metrics gt inherited from Rn+1, is called a (smooth) morph from M to

N .

Let Hk := L2(0, 1;W k,2
0 (Ω,Rn+1)) be the Hilbert space of all L2 functions from

the interval [0, 1] to the Sobolev space W k,2
0 (Ω,Rn+1) and, by abuse of notation,

v(x, t) = v(t)(x) for every v ∈ Hk and (x, t) ∈ Ω× [0, 1]. The inner product on Hk is

defined by

〈v, w〉Hk =

∫ 1

0

〈v(t), w(t)〉k,2 dt,

where 〈·, ·〉k,2 is the standard inner product on W k,2
0 (Ω,Rn+1). Choose k ∈ N large

enough so that the Sobolev space W k,2
0 (Ω) is embedded into Cr(Ω̄), where r ≥ 2.

Every vector field v ∈ Hk generates a morph F v : M × [0, 1] → Rn+1 from M to

F v(M, 1) via the evolution equation

dq

dt
= v(q, t). (1.2)

More precisely, for every p ∈ M the function t 7→ F v(p, t) is the solution of equa-

tion (1.2) with the initial condition q(0) = p. By the properties of the evolution op-

erator of equation (1.2), which have been studied by Dupuis, Grenander, and Miller

in [11] and by Trouve and Younes in [40], the morph F v(p, t) is absolutely continu-
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ous in the time variable t and Cr in the spatial variable; in symbols, F v is of class

Mac,r(M,F v(M, 1)).

We define the time-one map ψv(p) = F v(p, 1), which gives the position of the

point p ∈ M at time one. Let ψv denote the restriction to M of the time-one map

of (1.2); that is, ψv(p) is the time-one position of the point p ∈M that evolves along

v. The vector fields of interest generate morphs between the manifolds M and N

and are bounded in Hk by a uniform constant P . In symbols, the admissible set of

time-dependent vector fields is defined by

AkP = {v ∈ Hk : ‖v‖Hk ≤ P and ψv ∈ Diffr(M,N)},

where Diffr(M,N) is the set of all Cr diffeomorphisms between the manifolds M and

N .

Lemma 1.0.3. For P sufficiently large, the admissible set AkP is nonempty and AkP

is weakly closed in Hk.

For each t ∈ [0, 1] and v ∈ AkP , endow the intermediate manifold M v,t := F v(M, t)

with the Riemannian metric gvt inherited from its embedding into Rn+1 and let IIvt

denote the corresponding second fundamental form. Distortion energy functionals

are defined on the admissible set AkP and measure the distortion energies of the

diffeomorphisms and morphs generated by the time-dependent vector fields in AkP .

Definition 1.0.4. Let A and B be nonnegative real numbers. The bending distortion

energy of v is

E(v) = E(v;A,B) = A

∫
M

‖(ψv)∗gN − gM‖2ωM

+B

∫
M

‖(ψv)∗IIN − IIM‖2ωM

and the morphing distortion energy of v is

E(v) = E(v;A,B) = A

∫ 1

0

∫
M

‖F v(·, t)∗gvt − gM‖2 ωMdt

+B

∫ 1

0

∫
M

‖F v(·, t)∗IIvt − IIM‖2 ωMdt,

6



where ‖ · ‖ is the fiber norm on the tensor bundle of all (0, 2) tensor fields on M

generated by the fiber inner product g∗M ⊗ g∗M .

Notice that the functionals E and E compare, in addition to the Riemannian

metrics, the embeddings of the manifolds M and N (to avoid, for example, zero

distortion energy maps between a square and a round cylinder in R3).

In chapter 5, we prove that the functionals E and E have minimizers.

Theorem 1.0.5. (i) If P > 0 and k ∈ N are sufficiently large, then the functionals

E : AkP → R+ and E : AkP → R+ both have minimizers in the admissible set AkP .

In the proof, we show that the functionals E and E are weakly continuous on the

weakly closed subset AkP of the Hilbert space Hk. Assuming the latter, the direct

method of calculus of variations implies theorem 1.0.5. The convergence properties of

evolution operators generated by weakly convergent vector fields in Hk, which have

been studied in [11, 40], also play an important role in the proof.

Corollary 1.0.6. Let M and N be two isotopic oriented compact connected smooth

n-manifolds, perhaps with boundary, isometrically embedded into Rn+1. For every

φ ∈ Diff(M), let

B φP, k := {h ∈ Diff2(M,N) : h = ψv ◦ φ for some v ∈ Hk such that ‖v‖Hk ≤ P}.

If P > 0 and k ∈ N are sufficiently large, then for every φ ∈ Diff(M) there exists a

minimizer of the deformation energy functional Φ in the admissible set B φP, k.

Note that every diffeomorphism h : M → N ⊂ Rn+1 in the admissible set B φP, k is

isotopic, as a map from M to Rn+1, to a fixed diffeomorphism φ : M → M ⊂ Rn+1

via the isotopy F v ∈Mac,2(M,N) generated by a vector field v ∈ AkP .

In chapter 5, we construct a minimal distortion morph between two circles. The

construction involves the solution of a separate constrained optimization problem, and

the numerical solution suggests that the constraint ‖v‖Hk ≤ P in the definition of the

7



admissible set AkP imposes a restriction on the curvature of the curves t 7→ F (t, p) of

the admissible morphs F between the circles.

Theorem 1.0.5 guarantees the existence of minimizers of the functionals E and E ,

but the problem of construction of such minimizers in the general case is open. Even

in the case where M and N are one-dimensional circles, the construction of a minimal

distortion morph between two circles requires delicate analysis (which we have done

in chapter 5).

On the other hand, we developed a complete theory (including sufficient con-

ditions) of minimal distortion diffeomorphisms and morphs between the manifolds

M and N for the distortion functionals that measure the total infinitesimal relative

change of volume.

More precisely, assume that the manifolds M and N are without boundary and

define the distortion (due to change of volume) functional Λ : Diff(M,N)→ R+ by

Λ(h) =

∫
M

(∣∣J(h)
∣∣− 1

)2

ωM , (1.3)

where J(h) denotes the Jacobian determinant of h. Note that
∣∣J(h)(p)

∣∣ − 1 is the

infinitesimal relative change of volume at p ∈ M produced by the diffeomorphisms

h : M → N .

We derived the following necessary and sufficient condition for a minimizer of the

functional Λ (see chapter 3).

Theorem 1.0.7. There exists a minimizer of the functional Λ over the class Diff(M,N)

and the minimum value of Λ is Λmin =
(

Vol(M)− Vol(N)
)2/

Vol(M). A diffeomor-

phism h ∈ Diff(M,N) is a minimizer of Λ if and only if J(h) = Vol(N)
/

Vol(M).

Because the functional Λ is invariant with respect to left compositions with volume

preserving maps, Λ has (infinitely) many minimizers.

The infinitesimal distortion energy of a morph F ∈ M(M,N) at t ∈ [0, 1] is

the limit of the distortion energy of the transition map f s,t = f t ◦ (f s)−1, where

8



f t = F (t, ·) : M → M t, divided by an appropriate power of (s − t) as s → t. The

energy of f s,t can be measured using the functional Λ. The total distortion energy of

the morph F is then defined as its infinitesimal energy integrated over t ∈ [0, 1].

Definition 1.0.8. The infinitesimal distortion of a smooth morph F from M to N

at t ∈ [0, 1] is

εF (t) = lim
s→t

Λs,t(f s,t)

(s− t)2
=

∫
M

(
d
dt
J(f t)

)2

J(f t)
ωM ,

where the functional Λs,t : Diff(M s,M t) → R+ is defined using formula (1.3) by

replacing M and N by M s and M t respectively.

The total distortion functional Ψ :M(M,N)→ R+ is given by

Ψ(F ) =

∫ 1

0

εF (t)dt =

∫ 1

0

(∫
M

(
d
dt
J(f t)

)2

J(f t)
ωM

)
dt. (1.4)

Theorem 1.0.9. Suppose that the manifolds M and N are connected by a smooth

morph.

(i) There exists a minimizer of Ψ; the minimal value of Ψ is

min
F∈M(M,N)

Ψ(F ) = 4
(√

Vol(N)−
√

Vol(M)
)2
.

(ii) If the morph F ∈M(M,N) satisfies the equation

J(f t) = Vol(M t)/Vol(M)

for every t ∈ [0, 1] and the volume of each intermediate manifold M t is given by

Vol(M t) =
[
(
√

Vol(M)−
√

Vol(N) )t−
√

Vol(M)
]2

,

then F minimizes the functional Ψ.

The proof of the existence of a distortion minimal morph between every pair

of isotopic manifolds M and N uses the concept of a pairwise minimal morph: a

morph whose transition maps f s,t minimize the corresponding functionals Λs,t. The

9



existence of pairwise minimal morphs is a nontrivial fact. It can be proved by rescaling

morphs between M and N , which are not necessarily pairwise minimal, to conform

to a necessary and sufficient condition for pairwise minimality. Moser’s theorem on

volume forms (see [30]) plays a crucial role in the proof.

We proved that it suffices to minimize the functional Ψ over the class PM(M,N)

of all pairwise minimal morphs instead of the class M(M,N) of all smooth morphs.

Reduction to a simpler form of the functional Ψ on the admissible set PM(M,N)

allows us to complete the proof of theorem 1.0.9.

10



Chapter 2

PRELIMINARIES

In this chapter we give the definitions and state known results that will be used in

the subsequent chapters. A detailed exposition of Riemannian geometry and analysis

on manifolds can be found in [1, 18, 24].

2.1 Manifolds and Tangent Bundles

Definition 2.1.1. A Hausdorff topological space (M, T ) is called a topological man-

ifold if for every point p ∈ M there exists an open set U ∈ T that contains p and a

homeomorphism φ : U → V , where V is an open subset of a Banach space X. The

pair (U, φ) is called a chart at p ∈M . If X = Rn, a topological manifold M is called

an n-manifold, and we say that the dimension of M , denoted by dim(M), is n (see

figure 2.1 for an illustration of a 2-manifold).

In this thesis, we consider (infinitely) smooth manifolds.

Definition 2.1.2. Let M be a topological manifold. The charts (U1, φ1) and (U2, φ2)

on M such that U1 ∩ U2 6= ∅ are Cr compatible if the transition functions φ12 =

φ2 ◦ (φ1)−1 and φ21 = φ1 ◦ (φ2)−1 are Cr diffeomorphisms on their corresponding

domains φ1(U1 ∩U2) and φ2(U1 ∩U2). Both domains are required to be open subsets

of X.

Definition 2.1.3. Let M be a topological manifold. A collection of charts A =

(Ui, φi)i∈I , where I is an index set, is called a Cr differentiable atlas on M if

11



.

φ(U)

U
M

p

φ

R2

Figure 2.1: A manifold is a topological space locally homeomorphic to a Euclidean
space

(i) ∪i∈IUi = M and

(ii) all the pairs of charts that have nonempty intersection are Cr compatible.

Two Cr atlases A1 and A2 of the manifold M are equivalent if and only if their union

A1 ∪A2 is also a Cr atlas of M . An equivalence class D of atlases of the manifold M

is called a Cr differentiable structure on M .

Definition 2.1.4. A manifold M equipped with a Cr differentiable structure D is

called a Cr differentiable manifold. Every chart (U, φ) ∈ A, where A ∈ D, is called

an admissible chart. Given p ∈ M , a chart (U, φ) ∈ A ∈ D is called an admissible

chart at p ∈ M if p ∈ U . For every p ∈ M there exists an admissible chart at p. A

C∞ differentiable manifold is called a differentiable manifold or a smooth manifold.

The manifold M in the latter definition has no boundary. The definition of differ-

entiable manifolds with boundaries can be found in [1], chapter 7.2. In the following,

we assume that the manifolds under consideration are n-dimensional, smooth, bound-

aryless, and connected unless it is stated otherwise.

Definition 2.1.5. A submanifold of a manifold M is a subset B ⊂ M such that for

12



each b ∈ B there is an admissible chart (U, φ) at b satisfying the submanifold property :

φ : U → E × F and φ(U ∩B) = φ(U) ∩ (E × {0}),

where E and F are vector spaces.

Definition 2.1.6. Let M and N be manifolds. A map h : M → N is of class C1 if for

every p ∈M and for every chart (W,ψ) of the manifold N at h(p) ∈ N , there exists a

chart (U, φ) of the manifold M at p such that h(U) ⊂ W and the local representative

ψ ◦ h ◦ φ−1 : φ(U)→ ψ ◦ h(U) is a C1 function. The functions between manifolds M

and N of class Ck are defined analogously.

We denote the set of all Cr maps between manifolds M and N by Cr(M,N), where

r ∈ N ∪ {∞}.

Definition 2.1.7. A bijection h : M → N is called a Ck diffeomorphism if both h and

h−1 are of class Ck, k ∈ N ∪ {∞}. The set of all Ck diffeomorphisms between man-

ifolds M and N is denoted by Diffk(M,N). We denote Diff(M,N) := Diff∞(M,N)

and Diffk(M) := Diffk(M,M). The manifolds M and N are called diffeomorphic if

Diff(M,N) is not empty.

Definition 2.1.8. Let Ω ⊂ Rn be an open set, and let φ, ψ : Ω→ Rn be Cr functions.

We say that the functions φ and ψ are Cr homotopic if there exists a Cr function

F : [0, 1]× Ω → Rn such that F (0, x) = φ(x) and F (1, x) = ψ(x) for all x ∈ Ω. The

function F is called a Cr homotopy.

Two Cr diffeomorphisms φ and ψ of Ω are Cr isotopic if there exists a Cr ho-

motopy F : [0, 1] × Ω → Ω between them such that the maps f t := F (t, ·) are Cr

diffeomorphisms of Ω for all t ∈ [0, 1].

Definition 2.1.9. A C1 function c : (−ε, ε) → M , where ε > 0, is called a curve

at p ∈ M if c(0) = p. Let c1 and c2 be curves at p ∈ M , and let (U, φ) be an
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admissible chart at p. The curves c1 and c2 are tangent at p with respect to φ if

(φ ◦ c1)′(0) = (φ ◦ c2)′(0).

It is easy to check that the definition of the tangency of two curves at p ∈M does

not depend on the choice of the chart at p ∈ M . In fact, the tangency at p ∈ M

defines an equivalence relation on the set of all curves at p ∈ M . We denote the

equivalence class of all curves at p ∈M tangent to c by [c]p .

Definition 2.1.10. Let M be a smooth manifold. The tangent space to M at a point

p ∈M is defined to be the set of equivalence classes of all the curves at p ∈M :

TpM = {[c]p : c is a curve at p ∈M}.

For U ⊂M , the disjoint union TU = ∪p∈UTpM is called the tangent bundle of M .

The mapping τM : TM →M defined by τM([c]p) = p is called the tangent projection

of M .

Definition 2.1.11. The tangent Th : TM → TN of a C1 function h : M → N is

defined to be Th([c]p) = [h ◦ c]h(p).

Theorem 2.1.12. Let M be a Cr+1 n-dimensional manifold with the atlas of admis-

sible charts A. Then the tangent bundle TM is a 2n-dimensional Cr manifold with

the natural atlas {(TU, Tφ) : (U, φ) ∈ A}.

The proof of this theorem can be found in [1], section 3.2.

2.2 Immersions and Embeddings

Definition 2.2.1. The closed subspace F of the Banach space E is said to be split,

or complemented, if there is a closed subspace G ⊂ E such that E = F ⊕G.

Let M and N be manifolds.
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Definition 2.2.2. A Cr map f : M → N , where r ≥ 1, is called an immersion at

p ∈M if the derivative map dfp : TpM → Tf(p)N is injective with closed split range in

Tf(p)N . If the map f is an immersion at each p ∈M , we say that f is an immersion.

Definition 2.2.3. An immersion f : M → N that is also a homeomorphism onto

f(M) with the relative topology induced from N is called an embedding.

For example, one may consider n-dimensional manifolds embedded into Rn+1.

2.3 Vector Bundles

The tangent bundle is an example of a vector bundle, which is defined below.

Definition 2.3.1. Let E and F be vector spaces, and let U be an open subset of

E. The Cartesian product U × F is called a local vector bundle. The open set U is

called the base space, which can be identified with the zero section U ×{0}. The map

π : U × F → U defined by π(u, f) = u is called the projection of U × F onto U . For

each u ∈ U , the inverse image π−1(u) = {u} × F =: Fu is called the fiber over u,

which has the vector space structure of F .

To define a vector bundle, we need to introduce the idea of a local vector bundle

map.

Definition 2.3.2. Let U × F and U ′ × F ′ be local vector bundles. A map φ :

U × F → U ′ × F ′ is called a Cr local vector bundle map if it has the form φ(u, f) =

(φ1(u), φ2(u)f), where φ1 : U → U ′ and φ2 : U → L(F, F ′) are Cr maps. If a map

φ has an inverse φ−1 and both the function and its inverse are local vector bundle

maps, then φ is called a local vector bundle isomorphism.

It follows from the definition that every local vector bundle map φ : U×F → U ′×F ′

satisfies the following properties:

(i) φ(Fu) ⊂ F ′φ(u). In other words, φ is fiber preserving ;
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(ii) φ(u, ·) : Fu → F ′φ(u) is a bounded linear map.

Using these local notions, we are now ready to define a vector bundle.

Definition 2.3.3. Let S be a set. A local vector bundle chart of S is a pair (W,φ),

where W ⊂ S and φ : W → U ×F is a bijection onto a local bundle U ×F (the local

bundle may depend on φ). A vector bundle atlas on S is a family B = {(Wi, φi)} of

local bundle charts satisfying

(i) S = ∪iUi

(ii) for every pair (Wi, φi) and (Wj, φj) of local bundle charts in B, which have a

nonempty intersection Wi∩Wj, the image φi(Wi∩Wj) is a local vector bundle.

Moreover, the transition map φij = φj ◦ φ−1
i restricted to φi(Wi ∩Wj) is a C∞

local vector bundle isomorphism.

Two vector bundle atlases B1 and B2 on S are called equivalent is their union

B1 ∪ B2 is also a vector bundle atlas of S. A vector bundle structure on S is an

equivalence class of vector bundle atlases. A vector bundle E is a pair (S,V) of a set

S equipped with a vector bundle structure V .

Definition 2.3.4. For a vector bundle E = (S,V), the zero section, or the base is

defined to be

B = {e ∈ E : there exists (W,φ) ∈ V ,where φ : W → U × F,

and u ∈ U such that e = φ−1(u, 0)}.

In other words, B is the union of all the zero sections of the local vector bundles.

The basic properties of vector bundles are summarized in the following theorem.

Theorem 2.3.5. Let E be a vector bundle. The zero section B of E is a submanifold

of E, and there exists a C∞ surjective map π : E → B. Moreover, for each b ∈ B,
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the inverse image π−1(b) has a vector space structure induced by an admissible vector

bundle chart, with b being the zero element.

The map π : E → B is called the projection of the vector bundle E, and the

inverse images π−1(b) =: Eb are called the fibers of the vector bundle E.

In view of the latter theorem, we will sometimes denote a vector bundle E with

the base B and the projection π by π : E → B.

Theorem 2.1.12 states that the tangent bundle is a manifold. But we can say more:

the tangent bundle is a vector bundle.

Theorem 2.3.6. Let M be a manifold and A an atlas of admissible charts. Then

(i) the natural atlas TA = (TU, Tφ) is a vector bundle atlas of TM ;

(ii) For each p ∈ M , τ−1
M (p) = TpM is a fiber of TM . The base B of the vector

bundle TM is diffeomorphic to M by the map τM |B : B →M .

The tangent map Th is fiber preserving: the derivative map dhp = dh(p) = Th|TpM

is defined on the fiber TpM of the tangent bundle TM , and maps it into the fiber

Th(p)N of the tangent bundle TN .

The cotangent bundle TM∗ of a manifold M is the collection TM∗ = ∪p∈MTpM∗

of all dual spaces to the tangent spaces TpM . The cotangent bundle of a smooth

manifold is a C∞ vector bundle with the projection map τ ∗M : TM∗ →M defined by

τ ∗M(αp) = p for all αp ∈ TpM∗.

Definition 2.3.7. Let E be a vector bundle with the base B and the projection π.

A (Cr) function θ : B → E, where r ∈ N ∪ {∞}, is called a (Cr) section of E if

π ◦ θ(p) = p for all p ∈ B. In other words, to each p ∈ M , the map θ assigns an

element θ(p) of the fiber π−1(p) = Ep.

The space of all Cr sections of the vector bundle E together with its real (infinite

dimensional) vector space structure is denoted by Γr(E), where r ∈ N ∪ {∞}; Γ(E)

denotes the space of all sections of E.
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Definition 2.3.8. Let M be a smooth manifold. A Cr section of the tangent bundle

TM is called a Cr vector field on M . A Cr section of the cotangent bundle TM?

is called a one-form on M . We denote the set of all Cr vector fields on M by

Xr(M) = Γr(TM), where r ∈ N. Also, we denote X(M) = Γ∞(TM).

Definition 2.3.9. Let M,N be smooth manifolds, and let φ : M → N be a Cr

mapping between manifolds M and N .

(i) The pull-back of a Cr map f : N → N is defined to be

φ∗f = f ◦ φ ∈ Cr(M);

(ii) The push-forward of a Cr vector field X on M is defined to be:

φ∗X = Tφ ◦X ◦ φ−1 ∈ Γr(TN).

We interchange pull-backs and push-forwards by changing φ to φ−1 according to

the rule φ∗ = (φ−1)∗ and φ∗ = (φ−1)∗.

2.4 Vector Fields and Flows

Let M be a manifold, and I = (−ε, ε) ⊂ R, where ε > 0. Recall that TtI = (t, λ) for

all t ∈ I, where λ ∈ R is the principal part.

Definition 2.4.1. An integral curve of a vector field X ∈ X(M) at p ∈ M is a C1

curve c : I →M at p such that c′(t) = X(c(t)) for each t ∈ I, where c′(t) = dct(t, 1).

Definition 2.4.2. For a vector field X on M , let DX ⊂M ×R be the set of all pairs

(p, t) ∈ M × R such that there exists an integral curve c : I → M at p with t ∈ I.

The vector field X is complete if DX = M × R.

Theorem 2.4.3. Every Cr vector field with compact support on a manifold M is

complete. In particular, every Cr vector field on a compact manifold is complete.
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Proposition 2.4.4. Let M be a manifold and X ∈ Xr(M), where r ≥ 1. Then

(i) DX ⊃M × {0};

(ii) DX is open in M × R;

(iii) there is a unique Cr mapping FX : DX →M such that the map t 7→ FX(p, t) is

an integral curve at p for all p ∈M ;

(iv) for (p, t) ∈ DX , the point (FX(p, t), s) belongs to DX if and only if (p, t + s) ∈

DX . In this case

FX(p, t+ s) = FX(FX(p, t), s).

Definition 2.4.5. Let M be a manifold and X ∈ Xr(M). The mapping FX is called

the integral of X, and the curve t 7→ FX(p, t) is called the maximal integral curve of

X at p for every p ∈M . If X is complete, then FX is called the flow of X.

We will use the notation φt(p) = FX(p, t) for the flow of a complete vector field

X ∈ Xr(M) of a manifold M . Using statement (iv) of proposition 2.4.4 and the

definition of FX , we see that the flow satisfies the group law : φt+s = φt ◦ φs and φ0 is

the identity on M . By definition,

d

dt
φt(p) = X(φt(p))

for all p ∈M .

Definition 2.4.6. A Cr vector field V on the product manifold M × I is called a Cr

time-dependent vector field on M. Note that for each t ∈ I, V (t) := V (·, t) ∈ Xr(M).

Consider the differential equation

dq

dt
= V (q, t). (2.1)

Suppose that r ≥ 1. For every p ∈ M , there exists a solution qps : Us → M of

equation (2.1) such that qps(s) = p, where s ∈ R and Us is an open neighborhood of
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s. Define the evolution operator F : R × R ×M → M by F (t; s, p) = qps(t), where

t ∈ Us for all s ∈ R. The evolution operator satisfies the Chapman-Kolmogorov law :

F (t; s, F (s, τ, p)) = F (t; τ, p) and F (s; s, p) = p for all t, s, τ ∈ R and p ∈M whenever

all the expressions are defined.

2.5 Tensor Fields

The tensor fields on M are smooth sections of tensor bundles, which we define below.

Definition 2.5.1. Let E be a vector space. An tensor of type (r, s) (contravariant of

order r and covariant of order s) on E is a continuous (r + s) multilinear map from

E∗ × . . . × E∗ × E × . . . × E to R, where E∗ and E in the latter Cartesian product

appear r and s times respectively. We denote the set of all tensors of type (r, s) on

E by T rs(E) = Lr+s(E∗, . . . , E∗, E, . . . , E; R).

Given tensors t1 ∈ T r1s1(E) and t2 ∈ T r2s2(E), the tensor product of t1 and t2 is

the tensor t1 ⊗ t2 ∈ T r1+r2
s1+s2(E) defined by

(t1 ⊗ t2)(β1, . . . βr1 , γ1, . . . , γr2 , f1, . . . , fs1 , g1, . . . , gs2)

= t1(β1, . . . βr1 , f1, . . . , fs1)t2(γ1, . . . , γr2 , g1, . . . , gs2),

where βj, γj ∈ E∗ and fj, gj ∈ E.

Definition 2.5.2. Let φ ∈ L(E,F ) be an isomorphism. The push-forward T rsφ =

φ∗ ∈ L
(
T rs(E), T rs(F )

)
of φ is defined by

φ∗t(β
1, . . . , βr, f1, . . . , fs) = t(φ∗(β1), . . . , φ∗(βr), φ−1(f1), . . . , φ−1(fs)),

where t ∈ T rs(E), βi ∈ F ∗, and fi ∈ F .

Now we are ready to define a tensor bundle.

Definition 2.5.3. Let π : E → B be a vector bundle with Eb = π−1(b) denoting

the fiber over the point b ∈ B. The tensor bundle on E is the collection T rs(E) =
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∪b∈BT rs(Eb) of tensor spaces and the projection map πrs : T rs(E) → B given by

πrs(e) = b for every e ∈ T rs(Eb).

Theorem 2.5.4. If π : E → B is a vector bundle, so is πrs : T rs(E)→ B.

In the special case where π : E → B is the tangent vector bundle of a manifold

M , we obtain the vector bundle of tensor fields over the manifold M .

Definition 2.5.5. Let M be a manifold with the tangent bundle τM : TM → M .

The vector bundle of tensors of type (r, s) is defined to be T rs(M) := T rs(TM). We

identify T 1
0(M) with TM and T 0

1(M) with the cotangent bundle τ ∗M : TM∗ → M .

The zero section of T rs(M) is identified with M .

Definition 2.5.6. A tensor field of type (r, s) on a manifold M is a C∞ section of

the vector bundle of tensor fields T rs(M). We denote the set of all smooth sections

Γ∞(T rs(M)) together with its (infinite dimensional) real vector space structure by

T rs(M).

Definition 2.5.7. A push-forward of a tensor field t ∈ T rs(M) by a diffeomorphism

φ : M → N is defined to be φ∗t = (Tφ)∗ ◦ t ◦ φ−1. The pull-back of a tensor field

t ∈ T rs(N) by φ is given by φ∗t = (φ−1)∗t.

Let us discuss the expression of tensor fields in local coordinates. Let (U, φ) be

a chart on a given n-manifold M , where φ : U → V ⊂ Rn. Let {ei}ni=1 be the

standard basis of Rn. It can be shown that for each p ∈ M , the collection of vectors(
∂
∂xi

)
p

:= (Tφ)−1(φ(p), ei), where 1 ≤ i ≤ n, is a basis of the tangent space TpM .

The dual basis {(dxi)p}ni=1 of the cotangent space TpM
∗ is defined by the set of the

relations (dxi)p
((

∂
∂xj

)
p

)
= δij, where δij is the Kronecker symbol. Let {ei}ni=1 be the

dual basis for {ei}ni=1. Then (dxi)p = φ∗(ei)(p).

Let t ∈ T rs(M) and let (U, φ) be a chart on M . Using the coordinates of Rn, the

map φ : U → Rn can be expressed in the form

φ(p) =
(
x1(p), . . . , xn(p)

)
.
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As usual
(
x1(p), . . . , xn(p)

)
are the local coordinates of p ∈ M and the n-tuple of

functions (x1, x2, . . . , xn) is the local coordinate system with respect to (U, φ). Be-

cause φ is a homeomorphism from U onto φ(U), we identify p ∈ U and φ(p) ∈ Rn via

φ.

The components of the tensor t in the chart (U, φ) are defined as the following

smooth real valued functions on U :

p 7→ ti1...ir j1...js(p) = t(p)(dxi1 , . . . , dxir ,
∂

∂xj1
, . . . ,

∂

∂xjs
),

where all the indices range from 1 to n, and the point p = φ−1(x) ∈M for the bases{
( ∂
∂xi

)p
}n
i=1

and {(dxi)p}ni=1 is suppressed.

Using the components of t ∈ T rs(M), for every p ∈ U the tensor t(p) ∈ T rs(TpM)

is given by the expression

t(p) = ti1...ir j1...js(p)
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs , (2.2)

where the Einstein summation convention is used, and the base point p is sup-

pressed. We say that the tensor field t ∈ T rs(M) is expressed in components by

t = ti1...ir j1...js
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs if equation 2.2 holds at every p ∈M ,

where (U, φ) is an admissible chart at p. It should be mentioned that such a repre-

sentation of t depends on the choice of local coordinates.

The tensor (φ−1)∗(t|U) ∈ T rs(φ(U)) is called the local representation of t on U .

It should be mentioned that the tensors in T rs (M) can be viewed as smooth sections

of the bundle TM∗⊗ . . .⊗TM∗⊗TM⊗ . . .⊗TM , where TM∗ and TM appear in the

tensor product s and r times respectively, and the tensor product of vector bundles

is defined fiberwise.

Definition 2.5.8. A Riemannian metric on M is a symmetric tensor field g ∈

T 0
2(M) such that for every p ∈M

(i) g(p)(v, v) > 0 for all v ∈ TpM such that v 6= 0;

22



(ii) the map v 7→ g(p)(v, ·) is an isomorphism of TpM to TpM
∗.

The maps “flat” and “sharp” are defined as follows (see [24]). For every v ∈

Γ∞(TM) and p ∈M

v[(p) = g(p)(v(p), ·) ∈ TpM∗. (2.3)

For every w ∈ Γ∞(TM∗), the vector field w# ∈ Γ(TM) is defined implicitly via the

relation

w(p) = g(p)(w#(p), ·), (2.4)

where p ∈M .

Definition 2.5.9. Let t ∈ T rs(M) be a tensor field with components ti1,...,ir j1,...,jr . A

tensor t with its j-th index raised, where 1 ≤ j ≤ r, is defined by

t#j (p)(ω1, . . . , ωr, X1, . . . , Xj−1, ω
r+1, Xj+1, . . . , Xs)

= t(ω1, . . . , ωr, X1, . . . , Xj−1, (ω
r+1)[, Xj+1, . . . , Xs)

for all ωi ∈ TpM∗ and Xj ∈ TpM .

In the following we will use the Einstein summation convention: we assume the

summation with respect to all the repeated indices over the range that is clear from

the context.

Definition 2.5.10. The contraction in lower l and upper k index of a tensor field

t ∈ T rs(M) expressed by t = ti1,...,ir j1,...,jsdx
j1 ⊗ . . .⊗dxjs ⊗ ∂

∂xi1
⊗ . . .⊗ ∂

∂xir
is defined

to be

Ck
l (t) = ti1,...,ik−1,p,ik+1...,ir

j1,...,jl−1,p,jl+1,...,js

· dxj1 ⊗ . . .⊗ ˆdxjk ⊗ dxjs ⊗ ∂

∂xi1
⊗ . . .⊗ ∂̂

∂xil
⊗ ∂

∂xir
,

where the “hat” over a vector or a covector means that it is omitted.
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Definition 2.5.11. Let s ∈ T 2
s (M) and t ∈ T r2 (M). The contraction s : t ∈ T rs (M)

is defined to be

s : t = skmj1,...,jst
i1,...,ir

kmdx
j1 ⊗ . . .⊗ dxjs ⊗ ∂

∂xi1
⊗ . . .⊗ ∂

∂xir
.

Definition 2.5.12. Let π : E → B be a vector bundle, and assume that each fiber

Ep = π−1(p) is equipped with an inner product G(p). If for all s1, s2 ∈ Γ∞(E) the

correspondence

p 7→ G(p)
(
s1(p), s2(p)

)
defines a real valued C∞ function defined for all p ∈M , then the collection {G(p)}p∈M ,

or simply G, is called a fiber metric on M . The fiber norm on E is defined analogously.

Definition 2.5.13. Let h : M → N be a diffeomorphism between Riemannian man-

ifolds (M, gM) and (N, gN). The map h is an isometric diffeomorphism, or simply an

isometry if h∗gN = gM .

2.6 The Lie Derivative

Consider a function f : M → R with the tangent Tf : TM → TR = R×R. A tangent

vector in TR at a base point λ ∈ R is a pair (λ, µ), where µ ∈ R is the principal part.

Therefore, we can write the value of Tf on a tangent vector v ∈ TpM as follows:

Tf v = (f(p), df(p)v). The latter relation defines a functional df(p) ∈ TpM∗ for each

p ∈M . Therefore, df ∈ Γ∞(TM∗) is a covector field or a one-form. We call the above

defined covector field the differential of f .

Definition 2.6.1. Let f ∈ Cr(M) and X ∈ Γr−1(TM), r ≥ 1. The Lie derivative of

f along the vector field X is defined to be

LXf(p) = X[f ](p) = df(p)X(p)

for every p ∈M . We denote the map p ∈M 7→ df(p)X(p) by df(X).
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Definition 2.6.2. Let X, Y ∈ X(M). The Jacobi-Lie bracket [X, Y ] of X and Y is

defined as the unique smooth vector field satisfying the relation L[X,Y ] = [LX , LY ] =

LX ◦ LY − LY ◦ LX . The Lie derivative of the vector filed Y in the direction of the

vector field X is defined to be the vector field LXY = [X, Y ].

We have defined the Lie derivative on smooth functions and vector fields. To define

the Lie derivative of tensor fields, we will use the concept of a differential operator on

the full tensor algebra of a manifold. The Lie derivative is an example of a differential

operator.

Definition 2.6.3. A differential operator on the full tensor algebra T (M) of a man-

ifold M is a collection {Drs(U)} of maps of T rs(U) onto itself, where r, s ≥ 0 and

U ⊂ M is an open set, satisfying the following conditions. For each D from the

collection,

(i) D is a tensor derivation: D is R-linear and for all t ∈ T rs(M), α1, . . . , αr ∈

Γ∞(TM∗) and X1, . . . , Xs ∈ Γ∞(TM)

D(t(α1, . . . , αr, X1, . . . , Xs)) = (Dt)(α1, . . . , αr, X1, . . . , Xs)

+
r∑
j=1

t(α1, . . . , Dαj, . . . αr, X1, . . . , Xs)

+
s∑

k=1

t(α1, . . . , αr, X1, . . . , DXk, . . . , Xs);

(ii) D is natural with respect to restrictions : for open sets U, V such that U ⊂ V ⊂M

and t ∈ T rs(V )

(Dt)|U = D(t|U) ∈ T rs(U).

Definition 2.6.4. Let X ∈ X(M). The Lie derivative LX is the unique differential

operator on T (M) such that LX coincides with the Lie derivative of smooth functions

and vector fields defined above.
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Proposition 2.6.5. The Lie derivative is natural with respect to push-forwards. That

is, for all φ ∈ Diff(M,N), X ∈ X(M), and t ∈ T rs(M)

Lφ∗Xφ∗t = φ∗LXt.

Let t ∈ T rs(M) be a tensor field with components ti1,...,ir j1,...,js and let X ∈ X(M),

X = X i ∂
∂xi

. The components of the Lie derivative LXt of t in the direction X are

given by the formula

[LXt]
i1,...,ir

j1,...,js = Xk∂kt
i1,...,ir

j1,...,js

− ∂lX
i1tl,i2,...,ir j1,...,js − all upper indices

+ ∂j1X
mti1,i2,...,irm,j2,...,js + all lower indices, (2.5)

where ∂k denotes differentiation with respect to the variable xk.

The next theorem states an important property of Lie derivatives.

Theorem 2.6.6. Let X be a Ck vector field on M with the flow Fλ, and let the tensor

field t ∈ T rs(M) be of class Ck. Then on the domain of the flow we have

d

dλ
F ∗λ t = F ∗λLXt.

2.7 Differential Forms

For a vector space E, let Λk(E) = Lka(E; R) denote the vector space of skew sym-

metric real valued multilinear maps, or exterior k-forms on E. As with the case of

tensors, we can extend this definition fiberwise to a vector bundle over a manifold M .

Definition 2.7.1. Let π : E → B be a vector bundle with fibers Eb. Define the

collection Λk(E) = ∪b∈BΛk(Eb). The set Λk(E) is a vector bundle over B with the

projection πk : Λk(Eb)→ B defined by π(t) = b for all t ∈ Λk(Eb).

The vector bundle of the exterior k-forms on a manifold M is defined to be the

vector bundle Λk(M) := Λk(TM), where τM : TM →M is the tangent bundle of the

manifold M .
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An exterior k-form on M is a smooth section of Λk(M), and we denote Ωk(M) =

Γ∞(Λk(M)).

2.8 The Wedge Product, the Exterior

Derivative, and the Interior Product

Definition 2.8.1. Let E be a Banach space. The alternation mapping A : T 0
k(E)→

T 0
k(E) is defined by

At(e1, . . . , ek) =
1

k!

∑
σ∈Sk

(signσ)t(eσ(1), . . . , eσ(k))

for all t ∈ T 0
k(E) and ei ∈ E, where Sk denotes the set of all permutations of

{1, 2, . . . , k}.

Definition 2.8.2. Let E be a vector space. We define the wedge product of two

tensors α ∈ T 0
k(E) and β ∈ T 0

l(E) to be the exterior (k + l)-form

α ∧ β =
(k + l)!

k!l!
A(α⊗ β).

Example 2.8.3. Let us represent the standard inner product in Rn as a tensor.

Denote the standard basis of Rn by { ∂
∂xi
}ni=1, and let us denote its dual basis by

{dxi}ni=1. Then the standard inner product on Rn is the tensor
∑n

i=1 dx
i ∧ dxi ∈

T 0
2(Rn). Indeed,

∑n
i=1 dx

i ∧ dxi( ∂
∂xj
, ∂
∂xk

) = δjk = 〈 ∂
∂xj
, ∂
∂xk
〉Rn as required. For the

purpose of brevity, the latter tensor is denoted by (dx1)2 + . . .+ (dxn)2.

Definition 2.8.4. For a given n-dimensional manifold M there is a unique family of

mappings dk(U) : Ωk(U) → Ωk+1(U), where 0 ≤ k ≤ n and U ⊂ M is open, such

that each map d from the family satisfies the following conditions:

(i) d is a ∧-antiderivation. That is, d is R-linear and for every α ∈ Ωk(U) and

β ∈ ωl(U)

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ;
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(ii) For all f ∈ C∞(U,R), df is defined as the differential of f ;

(iii) d2 = d ◦ d = 0;

(iv) d is natural with respect to restrictions. That is, for open sets U, V such that

U ⊂ V ⊂M and for every k-form α ∈ Ωk(V ), we have d(α|U) = (dα)|U .

Condition (i) is called the product rule; condition (iv) means that d is a local operator.

The wedge product of two differential forms on a manifold M is defined pointwise

as follows.

Proposition 2.8.5. The wedge product of two differential forms α ∈ Ωk(M) and

β ∈ Ωl(M) is defined as the map α∧ β : M → Λk+l(M), (α∧ β)(p) = α(p)∧ β(p) for

all p ∈ M . The wedge product α ∧ β ∈ Ωk+l(M) is a (k + l)-form, and ∧ is bilinear

and associative.

Definition 2.8.6. Let M be a manifold, X ∈ X(M), and ω ∈ Ωk+1(M). The interior

product or the contraction of X and ω is the contravariant order-k tensor iXω defined

by

iXω(X1, . . . , Xk) = ω(X,X1, . . . , Xk).

If ω ∈ Ω0(M), we set iXω = 0.

Theorem 2.8.7. We have iX : Ωk(M) → Ωk−1(M) for k = 1, . . . ,m and for all

α ∈ Ωk(M), β ∈ Ωl(M) and f ∈ Ω0(M) the following equalities hold:

(i) iX is a ∧−antiderivation; that is, iX is R-linear and

iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ iXβ;

(ii) ifXα = f iXα;

(iii) LXα = iXdα + diXα (the “magic” Cartan formula);

(iv) LfXα = fLXα + df ∧ iXα.
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2.9 Volume Forms, Jacobian Determinants,

and Divergence

Definition 2.9.1. A volume form on an n-manifold M is an n-form ω ∈ Ωn(M) such

that ω(p) 6= 0 for all p ∈ M . The manifold M is called orientable if there exists a

volume form on M . The pair (M,ωM) is called a volume manifold.

Proposition 2.9.2. A connected n-manifold M is orientable if and only if there is an

n-form ω ∈ Ωn(M) such that for every other ν ∈ Ωn(M) there exists f ∈ C∞(M,R)

such that ν = fω.

Definition 2.9.3. Let M be an orientable manifold. Two volume forms ω1 and ω2 on

M are called equivalent if there exists a function f ∈ C∞(M,R) such that f(p) > 0

for all p ∈ M and ω1 = fω2. An orientation of M is an equivalence class [ωM ] of

volume forms on M . An oriented manifold (M, [ωM ]) is an orientable manifold M

together with an orientation [ωM ] on M .

A chart (U, φ) of an oriented n-manifold (M, [ωM ]) is called positively oriented if

the volume form φ∗(ωM |U) is equivalent to the standard volume form dx1∧ . . .∧dxn ∈

Ωn(φ(U)).

Proposition 2.9.4. Let M and N be n-manifolds equipped with volume forms ωM

and ωN respectively. For f ∈ C∞(M,N), f ∗ωN is a volume form on M if and only if

f is a local diffeomorphism, i.e. for every p ∈ M there exists an open neighborhood

V ∈M such that f |V : V → f(V ) is a diffeomorphism.

Definition 2.9.5. Let (M,ωM) and (N,ωN) be volume manifolds. A local C∞ diffeo-

morphism f : M → N is called orientation preserving if f ∗ωN ∈ [ωM ] and orientation

reversing if f ∗ωN ∈ [−ωM ].

Proposition 2.9.6. Let (M, gM) be a Riemannian manifold. If M is orientable,

then there exists a unique volume form ωM on M such that for every p ∈ M , ωM
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equals one on all positively oriented orthonormal bases of TpM . More generally, if

{vi}ni=1 ⊂ TpM is a positively oriented basis of TpM , then

ωM(p)(v1, . . . , vn) = | det[gM(p)(vi, vj)]|1/2.

We say that the volume form ωM is induced by the Riemannian metric gM .

Definition 2.9.7. Let M and N be n-manifolds equipped with volume forms ωM and

ωN respectively. For every f ∈ C∞(M,N), the unique C∞ function J(ωM , ωN)(f) :

M → R such that f ∗ωN = J(ωM , ωN)(f)ωM is called the Jacobian determinant of f

with respect to ωM and ωN . If the volume forms ωM and ωN are understood from

the context, we will denote the function J(ωM , ωN)(f) simply by J(f).

Proposition 2.9.8. Let (M,ωM), (N,ωN) and (S, ωS) be volume manifolds, and let

f ∈ Diff(M,N) and g ∈ Diff(N,S). Then

J(ωM , ωS)(g ◦ f) = J(ωN , ωS)(g) ◦ fJ(ωM , ωN)(f).

Definition 2.9.9. Let (M,ωN) be a volume manifold, and let X be a smooth vector

field on M . The unique function divX ∈ C∞(M,R) such that LXωM = divXωM is

called the divergence of X.

2.10 Riemannian Connection

Definition 2.10.1. LetM be a manifold, and recall that X(M) denotes the C∞(M,R)

module of all C∞ vector fields on M . Then a bilinear map

∇ : X(M)× X(M)→ X(M)

such that for all X, Y ∈ X(M) and f ∈ C∞(M,R)

(i) ∇(fX, Y ) = f∇(X, Y ),

(ii) ∇(X, fY ) = (Xf)Y + f∇(X, Y ).
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is called a linear connection, or an affine connection in M . The smooth vector field

∇XY := ∇(X, Y ) is called the covariant derivative of Y in the direction X.

Lemma 2.10.2. Let M be a manifold, and let U ⊂M be an open subset. Every linear

connection ∇ on M naturally induces a linear connection ∇U : X(U)×X(U)→ X(U).

Theorem 2.10.3 (Levi-Civita). Let M be a manifold equipped with a Riemannian

metric gM . There exists a unique linear connection ∇ on M such that for every

X, Y, Z ∈ X(M)

(i) XgM(Y, Z) = gM(∇XY, Z) + gM(Y,∇XZ),

(ii) ∇XY −∇YX = [X, Y ].

The latter connection is called the Levi-Civita, or the Riemannian connection on M .

Let (M, gM) be a Riemannian n-manifold with the Riemannian connection ∇.

To compute the covariant derivatives of smooth vector fields, it suffices to know the

covariant derivatives of the basis vector fields { ∂
∂xi
}ni=1 in coordinate neighborhoods.

Let (U, φ) be a coordinate neighborhood of M and the vectors {( ∂
∂xi

)p}ni=1 form a

basis of TpM for every p ∈ U . We define a family of smooth functions {Γkij}ni,j,k=1 ⊂

C∞(U,R) as follows:

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
,

where, by the Einstein summation convention, we assume summation over all the

repeated indices from 1 to n. The functions {Γkij}ni,j,k=1 are called the Christoffel

symbols of the Riemannian connection ∇.

The covariant derivative of a smooth function f ∈ C∞(M,R) in the direction

X ∈ X(M) is defined to be the C∞ function p 7→ ∇Xf(p) = df(p)
(
X(p)

)
∈ R.

We have defined the covariant derivative of smooth functions and vector fields.

Similarly to the case of Lie derivatives, we can extend this definition to the full

algebra of tensor fields T (M).

31



Definition 2.10.4. Let (M, gM) be a Riemannian manifold with the Riemannian

connection ∇, and let X ∈ X(M). The covariant derivative ∇X is the unique dif-

ferential operator on T (M) such that ∇X coincides with the covariant derivative of

smooth functions and smooth vector fields defined above.

Let t ∈ T rs(M) be a tensor field on M . The covariant derivative of t is the tensor

field ∇t ∈ T rs+1(M) defined by

(∇t)(p)(ω1, . . . , ωr, X1, . . . , Xr, Xs+1) = (∇Xs+1t)(p)(ω
1, . . . , ωr, X1, . . . , Xs)

for all ωi ∈ TpM∗ and Xj ∈ TpM .

Let tb1...br c1...cs(x) be the components of the tensor field t ∈ T rs(M) in the local

chart (U, φ), where x ∈ φ(U) ⊂ Rn. The following formula for the components of the

covariant derivative ∇t ∈ T rs+1(M) is useful in computations:

(∇t)b1...br c1...csa = ∇at
b1...br

c1...cs (2.6)

= ∂at
b1...br

c1...cs +
∑
i

Γbiapt
b1...p...br

c1...cs

−
∑
i

Γpacit
b1...br

c1...p...cs ,

where ∂a denotes the partial differentiation with respect to the variable xa, and the

index p in the last two sums is located at the i-th place. Because ∇ is the Riemannian

connection on (M, gM), we have that ∇gM = 0.

Definition 2.10.5. The divergence of a tensor field t ∈ T rs(M) is defined to be (see

[18])

div t = Cr
s+1(∇t), (2.7)

where Cj
i denotes a contraction in lower i and upper j index. Note that div T is a

tensor of type (r − 1, s).

The following formula is useful when computing a Lie derivative of the Riemannian

metric gM . The lowered coordinates of the vector field Y = Y j ∂
∂xj

are given by the
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formula Ym = [Y []m = [gM ]mlY
l, and the components of the Lie derivative of the

Riemannian metric gM in the direction of the vector field Y are [29]

[LY gM ]km = ∇kYm +∇mYk. (2.8)

In other words, for every X, Y, Z ∈ X(M) we have

LY gM(X,Z) = ∇Y [(X,Z) +∇Y [(Z,X).

Definition 2.10.6. A submanifold of a Euclidean space of codimension one is called

a hypersurface.

Definition 2.10.7. Let M be an orientable hypersurface in Rn+1 with the smooth

unit normal vector field N . That is, for every p ∈ M , N(p) ∈ Rn+1 is such that

〈N(p), N(p)〉 = 1 and 〈N(p), Y 〉 = 0 for all Y ∈ TpM . Denote the natural Rie-

mannian connection (compatible with the standard inner product) on Rn+1 by ∇.

The Weintgarten map or the shape operator W : X(M) → X(M) is defined by

W (X) = ∇XN . The second fundamental form II ∈ T 0
2(M) on M is defined by

II(X, Y ) = 〈W (X), Y 〉

for all X, Y ∈ X(M).

2.11 Integration over Manifolds

and Stokes’ Theorem

In this section we will define integration over volume manifolds. We will use integra-

tion over local charts and “patch” the results together over manifolds using partitions

of unity.

Definition 2.11.1. A partition of unity on a manifold M is a collection {(Ui, gi)i∈I}

such that
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(i) {Ui}i∈I is a locally finite open covering of M . That is, for each p ∈M , there is

an open neighborhood W ⊂M of the point p satisfying W ∩ Ui = ∅ except for

finitely many indices i ∈ I.

(ii) for each i ∈ I, the C∞ functions gi : M → R are supported inside Ui and

gi(p) ≥ 0 for all p ∈M ;

(iii) for each p ∈M , the finite sum
∑

i∈I gi(p) = 1.

If A = {(Vα, φα)}α∈A is an atlas on M , a partition of unity subordinate to A is a

partition of unity {(Ui, gi)i∈I} such that every open set Ui is a subset of a chart

domain Vα(i).

Theorem 2.11.2. Every second-countable (Hausdorff) n-manifold admits a partition

of unity.

Definition 2.11.3. Let M be an orientable n-manifold with orientation [ωM ]. Sup-

pose that an n-form ω ∈ Ωn(M) has compact support inside an open set U ⊂M such

that (U, φ) is a positively oriented chart. Then the integral of ω over the chart (U, φ)

is defined to be ∫
(φ)

ω =

∫
φ(U)

φ∗(ω|U).

It can be shown that the latter definition does not depend on the choice of the chart

(U, φ). Therefore, we can define
∫
ω =

∫
(φ)
ω, where (U, φ) is a positively oriented

chart containing the compact support of ω.

Definition 2.11.4. LetM be an oriented manifold with an atlas of positively oriented

charts A. Let P = {(Uα, φα, gα)}α∈I be a partition of unity subordinate to A. We

define the n-forms of compact support ωα = gαω and set∫
P

ω =
∑
α∈I

∫
ωα. (2.9)
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Proposition 2.11.5. The sum in equation 2.9 contains only a finite number of

nonzero terms. Moreover, if Q is a partition of unity of M subordinate to an at-

las B of M , which is equivalent to A, then
∫
P
ω =

∫
Q
ω.

The integral of the n-form ω ∈ Ωn(M) over the manifold M is defined to be∫
M
ω =

∫
P
ω, where P is a partition of unity on M subordinate to an atlas A of M .

Theorem 2.11.6 (Stokes). Let M be an oriented smooth compact n-manifold (with-

out boundary) equipped with the volume form ωM . For every α ∈ Ωn−1(M)∫
M

dα = 0.

In particular, for every smooth vector field X on M ,∫
M

divXωM = 0.

Also we will use (the strong form) of Moser’s theorem on volume forms, which we

state here for the convenience of the reader (see [30]).

Theorem 2.11.7. Let τt be a family of volume forms defined for t ∈ [0, 1] on a

compact manifold M . If∫
c

τt =

∫
c

τ0 (2.10)

for every n-cycle c on M , then there exists a one-parameter family of diffeomorphisms

φt : M →M such that

φ∗t τt = τ0 (2.11)

and φ0 is the identity mapping. Moreover, the dependence of φt(m) on m ∈ M and

t ∈ [0, 1] is as smooth as in the family τt.

2.12 Riemann Surfaces

Let M be a one-dimensional topological manifold modeled on the space of complex

numbers (set X = C in definition 2.1.1). The manifold M endowed with an equiva-

lence class of atlases [A] is called a Riemann surface if all the transition maps between
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the admissible charts with nonempty intersection are holomorphic (see [34, 23]). Rie-

mann surfaces are orientable.

Let M , N be Riemann surfaces. A map f : M → N is called holomorphic if

all its local representations are holomorphic functions wherever they are defined. A

holomorphic map f : M → N with nowhere vanishing derivative is called conformal.

In chapter 4.4, we will consider the Riemann sphere. There are several ways of

describing the Riemann sphere. It can be viewed as the unit sphere S2 in R3, the

extended complex plane Ĉ = C ∪ {∞}, or the complex projective space CP1.

Let us check that the unit sphere S2 in R3 is a compact Riemann surface (with the

topology induced from R3). Let N = (0, 0, 1) and S = (1, 0, 0) be the north and the

south poles of S2 respectively. Consider the open sets U1 = S2\{N} and U2 = S2\{S}

on S2. Define the maps zi : Ui → C for i = 1, 2 by

z1 =
x1 + ix2

1− x3

and z2 =
x1 − ix2

1 + x3

,

where i ∈ C is such that i2 = −1. We then have z2 = 1/z1 on U1 ∩ U2 so that the

transition map is indeed holomorphic.

The extension π of the map z1 maps the sphere S2 to the extended complex plane

Ĉ in a bijective manner. The bijective map π : S2 → Ĉ is a stereographic projection.

Consider the open sets V1 := z1(U1) = C and V2 := z2(U2) = (C\{0}) ∪ {∞}. The

extended complex plane is a Riemann surface with coordinate charts

id : V1 → C

and

V2 → C

z 7→ 1

z
.

The stereographic projection π : S2 → Ĉ is a conformal map.

A holomorphic function f : M → Ĉ, where M is a Riemann surface, is called mero-

morphic if f is not identically equal to the constant ∞. It can be shown that the
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meromorphic functions defined on the extended complex plane Ĉ are rational func-

tions. Therefore, the automorphisms (bijective meromorphic maps) of the extended

complex plane are Möbius transformations

f(z) =
az + b

cz + d
,

where ad− bc 6= 0. The set of all such transformations forms a group under compo-

sition. The automorphism group of the Riemann sphere is defined as the group of

biholomorphic maps on the Riemann sphere. From the previous remarks, this group

Aut(Ĉ) coinsides with the group of Möbius transformations.

The Riemann sphere can be identified with the complex projective space CP1,

which is defined as the set of equivalence classes [z1, z2] of ordered pairs (z1, z2) ∈

C × C under the equivalence relation (z1, z2) ∼ (λz1, λz2) for all λ ∈ C\{0}. The

isomorphism CP1 ∼= Ĉ is given by [z1, z2] 7→ z1
z2

, where z/0 =∞.

Recall that the general linear group GL(2,C) is the group of all invertible linear

transformations of C2, which can be viewed as the group of invertible 2× 2 matrices

with complex entries. The special linear group SL(2,C) is the subgroup of GL(2,C)

consisting of all invertible 2× 2 matrices with determinant 1. The projective general

linear group PGL(2,C) is the quotient group GL(2,C)/S, where S consists of all the

scalar multiples of the identity. The group PGL(2,C) acts on the Riemann sphere Ĉ

as follows. The action of (
a b
c d

)
∈ PGL(2,C)

on [z1, z2] ∈ CP1 is defined to be the equivalence class [w1, w2] ∈ CP1, where(
w1

w2

)
=

(
a b
c d

)(
z1

z2

)
.

The group of all Möbius transformations is then isomorphic to the projective general

linear group PGL(2,C), and composition in Aut(Ĉ) corresponds to matrix multipli-

cation in GL(2,C). Note that we can always multiply a given matrix in GL(2,C) by

37



a constant to obtain a matrix with determinant one. Therefore, the group PGL(2,C)

is isomorphic to PSL(2,C) = SL(2,C)/{±I}. In summary, we have

Aut Ĉ = PGL(2,C) = PSL(2,C). (2.12)

Definition 2.12.1. A conformal Riemannian metric on a Riemann surface M is given

in local coordinates by

λ2(z)dzdz̄,

where dzdz̄ = (dx+ idy) ∧ (dx− idy) = −2idx ∧ dy and λ is a positive C∞ function.

If w 7→ z(w) is a transformation of local coordinates, then the metric transforms to

λ2(z)
∂z

∂w

∂z

∂w̄
dwdw̄,

where w = u+ iv, ∂
∂w

= 1
2
( ∂
∂u
− i ∂

∂v
) and ∂

∂w̄
= 1

2
( ∂
∂u

+ i ∂
∂v

).

Example 2.12.2. Consider the Riemann sphere S2 ⊂ R3 with the metric induced

on it by the Euclidean metric g = dx2
1 + dx2

2 + dx2
3 (see example 2.8.3). Using the

stereographic projection π : S2 → Ĉ2, we induce the conformal metric α := π∗g on Ĉ

given by

α(z, z̄) =
4

(1 + |z|2)2
dzdz̄.

The corresponding isometries of Ĉ are the Möbius transformations of the form

z 7→ az − c̄
cz + ā

, |a|2 + |c|2 = 1.

Recall that U(2,C) is the unitary group of all unitary complex 2 × 2 matrices.

The group of all isometries of (Ĉ, α) is the projective unitary group PU(2,C) =

U(2,C)/{±I}.

2.13 The Manifold Diff(M,N)

LetM andN be smooth compact n-manifolds without boundary. The space C∞(M,N)

is an (infinite dimensional) differentiable manifold (see [19, 32]). The space of all
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smooth diffeomorphisms Diff(M,N) is a submanifold of C∞(M,N) (see [25], Ch. IX,

Sec. 43). The tangent space to Diff(M,N) at h ∈ Diff(M,N) can be identified

with the space of all smooth vector fields X(N). To explain this identification, let us

introduce a convenient notation for the elements of the tangent space Th Diff(M,N).

Let [c]h ∈ Th Diff(M,N) be an equivalence class of curves at h ∈ Diff(M,N). The

representative c : I → Diff(M,N) is a C1 curve at h, where I = (−ε, ε), ε > 0. The

open set I ⊂ R is a one-dimensional manifold with the natural basis ( ∂
∂t

)t0 = (t0, 1),

where 1 is the principal part of the tangent space Tt0I. Therefore, we can consider

the value of the derivative map of c : I → Diff(M,N) on ( ∂
∂t

)0, which we denote by

d
dt
c(t)|t=0 := dc(0)( ∂

∂t
)0 ∈ Th Diff(M,N). By the definition of the derivative map (see

the paragraph after theorem 2.3.6), d
dt
c(t)|t=0 = [c]h. In the following, we will use

both notations for the elements of Th Diff(M,N), which we call tangent vectors at h.

Proposition 2.13.1. The tangent space Th Diff(M,N) can be identified with X(N)

via a bijective map.

Proof. An element of Th Diff(M,N) is an equivalence class of C1 curves [c]h at h,

represented by a family of diffeomorphisms c(t) ∈ Diff(M,N), where t ∈ (−ε, ε),

with c(0) = h. For each q ∈ N , this family defines a C1 curve s(t) = c(t) ◦ (h−1(q))

in N that passes through q at t = 0; hence, it defines a vector Y (q) ∈ TqN by

Y (q) := [s]q = d
dt
s(t)|t=0. The vector field Y ∈ X(N) is thus associated with the

equivalence class [c]h ∈ Th Diff(M,N). In fact, the vector field Y does not depend

on the choice of the representative of the equivalence class. On the other hand, to

given a vector field Y ∈ X(N) with the flow φt, we associate the curve c(t) = φt ◦ h

in Diff(M,N). The (tangent) equivalence class [c]h of this curve is an element of

Th Diff(M,N).
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2.14 Facts from the Calculus of Variations

Let F be a (perhaps infinite dimensional) differentiable manifold. Consider a func-

tional E : F → R. We assume that the functional E is bounded below, that is

inf
f∈F

E(f) > −∞.

Let A ⊂ F be a submanifold of F . Consider the problem of minimization of the

functional E in the admissible set A.

Definition 2.14.1. We say that there exists a (global) minimum of the functional E

in the admissible set A if inff∈AE(f) = E(h) for some h ∈ A. The element h ∈ A

minimizes the functional E over the admissible set A, and is called a minimizer of

E over A.

Let c : (−ε, ε) → A be a C1 curve at h ∈ A. The curve c defines an element of

the tangent space [c]h ∈ ThA, which we call a variational vector field of h. The first

variation of the functional E at h ∈ A in the direction [c]h is defined to be

d

dt
E(c(t))|t=0 = dE(h)[c]h

(provided that the derivative exists). We say that the functional E is Gateaux dif-

ferentiable at h ∈ A if the first variation of E exists in every direction [c]h ∈ ThA.

(The classical definition of Gateaux differentiability for functions defined on Banach

spaces is given in [4], section 1.1)

Definition 2.14.2. We call the equation dE(h)[c]h = 0 for all [c]h from some chosen

subset Qh of ThA (which will be specified in each particular case), and all the equa-

tions with the same set of solutions, an Euler-Lagrange equation for the functional

E. The equation dE(h)[c]h = 0 for all [c]h ∈ ThA (Qh = ThA) is called the complete

Euler-Lagrange equation for E. If h is a minimizer of the functional E, then h satisfies

all the Euler-Lagrange equations for E. An element h ∈ A is a critical point of E if

it satisfies some Euler-Lagrange equation for E.
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For example, let F be the Banach space (C2([0, l]), ‖ · ‖C2), where

‖u‖C2 =
2∑
i=0

max
t∈[0,l]

| d
i

dti
u(t)|.

Let A = {u ∈ F : u(0) = u(l) = 0}, which is a nonempty closed and convex subset

of F . Suppose that the functional E : F → R is defined by

E(u) =

∫ l

0

L(u(t), u̇(t), t) dt, (2.13)

where u̇ = du
dt

and L : R3 → R is a C1 function such that t 7→ L(u(t), u̇(t), t) is a

bounded C1 function on (0, l) for each u ∈ A. A function u ∈ C2([0, l]) is a critical

point of E if d
dt
E(c(t))|t=0 = 0 for all C1 curves c : (ε, ε) → A at u ∈ A. If we

consider only C1 curves c : (−ε, ε) → A at u ∈ A that have a special form of our

choice, the equation d
dt
E(c(t))|t=0 = 0 still gives a necessary condition for u ∈ A to be

a minimizer of E. The standard approach in the calculus of variations is to consider

the curves of the form c(t) = u + tφ, where φ ∈ C∞c (0, l) has compact support on

(0, l) [3, 22]. The function φ is called a test function.

It can be shown that the Euler-Lagrange equation d
dt
E(u + tφ)|t=0 = 0 for all

φ ∈ C∞c (0, l) is equivalent to the differential equation

d

dt

( ∂L
∂y2

(u(t), u̇(t), t)
)

=
∂L

∂y1

(u(t), u̇(t), t), (2.14)

where ∂L
∂yi

denotes the partial derivative of L with respect to its ith variable, i = 1, 2.

This equation will be considered in section 4.3, where we investigate the conditions

for the existence of minimizers of the deformation energy functional of bending for

simple closed curves.

Definition 2.14.3. A sequence {vl}∞l=1 ⊂ F such that

lim
l→∞

E(vl) = inf
f∈F

E(f) (2.15)

for a functional E : F → R is called a minimizing sequence of E.
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Minimizing sequences exist for E since it is assumed to be bounded from below.

Every critical point h ∈ A of the functional E : F → R is a candidate for a

minimizer of E. In some cases it is possible to show that h is indeed a minimizer of

E over A by proving the inequality E(h) ≤ E(f) for all f ∈ A. In section 4.3 we use

Hölder’s inequality to prove that a critical point is a minimizer.

Proposition 2.14.4 (Hölder’s inequality). Suppose that W ⊂ Rn is an open set,

u ∈ Lp(W ) and v ∈ Lq(W ), where 1 ≤ p, q ≤ ∞. If 1/p+ 1/q = 1, then∫
W

|uv|dx ≤
( ∫

W

up dx
)1/p( ∫

W

vq dx
)1/q

.

Consider the special case when F is a Hilbert space with the inner product 〈·, ·〉F ,

which induces the norm ‖ · ‖F . Suppose that the admissible set A = F . As before,

E is assumed to be bounded below.

Definition 2.14.5. The functional E : F → R is coercive if for every sequence

{ul}∞l=1 such that ‖ul‖F →∞ as l→∞, we have E(ul)→∞ as l→∞.

Recall that a sequence {ul}∞l=1 ⊂ F converges weakly to u ∈ F , which we denote

by ul ⇀ u, if 〈v, ul〉F → 〈v, u〉F as l→∞ for all v ∈ F .

Definition 2.14.6. The functional E : F → R is called (sequentially) weakly lower

semicontinuous if for every weakly convergent sequence {ul}∞l=1 ⊂ F , with the weak

limit u ∈ F ,

E(u) ≤ lim inf
l→∞

E(ul).

The functional E is (sequentially) weakly continuous if under the same assumptions

lim
l→∞

E(ul) = E(u).

Theorem 2.14.7. Let F be a Hilbert space with the norm ‖ · ‖F .

(i) The functional u 7→ ‖u‖F is weakly lower semicontinuous;

(ii) Every bounded sequence in F has a weakly convergent subsequence.
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Theorem 2.14.8 (The Direct Method of the Calculus of Variations). Let F be a

Hilbert space, and suppose that a functional E : F → R is coercive, weakly lower

semicontinuous, and bounded below. Then there exists a minimizer of the functional

E in F .

We will formulate regularity results for minimizers of the functional

I(u) =

∫ b

a

F
(
t, u(t), u̇(t)

)
dt

defined on an appropriate space of functions u : [a, b] → Rd, where the function

F : R×Rd×Rd → R is continuous in its second and third variables and the function

t 7→ F
(
t, u(t), u̇(t)

)
is measurable for all admissible functions u : [a, b] → Rd. For

example, the definition of the functional I is meaningful on the space AC[a, b] of all

absolutely continuous functions on [a, b] (see definition 2.15.7 and theorem 2.15.8).

Let δI(u, η) denote the Gateaux derivative of the functional I at u in the direction

η, i.e. δI(u, η) = d
ds
I(u+ sη)|s=0.

Theorem 2.14.9. Let the function F : R×Rd ×Rd → R be of class C1 and assume

that the derivative Fp(t, u, p) is also of class C1. Suppose that u ∈ C1([a, b]; Rd) is a

solution of the Euler-Lagrange equation

δI(u, η) = 0

for all η ∈ C1
c ((a, b); Rd). If the Hessian

(
Fpipj(t, u(t), u̇(t))

)
1≤i,j≤d of F with respect

to the p variable is nonsingular for all t ∈ [a, b], then the function u is of class C2.

Theorem 2.14.10. Suppose that the function F satisfies the assumptions of the

previous theorem. Suppose that u ∈ AC([a, b]; Rd) is a solution of the Euler-Lagrange

equation

δI(u, η) = 0

for all η ∈ AC((a, b); Rd) with compact support on (a, b). Assume that Fu(t, u(t), u̇(t))

and Fp(t, u(t), u̇(t)) are integrable on (a, b) as functions of t. If the Hessian Fpp is
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positive or negative definite on Ω× Rd, where Ω is an open set containing the graph

{(t, u(t)) : t ∈ [a, b]} of the function u, then u ∈ C2(I,Rd).

The last two theorems are proved in Sec. 1.2 of [22].

We will finish this section with a statement of the Generalized Kuhn-Tucker the-

orem.

Definition 2.14.11. A subset P of a vector space X is called a cone with the vertex

x ∈ X, or simply a cone, if P = x+C, where the set C ⊆ X has the property λx ∈ C

for all nonnegative real numbers λ whenever x ∈ C. The cone P is called a convex

cone if it is a convex set.

Definition 2.14.12. Let P be a convex cone in a vector space X. For x, y ∈ X we

write x ≥ y if x− y ∈ P . The cone P defining this relation is called the positive cone

of X.

Let G : X → Z be a Gateaux differentiable map between a vector space X and a

normed space Z. We say that the Gateaux differential of G is linear in its increment

if the function h 7→ δG(x, h) = d
ds
G(x + sh)|s=0, defined on X, is linear for every

x ∈ X.

Definition 2.14.13. Let X be a vector space and let Z be a normed space with

a positive cone P that has a nonempty interior. Let G : X → Z be a Gateaux

differentiable mapping whose Gateaux differential is linear in its increment. A point

x0 ∈ X is called a regular point of the inequality G(x) ≤ 0Z , where 0Z ∈ Z is the zero

element, if G(x0) ≤ 0Z and there exists h ∈ X such that G(x0) + δG(x0, h) < 0Z .

We denote the space of all bounded linear functionals on a normed vector space

Z by Z∗. The value of a functional z∗ ∈ Z∗ at a point z ∈ Z is denoted by 〈z, z∗〉.

Theorem 2.14.14 (Generalized Kuhn-Tucker Theorem). Let X be a vector space

and let Z be a normed space with a positive cone P . Assume that P has nonempty
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interior. Let F : X → R and G : X → Z be Gateaux differentiable maps whose

Gateaux derivatives are linear in their increments. If the point x0 ∈ X minimizes the

function f subject to the constraint G(x) ≤ 0Z, then there exists z∗0 ∈ Z∗ such that

z∗0 ≥ 0Z∗ and the Lagrangian

f(x) + 〈G(x), z∗0〉

is stationary at x0, i.e. its Gateaux derivative at x0 vanishes in all directions; fur-

thermore, 〈G(x0), z∗0〉 = 0.

The proof of this theorem can be found in Sec. 9.4 of [28].

2.15 Facts from Analysis

We will denote the standard Euclidean norm on Rr, where r ∈ N, by | · |. The

Euclidean norm |A| of a matrix A ∈ Rr×Rl, where r, l ∈ N, is the norm of the vector

composed of all entries of the matrix A.

Let Ω ⊂ Rn be an open set.

Let L1
loc(Ω) denote the space of all functions f : Ω → R such that f ∈ L1(K)

for every compact subset K ⊂ Ω. We denote the space of all smooth real valued

functions with compact support on Ω by C∞c (Ω).

Definition 2.15.1. We say that a function f : Ω → R is Hölder continuous with

exponent λ if there exists a constant C > 0 such that |f(x) − f(y)| ≤ C|x − y|λ for

all x, y ∈ Ω. The λ-th Hölder seminorm of f is defined by

[f ]C0,λ(Ω) = sup
x,y∈Ω,x 6=y

{ |f(x)− f(y)|
|x− y|γ

}
.

The Hölder space Ck,λ(Ω̄) consists of all functions f ∈ Ck(Ω̄) for which the norm

‖u‖Cj,λ(Ω̄) =
∑
|α|≤j

‖Dαu‖C(Ω̄) +
∑
|α|=j

[Dαu]C0,λ(Ω̄)

is finite.
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Definition 2.15.2. Suppose that f, g ∈ L1
loc(Ω), and α = (α1, . . . , αn) is a multiindex

such that αi ∈ N and |α| = α1 +α2 + . . .+αn. We say that g is the α-th weak partial

derivative of f written Dαf = g provided∫
Ω

fDαφ dx = (−1)|α|
∫

Ω

gφdx (2.16)

for all test functions φ ∈ C∞c (Ω).

Definition 2.15.3. The Sobolev space W k,p(Ω) is defined as the space of all locally

summable functions f : Ω → R such that for each multiindex α with |α| = k, Dαf

exists in the weak sense and belongs to Lp(Ω). The Sobolev norm of a function

f ∈ W k,p(Ω) is defined by

‖f‖pk,p =
∑
|α|≤k

∫
Ω

|Dαf |pdx

(see [15], chapter 5).

Theorem 2.15.4. For each k = 1, 2, . . . and p ≥ 1, the Sobolev space W k,p(Ω) is a

Banach space.

Definition 2.15.5. The Sobolev space W k,p
0 (Ω) is defined as the closure of C∞c (Ω)

in W k,p(Ω) with respect to the norm ‖ · ‖k,p.

The Sobolev space W k,p(Ω; Rn) consists of all functions f : Ω → Rn such that

their components fi ∈ W k,p(Ω) for all i = 1, . . . , n. The Sobolev norm of a function

f ∈ W k,p(Ω; Rn) is defined by ‖f‖Rn
k,p = (

∑n
i=1 ‖fi‖

p
k,p)

1/p.

For convenience of the reader, we state the Sobolev embedding theorem (see [15],

section 5.6).

Theorem 2.15.6 (Sobolev Embedding). Let Ω be a bounded open subset of Rn with

a C1 boundary. If u ∈ W k,p(Ω) and k > n
p
, then u ∈ Cj,λ(Ω̄) for j = k − [n

p
] − 1

and some λ ∈ (0, 1). In addition, there is a constant C depending on k, p, n, λ and Ω

only, such that

‖u‖Cj,λ(Ω̄) ≤ C‖u‖Wk,2(Ω). (2.17)
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Definition 2.15.7. Let I be an interval of the real line R. A function f : I → Rn

is absolutely continuous on I if for every ε > 0 there exists δ > 0 such that for all

sequences of pairwise disjoint intervals {[xk, yk]}rk=1 ⊂ I satisfying the property

r∑
k=1

|yk − xk| < δ

the values of f at the endpoints of the intervals satisfy the inequality

r∑
k=1

|f(yk)− f(xk)| < ε.

The collection of all absolutely continuous functions from I to Rn is denoted by

AC(I,Rn).

The following theorem is proved in [21], chapter 16, section E.

Theorem 2.15.8 (Fundamental Theorem of Calculus for the Lebesgue Integral). Let

I = [a, b] ⊂ R. A function f : I → R is absolutely continuous if and only if there

exists a function g ∈ L1(I,R) (i.e.
∫
I
|g|dx <∞) such that

f(x) = f(a) +

∫ x

a

g(t) dt

for all x ∈ I. Moreover, every absolutely continuous function f(x) = f(a)+
∫ x
a
g(t) dt ∈

AC(I,R) is differentiable almost everywhere on I, and f ′ = g.

Theorem 2.15.9 (Smooth Tietze Extension Theorem). Let A ⊂ Rn be a closed set,

and let g : A→ R be a Cr function, where r ∈ N ∪ {∞}. There exists a Cr function

G : Rn → R such that G|A = g. The function G is called a Cr extension of g.

The proof of the general version of this theorem can be found in [1], theorem 5.5.9.
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Chapter 3

DISTORTION DUE TO CHANGE
OF VOLUME. MINIMAL
BENDING AND MORPHING

We consider the problem of distortion minimal morphing of n-dimensional compact

connected oriented smooth manifolds without boundary embedded in Rn+1. Dis-

tortion involves bending and stretching. In this chapter we study the natural cost

functional (for change of volume) defined in section 3.1 that measures the total rel-

ative change of volume produced by a diffeomorphisms h ∈ Diff(M,N). We develop

the theory of minimal bending and morphing with respect to this functional. The

existence of minimal distortion diffeomorphisms between diffeomorphic manifolds is

proved in section 3.1. A definition of minimal distortion morphing between two iso-

topic manifolds is given, and the existence of minimal distortion morphs between

every pair of isotopic embedded manifolds is proved in section 3.2. This functional

is invariant under compositions with volume preserving diffeomorphisms; hence, the

corresponding minimal maps and morphs are not unique. On the other hand, we prove

that the extremals of our functional are (global) minimizers. The main result of this

section is theorem 3.2.11, which states the existence of a distortion minimal morph

(with respect to change of volume) between every pair of isotopic submanifolds.
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Aε

h

.
p

.
h(p)

h(Aε)

Figure 3.1: The map h changes the volume of the neighborhood Aε.

3.1 Distortion (due to Change of Volume) Cost

Functional. Existence of Minimizers

In this section we prove the existence of distortion minimal diffeomorphisms between

diffeomorphic n-dimensional oriented manifolds M and N (which are not necessarily

embedded in Rn+1) with respective volume forms ωM and ωN .

Recall that the Jacobian determinant of a diffeomorphism h : M → N is defined

by the equation h∗ωN = J(ωM , ωN)(h)ωM (see definition 2.9.7).

The distortion (due to change of volume) ξ(p) at p ∈M , with respect to a diffeo-

morphism h : M → N , is defined by

ξ(p) = lim
ε→0

∣∣ ∫
h(Aε)

ωN
∣∣− ∣∣ ∫

Aε
ωM
∣∣∣∣ ∫

Aε
ωM
∣∣ =

∣∣J(h)(p)
∣∣− 1, (3.1)

where Aε ⊂ M , for ε > 0, is a nested family of open neighborhoods of the point

p ∈M such that Aβ ⊆ Aα whenever α > β > 0 and ∩ε>0Aε = p (see figure 3.1).

In other words, the distortion is the infinitesimal relative change of volume with

respect to h. It is easy to see that the definition of distortion does not depend on the

family of nested sets Aε.

We denote the set of all smooth diffeomorphisms between manifolds M and N by

Diff(M,N). The total distortion functional Φ : Diff(M,N)→ R, with respect to the
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oriented manifolds (M,ωM) and (N,ωN), is defined by

Φ(h) =

∫
M

(∣∣J(h)
∣∣− 1

)2

ωM . (3.2)

We will establish necessary and sufficient conditions for a diffeomorphism h : M →

N to be a minimizer of the functional Φ. Also, we will show that a minimizer always

exists in Diff(M,N).

Recall that the tangent space Th Diff(M,N) can be identified with X(N) (see

subsection 2.13). More precisely, Diff(M,N) is a Fréchet manifold and its tangent

space at h ∈ Diff(M,N) can be identified with X(N) (see [25]). Indeed, an element

of Th Diff(M,N) is an equivalence class of curves [hε], represented by a family of

diffeomorphisms hε with h0 = h, where two curves passing through h are equivalent

if they have the same derivative at h. For each q ∈ N , this family defines a curve

ε 7→ hε(h
−1(q)) in N that passes through q at ε = 0; hence, it defines a vector

Y (q) ∈ TqN by

Y (q) :=
d

dε
hε(h

−1(q))
∣∣∣
ε=0

.

The vector field Y ∈ X(N) is thus associated with the equivalence class [hε]. In

fact, the vector field Y does not depend on the choice of the representative of the

equivalence class. On the other hand, for Y ∈ X(N) with flow φt, we associate the

curve ht = φt ◦ h in Diff(M,N). The (tangent) equivalence class of this curve is an

element in Th Diff(M,N).

Proposition 3.1.1 (Euler-Lagrange Equation). Suppose that (M,ωM) and (N,ωN)

are smooth diffeomorphic connected compact oriented n-manifolds without boundary.

A smooth diffeomorphism h : M → N is a critical point of the total distortion func-

tional Φ if and only if J(h) is constant.

Proof. Let hε : (−1, 1) → Diff(M,N) be a curve of diffeomorphisms from M to N

such that h0 = h. By definition, h ∈ Diff(M,N) is a critical point of the functional
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Φ(h), if d
dt

Φ(ht)
∣∣∣
t=0

= 0. Using the formula

Φ(h) =

∫
M

J(h)2ωM − 2 Vol(N) + Vol(M), (3.3)

we note that h is a critical point of Φ if and only if

2

∫
M

J(h)
d

dt
J(ht)|t=0 ωM = 0.

Moreover, using the calculus of differential forms (see [1] and note in particular that

LY is used to denote the Lie derivative in the direction of the vector field Y ), we have

that for ht = ψt ◦ h, where ψt is the flow of Y ∈ X(N),

d

dt
(J(ψt ◦ h)ωM)

∣∣∣
t=0

=
d

dt

(
(ψt ◦ h)∗ωN

)∣∣∣
t=0

= h∗
d

dt
(ψ∗tωN)

∣∣∣
t=0

= h∗ψ∗tLY ωN
∣∣
t=0

= h∗LY ωN

= h∗(div Y ωN)

= (div Y ) ◦ hJ(h)ωM .

We will assume that h is orientation preserving. The proof for the orientation re-

versing case is similar. By Stokes’ theorem and the properties of the ∧-antiderivations

d and iY , we have that

d

dt
Φ(ht)

∣∣∣
t=0

=

∫
M

J(h)2 div Y ◦ hωM =

∫
N

J(h) ◦ h−1 div Y ωN

=

∫
N

J(h) ◦ h−1LY ωN =

∫
N

J(h) ◦ h−1d iY ωN

=

∫
N

d(J(h) ◦ h−1 ∧ iY ωN)−
∫
N

d(J(h) ◦ h−1) ∧ iY ωN

=

∫
N

iY (d(J(h) ◦ h−1) ∧ ωN)−
∫
N

iY
(
d(J(h) ◦ h−1)

)
ωN

= −
∫
N

d(J(h) ◦ h−1)(Y )ωN .

Hence, h ∈ Diff(M,N) is a critical point of the functional Φ(h) if and only if∫
N

d(J(h) ◦ h−1)(Y )ωN = 0
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for all Y ∈ X(N). It follows that if J(h) is constant, then h is a critical point of Φ.

To complete the proof it suffices to show that if∫
N

df(Y )ωN = 0 (3.4)

for all Y ∈ X(N), then df = 0, where f := J(h) ◦ h−1.

Suppose, on the contrary, that there exists a continuous vector field Y ∈ X(N)

such that (without loss of generality) df(Y )(q) > 0 for some point q ∈ N . Because

the map df(Y ) : N → R is continuous, there exists an open neighborhood U ⊂ N

of the point q ∈ N such that df(Y )(p) > 0 for every p ∈ U . After multiplying the

vector field Y by an appropriate bump function (see [1]), we obtain a vector field

Z ∈ X(N) supported in U such that
∫
N
df(Z)ωN =

∫
U
df(Z)ωN > 0, in contradiction

to equality (3.4). Hence, df = 0.

Definition 3.1.2. A function h ∈ Diff(M,N) is called a distortion minimal map if

it is a critical point of the total distortion functional Φ.

We will show that every distortion minimal map is a minimizer of the functional Φ

(see theorem 3.1.5).

As an immediate corollary of proposition 3.1.1, we have the following theorem.

Theorem 3.1.3. A function h ∈ Diff(M,N) is a distortion minimal map if and only

if |J(h)| is the constant function with value Vol(N)/Vol(M).

We will use the elementary properties of distortion minimal maps stated in the

following lemma. The proof is left to the reader.

Lemma 3.1.4. Compositions and inverses of distortion minimal maps are distortion

minimal maps.

Also we will use (the strong form) of Moser’s theorem on volume forms (see theo-

rem 2.11.7 and [30]).
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Theorem 3.1.5. If (M,ωM) and (N,ωN) are diffeomorphic n-dimensional compact

connected oriented manifolds without boundary, then (i) there is a distortion minimal

map from M to N , (ii) every distortion minimal map from M to N minimizes the

functional Φ, and (iii) the minimum value of Φ is

Φmin =

(
Vol(M)− Vol(N)

)2

Vol(M)
. (3.5)

Proof. To prove (i), choose a diffeomorphism h ∈ Diff(M,N) and note that the

differential form h∗ωN is a volume on M . Define a new volume on M as follows:

ω̄M =
Vol(M)∫
M
h∗ωN

h∗ωN .

Since ∫
M

ω̄M =

∫
M

ωM

and M is compact, by an application of Moser’s theorem, there exists a smooth

diffeomorphism f : M →M such that ωM = f ∗ω̄M . Hence,∫
M
h∗ωN

Vol(M)
ωM = (h ◦ f)∗ωN ;

and |J(h ◦ f)| = Vol(N)/Vol(M) is constant. Thus, k = h ◦ f is a distortion minimal

map.

To prove parts (ii) and (iii), note that if k is an arbitrary distortion minimal map

from M to N , then

Φ(k) =
(
|J(k)| − 1

)2
Vol(M) =

(
Vol(M)− Vol(N)

)2

Vol(M)
. (3.6)

We claim that this value of Φ is its minimum.

Let g ∈ Diff(M,N). By the Cauchy-Schwartz inequality,∫
M

J(g)2ωM ≥ 1

Vol(M)

(∫
M

∣∣J(g)|ωM
)2

=
Vol(N)2

Vol(M)
.

The latter inequality together with formulas (3.3) and (3.6) implies that Φ(g) ≥ Φ(k)

as required.
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Example 3.1.6. Let Sr and SR be two-dimensional round spheres of radii r and R

(respectively) centered at the origin in R3. Define h : Sr → SR by h(p) = (R/r) p for

p = (x, y, z) ∈ Sr. We will show that h is a distortion minimal map.

Let ωr (respectively, ωR) be the standard volume forms on Sr (respectively, SR)

generated by the usual volume form on Rn+1.

Using the parametrizations of Sr and SR by spherical coordinates, it is easy to

show that the Jacobian determinant of h is given by

J(ωr, ωR)(h)(m) =
R2

r2
=

Vol(SR)

Vol(Sr)

for all m ∈ Sr; hence, by theorem 3.1.5, h is a distortion minimal map.

Remark 3.1.7 (Harmonic maps). For h ∈ Diff(M,N), the distortion functional (3.2)

has value

Φ(h) =

∫
M

|J(h)|2ωM − 2 Vol(N) + Vol(M).

Thus, it suffices to consider the minimization problem for the reduced functional Ψ

given by

Ψ(h) =

∫
M

|J(h)|2ωM .

We note that if M and N are one-dimensional, then Ψ is the same as

Ψ(h) =

∫
M

|Dh|2ωM .

An extremal of this functional is called a harmonic map (see [12, 13, 14]). Thus, for

the one-dimensional case, distortion minimal maps and harmonic maps coincide. On

the other hand, there seems to be no obvious relationship in the general case.

3.2 Morphs of embedded manifolds

We will discuss a minimization problem for morphs of compact connected oriented

n-manifolds without boundary embedded in Rn+1.
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3.2.1 Pairwise minimal morphs

Definition 3.2.1. Let M and N be isotopic compact connected smooth n-manifolds

without boundary embedded in Rn+1 such that M is oriented. A C∞ isotopy H :

[0, 1] × M → Rn+1 together with all the intermediate manifolds M t := H(t,M),

equipped with the orientations induced by the maps ht = H(t, ·) : M → M t and the

volume forms ωt generated by the standard volume form on Rn+1, is called a (smooth)

morph from M to N . We denote the set of all morphs between manifolds M and N

by M(M,N).

For simplicity, we will consider only morphs H such that p 7→ H(0, p) is the identity

map. Each manifold M t = H(t,M) (with M0 = M and M1 = N) is equipped with

the volume form ωt = iηtΩ, where

Ω = dx1 ∧ dx2 ∧ . . . ∧ dxn+1

is the standard volume form on Rn+1 and ηt : M t → Rn+1 is the outer unit normal

vector field on M t with respect to the orientation induced by ht and the usual metric

on Rn+1.

Definition 3.2.2. A morph H is distortion pairwise minimal (or, for brevity, pairwise

minimal) if hs,t = ht ◦ (hs)−1 : M s → M t is a distortion minimal map for every s

and t in [0, 1]. We denote the set of all distortion pairwise minimal morphs between

manifolds M and N by PM(M,N).

By proposition 3.1.1 and theorem 3.1.5, a morph H is pairwise minimal if and only

if each Jacobian determinant J(ωs, ωt)(h
s,t) is constant.

Proposition 3.2.3. Let M = M0 and N = M1 be n-dimensional manifolds as in

definition 5.1.1. A morph H between M and N is distortion pairwise minimal if and

only if

J(ω0, ωt)(h
t)(m)

Vol(M t)
=

1

Vol(M)
(3.7)
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for all t ∈ [0, 1] and m ∈M .

Proof. Using lemma 3.1.4 and theorem 3.1.5, it suffices to prove that each map ht :

M → M t is minimal if and only if the map (3.7) is constant. An application of

theorem 3.1.3 finishes the proof.

Proposition 3.2.4. Let M and N be n-dimensional manifolds as in proposition 3.2.3.

If there is a morph G from M to N , then there is a distortion pairwise minimal morph

between M and N .

Proof. Fix a morph G from M to N with the corresponding family of diffeomorphisms

gt := G(t, ·), let M t := G(t,M), and consider the family of volume forms

ω̄t =
Vol(M)

Vol(M t)
(gt)∗ωt

defined for t ∈ [0, 1]. It is easy to see that∫
M

ω̄t =

∫
M

ω̄0;

hence, by Moser’s theorem, there is a family of diffeomorphisms αt on M such that

ωM = (αt)∗ω̄t. It follows that

(gt ◦ αt)∗ωt =
Vol(M t)

Vol(M)
ωM ;

therefore,

J(ωM , ωt)(g
t ◦ αt)(m) =

Vol(M t)

Vol(M)

for all m ∈ M . The morph H defined by H(t, p) := gt ◦ αt(p) for all t ∈ [0, 1] and

p ∈M is the desired distortion pairwise minimal morph.

3.2.2 Minimal morphs

We will define distortion minimal morphs of embedded connected oriented smooth

n-manifolds without boundary.
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For a morph H from M to N , let Es,t denote the total distortion of hs,t : M s →M t.

We have that

Es,t =

∫
Ms

(
J(hs,t)− 1

)2

ωs

=

∫
M

(J(ht)

J(hs)
− 1
)2

J(hs)ωM .

By Taylor’s theorem, Es,t has the representation

Es,t = Et,t +
d

ds
(Es,t)

∣∣
s=t

(s− t) +
1

2

d2

ds2
(Es,t)

∣∣
s=t

(s− t)2 +O
(
(s− t)3

)
.

Note that Et,t and d
ds

(Es,t)
∣∣
s=t

both vanish, and

1

2

d2

ds2
(Es,t)

∣∣
s=t

=

∫
M

(
d
dt
J(ht)

)2

J(ht)
ωM .

Definition 3.2.5. The infinitesimal distortion of a smooth morph H from M to N

at t ∈ [0, 1] is

εH(t) = lim
s→t

Es,t
(s− t)2

=

∫
M

(
d
dt
J(ht)

)2

J(ht)
ωM .

The total distortion functional Ψ :M(M,N)→ R is defined by

Ψ(H) =

∫ 1

0

εH(t)dt =

∫ 1

0

(∫
M

(
d
dt
J(ht)

)2

J(ht)
ωM

)
dt. (3.8)

Definition 3.2.6. A smooth morph is called a distortion minimal morph if it mini-

mizes the functional Ψ.

Lemma 3.2.7. For every morph H ∈ M(M,N) there exists a pairwise minimal

morph G ∈ PM(M,N) such that Ψ(G) ≤ Ψ(H). In particular, if H ∈ M(M,N)

is a distortion minimal morph, then there exists a pairwise minimal morph G ∈

PM(M,N) such that Ψ(H) = Ψ(G).

Proof. Let H ∈ M(M,N) be a morph with the intermediate states M t = H(t,M).

By proposition 3.2.4, there exists a pairwise minimal morph G ∈ PM(M,N) with

the same intermediate states. The deformation energy of transition maps satisfies

57



the inequality Es,t(H) ≥ Es,t(G) for all s, t ∈ [0, 1] because G is pairwise minimal.

Therefore, εH(t) ≥ εG(t) for all t ∈ [0, 1], and, consequently,

Ψ(H) ≥ Ψ(G) (3.9)

as required.

If H is distortion minimal, the reverse inequality Ψ(H) ≤ Ψ(G) holds and Ψ(H) =

Ψ(G) as required.

Corollary 3.2.8. (i) The following inequality holds:

inf
G∈PM(M,N)

Ψ(G) ≤ inf
H∈M(M,N)

Ψ(H). (3.10)

(ii) If there exists a minimizer F of the total distortion functional Ψ over the class

PM(M,N), then F minimizes the functional Ψ over the class M(M,N) as

well:

Ψ(F ) = min
G∈PM(M,N)

Ψ(G) = min
H∈M(M,N)

Ψ(H). (3.11)

Lemma 3.2.9. The total distortion of a pairwise minimal morph H from M to N is

Ψ(H) =

∫ 1

0

(
d
dt

Vol(M t)
)2

Vol(M t)
dt. (3.12)

Proof. The proof is an immediate consequence of formula (3.8) and proposition 3.2.3.

Lemma 3.2.10. The functional Ψ̄ defined by

Ψ̄(φ) =

∫ 1

0

φ̇2

φ
dt (3.13)

on the admissible set

Q =
{
φ ∈ C2

(
[0, 1]; (0,∞)

)
: φ(0) = Vol(M), φ(1) = Vol(N)

}
attains its infimum

inf
ρ∈Q

Ψ̄(ρ) = 4
(√

Vol(N)−
√

Vol(M)
)2

(3.14)
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at the element φ ∈ Q given by

φ(t) =
[
(
√

Vol(M)−
√

Vol(N) )t−
√

Vol(M)
]2

.

Proof. The proof is a simple application of the Euler-Lagrange equation and the

Cauchy-Schwarz inequality.

The Euler-Lagrange equation for the functional Ψ̄ is

2 φ̈ φ− φ̇2

φ2
= 0.

Its solutions have the form

ξ(t) = (Ct+D)2,

where the constants C and D must be chosen so that ξ(0) = Vol(M) and ξ(1) =

Vol(N). Because Ψ̄(ξ) = 4C2, we determine the values C =
√

Vol(M) −
√

Vol(N)

and D = −
√

Vol(M) by eliminating the other possible choices of these constants that

yield larger values of Ψ̄. Hence, the function φ in the statement of the theorem is the

solution of the Euler-Lagrange equation in Q that yields the smallest value of Ψ̄.

By the Cauchy-Schwarz inequality, we have that

Ψ̄(η) =

∫ 1

0

η̇2

η
dt ≥

(∫ 1

0

η̇
√
η
dt
)2

= 4(
√

Vol(M)−
√

Vol(N))2 = Ψ̄(φ)

for every η ∈ Q. Thus, the critical point φ in the statement of the lemma minimizes

the functional Ψ̄ on Q.

Using corollary 3.2.8 and lemma 3.2.10, we will minimize the total distortion energy

functional Ψ over the set M(M,N) of all morphs.

Theorem 3.2.11. Let M and N be two n-dimensional manifolds satisfying the as-

sumptions of definition 5.1.1. If M and N are connected by a smooth morph, then

there exists a distortion minimal morph. The minimal value of Ψ is

min
H∈M(M,N)

Ψ(H) = 4
(√

Vol(N)−
√

Vol(M)
)2
. (3.15)
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Proof. Let G be a morph between M and N . Without loss of generality, we assume

that G is pairwise minimal (see proposition 3.2.4). Set

H(t,m) = λ(t)G(t,m),

where λ : [0, 1]→ R is to be determined.

Note that if M t = H(t,M) and W t = G(t,M), then

Vol(M t) =

∫
M

(ht)∗ωM =
[
λ(t)

]n ∫
M

(gt)∗ωM =
[
λ(t)

]n
Vol(W t).

Let φ(t) be the minimizer of the auxiliary functional Ψ from lemma 3.2.10, and define

λ(t) =
[ φ(t)

Vol(W t)

] 1
n
.

The volume of the intermediate state M t is given by Vol(M t) = φ(t); therefore,

by corollary 3.2.8 and lemma 3.2.10, the morph H minimizes the total distortion

functional Ψ over the class M(M,N) and

Ψ(H) = 4
(√

Vol(N)−
√

Vol(M)
)2
.

The next result provides a basic class of distortion minimal morphs.

Proposition 3.2.12. Suppose that M is an n-dimensional manifold embedded in

Rn+1 that satisfies the assumptions of definition 5.1.1. If α is a positive real number

and

N := {αm : m ∈M},

then the morph given by the family of maps ht(m) = λ(t)m, where

λ(t) = Vol(M)−
1
n

[
(
√

Vol(M)−
√

Vol(N) )t−
√

Vol(M)
] 2
n
,

is distortion minimal.
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Proof. Define ht(m) = λ(t)m. It is easy to check that ht defines a morph from M to

N . Also, we have that J(ht) := J(ωM , ωt)(h
t) =

[
λ(t)

]n
. Since J(ht) is constant on

M , the family ht defines a pairwise minimal morph H.

We will determine λ(t) so that the morph H becomes a minimizer of Ψ over the

class M(M,N). Indeed, by lemma 3.2.10, it suffices to choose λ so that

Vol(M t) =
[
λ(t)

]n
Vol(M) =

[
(
√

Vol(M)−
√

Vol(N) )t−
√

Vol(M)
]2

,

which yields

λ(t) = Vol(M)−
1
n

[
(
√

Vol(M)−
√

Vol(N) )t−
√

Vol(M)
] 2
n
.

The corresponding morph H(t,m) = λ(t)m satisfies the equality

Ψ(H) = min
G∈M(M,N)

Ψ(G).
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Chapter 4

OPTIMIZATION OF
DEFORMATION ENERGY

In this section we address the problem of optimization of deformation energy of dif-

feomorphisms and homotopies between smooth compact connected Riemannian n-

manifolds M and N without boundary embedded in Rn+1. As mentioned in chapter

3, the functional Φ(h) =
∫
M

(
|J(h)| − 1

)2
ωM measures distortion only due to change

of volume. In this chapter we consider a different deformation energy functional

that measures total deformation of the manifold M produced by a diffeomorphism

h ∈ Diff(M,N). In section 4.2 we compute the Euler-Lagrange equation for the

new functional; in sections 4.3.1 and 4.3.3 we solve the problem of minimal bend-

ing and morphing for one-dimensional manifolds embedded in the plane. In section

4.4 we find a minimizer of the total deformation functional among all holomorphic

diffeomorphisms between two-dimensional spheres.

4.1 Definition of Total Deformation Energy

Let M and N denote compact, connected and oriented n-manifolds without boundary

that are embedded in Rn+1 and equip them with the natural Riemannian metrics gM

and gN inherited from the usual metric of Rn+1. These Riemannian manifolds (M, gM)

and (N, gN) have the volume forms ωM and ωN induced by their Riemannian metrics.

We assume that M and N are diffeomorphic.
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Definition 4.1.1. The strain tensor field S ∈ Γ(TM∗ ⊗ TM∗) corresponding to

h ∈ Diff(M,N) is defined to be

S = h∗gN − gM (4.1)

(cf. [38], [29]).

Recall the natural bijection between covectors in T ∗M and vectors in TM (see

subsection 2.5): To each covector αp ∈ TpM
∗ assign the vector α#

p ∈ TpM that is

implicitly defined by the relation

αp = (gM)p(α
#
p , ·).

Using this correspondence, we introduce the Riemannian metric g∗M on TM∗ by

g∗M(α, β) = gM(α#, β#),

where the base points are suppressed [24].

There is a natural fiber metric G on TM∗⊗TM∗ given by G = g∗M⊗g∗M . Consider

tensor fields B,F ∈ Γ∞(TM∗ ⊗ TM∗) expressed in components by B = bijdx
i ⊗ dxj

and F = fijdx
i⊗dxj (see the discussion following definition 2.5.7 and formula (2.2)).

Then

G(B,F ) = bijfklg
∗
M(dxi, dxk)g∗M(dxj, dxl)

= bijfkl[gM ]ik[gM ]jl, (4.2)

where [gM ]ik = g∗M(dxi, dxk) is the (i, k)-th entry of the inverse matrix of
(
[gM ]ik

)
,

and the point p ∈M is suppressed.

Definition 4.1.2. The deformation energy functional Φ : Diff(M,N) → R+ is de-

fined to be

Φ(h) =

∫
M

‖h∗gN − gM‖2
G ωM , (4.3)

where ‖ · ‖G is the fiber norm on TM∗ ⊗ TM∗ induced by the fiber metric G.

63



The following invariance property of the functional Φ is obvious because the isome-

tries of Rn+1 are compositions of translations and rotations, which produce no defor-

mations.

Lemma 4.1.3. If k ∈ Diff(N) is an isometry of N ( i.e. k∗gN = gN), then Φ(k◦h) =

Φ(h).

4.2 The First Variation

In this subsection we will compute the complete Euler-Lagrange equation for the

functional Φ : Diff(M,N)→ R+ (see subsection 2.14.2). Let c : (−ε, ε)→ Diff(M,N)

be a C1 curve at h ∈ Diff(M,N), which we call a variation of h. The equivalence

class [c]h ∈ Th Diff(M,N) can be identified with the smooth vector field Y ∈ X(N)

defined by Y (q) = d
dt
c(t) ◦ h−1(q) for all q ∈ N (see subsection 2.13). We call the

vector field X(N) a variational vector field of h ∈ Diff(M,N). We intend to compute

the first variation dΦ(h)Y for all Y ∈ X(N).

Consider a smooth vector field X ∈ X(M) with flow φt and a diffeomorphism

h ∈ Diff(M,N), and suppose that the variation c(t) = h ◦ φt induces the variational

vector field Y = h∗X ∈ X(N). The diffeomorphism h is a critical point of the

functional Φ if and only if

d

dt
Φ(h ◦ φt)|t=0 = DΦ(h)h∗X = 2

∫
M

G(h∗gN − gM , LXh∗gN)ωM = 0 (4.4)

for all X ∈ X(M), where G = g∗M ⊗ g∗M .

Let ∇ and ∇̄ be Riemannian connections on M compatible with the Riemannian

metrics α = gM and β = h∗gN respectively, and denote the corresponding Christoffel

symbols of ∇ and ∇̄ by Γijk and Γ̄ijk.

Let Y be a smooth vector field on M expressed in components by Y = Y k ∂
∂xk

.

The components of the Lie derivative of the Riemannian metric β in the direction of
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the vector field Y are

[LY β]km = ∇̄kYm + ∇̄mYk, (4.5)

where Ym = [β]mjY
j are the lowered coordinates of Y via the Riemannian metric β

(see [1]).

Recall that T rs(M) is the set of all continuous tensor fields on M contravariant of

order r and covariant of order s, or type (r, s).

Definition 4.2.1. Recall that α = gM and β = h∗gN . (i) Define the tensor field

B = (β−α)## ∈ T 2
0(M). In other words, B equals the strain tensor field h∗gN −gM

with both indices raised via the Riemannian metric α = gM . Its components are

given by Bkm = (βij − αij)αikαjm.

(ii) The bilinear form A : X(M)× X(M)→ X(M) is defined by

A(X, Y ) = ∇̄XY −∇XY (4.6)

for all X, Y ∈ X(M).

Remark 4.2.2. The bilinear form A can be viewed as a tensor field of type (1, 2) on

M with components

Amkp = Γ̄mkp − Γmkp (4.7)

(see [24], proposition 7.10).

Recall that the divergence of a tensor field τ ∈ T rs(M) is defined to be (see

section 2.9)

div τ = Cr
s+1(∇τ), (4.8)

where Cj
i denotes the contraction in lower i and upper j index. The divergence of τ ,

div τ , is a tensor of type (r − 1, s).

For two tensor fields θ ∈ T r2(M) and τ ∈ T 2
s(M), θ : τ denotes the type (r, s)

tensor field obtained by the contraction of the two covariant degrees of θ with the

two contravariant degrees of τ (see section 2.5).
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Lemma 4.2.3. Let Φ(h) =
∫
M
‖h∗gN − gM‖2

G ωM with domain Diff(M,N). Then

DΦ(h)(h∗Y ) = −4

∫
M

gM(divB + A : B, Y )ωM (4.9)

for all vector fields Y ∈ X(M), where the tensors A and B are defined above. More-

over, h is a critical point of the functional Φ if and only if

divB + A : B = 0.

The latter equation can be rewritten in components as follows:

∂kB
km + ΓpkpB

km + Γ̄mkpB
kp = 0 (4.10)

for all m = 1, 2, . . . , n.

Proof. For given Y ∈ X(M), consider the vector field

X = (βij − αij)αikαjmYm
∂

∂xk
, (4.11)

where α = gM and β = h∗gN . Although we describe X pointwise using local co-

ordinates, X is a well defined smooth vector field on M because it is obtained by

various contractions of the tensor fields α, β, and Y . The divergence of the vector

field X with respect to the Riemannian metric gM can be expressed in terms of the

components of X as follows:

divgM X = ∇kX
k

= ∇k

(
(βij − αij)αikαjm

)
Ym +

(
(βij − αij)αikαjm

)
∇kYm, (4.12)

where ∇ is the Riemannian connection on M compatible with the metric gM .

Using formula (2.6) for the components of the covariant derivative of a tensor, we

see that ∇kYm = ∇̄kYm+(Γ̄lkm−Γlkm)Yl. Taking this into account, we rewrite equality

(4.12) in the form

divX =
(
∇kB

km +Bkl(Γ̄mkl − Γmkl)
)
Ym +Bkm∇̄kYm. (4.13)
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On the other hand, from equation (4.4)

DΦ(h)(h∗Y ) = 2

∫
M

G(β − α,LY β)ωN . (4.14)

The local representation of the integrand in the functional Φ is given by the expression

G(β − α,LY β) = 2Bkm∇̄kYm. Now we can rewrite the divergence of the vector field

X in the form

divgM X =
1

2
G(β − α,LY β) + gM(divB + S : B, Y ). (4.15)

By theorem 2.11.6,
∫
M

divgM XωM = 0. Using this and equality (4.14), we conclude

that

DΦ(h)(h∗Y ) = −4

∫
M

gM(divB + S : B, Y )ωM

as required.

Lemma 4.2.4. Let h ∈ Diff(M,N). If h∗gN = R2gM for some R ∈ R, then h is a

critical point of the functional Φ.

Proof. As before, we denote α = gM , β = h∗gN . We need to verify that the equation

(4.10) holds. Because

βij = R2αij, (4.16)

we obtain

Γ̄kij =
1

2
βck[βic,j + βjc,i − βij,c]

=
1

2

( 1

R2
αck
)
[R2αic,j +R2αjc,i −R2αij,c] = Γkij, (4.17)

where αij,k denotes ∂kαij. From equations (4.17) and (4.7) we conclude that A = 0.

Hence, it remains to show that

∇kB
km = 0 (4.18)

for all m = 1, . . . , n. From equation (4.16),

Bkm = (R2αij − αij)αikαjm = (R2 − 1)αkm.
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Taking into account the identity ∇gM = ∇α = 0, we conclude that

∇kB
km = (R2 − 1)∇kα

km = 0

as required.

Corollary 4.2.5. Let M be a compact, connected, and oriented smooth n-manifold

without boundary embedded into Rn+1. The radial map hR : Rn+1 → Rn+1 is defined

by hR(p) = Rp for all p ∈ Rn+1, where R > 0. Assume that N = hR(M) is a rescaled

version of the manifold M , and the Riemannian metrics gM and gN on the manifolds

M and N are inherited from Rn+1. Then every composition h = f ◦hR|M of the radial

map hR|M with an isometry f ∈ Diff(N) is a critical point of the functional Φ.

Let the tensor field t ∈ T 0
2(M) be expressed by tijdx

i ⊗ dxj. We will use the

following formula for the components of the Lie derivative LXt of t in the direction

of the vector field X (cf. formula 2.5):

[LXt]ij = Xk ∂tij
∂xk

+ tkj
∂Xk

∂xi
+ tik

∂Xk

∂xj
. (4.19)

4.3 Minimal Deformation Bending

of Simple Closed Curves

4.3.1 First Variation. Minima Among Smooth Maps

In this section M and N are regular smooth simple closed curves in R2. Their

arclengths are denoted by L(M) and L(N) respectively, and they have base points

p ∈M and q ∈ N . We will determine the minimum of the functional

Φ(h) =

∫
M

‖h∗gN − gM‖2
GωM (4.20)

over the admissible set

A = {h ∈ Diff(M,N) : h(p) = q}. (4.21)
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There exist unique arc length parametrizations γ : [0, L(M)] → M and ξ :

[0, L(N)] → N of M and N respectively, which correspond to the positive orien-

tations of the curves M and N in the plane, and are such that γ(0) = p and ξ(0) = q.

Because M and N are regular smooth curves, the functions γ|(0,L(M)) and ξ|(0,L(N))

are smooth diffeomorphisms. Notice that [gM ]11(t) = |γ̇(t)|2 = 1 = [gM ]11(t) for

t ∈ [0, L(M)] and [h∗gN ]11(t) = |Dh
(
γ(t)

)
γ̇(t)|2. Using formula (4.2) for the metric

G, we rewrite functional (4.20) using local coordinates:

Φ(h) =

∫ L(M)

0

(∣∣Dh(γ(t)
)
γ̇(t)

∣∣2 − 1
)2

ωM . (4.22)

Let us denote the local representation of a diffeomorphism h ∈ Diff(M,N) by u =

ξ−1◦h◦γ. The function u is a diffeomorphism on the open interval
(
0, L(M)

)
and can

be continuously extended to the closed interval [0, L(M)] as follows. If h is orientation

preserving, we extend u to a continuous function on [0, L(M)] by defining u(0) = 0

and u(L(M)) = L(N). In this case u̇ > 0. If h is orientation reversing, we define

u(0) = L(N) and u(L(M)) = 0.

Since ∣∣ d
dt

(h ◦ γ)(t)
∣∣2 =

∣∣ d
dt

(ξ ◦ u)(t)
∣∣2 = u̇2(t)

∣∣ξ̇(u(t)
)∣∣2 = u̇2(t)

for t ∈
(
0, L(M)

)
, the original problem of the minimization of functional (4.20) can

be reduced to the minimization of the functional

Ψ(u) =

∫ L(M)

0

(u̇2 − 1)2dt (4.23)

over the admissible sets

B =
{
u ∈ C∞

(
[0, L(M)], [0, L(N)]

)
: u(0) = 0, u(L(M)) = L(N)

}
and

C =
{
u ∈ C∞

(
[0, L(M)], [0, L(N)]

)
: u(0) = L(N), u(L(M)) = 0

}
.

The minima will be shown to correspond to diffeomorphisms in Diff(M,N).
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Lemma 4.3.1. Suppose that L(N) ≥ L(M).

(i) The function v(t) = L(N)/L(M)t, where t ∈ [0, L(M)], is the unique minimizer

of the functional Ψ over the admissible set B.

(ii) The function w(t) = −L(N)/L(M)t+L(N) , where t ∈ [0, L(M)], is the unique

minimizer of the functional Ψ over the admissible set C.

Proof. Since the proofs of (i) and (ii) are almost identical, we will only present the

proof of the statement (i).

An Euler-Lagrange equation for functional (4.23) can be computed using for-

mula (2.14):

4ü(3u̇2 − 1) = 0. (4.24)

The only solution of the above equation that belongs to the admissible set B is

v(t) = L(N)
L(M)

t, where t ∈ [0, L(M)]. Note that v corresponds to a diffeomorphism in

Diff(M,N).

We will show that the critical point v minimizes the functional Ψ; that is,

Ψ(u) ≥ Ψ(v) =
(L(N)2 − L(M)2)2

L(M)3
(4.25)

for all u ∈ B. Using Hölder’s inequality

L(N) = u(L(M)) =

∫ L(M)

0

u̇(s) ds ≤
[
L(M)

∫ L(M)

0

u̇2(s) ds
]1/2

,

we have that

L(N)2

L(M)
≤
∫ L(M)

0

u̇2(s) ds.

Thus, in view of the hypothesis that L(N) ≥ L(M),∫ L(M)

0

(u̇2(s)− 1) ds =

∫ L(M)

0

u̇2(s) ds− L(M)

≥ L(N)2 − L(M)2

L(M)
≥ 0. (4.26)
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After squaring both sides of inequality (4.26), we obtain the inequality(∫ L(M)

0

(u̇2(s)− 1) ds
)2

≥ (L(N)2 − L(M)2)2

L(M)2
. (4.27)

Applying Hölder’s inequality to Φ(u) and taking into account inequality (4.27), we ob-

tain inequality (4.25). Hence, the function v(t) = L(N)/L(M)t, where t ∈ [0, L(M)],

minimizes the functional Ψ over the admissible set B.

Remark 4.3.2. Let us write the Euler-Lagrange equation (4.4) for the one-dimensional

case and compare it with equation (4.24).

Recall that

[gM ]11(t) = 1, [h∗gN ]11(t) = u̇(t)2,

and use formula (4.19) to compute

[LY h
∗gN ]11(t) = 2u̇(t)

(
ü(t)y(t) + ẏ(t)u̇(t)

)
= 2u̇(t)

d

dt

(
u̇(t)y(t)

)
,

where y(t) is the local coordinate of the vector field Y = y ∂
∂t

. The function y is

smooth on (0, L(M)) and satisfies the equation y(0) = y(L(M)). We assume that

y ∈ C∞c
(
(0, L(M))

)
. Using the previous computation and formulas (4.2) and (4.4),

we obtain the following Euler-Lagrange equation:∫ L(M)

0

(u̇2 − 1)u̇
d

dt
(u̇y) dt = −

∫ L(M)

0

d

dt

(
(u̇2 − 1)u̇

)
u̇y dt = 0

for all y ∈ C∞c
(
(0, L(M))

)
. The latter equation yields

d

dt

(
(u̇2 − 1)u̇

)
u̇ = u̇ü(3u̇2 − 1) = 0, (4.28)

which has the same solutions in the admissible sets B and C as equation (4.24).

Proposition 4.3.3. Suppose that M and N are regular smooth simple closed curves

in R2 with arc lengths L(M) and L(N) and base points p ∈ M and q ∈ N ; γ and

ξ are arc length parametrizations of M and N with γ(0) = p and ξ(0) = q that

induce positive orientations; and, the functions v and w are as in lemma 4.3.1. If
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L(N) ≥ L(M), then the functional Φ(h) defined in display (4.20) has exactly two

minimizers in the admissible set

A = {h ∈ Diff(M,N) : h(p) = q} :

the orientation preserving minimizer

h1 = ξ ◦ v ◦ γ−1

and the orientation reversing minimizer

h2 = ξ ◦ w ◦ γ−1

(where we consider γ as a function defined on
[
0, L(M)

)
so that γ−1(p) = 0). More-

over, the minimal value of the functional Φ is the admissible set A is

ΦAmin =
(L(N)2 − L(M)2)2

L(M)3
. (4.29)

Corollary 4.3.4. Suppose that M and N are regular smooth simple closed curves

in R2 with arc lengths L(M) and L(N) respectively, where L(M) ≤ L(N). Let the

functions v and w be defined as in lemma 4.3.1.

(i) If a diffeomorphism h ∈ Diff(M,N) is deformation minimal, i.e. h minimizes

the functional Φ in the admissible set Diff(M,N), then h = ξ ◦ v ◦ γ−1 or h =

ξ ◦w ◦γ−1, where γ and ξ are (positive orientation) arc length parametrizations

of the curves M and N respectively such that ξ(0) = h(γ(0)).

(ii) For every arc length parametrizations γ and ξ of M and N respectively, the

functions h1 = ξ ◦ v ◦ γ−1 and h2 = ξ ◦ w ◦ γ−1 are deformation minimal. In

addition,

min
f∈Diff(M,N)

Φ(f) = ΦAmin =
(L(N)2 − L(M)2)2

L(M)3
.

Proof. (i) Suppose that h ∈ Diff(M,N) is such that Φ(h) ≤ Φ(f) for all f ∈

Diff(M,N). Fix p ∈ M , and set q = h(p) ∈ N . It is evident that h minimizes
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the deformation energy functional Φ over the admissible set A = {f ∈ Diff(M,N) :

f(p) = q}. Therefore, by proposition 4.3.3, h = ξ ◦ v ◦ γ−1 or h = ξ ◦w ◦ γ−1, where γ

and ξ are (positive orientation) arc length parametrizations of M and N respectively

such that γ(0) = p and ξ(0) = q. In addition, Φ(h) = (L(N)2 − L(M)2)2/L(M)3.

(ii) Let γ and ξ be arc length parametrizations of M and N . We will prove that

the functions h1 = ξ ◦ v ◦ γ−1 and h2 = ξ ◦ w ◦ γ−1 are minimizers of Φ over the

admissible set Diff(M,N). Note that

Φ(h1) = Φ(h2) =
(L(N)2 − L(M)2)2

L(M)3
. (4.30)

Using inequality (4.25), for every diffeomorphism h ∈ Diff(M,N) with the local

representation u = ξ−1 ◦ h ◦ γ, we find that

Φ(h) = Ψ(u) ≥ Ψ(v) =
(L(N)2 − L(M)2)2

L(M)3
. (4.31)

Statement (ii) of the theorem follows from this inequality and equality (4.31).

Example 4.3.5. For R > 0, the radial map h : R2 → R2 is defined to be h(z) = Rz.

If M is a regular simple closed curve, N := h(M) and R > 1, then h|M minimizes Φ

on Diff(M,N). To see this fact, let γ(t) =
(
x(t), y(t)

)
, t ∈ [0, L(M)], be an arc length

parametrization of M . It is easy to see that ξ(t) = R
(
x(t/R), y(t/R)

)
, t ∈ [0, RL(M)]

parametrizes N = h(M) by its arc length. By proposition 4.3.3, the minimizer h1 is

h1(z) = ξ
(
v ◦ γ−1(z)

)
= ξ

(
Rγ−1(z)

)
= ξ(Rt) = Rγ(t) = Rz

for all z ∈M . Hence, h1 = h|M is the radial map as required.

Lemma 4.3.6. If L(N) < L(M), then the functional Ψ has no minimum in the

admissible set B.

73



Proof. Let φ : [0, L(M)] → R be a continuous piecewise linear function such that

φ(0) = 0, φ(L(M)) = L(N), and φ̇(t) = ±1 whenever t ∈ (0, L(M)) and the derivative

is defined. The graph of φ looks like a zig-zag. It is easy to see that φ is an element of

the Sobolev space W 1,4(0, L(M)) (one weak derivative in the Lebesgue space L4). By

the standard properties of W 1,4(0, L(M)), whose usual norm we denote by ‖·‖1,4, there

exists a sequence of smooth functions φk ∈ C∞[0, L(M)] (satisfying the boundary

conditions φk(0) = 0 and φk(L(M)) = L(N)) such that ‖φk − φ‖1,4 → 0 as k → ∞.

Moreover, there is some constant C > 0 such that
∫ L(M)

0
(φ̇2

k− φ̇2)2 dx ≤ C‖φk−φ‖2
1,4.

It is easy to see that

|Φ(φk)− Φ(φ)| ≤ C1‖φk − φ‖1,4

for some constant C1 > 0. Taking into account the equality Ψ(φ) = 0, we conclude

that Ψ(φk)→ 0 as k →∞. Thus, {φk}∞k=1 is a minimizing sequence for the functional

Ψ in the admissible set B. On the other hand, there is no function f ∈ B such that

Ψ(f) = 0 = infg∈BΨ(g). Therefore, if L(N) < L(M), the functional Φ has no

minimum in the admissible set B.

Corollary 4.3.7. If L(N) < L(M), then the functional Φ has no minimum in the

admissible set

Q = {h ∈ C∞(M,N) : h is orientation preserving and h(p) = q}.

Let us interpret the result of Lemma 4.3.6. Let h = ξ ◦ φ ◦ γ−1, where φ :

[0, L(M)]→ R is defined in the proof of Lemma 4.3.6 and γ, ξ are arc length (positive

orientation) parametrizations of the curves M and N viewed as periodic functions on

R. In case L(N) < L(M), the action of the function h on the curve M can be

described as follows. The curve M is cut into segments {Mi}ki=1, k ∈ N, such that φ̇

has a constant value (1 or (−1)) on γ−1(Mi). Each segment Mi is wrapped around

the curve N counterclockwise or clockwise depending on whether φ̇ equals 1 or (−1)

on γ−1(Mi) respectively. Since L(N) is less than L(M), some points of N will be
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covered by segments of M several times. During this process, the segments of the

curve M need not be stretched. Hence, as measured by the functional Φ, no strain is

produced, i.e. Φ(h) = 0.

The statement of corollary 4.3.7 leaves open an interesting question: Does the

functional Φ have a minimum in the admissible set A? Some results in this direction

are presented in the next section.

4.3.2 Second variation.
Conditions for Nonexistence of Minimum

We will derive a necessary condition for a diffeomorphism h ∈ Diff(M,N) to be

a minimum of the functional Φ. Let ht = h ◦ φt be a family of diffeomorphisms in

Diff(M,N), where φt is the flow of a vector field Y ∈ Γ(TM). Using the Lie derivative

formula (see [1]), we derive the equations d
dt

(h∗tgN) = φ∗tLY h
∗gN and d

dt
(φ∗tLY h

∗gN) =

φ∗tLYLY h
∗gN . If there exists δ > 0 such that Φ(ht) > Φ(h) for all |t| < δ and for all

variations ht of h, then h is called a relative minimum of h. If h ∈ Diff(M,N) is a

relative minimum of Φ, then d2

dt2
Φ(ht)|t=0 > 0.

Using the previous computations of Lie derivatives, the second variation of Φ is

1

2

d2

dt2
Φ(ht)|t=0 =

∫
M

G(LY h
∗gN , LY h

∗gN)ωM (4.32)

+

∫
M

G(LYLY h
∗gN , h

∗gN − gM)ωM .

Lemma 4.3.8. Let M and N be regular simple closed curves parametrized by func-

tions γ and ξ satisfying all the properties stated in lemma 4.3.3. If h ∈ Diff(M,N)

minimizes the functional Φ in the admissible set A, then the local representation

u = ξ−1 ◦ h ◦ γ of h satisfies the inequality

u̇2(t) ≥ 1

3
(4.33)

for all t ∈
(
0, L(M)

)
.
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Proof. Using formula (4.19), we compute

[LY h
∗gN ]11 = 2(u̇üy + u̇2ẏ)

and

[LYLY h
∗gN ]11 = 2(ü2y2 + u̇

...
u y2 + 5u̇ ü ẏ y + u̇2ÿ y + 2u̇2ẏ2).

Substituting the latter expressions into formula (4.32), we obtain the necessary con-

dition

W := 4

∫ L(M)

0

u̇4 ẏ2 dt + 4

∫ L(M)

0

u̇2(u̇2 − 1) ẏ2 dt

+ 2

∫ L(M)

0

u̇2(u̇2 − 1) y ÿ dt+ . . . ≥ 0,

where the integrands of the omitted terms all contain the factor y. After integration

by parts, we obtain the inequality

W =

∫ L(M)

0

(
4u̇4 + 4u̇2(u̇2 − 1)

− 2u̇2(u̇2 − 1)
)
ẏ2 dt+ . . . ≥ 0. (4.34)

Define y(t) = ερ
(
t
ε

)
ζ(t), where ρ(t) is a periodic “zig-zag” function defined by the

expressions

ρ(t) =

{
t, if 0 ≤ t < 1/2,

1− t, if 1/2 ≤ t < 1,
(4.35)

and ρ(t + 1) = ρ(t), ζ ∈ C∞c
(
0, L(M)

)
. Notice that ρ̇2 = 1 almost everywhere on R

and ẏ2 = ζ2 + O(ε) when ε→ 0. Substitute y into inequality (4.34) and pass to the

limit as ε → 0. All the omitted terms in the expression for W tend to zero because

they contain y as a factor. Hence, we have the inequality

W =

∫ L(M)

0

(
4u̇4 + 2u̇2(u̇2 − 1)

)
ζ2 dt ≥ 0,

which (after a standard bump function argument) reduces to the inequality

u̇2 ≥ 1/3 (4.36)

as required.
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Proposition 4.3.9. If M and N are simple closed curves such that their correspond-

ing arc lengths L(M) and L(N) satisfy the inequality L(N)
L(M)

< 1√
3
, then the functional

Φ has no minimum in the admissible set A.

Proof. If h ∈ Diff(M,N) is a minimum of the functional Φ, then h satisfies the Euler-

Lagrange equation (4.4). Let γ and ξ be parametrizations of the curves M and N with

all the properties stated in corollary 4.3.3. By remark 4.3.2, the local representation

u = ξ−1 ◦ h ◦ γ of h satisfies the ordinary differential equation (4.28) on (0, L(M)).

In addition, u must satisfy the boundary conditions u(0) = 0, u(L(M)) = L(N)

or u(0) = L(N), u(L(M)) = 0. Hence, either u(t) = L(N)/L(M)t or u(t) =

−L(N)/L(M)t + L(N). Since h minimizes Φ, by lemma 4.3.8 u̇2 ≥ 1/3, or, equiva-

lently, L(N)/L(M) ≥ 1√
3
. This contradicts the assumption of the theorem.

4.3.3 Minimal Deformation Morphing of Curves

Recall the definition of a morph between two simple closed curves M and N . In this

section, we assume that there is a morph between the curves M and N , and denote

the set of all morphs between them by M(M,N) as before. We assume that each

intermediate state M t = H(t,M) is a regular simple closed curve in R2 equipped

with the Riemannian metric gt, which is inherited from the standard inner product

in R2. Each intermediate state M t is equipped with the volume form ωt induced by

the Riemannian metric gt (see proposition 2.9.6). Recall that the transition maps of

a morph H ∈M(M,N) are defined to be hs,t = ht ◦ (hs)−1 : M s →M t.

Let us define the deformation energy of morphing. For every s, t ∈ [0, 1], let

Φs,t : Diff(M s,M t)→ R+ be the functional given by

Φs,t(f) =

∫
Ms

‖f ∗gt − gs‖2ωs.

Definition 4.3.10. The deformation energy of a transition map hs,t of a morph

H ∈ M(M,N) is Es,t(H) := Φs,t(hs,t). The infinitesimal deformation energy of a
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morph H at a point s ∈ [0, 1] is defined to be

εH(s) = lim
t→s

Es,t(H)

(s− t)2
. (4.37)

Remark 4.3.11. Note that by the definition εH(s) ≥ 0 for all s ∈ [0, 1].

We will verify (in lemma 4.3.13) that the above limit exists, and we will compute

its value.

Let us construct the arc length local representation of a morph H(t, p) = ht(p)

between curves M and N , where (t, p) ∈ [0, 1] ×M . As in definition 5.1.1, we will

denote the intermediate states of the morph H by M t. Let us choose the following

parametrizations of the intermediate curves M t. Let γ0 parametrize M = M0 by

its arc length, induce positive orientation, and satisfy γ0(0) = p0 for a fixed point

p0 ∈M . Note that γ0 is unique. For each t ∈ [0, 1], the function ht ◦ γ0 parametrizes

the curve M t. Let γt be a reparametrization of ht ◦ γ0 such that γt parametrizes

M t by arc length and gives the curve M t the same orientation. In addition, we

assume that γt(0) = ht ◦ γ0(0). The function γt can be obtained by the Implicit

Function Theorem. Indeed, the arc length of the curve M t is given by the formula

s(t, x) =
∫ x

0

∣∣ d
dτ
ht ◦ γ0(τ)

∣∣ dτ . Since ∂s
∂x
> 0, the equation s(t, x) = y can be solved for

x as a smooth function of t and y. Set γt = ht ◦ γ0 ◦ x(t, ·). Notice that the function

γ̄(t, x) = γt(x) is smooth in t and compute ∂
∂y
γt(y) = ∂

∂x
(ht ◦ γ0)(x(t, y))∂x

∂y
(t, y). But

∂x

∂y
(t, y) =

1

| ∂
∂x

(ht ◦ γ0)(x(t, y))|
> 0

for all y ∈ (0, L(M t)). Therefore, both γt and ht ◦ γ0 induce the same orientation

on M . In addition, γt(0) = ht ◦ γ0(0) as required. The local representation G of the

morph H is given by the formula G(t, x) = (γt)−1 ◦H(t, γ0(x)) for all x ∈ (0, L(M))

and t ∈ [0, 1] or, equivalently, gt(x) = (γt)−1 ◦ ht ◦ γ0. The function G(t, x) is smooth

jointly in the variables t and x. Note that gs,t := gt ◦ (gs)−1 = (γt)−1 ◦ hs,t ◦ γs is the

local representation of hs,t.
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Definition 4.3.12. The above constructed local representation G of the morph H ∈

M(M,N) is called the arc length local representation of the morph H.

Lemma 4.3.13. If H is a smooth morph in M(M,N) with arc length local repre-

sentation G, then the infinitesimal deformation energy εH(s) exists for all s ∈ (0, 1)

and is given by

εH(s) = 4

∫ L(M)

0

G2
xt(s, x)

Gx(s, x)
dx.

Proof. In local coordinates,

Es,t(H) =

∫ L(Ms)

0

(
(ġs,t)2 − 1

)2
dx,

where the dot denotes differentiation with respect to x. After the change of variables

x = gs(y) we obtain

Es,t(H) =

∫ L(M)

0

(
(ġs,t ◦ gs)2 − 1

)2
ġsdx

=

∫ L(M)

0

(( ġt
ġs
)2 − 1

)2

ġs dx

=

∫ L(M)

0

(G2
x(t, x)

G2
x(s, x)

− 1
)2

Gx(s, x) dx.

It is easy to check that Es,s(H) = 0 and

d

dt
Es,t(H) = 4

∫ L(M)

0

(G2
x(t, x)

G2
x(s, x)

− 1
) 1

Gx(s, x)
Gx(t, x)Gxt(t, x) dx.

Therefore, d
dt
Es,t(H)

∣∣
t=s

= 0 and

d2

dt2
Es,t(H)

∣∣
t=s

= 8

∫ L(M)

0

G2
xt(s, x)

Gx(s, x)
dx.

Using the Taylor series expansion around the point t = s for the function t 7→ Es,t(H),

it is easy to see that

εH(s) =
1

2

d2

dt2
Es,t(H)

∣∣
t=s

= 4

∫ L(M)

0

G2
xt(s, x)

Gx(s, x)
dx.
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Lemma 4.3.14. If H is a smooth morph in M(M,N), then the infinitesimal defor-

mation energy εH(s) exists for all s ∈ (0, 1) and is given by

εH(s) = lim
t→s

Et,s(H)

(s− t)2
. (4.38)

Proof. It is easy to check that

lim
t→s

Et,s(H)

(s− t)2
=

1

2

d2

dt2
Et,s(H)

∣∣
t=s

= 4

∫ L(M)

0

G2
xt(s, x)

Gx(s, x)
dx = εH(s).

Definition 4.3.15. The quantity

Λ(H) =
1

4

∫ 1

0

εH(t) dt (4.39)

is called the total deformation energy of a morph H between manifolds M and N .

Remark 4.3.16. If G is the arc length local representation of H, then

Λ(H) =

∫ 1

0

∫ L(M)

0

G2
xt(t, x)

Gx(t, x)
dx dt. (4.40)

Example 4.3.17. Let M and N be regular simple closed curves such that L(M) =

L(N). We will construct a minimizer of the deformation energy Λ in the admissible

set M(M,N).

Let F be a morph between the curves M and N . Such a morph exists (see [16]).

We will rescale F so that the lengths of the intermediate curves remain constant.

Define the morph H(t, x) = λ(t)F (t, x). Using the notation W t = F (t,M) and

M t = H(t,M), we find that the length of the intermediate curve M t is

L(M t) = λ(t)L(W t).

Hence, we set λ(t) = L(M)
L(W t)

so that L(M t) = L(M) for all t ∈ [0, 1].

Fix the intermediate curves M t and their arc length parametrizations γt such that

γt(0) = H(t, γ0(0)), and define the morph Q(t, ·) = qt = γt ◦ (γ0)−1 (this definition is
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valid because L(M t) = L(M)). The local representation of the functions qt = Q(t, ·)

is the identity. Hence, Λ(Q) = 0. On the other hand, Λ(Y ) ≥ 0 for all morphs Y

between the curves M and N , which follows from remark 4.3.11. We conclude that

Q minimizes the functional Λ over the admissible set M(M,N) as required.

Definition 4.3.18. A morph H between manifolds M and N is called orientation

preserving (orientation reversing) if the maps ht = H(t, ·) are orientation preserving

(orientation reversing) for all t ∈ [0, 1] (see definition 2.9.5). We denote the set

of all orientation preserving (orientation reversing) morphs between M and N by

M+(M,N) (M−(M,N)).

Remark 4.3.19. For a morph H ∈ M(M,N), all the diffeomorphisms ht : M → M t

are either orientation preserving or orientation reversing. Therefore, every morph

H ∈M(M,N) is either orientation preserving or orientation reversing.

Lemma 4.3.20. For every orientation preserving morph H+ ∈ M+(M,N) there

exists an orientation reversing morph H− ∈ M−(M,N) with the same intermediate

states such that Λ(H−) = Λ(H+) and vice versa.

Proof. Let H+ ∈ M+(M,N) with the arc length local representation G+(t, x) =

(γt)−1 ◦ H+(t, γ0(x)) for all t ∈ [0, 1] and x ∈ (0, L(M)) (see definition 4.3.12). Let

γ̄t(x) = γt(L(M t)− x) for all x ∈ (0, L(M t)). Define H−(t, p) = γ̄t ◦ (γt)−1 ◦H+(t, p)

for all p ∈ M and t ∈ [0, 1]. Let us construct the arc length local representation of

H−. It is easy to see that for each t ∈ [0, 1] the function γ̄t : (0, L(M t))→M t is the

arc length parametrization of M t that induces the same orientation on M t as H−(t, ·)

and satisfies γ̄t(0) = H−(t, γ0(0)). Therefore, the arc length local representation of

H− is given by G−(t, x) = (γ̄t)−1 ◦ H−(t, γ0(x)) = G+(t, x) for all t ∈ [0, 1] and

x ∈ (0, L(M)). The statement of the lemma follows from formula (4.40).

Definition 4.3.21. Let M and N be regular simple closed curves in R2 such that

L(M) ≤ L(N). A morph H between M and N satisfying the property L(M s) ≤
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L(M t) for all s, t ∈ [0, 1] such that s ≤ t is called a directional morph. A directional

morph H is called directional pairwise minimal if the function hs,t : M s → M t

minimizes the functional Φs,t over the admissible set Diff(M s,M t) for all s, t ∈ [0, 1]

such that s ≤ t. We denote the set of all directional pairwise minimal morphs between

M and N by PMd(M,N).

For curves M and N such that L(M) ≤ L(N), consider the problem of minimiza-

tion of the total deformation energy Λ(H) over the class

Q = {H ∈M(M,N) : H is an orientation preserving directional morph}.

Definition 4.3.22. A morph H ∈ Q is called directional deformation minimal if it

minimizes the total deformation functional Λ over the admissible class Q.

Lemma 4.3.23. Let M and N be regular simple closed curves such that L(M) ≤

L(N). There exists a directional pairwise minimal morph H ∈ Q between M and N .

Proof. Let H be a morph between M and N with the intermediate curves W t and

the arc length local parametrization G(t, x) = (γt)−1 ◦ H(t, γ0(x)), where t ∈ [0, 1]

and x ∈ (0, L(M)). Without loss of generality, H is orientation preserving. Indeed,

by remark 4.3.19, H is either orientation preserving or orientation reversing. In the

latter case, there exists an orientation preserving morph H+ between M and N by

lemma 4.3.20.

We will rescale H in order to obtain a directional morph. Consider the morph

F (t, p) = λ(t)H(t, p) for (t, p) ∈ [0, 1] ×M with intermediate states M t = F (t,M)

and denote φ(t) = L(W t). Because L(M t) = λ(t)φ(t), we wish to find a smooth

function λ : [0, 1]→ R+ such that λ(0) = λ(1) = 1 and

d

dt
L(M t) =

d

dt
(λ(t)φ(t)) ≥ 0

for all t ∈ (0, 1). Let ξ : [0, 1] → R+ be a smooth nonnegative function such that
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∫ 1

0
ξ(s) ds = L(N)− L(M). It is easy to check that the function

λ(t) =
1

φ(t)

( ∫ t

1
2

ξ(s) ds+ L(M) +

∫ 1
2

0

ξ(s) ds
)

satisfies the required conditions. Therefore, the morph F = λH is a directional

orientation preserving morph.

We fix the intermediate states M t = F (t,M) and construct another directional

orientation preserving morph Y ∈ Q, which is directional pairwise minimal. Define

the family of functions zt(x) = L(Mt)
L(M)

x for all x ∈ (0, L(M)), where t ∈ [0, 1]. We set

Y (t, p) = ξt◦zt◦(ξ0)−1, where ξt : (0, L(M))→M t are the arc length parametrizations

of the intermediate curves M t associated with the arc length local representation of

F (see definition 4.3.12). Recall that yt = Y (t, ·), and notice that the transition

functions ys,t = yt ◦ (ys)−1 : M s →M t of the morph Y have the local representation

zs,t(x) := (ξt)−1 ◦ ys,t ◦ ξs = zt ◦ (zs)−1(x) =
L(M t)

L(M s)
x

for all x ∈ (0, L(M s)). Because F is a directional morph, the inequality L(M s) ≤

L(M t) holds for all s, t ∈ [0, 1] such that s ≤ t. By corollary 4.3.4, each function ys,t

minimizes the deformation energy functional Φs,t over the set Diff(M s,M t), where

s, t ∈ [0, 1] are such that s ≤ t. Therefore, the morph Y is directional pairwise

minimal.

Recall that f ∈ Diff(M,N) is deformation minimal if f minimizes the deformation

energy functional Φ over the admissible set Diff(M,N).

Lemma 4.3.24. Let M ,N and S be regular smooth simple closed curves in R2 such

that their arc lengths satisfy the inequality L(M) ≤ L(N) ≤ L(S). If the functions

f : M → N and g : N → S are deformation minimal, so is the function g◦f : M → S.

Proof. The proof follows immediately from corollary 4.3.4.
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Theorem 4.3.25. For every morph H ∈ Q there exists a directional pairwise minimal

morph F ∈ Q ∩ PMd(M,N) with the same intermediate states such that Λ(F ) ≤

Λ(H).

Proof. Let H ∈ Q. By the proof of lemma 4.3.23, there exists a morph F ∈ Q ∩

PMd(M,N) with the same intermediate states. Therefore, Es,t(H) ≥ Es,t(F ) for all

s, t ∈ [0, 1] such that s ≤ t, which implies the inequality

lim
s→t−

Es,t(H)

(s− t)2
≥ lim

s→t−

Es,t(F )

(s− t)2

for all t ∈ (0, 1]. Hence, εH(t) ≥ εF (t) for all t ∈ (0, 1], and, consequently, Λ(H) ≥

Λ(F ) as required.

Corollary 4.3.26. The following statements hold.

(i) infH∈Q Λ(H) ≥ infF∈Q∩PMd(M,N) Λ(F );

(ii) If F minimizes the total deformation functional Λ over the class Q∩PMd(M,N)

of all orientation preserving directional pairwise minimal morphs, then F is de-

formation minimal, i.e. F minimizes Λ in the admissible set Q.

Lemma 4.3.27. If H ∈ Q is directional pairwise minimal, then

Λ(H) =

∫ 1

0

( d
dt
L(M t))2

L(M t)
dt. (4.41)

Proof. If H ∈ Q is directional pairwise minimal, then its arc length local represen-

tation G(t, x) = L(Mt)
L(M)

x for all t ∈ [0, 1] and x ∈ [0, L(M t)]. Formula (4.41) follows

from equation (4.40).

Lemma 4.3.28. Consider the functional

J(φ) =

∫ 1

0

φ̇2

φ
dt

defined on the admissible set

W = {φ ∈ C∞([0, 1],R+) : φ(0) = L(M), φ(1) = L(N), φ̇ ≥ 0}.

84



The functional J attains its minimum at the constant function

φ(t) ≡ L(M) (4.42)

if L(M) = L(N) and at

φ(t) =
[
(
√

Vol(M)−
√

Vol(N) )t−
√

Vol(M)
]2

(4.43)

whenever L(M) ≤ L(N).

Proof. The proof is identical to the proof of lemma 3.2.10.

Theorem 4.3.29. Let M and N be smooth simple closed curves in R2 such that

L(M) ≤ L(N). There exists a minimal morph between M and N in the class Q.

Proof. By corollary 4.3.26, it suffices to minimize Λ over the set Q ∩ PMd(M,N).

By lemma 4.3.27,

Λ(H) =

∫ 1

0

( d
dt
L(M t))2

L(M t)
dt.

For directional pairwise minimal morphs, the functional Λ depends only on the length

of the intermediate states.

Let H ∈ Q be a pairwise minimal morph between M and N . Such a morph exists

by lemma 4.3.23. Let

F (t, p) =
φ(t)

L(H(t,M))
H(t, p),

where φ minimizes the functional J defined in lemma 4.3.28. The length of the

intermediate states F (t,M) coincides with the minimum φ of the functional J over

the admissible set W . Hence, F is deformation minimal.

4.4 Minimal Deformation Bending of Two-Dimensional

Spheres; Holomorphic Critical Points

In this section we specialize to the manifolds M = S2 and N = hR(S2) =: R S2 for

some R > 0, where S2 is the unit 2-dimensional sphere in R3, and hR is the radial
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map defined by hR(y) = Ry for all y ∈ R3. As usual, the manifolds M and N are

equipped with Riemannian metrics gM and gN respectively induced by the Euclidean

metric dx2
1 + dx2

2 + dx2
3 of R3 (see example 2.8.3).

The manifoldsM andN are Riemann surfaces (see section 2.12). Let us parametrize

the spheres S2 and R S2 on the extended complex plane Ĉ = C∪∞ using stereographic

projections. For (y1, y2, y3) ∈ S2, the stereographic projection is given by the expres-

sion π(y1, y2, y3) = y1+iy2
1−y3 .

We will show that maps of the form h = f ◦ hR|M , where f is an isometry on N ,

minimize the functional Φ in the class of all holomorphic diffeomorphisms between

M and N . As we have seen in corollary 4.2.5, maps of this form are critical points of

Φ with the domain Diff(M,N).

The parametrization φ : Ĉ→ S2 is given by

φ(u+ iv) =

(
2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)T
, (4.44)

and the parametrization φR : Ĉ→ R S2 of R S2 is given by φR(u+ iv) = Rφ(u+ iv).

In these coordinates, the Riemannian metrics gM and gN are defined by

gM(z, z̄) =
4

(1 + |z|2)2
dzdz̄ (4.45)

and

gN(z, z̄) =
4R2

(1 + |z|2)2
dzdz̄. (4.46)

Let h ∈ Diff(M,N) be a holomorphic map. The local representation (φR)−1◦h◦φ :

Ĉ→ Ĉ of h, which (by an abuse of notation) we shall denote by the same letter, is a

holomorphic diffeomorphism of the extended complex plane onto itself. We conclude

that h(z) has the form h(z) = M(z), where M(z) = az+b
cz+d

is a Möbius transformation

and a, b, c, d ∈ C are such that ad − bc 6= 0. For such an h, it is easy to derive the

formula

h∗gN(z, z̄) =
4R2|bc− ad|2(

|az + b|2 + |cz + d|2
)2dzdz̄. (4.47)
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Hence, the problem of minimization of the deformation energy functional Φ defined

in display (1.1) over all holomorphic diffeomorphisms from S2 to R S2 reduces to the

problem of minimization of the function

Ψ(a, b, c, d) =

∫
R2

( R2|bc− ad|2(
|az + b|2 + |cz + d|2

)2 −
1

(1 + |z|2)2

)2

(1 + |z|2)2 dudv, (4.48)

where z = u + iv, over the group Aut(Ĉ) = PGL(2,C). Recall that the elements of

the projective general linear group PGL(2,C) are the equivalence classes [a, b, c, d],

where ad − bc 6= 0 and (a′, b′, c′, d′) ∈ [a, b, c, d] if (a′, b′, c′, d′) = λ(a, b, c, d) for some

λ ∈ C\{0}.

Recall that the group of all isometries of the Riemann sphere is the projective uni-

tary group PU(2,C); that is, every isometry f of (S2, gM) has the local representation

(via stereographic projection)

f(z) =
az − c̄
cz + ā

,

where a, c ∈ C are such that |a|2 + |c|2 = 1.

The functional Φ is invariant with respect to left compositions with isometries; that

is, Φ(f ◦ h) = Φ(h) for every isometry f ∈ Diff(N) and h ∈ Diff(M,N). Therefore,

the reduced function Ψ is well-defined on the quotient of PGL(2,C) by PU(2,C),

which is the set of all equivalence classes[[
α β
γ δ

]]
=

{(
a −c̄
c ā

)(
α β
γ δ

)
:

(
a −c̄
c ā

)
∈ PU(2,C)

}
. (4.49)

We note that the equivalence class[[
1 0
0 1

]]
consists of all the isometries of the unit sphere (S2, gM).

Theorem 4.4.1. (i) Let hR : R3 → R3 be the radial map given by hR(p) = Rp

for some number R > 0. If M = S2 is the 2-dimensional unit sphere isometrically

embedded into R3 and N = hR(M), then h := f ◦ hR|M is a global minimum of the
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functional Φ, restricted to the admissible set HD(M,N), whenever f is an isometry

of N .

(ii) Let M and N be compact Riemann surfaces. If HD(M,N) is not empty and

the genus of M is at least two, then there exists a minimizer of the functional Φ in

HD(M,N).

Statement (ii) of theorem 4.4.1 follows immediately from Hurwitz’s automorphisms

theorem: The group of automorphisms of a compact Riemann surface of genus greater

than one is finite (see [34]).

Statement (i) is equivalent to the following result.

Theorem 4.4.2. The equivalence class of the isometries of (S2, gM) is the unique

minimizer of the function Ψ defined on the homogeneous space

PGL(2,C)/PU(2,C); that is,

Ψ

([[
1 0
0 1

]])
≤ Ψ

([[
a b
c d

]])
(4.50)

for all [[
a b
c d

]]
∈ PGL(2,C)/PU(2,C).

Proof. The function Ψ is well-defined on the homogeneous space PGL(2)/PU(2).

Thus, all values of Ψ are obtained by choosing its domain to consist of one represen-

tative from each equivalence class.

We claim that each equivalence class[[
α β
γ δ

]]
has a representative of the form(

1 0
z r

)
,

for some z ∈ C and r ∈ R+.
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To prove the claim, note that (without loss of generality) we may assume the

determinant of the given representative is unity; that is, αδ − βγ = 1. We wish to

prove the existence of a, c ∈ C so that(
a −c̄
c ā

)(
α β
γ δ

)
=

(
1 0
z r

)
(4.51)

for some z ∈ C and r ∈ R+. In other words, it suffices to solve the system of linear

equations{
aα− c̄γ = 1,
aβ − c̄δ = 0.

(4.52)

In view of the equation αδ−βγ = 1, it follows that a = δ and c = β̄. By substitution

of a and c into equation (4.51), we find that z = β̄α + δ̄γ and r = |β|2 + |δ|2. This

proves the claim.

By the claim, it suffices to consider the value of Ψ only at points of the form

(1, 0, qeiψ, r), where q ∈ R, r ∈ R+, and ψ ∈ [0, 2π). Thus, the theorem is an

immediate consequence of the following proposition.

The function Ψ̄ : R× [0, 2π]× R+ → R given by

Ψ̄(q, ψ, r) = Ψ(1, 0, qeiψ, r) (4.53)

attains its global minimum on the set of points (0, ψ, 1).

To prove this result, let us first calculate the integral that represents the function

Ψ̄.

After passing to polar coordinates (u = ρ cosφ and v = ρ sinφ), we represent Ψ̄ in

the form

Ψ̄(q, ψ, r) =

∫ ∞
0

∫ 2π

0

[ R2r2

(ξ + η cos(φ+ ψ))2
− 1

(1 + ρ2)2

]2

(1 + ρ2)2ρ dφdρ,

where ξ = ρ2 + ρ2q2 + r2 and η = 2ρqr. Since the integrand is periodic with respect

to φ and we are integrating over one period, Ψ̄(q, ψ, r) does not depend on ψ; that is,

Ψ̄(q, ψ, r) =

∫ ∞
0

∫ 2π

0

[ R2r2

(ξ + η cosφ)2
− 1

(1 + ρ2)2

]2

(1 + ρ2)2ρ dφdρ.
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The inner integral of the equivalent iterated integral is

K(ρ) : =

∫ 2π

0

[ R2r2

(ξ + η cos(φ))2
− 1

(1 + ρ2)2

]2

(1 + ρ2)2ρ dφ

=
[
R4r4

∫ 2π

0

1

(ξ + η cos(φ))4
dφ

− 2R2r2 1

(1 + ρ2)2

∫ 2π

0

1

(ξ + η cos(φ))2
dφ

+ 2π
1

(1 + ρ2)4

]
ρ(1 + ρ2)2. (4.54)

Taking into account the inequalities ξ > |η| and η > 0, the integrals in the previous

expression are elementary; their values are given by∫ 2π

0

1

(ξ + η cos(φ))2
dφ =

2πξ

(ξ2 − η2)3/2

and ∫ 2π

0

1

(ξ + η cos(φ))4
dφ =

πξ(2ξ2 + 3η2)

(ξ2 − η2)7/2
.

By substitution into equation (4.54), we find that

Ψ̄(q, ψ, r) =

∫ ∞
0

K(ρ) dρ (4.55)

= π − 2πR2 +
πR4

3r2

(
1 + q2 + (r − 1)r

)
(1 + q2 + r + r2).

The minimum of the function F (q, r) = Ψ̄(q, ψ, r) on R×R+, is easily determined.

Indeed, (0, 1) is the only critical point of F . Also, the Hessian of F is

D2F (q, r) =

(
4πR4(1+3q2+r2)

3r2
−8πR4q(1+q2)

3r3

−8πR4q(1+q2)
3r3

2πR4(3+6q2+3q4+r4)
3r4

)
.

We note that ∂2F (q, r)/∂q2 and the determinant of the Hessian

det
(
D2F (q, r)

)
=

8π2R8

9r6
(3 + q6 + 3r2 + r4 + r6 + q4(5 + 3r2) + q2(7 + 6r2 + 3r4))

are both positive by inspection. By Sylvester’s criterion, the Hessian is positive

definite over the entire domain of F ; therefore, F is convex. If follows that (0, 1) is

the unique global minimizer of F . The minimum of F is

F (0, 1) = π(R2 − 1)2.
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Clearly, points of the form (0, ψ, 1) are the global minima of Ψ̄ on its domain

R× [0, 2π]× R+.
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Chapter 5

MINIMAL MORPHS INDUCED
BY TIME-DEPENDENT
VECTOR FIELDS

As before, let M and N be compact and orientable smooth Riemannian n-manifolds

isometrically embedded into Rn+1. Recall that a morph between M and N is an

isotopy between them together with the set of all intermediate manifolds equipped

with the Riemannian metrics inherited from Rn+1. Every morph or diffeomorphism

between isotopic manifolds produces distortion via stretching and bending.

In the previous chapters we considered distortion energy functionals defined on the

infinite dimensional manifolds Diff(M,N) or M(M,N). In this chapter, we define

distortion energy functionals on time-dependent vector fields, which generate morphs

and diffeomorphisms between the manifolds M and N via evolution equations. This

approach allows us to treat optimization problems on linear spaces.

Let Ω ⊂ Rn+1 be an open set containing the manifolds M and N . We define

functionals E and E that measure the distortion of diffeomorphisms and morphs

respectively generated by time-dependent vector fields v : Ω × [0, 1] → Rn+1 via the

evolution equation dq/dt = v(q, t) and prove the existence of minimizers of E and E in

an admissible set AkP of time-dependent vector fields, which is a subset of the closed

ball of radius P in the Hilbert space Hk of all L2 functions from [0, 1] to the Sobolev

space W k,2
0 (Ω; Rn+1), where k ∈ N. We also analyze in detail a concrete example of a
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minimal morph for the case of circles embedded in the plane.

5.1 Bending and Morphing via Time-Dependent

Vector Fields in Rn+1

Given a smooth oriented n-manifold S (perhaps with boundary) isometrically embed-

ded into Rn+1, we let gS, ωS, and IIS denote the Riemannian metric, volume form,

and second fundamental form on S associated with this embedding. Also, we let IntS

(respectively, ∂S) denote the interior (respectively, the boundary) of the manifold S.

The definition 5.1.1 of a morph between two embedded manifolds is easily gener-

alized to the case of manifolds with boundary.

Definition 5.1.1. Let M and N be isotopic compact connected smooth n-manifolds

(perhaps with boundary) embedded in Rn+1 such that M is oriented. A C∞ isotopy

F : M × [0, 1] → Rn+1 together with all the intermediate manifolds M t := F (M, t),

equipped with the orientations induced by the maps f t = F (·, t) : M → M t and the

Riemannian metrics gt inherited from Rn+1, is called a (smooth) morph from M to

N .

Recall that we denote the set of all smooth (respectively, Cr) diffeomorphisms

between manifolds M and N by Diff(M,N) (respectively, Diffr(M,N)). Similarly,

we denote the set of all smooth morphs between M and N by M(M,N). If F

is an isotopy, then each map F (·, t) : M → M t induces smooth diffeomorphisms

IntF (·, t) : IntM → IntM t and ∂F (·, t) : ∂M → ∂M t by restriction.

In addition, we consider morphs between manifolds M and N with different reg-

ularity properties. For example, we let Mr,ac(M,N) denote the set of all continuous

isotopies F : M × [0, 1] → Rn+1 between M and N such that for each p ∈ M the

map t 7→ F (p, t) is absolutely continuous on [0, 1] and for each t ∈ [0, 1] the func-

tion p 7→ F (p, t) is a Cr diffeomorphism from M onto its image. As in the case of

smooth morphs, the diffeomorphism F (·, t) : M → M t induces an orientation on the
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intermediate manifold M t.

There are several choices for cost functionals that measure the distortion of a

diffeomorphism h ∈ Diff(M,N) or a morph F ∈M(M,N).

A complete theory of the existence of minimizers of cost functionals that measure

distortion of diffeomorphisms and morphs due to change of volume is presented in

chapter 3. In this case, the value of the distortion energy functional at a diffeomor-

phism h : M → N is defined to be the square of the infinitesimal relative change of

volume |J(h)| − 1 produced by h integrated over the manifold M , where J(h) is the

Jacobian determinant of h. This functional does not take into account the distortion

of shape produced by h, which is captured by functionals (1.1) and (5.1), where the

fiber metric ‖ · ‖ on the bundle of all tensor fields of type (0, 2) is induced by the fiber

inner product g∗M ⊗ g∗M (see section 4.1 and [24]).

The general problem of the existence of minimizers of Φ is open. The special

case where M and N are one-dimensional is studied in chapter 4 where, among

other results, the functional Φ is shown to have no minimizer in case M and N are

circles with the radius of N smaller than the radius of M . Thus, a solution of the

general problem must take into account at least some global properties of the metric

structures of the manifolds M and N . On the other hand, we proved the existence

of minimizers in case M and N are Riemann spheres or compact Riemann surfaces

of genus greater than one and the admissible set is HD(M,N) = {h ∈ Diff(M,N) :

h is a holomorphic map}, see theorem 4.4.1 in section 4.4.

If we wish to match, in addition to the Riemannian metrics, the embeddings of

the manifolds M and N (to avoid, for example, zero distortion energy maps between

a square and a round cylinder in R3), we arrive at the problem of minimization of

the functional

Λ(h) :=

∫
M

‖h∗gN − gM‖2 ωM +

∫
M

‖h∗IIN − IIM‖2 ωM (5.1)

over the space of diffeomorphisms between M and N , where IIM and IIN are the
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v

Ω

NM

Figure 5.1: The time-dependent vector field v : Ω×[0, 1]→ Rn+1 generates the morph
F v(p, t), which is the solution of the initial value problem dq/dt = v(q, t), q(0) = p.

second fundamental forms on the manifolds M and N .

One of the difficulties encountered in attempts to minimize Φ over Diff(M,N)

is the lack of a complete understanding of the structure of this infinite-dimensional

space. The natural new approach is to linearize; that is, replace Diff(M,N) with a

subset of a linear function space. Using this approach, which already appears in the

literature on image deformation (see [9, 11, 17, 39]), we define our distortion energy

functionals on time-dependent vector fields that generate morphs (see Fig. 5.1).

Let us denote the Euclidean norm of an element A ∈ Rm by |A| or by |A|Rm .

Let Ω ⊂ Rn+1 be an open ball containing the manifolds M and N , C∞c (Ω; Rn+1)

the space of all smooth functions from Ω to Rn+1 with compact support, and V k :=

W k,2
0 (Ω; Rn+1) the closure of C∞c (Ω; Rn+1) in the Sobolev spaceW k,2(Ω; Rn+1) (see [15]).

The space V k is a Hilbert space with the inner product

〈f, g〉V k =
n+1∑
i=1

∑
α,|α|≤k

∫
Ω

DαfiD
αgidx,

where f = (f1, . . . , fn+1) : Ω → Rn+1, α = (α1, . . . , αn+1) is a multi-index with non-

negative integer components, |α| = α1 + . . .+αn+1, and Dαfi = ∂|α|fi
/
∂xα1

1 . . . ∂x
αn+1

n+1

is the corresponding weak partial derivative of fi. We choose k ∈ N large enough

so that the Sobolev space W k,2
0 (Ω) is embedded into Cr(Ω̄) and r ≥ 1. By the

Sobolev Embedding Theorem (see theorem 2.15.6 and [2, 15]), it suffices to choose

k ≥ (n+ 1)/2 + r + 1.
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Consider time-dependent vector fields v : Ω × [0, 1] → Rn+1 on Ω that belong to

the Hilbert space

Hk = L2(0, 1;V k) (5.2)

(see Fig. 5.1). By an abuse of notation, we will sometimes write v(x, t) = v(t)(x) for

v ∈ Hk and (x, t) ∈ Ω × [0, 1]. A time-dependent vector field v : Ω × [0, 1] → Rn+1

belongs to the Hilbert space Hk if its norm ‖v‖Hk := (
∫ 1

0
‖v(·, t)‖2

V dt)
1
2 is finite. The

inner product on Hk is defined by

〈v, w〉Hk =

∫ 1

0

〈v(·, t), w(·, t)〉V k dt.

Every vector field v ∈ Hk generates a morph F v : M × [0, 1] → Rn+1 from M to

F v(M, 1) via the evolution equation

dq

dt
= v(q, t). (5.3)

More precisely, let ηv(t; t0, x) be the evolution operator of equation (5.3); that is,

for every t0 ∈ [0, 1] and x ∈ Ω the function t 7→ ηv(t; t0, x) solves equation (5.3)

and satisfies the initial condition ηv(t0; t0, x) = x. The morph F v is defined by

F v(p, t) = ηv(t; 0, p) for all (p, t) ∈ M × [0, 1]. By the properties of the evolution

operator ηv, which have been studied in [11] and [40], the morph F v(p, t) is of class

Mr,ac(M,F v(M, 1)) (see lemmas 5.4.1 and 5.4.2). The time-one map of the evolution

operator ηv is defined to be φv(x) := ηv(1; 0, x) for all x ∈ Ω, and we define ψv = φv|M .

LetAkP be the admissible set of all time-dependent vector fields inHk that generate

morphs between the manifolds M and N and are bounded by a uniform positive

constant P . In symbols,

AkP = {v ∈ Hk : ψv ∈ Diffr(M,N) and ‖v‖Hk ≤ P}. (5.4)

We will prove that for P sufficiently large, the admissible set AkP is nonempty and

AkP is weakly closed in Hk (see lemma 5.2.10).
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Recall that T rs(M) denotes the set of all continuous tensor fields on M con-

travariant of order r and covariant of order s (also called type (r, s)). For a tensor

field τN ∈ T 0
s(N) and a diffeomorphism h : M → N , h∗τN denotes the pull-back of

τN to M .

For each t ∈ [0, 1] and v ∈ AkP , the manifold M v,t := F v(M, t) is called an

intermediate state of the morph F v between manifolds M and N generated by the

time-dependent vector field v. We endow this intermediate state with the Riemannian

metric gvt inherited from its embedding in Rn+1 and let IIvt denote the corresponding

second fundamental form.

Definition 5.1.2. Let B1 and B2 be nonnegative real numbers, F v the morph, and

φv the time-one map generated by the time-dependent vector field v ∈ AkP ⊂ Hk via

the evolution equation (5.3). Recall that ψv := φv|M . The bending distortion energy

of v is

E(v) = E(v;B1, B2) = B1

∫
M

‖(ψv)∗gN − gM‖2ωM

+B2

∫
M

‖(ψv)∗IIN − IIM‖2ωM

and the morphing distortion energy of v is

E(v) = E(v;B1, B2) = B1

∫ 1

0

∫
M

‖F v(·, t)∗gvt − gM‖2 ωMdt

+B2

∫ 1

0

∫
M

‖F v(·, t)∗IIvt − IIM‖2 ωMdt,

where ‖·‖ is the fiber norm on the tensor bundle T 0
2(M) generated by the fiber inner

product g∗M ⊗ g∗M . (Note: We will use the same notation for the fiber norm on the

tensor bundle T 0
s(M) generated by the inner product ⊗si=1g

∗
M .)

We will prove that the functionals E and E have minimizers in AkP .

Theorem 5.1.3. (i) If P > 0 and k ∈ N are sufficiently large, then each of the

functionals E : AkP → R+ and E : AkP → R+ has a minimizer in the admissible set

AkP .
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The detailed conditions on the constants P and k are formulated in theorem 5.2.12.

We note that each diffeomorphism ψv : M → N generated by a time-dependent

vector field v ∈ AkP is isotopic, as a map from M to Rn+1, to the inclusion map

i : M → Rn+1 via the isotopy F v ∈ Mr,ac(M,N). To minimize the distortion

energy of diffeomorphisms from other isotopy classes, we replace the map ψv in the

definition of the functional E by the diffeomorphism ψv ◦ φ : M → N , where φ

is a fixed diffeomorphism on M . The existence of minimizers of the functional E

with the above adjustment guarantees the existence of minimizers of the functionals

Φ and Λ defined in displays (1.1) and (5.1) in a restricted admissible set of all C2

diffeomorphisms between the manifolds M and N , which, considered as maps from

M to Rn+1, are isotopic to a given map φ : M → Rn+1.

Theorem 5.1.4. If P > 0 and k ∈ N are sufficiently large, then for every φ ∈

Diff(M) both functionals Φ and Λ defined in displays (1.1) and (5.1) respectively

have minimizers in the admissible set

BkP, φ := {h ∈ Diff2(M,N) : h = ψv ◦ φ for some v ∈ AkP}.

In section 5.3 we construct an example of a minimal distortion diffeomorphism

and morph between the unit circle S1 and the circle S1
R, with radius R > 1, in R2.

While the construction of a minimizer of the functional E does not cause significant

difficulties, finding a minimizer of the functional E is a much more intricate process.

Even after we restrict our attention to the family of morphs whose intermediate states

are concentric circles, finding a minimal distortion morph requires delicate analysis,

which is done in section 5.3.

To find a morph H(p, t) = ψ(t)p with ψ ∈ Q+ := {φ ∈ C2(0, 1) ∩ C[0, 1] : φ(0) =

1, φ(1) = R, and φ is increasing}, which has minimal distortion among the morphs

F ∈M3,ac(M,N) whose intermediate states are circles with increasing radii, we solve
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the optimization problem

minimize J(ψ) =
∫ 1

0
(ψ2 − 1)2 dt+

∫ 1

0
(ψ − 1)2 dt

for ψ ∈ Q+

subject to
∫ 1

0

(
ψ′

ψ

)2

dt ≤ A,

(5.5)

where A > 0. The inequality constraint in optimization problem (5.5) is derived from

the requirement that the vector fields on the set Ω ⊂ R2 generated by the morph H

must be bounded by a uniform constant.

More precisely, let Ω be the open ball in R2 of radius R + 2 and let ρ : R2 → R2

be a bump function such that ρ ≡ 1 on the open ball B(0, R + 1), ρ ≡ 0 on Ωc, and

0 ≤ ρ ≤ 1.

Given P > 0, define

A(P ) := ‖ρ idΩ ‖−2

W 5,2
0 (Ω;R2)

P 2.

Theorem 5.1.5. If the constant A = A(P ) > log2R, then there exists a unique

minimal distortion morph H(p, t) = ψ(t)p, where ψ ∈ Q+, between the unit circle S1

and the circle of radius R > 1 in R2, among all the morphs F ∈M3, ac(M,N) of the

form

F (p, t) = φ(t)p, φ ∈ Q+

that generate the time-dependent vector field

v(x, t) =
φ′(t)

φ(t)
ρ(x)x, (x, t) ∈ Ω× [0, 1]

such that ‖v‖H5 ≤ P .

Moreover, the radial function ψ ∈ Q+ of the distortion minimal morph H is the

unique solution of the optimization problem (5.5) and solves the initial value problem{
ψ′ = 1√

λ
ψ
√
µ+ (ψ2 − 1)2 + (ψ − 1)2,

ψ(0) = 1,
(5.6)

where the pair of positive constants λ and µ is the unique solution of the system of

equations∫ R

1

ds

s
√
µ+ (s2 − 1)2 + (s− 1)2

=
1√
λ

(5.7)
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and

1√
λ

∫ R

1

√
µ+ (s2 − 1)2 + (s− 1)2

s
ds = A. (5.8)

5.2 Existence of Time-Dependent Vector Fields

that Generate Minimal Distortion

Diffeomorphisms and Morphs

In this section we prove theorem 5.1.3.

We will show that the admissible set AkP is nonempty if P is sufficiently large.

Lemma 5.2.1. Let M and N be manifolds as in definition 5.1.1. Let F be a smooth

morph between the manifolds M and N and assume that Ω ⊂ Rn+1 is an open ball in

Rn+1 containing the image F (M × [0, 1]) of the morph F . There exists P0 > 0 such

that the admissible set AkP is nonempty whenever P ≥ P0 and k ≥ n+1
2

+ 2.

Proof. The morph F ∈M(M,N) defines the Rn+1 valued function

v(y, t) =
∂F

∂t
([F (·, t)]−1(y), t)

on the compact subset Q = {(F (x, t), t) : (x, t) ∈M × [0, 1]} of Rn+1 × R.

We will extend the function v to a smooth vector field w ∈ Hk such that ψw(M) =

N .

First, notice that the smooth map G : M × [0, 1]→ Rn+1×R defined by G(x, t) =

(F (x, t), t) is a proper map (M × [0, 1] is compact) and an injective immersion, hence

an embedding (see [1]). Therefore, Q = G(M × [0, 1]) is a submanifold (with bound-

ary) of Rn+1 × R (see [19]).

Next, notice that the mapG1 : Q→M×[0, 1] defined byG1(y, t) = ([F (·, t)]−1(y), t)

is the inverse of G. Because G is an immersion, hence a local diffeomorphism, the

map G1 is smooth. Therefore, the map v : Q → Rn+1 is smooth because it is the

composition of two smooth maps G1 : Q→M × [0, 1] and ∂F
∂t

: M × [0, 1]→ Rn+1.
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The smooth function v : Q → Rn+1 can be extended locally. That is, for every

(y, t) ∈ Q there exists an open set U ⊂ Rn+1 × R such that (y, t) ∈ U and a smooth

function v1 : U → Rn+1 such that v1|U∩Q = v|U∩Q. This local extension property

follows from a more general fact about smooth functions defined on submanifolds:

Let S be an s-dimensional smooth submanifold (perhaps with boundary) of Rm and

let f : S → R be a smooth function. Then for every x ∈ S there exists an open set

W ⊂ Rm containing x and a smooth function f1 : W → R such that f |W∩S = f1|W∩S.

It is easy to construct a local extension of the function f using submanifold charts

on S and the definition of a smooth function whose domain is a submanifold with

boundary. The details are left to the reader.

Therefore, the function v : Q→ Rn+1 satisfies the conditions of the smooth Tietze

extension theorem (see [1]) and can be extended from the closed set Q ⊂ Rn+1 × R

by a smooth map v̄ : Rn+1 × R→ Rn+1.

Finally, define w(x, t) = ρ(x)v̄(x, t), where ρ : Rn+1 → R is a smooth bump

function such that ρ ≡ 1 on Q and ρ ≡ 0 on ∂Ω, and set P0 := ‖w‖Hk .

From now on, we assume that the open set Ω in Rn+1 is chosen as in the last

lemma and the constant P > 0 is large enough so that the set AkP is not empty; the

number k of weak derivatives satisfies the inequality k ≥ (n + 1)/2 + r + 1, where

r ≥ 1.

For each v ∈ AkP , the time-one map ψv : M → N transforms the interior (respec-

tively, the boundary) of the manifold M to the interior (respectively, the boundary)

of the manifold N . The existence and the convergence properties of the evolution op-

erators generated by vector fields v ∈ Hk via the evolution equation (5.3) have been

studied in [11, 40]. For convenience of the reader, we state some of these properties

(which will be useful in our proofs) in Appendix 5.4.

Every time-dependent vector field v ∈ AkP ⊂ Hk generates a morph F v between

the manifolds M and N of class Mr,ac(M,N).
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Let us recall the distortion energy functionals E : Hk → R+ and E : Hk → R+

(see definition 5.1.2).

One of the main ingredients in the proof of theorem 5.1.3 is the weak continuity of

the functionals E and E . We will prove the weak continuity of more general auxiliary

functionals, where the tensor fields τM and τN in the following definition will later be

replaced by the first and the second fundamental forms on the manifolds M and N

respectively.

Definition 5.2.2. Let M and N be manifolds as in definition 5.1.1. For given con-

tinuous tensor fields τM and τN of type (0, s) on M and N respectively, the functional

J : AkP → R+ is defined by

J(v) =

∫
M

‖(ψv)∗τN − τM‖2 ωM .

Let v ∈ AkP be a time-dependent vector field that generates a morph F v ∈Mr,ac(M,N)

from the manifold M to N . Recall that the intermediate state at the time t ∈ [0, 1]

of the morph F v is denoted by M v,t. The Riemannian metric and the second funda-

mental form on M v,t, which are associated with the embedding of M v,t into Rn+1, are

denoted by gvt and IIvt respectively. The functionals I1 : AkP → R+ and I2 : AkP → R+

are given by

I1(v) =

∫ 1

0

∫
M

‖F v(·, t)∗gvt − gM‖2 ωM dt (5.9)

and

I2(v) =

∫ 1

0

∫
M

‖F v(·, t)∗IIvt − IIM‖2 ωM dt. (5.10)

Definition 5.2.3. Let X be an n-dimensional vector space equipped with the inner

product gX . Let T 0
s(X) = ⊗si=1X

∗. For every v ∈ X, we denote the norm of v

with respect to the inner product gX by |v|gX = gX(v, v)1/2 and the unit sphere by

SgX = {v ∈ X : |v|gX = 1}. Define the norm on T 0
s(X) by

‖b‖gX = max
vi∈SgX

|b(v1, . . . , vs)|.
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Another norm on T 0
s(X) is defined by (see [24])

‖b‖ = ⊗si=1g
∗
X(b).

Let M(X) ⊂ T 0
2(X) denote the metric space of all inner products on X with the

metric d(g, g′) = ‖g − g′‖gX .

Note that if {e1, . . . , en} is an orthonormal basis of (X, gX), then

‖b‖ =
n∑

i1,...,is=1

b(ei1 , . . . , eis)
2. (5.11)

Theorem 5.2.4. The function η : T 0
s(X)×M(X)→ R defined by η(β, g) = ‖β‖g is

continuous on its domain.

To prove this intuitively obvious lemma, we use some auxiliary facts about the

space M(X) of all metrics on X.

Lemma 5.2.5. Let g ∈ M(X) be a fixed metric. There exists a positive constant

M(g) > 0 and a positive number δ = δ(g) > 0 such that for every metric g′ ∈ M(X)

in the δ-neighborhood of g all the vectors v in the unit sphere Sg′ are bounded, in the

standard norm | · |gX , by M(g).

Remark 5.2.6. It is tempting to question whether the last lemma holds for all δ > 0.

To see that it is not so, consider this example.

Let g = gX and take g′ = εg, where ε > 0. Every vector v ∈ Sg′ has the standard

norm |v|gX = gX(v, v)1/2 = 1/
√
ε g′(v, v)1/2 = 1/

√
ε, which can be as large as desired

unless we impose the restriction |1− ε| = ‖g′ − g‖gX < 1.

Proof. Let δ be a positive number to be chosen later and let g′ be a metric on X in

the δ-neighborhood of g, i.e. ‖g − g′‖gX < δ.

The standard norm of every vector v ∈ Sg′ can be estimated as follows:

|v|2gX ≤ ‖gX‖g|v|2g

≤ ‖gX‖g‖g − g′‖gX |v|2gX + ‖gX‖g

< δ‖gX‖g|v|2gX + ‖gX‖g.
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By choosing δ < 1/(2‖gX‖g), we obtain the inequality |v|2gX ≤ 2‖gX‖g for all

v ∈ X.

Lemma 5.2.7. Let g ∈ M(X). Then for every ε > 0 there exists δ = δ(g) > 0 such

that for all vectors v ∈ Sg and metrics g′ ∈ M(X) satisfying ‖g′ − g‖gX < δ we have∣∣v − v/|v|g′∣∣g < ε.

In other words, if g′ ∈ M(X) is in a sufficiently small neighborhood of g, then

every vector v in the unit sphere Sg is close, in the | · |g-norm, to the vector

v/|v|g′ ∈ Sg′.

Proof. Fix ε > 0 and let v ∈ Sg. Without loss of generality, ε < 1. Let C(g) be a

positive constant such that ‖η‖g ≤ C(g)‖η‖gX for all η ∈ T 0
2(X).

Choose δ < ε/(2C(g)) < 1/(2C(g)) and let g′ ∈ M(X) be in the δ-neighborhood

of g, i.e. ‖g − g′‖gX < δ. For every v ∈ Sg we have

||v|g′ − |v|g| ≤
∣∣|v|g′ − |v|g∣∣ ∣∣|v|g′ + |v|g∣∣

= |g′(v, v)− g(v, v)|

≤ ‖g′ − g‖g < C(g)δ <
ε

2

and

|v|g′ > |v|g − 1/2 = 1/2.

Hence,∣∣v − v

|v|g′
∣∣ = g

(
v − v

|v|g′
, v − v

|v|g′
)1/2

=

∣∣|v|g′ − |v|g∣∣
|v|g′

< ε

as required.

Lemma 5.2.8. Let g ∈ M(X). Then for every ε > 0 there exists δ = δ(g) > 0 such

that for each g′ ∈ M(X) satisfying ‖g′ − g‖gX < δ and for every w ∈ Sg′ we have∣∣w − w/|w|g∣∣g < ε.
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In other words, if g′ ∈ M(X) is in a small enough neighborhood of g, then every

vector w in the unit sphere Sg′ is close, in the | · |g-norm, to the vector w/|w|g ∈ Sg.

Proof. By lemma 5.2.5, there exists M(g) > 0 and δ1 = δ1(g) > 0 such that for each

g′ ∈M(X) satisfying ‖g − g′‖gX < δ1 for all w ∈ Sg′ , we have |w|gX ≤M(g).

Fix ε > 0 and choose δ < min{ε/M(g)2, δ1}. Let g′ ∈ M(X) be such that ‖g −

g′‖gX < δ and take w ∈ Sg′ .

Then

∣∣w − 1/|w|g w
∣∣
g

=
∣∣|w|g′ − |w|g∣∣

≤
∣∣|w|2g′ − |w|2g∣∣ < δ|w|2gX < δM(g)2 < ε

as required.

Proof of theorem 5.2.4

Proof. Fix (β, g) ∈ T 0
s(X)×M(X) and ε > 0. Let δ < 1 be a positive number to be

specified later, and let (β′, g′) ∈ T 0
s(X)×M(X) be such that ‖β−β′‖gX +‖g−g′‖gX <

δ.

Let C(g) andK(g) be positive constants such that ‖α‖g ≤ C(g)‖α‖gX and ‖α‖gX ≤

K(g)‖α‖g for all α ∈ T 0
s(X).

Then

∣∣‖β‖g − ‖β′‖g′∣∣ ≤ ∣∣‖β‖g − ‖β′‖g∣∣+
∣∣‖β′‖g − ‖β′‖g′∣∣

< C(g)δ +
∣∣‖β′‖g − ‖β′‖g′∣∣.

We will estimate the expression
∣∣‖β′‖g − ‖β′‖g′∣∣.
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Let v1, . . . , vs ∈ Sg be vectors such that ‖β′‖g = |β′(v1, . . . , vs)|. Then

‖β′‖g = |β′(v1 − v1/|v1|g′ + v1/|v1|g′ , v2, . . . , vs)|

≤ |β′(v1 − v1/|v1|g′ , v2, . . . , vs)|

+ |β′(v1/|v1|g′ , v2 − v2/|v2|g′ , . . . , vs)|

+ . . .+ |β′(v1/|v1|g′ , v2/|v2|g′ , . . . , vs − vs/|vs|g′)|

+ ‖β′‖g′ . (5.12)

By lemma 5.2.5 and the equivalence of the norms | · |g and | · |gX on X, there exist

M(g) > 1 and δ1 = δ1(g) > 0 such that |w|g ≤M(g) for all w ∈ Sg′ whenever δ < δ1.

In particular, vi/|vi|g′ ≤M(g) for all i ∈ {1, . . . , s}.

Therefore, for all δ < δ1, inequality (5.12) implies

‖β′‖g ≤ ‖β′‖g′ + ‖β′‖gM(g)s−1

s∑
i=1

∣∣vi − vi/|vi|g′∣∣g (5.13)

≤ ‖β′‖g′ + C(g)(‖β‖gX + 1)M(g)s−1

s∑
i=1

∣∣vi − vi/|vi|g′∣∣g. (5.14)

Let δ2 = δ2(g) > 0 be the δ from lemma 5.2.7 with ε replaced by C(g)−1s−1(‖β‖gX+

1)−1M(g)1−sε. Then for every δ < min{δ1, δ2, 1}

‖β′‖g < ‖β′‖g′ + ε.

The inequality ‖β′‖g′ < ‖β′‖g+ε is proved using a similar together with lemmas 5.2.8

and 5.2.5.

For a C1 Riemannian manifold (S, gS), let ‖ · ‖ be the fiber norm on the bundle of

all continuous tensor fields on S of type (0, s) generated by the fiber inner product

⊗si=1g
∗
S.

Lemma 5.2.9. If b is a continuous tensor field of type (0, s) on a C1 Riemannian

n-manifold (S, gS), then the function

z 7→ ‖b(z)‖gS(z) (5.15)
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is continuous on S. Moreover, the norms ‖ · ‖ and ‖ · ‖gS(z)
are uniformly equivalent;

in fact,

1

ns/2
‖b(z)‖ ≤ ‖b(z)‖gS(z) ≤ ‖b(z)‖ (5.16)

for all b ∈ T 0
s(S) and z ∈ S.

Proof. The continuity of the function defined in display (5.15) follows immediately

from theorem 5.2.4; and, the inequalities in display (5.16) can be easily derived from

the definitions of the norms ‖ · ‖ and ‖ · ‖gS(z) and formula (5.11).

Recall that a sequence {vl}∞l=1 ⊂ Hk converges weakly to v ∈ Hk (in symbols,

vl ⇀ v) as l→∞ if 〈vl − v, w〉 → 0 as l→∞ for every w ∈ Hk. We call v the weak

limit of {vl}∞l=1. A set Q ⊂ Hk is sequentially weakly closed if it contains the weak

limit of every weakly convergent sequence {vl}∞l=1 ⊂ Q.

Lemma 5.2.10. (i) The admissible set AkP is sequentially weakly closed in Hk.

(ii) Let b be a continuous tensor field of type (0, s) on the manifold N ; and, for every

w ∈ AkP , let ψw denote the restriction to M of the time-one map of the evolution

equation dq/dt = w(q, t). If a sequence {vl}∞l=1 ⊂ AkP converges weakly to v ∈ AkP in

Hk, then

lim
l→∞
‖(ψvl)∗b− (ψv)∗b‖(p0) = 0

for every p0 ∈M .

Proof. (i) Let {vl}∞l=1 ⊂ AkP and suppose that vl converges weakly to some v ∈ Hk as

l→∞. We will show that v ∈ AkP .

By lemma 5.4.3, ηv
l
(t; t0, x) → ηv(t; t0, x) as l → ∞ (in the Euclidean norm) for

all t, t0 ∈ [0, 1] and x ∈ Ω. Thus, the time-one maps generated by vl and their

inverses converge pointwise: φv
l
(x) → φv(x) and (φv

l
)−1(x) → (φv)−1(x) as l → ∞

for all x ∈ Ω. Because the manifolds M and N are compact, φv(M) ⊂ N and
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(φv)−1(N) ⊂M . In view of these inclusions, the Cr diffeomorphism φv of Ω restricted

to M is a diffeomorphism, that is, ψv = φv|M ∈ Diffr(M,N).

By passing to the limit as l→∞ in the inequality ‖v‖2
Hk ≤ 〈v − v

l, v〉+ P‖v‖Hk ,

it follows that ‖v‖Hk ≤ P . Therefore v ∈ AkP , as required.

(ii) For simplicity, let us assume that s = 2. Let (U, ξ) be a chart on M at p0. It

suffices to show that

Bl := (φv
l

)∗b(X, Y )(p0)− (φv)∗b(X, Y )(p0)→ 0 (5.17)

as l→∞ for all smooth vector fields X, Y on U .

Using the notation

ql = φv
l

(p0),

q = φv(p0),

Z l
y = Dφv

l

X ◦ (φv
l

)−1(y),

Zy = DφvX ◦ (φv)−1(y),

Ql
y = Dφv

l

Y ◦ (φv
l

)−1(y), and

Qy = DφvY ◦ (φv)−1(y)

for all y ∈ N , the quantity Bl in expression (5.17) is recast in the form

Bl = b(ql)(Z l
ql , Q

l
ql)− b(q)(Zq, Qq)

= b(ql)(Z l
ql , Q

l
ql)− b(q

l)(Zql , Q
l
ql) (5.18)

+ b(ql)(Zql , Q
l
ql)− b(q

l)(Zql , Qql) (5.19)

+ b(ql)(Zql , Qql)− b(q)(Zq, Qq). (5.20)

Using definition 5.2.3 and noting that the Riemannian metric gN is inherited from

Rn+1, we estimate difference (5.18) as follows:

b(ql)(Z l
ql , Q

l
ql)− b(q

l)(Zql , Q
l
ql) ≤ ‖b(q

l)‖gN (ql)|Z
l
ql − Zql |Rn+1|Ql

ql |Rn+1 .
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By lemma 5.4.3, |Z l
ql
− Zql |Rn+1 → 0 as l → ∞, and |Ql

ql
|Rn+1 is uniformly bounded

in l ∈ N. By lemma 5.2.9, there exists a constant C > 0 such that ‖b(ql)‖gN (ql) ≤ C

for all l ∈ N. Therefore, difference (5.18) converges to zero as l → ∞. Similarly, it

can be shown that difference (5.19) converges to zero as l → ∞. Difference (5.20)

converges to zero as l →∞ because z 7→ b(z)(Zz, Qz) is a continuous function on U .

Hence, Bl → 0 as l→∞.

We say that a functional I : Hk → R is weakly continuous on Hk if I(vl) → I(v)

whenever the sequence {vl}∞l=1 ⊂ Hk converges weakly to v in Hk.

Recall that the inequality k ≥ (n+ 1)/2 + r + 1 guarantees the embedding of the

Sobolev space W k,2
0 (Ω,Rn+1) into Cr(Ω̄,Rn+1), where r ≥ 1.

Lemma 5.2.11. Assume that the constant P > 0 is large enough so that the set AkP

is not empty. Let the functionals J, I1, I2 be defined as in definition 5.2.2.

(i) If k ≥ (n + 1)/2 + 3, then the functionals J : AkP → R+ and I1 : AkP → R+ are

weakly continuous.

(ii) If k ≥ (n+ 1)/2 + 4, then the functional I2 : AkP → R+ is weakly continuous.

Proof. Let {vl}∞l=1 ⊂ AkP and suppose that vl converges weakly to some v ∈ Hk as

l → ∞ (in symbols vl ⇀ v ∈ Hk). By lemma 5.2.10, v ∈ AkP and J(v), I1(v), and

I2(v) are well-defined.

(i) We will show that liml→∞ J(vl) = J(v).

Let G := g∗M ⊗ g∗M . For tensor fields a, b ∈ T 0
2(M) and every p ∈M , we have the

equality

|‖a‖2(p)− ‖b‖2(p)| = |G(a+ b, a− b)(p)| ≤ ‖a+ b‖(p)‖a− b‖(p).
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By applying the Cauchy-Schwarz inequality, we obtain the inequality

|J(vl)− J(v)| ≤
∫
M

‖(ψvl)∗τN + (ψv)∗τN − 2τM‖‖(ψv
l

)∗τN − (ψv)∗τN‖ωM

≤
( ∫

M

‖(ψvl)∗τN + (ψv)∗τN − 2τM‖2ωM
)1/2

×
( ∫

M

‖(ψvl)∗τN − (ψv)∗τN‖2ωM
)1/2

. (5.21)

By lemma 5.2.10,

lim
l→∞
‖(ψvl)∗τN − (ψv)∗τN‖2(p) = 0 (5.22)

for all p ∈M .

Let K > 0 be the constant in display (5.49) of lemma 5.4.3. By lemma 5.2.9

and because the manifold N is compact, there exists a constant C > 0 such that

‖τN(z)‖gN (z) ≤ C for all z ∈ N . Using the equivalence of norms (5.16), we estimate

‖(ψvl)∗τN‖(p) ≤ ns/2‖(ψvl)∗τN(p)‖gM (p)

≤ ns/2‖τN(ψv
l

(p))‖
gN (ψvl (p))

|Dψvl(p)|s

≤ ns/2CKs. (5.23)

Using inequalities (5.21) and (5.23), limit (5.22), and the Dominated Convergence

Theorem, we conclude that J(vl)→ J(v) as l→∞.

Let us show that the functional I1 is weakly continuous. By an estimate analogous

to (5.21), it suffices to prove the following statements.

(I) If p ∈M and t ∈ [0, 1], then

lim
l→∞
‖F vl(·, t)∗gvlt − F v(·, t)∗gvt ‖2(p) = 0.

(II) There exists S1 > 0 such that

‖F vl(·, t)∗gvlt ‖2(p) ≤ S1

for all p ∈M , t ∈ [0, 1], and l ∈ N.
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Because all the Riemannian metrics are inherited from Rn+1, whose standard inner

product is denoted by 〈·, ·〉, we have

F vl(·, t)∗gvlt (p)(X, Y )− F v(·, t)∗gvt (p)(X, Y ) = 〈DxF
vl(p, t)X,DxF

vl(p, t)Y 〉

− 〈DxF
v(p, t)X,DxF

v(p, t)Y 〉,

for all p ∈ M , X, Y ∈ TpM , and t ∈ [0, 1], where Dx denotes the derivative with

respect to the spatial variable. The right-hand side of this equation converges to zero

as l→∞ by lemma 5.4.3. This completes the proof of statement (I).

By the same lemma and inequality (5.16), for every p ∈M we have

‖F vl(·, t)∗gvlt ‖(p) ≤ n‖F vl(·, t)∗gvlt (p)‖gM (p)

≤ n|DxF
vl(p, t)|2

≤ nK2.

This inequality implies statement (II).

(ii) We will show the weak continuity of the functional I2. By an estimate analo-

gous to (5.21), it suffices to show two facts:

(III) If p ∈M and t ∈ [0, 1], then

lim
l→∞
‖F vl(·, t)∗IIvlt − F v(·, t)∗IIvt ‖2(p) = 0.

(IV) There exists S2 > 0 such that

‖F vl(·, t)∗IIvlt ‖2(p) ≤ S2

for all p ∈M , t ∈ [0, 1] and l ∈ N.

We will first prove statement (IV).

Consider a morph Fw generated by a time-dependent vector field w ∈ AkP . By

definition of morphs of class Mr,ac(M,N) in section ??, the orientation of each in-

termediate manifold Mw,t, where t ∈ [0, 1], is induced by the C2 diffeomorphism
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F (·, t) : M → Mw,t. Let Nw,t(z) denote the unit normal to the manifold Mw,t at

the point z ∈ Mw,t. We assume that for every positively oriented basis {Xi}ni=1 of

TzM
w,t, the set of vectors {X1, . . . , Xn,Nw,t(z)} is positively oriented in Rn+1.

For p ∈M , let (U, ξ) be a chart at p, choose two smooth vector fields X and Y on

U , and let γ : [0, 1] → U be a C1 curve at p such that γ̇(0) = Xp. It is evident that

the inner product

〈Nw,t(Fw(γ(s), t)), DxF
w(γ(s), t)Yγ(s)〉 = 0 (5.24)

for every t, s ∈ [0, 1]. Let us recall that for every t ∈ [0, 1] the function x 7→ Fw,t(x, t)

is defined for all x ∈ Ω and denote its second derivative at x ∈ Ω by D2
xF (x, t). By

differentiating expression (5.24) with respect to s at s = 0, we obtain the equality

Fw(·, t)∗IIwt (p)(Xp, Yp) = 〈∇̄DxFw(p,t)XpNw,t(Fw(p, t)), DxF
w(p, t)Yp〉

= −〈Nw,t(Fw(p, t)), D2
xF

w(p, t)[Xp, Yp]〉, (5.25)

where ∇̄ denotes the standard Riemannian connection on Rn+1 (see [18]).

For every p ∈M , let Wp, Qp ∈ TpM be unit length vectors such that

‖F vl(·, t)∗IIvlt (p)‖gM (p) = |F vl(·, t)∗IIvlt (p)(Wp, Qp)|.

Using inequality (5.16) and equation (5.25), we have the estimates

‖F vl(·, t)∗IIvlt ‖(p) ≤ n‖F vl(·, t)∗IIvlt (p)‖gM (p)

= n|F vl(·, t)∗IIvlt (p)(Wp, Qp)|

= n|〈N vl,t(F vl(p, t)), D2
xF

vl(p, t)[Wp, Qp]〉|

≤ nK.

This completes the proof of statement (IV).

By lemma 5.4.3, if α ∈ {0, 1, 2}, then the derivative Dα
xF

vl(p, t) converges to

Dα
xF

v(p, t) as l → ∞ in the Euclidean norm for every p ∈ M and t ∈ [0, 1]. Taking

into account equation (5.25), we see that statement (III) follows from the convergence

N vl,t(F vl(p, t))→ N v,t(F v(p, t)) (5.26)
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as l→∞ in Rn+1 for every p ∈M and t ∈ [0, 1].

Theorem 5.2.12. Assume that the constant P > 0 is large enough so that the set

AkP is not empty.

(i) If k ≥ (n+ 1)/2+3, then there exists a minimizer of the bending distortion energy

functional E in the admissible set AkP .

(ii) If k ≥ (n+ 1)/2 + 4, then there exists a minimizer of the morphing distortion

energy functional E in the admissible set AkP .

Proof. Let {vl}∞l=1 ⊂ AkP be a minimizing sequence of E, that is

lim
l→∞

E(vl) = inf
w∈AkP

E(w) ≥ 0.

By lemma 5.2.10, the set AkP is sequentially weakly closed and bounded. There-

fore, there exists a weakly convergent subsequence {vlk}∞k=1 with the weak limit

v ∈ AkP . The functional E is weakly continuous by lemma 5.2.11. Therefore,

E(v) = infw∈AkP E(w) and v is a minimizer of E.

The existence of minimizers for the functional E is proved in the same fashion.

Remark 5.2.13. Theorem 5.2.12 implies the existence of minimizers of the functional

Λ defined in display (5.1) in the admissible set

BkP := {h ∈ Diff2(M,N) : h = ψv for some v ∈ AkP}.

The set BkP , among other maps, contains smooth diffeomorphisms f : M → N ⊂ Rn+1

that are homotopic to the inclusion map i : M → Rn+1 and generate time-dependent

vector fields in AkP .

To minimize the distortion energy of diffeomorphisms from other isotopy classes,

we consider the family of maps {ψv◦φ ∈ Diffr(M,N) : v ∈ AkP}, where φ is a fixed dif-

feomorphism of M . Similarly, given a smooth isotopy G : [0, 1]×M →M , we consider

the family of morphs {F v
G ∈ Mr,ac(M,N) : v ∈ AkP}, where F v

G(p, t) = F v(G(p, t), t)
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for all (p, t) ∈M × [0, 1], as candidates for minimal distortion morphs. The most in-

teresting example of this generalization is, perhaps, the case where G(p, t) = φ(p) for

some fixed diffeomorphism φ : M → N , so that the admissible isotopies are from the

class of morphs F v(φ(p), t) generated by time-dependent vector fields in AkP , where

p ∈M and t ∈ [0, 1].

The latter idea leads to the definition of the functionals

Eφ(v) = Eφ(v;B1, B2) = B1

∫
M

‖(ψv ◦ φ)∗gN − gM‖2ωM

+B2

∫
M

‖(ψv ◦ φ)∗IIN − IIM‖2ωM

and

EG(v) = EG(v;B1, B2) = B1

∫ 1

0

∫
M

‖F v
G(·, t)∗gvt − gM‖2 ωMdt

+B2

∫ 1

0

∫
M

‖F v
G(·, t)∗IIvt − IIM‖2 ωMdt,

where B1 and B2 are nonnegative real numbers (cf. definition 5.1.2), φ ∈ Diff(M)

and G : M × [0, 1]→M is an isotopy. .

Theorem 5.2.12 can be easily generalized to show that for P > 0 and k ∈ N

sufficiently large, both functionals Eφ and EG have minimizers in AkP for every diffeo-

morphism φ : M →M and isotopy G : M × [0, 1]→M .

Theorem 5.2.14. Assume that the constant P > 0 is large enough so that the set

AkP is not empty. Let φ ∈ Diff(M) and let G : M × [0, 1]→M be an isotopy.

(i) If k ≥ (n+ 1)/2+3, then there exists a minimizer of the bending distortion energy

functional Eφ in the admissible set AkP .

(ii) If k ≥ (n+ 1)/2 + 4, then there exists a minimizer of the morphing distortion

energy functional EG in the admissible set AkP .

(iii) If k ≥ (n+ 1)/2 + 3, then both functionals Φ and Λ defined in displays (1.1)

and (5.1) respectively have minimizers in the admissible set

BkP, φ := {h ∈ Diff2(M,N) : h = ψv ◦ φ for some v ∈ AkP}.
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The latter theorem is an easy generalization of theorem 5.2.12. More precisely,

let {bl}∞l=1 be a sequence of tensor fields in T 0
s(M) such that liml→∞ ‖bl‖(p) = 0

and ‖bl(p)‖ ≤ K for all p ∈ M and l ∈ N, where K is a positive constant and

let φ ∈ Diff(M). Then liml→∞ ‖φ∗bl‖(p) = 0 and there exists a constant K1 > 0

such that ‖φ∗bl(p)‖ ≤ K1 for all p ∈ M and l ∈ N. Using the above observation,

lemma 5.2.11 is easily generalized to the case where ψv and F v are replaced with

ψv ◦ φ and F v
G respectively, and the proof of theorem 5.2.12 remains the same.

In theorem 5.2.14, the statement (iii), which is equivalent to theorem 5.1.4, follows

from the statement (i).

5.3 A Minimal Distortion Morph

We have proved the existence of minimizers of the functionals E and E , which produce

minimal distortion diffeomorphisms and morphs between manifolds M and N . In this

section, we consider the special case where M = S1 is the unit circle in the plane and

N = S1
R is the concentric circle of radius R > 1 and construct a minimal distortion

diffeomorphism and morph between them.

Our example of a minimal distortion morph in subsection 5.3.2 demonstrates the

importance of the bound ‖v‖Hk ≤ P in the definition of the admissible set AkP . If

this bound is not imposed, there is a minimizing sequence of morphs {Fn}∞n=1 such

that the distortion energy

Ψ(Fn) :=

∫ 1

0

∫
M

‖Fn(·, t)∗gnt − gM‖2 ωM dt

+

∫ 1

0

∫
M

‖Fn(·, t)∗IInt − IIM‖2 ωM dt (5.27)

tends to zero, where gnt and IInt are the first and the second fundamental forms of

the intermediate manifold Fn(M, t) induced by its embedding into R2. An example

of such a sequence is Fn(p, t) = φn(t)p for all t ∈ [0, 1] and p ∈ M , where φn ∈

C∞(0, 1) ∩ C[0, 1] is a function whose values remain in the segment [1, R] and such
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that φn(t) = 1 for all t ∈ [0, 1−1/n] and φn(1) = R. From the representation of (5.27)

in local coordinates (see (5.30)) we derive

Ψ(Fn) = 2π

∫ 1

0

[
(φ2

n − 1)2 + (φn − 1)2
]
dt (5.28)

≤ 2π[(R2 − 1)2 + (R− 1)2]
1

n
;

hence, limn→∞Ψ(Fn) = 0. On the other hand, there is no morph H in the space

Mr,ac(M,N) with r > 1 such that Ψ(H) = 0: otherwise, H(·, 1) would be an isometry

between M and N . The sequence {Fn}∞n=1 converges pointwise to the discontinuous

morph

F (p, t) =

{
p, if 0 ≤ t < 1,
Rp, if t = 1

whose distortion energy Ψ(F ) vanishes.

Theorem 5.2.12 implies that every sequence of time-dependent vector fields {vn}∞n=1 ⊂

Hk such that each vn ∈ Hk generates the morph Fn must be unbounded in Hk.

In our example of a minimal distortion morph, we solve the optimization problem

for the minimal distortion morph between S1 and S1
R in the class of morphs, whose in-

termediate states are circles of increasing radii, that are generated by time-dependent

vector fields whose norms are uniformly bounded by a positive constant P . Numerical

solutions suggest that the second time-derivative ∂2F/∂t2 of the minimal morph F

increases as P increases. In effect, the choice of the constant P in the definition of the

admissible set AkP sets a restriction on the magnitude of the curvature of the curves

t 7→ F (p, t), where p ∈M .

We begin the construction of the minimal distortion morph with the example of a

minimal distortion diffeomorphism between S1 and S1
R. This example is based on the

theory of minimal deformation (as measured by the functional Φ) bending of regular

simple closed curves developed in [5].
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5.3.1 A Minimal Distortion Diffeomorphism between two Cir-
cles

We will construct a minimal distortion diffeomorphism between the circles M = S1

and N = S1
R.

For r ≥ 1, we consider the functional Λ : Diffr(M,N) → R+ defined in dis-

play (5.1). Also, using the radius R > 1 of S1
R, we define the radial map hR : R2 → R2

by hR(p) = Rp.

Lemma 5.3.1. The restriction of the radial map hR to S1 minimizes the functional

Λ : Diff2(M,N)→ R+ defined in display (5.1).

Proof. Fix p ∈ M and q ∈ N , and let γ : [0, L(M)) → M and ξ : [0, L(N)) → N be

the (positive orientation) arc length parametrizations of M and N respectively such

that γ(0) = p and ξ(0) = q. The distortion energy functional Λ can be recast in the

form

Λ(u) =

∫ L(M)

0

(u̇2 − 1)2 dt+

∫ L(M)

0

(
1

R
u̇2 − 1)2 dt

=: J1(u) + J2(u), (5.29)

where u = ξ−1◦h◦γ : [0, L(M))→ [0, L(N)) is a local coordinate representation of h ∈

Diff(M,N) with h(p) = q. By lemma 4.1 in [5], the functions u1(t) = L(N)/L(M)t

and u2(t) = −L(N)/L(M)t+ L(N) minimize the functional J1 in the admissible set

B =
{
u ∈ C2(0, L(M)) ∩ C([0, L(M)]) : u is a bijection onto [0, L(N)]

}
.

The proof of the statement that u1 and u2 minimize the functional J2 in B follows

along the same lines.

Therefore, the map hR|S1 minimizes the functional (5.1) over the set of all maps

h ∈ Diff2(M,N) such that, for our fixed p ∈M , h(p) = Rp.

If h ∈ Diff2(M,N) is such that h(p) = q 6= Rp, consider an isometry f : N → N

such that f(q) = Rp. Because f ∗gN = gN and f ∗IIN = IIN , we obtain Λ(h) =

Λ(f ◦ h) ≥ Λ(hR|S1), which proves the lemma.
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As before, let ψv denote the time-one map of the vector field v ∈ AkP restricted

to M . Using lemma 5.3.1, it is easy to construct a time-dependent vector field that

minimizes the functional E(v) = Λ(ψv) in the admissible set AkP . In fact, every vector

field v0 ∈ AkP that generates the time-one map φv such that its restriction to M is

ψv = hR|M , minimizes the functional E. An example of such a vector field is

v(x, t) = ρ(x)w(x, t)

for all x in the open ball Ω := B(0, R + 2) ⊂ R2 and t ∈ [0, 1], where

w(x, t) =
R− 1

1 + (R− 1)t
x

and ρ : R2 → R is a bump function such that 0 ≤ ρ ≤ 1, ρ ≡ 1 in the open

ball B(0, R + 1) ⊂ R2, and ρ ≡ 0 on Ωc. The vector field v generates the morph

F v(p, t) = (1 + (R− 1)t)p, whose time-one map restricted to M is ψv(p) = Rp.

5.3.2 A Minimal Distortion Morph
between two Circles

Let us assume, as before, that M = S1, N = S1
R, and R > 1.

In the previous subsection, we have constructed a minimizer of the functional E; the

construction was quite straight-forward. The time-integral involved in the definition

of the functional E makes the construction of its minimizer a much more intricate

process. We will restrict our attention to morphs that operate through images that

are concentric circles, while leaving open the question whether a minimizer must be

purely radial, as the problem of constructing a minimal morph within this family

is difficult enough. Note that although our functional is formally defined in terms

of time-dependent vector fields, it is the resulting morphs we will be working with

directly.

We will construct a minimal distortion morph between the circles M = S1 and

N = S1
R in case R > 1. As before, let M3,ac(M,N) be the class of morphs between
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the manifolds M and N that are absolutely continuous in time and class C3 in the

spatial variable. Recall that for a morph F ∈ M3,ac(M,N) we define f t = F (·, t) ∈

Diff3(M,M t). We assume that the morph F is generated by a time-dependent vector

field v ∈ AkP .

Consider the functional Ψ :Mr,ac(M,N)→ R+, where r ≥ 1, defined by

Ψ(F ) =

∫ 1

0

∫
M

‖(f t)∗gt − g0‖2 ωM dt+

∫ 1

0

∫
M

‖(f t)∗IIt − II0‖2 ωM dt,

where gt and IIt are the first and the second fundamental forms on the intermediate

state M t induced by its isometric embedding into R2. We notice that E(v; 1, 1) =

Ψ(F v) for all v ∈ AkP (see definition 5.1.2).

Fix a point p ∈M . Let γ be an arc-length parametrization of M that induces the

positive orientation on M with γ(0) = p. Let ξt be the arc length reparametrization

of M t obtained from the parametrization f t◦γ such that ξt(0) = f t◦γ(p) and both ξt

and f t◦γ induce the same orientation of M t. Such a parametrization can be obtained

by solving the equation s(t, x) = y for x, where s(t, x) =
∫ x

0
|f t ◦ γ(τ)| dτ is the arc

length function of the curve M t. Using the implicit solution x(t, y) of s(t, x) = y, we

define ξt(y) = f t ◦γ ◦x(t, y). Because the morph F is generated by a time-dependent

vector field v ∈ AkP , lemma 5.4.2 implies that the function t 7→ Df t(p), where p ∈M ,

is absolutely continuous. It follows that the function t 7→ ξt(s) is continuous for every

s ∈ [0, L(M t)).

The local representation of f t is given by ut(s) = (ξt)−1◦f t◦γ(s), where s ∈ [0, 2π],

and the energy Ψ(F ) of the morph F is

Ψ(F ) =

∫ 1

0

∫ 2π

0

((dut
ds

)2

− 1
)2

ds dt

+

∫ 1

0

∫ 2π

0

(
κt(u

t)
(dut
ds

)2

− 1
)2

ds dt, (5.30)

where κt : [0, L(M t)]→ R is the curvature function of the intermediate state M t.

Let us restrict our attention to the morphs whose intermediate states are circles

of increasing radii such that each intermediate state M t of such a morph F is a circle
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of radius ψ(t) with ψ ∈ C2(0, 1)∩C[0, 1] a (strictly) increasing function. In symbols,

ψ ∈ Q+ := {φ ∈ C2(0, 1) ∩ C[0, 1] : φ(0) = 1, φ(1) = R, and φ is increasing}.

The curvature function of M t is given by κt ≡ 1/ψ(t). By lemma 5.3.1, the radial

map between the circles M and M t minimizes the functional

f t 7→
∫
M

‖(f t)∗gt − g0‖2 ωM +

∫
M

‖(f t)∗IIt − II0‖2 ωM .

Therefore,

Ψ(F ) ≥ Ψ(H) = 2π

∫ 1

0

(ψ2 − 1)2 dt+ 2π

∫ 1

0

(ψ − 1)2 dt,

where the morph H ∈M∞,2(M,N) is given by H(p, t) = ψ(t)p.

To determine the morph H(p, t) = ψ(t)p of smallest distortion energy Ψ(H), we

will minimize the functional J : L4(0, 1)→ R+ defined by

J(ψ) :=

∫ 1

0

(ψ2 − 1)2 dt+

∫ 1

0

(ψ − 1)2 dt (5.31)

over all admissible radial functions ψ. To define the admissible set for the functional

J , let us put this example into the context of time-dependent vector fields.

Let Ω be the open ball of radius R + 2 in R2. Given a morph H(p, t) = ψ(t)p

(where ψ ∈ Q+, t ∈ [0, 1], and p ∈ M), let us construct a time-dependent vector

field v ∈ H5 = L2(0, 1;W 5,2
0 (Ω; R2)) that generates H, where the number of weak

derivatives k = 5 is chosen in view of condition (ii) of theorem 5.2.12.

Consider the class of morphs of the plane R2 that have the form F (x, t) = ψ(t)x,

where ψ ∈ Q+. Define a time-dependent vector field v̄ : R2 × [0, 1]→ R2 by

v̄(F (x, t), t) =
∂F

∂t
(t, x)

or, equivalently,

v̄(x, t) =
ψ′(t)

ψ(t)
x.
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Clearly, the morph F satisfies the differential equation dq/dt = v̄(q, t). To obtain

the required vector field v, multiply v̄ by a bump function ρ : R2 → R2 such that

ρ ≡ 1 on the ball B(0, R + 1), ρ ≡ 0 on Ωc, and 0 ≤ ρ ≤ 1. The vector field

v(x, t) =
ψ′(t)

ψ(t)
ρ(x)x

belongs to the Hilbert space Hk and generates the morph

H(p, t) := ψ(t)p = F |M×[0,1](p, t)

for all (p, t) ∈M × [0, 1].

In theorem 5.2.12, we require the admissible set AkP , for some fixed P > 0, to

contain all vector fields v ∈ Hk such that the norm of v is bounded by P and v

generates a morph between the manifolds M and N .

Therefore, in addition to the assumption that ψ ∈ Q+, we must assume that the

time-dependent vector fields of the form v(x, t) = ψ′(t)
ψ(t)

ρ(x)x are bounded in Hk by a

fixed constant P > 0. In symbols, the required bound is

‖v‖2
Hk = ‖ρ · idΩ‖2

W 5,2
0 (Ω;R2)

∫ 1

0

(ψ′
ψ

)2

dt ≤ P 2.

After introducing the constant

A :=
P 2

‖ρ · idΩ‖2
W 5,2

0 (Ω;R2)

, (5.32)

we obtain the constraint

G(ψ) :=

∫ 1

0

(ψ′
ψ

)2

dt− A ≤ 0. (5.33)

Note that the functional J can be written in the form

J(ψ) =

∫ 1

0

u(ψ) dt,

where the smooth function u(s) = (s2− 1)2 + (s− 1)2 is strictly increasing on (1,∞).
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To find a morphH(p, t) = ψ(t)p with ψ ∈ Q+, which has minimal distortion among

the morphs F ∈ M3,ac(M,N) whose intermediate states are circles with increasing

radii, we must solve the optimization problem

minimize J(ψ)
for ψ ∈ Q+ = {φ ∈ C2(0, 1) ∩ C[0, 1] :
φ(0) = 1, φ(1) = R, and φ is increasing}
subject to G(φ) ≤ 0.

(5.34)

The solution of problem (5.34) is obtained using the following outline: We will

consider the related optimization problem

minimize J(ψ),
ψ ∈ Q1,2 := {φ ∈ W 1,2(0, 1) : φ(0) = 1, φ(1) = R}
subject to G(φ) ≤ 0,

(5.35)

where (because every function ψ ∈ Q1,2 is absolutely continuous on [0, 1]) the bound-

ary conditions in the definition of the set Q1,2 are to be understood in the classical

sense. We will determine the unique minimizer ψ of the optimization problem (5.35)

and show that ψ is an increasing C2 function. Because Q+ ⊂ Q1,2, the same function

ψ is the unique solution of optimization problem (5.34).

Lemma 5.3.2. There exists a unique solution ψ ∈ Q1,2 of the optimization prob-

lem (5.35). Moreover, 1 ≤ ψ(t) ≤ R for all t ∈ [0, 1].

Lemma 5.3.2 is proved using the direct method of the calculus of variations. First,

we prove the existence of a minimizer of the functional J subject to the constraint

G(ψ) ≤ 0 in the admissible set W 1,4/3(0, 1) with the appropriate boundary conditions,

and then we show that the minimizer is, in fact, in class W 1,2(0, 1). The inequalities

1 ≤ ψ and ψ ≤ R are proved by contradiction using the cut-off functions h1(t) =

max{1, ψ(t)} and h2(t) = min{R,ψ(t)}, which would yield smaller values of the

functional J than the minimizer.

Proof. The proof consists of two main steps: (1) Using the direct method of the

calculus of variations, we will prove the existence of a minimizer for the auxiliary
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optimization problem

minimize J(ψ),

ψ ∈ Q1,4/3 := {φ ∈ W 1, 4
3 (0, 1) : ψ(0) = 1, ψ(1) = R}

subject to G(ψ) ≤ 0.

(5.36)

(2) We will show that the minimizer for problem (5.36) is in W 1,2(0, 1).

If follows that this minimizer is a minimizer of the optimization problem (5.35).

Let {ψn}∞n=1 ⊂ Q1,4/3 be a minimizing sequence for the optimization problem (5.36).

In particular, G(ψn) ≤ 0 for every positive integer n. In symbols,

J(ψn)→ inf
ψ∈Q1,4/3,G(ψ)≤0

J(ψ).

We claim that the minimizing sequence is bounded in W 1,4/3(0, 1). To prove this

fact, we use the triangle inequality for the L2(0, 1) norm to make the estimate

(

∫ 1

0

ψ4
n dt)

1/2 = (

∫ 1

0

(ψ2
n − 1 + 1)2 dt)1/2

≤ J(ψn)1/2 + 1

≤
√
M + 1,

whereM > 0 is a uniform bound for the convergent sequence {J(ψn)}∞n=1. By Hölder’s

inequality with the conjugate constants 3 and 3/2,∫ 1

0

|ψ′n|4/3 dt =

∫ 1

0

|ψn|4/3
( |ψ′n|
|ψn|

)4/3

dt

≤
(∫ 1

0

|ψn|4 dt
)1/3(∫ 1

0

( |ψ′n|
|ψn|

)2

dt
)2/3

≤
(
(
√
M + 1)A

)2/3
,

as required.

Because the Banach space W 1,4/3(0, 1) is reflexive, ψn ⇀ ψ weakly in W 1,4/3(0, 1)

for some ψ ∈ W 1,4/3(0, 1), up to a subsequence. We have ψ ∈ Q1,4/3 because the

subspace W
1,4/3
0 (0, 1) is weakly closed in W 1,4/3(0, 1).

The integrands (ψ2 − 1)2 + (ψ − 1)2 and (ψ′)2/ψ2 of J and G respectively are

both convex functions of ψ′. Therefore, the functionals J and G are weakly lower
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semicontinuous in W 1,4/3(0, 1) (see theorem 1, Sec. 8.2 in [15]). But then G(ψ) ≤

lim infn→∞G(ψn) ≤ 0 and ψ ∈ Q1,4/3 solves optimization problem (5.36).

To prove that ψ ≥ 1, let us assume, on the contrary, that there exists (in the usual

topology of [0, 1]) an open set W of positive measure such that ψ(t) < 1 for all t ∈ W .

Define the cut-off function h1 ∈ Q1,4/3 by h1(t) = max{1, ψ(t)}. It is easy to check

that G(h1) ≤ 0 and that J(h1) < J(ψ), which contradicts the minimizing property

of ψ. The inequality ψ(t) ≤ R for all t ∈ [0, 1] can be verified in a similar fashion,

using the cut-off function h2(t) = min{R,ψ(t)}.

Using the inequality ψ ≤ R, we have the estimate∫ 1

0

(ψ′)2 dt =

∫ 1

0

ψ2
(ψ′
ψ

)2

dt ≤ R2A.

Therefore, ψ belongs to the space W 1,2(0, 1).

Finally, the uniqueness of ψ follows from the fact that the equality J(ψ1) = J(ψ2),

where ψ1, ψ2 ∈ Q1,2 are such that 1 ≤ ψ1,2 ≤ R, implies u ◦ ψ1(t) = u ◦ ψ2(t) for

all t ∈ [0, 1], where the function u(s) = (s2 − 1)2 + (s − 1)2 is strictly increasing on

(1,+∞).

Lemma 5.3.3. If the constant A in definition (5.33) satisfies the inequality A >

(logR)2 (see also equation (5.32)) and ψ ∈ Q1,2 is the solution of the optimization

problem (5.35), then there exists a constant λ > 0 such that

(i) ψ is a critical point of the functional J + λG over the space of variations

W 1,2
0 (0, 1), and

(ii) G(ψ) = 0.

Moreover, the solution ψ of the optimization problem (5.35) is in class C2(0, 1).

Lemma 5.3.3 follows from the Generalized Kuhn-Tucker theorem (see theorem 2.14.14)

and a regularity result for weak solutions of Euler-Lagrange equations (see theo-

rem 2.14.10).
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Proof. Statements (i) and (ii) follow from the generalized Kuhn-Tucker theorem (see

theorem 2.14.14).

We will verify that the minimizer ψ is a regular point of the inequality G(ψ) ≤

0. We leave it to the reader to verify that the functionals J and G are Gateaux

differentiable at ψ ≥ 1.

It suffices to show that there exists h ∈ W 1,2
0 (0, 1) such that

δG(ψ, h) =

∫ 1

0

ψ′

ψ3
(h′ψ − ψ′h) dt < 0,

where δG(ψ, h) is the Gateaux derivative of G in the direction h.

Assume, on the contrary, that∫ 1

0

ψ′

ψ3
(h′ψ − ψ′h) dt = 0 (5.37)

for all h ∈ W 1,2
0 (0, 1). Then ψ satisfies the Euler-Lagrange equation for the functional

G whose associated Lagrangian (ψ′/ψ)2 has a positive second derivative with respect

to ψ′. By a regularity result for weak solutions of Euler-Lagrange equations (see

theorem 2.14.10), ψ is of class C2(0, 1). Therefore, we can integrate by parts in

equation (5.37) to obtain the differential equation ψ′′ = (ψ′)2/ψ.

The function t 7→ Rt is the unique solution of the latter differential equation

satisfying the boundary conditions ψ(0) = 1 and ψ(1) = R. Therefore, the solution

ψ of the optimization problem (5.35) must be ψ(t) = Rt. But, there is a function

hβ ∈ Q1,2 such that G(hβ) ≤ 0 and J(hβ) < J(ψ), in contradiction to the minimizing

property of ψ. In fact, a family of such functions is given by

hβ(t) :=


1, if t ∈ [0, β];
R2β−1
β

(t− β) + 1, if t ∈ (β, 2β];

Rt, if t ∈ (2β, 1]

for β > 0 sufficiently small.

The C2 regularity of the solution ψ of the optimization problem (5.35) follows

from (i) and the special form of the Lagrangian

L(q, p) = (q2 − 1)2 + (q − 1)2 + λ
(p
q

)2
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associated with the functional J + λG for λ > 0: it has positive second derivative

with respect to p on a neighborhood U of the set {(ψ(t), ψ′(t)) : t ∈ [0, 1]} (see

theorem 2.14.10).

Theorem 5.3.4. If the constant A in definition (5.33) satisfies the inequality A >

(logR)2, then there exists a unique function ψ ∈ C2(0, 1) ∩ Q1,2 satisfying condi-

tions (i) and (ii) of lemma 5.3.3 and the following properties.

(iii) The function ψ is strictly increasing and solves the initial value problem{
ψ′ = 1√

λ
ψ
√
µ+ (ψ2 − 1)2 + (ψ − 1)2,

ψ(0) = 1,
(5.38)

where the pair of positive constants λ and µ is the unique solution of the system of

equations∫ R

1

ds

s
√
µ+ (s2 − 1)2 + (s− 1)2

=
1√
λ

(5.39)

and

1√
λ

∫ R

1

√
µ+ (s2 − 1)2 + (s− 1)2

s
ds = A. (5.40)

(iv) The function ψ is the unique solution of the optimization problem (5.34).

Proof. If ψ ∈ Z := C2(0, 1) ∩ Q1,2 is a critical point of the functional Jλ := J +

λG : W 1,2(0, 1) → R+, then ψ satisfies the Euler-Lagrange equation for Jλ, which is

equivalent to the Hamiltonian system{
ψ′ = ∂H

∂p
(ψ, p),

p′ = −∂H
∂ψ

(ψ, p)

with the Hamiltonian H(ψ, p) = pψ′ − L(ψ, ψ′), where

L(ψ, ψ′) = (ψ2 − 1)2 + (ψ − 1)2 + λ
(ψ′
ψ

)2

is the integrand of Jλ and p := ∂L
∂ψ′

(ψ, ψ′) (see, for example, [10]). Moreover, the

Hamiltonian H(ψ, p) is constant along the solutions of the Euler-Lagrange equation

for Jλ. Let us denote this constant by µ.
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It is easy to see that

p = 2λ
ψ′

ψ2

and the Hamiltonian is given by

H(ψ, p) =
1

4λ
p2ψ2 − (ψ2 − 1)2 − (ψ − 1)2.

Note that the equation ψ′ = ∂H
∂p

(ψ, p) yields ψ′ = 1
2λ
pψ2. By solving the Hamilto-

nian energy equation

1

4λ
p2ψ2 − (ψ2 − 1)2 − (ψ − 1)2 = µ (5.41)

for p and substituting, we obtain a first-order differential equation for ψ:

ψ′ =
1√
λ
ψ
√
µ+ (ψ2 − 1)2 + (ψ − 1)2 . (5.42)

The case with the negative square root is eliminated because the conditions ψ(0) = 1

and ψ(1) = R > 1 can be used to show that the derivative of ψ is non negative on

(0, 1).

In view of equation (5.41), it is easy to see that µ + (ψ2 − 1)2 + (ψ − 1)2 ≥ 0 for

all ψ ∈ Z. Because ψ(0) = 1, we have µ ≥ 0. Also, it follows immediately from

equation (5.42) that ψ is an increasing function.

Let us use the notation u(s) = (s2 − 1)2 + (s − 1)2 and recall that u is a strictly

increasing function on (1,∞). After integrating both sides of equation (5.42) over

the interval 0 ≤ t ≤ 1 and making the substitution s = ψ(t), we obtain the relation∫ R

1

ds

s
√
µ+ u(s)

=
1√
λ
. (5.43)

Another relation of λ and µ is obtained from condition (ii) in lemma 5.3.3 (see

equation (5.33) for the definition of G). The integrand in the definition of G contains

the quantity (ψ′)2, which we view as ψ′ψ′. We substitute the right-hand side of

equation (5.42) for one factor ψ′ of this square and leave the other factor ψ′ in the

127



resulting integrand. After making the change of variables s = ψ(t), we obtain the

equivalent relation

1√
λ

∫ R

1

√
µ+ u(s)

s
ds = A. (5.44)

We claim that there exists a unique solution (µ, λ) of the equations (5.43) and (5.44).

To prove this, substitute for 1/
√
λ from equation (5.43) into equation (5.44) to obtain

the equation

A = f(µ) :=

∫ R

1

√
µ+ u(s)

s
ds

∫ R

1

1

s
√
µ+ u(s)

ds. (5.45)

Make the change of variables t = u(s) in both integrals in display (5.45) and then

write f(µ) as a double integral to obtain the formula

f(µ) =

∫ u(R)

0

∫ u(R)

0

√
µ+ t√
µ+ s

1

H(t)H(s)
ds dt, (5.46)

where H(t) := u−1(t)u′(u−1(t)) ≥ 0 for all t ∈ [0, u(R)].

By inspection of equation (5.45), it is easy to see that limµ→0+ f(µ) = +∞ and

limµ→∞ f(µ) = log2(R). We will show that f is a decreasing function, which guaran-

tees the existence of a unique solution of the equation f(µ) = A for all A > log2(R).

Using formula (5.46), we compute

f ′(µ) =
1

2

∫ u(R)

0

∫ u(R)

0

s− t
(µ+ s)3/2(µ+ t)1/2

1

H(t)H(s)
ds dt.

Let D+ = {(s, t) ∈ [0, u(R)]2 : s > t} and D− = {(s, t) ∈ [0, u(R)]2 : s < t}. After

making a change of variables γ(s, t) = (t, s), we see that∫ ∫
D+

s− t
(µ+ s)3/2(µ+ t)1/2

1

H(t)H(s)
ds dt =∫ ∫

D−

t− s
(µ+ t)3/2(µ+ s)1/2

1

H(t)H(s)
ds dt.

Therefore,

2f ′(µ) =

∫ ∫
D+∪D−

s− t
(µ+ s)3/2(µ+ t)1/2

1

H(t)H(s)
ds dt

= −
∫ ∫

D−

(s− t)2

(µ+ s)3/2(µ+ t)3/2

1

H(t)H(s)
ds dt < 0.
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Figure 5.2: Graph of the radius function ψ with R = 2, µ = 0.001, λ = 0.306067, and
A = 1.56296.

This completes the proof that f is a decreasing function.

There exists a unique solution µ of the equation f(µ) = A provided that A >

log2(R). The constant λ is then easily found from equation (5.43).

Having found the unique solution (µ, λ) of the system (5.43) and (5.44), we solve

the initial value problem (5.38). In fact, this initial value problem is equivalent to the

integral equation

∫ ψ(t)

1

ds

s
√
µ+ u(s)

=
1√
λ
t. (5.47)

It follows that the unique solution ψ of the initial value problem (5.38) exists for all

t ∈ [0, 1] and, because of condition (5.43), satisfies ψ(1) = R.

Figs. 5.2 and 5.3 depict graphs of the minimizer ψ of the optimization prob-

lem (5.34) with R = 2 and A = f(µ) in case µ = 0.001 for Fig. 5.2 and µ = 500

for Fig. 5.3. Because f is a decreasing function of µ, Fig. 5.2 corresponds to a larger

constant A. These plots illustrate that the second derivative of the radius function ψ

corresponding to the minimal morph increases as the constant A in definition (5.33)

increases.
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Figure 5.3: Graph of the radius function ψ with R = 2, µ = 500, λ = 1045.58, and
A = 0.480456.

5.4 Existence and Convergence

Results for Evolution Operators

In this section we state results on existence and convergence of certain evolution

operators.

We denote the Euclidean norm of an element A ∈ Rm, where m ∈ N, by |A| and

the Hilbert space L2(0, 1;V k) by Hk, where the Sobolev space V k = W k,2
0 (Ω; Rn+1)

is embedded into Cr(Ω̄; Rn+1) and r ≥ 2. Recall that Sobolev’s theorem guarantees

the latter embedding if k ≥ (n+ 1)/2 + r+ 1. The following lemma is proved in [11].

Lemma 5.4.1 (Dupuis, Grenander, Miller). For every time-dependent vector field

v ∈ Hk and t0 ∈ [0, 1], there exists a function φ : [0, 1] × Ω → Rn+1 such that

t 7→ φ(t, x) is the unique absolutely continuous solution of the initial value problem{
dq
dt

= v(q, t),
q(t0) = x

(5.48)

for all t ∈ [0, 1]. Moreover, the function x 7→ φ(t, x) is a homeomorphism of Ω.

For every v ∈ Hk and x ∈ Ω, let F v(x, t) be the solution of the evolution equation

dq/dt = v(q, t) with the initial condition F v(x, 0) = x. For a function f ∈ Cr(Ω),
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denote

‖f‖r,∞ =
∑

α,|α|≤r

sup
x∈Ω
|Dαf(x)|,

where α = (α1, . . . , αn+1) is a multi-index with nonnegative integer components,

|α| = α1 + . . .+ αn+1, and Dαf = ∂|α|f

∂x
α1
1 ...x

αn+1
n+1

.

More general versions of the following two lemmas are proved in [40, Appendix C].

Lemma 5.4.2 (Trouve, Younes). If v ∈ Hk and F v : Ω × [0, 1] → Rn is defined as

above, then the function x 7→ F v(x, t) is in class Cr(Ω) and, for all q ≤ r,

∂

∂t
Dq
xF

v(x, t) = Dq
x

(
v(F v(x, t), t)

)
,

where Dq
x denotes the derivative with respect to x of order q. Moreover, there exist

positive constants C and C ′ such that

sup
t∈[0,1]

‖F v(·, t)‖r,∞ ≤ CeC
′‖v‖Hk

for all v ∈ Hk.

Recall that we say vl ⇀ v weakly in Hk as l→∞ if 〈vl − v, w〉 → 0 as l→∞ for

all w ∈ Hk.

Lemma 5.4.3 (Trouve, Younes). If the sequence {vl}∞l=1 ⊂ Hk converges weakly to

v ∈ Hk as l→∞, then

sup
t∈[0,1]

‖F vl(·, t)− F v(·, t)‖r−1,∞ → 0

as l→∞. Moreover, there exists a constant K > 0 such that

sup
t∈[0,1]

‖F vl(·, t)‖r,∞ ≤ K (5.49)

for all l ∈ N.
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