Perinormality in Polynomial and Module-Finite Ring Extensions

Andrew McCrady

Dr. Dana Weston, Dissertation Supervisor

ABSTRACT

In this dissertation we investigate some open questions posed by Epstein and Shapiro in [9] regarding perinormal domains. More specifically, we focus on the ascent/descent property of perinormality between "canonical" integral domain extensions, in particular, $R \subset R[X]$ and $R \subset \hat{R}$. We give special conditions under which perinormality ascends from R to the polynomial ring $R[X]$ in the case that R is a universally catenary domain. Whereas we have a characterizing result for when perinormality descends from $R[X]$ to R, the sufficient condition for the descent is cumbersome to check. For this reason, we turn to special cases for which perinormality descends from $R[X]$ to R. In the case of an analytically irreducible local domain (R, \mathfrak{m}) and its \mathfrak{m}-adic completion $(\hat{R}, \mathfrak{m}\hat{R})$, we refer to a technique for generating examples in which perinormality fails to ascend. When \hat{R} is perinormal, we explore hypotheses under which R must be normal, perinormal, or weakly normal.