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ABSTRACT

Recently emerging approaches to high-throughput phenotyping have become im-

portant tools in unraveling the biological basis of agronomically and medically im-

portant phenotypes. These experiments produce very large sets of either low or

high-dimensional data. Finding clusters in the entire space of high-dimensional data

(HDD) is a challenging task, because the relative distances between any two objects

converge to zero with increasing dimensionality. Additionally, real data may not

be mathematically well behaved. Finally, many clusters are expected on biological

grounds to be “natural” — that is, to have irregular, overlapping boundaries in differ-

ent subsets of the dimensions. More precisely, the natural clusters of the data could

differ in shape, size, density, and dimensionality; and they might not be disjoint.

In principle, clustering such data could be done by dimension reduction meth-

ods. However, these methods convert many dimensions to a smaller set of dimensions

that make the clustering results difficult to interpret and may also lead to a significant

loss of information. Another possible approach is to find subspaces (subsets of dimen-

sions) in the entire data space of the HDD. However, the existing subspace methods

don’t discover natural clusters. Therefore, in this dissertation I propose a novel data

preprocessing method, demonstrating that a group of phenotypes are interdependent,

and propose a novel density-based subspace clustering algorithm for high-dimensional

data, called Dynamic Locally Density Adaptive Scalable Subspace Clustering (Dy-

naDASC). This algorithm is relatively locally density adaptive, scalable, dynamic,

and nonmetric in nature, and discovers natural clusters.
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1 Introduction

1.1 High-Dimensional Data

In recent years, high-dimensional data are increasing as data collection technologies

evolve, and there is a corresponding growth in such datasets. The real-world raw

dataset can be gathered from a variety of sources and from different kinds of applica-

tions, like research digital photography, surveillance videos, plant phenotyping in the

field and laboratory [6,47], and high throughput molecular biology experiments. The

key need is to extract knowledge from high-dimensional raw datasets using powerful

and effective data analytic methods. One of the best ways to discover knowledge is

by grouping variates, since the groups contain many variates that contribute to the

outcome variates.

1.1.1 Problems with High-Dimensional Data

Distances Converge to a Uniform Distribution In high-dimensional data space,

a full dimensional distance is often no longer meaningful, since the nearest neighbor

of a point is expected to be almost as far as its farthest neighbor [9].

As the dimensionality of the data increases, so does the volume of the space around

each point in a Voronoi tessellation. As the data become more sparse, the distances

among the points converge to a uniform distribution. This problem is often called

the “curse of dimensionality” [10, 16, 44, 68, 71, 75, 78, 83]. Similarly, the “density

divergence problem” states that different subspace cardinalities have different region

densities, as it can be represented by Equation 1 [10].

∀ε : lim
dim→∞

P
(
dmax(o) < (1 + ε)dmin(o)

)
= 1 (1)

It states that as the number of dimensions increases, for some object o, the proba-
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bility P that the maximum distance between objects, dmax(o), is less than that of the

minimum distance between objects, dmin(o) within some threshold ε, converges to 1.

It is applicable to different distributions. Thus, increasing data dimensionality results

in the loss of contrast in distance between data points. Because of this, clustering

algorithms measuring the similarity between pairs by distances over all dimensions

of the data tend to break down in high-dimensional space as the number of dimen-

sions increases [9, 16, 52, 79, 84]. In fact, the distance or neighborhood becomes less

meaningful as the dimensionality of a dataset increases [2,10,33]. Based on the liter-

ature, I conclude that the relative distance of the farthest point and the nearest point

converges to 0 for increasing dimensionality, d, as shown in Equation 2.

lim
d→∞

distmax − distmin
distmin

→ 0 (2)

Cluster Optimization The second major problem with high-dimensional data is

cluster optimization. Static global cluster optimization criteria mean the clusters

obtained will be relatively uniform in shape, size, and density, even if these do not

reflect the underlying relationships among the data [20, 55]. If the high-dimensional

data are not in a metric space, then the standard distance measures aren’t defined

and can’t be used for clustering [13, 22]. These two problems increase the difficulty

of properly identifying natural clusters: clusters of arbitrary shape and size (see

Section 1.1.1).

In practice, some points are correlated with respect to a given set of dimensions

and others are correlated with respect to different sets dimensions. However, recent

research shows that their intrinsic dimension is often much smaller than the dimension

of the ambient space and the data points could be drawn down to the union of low

dimensional subspaces [8]. Thus, such high-dimensional data lie close to the low

dimensional structures corresponding to several classes or categories to which the data
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belongs. Equally weighting all dimensions during clustering can introduce additional

noise.

Algorithm Performance Bellman [9] points out that more dimensions results in

more possible values and combinations of values. Due to this, performance suffers

from the following issues.

• Like any optimization problem, clustering becomes increasingly difficult with

an increasing number of variables.

• The discrimination between the nearest and the farthest points becomes poorer

in high-dimensional data spaces.

• Since the clusters are defined by only some of the dimensions, the remaining

irrelevant dimensions may interfere with finding the true number of clusters.

• In a dataset with many attributes, some attributes will be most likely correlated.

• The wrong selection of a similarity function used by a cluster analysis technique

may lead to the discovery of some apparently similar groups at the expense of

overshadowing other similar groups.

Extraneous Dimensions High-dimensional data may include many irrelevant di-

mensions. The relevance of certain dimensions may differ for different groups of

objects within the same dataset. Since groups of data are defined by some of the

available dimensions only, many irrelevant dimensions may interfere with the cluster-

ing algorithm to find clusters.

However, global dimension reduction methods may not yield combinations of di-

mensions that are most relevant to a particular region of the space (the “measure of

locality” problem). If there are no (or not only) globally irrelevant dimensions, but
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given sets of dimensions are irrelevant only with respect to certain sets of objects,

then different clusters only exist in different subsets of dimensions.

Thus, the challenge of clustering is related to the problem of finding an appropriate

subset of dimensions (subspace) to describe the similarity of objects belonging to the

same group, and possibly different subspaces for different groups of objects [8,84]. The

cluster objects reside in axis-parallel oriented, affine subspaces. Adding a fixed vector

to the elements of a linear subspace of a vector space produces an affine subspace, or

Euclidean subspace, of the complete data space.

Clustering methods that use all of the dimensions of a high-dimensional dataset

are rare [8,84]. If not all of the dimensions are relevant, clustering algorithms can be

confused by the Euclidean distance metric and fail to detect true clusters. Similarly,

noisy data or irrelevant dimensions can hide clusters. In fact, for a data point in the

higher space, the number of data points in its neighborhood would be smaller than a

data point in lower space due to the sparse distribution of the data points in higher

subspaces.

Natural Clusters Based on the our experience with phenotypic complexity and in-

terdependence, we expect to find natural clusters in many biological datasets. Finding

natural clusters in high-dimensional data, where optimization is difficult and complete

visualization is impossible, becomes extremely important.

A clustering algorithm returns homogenous groups in the input data according to

a specific objective function or criterion. A natural cluster is a cluster of any shape,

size, and density; and it can be non-disjoint (overlap in one or more dimensions) with

any other cluster in the data. In any dataset, these characteristics can vary freely

and be nonuniform over the clusters. Thus, objective functions that constrain these

characteristics a priori will not find cohesive natural clusters.

Density-based subspace clustering algorithms do not restrict the shape and size
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of clusters, and are able to obtain clusters of arbitrary shapes and sizes. However,

the fixed density thresholds these algorithms use can miss natural clusters, and these

algorithms assume the clusters are disjoint.

Thus, we need to design a clustering algorithm that organizes a collection of

objects into subsets of non-disjoint clusters; and where the density of data objects

is computed locally based on the data points in a proposed subspace. The question

of finding generic natural clusters to characerize different phenotypes in mutant and

inbred lines of maize is the focus of this dissertation.

1.1.2 Metric and Non-Metric Spaces

Informally, a metric space is a set of objects for which distances between all objects

are considered togather. More formally, a metric space is represented as an ordered

pair,
(
M, d

)
, where M is a set and d is a metric function on M . A function d :

M×M→R ≥ 0, for any x, y, z ∈M, must fulfill the following conditions:

• d(x, y) ≥ 0: non-negative or positivity;

• d(x, y) = 0, if x = y: identity of indiscernible objects;

• d(x, y) = d(y, x): symmetry; and

• d(x, z) ≤ d(x, y) + d(y, z): triangle inequality.

If all of these conditions are not satisfied, the space is non-metric. High-dimensional

data will often form a non-metric space because the relative distances between any two

points converge to zero with increasing dimensionality (Equation 2). Since distance

measures become useless for discriminating between nearest and farthest points, I

designed a clustering algorithm for high-dimensional data in non-metric spaces.
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1.1.3 Complex Phenotypes as High-Dimensional Data

The observable and measurable traits of organisms are called phenotypes. Phenotypes

and their component phenes are deeply interdependent and complex, so that changing

one alters many others [57, 58]. Yield, disease resistance, growth, stress responses,

and morphology are notable examples of these interdependent, complex phenotypes

in maize. Complex phenotypes vary by interacting with each other, their genetic

backgrounds, the environment, and management practices. Epistasis, pleiotropy, and

variations in expressivity and penetrance further expand the range and characteristics

of phenotypic features. All of these properties make complex phenotypes difficult

to recognize, classify, and measure. But characterizing complex phenotypes is the

essential first step to understanding and eventually manipulating them.

How can one use high-dimensional data to characterize and quantitate complex

phenotypes? A complex phenotype is by definition a multivariate set of interdepen-

dent dimensions. Analyses that attempt to isolate one dimension from the others

suppress and confound information about these interdependencies that are useful in

determining how many distinct phenotypes one has. Discovering phenotypes that are

shared among genetic, environmental, or management factors requires data that be

standardized so that they are truly comparable across all the different factors on an

experiment. Thus, characterizing complex phenotypes becomes a question of what

clusters naturally appear in the HDD data.

Characterizing and clustering phenotypes accurately is essential to inferring the

networks that cause complex phenotypes. Network inference remains a difficult prob-

lem, despite the efforts of many investigators [2, 15, 24–26, 29, 35, 48, 69]. A central

difficulty of these methods is that they rely on bottom-up inference from molecular

data. Our group is exploring an alternative, top-down approach that defines regions

of the network by the natural clusters found in data forming the phenotypic space.
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To do this, high throughput phenotyping, high-dimensional data derived from the

phenotypes, and novel methods to discover the natural clusters of the data are re-

quired.

Our HDD data come from experiments in which the maize plants have been

planted and grown in the field. In this experiment, the phenotype is lesions on maize

leaves. To quantitate the lesions, the mutant leaves are photographed under stan-

dard conditions, the background is masked (Figure 1), each lesion is segmented (Fig-

ure 2), and the quantitative information on the lesions (Figure 3) is measured [46,47].

Every lesion has been represented as a set of high-dimensional vectors that form

high-dimensional phenotypes. This high dimensional data has approximately 25 di-

mensions. These data objects may not form a metric space (this is hard to test) and

the number of lesion objects per leaf is between ten to two thousand. Based on em-

pirical observations, we hypothesize that this dataset’s clusters are irregular in size,

shape, and numbers of data points; and that the clusters are not mutually disjoint.

Figure 1: Masked Leaf Illustrating One Lesion Phenotype
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Figure 2: Lesioned Leaf after Segmentation [46]

Figure 3: Segmented Lesion

1.2 Overview of Clustering Approaches

In high-dimensional data many irrelevant dimensions can be expected. The rele-

vance of certain dimensions may differ for different groups of objects within the same

dataset. Since groups of data are defined by some of the available dimensions only,

many irrelevant dimensions may interfere with the efforts to find these groups.

1.2.1 Dimension Reduction: Feature Selection and Transformation

Dimensionality reduction techniques have been broadly used to address this problem

by reducing the number of dimensions. Moreover, dimensionality reduction tech-

niques help to decrease time and space complexity, as well as to make data more

comprehensible. The most popular dimension reduction techniques are feature selec-

tion and feature transformation. These remove irrelevant and redundant dimensions.
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The existing methods of feature transformation and feature selection for dimension

reduction are: PCA (Principal Component Analysis); SVD (Singular Value Decom-

position); and wavelets or low frequency Fourier harmonics in conjunction with Par-

seval’s theorem [4,12,16,27,42,54,55,70,86].

Dimension reduction methods map the whole feature space, Rn , to a lower di-

mensional feature space, Rk, where n and k are the number of dimensions in the

feature space R(k < n). Feature transformation (PCA, SVD) and feature selection

are very popular and traditional ways to reduce the dimensions. Feature transfor-

mation optimally transforms the original data space into lower dimensional space by

forming dimensions that are linear combinations of given attributes. The new space

has the property that distances between points remain approximately the same as

before [16, 40, 44]. Correlation among attributes is often the basis for a dimension

reduction in the feature selection technique. However, this technique has the major

drawback in that it leads to a significant loss of information. These methods are

not bijective in nature, so the transformed dimensions often have no intuitive mean-

ing and so the resulting clusters are hard to elucidate. Because these methods are

global dimension reduction techniques, they are not effective in identifying clusters

in reduced dimension space.

These methods of global dimensionality reduction are inappropriate if the clusters

lie in different subspaces of the dimension space. The subspace clustering algorithms

evaluate dimensions only on a subset of the data, based on a “measure of locality”

representing a cluster. These algorithms are able to uncover clusters that exist in

multiple, possibly overlapping subspaces and represent them in easily interpretable

and meaningful ways [4, 44].
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1.2.2 Finding Subspaces

High-dimensional data spaces are inherently sparse [68]. It is possible and even highly

probable that different subsets or combinations of dimensions (subspaces) may be rele-

vant for different clusters. Thus, a global feature selection or dimensionality reduction

method cannot be applied.

Another possible solution is finding subspaces, or subsets of dimensions, in the

whole feature space where the natural clusters exist [4, 44, 53, 83]. The identifica-

tion of subspaces by user is an error-prone process. Thus, two search strategies are

implemented to find clusters in subspaces:

• Top-Down approach: This algorithm derives a cluster approximately based on

the full-dimensional space, refines the cluster by adapting the corresponding

subspace based on the current selection of points, and usually assigns each

point to at most one subspace cluster [4, 12, 16,27,42,54,55,70,86].

• Bottom-Up approach: It starts with a single dimension and searches primarily

for all interesting subspaces as combinations of lower dimensional interesting

subspaces. It can assign one point to different clusters simultaneously. This

approach tackles the problem of poor discrimination of the nearest and farthest

neighbors [4, 12, 16,27,42,54,55,70,86].

But the probability of different subsets, or combinations of dimensions, may vary

for different clusters, even for the subsets of highest probability; and selecting such

high probability subsets is itself a difficult task because the search space of all possible

subspaces of a d-dimensional data space is still O(2d). Using local instead of global

criteria can reduce the search space. Otherwise, an algorithm will not be able to

unravel all the unseen natural clusters in data space.
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1.2.3 Comparison of Existing Clustering Algorithms

Many algorithms to cluster data have been developed that use different strategies.

When the data are high-dimensional, the size of the dataset is very large, the topo-

logical space formed by the data is uncertain, and the clusters are not uniform in

shape, size, density, or other parameters of the objective function, not all of these

algorithms will apply.

Partitioning Algorithms Partition-based clustering (k-means, k-medoids, and

PAM) assumes the data form a metric space and uses a distance parameter to find

spherical clusters. These algorithms are parametric in nature and are very sensitive

to outliers. They expect that users will give the number of clusters (k) in advance, or

experiment with different values of k to choose the “best” for their data. While these

algorithms are very good for small and medium size datasets, they are less effective as

the dimensionality of the data increase. They also can only detect spherical, disjoint

clusters [56, 59].

Agglomerative Algorithms Agglomerative clustering methods (Single Linkage,

Double Linkage, Average Linkage, and Ward’s Method) do not require the expected

number of clusters as input, and rely on comparisons of node similarity to terminate

the computation. Similarity is measured by Euclidean distances between nodes and

points: if the distance is small enough, points are merged into nodes and nodes

into other nodes, ascending hierarchically. This agglomeration permits clusters of

arbitrary shape, but constrains unmerged clusters to be disjoint. Apart from the

reliance on a distance metric, the major drawbacks of these algorithms are their

inability to correct erroneous merges or splits of nodes by backtracking; and the static

order of point addition. Both these drawbacks limit their use with high-dimensional

data [43].
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Density-Based Algorithms One approach to finding natural clusters is to detect

regions of the data space that differ in density. Regions of higher density, relative

to their neighborhood, define clusters. The three main density based clustering algo-

rithms are DBSCAN, OPTICS, and DENCLUE. They use a pre-set density threshold

and terminate cluster formation when the density of the growing cluster drops below

that threshold. These approaches handle outliers very easily. The major drawback of

these algorithms is that they use a distance metric to restrict the density threshold

values [5, 21,32].

Grid-based clustering approaches circumvent the use of a distance parameter by

dividing the data space into a multiresolution grid. Once cells with higher density

are identified, the data space is partitioned into nonoverlapping grids. CLIQUE, EN-

CLUS, MAFIA, OptiGRID, STING, and WaveCluster are examples of this approach.

These algorithms have fast processing time and the speed depends on grid size, not

on number of objects. However, they have several limitations. First, grid sizes are

determined using prior knowledge, rather than in an unsupervised fashion. Second,

determining grid size is combinatorially explosive: as the dimensionality of the data

increases, the number of combinations of grid sizes as 2d. Finally, the clusters found

are disjoint [4, 33,34,64,76,81].

Projected and Subspace Algorithms As the dimensionality of the data in-

creases, data objects are unlikely to occupy all dimensions. In this situation, the

ability to dynamically determine the combinations of dimensions that best character-

ize a cluster reduces noise in the clustering. Projection clustering, and its descendant

subspace clustering, attempt to optimize the combinations of dimensions that best

separate the clusters.

A classic example of projection clustering is P3C [16, 62, 72, 82, 85]. Projection

methods partition the data into disjoint sets and discover correlations among data
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objects in the hypothesized subspaces. Cluster quality is then evaluated using dif-

ferent objective functions, the choice being algorithm-dependent. This approach can

find natural clusters. However, it scales poorly with dimensionality because identify-

ing subspaces is combinatorially explosive. Under these conditions, the allocation of

data objects to subspaces is ambiguous or incorrect.

Subspace clustering was developed to overcome these problems. These algorithms

(such as DOC, PreDeCon, DISH, SUBCLUE, FIRES, CLIQUE, MAFIA, and EN-

CLUS, etc) define clusters as regions of relatively higher density in subspaces. They

have different approaches to circumventing the combinatorial explosion of candidate

subspaces (see below).

Subspace clustering algorithms can be divided into hard and soft subspace clus-

tering. Hard subspace clustering uses heuristic criteria to find relevant dimensions.

They search only a few combinations of these dimensions to improve speed, but the

identification of the right subspaces is very hard. Soft subspace clustering algorithms

determine the relevance of dimensions by choosing one or more seed points and weight-

ing the dimensions in the neighborhood of those points. The weighting functions vary

by algorithms [71].

For example, DOC measures density over a hypercube of fixed width to weight di-

mensions, rather like grid-based clustering. However, it is not able to find overlapping

clusters and can’t find subspaces larger than the hypercube’s width [72]. PreDeCon,

which is similar to DBSCAN, constructs a subspace preference vector based on the

number of points that occupy each dimension. This vector is then used to assign ob-

jects to the subspaces. The major drawback of this algorithm is that as the dataset’s

dimensionality changes, it is unable to find the correct subspace clusters. It has better

performance compared to DOC and PROCLUS [13].

DISH first computes the frequency of object values in each dimension, then groups
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the dimensions by the similarity of their variances to find the subspaces and the

objects they contain. A priori algorithms also use this “frequent item” approach.

The assumption that dimensions in subspaces should have similar variance is difficult

to justify, and seems very dataset-dependent. In practice, DISH performs poorly in

high-dimensional spaces [1].

SUBCLUE measures distance around a seed point to define a density connected

core object and its surrounding border objects [21]. In high dimensional space, it

uses a gready approach to discover density connected clusters. The great feature of

SUBCLUE is that it overcomes the limitation of grid-based clustering algorithms. It

has better clustering quality in comparision to other subspace clustering methods like

CLIQUE, MAFIA, ENCLUS, but runs more slowly. Another is that it has difficulties

in identifying the core objects in different subspace cardinalities using same parameter

settings.

Density-Based Subspace Clustering Density-based subspace clustering uses density-

based clustering approaches to find subspaces and clusters. Density-based clustering

algorithms can find arbitrarily shaped and adaptive sized clusters. The clusters have

been identified through cluster density over some threshold; each point must have a

minimum number of points within its “neighborhood”. The density-based clustering

algorithm principle makes it easy to find natural clusters. It also filters out outliers

and handles noise in a better way in comparison to other clusters. This kind of

algorithm is also computationally efficient because it needs only one scan and uses

local cluster criterion, such as density threshold and density-connected points. A

variant, scalable density-based subspace clustering, steers cluster mining to a few se-

lected subspace clusters by identifying and clustering promising subspaces and their

combinations directly [63]. By definition, any high-dimensional cluster must appear

in many low dimensional projections. By mining only some of the low-dimensional
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projections, the algorithm gathers enough information to jump directly to the more

interesting high-dimensional subspace clusters without processing the other projec-

tions.

Density-based subspace clustering is very useful in finding subspace clusters in

high-dimensional data. Since it scans data points only one time computationally, it

performs better than other kinds of subspace clustering. It generates natural clusters

of adaptive size, shape, densities and dimensionalities.

New Clustering Methods in Big Data Big data clustering [3, 61, 73, 77] is an

exploratory technique. The choice of a clustering algorithm and its parameters is

data dependent. The scalability, cluster accuracy and number of clusters are big

challenges with heterogeneous data, streaming data, and validity. There are diffi-

culties in applying clustering techniques to big data, because of the size of the data

(terabytes and petabytes) and correspondingly high computational costs. Traditional

clustering techniques cannot cope with this huge amount of data because of their high

complexity and computational cost. For instance, the traditional k-means clustering

is NP-hard, even when the number of clusters is two. Consequently, scalability is

the main challenge for clustering big data [3, 61, 73, 77]. So the question is how to

cope with these problems and how to deploy clustering techniques to big data and

get results in a reasonable time [3, 61,73,77].

In general, big data clustering techniques [3, 61, 73, 77] can be classified into two

major categories: single-machine clustering techniques and multiple-machine cluster-

ing techniques. Recently multiple machine clustering techniques have attracted more

attention because they are more flexible in scalability and faster.
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1.3 Problem Statement

Density-based subspace-clustering algorithms for high-dimensional data face many

challenges. The significance of the local relevance among the data with respect to

the subspaces (subset of dimensions) has led to the advent of the subspace clustering

algorithm. Thus, different groups of points may be clustered in different subspaces,

and a significant amount of research has been elaborated upon, which deals with

subspace clustering, and aims at discovering clusters embedded in any subspace of

the original feature space [16,42].

As the search space for relevant subspaces for defining meaningful clusters is in-

finite, and uses the global density threshold in metric space, it is necessary to apply

a novel approach using density threshold based on a “measure of locality” in “non-

metric space”. This makes the processing of identifying suitable subspaces containing

clusters feasible [23]. Even the exponential growth in the number of these subspaces

with the high-dimensionality of data makes the whole process of subspace clustering

computationally very expensive [44].

Since data in a subspace are often distributed arbitrarily and not around a cen-

troid, traditional clustering methods that take advantage of the spatial proximity of

the data in each cluster are not in general applicable to subspace clustering of natural

clusters.

There is need to apply density-based subspace–clustering approach on high di-

mensional data subspaces, to find natural cluster. With the varying region densities

in different subspace cardinalities, we note that a more appropriate way to determine

whether a region in a subspace should be identified as dense is by comparing its

density with the region densities in that subspace. These subspace clusters may be

partially or completely overlapping or non-overlapping to each other. These clusters

contain redundant information which means that the data points are common in both
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clusters Ci and Cj.

Due to the variation of density thresholds in different subspace cardinalities for

discovering clusters, it is challenging for subspace clustering to simultaneously achieve

high precision and recall for clusters in different subspace cardinalities. Thus, there

is a need to propose a density-based subspace-clustering algorithm for finding natural

clusters in non-metric space and that take into account the multi space structure

of the data as well. An algorithm should use locally adaptive density threshold

for each subspace in non-metric space instead of global density threshold in metric

space. Therefore, we proposed a novel density-based subspace-clustering algorithm

called DynaDASC (Dynamic Locally Density Adaptive Scalable Subspace Clustering).

This algorithm uses a relatively local density adaptive density threshold value. It is

scalable, dynamic and nonmetric in nature as well.

1.4 Contributions

In this dissertation we contribute a solution of three major tasks in data analytics for

maize phenotype. Firstly, we proposed novel density-based subspace clustering algo-

rithm, called DynaDASC, to account for challenges posed by high-dimensional data.

Secondly, we want to verify the interdependence of the phenotypes are interdependent

in our sample data. Finally, we want to contribute non-parametric standardization

technique, called SDFS (Standardization for Distribution Free Statistics), to prepro-

cess the low dimensional and sparse dataset.
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2 Materials and Methods

2.1 Datasets

Two experimental datasets have been used in this dissertation. These experiments

are conducted in a greenhouse and outside in a field for maize (Zea mays) phenotypes.

In both experiments, we are interested in determining how many distinct phenotypes

exist and determining the relationships among phenotypic dimensions and input vari-

ables such as stress condition, inbred background, and genotype.

2.1.1 Greenhouse Experiment with Combined Stresses

In experiment one, conducted in Dr. Ann Stapleton’s laboratory, ninety different in-

bred lines of maize were planted and grown in a greenhouse under the stress of nine

different combinations of water and nitrogen fertilizer. These growth conditions are

shown in Figure 4.
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Figure 4: Growth Conditions

It is of biological and genetical interest to determine how many different types of

response (phenotypes) exist, independent of the inbred lines and the stress combina-
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tion.

Forty plants of each line were grown; four plants under each growth condition,

except for growth condition five, which had eight plants. The experimental design

was optimized to detect nonlinear interactions between the stresses. Many plants

died during the experiment, so the number of surviving plants is often much lower.

The distribution of the survivors over all the subpopulations is shown in Figure 5.

Figure 5: Distribution of Surviving Plants over all Strata. The number of plants in
each bin is the value at the left boundary.

Eight types of paired phenotypic information were collected before and after the

stresses were applied. The phenotypes plant height, canopy spread and stem diam-

eter were measured before and after applying the different growth conditions. Not

all values for all plants were measured, making the data sparse; and the different

inbred lines exhibited different ranges of data values. The small sample sizes make

it impossible to determine which parametric distribution best fits the data, so they

were assumed to be non-parametric.

The data distribution and frequency of the original and rescaled data along three
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dimensions — ∆h,∆c, and∆s — are shown in Figure 6. The histograms of the original

Figure 6(a) and rescaled Figure 6(b) data show these dimensions are asymmetric and

have mixtures of positive, negative and zero data values. They also illustrate how wide

the range, shape and central location of the data are. The distributions of the three

dimensions and their deviations from normality in the normal quantile-quantile plots

indicate the dimensions are not normally distributed, consistent with our assumption

that the data are nonparametric. Moreover, three dimensional plots of the original

and rescaled data, shown in Figures 6 (a) and (b), show that the data points are

so compact and overlapping each other that they cannot be visually separated. The

rescaling was by min-max normalization between 0 and 1.

Histogram Three Dimensional Plot

a

b

Figure 6: Distribution of (a) Original, and (b) Rescaled Data

Therefore, we standardized this dataset to unravel the information hidden in it.
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2.1.2 Field Experiment on Lesion Mimic Mutants

The disease lesion mimic mutants of maize exhibit a very wide range of phenotypes

that are sensitive to the plant’s genetic background and environmental perturbations

[39, 65, 66]. Variations in lesion morphology alone encompass at least ten different

dimensions (areas, shape characteristics, border characteristics, lesion color, internal

morphologies, ground tissue colors, local lesion density and position, and distribution

on the leaf). These variations make lesion phenotypes an ideal high-dimensional,

complex phenotype to explore clustering methods.

In experiment two, conducted in our laboratory, the plants are grown in the field,

either in Columbia in the summer field seasons or on Moloka’i, Hawai’i in winter

nursery (Figure 7). To quantitate the lesions, the mutant leaves are photographed

under standard conditions, the background is masked, each lesion is segmented, and

the quantitative information on the lesions is measured. Every lesion has been repre-

sented as a set of high-dimensional vectors that form high-dimensional phenotypes.

Fourteen different disease lesion mimic mutants were back crossed into three dif-

ferent inbred maize lines. The number of back-crosses varied among the different

line/mutant combinations. Leaves were photographed shortly after the mutant plants

had finished shedding pollen. At this stage, some combinations had lesions that had

reached stasis and had well defined boundaries, while other combinations had lesions

that continued to expand and differentiate. In some cases, this latter class of phe-

notypes produce a diffuse chlorotic zone surrounding one or more necrotic central

lesions. As the chlorotic zones expand, intensify, and merge, it becomes difficult for

humans to identify the original lesions [45].
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Figure 7: Experimental Field

2.1.3 Low-Dimensional, Sparse Synthetic Data

To compare the effects of the standardization methods, we needed a sparse dataset

that had none of the internal relationships one would expect of real data. A three-

dimensional random uniform distribution by definition has no internal structure, so

we began with that and then salted the distribution with zeroes at random positions

to make the data sparse. Sparse, non-parametric data are common in many biological

experiments, such as the greenhouse experiment of Section 2.1.1.

Four sparse three-dimensional matrices of 3000 (47% zeroes), 6000 (52% zeroes),

7000 (55% zeroes), and 10,000 (53% zeroes) random, uniformly distributed points

were generated using methods in Python’s numpy and scipy libraries. Matrices of

the appropriate size were filled with pseudo-random numbers in the [0, 1] interval

using the Python library. The first n rows corresponding to the final percentage

of zeroes in the matrices were set to zero, and then the row and column indices of

the matrices were shuffled to randomize the positions of the zeroes throughout the

22



matrices. The resulting matrices combined a sharp peak at zero with an essentially

uniform distribution. Figure 8 shows the histograms, and the three-dimensional plots,

for each synthetic dataset. No internal structure is visible in any of the datasets.

Histogram Three-dimensional plot

a

b

c

d

Figure 8: Univariate Distributions of Synthetic Data. (a) Size: 3000, (b) Size: 6000,
(c) Size: 7000, and (d) Size: 10000
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2.1.4 High-Dimensional Synthetic Data

The DynaDASC alogrithm was tested using a synthetic dataset generated by Dr. Kazic.

A producing function describing the relative changes in plant height, z, in response

to combined drought (xw) and nitrogen stresses (xn) is shown in Equation 3:

z = c
(
ax2w + bx2n

)
+ dxw + exn (3)

This nonlinear model qualitatively accounts for the behavior of the maize lines in

the greenhouse experiment of Section 2.1.1 (Chang et al., in preparation). The model

was tested by simulation, varying the values of the parameters a, b, c, d, and e over

combinations of parameter values. A total of 34 proxy functions that characterize

different features of the resulting three-dimensional surfaces were computed. Values

for the nine most informative proxies formed the test data points for clustering. The

dimensions used were:

• z max, the height of the surface’s peak;

• row, the position of the peak along the water axis;

• col, the position of the peak along the nitrogen axis;

• the absolute value of the volume of the surface between its maximum and the

minimum of the Mo17 surface, which is the lowest point among the experimen-

tally determined surfaces;

• level 0.75, the number of matrix cells within 75% of the B73 peak, the highest

experimentally determined surface, ±0.01;

• level 0.50, similarly for 50%;

• level 0.25, similarly for 25%;
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• curvature max, the discrete curvature in the immediate neighborhood of the

peak [80] ; and

• area max, the area in the immediate neighborhood of the peak.

The data values have been selected for DynaDASC based on the data ranges. We

thresholded at different data point values for different dimension based on histogram

output observation. It has been considered that we should cover large range of data

objects and histogram bins sholud be spreaded along the axis such that we could see

their ranges very easily.

2.2 Methods

2.2.1 Data Transformations

Normalization of Greenhouse Data Our first step for the experimental data

was to rescale the range of each dimension using the min-max normalization. For

each of i dimensions, the rescaled value, vr,i,j, of that dimension for every original

point vi,j is

vr,i,j =
(vi,j −min(i, ·))

max(i, ·)−min(i, ·)
,

where the · denotes the value of all the points vi,· in dimension i.

Standardization for Distribution-Free Statistics (SDFS) SDFS sets g(x) to

be the minimum of each dimension for each biological class, treating the trivariate

dimensions as independent. γ is simply the measured values of the variates in each

class. Thus,

fs(x) =
f(x)−min(f(x))

f(x)
,

where fs(x) represents the value of standardized dimensions, and f(x) and min(f(x))

represent the measured dimensions and the minimum value of measured dimensions
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across groups, respectively.

Data Standardization by Parametric Methods We tested many parametric

approaches to standardization, comparing the clusters obtained for the low-dimensional

experimental biological data to those produced by MODECLUS on SDFS-standardized

data. The methods included L, mean, median, STD, AGK, Euclen, AHUBER,

AWAVE, IQR, MAD, Maxabs, USTD, MidRange, Spacing, and Range [7, 11, 28,

28, 36, 37, 41, 67]. Mid Range gave clusters most comparable to those produced by

SDFS in both number and position in the three data dimensional space, while ABW

gave very few clusters collapsed in one corner of the space.

Orthonormal Transformation of Greenhouse Data Quantitative geneticists

commonly treat complex phenotypes as if each phenotypic component was linearly

independent of the others. To simulate this situation, we transformed the experimen-

tal data of Section 2.1.1 by finding an orthonormal basis for them. An orthonormal

basis forces the dimensions to be linearly independent; thus, we synthesized three “in-

dependent” univariate dimensions. We used the orth function of R’s pracma package

to find the orthonormal bases [14]. The orthonormally transformed data were used

in the clustering experiments of Section 3.1.4.

2.2.2 Acquisition of High-Dimensional Lesion Data

The field experiment includes construction of near-isogenic lines of lesion mimic mu-

tants in three inbred backgrounds; acquisition of phenotypic and genetic data and

tissue; image processing; and data pre-processing. The result is a high-dimensional

dataset with changes in genotypes and phenotypes tracked throughout the pedigrees

of the lines.
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Histogram Three-Dimensional Plot
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Figure 9: Distribution of Standardized Data (a) L, (b) Mean, (c) Median, and (d)
STD

Line Construction and Management of Seed and the Field The field ex-

periment starts with the selection of seed and its packing. Mutants are back-crossed

six times to their recurrent inbred parent to reduce phenotypic noise to a reason-

able level. Selection of offspring for the next step in line construction maximizes the
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Histogram Three-Dimensional Plot

a

b

c

d

Figure 10: Distribution of Standardized Data (a) Euclen, (b) AGK, (c) ABW, and
(d) Ahuber

clarity of phenotypic expression and the existence of images of parental phenotypes,

and attempts to optimize the overall vigor and reproductive status of the mutant

male parent. Many lesion mimic mutations produce collateral metabolic effects that

depress vigor and reduce or eliminate ear production.
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Histogram Three-Dimensional Plot
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Figure 11: Distribution of Standardized Data (a) AWAVE, (b) IQR, (c) MAD, and
(d) Maxabs

The seed packets (Figure 14) are labeled with the packet number, numerical geno-

types of the parents, row number (to be planted in the field), planting number, number

of seeds, length of row, and sleeve number where seed from prior crops is stored in

the seed cold storage room of the Sears greenhouse at University of Missouri. The
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Histogram Three-Dimensional Plot
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Figure 12: Distribution of Standardized Data (a) SUM, (b) USTD, (c) Range, and
(d) Spacing

numerical genotype of a plant is unique and is the primary key in the database for all

objects derived from that plant. It includes the crop number, any inbred identifier,

row, and plant number. Offspring are identified by the numerical genotype of the

maternal plant, since only one ear is ever used from a plant. The aim is to produce
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Histogram Three-Dimensional Plot

a

b

Figure 13: Distribution of Standardized Data (a) SDFS, and (b) Midrange

a complete provenance trail for all biological materials and the data derived from

them [45].

Figure 14: Seed Packet (left) and Box (right)

Rows are labelled with barcoded row stakes; each stake and seed packet are

scanned immediately before planting and the planting timestamped. The corn is
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planted in either full 20’ rows or half 10’ rows at varying densities, depending on

whether the line is an inbred intended for seed production (12” spacing); a vigorous

mutant for observation and pollen production (8” spacing); or a mutant with poor

germination (4–6” spacing, since many mutant offspring will die very early). 4’ alleys

separate each block of rows. Border rows of sweet corn surround the experimental

corn to help decoy predators. Seed is planted manually using a jab planter. Delayed

plantings of inbred and mutant lines are used to accommodate the faster growth rates

of less back-crossed lines. Figure 15 illustrate the field and planting the corn seeds.

Figure 15: View of Field Tending and Planting

Once all rows are fully germinated, we count the plants in each row (“stand

counts”), noting the approximate growth stage and any observable phenotypes. We

then generate a tag for each plant that includes multiple copies of its numerical

genotype as both text and barcode (Figure 16).
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Figure 16: Bar Code

To speed field operations by minimizing look-ups of important information, the tag

also includes an abbreviated symbolic genotype of the parents, family number, and a

tracking number for the pedigree branch. These bar codes are used for identification

of the plant, its leaves during photography and tissue sampling, its pollen or ears

during controlled pollinations, and keys during collection of other types of data, such

as mutant phenotype, plant height, and narrative descriptions [45]. Tag data are

printed on perforated card stock, laying out the tags vertically through a stack of

sheets. The block of sheets is drilled at one end, one hole for each stack of tags, sawn

apart with a bandsaw, and threaded onto a pin made of galvanized #9 wire. This

keeps the tags in the correct orientation and order in a set of packets so that they

can be rapidly stapled around each plant.

To mimimize any effects of mutant cytoplasm, controlled pollinations are always

performed using the mutant plant as the male parent. Ear shoots are covered with

a waxed bag before the silks emerge to protect them from ambient pollen, then cut

back the day before to produce a vigorous flush of new, receptive silks. Tassels of

selected plants are covered with paper bags to collect the pollen before it sheds on the

morning of pollination. Fragile tassels, or tassels that will be used for large numbers

of pollinations, are covered briefly with a glassine bag for pollen collection. Working

swiftly, the waxed bag is removed, the pollen dumped on the fresh silks, and the

pollinated ear covered with the paper tassel bag to prevent contamination. Tear-off

tags from the maternal and paternal parents are stapled to the bag to identify the

cross. The pollination is recorded immediately by scanning the barcodes, and the

data are timestamped so we can know what was done and debug unsuccessful efforts.
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Pollinated ears are allowed to mature for at least 40 days before harvest, cleaning,

and drying. The dried corn is shelled, the kernel count estimated, any notes written

on the bags are recorded in the database. The maternal and paternal tags from the

bag are stapled together to identify the seed, and this label is then stapled to the bag

containing the seed. The corn is then filed in boxes for cold storage.

Acquisition of Data and Tissue Our goal is to image a leaf expressing lesion phe-

notypes from every plant used as a male during pollinations, and other mutant plants

as needed for comparison. Lesion-bearing leaves are identified and photographed in

situ or ex situ. In both cases, the leaves are placed on a field of dark blue cloth

that includes an X-Rite Mini Color Checker Classic and the barcoded tag from the

source plant. The relative number of the leaf is written manually on the tag. The

Color Checker is included to permit color correction among images taken under vary-

ing light conditions and provides an internal size standard. Thus, every image is

self-identifying and includes internal photographic standards [45,46].

Images were taken with a Nikon D80 10.2 MP DSLR camera with an AF MICRO

NIKKOR 60 mm lens. Using purpose-built jigs, leaves are held parallel to the plane

of the lens. For ex situ images, leaves are cut from the plant, a tag stapled to

them, and the cut end is immersed in ice water. The leaf is rinsed, air-dried, and

photographed within an hour. In situ leaves are sprayed with water, gently wiped, and

air-dried before imaging. The ex situ apparatus holds the leaves at a fixed distance

and illuminates them along their length and from above and below with fluorescent

5000 K lamps. Light is also reflected by aluminized bubble wrap enclosing the back,

top, bottom, and part of the front of the apparatus, to further diffuse the angles of

incident light. Figure 17 demonstrates our setup for image capture.

Most images included a third or more of the maize leaf; smaller leaves entirely filled

the image [46]. In situ images are photographed with shading to reduce reflections
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Figure 17: Jig used for Image Capture. Views from front (left) and side (right)

from surface waxes. A skilled team of three people can image approximately 300

leaves/day ex situ; two people can manage about 50 leaves in a morning in situ.

These photographs are used to extract phenotypic data with the help of MATLAB’s

digital image processing toolbox, described in Section 2.2.2.

In addition to imaging phenotypes, we collect phenotypic information on each

plant in the mutant families (wild-type or lesion mimic mutant, relative or absolute

plant height, quality of reproductive organs, and other phenotypes). Leaf tissue is

collected from imaged plants, either immediately after ex situ photography or during

data collection in the field for in situ imaged plants. A strip of leaf is inserted

into a shoot bag punctured in the center, an identifying sample tag stapled on the

closed bag, and the sample tag and plant tag scanned. Tissue samples are lyophilized

until dry and then stored at −20◦ C pending extraction of DNA and whole-genome

sequencing. Narrative descriptions of the field, mutant families, and other information

are recorded throughout the field season.

Image Processing We used DCRAW, a raw decoding open-source ANSI C pro-

gram, to convert the raw image file format of the camera (.NEF) to .tiff [17]. The
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original photographed leaf, shown in Figure 18, consists of blue image background,

Figure 18: Photographed Leaf

bar tag, and X-Rite Mini Color Checker Chart. To segment lesions from leaf image

we will need to remove all other components on image except the leaf and make its

background black by masking. We use regionprop (a MATLAB function) and color

based thresholding to segment these four components and save them separately for

further use in color calibration of the image. Among these four components, one of

them is masked leaf shown in Figure 19.

Figure 19: Masked Leaf

We then use our segmentation cascade to segment the lesions from the background
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tissue [46]. Segmentation uses a cascade of three algorithms. These three algorithms

are multiresolution analysis for lesion detection, gradient vector diffusion to find ap-

proximate position of lesions, and active contours to refine lesion boundaries. The

segmented leaf is shown in Figure 20.

Figure 20: Segmented Lesions

We performed a preliminary characterization of the phenotypic components of

the segmented lesions. These phenotypic components are the lesions area, perimeter,

major axis length, minor axis length, eccentricity, convex area, convex hull, centroid,

filled area, filled Image, Image, equivalent diameter, Euler number, extent, extrema,

orientation, pixel list, solidity, subarray index, red color mean, blue color mean, and

green color mean. So each lesions phenotypes are described by high-dimensional data.

Single leaf consists of 2000 – 3000 (approximately) number of lesions. The data values

of phenotypes are currently saved in xlsx spread sheet shown in Figure 21.
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Figure 21: High-dimensional Dataset

Pre-processing of High-Dimensional Data In order to find correct clusters in

a given dataset, data preprocessing is required. The first step of preprocessing is

min-max normalization of dimensions to make it comparable to each other. This nor-

malization technique is described in detail in Section 2.2.1. The second step of data

preprocessing is standardization to equalize the variances of the dimensions so that

data object assigned to the correct clusters or subspaces. The given high-dimensional

dataset needs parametric analysis. Thus, parametric methods of standardization tech-

nique has been used. The standardization techniques are described in Section 2.2.1.

The third step to find the correlation among dimensions. If dimensions are closely

correlated to each other then we use dimension reduction techniques. The dimension

reduction techniques are described in Section 1.2.1. The correlation matrix plot was

used to show the bivariate correlation among dimensions.

2.2.3 Clustering Methods

MODECLUS MODECLUS is a density-based clustering method which performs

cluster analysis for non-parametric data [74]. Since it is a density-based clustering

algorithm, it can find clusters having irregular shapes and different sizes. MOD-

ECLUS starts with n or fewer seed points and describes an enclosing sphere of
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radius r around them, where r is a variable specified by the user. It computes the

local maxima of the probability density function inside the sphere to identify regions

of greater density, defined as ni/(nvi), where ni, n and vi denote the number of neigh-

bours, the sample size and the volume of the neighbourhood at point xi respectively.

It then attempts to hierarchically merge these dense regions, based on the significance

test. That test depends on the smoothing parameter, which is also specified by the

user. This smoothing parameter is not only the basis for the statistical significance

test, but also determines the number of clusters present in the dataset. Since the

significance test helps in computing the number of clusters, users never need to spec-

ify the number of clusters. They only need to specify the smoothing parameter and

the radius r. We used method six of MODECLUS in this experiment because this

method begins with all observations unassigned [49,50].

We tested the effects of the different standardization methods using the non-

parametric density-based MODECLUS procedure of SAS. MODECLUS can give

clusters of arbitrary shape without constraining their number [31, 49, 50, 74]. How-

ever, the algorithm is restricted to relatively low-dimensional data. The values for

the MODECLUS parameters radius and threshold were tuned until the number and

stability of the clusters for the experimental data were optimized.

Other Clustering Methods The DynaDASC clustering algorithm has been com-

pared with a diverse set of existing algorithms. These algorithms are hierarchical

clustering (Single Linkage, Complete Linkage, and Ward Method), partition based

clustering (K-Means, K-Medoids), model based clustering, density-based clustering

(DBSCAN, OPTICS), projected clustering, subspace clustering (CLIQUE, FIRES,

SUBCLU). The R packages DBSCAN, subspace, and orclus have been used to com-

pute the results of these clustering methods.
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Pseudocode of DynaDASC The pseudocode of generic functions and their steps

for DynaDASC are specified in Figure 22, Figure 23, Figure 24, and Figure 25. The

procedure – 1 (shown in Figure 22) computes relative adaptive density threshold (τk)

value of data object and assign it to respective subspaces based on density threshold

(θi). These subspaces are passed as an input argument to Procedure – 2 (shown in

Figure 23). It optimizes subspaces using “principle of maximum entropy” of Graham

Wallis theorem based on entropy. It also computes the skew factor and kurtosis fac-

tor of subspaces. Thereafter, these three values (entropy, skew factor and kurtosis

factor) are visualized through two dimensional plot and decided the threshold val-

ues of entropyθ, skewθ, and kurtosisθ. These threshold values are used to optimize

subspaces and saved it as optimized subspaces. The Procedure – 3 (Figure 24) takes

optimized subspace as input argument and compute the number and name of dimen-

sions of dataset present in subspaces. If number and name of dimensions are same

then the subspaces are merged togather, othewise they are considered as seprate

subspace. Thereafter, the Linderberg–Feller Central Limit Theorem or Lyapunov

conditions applied on all merged and unmerged subspaces and check the convergence

of all subspaces individually. If they are converged then it implies that all dimensions

available in subspaces are comfortable. Finally, Procedure – 4 (Figure 25) computes

correlation values of these subspaces and saved it for future use for computation of

density threshold in Procedure – 1.

How Goodness of Clusters was Evaluated The goodness of clusters have been

evaluated by computation of entropy and F-measure. The computation of entropy,

(E(C)), for clusters is another way to evaluate clusters quality. Lower value of entropy

implies that better is clustering. It can be measured by following formula.

E(C) = −Σcj(
nj
n

)Σi(pij ∗ log(pij))
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Figure 22: Computation of Relative Adaptive Density Threshold and Subspace Allo-
cation

where

pij =
nij
n

, Cj is jth cluster in C, nj is number of data points in Cj that actually belong to

subspace SSID.

The F-measure [38] is used to measure computing performance of different clus-

tering algorithms. It is also known as evaluation function and described as follows.

F =
n∑
j=1

(
nj
n

) ∗max(1≤k≤K)
( 2njk

(nj + nk)

)

where n is total number of objects, nj is number of objects in class j, nk is number of

objects in cluster k, and njk is number of objects occurring in both class j and class

k, and k is the number of clusters equal to the number of classes.
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Figure 23: Subspaces Optimization

Benchmarking Methods The benchmarking or performance of clusters have been

evaluated by efficiency assessment. The time complexity with respect to dimension-

ality of data space, dimensionality of clusters, and scale up and scale down of data

object measure the efficiency of assessment.
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Figure 24: Adaptive Expansion and Reduction of Subspaces

Figure 25: Soft Context Identification of Subspaces
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3 Results

3.1 Effect of SDFS and Existing Standardization Methods

on Clustering

We used the nonparametric SAS procedure MODECLUS to cluster the low-dimensional

data from experiment one, testing the effects of the different standardization methods.

MODECLUS can give clusters of arbitrary shape and size (natural clusters) without

constraining their number [31, 49, 50, 74]. The values for the MODECLUS parame-

ters radius (0.20) and threshold (0.25) were tuned until the number and stability of

the clusters for the experimental data were optimized. The tuning of MODECLUS

parameters results are discussed in the following section. The colors of the points

distinguishes the clusters in the three dimensional plots.

3.1.1 Tuning the MODECLUS Parameters θ and r

To understand how many distinct phenotypes might be present in the greenhouse ex-

periment, we used clustering. Since each line has a different basal growth pattern and

we wanted to compare among the lines, we first rescaled and standardized the data.

We then tuned MODECLUS’s parameters threshold, radius, unclassified points and

corresponding number of clusters to optimize the number and stability of the clusters.

This tuning of the parameters gives the exact number of clusters with zero number of

unclassified points, and the clusters predict groups of similar phenotypes. Since pa-

rameter tuning is essential for any clustering algorithm, it has become more tolerant

for relatively higher speed algorithms. Here, a heuristic search to tune MODECLUS

parameters is given and illustrated in Figure 26.
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Figure 26: Tuning of Parameters for MODECLUS

Parameter θ Controlling the threshold value of density is the main parameter

which decides the lower bounds on the number of clusters that can be obtained.

The value of th should be varied in an incremental fashion so as not to increase the

number of unclassified points. The value of th can be selected between 0 ≤ θ ≤ 1, and

increased by small steps, to avoid unnecessarily large numbers of unclassified points.

Parameter r It controls the radius of sphere such that the limit is decided by θ.

The number of clusters obtained and unclassified points changes as value of θ and r

change.

3.1.2 Effects of Different Standardization Methods on Clustering

The effects of 18 current standardization techniques are illustrated in Figure 27 and

Figure 28.
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The effects of different standardization methods on clustering algorithms are sum-

marized in Table 2.

Table 2: Summary of number of clusters using different Standardization Techniques

Methods Number of Clusters Number of Unclassified Points

Mean 5 0
Median 5 0
SDFS 6 0
Range 10 0
Sum 12 0

Spacing 15 0
Euclen 16 0
ABW 19 0

AHUBER 19 0
AWAVE 19 0

IQR 19 0
MAD 19 0

Maxabs 19 0
USTD 66 0
STD 99 336
AGK 100 341

L 100 579
Mid Range 100 59

These outputs can be grouped into two groups. The first group is like ABW

whereas the second group is like SDFS or Mid Range. ABW collapses the clusters

into the upper rear corner. Even though SDFS and Mid Range are comparable,

their results are very different. Midrange spreads the clusters throughout the volume,

while SDFS places the clusters in the center of the space, with the cluster boundaries

extending irregularly towards the edges of the volume. Table 2 shows the quality of

the clustering by the different methods tested: Mid Range has the highest number of

clusters but with relatively few unclassified points, while ABW classifies all points but

still produces a large number of clusters. SDFS permits classification of all points,

but produces a very moderate number of clusters.
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3.1.3 Comparison of Mid Range and SDFS Methods using Synthetic Data

The results of Mid Range and SDFS standardization can be illustrated on synthetic

data of Section 2.1.3, and synthetic data were used to verify and compare that SDFS

is valid for other datasets. We found SDFS is far better than Mid Range and other

standardization methods. Its output is illustrated in Figure 29 and Table 3. The

SDFS results are better for these small and sparse datasets, performing better if the

number of data objects lies between 3000 and 7000 low dimensional samples. Table 3

shows that the number of unclassified points seems very similar for both methods

but the number of clusters are not comparable at all. The Midrange results are not

comparable because number of clusters are not more than 100 and these clusters are

sparse as well. Midrange seems impractical in terms of groups of similar phenotypes,

whereas the relatively low number of clusters found by SDFS are reasonable.

Table 3: Comparison of Number of Clusters Classified by SDFS and MIDRANGE
Standardization Techniques

Sample Size Methods Number of Clusters Number of Unclassified Points

3000 Midrange 62 0
3000 SDFS 2 0
6000 Midrange 29 0
6000 SDFS 4 0
7000 Midrange 33 0
7000 SDFS 5 0
10000 Midrange 30 0
10000 SDFS 2 0

3.1.4 Interdependence of Phenotypic Components

Dr. Stapleton’s greenhouse experiment evaluated changes in three dimensions of growth

in response to stress (Section 2.1.1). To determine how relationships among the data

affect clustering with different algorithms and what this can tell us about the number

of distinct phenotypes, we compared clustering of raw, standardized, and orthonor-
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mally transformed data.

Distributions of the Data Figure 30 shows the lumped distributions for each

measured dimension for the raw, standardized, and orthonormally transformed data.

In the raw and orthonormally transformed data, each dimension has a different,

non-normal distribution. It is difficult to imagine a single parametric distribution

that would fit any dimension of the raw data. Instead, for example, one might mix a

normal and a delta distribution. The distributions for ∆c and ∆s of the orthonormally

transformed data appear normal, but the distribution of ∆h is very skewed. If one

used a distance metric to cluster the orthonormally transformed data using a distance

metric, which is very common, the clusters would be at best difficult to interpret

because the phenotypic space is warped by the differences in the dimensions.

To determine which phenotypes are shared by different lines and conditions, the

data must be standardized in some way to make them comparable, both in relative

scales and in distribution. Since each line has a different basal growth pattern and we

wanted to compare among the lines, we first linearly rescaled the data and then used

SDFS to standardize them [30]; (Vatsa et al. , in preparation). The right panel of

Figure 30 shows the results: all dimensions have essentially the same nonparametric

distribution and the relative scales of the dimensions are the same. Thus, these

standardized data are good candidates for clustering.

A common approach to analyzing phenotypic data is to choose one phenotypic

dimension of special interest and analyze the relationship of that dimension to some

other variate, such as genotype, field location, or weather. In effect, this approach

assumes there are no relationships among the phenotypic dimensions: the data for

each dimension are functionally univariate and independent of the others. If indeed

the dimensions show no or little pairwise covariance, this is a reasonable approach.

Otherwise, information can be lost, garbled, or confounded.
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To see what can occur if one treats multivariate data as univariate, we synthesized

a set of trivariate data where each dimension is linearly independent of the others by

transforming the standardized data with an orthonormal basis (Section 2.2.1). If the

dimensions are related in some way, this procedure should mangle those relationships

when compared to the standardized, untransformed data. To visualize the relation-

ships among the dimensions, we computed the pair-wise covariances for the synthetic,

orthonormally transformed data and the standardized data. The results are plotted

in Figure 31.

If the data’s dimensions are truly mutually independent, then one would see no

pattern in their covariances. This is not the case. Compared to the standardized data,

the assumption that each dimension can be analyzed independently of the others

changes the data and their interpretation in several ways. The planar relationships

seen in the standardized data are distorted into a cube (most easily seen in the ∆c

by ∆s covariance). The cube itself is rotated in each pair of dimensions (most easily

seen in the ∆h by ∆c covariance). The data points are compressed, so that their true

scatter is lost. The net effect of these changes is to change the pairwise covariances

from their values for the standardized data in ways that might be difficult to predict.

Interactions of Clustering Algorithms with Data Transformations We used

several algorithms that combine desirable features to cluster the data. We focused

on methods that could give clusters of arbitrary shape (e. g., as in many hierarchical

clustering algorithms) and that did not constrain the number of clusters (e. g., as

in k-means and k-nearest neighbor) [60, 87]. The methods chosen include density-

based clustering, using the density of points in regions of the phenotypic space as the

similarity criterion, to avoid using distance metrics that apply in only a few types

of topological spaces (DBSCAN and OPTCS) [5, 21]; subspace clustering to select

the most discriminating combinations of dimensions, to avoid arbitrary dimensional
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choices (CLIQUE, SUBCLU, and FIRE) [4,42,51]; projected clustering, to avoid the

assumption of disjoint, non-overlapping clusters [63]; and nonparametric clustering,

to avoid assumptions about the distribution of the data (MODECLUS) [49, 50].

Except for MODECLUS, all of the clustering algorithms we used are found in R

packages; there is a SAS procedure for MODECLUS [31, 74].

All clustering algorithms take parameters whose values affect the number of clus-

ters and the number of points falling outside the clusters (the unclassified points”).

To select adequate values for the parameters for each algorithm, we explored subsets

of the parameter spaces to see how the number of clusters and unclassified points

change. For example, density-based clustering algorithms compute the density of the

points within spheres of an arbitrary radius. To choose good values for the radius,

we computed the number of points that are classified using the k-nearest neighbor

algorithm for the standardized and orthonormally transformed data. For each radius,

Figure 32 shows the number of classified points. We used radii of 0.17 and 0.022 for

the standardized and orthonormally transformed data, respectively.

Similarly, we tuned the MODECLUS parameters (Figure 26) threshold and ra-

dius until the number and stability of the clusters was optimized.

How Many Combined Stress Phenotypes Are There? Once the data are

comparable and their dimensions have not been arbitrarily omitted, one can now ask

how many different phenotypes exist in the population. Not surprisingly, the answer

varies as the number of clusters and their membership changes with each clustering

algorithm applied. Figure 33 illustrates this reality for the seven clustering algorithms

tested, for both the “univariate” data synthesized by the orthonormal transformation

and the truly multivariate, standardized data.

The clusters identified by the subspace clustering algorithms can have fewer than

three defining dimensions; for these subspaces, the points are plotted along the axes
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of those dimensions. One advantage of subspace clustering algorithms is that they

classify even points that are missing one or more dimensions, by placing those points

in lower dimensional subspaces. This permits the comparison of incomplete data. A

disadvantage of CLIQUE is that it doesn’t classify points that don’t fit the pattern

it is discovering.

Figure 33 shows the results of clustering the orthonormally transformed and stan-

dardized data using seven different algorithms. The Cartesian spaces for all volumes

have been rotated to the same viewpoint for easier comparison. Several trends are

immediately obvious.

First, suppressing dimensions distorts the distribution of the data and comprises

clustering. DBSCAN, OPTICS, FIRE, and MODECLUS collapse the “univari-

ate” data into a cube. Projected clustering smears the cube of the synthesized

data a bit, and SUBCLU finds four clusters, of which two clusters are single points.

CLIQUE finds four one-dimensional clusters, two two-dimensional clusters, and one

three-dimensional cluster.

Second, neglecting dimensions loses information that can help classify points. For

example, DBSCAN finds 8 clusters in the “univariate” data, but cannot classify 1235

points; and 2196 points, nearly all of the remainder, lie in a single cluster. SUBCLU

finds four clusters in the “univariate” data, but two of those are clusters of single

points. CLIQUE finds seven clusters, of which four contain a reasonable fraction of

the points.

Third, most clustering algorithms have difficulty classifying the data into more

than one phenotypic group, even when all dimensions of the data are considered.

OPTICS, FIRE, and projected clustering lump all the “univariate” points together

in a single cluster, whereas DBSCAN, OPTICS, and FIRE find single clusters with

the standardized multivariate data. The remaining methods find at least two clusters:
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projected clustering, SUBCLUE, and CLIQUE distribute the points fairly unevenly

among the clusters, while MODECLUS has a more even distribution of cluster

members.

Situations in which an algorithm produces a single cluster tend to have the fewest

unclassified points. Thus, DBSCAN finds eight clusters in the orthonormally trans-

formed data and leaves over a third of the points unclassified; but when it finds a

single cluster for the standardized points, it places all of the points in that cluster.

CLIQUE and SUBCLU find multiple clusters in both datasets, but leave between

≈18–27% of the points unclassified. Both of these subspace clustering procedures are

designed for high-dimensional data, which many practitioners assume are parametric.

MODECLUS performs best in the sense of finding multiple clusters and leaving no

points unclassified: in fact, the algorithm was designed exactly for this situation of

nonparametric data.

Table 4 summarizes the number of clusters and unclassified points for each algo-

rithm, for each treatment of the data.

Table 4: Numbers of Clusters and Unclassified Points for Each Algorithm

number of clusters fraction points unclassified
algorithm orthonormal standardized orthonormal standardized
DBSCAN 8 1 0.343 0
OPTICS 1 1 5.555× 10−4 0

FIRE 1 1 0 0
projected 1 2 0.046 0.343

SUBCLUE 4 4 0.202 0.255
CLIQUE 7 8 0.267 0.188

MODECLUS 1 6 0 0

So how many phenotypes are present in these data? The number of clusters de-

pends on how the data are treated, the relationships among the data, and the choice

of clustering algorithm and its parameters. While the true number of clusters and

their composition are unknown, the six clusters found by SDFS and MODECLUS
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are most consistent with the GWAS analysis of the lines. Those results show eight

distinct genotypes that respond differentially to the combined stresses, encompassing

six different shapes of response surfaces (Chang et al., in preparation). We conclude

SDFS standardization gives results that are more consistent with the likely true num-

ber of clusters than the other standardization methods.

The SDFS standardization approach yields nice clusters, but one must determine

its applicability to other datasets. In these data, all dimensions are informative in

the sense that they change the clusters, but as the dimensionality of data increases,

one must pay more attention to the relationships among the dimensions and the

informativeness of each dimension and combinations of dimensions.

These kinds of comparative studies can help refine an intuition of the “correct”

answer, and both qualitative and quantitative criteria can test the quality of any

proposed clusters. For example, MODECLUS returns clusters of arbitrary shape

that overlap and interleave with each other, and with appropriate parameter values

leave no outlying, unclassified points. Tracking the stability of cluster membership for

each datum as a function of parameter and algorithm choice can also persuade one of

the quality of a particular classification. As discussed, there are other experimental

reasons to believe there are six phenotypes in these data. But in the end, any proposed

clustering must be tested against the biology by seeing how well it predicts other

related biological phenomena.

3.2 DynaDASC Results

3.2.1 Data Preprocessing

The data preprocessing uses two basic steps in order to assign data points to correct

clusters. The first step is normalization. We have been using min-max normalization

to make their range equal and this is illustrated by the box-plot in Figure 34(a).
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The box-plots in Figure 34(a) illustrate the distributions of the data for each of

its nine dimensions (see Section 2.1.4). These dimensions are rescaled between 0 and

1. The histograms of z max, area max, curvature max are unimodal (not shown).

Area max and z max have most of zero data points values whereas curvature max

has most of the data points near 1. The dimensions level 0.25, level 0.50, level 0.75

and surface vol have bimodal histograms. These dimensions’ data have a mixture

of values between zero and one. The frequency of zeroes is greater than the other

values in the histogram. The histograms of column and row are multimodal. These

dimensions distribution are not normally distributed.

The second step of preprocessing is standardization to make the variances of all

dimensions equal such that data points are assigned to correct cluster. We used STD

standardization technique and its boxplot is illustrated in Figure 34(b). It shows

that the variances of dimensions are similar to each other. The correlation matrix of

nine dimensions and the corresponding numeric values are shown in Figure 35 and

Table 5 respectively. It is clear that dimensions are not highly correlated to each other.

Therefore, we cant apply any dimension reduction technique on this high-dimensional

dataset.

z max row col surf vol L0.75 L0.5 L0.25 curv max area max

z max 1
row 0.02 1
col -0.12 0.51 1

surf vol -0.07 -0.12 -0.08 1
L0.75 0.26 0.04 -0.09 -0.01 1
L0.50 0.26 0.03 -0.11 -0.09 0.5 1
L0.25 0.21 -0.07 -0.16 -0.14 0.34 0.46 1

curv max -0.31 0.16 0.21 -0.02 -0.34 -0.37 -0.38 1
area max 0.09 0.06 0.04 0.01 -0.02 0.02 0.06 -0.16 1

Table 5: Correlation Matrix Numeric Values of Rescaled Dataset
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3.2.2 DynaDASC Clustering

The DynaDASC uses five procedures to find subspaces in high-dimensional data

(HDD). The first procedure (Figure 22) computes relative adaptive density threshold

(τk) and assign data objects into subspaces. These subspaces and corresponding data

object index values of HDD are returned by this procedure. The second procedure

(Figure 23) is subspace optimization function and it takes subspaces as input and

optimizes these subspaces based on entropy minimization, skew factor, and kurtosis

factor. These three parameters are used to optimize subspaces. The plots of entropy,

skew factors, and kurtosis factors are shown in Figure 36, Figure 37, and Figure 38

respectively. This function returns optimized subspaces and the corresponding index

values of data objects.

The third procedure (Figure 24) takes input as optimized subspaces and check con-

vergence of each dimensions of every subspace. The convergence has been checked.

The Linderberg–Feller Central Limit Theorem or Lyapunov conditions has been ap-

plied on all merged and unmerged subspaces and check the convergence of subspaces

individually. These subspaces are not converging to zero but very near to zero as

shown in Figure 39. This convergence shows that the dimensions are included in

subspaces are homogenious to each other and form subspace cluster.

Finally, the optimized and converged clusters index values are used to extract the

real data object values. The data object values are used to plot the parallel plot

to visualization of clustered subspaces. These subspaces parallel plots are shown in

Figure 40.

3.2.3 Benchmarking

The performance of DynaDASC has been measured based on scalability factor versus

number of dimensions in subspace. The result illustrated in Figure 41 depicts the

55



scalability feature of DynaDASC. The DynaDASC discover four subspaces in dataset

of size 20000 (pheno1). These subspaces consists of 3, 6, 7, and 9 dimensions in

subspace - 4, subspace - 3, subspace - 2, and subspace - 1 respectively. In order

to check the scalability feature, we start adding 20000 more data points in existing

dataset and we found that the number of dimensions and subspaces change as the data

objects increase or decreases in the dataset. The Figure 41 illustrates four dataset

results of size 20000 (pheno1), 40000 (pheno2), 60000 (pheno3), and 80000 (pheno4)

of data objects. This result conclude that DynaDASC is scalable in nature.

On other hand, DynaDASC is pretty good in finding optimal number of subspace

clusters. The existing subspace clustering algorithms discover more than hundred

subspaces whereas DynaDASC computes reasonable number of subspace clusters like

4, 4, 4, and 3 for 20000 (pheno1), 40000 (pheno2), 60000 (pheno3), and 80000 (pheno4)

of data objects respectively.

The time complexity of DynaDASC has been compared with other existing sub-

spce clustering techniques. The results are depicted in Figure 42. It shows that

DynaDASC has O(n2) time complexity whereas other have about to linear time com-

plexity except projected clustering algorithm.

56



4 Discussion, Extensions, and Future Work

4.1 Discussion

Data Standardization Our first experimental study shows that the proposed stan-

dardization method, SDFS, performs better than the other techniques evaluated, such

as L, Mean, Median, STD, AGK, Euclen, AHUBER, AWAVE, IQR, MAD, Maxabs,

USTD, MidRange, Spacing, and Range. This superiority is due to fact that the other

methods assume that data have some parametric distribution, while the SDFS tech-

nique is very useful for data that has not had any kind of distribution (nonparametric

analysis) and sparse datasets with mixtures of positive and negative data values. In

contrast to existing standardization techniques, SDFS does not only aim at character-

izing low dimensional and sparse data but also will be useful in finding optimization

of methods in the low dimensional data analysis process.

A Test for Interdependence of Dimensions If the variates of a multidimen-

sional dataset are genuinely independent, then their clustering should not be affected

by transforming the data using an orthonormal basis. This transformation simu-

lates separate, univariate dimensions. This may not be the case for many biological

datasets. Indeed, the low-dimensional data of Section 2.1.3 showed bizarre clusters.

We found that the clusters are squeezed around the cube and very few data points

are allocated to different clusters. Most of the data points are assigned into one clus-

ter. Even after a standardization method such as SDFS is applied on orthogonally

transferred data, it still shows the same clustering results. For example, CLIQUE

assigns the majority of data points to three subspace clusters and these subspaces

are perpendicular to each other, as shown in Figure 33. Therefore, we conclude that

the original data are not linearly independent and that an orthonormal transforma-

tion generates such artificial linearity. This provides another test, geared towards
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clustering, for interdependence of dimensions.

Combining Desirable Features of Other Algorithms A second experiment

shows that several diverse clustering algorithms combine desirable features to cluster

the data. We focussed on methods that could give clusters of arbitrary shape (for

example, as in many hierarchical clustering algorithms) and that did not constrain the

numbers of clusters (for example, as in k-means and k-nearest neighbor) [60,87]. The

methods chosen include density-based clustering, using the density of points in regions

of the phenotypic space as the similarity criterion, to avoid using distance metrics

that apply in only a few types of topological spaces (DBSCAN and OPTICS) [5,21];

subspace clustering to select the most discriminating combinations of dimensions,

to avoid arbitrary dimensional choices (CLIQUE, SUBCLUE, and FIRES) [4,42,51];

projected clustering, to avoid the assumption of disjoint, non-overlapping clusters [63];

and nonparametric clustering, to avoid assumptions about the distribution of the data

(MODECLUS) [49, 50]. Except for MODECLUS, all of the clustering algorithms

we used are found in R packages; there is a SAS procedure for MODECLUS [31,74].

DynaDASC In this dissertation, we analyzed the major challenges of the density-

based subspace clustering problem, and proposed a novel algorithm DynaDASC that

does not depend on the characteristics of metric spaces or user inputs for number of

clusters. It auto computes and updates the density threshold of each of the subspaces.

The density threshold value depends on the measure of locality. It is relatively locally

density adaptive, scalable and dynamic in nature. It does not require metrics or

any assumptions about the space of the data. This algorithm outperforms existing

algorithms in efficiency and effectiveness in detecting the most relevant overlapping

and non-disjoint clusters on numerical datasets of lesion phenotypes.

DynaDASC partitions the data space and eventually finds the subspace natural
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clusters in any arbitrary subspace even in the presence of overlapping clusters. Us-

ing several synthetic and real-world datasets, we demonstrated the advantages of the

DynaDASC algorithm compared to the other methods available in the literature for

identifying density-based subspace clusters. In contrast to existing clustering tech-

niques, DynaDASC does not only aim at finding clusters but also at identifying the

subspaces containing clusters with high accuracy.

DynaDASC was shown to outperform other algorithms for clustering all datasets

presented in this study in two important respects. First, the other density-based

algorithms placed nearly all of the data points into a single cluster, which we know

from other explorations of the data is not correct (data not shown). Second, the

subspace clustering algorithms found a very high number of subspaces compared to

DynaDASC. Again, other evidence suggests this proliferation of subspaces is prob-

ably incorrect. Existing subspace clustering algorithms like Clique, Fires, Subclue,

ProClus, Orclus and projected clustering are restricted to cluster spherical or glob-

ular shapes, while DynaDASC can discover the natural clusters, whether they are

spherical or not. This may explain why DynaDASC finds fewer, but more highly

populated clusters. We emphasize that for the large synthetic dataset (Section 2.1.4),

we cannot establish the ground truth clustering. Instead, we plan to test the stability

of clusters produced by DynaDASC under random partitioning and permutation of

data addition (Section 4.3).

However, DynaDASC is clearly not as fast as other subspace clustering algorithms

(Figure 42). As expected, DynaDASC runs in quadratic time. Repeatedly recalculat-

ing the measures of locality imposes a high computational cost. One obvious solution

is to parallelize the computation by randomly partitioning the data, using DynaDASC

to cluster each partition, combining identical subspaces across partitions, and recom-

puting the measures of locality of the entire, preclustered dataset. This approach
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could easily exploit distributed cloud resources.

SDFS and DynaDASC are an efficient and effective pair of methods for standard-

ization and detecting the most relevant overlapping subspace clusters on numerical

datasets. The experimental study clearly shows that the proposed methods com-

petitively outperform other evaluated techniques. The proposed approach leads to

the higher clustering accuracy measured on the basis of the novel standardization

method.

4.2 Extensions

Knowledge discovery from big data is a challenging problem in areas such as predic-

tive analytics and wisdom inference. DynaDASC may be very useful and important

in many computer vision and image processing problems like high throughput field

phenotyping [47], and in the recognition of faces and moving object tracking. Be-

cause these datasets are high-dimensional in nature, they need to be efficient with

high accuracy clustering techniques. Similarly, face and moving object images of the

same object may look entirely different under different illumination conditions and

different images can look same under different illumination settings. In online social

networks, the detection of communities having similar interests can both aid soci-

ologists and target markets. In social networks, this algorithm could assist in user

oriented information integration and provide unique identity, such that data sharing

would be managed in a unique way, saving data transmission and cyber security costs

as well. In radio astronomy, clusters of galaxies can help cosmologists trace the mass

distribution of the universe, and further the understanding of the origin of universe

theories.
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4.3 Future Work

Several questions remain.

• Does SDFS outperforms methods for multivariate nonparametric standardiza-

tion, for low- and high-dimensional data?

• DynaDASC uses a parameter τk which is the locally density adaptive threshold

bounds of the estimating corresponding subspace. Its thresholding of subspace

should be an automatic process instead of hard thresholding.

• The optimization process could be enhanced.

• DynaDASC runs in quadratic time: can this be improved without compromising

its ability to find natural clusters? For example, by clustering random parti-

tions of the data and then reclustering the combined subspaces and unclassified

points.

• The stability of clusters produced by DynaDASC must be investigated by ran-

domly partitioning the data and checking cluster assignment.

• The stability of DynaDASC clusters to random permutation of the order of the

input data must be checked.

• How many distinct lesion phenotypes are there? We look forward to applying

DynaDASC to our extensive image collection to uncover regions of the causal

network.
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[13] Böhm, C., Kailing, K., Kriegel, H., and P. Kröger, 2004. Density connected
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York.

64



[24] Friedman, N., 2004. Inferring cellular networks using probabilistic graphical

models. Science 303:799–805.

[25] Friedman, N., Linial, M., Nachman, I., and D. Pe’er, 2000. Using Bayesian net-

works to analyze expression data. In RECOMB2000. Proceedings of the 2000

RECOMB Meeting, Tokyo, pages 127–135. Association for Computing Machin-

ery, New York.

[26] Friedman, N., Linial, M., Nachman, I., and D. Pe’er, 2000. Using Bayesian

networks to analyze expression data. J. Comp. Biol. 7:601–620.

[27] Gao, B. J., Griffith, O. L., Ester, M., and S. J. M. Jones, 2006. Discovering

significant opsm subspace clusters in massive gene expression data. In Ungar,

L., Craven, M., Gunopulos, D., and T. Eliassi-Rad, eds., Proceedings of the 12th

acm sigkdd international conference on knowledge discovery and data mining,

pages 922–928. Association for Computing Machinery, Philadelphia.

[28] Goodall, C., 1983. M-estimators of location: An outline of theory. In

D. C. Hoaglin and Tukey [18], pages 339–403.

[29] Guan, Y., Myers, C. L., Lu, R., Lemischka, I. R., Bult, C. J., and O. G. Troy-

anskaya, 2008. A genomewide function network for the laboratory mouse. PLoS

Comput. Biol. 4:e1000165.

[30] Han, J. and M. Kamber, 2006. Cluster Analysis. Morgan Kaufmann, New York,

second edition.

[31] Hassani, M., Hansen, M., Müller, E., Assent, I., Günnemann, S., Jansen, T.,
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Figure 27: Clustering Output of Standardized Data
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Figure 28: Clustering Output of Standardized Data
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Figure 29: Modeclus Results of Synthetic Data using MIDRANGE and SDFS (a)
Size : 3000, (b) Size : 6000, (c) Size : 7000, and (d) Size : 10000

raw orthonormal standardized

Figure 30: Distributions of Raw, Orthonormally Transformed, and Standardized Data
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Orthonormal Standardized

Figure 31: Pair-Wise Covariances of Orthonormally Transformed and Standardized
Data

Figure 32: Points/cluster for Spheres of Increasing Radius. Left, standardized data;
right, orthonormally transformed data.
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Figure 33: Clusters Using Different Algorithms on Orthonormally Transformed and
Standardized Data
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(a) Rescaled (b) Standardized

Figure 34: Box Plots of Rescaled and Standardized High-Dimensional Synthetic Data

Figure 35: Correlation Matrix Plot
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Figure 36: Subspace Optimization: Entropy Thresholding
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Figure 37: Subspace Optimization: Skew Factor Thresholding
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Figure 38: Subspace Optimization: Kurtosis Factor Thresholding

Figure 39: Subspaces’ Convergence Points
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Figure 40: Parallel Plot of Subspace Cluster

Figure 41: Number of Dimensions in Subspaces as a Function of Scalability
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Figure 42: Comparision of Time Complexity of DynaDASC to Other Algorithms
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