NEUTRON DIFFRACTION STUDIES ON ABO₃ (A=La, Sr, B=Fe, Co, Ni, Cu, Mn, Ti) PEROVSKITE USED IN SOLID OXIDE FUEL CELL (SOFC) AND DOUBLE PEROVSKITE Ba₂YRu_{0.85}Cu_{0.15}O₆ SUPERCONDUCTOR

Qingsheng Cai

Dr. William B. Yelon, Dissertation Supervisor

ABSTRACT

ABO₃(A=La, Sr, B=Fe, Co, Ni, Cu, Mn, Ti) perovskites are of great interest due to their mixed electronic and oxygen ion conductivity. They are candidates for the electrodes of SOFCs. This study investigates the effects of substitutions at A sites and/or B sites on the crystal and magnetic structure, oxygen vacancies, and the thermal expansion coefficients at different temperatures and gaseous environment. The oxygen vacancy concentration can relax the perovskite distortion and has a close relationship with the magnetic properties. La_{0.6}Sr_{0.4}FeO₃₋₈, La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O₃₋₈, and La_{0.8}Sr_{0.2}Fe_{0.8}Co_{0.2}O₃₋₈ can be good candidates for the cathodes of SOFCs at intermediate temperature.

The double perovskite $Ba_2YRu_{0.85}Cu_{0.15}O_6$ superconductor and a mixture of 5wt% $YBa_2Cu_3O_{7-\delta}$ and undoped Ba_2YRuO_6 were investigated with the aid of neutron diffraction. The 1:1 B site ordering is observed and long range antiferromagnetic ordering of the Ru sublattice with a type I magnetic structure appears when the temperature is below 38K. The decomposition of Cu-doped Ba_2YRuO_6 into undoped Ba_2YRuO_6 and $YBa_2Cu_3O_{7-\delta}$ is not seen. $YBa_2Cu_3O_{7-\delta}$ is not stable at the temperature used to prepare the Cu-doped Ba_2YRuO_6 superconductor. These results confirm the presence of superconductivity without CuO_2 planes.