**Background and Purpose**

**Background**
- Early childhood power mobility (ECPM) helps children with neuromuscular and orthopedic conditions improve mobility and attain developmental milestones (Henderson, Skelton, & Rosenbaum, 2008).
- The standard GoBabyGo model calls for scheduled car “build” events that occur several times yearly, introducing a gap between child identification and ECPM provision.
- Significant gaps may mean missing developmentally sensitive periods, mitigating the benefits of the ECPM device.

**Purpose**
- Establish a time sensitive model of GoBabyGo to minimize the impact of developmental differences between time of ECPM recommendation and provision.

**Methods**

**Sample**
- 18 Children, 18 months-6 years old, who were identified by therapists as candidates for ECPM due to mobility impairments.

**Design**
- Prospective cohort study
- After therapist screenings, the students will perform a supervised evaluation and make baseline car modifications. During the next therapy visit, the ECPM device will be finalized to meet the child’s individual needs.
- The process described above will span over about one week.
- 6-month follow-up

**Outcomes**
- Proposed feasibility of this on-demand ECPM delivery model
- Secondary data will be reported regarding intervention efficacy

**Statistical Method**
- Changes in ratio data will be compared via between-groups ANOVA.
- Ordinal data (i.e., all remaining assessments) will be compared via the non-parametric alternative, Kruskal Wallis Test.

**Results**
- We predict that the on-demand GoBabyGo model will be both feasible and beneficial for child development.

**Discussion and Conclusion**
- The primary barrier to implementation was coordination of varying schedules. Barrier was overcome by:
  - Providing release time schedules for therapists
  - Student roster to complete evaluations and modifications
  - Implementing a plan to ensure institutional memory
- Because the on-demand model puts children in cars faster than the traditional model, we propose that the benefits justify the costs.

**Assessments**

<table>
<thead>
<tr>
<th>Construct</th>
<th>Assessment(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM</td>
<td>Goniometry</td>
</tr>
<tr>
<td>Spasticity</td>
<td>Modified Ashworth</td>
</tr>
<tr>
<td>Function &amp; QOL</td>
<td>Pediatric Evaluation of Disability Inventory (PEDI)</td>
</tr>
<tr>
<td>Trunk Control</td>
<td>Segmental Assessment of Trunk Control</td>
</tr>
<tr>
<td>Selective Motor Control</td>
<td>Selective Control Assessment of the Lower Extremity (SCALE)</td>
</tr>
<tr>
<td>Quality of Upper Extremity Skills Test (QUEST)</td>
<td></td>
</tr>
<tr>
<td>Parental Stress</td>
<td>Parenting Stress Index (PSI-4-SF)</td>
</tr>
</tbody>
</table>

**Model 1.**
The existing model shows greater time elapsed between ECPM recommendation and implementation.

**Model 2.**
In the on-demand model children receive the ECPM device on their next therapy visit with less time elapsed between recommendation and implementation.

**References**
See link for references: [GoBabyGoReferences](http://bit.ly/GoBabyGoReferences)