AUTOMATING DATABASE CURATION WITH WORKFLOW TECHNOLOGY

A Thesis presented to the Faculty of the Graduate School
University of Missouri-Columbia

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

by
GAURAV ASHOKKUMAR SANGHI

Dr. Toni Kazic, Thesis Supervisor

MAy 2005

The undersigned, appointed by the Dean of the Graduate School,
have examined the thesis entitled

AUTOMATING DATABASE CURATION WITH WORKFLOW TECHNOLOGY

Presented by Gaurav Ashokkumar Sanghi
A candidate for the degree of Master of Science

And hereby certify that in their opinion it is worthy of acceptance.

Dr. Toni Kazic
c//_—J\ . [{" -~
| (Fiq _,c{ o

I~
|
Dr. Chi-Ren Shyu

i . — A ,r/.)

Dr. Mary Polacco

T ey e

ACKNOWLEDGMENTS

I extend my sincere gratitude and appreciation to the many people who made this
thesis possible. Special thanks are due to Dr. Chi-Ren Shyu and Dr. Mary Polacco
for their kindness in serving on my thesis committee. I’d also like to thank specially
to Dr. Chi-Ren Shyu for giving me an enormous amount of knowledge in his lectures
on databases. I am also highly indebted to Dr.Toni Kazic, my advisor, for the
tremendous amount of knowledge I gained from her and also for the confidence she
had shown in me in the most difficult times and for making me believe what I am
capable of doing.

I benefited from discussions with Amithreddy Gosukonda, Avanthi Mummaneni,
Raman Seth, Sinéad Boyce, Jiahui Jiang, Archana Chikkabel, Nandini Basu, Sumit
Sadekar, Bryan Cannon, Julie Stuppy, Thomas Campbell, Arpit Ghoting, Phani
Chilukuri, Radu Brumariu, Andrew Gilmore and William B. Wise. This work is
supported by a grant to T.K. (GM 56529) from the U.S. National Institutes of
Health.

And lastly, I would like to thank my family for giving me moral support, guidance
and encouragement right from the begining of this research thesis and all the way to

the finish line.

i

TABLE OF CONTENTS

ACKNOWLEDGMENTS ..ttt iitiittttinenctetnsencaseanansas ii
LIST OF FIGURES ..ottt ittt it ittt ittt tenensaesnncncancnaens v
LIST OF TABLES ...ttt ittt ittt tttenenseesescacananasns vi
LIST OF ABBREVIATION S ...t iiiiiiiiiiiitiitietencnennensenaanss vii
AB ST R A CT . ittt ittt iitttetetateneasensensasenseasasencanns viii
1 Introduction 1
1.1 Motivation 1
1.2 The Problem 1
1.3 Types of Databases and their Processes 7
1.4 What is Workflow? 11

1.5 Publication Model of Workflow 13

1.6 Proposed Solutiono 13
1.6.1 Synopsisof Results 14

2 Languages and Platforms 16
3 Results 16
3.1 Process Design oL 16
3.2 Overview of The Agora’s “Back End” 19
3.3 Agents in the Databases, 21
3.4 Automated Workflow L 22

il

3.4.1 Database Structure and Perl scripts 22

3.4.2 Reviewer Selection 0000 24

3.4.3 Review and Revision L0000 27

3.4.4 The Arbiter’s Decision 29

3.4.5 Datalnclusion 0000 31

3.4.6 Rebuilding New Databases 46

3.4.7 Adaptive Workflow Model 46

3.4.8 Re-engineering the Workflow of Nomenclature 57

4 Discussion 58
4.1 Future Improvements Lo Lo 63
BIBLIOG R APH Y .ottt ittt et et eetattataaeaaanaaanns 66

v

LIST OF FIGURES

Figure Page
1. Previous Curation Workflow in Klotho 4
2. Previous Curation Workflow in END)
3. Previous Curation Workflow in UM-BBD 6

User’s View of The Agora 9
5. Data’s View of The Agora 10
6. Back End Functions of The Agora 20
7. Database Structure and Operations 25
8. Reviewer Selection Process 28
9. Review and Revision Process 30
10. Including Data in Data Files 32
11. Parsing Glossa Data into Prolog Facts 33
12. Updating Isomer Files 42

Table

10.

LIST OF TABLES

Sample Data for a Molecular Structure Deposit
Data Extracted for a Molecular Structure Deposit
Data Entries for a Molecular Structure Deposit
Sample Data for a Term Deposit

Data Extracted for a Term Deposit

Data Entries for a Term Deposit

Data Deletion for a Term Deposit

Sample Data for a Enzymatic Reaction Deposit
Data Extracted for a Enzymatic Reaction Deposit

Data Entries for a Enzymatic Reaction Deposit

vi

Page
36
37
38
39
40
44
45
50
ol
o6

LIST OF ABBREVIATIONS

abbreviation

END
BND
UM-BBD

JCBN
CGI
SQL

full name

Enzyme Nomenclature Database

Biochemical Names Database

University of Minnesota Biocatalysis and
Biodegradation Database

Joint Commission on Biochemical Nomenclature
Common Gateway Interface

Structured Query Language

vii

ABSTRACT

Building and curating databases efficiently is one of the major problems in scien-
tific databases today. The first problem lies with the exponential growth in scientific
data. With the never-ending process of research and inventions in the scientific com-
munity, the dataset is very large and constantly increasing in growth rate. Manual
curation is no longer efficient to handle this amount of data and the database becomes
error prone and inconsistent. When approved a datum may necessitate changes in
existing data distributed over multiple tables and fields in one or more databases. The
second major problem is the processes used to deposit, review, revise and finally ac-
cept data into a database. Each database has its own way of allowing people to submit
new information, verify the information that was submitted, and depending on the
verification process, discard the data or include them in the database. The process of
including data in databases itself might be very different and complicated, depending
on the relationships that exist among the data and the structure of the database’s
design. When it comes to building databases of biological information, staffs of Ph.D.-
level scientists are needed to curate and maintain data, and each database has its own
domain model. All these factors make it expensive to build databases of biological
information. Costs could be reduced if the scientists who curate the data are provided
with data that are initially reviewed by other experts for accuracy and consistency.
Since scientific expertise is distributed around the world, this allows the best experts
to contribute knowledge. A common platform that implements a well-accepted work
process is needed to support such community curation.

Using The Agora as an example, I have applied workflow methodology to au-
tomating the human processes involved in the curation process to minimize human
intervention and eventually reduce errors in the database. In an attempt to maxi-

mize productivity in building and maintaining databases, I emphasized automating

viil

the flow of work in the curation of new data. Workflow technology is a method of
understanding the flow of data from the source to its final destination, identifying
each of the intermediate stages, and then understanding each stage and automating
as many of the processes and sub-processes as possible. I have applied the workflow
used in reviewing manuscripts for publication to curating these biochemical data.
The purpose of this thesis is to determine the complex relationships that exist be-
tween information technology and community database applications, in an attempt
to determine how workflow technology can be optimized to improve curatorial pro-
ductivity. I studied four different data curation groups, three databases and one
group that produces text synopses of the literature. I have managed to design a
single framework for data deposits for all the databases so that the process could be
automated and simplified. I was able to use this common framework for the synoptic
group’s workflow, but the task of re-engineering their processes is much harder and
continues. The thesis focuses on the “back end” of The Agora, which involves the
intermediate databases and the final output databases that store different categories
of data in the form of different Prolog predicates with their own tracking methods.
This model is flexible enough to accommodate additional processes idiosyncratic
to particular groups of curators, such as those for enzymatic reactions, biochemical
terms, and molecular structures. Also, future improvements can be easily incorpo-
rated into this model without making any major design changes and with straight-
forward coding procedures. This thesis demonstrates the application of workflow
technology to intellectually complex, geographically distributed, multidisciplinary sci-

entific processes.

X

1 Introduction

1.1 Motivation

In today’s world of explosive scientific growth, community databases are becoming
increasingly popular for storing and providing huge amounts of data in various forms.
However, handling such huge amounts of information efficiently and consistently has
become a problem. GenBank increased from 11 billion base pairs of DNA to 45 billion
from 2000 - 2004, approximately a 100% increase in data size every year. The same
goes for DNA sequences which were around 10 million in the year 2000, and have
increased four times to a total of 40 million at the end of four years in 2004 [13].
For the HTML text of the Enzyme Nomenclature, the average number of users per
week increased from 5515 in year 2000 to 20,392 in the year 2004 [14]. With data and
database usage increasing at this tremendous rate, the existing methods for curation
and management of data and code are rapidly being outpaced. Considering the rate
at which data are being generated for databases, I need ways to speed up the building

and maintainance of curated databases.

1.2 The Problem

Building and maintaining scientific databases is complex and expensive because:

e Research and discoveries are increasing scientific data at an exponential rate,
and these data must be captured in databases in order to interpret the results

of the experiments.
e The relationships among the data are complex.

e Human errors introduced during manual data management makes database in-

consistent.

e Processes to deposit, review, revise and include data in databases are different

for different databases.
e Scientific related data are present in multiple databases.

e The number of curators and available resources are far smaller than those needed

to curate essential scientific data using current methods.

These problems are illustrated by the history and characteristics of the databases
that participate in The Agora [7]. Each of the participating databases, Klotho,
Atropos, BND, END, and UM-BBD, differ not just in the types of data collected,
but especially in the way they were curated. To illustrate, I describe three examples,
shown in Figures 1 - 3. Klotho contained information on both molecular structures
and synonymous names; proposed entries were checked by three different people; and
a variety of command-line Prolog predicates and Perl scripts were used to track this
process, identify fully and partially checked proposed entries, and accession the new
data. For Enzyme Nomenclature(hereafter referred to as the Nomenclature), the pro-
cess is much more complicated. Information on possible new enzymes reaches the
curators by email, reading the literature, phone calls, or the sending of reprints; a
curator drafts an entry ; the draft entry is circulated to the members of the JCBN
and modified; the modified entry is posted for public comment; the entry is fur-
ther modified as needed and either re-reviewed or approved; and incorporated into
the JCBN web site. Modification of existing entries, whether major or minor, are
(mostly silent) posted on the JCBN web site. To enter the Nomenclature data into
END, the HTML from the web page was parsed, the parse checked by computer sci-
entists and one biochemical expert, auxillary data are added, and the data accessioned
into END. UM-BBD focusses on reactions metabolizing xenobiotics, many of which
have not been sufficiently described to warrant classification in the Nomenclature.

Students informally review the literature on a reaction and make a web page about it

as part of their coursework. The proposed page is reviewed by the database’s curator,
modified if needed, and posted to a web site. Some of the data are accessioned into
a supporting database.

Though the processes differ significantly, there are some common elements. Each
group acquired data, reviewed them, revised them, and made them publicly available.
Another commonality is the way the data from different database interact. Some
entries in UM-BBD are ready for incorporation into END. Since Klotho wanted
to enter structural information for each small molecule in the Nomenclature, that
group tabulated molecule names used in END and checked these for consistency
and synonymy. Many inconsistencies and synonyms were found, which were sent
back to the JCBN with suggestions to resolve them. (This effort was the nucleus
of BND, which has since grown to include other types of relationships among terms
besides synonymy.) The databases differ in the granularity of the data (from small
for Klotho to very large for END); in how automated data management is (high for
Klotho, essentially none for UM-BBD, and intermediate for END); who can change
the data and how; and whether changes are recorded (fairly well for Klotho; relatively
little for END; and apparently none for UM-BBD).

It was obvious that the domain model for END could be easily extended to
other reactions and processes, provided ways were found to more efficiently manage
curation of those data. For example, many reactions implicated in human dementias
are enzymatic, but many more are not [16]. But to make this possible, I needed a
way to automatically analyze the incoming data and put them efficiently at the right
place in the right database. This reduces manual work and as a result, human errors

are reduced and completely eliminated to some extent.

New molecule structure

Checked by
3 checkers ?

Accession data

v
Check list of checkers Add data to
who have checked the rule database

l

Notify checkers who haven't
checked the structure

l

Checker gets notification when
connects to the system

|

‘ Checkers check rule ‘

Rule approved ?

Yes

Checker changes information

L 3
Add the checker in the list of Clear the list of checkers who

checkers who have checked (« had previously checked the rule
and approved the structure

Figure 1: Previous curation workflow in Klotho. Everytime a new molecule structure
was found, three checkers checked the structure before accessioing and including it
in the database. A list of checkers was used for monitoring the progress of checking
by each of the checkers. After a structure was approved by any of the checker, the
checker was added in the list of checkers who have approved the data. However, if a
structure was modified by any of the checkers, the list of checkers who had approved
the structure was reset and the checkers were required to check the new structure
again and approve it.

Information
from emails

Information from
phone calls

Information from
other databases

Data from g Curator notified
literature

evise new

data data
v

Curator
revises

Curator reads literature,
drafts new entry

Curator revises
classification

Yas
Significant
revision?

k.

Entry is circulated
to all reviewers

Y

Rewiewers comment on infarmation
by phone, email, in person

Y

Curator revises draft entry

L A
Draft entry sent to
JCBN web site

v

Draft entry posted on

website for public comment

v

Comments received

¥
Curator revises entry
based on comments

Revised entry

Entry pdsted on

JCBM web site

h
HTML downloaded

No

Yas

HTML page parsed

k.

Web site maintainer
revises data

Parsed data checked
manually and automatically

re-circulated if needed

k.
‘ Auliary data created ‘

k.

‘ Accessioned into END +—

Modifications are
manually identified

r

EMND data
manually modified

Figure 2: Previous curation workflow in END. The curator received new information
in various forms and revised existing data drafted new entry. The entry was reviewed
by a set of reviewers and after revision, the entry was sent to JCBN web site for
public comments. Based on the comments, the entry was revised and reviewed if
needed and then sent to JCBN for approval. On approval, an HTML page for the
entry was posted on the web site. If it was a revised data, the modifications were
identified and accessioned manually. If the data were new, the HTML page was
downloaded and manually parsed to create auxiliary data and then accessioned into

END.

Student enrolls in course

L 4

Reads publications, journals, books, literature

L 4

Student drafts entry based on reading

L

Entry reviewed by curator

Curator modifies Yes
information

Need for changes?

Add some data to
supporting database

Post web page to web site

Figure 3: Previous curation workflow in UM-BBD. A student enrolled in a certain
course read publications and drafted an entry. This entry was reviewed by the curator
and modified if needed. An HTML page was written for the entry and hosted on the
web site. Some of the information was accessioned and stored in a database.

1.3 Types of Databases and their Processes

A curated database is a database developed by a curator, or a group of curators, who
have very good expertise in the associated domain. A curator finds new information,
removes redundancy and inconsistencies from current and submitted data, incorpo-
rates annotations, and adds reference information and cross-references to external
databases. Thus curation can be defined as the process of verifying and enhancing
data in databases. All these processes require extensive scientific expertise and are
time consuming, and that makes it very difficult to build and maintain new databases.
Especially in the case of biological databases, it is really hard to keep up with new
information as it is released. Since this entire process of reviews and revision involves
lot of processes, subprocesses and decision making for their proper operation, exor-
mous manual effort is required to keep data curation running smoothly, efficiently,
and accurately.

Different databases have their own methodology for accepting new data from the
public and for curating the data. GenBank is the NIH annotated collection of all
publicly available DNA sequences [13]. Submitting new information to GenBank is
required to submit papers for publication. Revisions or updates to GenBank entries
can be made at any time through emails. These revisions and new additions are
curated to a minimal extent and made available to the public community. On the
other hand, BioMagResBank (hereafter referred to as BMRB) collects, archives, and
disseminates the important quantitative data derived from NMR spectroscopic in-
vestigations of biological macromolecules [10]. Relevant data are deposited through
a set of forms by the scientists who generate the data, and after the information is
submitted, in consultation with these scientists, BMRB resolves any problems with
the self-consistency and completeness of the deposition. Unlike GenBank, BMRB has

an extensive data curation process performed by the scientists of BMRB.

The Agora is an electronic infrastructure for the scientific community to use
and curate information on biochemistry, molecular biology, and physiology in multi-
ple, independent databases. The databases that currently participate in The Agora
are END (the Enzyme Nomenclature Database — a database of enzymatic reac-
tions), BND (Biochemical Names Database — a database of molecule names, terms,
and relationships), Klotho (a database of molecule structures) and a database of
dementia-related information. There are currently three types of deposit which can
be made through The Agora: new reactions, new terms and relationships for exist-
ing molecules, and new structures of molecules. These deposits go in END, BND,
Klotho, and the dementia databases. The Agora is comprised of two main sections:
the “front end”, which is the web interface for people to deposit, review, revise and
curate the information using browsers; and the “back end”, which manages the cura-
tion process for the participating databases. Illustrations of the user’s point of view
and the data’s “point of view” in The Agora are given in Figures 4 and 5 respectively.

As shown in Figure 4, the user only experiences the “front end” of The Agora.
The user deposits information and then waits for a response fron the reviewers. The
reviewers, who are selected in the “back end” of The Agora, review the deposited
information and send their decision and comments to The Agora. If a revision is
requested, detailed information on the review is sent to the depositor, who revises the
information and submits again. The same reviewers review the revised information
and decide the fate of the data. In either case, the information is sent to the arbiter
for the related database, who makes the final decision and either includes the data
in the database or rejects the data. There are only a few designated experts who are

selected as curators for databases.

¥ ¥
Unregistered User Registered User
|
!
Quety Contribute
|
v v v v
‘ Deposit ‘ ‘ Review Revision ‘ ‘ Curate ‘

l Front End

: I
I yyyyyyyyy -

b 4
Select
Query Process Reviewers

¥

Archived E
discussions E Kiotho Other

Contact
Arbiter |

Databases

Remove Data

Figure 4: A user’s view of The Agora. The dashed line separates the two sections of
The Agora, the “front end” and the “back end”. The user is aware of the “front end”
of The Agora, which is the web interface, but is unaware of the processes of the the
“back end”. The design of the “back end” is described in Section 1.3.

Data

r v v

Query Comment Upon Deposit Curate

L A

check for redundancy

molecules enzymatic or

needed molecule Classify by type of dementia reaction
data and database

term

check against
data needed

revise data
F

v

review data |,

L

condense data

h J

generate status
report

approve?

L 4
report sent to our
local depositors ¥ v
reject data send to database I:

Figure 5: The data’s view of The Agora. The data present in The Agora can be
queried, commented upon, deposited, or curated. When deposited, they are checked
for redundancy; then for the database to which they are to be deposited; reviewed;
revised if needed; and finally included into the database if approved.

10

1.4 What is Workflow?

Without a thorough understanding of workflow, productivity gains will be incomplete
and ineffective. Workflow can be described as the coordinated execution of simple
or complex activities (tasks) by human or automatic executors (agents). It is the
path and systems used in the linked flow of activities to achieve an aim. The flow
defines where inputs are initiated, the location of decision points, and the alterna-
tives in output paths. Workflow is used in systems that perform automatic routing of
events or work-items from one agent to another. Clarence Ellis breaks groupware into
four categories: keepers, synchronizers, communicators, and agents [5]. Keepers are
the members of the group that maintain the information; synchronizers coordinate
the subprocesses; communicators maintain the communication between the different
subprocesses; and agents do the actual manipulation and analysis of information. In
curated databases, keepers are the group of people who collect and curate the data;
synchronizers ensures that all processes are executed in the right order; communica-
tors maintain the communication between the depositors, reviewers, and the arbiter;
and the agents are the human or automatic agents who organize and manage the
data in the databases. Workflow, like groupware, also has these four catgories. In a
groupware, it is not necessary that all these four categories be present in a process.
Even if there are one or more categories missing, a process can still form a groupware.
However, this is not the case with workflow. For workflow, it is necessary that all the
four categories are present. Synchronizing and coordinating subprocesses in a process
or a group of processes forms the most critical part of workflow technology. While
automation and task consolidation remain the cornerstone of workflow optimization,
a number of additional factors must be considered including the stochastic nature of
the workload, the availability of human resources, and the specific technologies being

used in the process [15].

11

Approaches to developing such workflow systems have both commercial and aca-
demic origins. Commercial systems have evolved from work on forms-based image
processing systems and groupware [9]. Academic research has focused mainly on pro-
cess modeling and database transaction issues [17]. Workflow management has been
proposed in programming-in-the-large for hetereogenous and distributed information
system environments. This type of programming is done by larger groups of people
or by smaller groups over longer time. This type of programming produces code
that cannot be understood without a divide and conquer approach because of its
size or complexity. Researchers in software process modeling have developed formal
languages for process modeling that have been used to define process analysis, simu-
lation and execution techniques, tools and integrated environments. Process analysis
is understanding the process in order to develop ideas for improvement of the process,
and simulations are experiments executed on the model over a period of time to test
results. Database transaction research focuses on extending traditional transaction
semactics to support long duration and/or cooperative transaction models [1,2,17].
Workflow implementation has been mostly seen in automating mechanical processes
like machine operations or sending paychecks on a timely basis. From the examples
of workflow implementation in industry, it is clear that workflow can be re-engineered
only in the real work environment. It is necessary to see and understand the cur-
rent workflow and the processes involved in it, examine the inputs and outputs of
each process, relate them to other stages of the workflow, and identify the possible
processes which can be automated or modified to improve the overall efficiency of
the process. However, workflow technology has yet to be implemented in database

curation processes, and this was one of the key issues in this research.

12

1.5 Publication Model of Workflow

The process of database curation involves the curator reviewing existing data; modi-
fying them depending on the new information in the literature, and adding new data.
Since new information is available daily, the data should be made up to date on a
regular basis. This examination of data by curators is very similar to the scrutiny
of submitted manuscripts by reviewers. In both cases, body of proposed informa-
tion is studied for accuracy and consistency with other knowledge. For publications,
proposed information is generated and structured by a submitter and considered by
expert peers. These peers can recommend the information be incorporated into an
archive (the journal) as is or following revision, or reject it. Submission and review are
performed by all members of the scientific community and is universally accepted by
them. Because of this acceptance and the common belief that peer review improves
the quality of publications, we decided to adopt this model workflow as the frame-
work for The Agora. In The Agora, I designed the process of data submission so that
the scientific community can submit and verify data before they are included in the
database. Letting experts world-wide curate and review information partially curates

the data, making the work of database curators less tedious and time-consuming.

1.6 Proposed Solution

The way to faster and more efficient curation of databases is to either provide auto-
mated curation of databases, or at least to provide information to curators so that
their workload is reduced or made easier. Since completely automated curation would
involve communicating with numerous other databases and the literature holding re-
lated information in biology and biochemistry fields, I have left this for future devel-
opment. I decided a more feasible solution is to make work easier for the curators.

The ability to define, execute, and track processes is central integrating and making

13

productive new technologies such as automated workflow in a widely distributed set-
ting [6]. So I decided to design a standard workflow for the curation process of the
various databases participating in The Agora. Certain designated scientific experts,
called the reviewers, would look at the information, references, and comments made
by the depositor and check for their validity and authenticity. To help ensure that the
information is acceptable in general, I have two different reviewers reviewing the same
information and giving their independent suggestions. Their feedback is checked to
see if they both agree on the data and if so, the data are passed to another expert,
called the arbiter, to look at the information again and approve it. There is only
one arbiter for each database, who is a designated expert in the respective field. By
using repeated and independent reviews of publicly deposited information, the data
are much more accurate and consistent. With added information from depositors and
reviewers, the task of the curator is made much easier. Although the tasks of curator
could be simplified, the overall process would still be very slow. In order to speed
up the overall process, I decided to automate as many processes in the workflow as

possible.

1.6.1 Synopsis of Results

I studied four existing workflows. Three were local databases developed in our labo-
ratory. The fourth was a geographically distributed group of people who synthesize
information from the literature, or approve the synthesis, or publish the synthesis
on a web site. The databases’ workflows were easily studied, but I had to rely on
descriptions of the workflow of the group by one person. The description changed
gradually because the workflow and communication with the reported both changed.
These and other factors made it much harder to implement a final version of the

workflow. Nonethless, I managed to successfully implement the workflow technology

14

and automate it on The Agoraand partially for the group. The major results can be

listed as follows:

e Human agents were replaced by automatic agents in all the possible processes
and subprocesses of database curation. These automatic agents were self-
triggered and so there was no wait time in proceeding to the subsequent steps of
curation. As soon as an event happened, the next step was started immediately,

saving a significant amount of time.

e Workload was equally distributed among the best and most experienced per-
sonnel at intermediate levels. This ensured that the response could be received
within a reasonable amount of time, and selecting the best reviewers guarantees

the best results from the review and revision stages.

e Data were added in the database with no errors. As a result, the database was
more consistent and robust. Since the data were related to each other at various
levels, correcting any errors was a tedious process and involved a lot of manual

work in tracking each error and correcting it.

e All relationships between the existing and new data were correctly maintained.

The automated process updated each related data structure in the database.

e Workflow technology for remote processes is difficult to design and implement.

This is one of the major limitations of workflow technology.

e Applying workflow technology to distributed groups of volunteers is extremely
difficult. Determining the current workflow accurately is very difficult; each
person can have a different workflow; and there is much less incentive for these

groups to make difficult changes.

15

There are some important limitations of this technology and in its current imple-

mentation of The Agora:

e Since the arbiter is the final authority, I assume the data coming from the
arbiter are correct, and so the database is still prone to errors introduced by

the arbiter.

e There are processes, such as review, which could not be automated in the current

implementation and so I still need human expertise to review and curate data.

In spite of these limitations, this model can be applied to other processes which
are idiosyncratic to a particular group of curators. This makes the model flexible
enough for not only implementations in other related processes, but also in including

future improvements.

2 Languages and Platforms

I used Perl (version 5.0004) on a Sun E450 running Solaris 8.0. I have used MySQL
database for storing intermediate data from the “front end”, and for extracting the

final data for including in our databases. I used Quintus Prolog (version 3.4) for our

final databases Klotho, BND, and END.

3 Results

3.1 Process Design

In order to acheive an optimal solution for the problem, I had to first study the process
so that an appropriate model for the workflow could be designed. This designing

process involved the following steps.

16

e Observing existing workflow. This was the primary process in the case of Klotho
and END. Since these two databases had partial workflow and some data man-
agement processes already existing in the current implementation, it was neces-
sary to study them so that the new workflow can adapt the existing processes

and integrate smoothly.

e Identify common processes and bottlenecks. In this step, I studied the com-
mon processes involved in the curation of data for each of the participating
databases. This helped in identifying ways to design a common workflow for
these databases, as well as for potential future databases that are similar to the
current databases in terms of data and curatorial processes. During this step, I
also identified common bottlenecks in the overall workflow, which were mainly

human operated processes, and were the key targets in automation.

e Curating sample data for databases. In this step, I ran the curation process
for sample data for each of the databases and studied the various processes
that were involved in the curation process. This not only helped in identifying
the processes, but also revealed some hidden subprocesses that could make

substantial difference when automated.

e Prototyping automation. Based on the results from sample data curation, the
proceses and subprocesses were separated into two lists; one that could be au-
tomated and one that were not possible to automate immediately or in the near
future. All possible processes were automated so as to accomodate information

processing for all the different databases.

e Testing prototype with sample data and revising workflow. Once the prototype
for the new automated workflow was designed, tests were run using the same

data sets used in the initial stages to check if all the processes were included

17

in the workflow and if the data behaved in the same way as before. Repeated
revisions of workflow were made to accomodate all the features for each of
the participating databases, and to automate any more subprocesses identified

during prototyping and revision.

Using these steps, I sketched out the entire deposit, review, and revision process
that the data go through before being included in the public databases. This design
is shown in Figure 6. The design was made by repeatedly making sample deposits
for all the types of data currently supported by The Agora so that I could list the
functions needed for each type of deposit and how their data were handled.

Although the data are sent to their respective databases, it was observed that the
curation process for each type of data could follow a common workflow, as shown in
Figure 6. The flow was very straightforward sequential process. Data and processes
involving the “front end” of The Agoraare marked in dashed boxes. These were the
processes or decisions made at the “front end” by human agents like the depositor,
the reviewer, or the arbiter, and could not be automated at this stage since they
involve data coming from experimental results rather than from something that could
be searched by automatic agents. Maybe in future, it might be able to automate
this process once I have complete information on all the possible resources for a
particular type of information. Also, decisions made by the arbiters come solely
from their personal experience and expertise, and that process is something that can
never be automated. However, the remaining boxes in the Figure involved processing
and analysing data in the database, so they could be automated to speed up the
process. These processes were handled by humans until now and involved looking
up the data present in the database and making decisions based on them. These
decisions comprised looking at the type of information submitted, checking when a

deposit is completed, selecting appropriate reviewers by looking at the list of available

18

reviewers, keeping track of reviews and revisions by monitoring the activites in the
database, informing the depositors of their deposit’s progress, checking the feedback
from reviewers and arbiters and taking appropriate actions, etc. These decisions and
selection procedures followed a set of rules for each of the data types, and so it was
possible to automate them and let automatic agents make the decisions and perform
other actions on the data. This has the benefit of instantaneous response to incoming
data rather than waiting until a human agent personally looked over the data and

decides what needs to be done.

3.2 Overview of The Agora’s “Back End”

The process designed for The Agora’s “back end” is shown in Figure 5. The figure
outlines the processes that act on data contributed via or called by The Agora. Var-
ious operations are performed on the data. Users can run queries on the existing
data, submit comments on them, or deposit new data. The data can also be curated
by their curators. When a new information is submitted through the “front end”
of The Agora, the data are checked for redundancy. If the data already exist in the
database, the data are discarded and the original depositor notified. If they are new,
the database for which the data are deposited is determined. If the data are a new
structure of molecule, a local check is made against the data that are needed. Klotho
maintains a list of molecule structures needed for END. This list is used by our local
Klotho team,who are generating molecular structures for Klotho. If the new data are
about a molecule that is in the list of required molecules, a new report is generated
and the local team is notified about the new molecule structure so they can promptly
review it. If this structure is approved, the molecule is removed from the list of needed
molecules and the structure included in the database. If rejected, the information is

used by the local team as the basis of a correct deposit. If the information is about a

19

' Completed Deposit

________ e

Check type of deposit and Notify arbiter and ot
select reviewers until two await final decision
reviewers agree to review }
l . Atbiter™, No | Daia |, No-hﬁfly depolmttor
BEEEEEET RS , o I with complete
Mo oot L i
__________ i Yes l
 Fomplect Reneye Check data type and insert

data into appropriate files

| Rebuild The Agora
to serve the new data

Alreadly revised
once?

—————————————————————

Rebuild Moirai with
the new molecule

.....................

Create new revision process
------------------ and notify the depositor

Figure 6: “Back end” functions of The Agora. These are the functions performed
before the deposited data can be approved and included in the databases or rejected.
The dashed boxes represent data coming from the “front end”, or processes that take
place in the “front end”. The solid boxes represent data or processes in the “back
end”. The data are reviewed by two reviewers, revised by the depositor if needed and
reviewed again, and then sent to the arbiter to either approve or reject the data.

20

synonym or a relationship among existing terms, the information is directly sent to
the reviewers. If needed, a revision is made by the depositor, and after another review
by the reviewers and approval by the arbiter, the data are included in the database.

For every new deposit made through The Agora, the deposited information is to
be reviewed by a set of designated people called reviewers, and then depending on
their comments and suggestions, it is either approved, or a revision by the original
depositor is requested. After revision, the data go back to the same reviewers. After
review is completed, the revised deposit and the reviewer’s comments are sent to the
arbiter. A database arbiter is the final authority to approve or reject the data. If the
data are rejected for any reason, all comments from the reviewers and arbiter are sent
to the original depositor for their records. If the data are accepted, they are parsed

from their Glossa bundles into the database’s native form for inclusion [§].

3.3 Agents in the Databases

The human agents involved in The Agora are the depositor, reviewers, arbiter, and
the curators. The automated agent is The Agora’s “back end”. The depositor is
the person who deposits new information on one of the types of data supported by
The Agora. The depositor uses the “front end” of The Agora and submits information
using a set of forms. On receiving comments and suggestions from the reviewers,
the depositor revises the data originally deposited or provides more information as
requested. Reviewers are designated experts who review the information deposited.
Arbiters are designated experts who have absolute authority over their respective
databases. There is only one arbiter for each database, and this person has the
power to approve or reject incoming data on their own judgment. Any member
of the scientific community using the The Agora can be a depositor or a reviewer.

One can be a reviewer only when the arbiter judges one’s experience and expertise

21

and assigns one reviewer status. However, a reviewer can never review his or her
own deposited information. On completion of the deposit, the “back end” selects
the reviewers who are appropriate for the type of data and notifies them. Once
the reviews are complete, the “back end” checks the reviews and either notifies the
depositor asking for a revision of the data, or contacts the arbiter to make a decision
on the information. Based on the arbiter’s decision, the data are either included in the
concerned database if approved, or else archived into The Agora if they are rejected.
Curators are experts who review the data in the database, remove redundancy, verify

automated annotation of data, and additional information.

3.4 Automated Workflow
3.4.1 Database Structure and Perl scripts

A MySQL database is used for storing all the intermediate information about the
deposited data coming from the “front end”. The tables used in the intermediate
database, and the various scripts operating on these tables is shown in Figure 7.
When a deposit is completed, the information is moved to a table “completed_deposits”,

and at the same time, an entry is added to another table “pending_reviews” with de-
fault values. This table is used by a Perl script which selects reviewers for this new
deposit. This script checks the “pending_reviews” table for any new entries, and if
found, checks for the type of deposit, and searches for two appropriate reviewers and
updates the values by overwriting the defaults. Using these values, I can keep track
of the number of reviewers who have agreed to review the information, the list of
reviewers who have refused to review the data, and the time period since the reviewer
was notified of their selection. The information about reviewers is stored in a table
“reviewers”, which has all the information about each of the designated reviewers

for The Agora. Once two reviewers agree to review the deposit, their information is

22

saved in a table “review_details” which is used for our records, as well as when the
time comes to notify the reviewers after a revision is completed for this particular
deposit. It is customary to normalize tables in a database for better query efficiency.
However, in this case, I chose not to normalize “pending_reviews” for better perfor-
mance. In The Agora, the total number of reviewers for all the different types of data
was relatively small compared to the number of completed deposits. It was observed
that the time for selecting reviewers was less when the list of previously selected
reviewers was stored as a single string in the same table, as compared to the time
taken for retrieving the list when stored as seperate entities in a different table. It is
really a tradeoff between normalization and performance. It would be a good idea to
normalize the table when the number of reviewers is high.

When the reviews are completed, the information is stored in another table “com-
pleted_reviews”, where another script checks the decision made by the reviewers.
If both the reviewers agree on the information, the arbiter for the corresponding
database is notified, and the information is added as a new transaction for the ar-
biter. If the reviewers do not agree on the deposited information, the same script
checks the table “review_details”, gets the original depositor’s information, and sends
an email requesting a revision of the deposit. At the same time, an entry is added
in the “revisions” table of the database, as well as a new entry in the “transactions”
table for the depositor. When the revision is completed, the data are moved to a
table “completed_revisions”, which is checked by the same script used for selecting the
reviewers and uses the “review_details” table to notify the same two reviewers about
the completed revision and to start the review for the revised information. Once the
second review is completed, the script compares the decisions made by the reviewers,
and in either case, notifies the arbiter and adds appropriate entries in the tables for

the arbiter.

23

When the arbiter has made the final decision, the information is moved as a new
entry in “final_decision” table, along with the decision made by the arbiter. Three
separate scripts, one for each of the currently participating databases, Klotho, BND,
and END, are executed daily that check for new entries in the “final_decision” table.
If an entry is found for that particular database, the script extracts the information
from this table, and checks if the arbiter has approved the information or not. If
approved, the script adds the information to the output database. After adding
all information to the output database, the script rebuilds the core application of
The Agora, which serves the queries and other applications. If the arbiter rejects
the data, the script moves the information from the “final_decision” table to another
table “archived_data”, which is used for archiving the rejected data for our records and
potential future entries. Before the scripts terminate, they remove all other entries
from the intermediate MySQL database related to the deposit. The information now
is present in either the output database or as an entry in the “archived_data” table in
MySQL.

In the entire process, “session_id”, a numerical identification assigned to the origi-
nal deposited information, and the “user_id”, a numerical identification for the depos-
itor, reviewers, and the arbiter, are used for tracking information and progress within
the intermediate database. Detailed information on the scripts and the intermediate

database is explained in the following sections.

3.4.2 Reviewer Selection

When a deposit is completed, reviewer selection begins. The entire process is il-
lustrated in Figure 8. A script checks the type of data deposited. Depending on
the three possible types of data — data about a reaction, a molecule’s structure, or

terms for a molecule — the script selects two reviewers to review the deposit based

24

Depositis Arbiter makes
completed final decision

N |

completed_deposits pending_reviews final_decision ;

reviewer selection and
notification script
archieve_d-éta in the Alltables in the
MySQL database or intermediate MyS QL
Output database datahase

review_details
» transactions

< >

Symbol Interpretation

Predefined
external process

completed_reviews completed_revisions E Tablgiin

database

= — Automatic
Review is Revision is f {
completed completed ExXecution agen

reviewers

revision and arbiter
notification script

Figure 7: Database structure and operations. The predefined external processes are
operations which are carried out in the “front end” of The Agora, and the tables
are the various tables used in the intermediate MySQL database. The automatic
execution agents are the various perl scripts running in the “back end”. An arrow
pointing towards a table denotes that the data are being written to the table by the
process from where it begins. An arrow pointing out from a table to a process means
the data in the table are being used by the process. The three scripts for END, BND,
and Klotho moves the final data from table “final_decision” to the output database
if approved, or to a table “archive_data” in MySQL. At the same time, the scripts
remove all entries from all tables in the intermediate database that are related to this
final data.

25

on a set of criteria. These criteria include the reviewer’s capability to review the
type of data deposited, the number of deposits previously reviewed successfully, the
number of deposits that are currently being reviewed by that reviewer, the number
of reviews that have still not been completed by that reviewer, and the number of
review requests that the reviewer turned down earlier. This assures that all reviewers
get an equal opportunity to review deposits and distributes the work load equally
to reviewers who are capable of reviewing deposits quickly and efficiently. In the
current version of The Agora, we do not have any limit on the number of reviews
that can be completed by a particular reviewer. We are trying to have better results
and better quality of data in the database by having a small coordinated group of
experts. However, if the need arises, we might limit the number of reviews that can be
done by a single reviewer to not overburden a single individual. Once two reviewers
are selected, an email is automatically sent to each of them notifying them of their
selection and requesting confirmation that each will review the deposit. The selected
reviewers go to the “front end” and log into their accounts and record their decision.
Periodic reminders are sent to the selected reviewers if no response is received about
their decision within a particular time frame. In the current implementation, I have a
time frame of seven days in which the reviewers have to record their decision; failing
which, three email reminders are sent to the reviewer on successive days, asking the
reviewer to record his or her decision. Each reviewer sees a list of deposits he or she
has been selected to review; the reviewer selects a deposit and either agrees to review
it or refuses by clicking the appropriate button. A reviewer can defer the decision by
not selecting the deposit. If one agrees to review a deposit, a new entry is entered
in the reviewer’s transaction list and the reviewer can start reviewing the data im-
mediately. If the reviewer decides not to review the deposit, or if the reviewer does

not respond by decision deadline even after receiving the reminders, it is assumed

26

that the reviewer will not review the deposit and the script immediately selects an-
other reviewer for the job and repeats the process. This process continues until two
reviewers have agreed to review the deposit. Since some depositors are also qualified
reviewers or curators, special care is taken to prevent selecting the original depositor
as a reviewer. If none of the eligible reviewers agree to review a deposit, the arbiter
for the corresponding database is notified to review the data and either approve or
reject them. Once the reviewers have agreed to review the data, periodic reminders
are sent to them if their reviews are not received within the preset time frame. In
the current implementation, 1 give reviewers a time period of two weeks to review
the data and submit their comments and decision about the deposit. The script is
run daily and an incrementing counter is used to check the age of each review. If the
counter crosses a predefined limit, the script reminds the reviewer of the delay and
requests the reviewer to submit the review. This is to ensure that the decision on the

deposited data can be taken as quickly as possible.

3.4.3 Review and Revision

Once the reviewers agree to review the data, the review process takes place using the
“front end”. The review and revision process, and the arbiter’s role, are illustrated
in Figure 9. The reviewers check the deposited data for accuracy and consistency
through various resources, including the references cited by the original depositor.
The reviewers are able to review each element of the deposit and can either accept
the deposited information if all the information provided is correct, submit a request
for a revision by the depositor, make suggestions, or reject the deposit. Once the two
reviewers have completed their reviews, their decisions with comments and reviews are
stored in a temporary database table (“completed reviews”). This table is regularly

checked automatically and reviewers’ decisions compared. If the reviewers agree on

27

Completed deposit

¥

Check data type

¥
Select 2 reviewers
based on criteria

¥

Notify the selected reviewers

¥

Add an entry in

Add an entry for
reviewing the deposit in
reviewer's transaction list

reviewer's transaction list
requesting to review data

]

Select and notify
another reviewer

Reviewer 2 agreeg

Add an entry for
reviewing the deposit in
reviewer's transaction list

Figure 8: Reviewer selection process. Depending on the type of deposit, I select two
reviewers, notify them about their selection, and add a transaction to their list of
decisions. If the reviewer agrees, I add a new review process to their transaction list.
If the reviewer refuses, I select another reviewer and repeat the process until two
reviewers agree to review a particular deposit.

28

the deposit, the data are sent to the arbiter. However, if the reviewers disagree,
their suggested changes or comments are sent to the depositor to make the necessary
changes or provide more information. This process of revision takes place only once
for each deposit, and is completely identical to the deposit interface initially used by
the depositor. The forms used by the depositor initially to submit the information
are loaded again, but pre-filled with the values. The depositor can then make the
necessary changes, or provide additional information as suggested by the reviewers.
Once the depositor has submitted the changes and the revision process is complete,
the same reviewers review the new data. Once the reviewers have made their final
decision on the revised deposit, the review process is complete and a decision about
including the data is made. If the reviewers are still not satisfied with the information,

the data are sent to the arbiter to make a final decision.

3.4.4 The Arbiter’s Decision

Once the second round of review is completed, the arbiter decides the deposit’s fate.
The process is shown in Figure 9. A script checks the reviewers’ decisions, sends
an email to the arbiter of the database for which the data are meant, and a new
entry is added to the arbiter’s transactions. The transaction involves a side by side
comparison of the data submitted by the original depositor, the changes made in the
revision process, and the reviews and reviewers’ comments. For any particular datum,
the arbiter can select any of the values proposed by the depositor or the reviewers, or
assign a completely different value. In the first case, if a reviewer suggests a different
value, then his or her comments should indicate why. The second case is for situations
where the arbiter is not satisfied by any of the proposed values for a datum. After
the arbiter has reviewed all the fields and made any necessary corrections, he or she

finally decides if the data are now acceptable and whether they can be included in

29

L 4

Review complete

Reviewers
agree on data?

Deposit has been
revised once?

Notify the depositor and
send the corments and
suggestions from the

Arbiter reviews data and comments

Notify the arbiter

by reviewers and makes the

right selections for each datum

Yes
Arbiter approves

data?

No

Include data in

Archive datain The Agora

participating database

review process

New revision enfryin
tepositor's transaction list

Revision complete

Notify the initial reviewers
— and start a new review
process for both reviewers

Figure 9: Review and revision process. Once the reviews are completed, the reviewers’
decisions are compared. If they disagree, a new revision process is added to depositor’s
transaction list and the depositor is notified along with the comments and suggestions
Once the depositor completes the revision, the reviewers are
notified, and then they examine the new information and decide if the revised data
are acceptable. In either case, the arbiter is now informed. If the data are approved,
they are included in the respective database or else archived in The Agora. Note that
there is only one revision for each deposit and that occurs only when the reviewers
are not satisifed by the information. If the data are accepted by the reviewers in the

from the reviewers.

initial review, the data is sent directly to the arbiter for approval.

30

the database or not. If the data are approved by the arbiter, the data are processed
for inclusion in the database. An email is sent to the depositor notifying him or her
of the deposit’s acceptance. If the arbiter rejects the data, they are archived in the
intermediate MySQL database and the depositor is notified of the rejection. The
most common reason for the data being rejected would be insufficient information
available at the time of deposit. By keeping a copy of rejected deposits, it is possible
for the curators to review rejected deposits as new information becomes available in
the future; if satisfactory then, these deposits can be completed by the curators and

included in the databases.

3.4.5 Data Inclusion

The procedure for including the data in the various databases is rather difficult and
complicated as compared to the overall procedure. There are two main reasons for
this. First, the domain model of the participating databases differs significantly from
the model used to store the data in the intermediate databases. For example, a single
datum in the intermediate database often produces multiple data in the destination
database: synonym_index and synonym_list are derived from synonym information in
term deposits. Also, tracking information for each datum is added to its respective
database. Second, approved data must be checked to see if they are already included
in the destination databases. A deposit reporting a reaction can re-use molecules,
literature citations, and assays that are already recorded. A deposit reporting rela-
tionships among terms can add new relationships to existing terms. Thus, only some
parts of a new deposit may warrant addition of entirely new facts.

The overall design for including accepted information in the database is shown in
Figure 10. As can be seen, if the deposit is accepted, information from the MySQL

table field is broken down into components and goes in their respective Prolog files

31

Start

Extract information on each eniry
from table final decision

|
i
i
i
!
i
i
i
|
PEE

i
i
i
i
i
i
!
i
i
i
i
i
!
i
i
i
|
I
1
!!
!!
!!
it
i

Stop

‘ Get depositor’s information ‘ ______ 1

Remove enfries from

Check decision Notify depositor about rejection ‘

MySQL tables
&
Notify depositor about approval
l 4 Rebuild
The Agora
and get individual functor{argument) sets

i Add a datum_serial num fact for

each datum_source entry added

Add the information for each
set in appropriate files

!

I

Add a datum_serial num fact for Add a datum_source fact for i
each entry made in each file each datum_serial num added i

i

At least one
approved en

|
I
|
|
|
|
|
I
|
|
|
p
| | Parse each field of the MySQL table entry
I
|
|
|
|
|
I
|
|
|
|

Figure 10: Including data in data files. If the deposit is approved by the arbiter, the
information is extracted from the MySQL table and each datum is converted into
one or more Prolog facts. Along with these facts, tracking information about each
datum is added in the tracking information files. Once all the information has been
added, the core application, The Agora, is rebuilt. If the data are rejected, I archive
the information. In either case, the depositor is notified about the decision of the
deposited data.

32

Data extracted in Glossa alista([alistb{cpd_name('-glucose’) term_type(synonym)]])
format from MySQL database

Perl parser breaks the Glossa synomym - l-glucose
bundle into functor - argument sets

Depending on functor name, synonym{'D-glucose', 'k glucose’).
the argument is formatted into a Prolog fact >

For each fact added in the database, tracking information is datum_serial_num{559971,synonym(D-glucose',-glucose’}).
added in form of datum serial number fact, followed by a :> datum_source(553371 bnd).
datum source and its datum serial number fact datumn_serial_num{559972,datum_source(559971, bnd)).

Add the following information:
synonym_index('l-glucose',' D-glucose).

Check if adding, deleting or modifying any other syno%fr?:)liétl(&ggzlcqgeg)%ﬁtgsiggg;foosrg suG?SEOStzraGpE sugar’
related information is needed; if so, do it along :> =00 s ' e o .
with their respective datum serial number and D{+)-Glucopyranose','D{+)-glucopyranose’, 'D-glucose', -glucose’]).

datum source facts.

Delete the following information:

synonym_list{' D-glucose',[D-GLUCOSE','Comn sugar', ‘Grape sugar’,
'D-(+)-Glucose', D-(+}-glucose', Dextrose’, Glucose','Glu',
'D{+)-Glucopyranose','D{+)-glucopyranose’, 'D-glucose]).

Figure 11: Parsing the Glossa data into Prolog facts. The data that exist in the
MySQL database in Glossa format are broken down into their components and then
each component is added to the database in their respective files. I also add the
datum_serial_num and datum_source facts for each Prolog fact created using the parser
for tracking purposes. For every deposit, the parser modifies any other related file
and might add, delete, or update existing information depending on the type of data
and its relationship with existing data.

33

depending on the type of information. For each addition, a datum_serial_num fact
is added for identification and tracking purposes, and for the same reason, a da-
tum_source fact is added for determining the database to which the information be-
longs, and a datum_serial_num entry for the datum_source fact just created. These facts
provide very finely grained attribution and management of the data. A Perl parser
extracts the bundled Glossa information from the MySQL database and converts it
into Prolog facts for addition to the relevant files. An overview of this conversion
process and a corresponding example are shown in Figure 11.

I shall now discuss the three types of data that are currently supported by
The Agora. For each type of data, a deposit was made through the “front end”.
After the review and revision process, the data were approved by the arbiter. In each
type of deposit, I will show how the bundled Glossa data are broken down into small

sets and then how each datum is entered in the corresponding database.

Molecular structure deposits Including data for molecular structures is easier
than term deposits. A sample data entry for a molecular structure deposit is shown
in Table 1. In structure deposits, the only essential information is the configuration
rule for the molecular structure; the type of molecule it is; and the relevant references.
Optional information includes the InCHi description and comments on the structure,
which go in their respective files. As soon as the depositor enters the configurational
rule, Klotho checks the rule in accordance to the rules of chemical structure and
automatically generates various other output formats used in the web site [4]. These
files include the terminal file, Fischer file, and the SMILES string file. During the
review process, the reviewers can look at the generated files for the structure of
molecule as generated by Klotho and then comment. When the structure is approved,
information is then extracted as shown in Table 2. An accession number is given to the

molecule. The number begins with ‘KL’ and followed by either ‘M’ if it is the entire

34

structure of a molecule; ‘C’, if it is the general structure of that class of molecules;
or ‘S, if it is a structure of a substituent. The three character prefix is followed by
a number which increases sequentially as molecules are added to the database. The
files that were generated by Klotho are directly moved and used for generating the
HTML page where all the information for the molecule is available. The configuration
rule for the molecule goes into the Prolog database. The config rule is added to one
or another data file. For example, depending on the type of molecule, the structure
could be of a carbohydrate, and so the config rule is added to the sugars file. Various
stages of parsing a molecule structure deposit are shown in Tables 1 - 3. Besides the
references for the information, the most important information in these deposits are
the rule for the structure; the type of molecule; and whether it is a structure of entire
molecule, class of molecules, or a substituent. The last decides where the information
for this deposit should be included if it is approved. These information is extracted
from the deposited information and formatted to suit the database. The comments
for the structure are also extracted and added to the relevant files.

Along with the additions and modifications to the Prolog database, the script also
modifies certain local tracking Prolog facts. As discussed in Section 1.3 and Figure 5,
these Prolog facts are used by the local Klotho team, who continously add and review
new molecular structures. These facts generate a weekly report which provides each
of the depositors with a list of molecule structures that still need to be generated;
molecules that are yet to be checked by some of the reviewers; and a list of molecules
for which the structures have been approved and are ready to be included in the
database. Every time a new structure is accepted, these tracking facts are modified
to provide the latest information to everyone whenever the report is next generated.

Once the information is added to the database, a script is executed which au-

tomatically generates a new HTML page for the molecule just added and makes it

35

field value
deposit_id 1984
deposit_type mol

survey_pathl

survey_path2

blocks_path

final_path

user_name(gaurav)::user_id(15)::session_id(1984)::
type_deposit(mol)::check_cpd_struc(cpd_name(‘methanol’),
inchi(“’),macromol(no),struc_source(pub_ref))

user_name(gaurav)::user_id(15)::session_id(1984)::
comm _msg(config(cpd_name(‘methanol’),
cpd_specification([top(methyl),bottom (hydroxyl)])))::
type_config_rule(entire)::alistb([type_mol(other),type_mol_text(‘alcohols’)])::
structure_org([reference_number_set([reference_number(281),
reference_number(),reference_number(),reference_number(),
reference_number()])])

user_name(gaurav)::user_id(15)::session_id(1984)::
comments(‘Methanol is produced from the distillation of wood and
is a clear, colorless, volatile liquid with a weak odor that is
somewhat sweeter than ethanol.”)

release_permission(permission(approval),
sub_journal(),sub_authors(),sub_title())

Table 1: Sample data for a molecular structure deposit in the intermediate MySQL

database.

available on the web. This script uses the files that were generated by the Klotho

during the deposit process and other information that was made available by the

deposit.

For this structure deposit, since the structure was for the entire molecule (see Table

1), the accession number assigned to this structure had a prefix of ‘KLM’ and the

complete accession number assigned to this molecular structure was ‘KLMO0000591".

Since the type of molecule was selected as ‘other’, the structure was added in the list

of general molecular structures in ‘general.pl’. The information that was entered in

36

Type of Information Information

Molecule name: methanol

INChi Description:

Macromol? no

Structure Source: pub_ref

Config Rule: [top(methyl),bottom (hydroxyl)]

Molecule Class: entire

Molecule Type: [type_mol(other),type_mol_text(‘alcohols’)]
References: [reference_number_set([reference_number(281),

reference_number(),reference_number(),
reference_number(),reference_number()])]

Comment: Methanol is produced from the distillation of wood and is a
clear, colorless, volatile liquid with a weak odor that is
somewhat sweeter than ethanol.

Table 2: Data extracted for a molecular structure deposit using the parser.

the database for this deposit is shown in Table 3. In the file for general structures,
I include the entire comment as deposited for reference purposes. So, the comment
appears in the structure file as a comment just above the actual config rule for the

structure and also in ‘comments.pl’ file for that accession number.

Term deposits A term deposit is more difficult than a molecular structure deposit,
but much simpler when compared to a reaction deposit. Unlike a molecular structure
deposit, a term deposit has many relationships among the terms, so setting up the
correct relationships and updating the database are more complex. A sample entry
for a term deposit is shown in Figure 4.

The data that are present in the intermediate MySQL database are in Glossa
format and the information is bundled together in one large string in each of the

fields of the database. A Perl parser was written that extracts the data from the

37

Data file Information Entered

general.pl % Methanol is produced from the distillation of wood and
is a clear, colorless, volatile liquid with a weak odor
that is somewhat sweeter than ethanol.

config(‘methanol’,[top(methyl),bottom (hydroxyl)]).
comments.pl comment(KLM0000591,‘Methanol is produced from the distillation

of wood and is a clear, colorless, volatile liquid with a weak odor
that is somewhat sweeter than ethanol.’).

Table 3: Data entries for a molecular structure deposit. Note that the comment
appears in the file in which the config rule is added. This is used for reference
purposes. It is a single line beginning with a comment character, % in the case of
Prolog. The line has been broken twice to display it here.
MySQL database. The data are checked to see if they were accepted by the arbiter
for inclusion in BND. If not, the parsing script notifies the original depositor about
the rejection and removes the entry from the intermediate MySQL database. These
data are then archived in a separate table of the intermediate database for future
consideration. If the data were accepted, the parser notifies the original depositor
of the approval and then starts to extract the information for the BND. The parser
parses each field from the database and separates the data into functor(argument)
sets. The functor is the type of information related to the original deposit and the
argument is its value. Depending on the functor type, the parser will store the
corresponding value in the related files. For the sample data shown in Table 4, the
parser would extract the information as shown in Table 5.

As can be seen from Table 5, all the information is broken down into smaller
components and made much simpler. This information is then checked for type of
information, like synonym, isomer, Markush term, etc., and then formatted to suit the

requirements of its data files. Also, for every new entry in any of the data files, tracking

38

field value
deposit_id 2215
deposit_type syn

survey_pathl

survey_path?2

blocks_path

final_path

user_name(gaurav)::user_id(15)::session_id(2215)::type_deposit(syn)::
check_syn(cpd_name(‘D-glucose’),inchi(*’),cpd_struc(yes))

user_name(gaurav)::user_id(15)::session_id(2215)::
alista([alistb([cpd name(‘L-glucose’),
term_type(synonym),term_type(isomer)]),
alistb([cpd_name(‘pyranose’),term_type(isomer)]),
alistb([cpd_name(‘furanose’),term_type(isomer)]),num terms(1)])

user_name(gaurav)::user_id(15)::session_id(2215)::
isomer_survey([cpd_name(‘L-glucose’),struc_isomer(none),
tautomer(none),stereo_isomer(configurational isomer),
nonconfig_isomer(none),config_isomer(chiral),
chiral(enantiomer)])::alistb([cpd_name(‘L-glucose’),

comments(‘A primary source of energy for living organisms. It is
naturally occurring and is found in fruits and other parts of
plants in its free state. It is used therapeutically in

fluid and nutrient replacement.’)]):
isomer_survey([cpd_name(‘pyranose’),struc_isomer(none),
tautomer(none),stereo_isomer(anomer),nonconfig_isomer(none),
config_isomer(none),chiral(none)])::

alistb([cpd_name(‘pyranose’),

comments(‘The cyclic form of a sugar with a six-membered
ring.’)])::

isomer_survey([cpd_name(‘furanose’),struc_isomer(none),
tautomer(none),stereo_isomer(anomer),nonconfig_isomer(none),
config_isomer(none),chiral(none)])::

alistb([cpd_name(‘furanose’),

comments(‘A simple sugar containing the five-membered furn

ring.’)])

release_permission(permission(approval),sub_journal(),
sub_authors(),sub_title())

Table 4: Sample data for a term deposit in the intermediate MySQL database.

39

Term Information

Term Name: L-glucose Term Type: synonym
Term Name: L-glucose Term Type: isomer
Term Name: pyranose Term Type: isomer
Term Name: furanose Term Type: isomer

Term Name: L-glucose Isomer Information:
struc_isomer(none),tautomer(none),
stereo_isomer(configurational isomer),
nonconfig_isomer(none),config_isomer(chiral),
chiral(enantiomer)

Term Name: pyranose Isomer Information:
struc_isomer(none),tautomer(none),
stereo_isomer(anomer),nonconfig_isomer(none),
config_isomer(none),chiral(none)

Term Name: furanose Isomer Information:
struc_isomer(none),tautomer(none),
stereo_isomer(anomer),nonconfig_isomer(none),
config_isomer(none),chiral(none)

Term Name: L-glucose Comments:
A primary source of energy for living organisms. It is
naturally occurring and is found in fruits and other
parts of plants in its free state. It is used
therapeutically in fluid and nutrient replacement.
Term Name: pyranose Comments:
The cyclic form of a sugar with a 6 membered ring.
Term Name: furanose = Comments:
A simple sugar containing the five-membered furan ring.

Table 5: Data extracted for a term deposit using the parser.

40

information is added for future use or for back references. Under certain conditions,
further checks are made on the information to decide where exactly to insert it. Figure
12 illustrates the problem of placing data so that only the most specific relationship
is written, a particular problem with information about isomer relationships. If the
term is an isomer term for the primary term, then the information goes into the lowest
leaf node of isomer tree as classifed by BND [11]. In the sample term deposit, the
term L-glucose was deposited as a (structural) configurational isomer, an enantiomer
of D-glucose possessing a chiral center property. As per the classification of isomers,
as one goes down the tree, enantiomer is the lowest leaf node in the classification tree
and so the term L-glucose will be entered only in the data related to enantiomers
and not in any of the other classes. However, if a term is an isomer that follows two
different paths of the isomer classification tree, then the term will be entered in the
leaf nodes of each of the paths.

Once the data are separated and cleaned, they need to be added to the files to
which they belong. For the sample term deposit from Table 4, the data that are
added to the various files are shown in Table 6.

For entering the information in the Prolog database, the information is formatted
and textual information added for inclusion in the files. In certain cases, some infor-
mation needs to be removed from the existing database as well. If the term entered
is a synonym, then the corresponding synonym_list predicate is modified. If the entry
were modified without modifying its tracking information, the tracking information
would be of no use for the modified data. If I were to make new additions to the
tracking data without retiring old tracking information, then I will have multiple data
confusingly leading to a single entry, and one would not be able to identify which in-
formation refers to what kind of update to the entry. So I delete the old entry in the

tracking data and generate new tracking information every time a datum is created

41

:

Stereoisomer

Structural isomer

|
l

!

I

v

I
, , I
Skeletal isomers Tautomers Functional isomers Positional isomers |
I
; ; ! :
Keto-enol Ring-chain | | Acid-base |
I
_____________________ -
[
-y }
Configurational isomer Conditional chirality Non-configurational isomer
e I —
Geometric Chiral Anomers Conformers Rotamers
_______ J
J ;]
Enantiomers Diastereoisomers Meso-isomers
Epimers

Figure 12: Updating isomer files. The isomer classification of BND is shown above.
The code is written so that the isomer term is entered only in the leaf node of the
isomer tree. A term which is a structural isomer, a configurational isomer, and an
enantiomer possessing a chiral center will end up only in enantiomers and not in any

of the parent nodes.

42

Data file

Information Entered

Term: L-glucose
synonym.pl
datum_serial number.pl
datum_source.pl

datum_serial_ number.pl

synonym _index.pl
datum_serial_number.pl

datum_source.pl
datum_serial_ number.pl

synonym _list.pl

datum_serial_number.pl

datum_source.pl
datum_serial_ number.pl

enantiomer.pl
datum_serial_ number.pl
datum_source.pl

datum_serial_ number.pl

comments.pl

datum_serial_ number.pl

datum_source.pl
datum_serial_ number.pl

synonym (‘D-glucose’,‘L-glucose’).

datum_serial num(559971,synonym(‘D-glucose’,‘L-glucose’)).
datum_source(559971,bnd).

datum serial num(559972,datum_ source(559971,bnd)).

synonym_index(‘L-glucose’,'D-glucose’).

datum serial num(559973,synonym _index(‘L-glucose’,‘D-
glucose’)).

datum_source(559973,bnd).

datum serial num(559974,datum_ source(559973,bnd)).

synonym list(‘D-glucose’,['D-GLUCOSE’,‘Corn sugar’,

‘Grape sugar’,'D-(+)-Glucose’,'D-(+)-glucose’, Dextrose’,
‘Glucose’,'Glu’,‘D(+)-Glucopyranose’,' D (+)-glucopyranose’,
‘D-glucose’,‘L-glucose’]).

datum_serial num(559975,synonym list(‘D-glucose’,
[‘'D-GLUCOSE’‘Corn sugar’,‘Grape sugar’,'D-(+)-Glucose’,
‘D-(+)-glucose’,‘Dextrose’,‘Glucose’,Glu’,‘ D (+)-Glucopyranose’,
‘D(+)-glucopyranose’,'D-glucose’,‘L-glucose’])).
datum_source(559975,bnd).

datum serial num(559976,datum_ source(559975,bnd)).

enantiomer(‘D-glucose’,‘L-glucose’).

datum_serial num(559979,enantiomer(‘D-glucose’,'L-glucose’)).
datum_source(559979,bnd).

datum serial num(559980,datum_ source(559979,bnd)).

comment (‘L-glucose’,A primary source of energy for living
organisms. It is naturally occurring and is found in fruits and other
parts of plants in its free state. It is used therapeutically in fluid
and nutrient replacement.’).

datum_serial num (559987,

comment(‘L-glucose’,A primary source of energy for living
organisms. It is naturally occurring and is found in fruits and
other parts of plants in its free state. It is used therapeutically
in fluid and nutrient replacement.’)).

datum source(559987,bnd).

datum serial num(559988,datum_ source(559987,bnd)).

43

Data file

Information Entered

Term: pyranose
anomer.pl
datum_serial_ number.pl
datum_source.pl
datum_serial_ number.pl
comments.pl

datum_serial_ number.pl

datum_source.pl
datum_serial_ number.pl

anomer(‘D-glucose’,‘pyranose’).

datum_serial num(559977,anomer(‘D-glucose’, ‘pyranose’)).
datum_source(559977,bnd).

datum serial num(559978,datum_ source(559977,bnd)).

comment (‘pyranose’,‘The cyclic form of a sugar with a
six-membered ring.’).

datum_serial num(559983,comment(‘pyranose’,

‘The cyclic form of a sugar with a six-membered ring.’)).
datum source(559983,bnd).

datum_serial num(559984,datum source(559983,bnd)).

Term: furanose
anomer.pl
datum_serial_ number.pl
datum_source.pl
datum_serial number.pl
comments.pl

datum_serial_ number.pl

datum_source.pl
datum_serial_ number.pl

anomer(‘D-glucose’,‘furanose’).

datum serial num(559981,anomer(‘D-glucose’,‘furanose’)).
datum source(559981,bnd).

datum serial num(559982,datum_ source(559983,bnd)).

comment (‘furanose’,'A simple sugar containing the
five-membered furan ring.’).

datum_serial num(559985,comment(‘furanose’,

‘A simple sugar containing the five-membered furn ring.’)).
datum_source(559985,bnd).

datum serial num(559986,datum_ source(559985,bnd)).

Table 6: Data entries for a term deposit.

44

Data file Information Deleted

Term: L-glucose

synonym _list.pl synonym list(‘D-glucose’,['D-GLUCOSE’,‘Corn sugar’,
‘Grape sugar’,'D-(+)-Glucose’,'D-(+)-glucose’, Dextrose’,
‘Glucose’,'Glu’,‘D(+)-Glucopyranose’,'D(+)-glucopyranose’,
‘D-glucose’]).

datum serial number.pl datum serial num(123878 synonym list(‘D-glucose’,
[‘'D-GLUCOSE’‘Corn sugar’,‘Grape sugar’,'D-(+)-Glucose’,
‘D-(+)-glucose’,'Dextrose’,‘Glucose’,‘Glu’,‘D(+)-Glucopyranose’,
‘D(+)-glucopyranose’,'D-glucose’])).

datum _source.pl datum _source(123878,bnd).

datum serial number.pl datum serial num(151672,datum source(123878,bnd)).

Table 7: Data deleted for a term deposit.

or modified. As a result, I have only one tracking datum for each other datum. The
reason for deleting the old information is that the data were already accepted and
hence have been properly incorporated and running in our database. The main rea-
son for tracking this information for a new datum being added or modified is to roll
back to a safer state if the database becomes unstable for any reason. Entries in the

database that were removed are shown in Table 7.

Reaction deposits Deposits for enzymatic reactions are parsed, checked, and
added to END very much as described in Sections 3.4.5 and 3.4.5 for Klotho and
BND, respectively. The only important differences are that the volume and com-
plexity of the relationships among the information are much greater than for the
other two databases. The number of files that need to be modified and updated for
the even simplest and smallest enzymatic reaction is another factor which makes the
deposit of enzymatic reactions the most difficult deposit to handle in this automated
workflow. A sample deposit, the information extracted, and the information that

would be entered into END are shown in Tables 8 - 10, respectively. The same pro-

45

cess will be used for other types of reactions by inserting an initial filter to determine

to which reaction database the deposit should be assigned.

3.4.6 Rebuilding New Databases

Once the data are added to the database, the entire core application program serving
the community, The Agora, is rebuilt to provide the latest information to the users.

If the deposit is a new molecule, Moiras is rebuilt followed by The Agora.

3.4.7 Adaptive Workflow Model

After discussing the different types of data deposits and their management process,
it must be very clear that the three databases use the same workflow model for
the curation and data management process. This workflow model was designed and
implemented at various levels of progress for the three databases. In Klotho, there
was already a fair amount of automation and existing data, as well as some data
management by Prolog. So, to make the workflow adapt to the existing design and
smoothly integrate it into the existing data management was a prime factor in the
design process. For BND, the case was exactly opposite. There was absolutely no
data management or tracking processes for it, and so the design was made from
scratch. For END, there was a huge amount of data in the database, but it was only
partially tracked and absolutely no automation in the existing design. Same was the
case for non-enzymatic reactions as well. Although these databases were far apart
from each other, in terms of data size, data management, and tracking abilities, it
was still possible to consolidate the three workflows into a single automated workflow
model. Similarly, it is possible to implement the same model to adapt to other existing
databases with minimal adjustments depending on the type of data and any existing

wirkflow that the database might have.

46

field value
deposit_id 2181
deposit_type rxn

survey_pathl

user_name(gaurav)::user_id(15)::session_id(2181)::
type_deposit(rxn)::horizontal rxn_eqn([sinistras
([reactant(stoich(1),cpd_name(‘adenine’)),
reactant(stoich(1),cpd_name(‘5-phospho-alpha-D-ribose 1-diphosphate’))]),
dextras([reactant(stoich(1),cpd_name(‘adenosine 5’-monophosphate’)),
reactant(stoich(1),cpd_name(‘pyrophosphate’))]),
more(no),leftct(4),rightct(4)])::rxn_ name(‘APRT’)::
rxn_ref([reference_number_set([reference number(278),
reference_number(),reference_number(),reference_number(),
reference_number()])])::rxn_catalyzed(yes)::
rxn_transport(no)::rxn_kinetics(yes)::mech_info_q(yes)::
rxn_in_activator(no)::rxn_has_macromol(yes)::

rxn_novel_macromol (iunk)::assay_survey (

[reference_number _set ([reference_number(278),
reference_number(),reference_number(),
reference_number(),reference_number()]),
qual_assay(other),qual_assay_text(‘thermal denaturation assay’),
substrate([cpd_name(‘PRPP’),concentration(conc_value(10),

conc_unit(mM)),pH(),cpd_name(‘Guanine’),concentration(conc_value(10),
conc_unit(mM)),pH(),cpd_name(‘’),concentration(conc_value(),
conc_unit(M)),pH(),cpd_name(*’),concentration(conc_value(),
conc_unit(M)),pH()]),buffer([cpd_name(‘HCI’),concentration(
conc_value(40),conc_unit(uM)),pH(8.0),
cpd_name(‘KCI’),concentration(conc_value(2),
conc_unit(uM)),pH(),cpd_name(‘MgCl2’),concentration(conc_value(5),
conc_unit(uM)),pH(),cpd_name(‘trypsin inhibitor’),

concentration(conc_value(100),conc_unit(ug/ml)),pH(),
cpd_name(“’),concentration(conc_value(),conc_unit(M)),pH(),pH(8.0)]),
temp(70celsius),stopping_conditions(AMP, PPi),
measurement_technique(HPLC analysis),coupled assay (iunk),

essential mols([cpd_name(‘’),cpd_name(*’),cpd_name(‘’),cpd_name(*’)])])::
org_survey ([reference_number_set([reference_number(278),
reference_number(),reference_number(),reference_number(),
reference_number()]),

47

field

value

survey_path2

org_survey ([reference_number_set([reference_number(278),
reference_number(),reference_number(),reference_number(),
reference_number()]),

org-gp(group),other_orgs_q(yes),
genus(Homo),species(sapiens),strain(),approx_org_ name()])::

phy _survey([reference_number _set([reference_number(278),
reference_number(),reference_number(),reference_number|(),
reference_number()]),nominal_pathway name(‘Nucleotide metabolism’),
stimulus_sen(yes),disease(‘Urolithiasis’)])

user_name(gaurav)::user_id(15)::session_id(2181)::
rxn_eqn(sinistras([reactant(stoich(1),cpd_name(‘adenine’),
state(‘free’),state_text(‘’),datum xref(compartment(‘cytoplasm’),
compartment_text(‘’),accession(‘’),rlted_db()),macromol(no)),
reactant(stoich(1),cpd_name(‘5-phospho-alpha-D-ribose 1-diphosphate’),
state(‘free’),state_text(‘’),datum xref(compartment(‘cytoplasm’),
compartment_text(‘’),accession(‘’),rlted_db()),macromol(no))]),
dextras([reactant(stoich(1),cpd_name(‘adenosine 5’-monophosphate’),
state(‘free’),state_text(‘’),datum xref(compartment(‘cytoplasm’),
compartment_text(‘’),accession(‘’),rlted_db()),macromol(no)),
reactant(stoich(1),cpd_name(‘pyrophosphate’) state(‘free’),
state_text(‘’),datum_xref(compartment(‘cytoplasm’),
compartment_text(‘’),accession(‘’),rlted_db()),macromol(no))])):
catalyst_survey([reference_number_set([reference_number(278),
reference_number(),reference_number(),reference_number(),
reference_number()]),is_novel_mol(cpd_name(‘APRT’),
novel_mol(no)),ec_num (ec_class(),ec_subclass(),
ec_subsubclass(),ec_serial num()),ec_ num(ec_class(),
ec_subclass(),ec_subsubclass(),ec_serial num()),
sys_name(cpd_name(‘’)),syns([cpd_name(‘AMP pyrophosphorylase’),
cpd-name(‘AMP diphosphorylase’),cpd_name(‘Transphosphoribosidase’),
cpd_name(‘APRT’),cpd_name(‘’)]),phys_char_q(iunk),
rxn_component(,alistb([cpd_name(‘Adenine’),stoich()]),
alistb([cpd_name(‘Phosphate’),stoich()]),
alistb([cpd_name(‘Ribose’),stoich()]),

48

field

value

alistb([cpd-name(*’),stoich()]),alistb([cpd_name(*’),stoich()])),
rxn_subunit(alistb([cpd_name(‘’),stoich()]),
alistb([cpd_name(*’),stoich()]),alistb([cpd name(*’),stoich()]),
alistb([cpd_name(*’),stoich()]),alistb([cpd _name(*’),stoich()])),
is_cloned(iunk),cata_origin(iunk),cofactor reqd(iunk),
tunable_catalyst(yes),alt_cat_rxns_q(iunk),alt_rxns_q(no),
alt_forms_mol_q(iunk),other_substrate(cpd_name(‘Hypoxanthine’),
cpd_name(‘Guanine’),cpd_name(‘’),cpd_name(*’),
cpd_name(*’),cpd_name(*’))])::gp_org_survey([num_orgs(1)])::
other_org_gp_survey([num_orgs(1),num_ orgs(0)])::

stimulus_survey ([reference_number_set ([reference_number(278),
reference_number(),reference_number(),
reference_number(),reference_number()|),stimulus_name(*’),
stimulus_src(genotypic),concentration(conc_value(),conc_unit(M)),
stimulus_resp(increased),stimulus_amount(amount(),
amount_unit(-15)),stimulus_mech_known (unknown),
stimulus_name(*’),stimulus_src(genotypic),concentration(
conc_value(),conc_unit(M)),stimulus_resp(increased),
stimulus_amount(amount(),amount unit(-15)),
stimulus_mech_known (unknown),stimulus_name(‘’),
stimulus_src(genotypic),concentration(conc_value(),conc_unit(M)),
stimulus_resp(increased),stimulus_amount(amount(),
amount_unit(-15)),stimulus_mech_known (unknown),
stimulus_name(*’),stimulus_src(genotypic),
concentration(conc_value(),conc_unit(M)),stimulus_resp(increased),
stimulus_amount(amount(),amount_unit(-15)),
stimulus_mech_known (unknown),stimulus_name(‘’),
stimulus_src(genotypic),concentration(conc_value(),conc_unit(M)),
stimulus_resp(increased),stimulus_amount(amount(),
amount_unit(-15)),stimulus_mech_known (unknown)])

49

field

value

blocks_path

final_path

decision

user_name(gaurav)::user_id(15)::session_id(2181)::
gp_org_survey([alistb([org_name(‘Homo sapiens’),
genetic_background(),markers([marker(),marker(),
marker(),marker()]),organ(‘liver’),tissue(‘liver’),
cell_type(‘erythrocytes’),cell_line(*’)])])::
other_orgs_survey ([alistb([org_name(‘Mice’),
genetic_background(),markers([marker(),marker(),
marker(),marker()]),organ(‘liver’),tissue(‘liver’),
cell_type(‘erythrocytes’),cell_line(’)])])::
comments(‘This reaction seems to be the only mechanism
through which free adenine is incorporated into its
corresponding nucleotide in humans.’)

release_permission(permission(approval),
sub_journal(),sub_authors(),sub_title())

Y

Table 8: Sample data for an enzymatic reaction deposit.

20

Type of Information

Information

Reaction equation:

Reaction name:
Reaction reference:
Reactant information:
adenine:
5-phospho-alpha-D-
ribose 1-diphosphate:

adenosine 5’-monophosphate:

pyrophosphate:
Catalyst:

Catalyst reference:
Catalyst synonyms:

Catalyst details:

Assay name:
Assay reference:
Assay information:

Pathway name:
Disease:
Organism:

Comments:

adenine + 5-phospho-alpha-D-ribose 1-diphosphate
= pyrophosphate + adenosine 5’-monophosphate

APRT
Local reference number: 278

stoich(1),state(‘free’),compartment(‘cytoplasm’)

stoich(1),state(‘free’),compartment(‘cytoplasm’)
stoich(1),state(‘free’),compartment(‘cytoplasm’)
stoich(1),state(‘free’),compartment(‘cytoplasm’)
APRT

Local reference number: 278

‘AMP pyrophosphorylase’,”AMP diphosphorylase’,
“Transphosphoribosidase’
rxn_component(cpd_name(‘Adenine’),cpd_name(‘Ribose’),
cpd-name(‘Phosphate’)),tunable_catalyst(yes),
other_substrate(cpd_name(‘Hypoxanthine’),
cpd_name(‘Guanine’))

thermal denaturation

Local reference number: 278

substrate(‘PRPP’ millimolar(10),pH (unsaid)),
substrate(‘Guanine’,millimolar(10),pH (unsaid)),
buffer_component(‘trypsin inhibitor’,ug_per_mol(100),
pH(unsaid)),
buffer_component(‘KCI’,;micromolar(2),pH (unsaid)),
buffer_component(‘MgCl12’ micromolar(5),pH (unsaid)),
buffer_component(‘HCI’,;micromolar(40),pH(8.0)),
pH(8.0),temperature(celsius(70)),
stopping_conditions(‘AMP, PPi’)],

msemt_tech(‘HPLC analysis’)

Nucleotide metabolism

Urolithiasis
genus(Homo),species(sapiens),organ(‘liver’)
tissue(‘liver’),cell_type(‘erythrocytes’)

This reaction seems to be the only mechanism through
which free adenine is incorporated into its
corresponding nucleotide in humans.

Table 9: Data extracted for an enzymatic reaction deposit using parser.

o1

Data file

Information Entered

agora_transaction.pl
citation.pl
assay.pl

rxn_assay.pl
catalyst.pl

polypeptide.pl
catalyst_origin.pl
dextra.pl
sinistra.pl
disease.pl
organism.pl
rxn_location.pl

event.pl

comment.pl

reference.pl

rxn_rubric.pl
reaction.pl

agora_transaction(2181,1114368491,deposit,end).

citation (crespillo2003).

assay(561732,‘thermal denaturation’,

[substrate(‘PRPP’, millimolar(10),pH(unsaid)),
substrate(‘Guanine’ millimolar(10),pH (unsaid))],
[buffer([buffer_component(‘trypsin inhibitor’,
ug_per_mol(100),pH(unsaid)),
buffer_component(‘KCl’,;micromolar(2),pH(unsaid)),
buffer_component(‘MgCl2’,micromolar(5),pH (unsaid)),
buffer_component(‘HCI’,;micromolar(40),pH(8.0)),
pH(8.0)]),temperature(celsius(70)),

stopping_conditions(‘AMP, PPi’)],

msemt_tech(‘HPLC analysis’),unknown,essential mols([])).
reaction_assay(561699,561732).

catalyst(‘APRT”,561699,[],))-

polypeptide(‘APRT").
catalyst_origin(‘APRT’,561699,[cloned (iunk),origin (iunk)]).
dextra(‘adenosine 5’-monophosphate’,561699,1,[free],[cytoplasm]).
dextra(‘pyrophosphate’,561699,1,[free],[cytoplasm]).
sinistra(‘adenine’,561699,1,[free|,[cytoplasm]).
sinistra(‘5-phospho-alpha-D-ribose 1-diphosphate’,561699,1,
[free],[cytoplasm]).

disease(561755,[Urolithiasis’]).

organism(‘Homo’,‘sapiens’,[”]).
rxn_location(561699,[organism(‘Homo’,‘sapiens’, nil’,‘nil’),
tissue(‘liver’),cell_type(‘erythrocytes’),cell_line(*’),organ(‘liver’)]).
event(561699,created, 1114368491 ,nil,reaction(561699,'APRT",[]),
agora_transaction(2181),APRT").

comment ("This reaction seems to be the only mechanism through
which free adenine is incorporated into its corresponding nucleotide
in humans.’).

reference(crespillo2003,article,[author(‘Javier Crespillo,

Pilar Llorente, Luisa Argomaniz, Celia Montero’),year(2003),
article_title(‘APRT from erythrocytes of HGPRT deficient patients:
Kinetic, regulatory and thermostability properties’),

journal title(‘Molecular and Cellular Biochemistry’),
volume(254),start_page(359),end_page(363)]).

rxn_rubric(561699, APRT’).

reaction (561699, APRT" []).

reaction (561755, Nucleotide metabolism’,[561699]).

52

Data file

Information entered

cpd_name.pl

cpd_index.pl

evidence.pl

datum_serial num.pl

cpd_name(‘adenine’).
cpd name(‘5-phospho-alpha-D-ribose 1-diphosphate’).

cpd name(‘adenosine 5”-monophosphate’).

cpd name(‘pyrophosphate’).

cpd_name(‘APRT’).

cpd-index(561699,‘adenine’).
cpd-index(561699,‘5-phospho-alpha-D-ribose 1-diphosphate’).
cpd-index(561699,‘adenosine 5’-monophosphate’).
cpd_index(561699, pyrophosphate’).

cpd_index (561699, APRT").
evidence(561699,citation(crespillo2003),agora_transaction (2181
evidence(561706,citation(crespillo2003),agora_transaction (2181
evidence(561732,citation(crespillo2003),agora_transaction (2181
evidence(561735,citation(crespillo2003),agora transaction (2181
evidence(561756,citation(crespillo2003),agora transaction (2181
evidence(561760,citation(crespillo2003),agora_transaction (2181
datum _serial num(561700,citation(crespillo2003)).

datum serial num(561701,datum source(561700,end)).

datum serial num(561702,evidence(561699,citation(crespillo2003),
agora_transaction(2181))).

datum serial num(561703,datum source(561702,end)).
datum_serial num(561704,reference(crespillo2003,article,
[author(‘Javier Crespillo, Pilar Llorente,Luisa Argomaniz,

Celia Montero’),year(2003),article_title(‘APRT from

erythrocytes of HGPRT deficient patients: Kinetic, regulatory
and thermostability properties’),journal title(‘Molecular and
Cellular Biochemistry’),volume(254),start_page(359),
end_page(363)])).

datum serial num(561705,datum source(561704,end)).

datum serial num(561706,rxn_rubric(561699,'APRT")).

datum serial num(561707,datum source(561706,end)).
datum_serial num(561708,evidence(561706,
citation(crespillo2003),agora_transaction(2181))).

datum serial num(561709,datum source(561708,end)).

datum serial num(561710,reaction(561699,"APRT" [])).

datum serial num(561711,datum source(561710,end)).

datum serial num(561712,cpd name(‘adenine’)).

datum serial num(561713,datum_source(561712,end)).

datum serial num (561714,

cpd_name(‘5-phospho-alpha-D-ribose 1-diphosphate’)).
datum_serial num(561715,datum source(561714,end)).

)
)
)-
).
)
)

o~~~

93

Data file

Information entered

datum_serial_ num.pl

datum serial num (561716,

cpd_name(‘adenosine 5’-monophosphate’)).

datum serial num(561717,datum source(561716,end)).
datum_serial num(561718,cpd_name(‘pyrophosphate’)).
datum serial num(561719,datum source(561718,end)).
datum _serial num(561720,cpd_name(‘APRT")).

datum serial num(561721,datum source(561720,end)).
datum serial num(561722,cpd_index(561699,‘adenine’)).
datum_serial num(561723,datum source(561722,end)).
datum serial num (561724,
cpd_index(561699,‘5-phospho-alpha-D-ribose 1-diphosphate’)).
datum serial num(561725,datum_source(561724,end)).
datum serial num (561726,

cpd_index (561699, ‘adenosine 5’-monophosphate’)).
datum_serial num(561727,datum source(561726,end)).
datum_serial num(561728,cpd_index (561699, pyrophosphate’)).
datum serial num(561729,datum source(561728,end)).
datum _serial num(561730,cpd_index(561699,°APRT")).
datum serial num(561731,datum source(561730,end)).
datum_serial num(561733,assay (561732,

‘thermal denaturaion’,[substrate(‘PRPP’ millimolar(10),
pH(unsaid)),substrate(‘Guanine’,;millimolar(10),pH (unsaid))],
[buffer([buffer_component(‘trypsin inhibitor’,
ug_per_mol(100),pH(unsaid)),buffer_component(‘KCI’,
micromolar(2),pH(unsaid)),buffer_component(‘MgCl2’,
micromolar(5),pH(unsaid)),buffer component(‘HCI’,
micromolar(40),pH(8.0)),pH(8.0)]),
temperature(celsius(70)),stopping_conditions(‘AMP, PPi’)],
msemt_tech(‘HPLC analysis’),unknown,essential_mols([]))).
datum serial num(561734,datum source(561733,end)).
datum serial num(561735,reaction_assay(561699,561732)).
datum _serial num(561736,datum source(561735,end)).
datum_serial num(561737,evidence(561732,
citation(crespillo2003),agora_transaction(2181))).
datum_serial num(561738,datum source(561737,end)).
datum_serial num(561739,evidence(561735,
citation(crespillo2003),agora_transaction(2181))).

datum serial num(561740,datum_source(561739,end)).
datum serial num (561741,

dextra(‘adenosine 5’-monophosphate’,561699,1,|[free],[cytoplasm])).
datum serial num(561742,datum source(561741,end)).

54

Data file

Information entered

datum_serial_ num.pl

datum serial num (561743,
sinistra(‘adenine’,561699,1,[free],[cytoplasm])).

datum serial num(561744,datum source(561743,end)).

datum serial num (561745,

dextra(‘pyrophosphate’ 561699,1,[free],[cytoplasm])).

datum _serial num(561746,datum source(561745,end)).
datum_serial num(561747 sinistra(‘5-phospho-alpha-D-ribose
1-diphosphate’,

561699,1,[free],[cytoplasm])).

datum serial num(561748,datum source(561747,end)).

datum serial num(561749,catalyst(‘APRT’,561699,[],]))-
datum serial num(561750,datum_source(561749,end)).
datum_serial num(561751,polypeptide(‘APRT?)).

datum serial num(561752,datum source(561751,end)).
datum_serial num(561753,
catalyst_origin(‘APRT’,561699,[cloned (iunk),origin(iunk)])).
datum serial num(561754,datum source(561753,end)).
datum_serial num(561756,

reaction (561755, Nucleotide metabolism’,[561699))).

datum serial num(561757,datum source(561756,end)).

datum serial num (561758,
evidence(561756,citation(crespillo2003),agora_transaction(2181))).
datum serial num(561759,datum source(561758,end)).
datum_serial num(561760,disease(561755,['Urolithiasis’])).
datum serial num(561761,datum source(561760,end)).
datum_serial num(561762,
evidence(561760,citation(crespillo2003),agora_transaction(2181))).
datum serial num(561763,datum_source(561762,end)).

datum serial num(561764,organism(‘Homo’,‘sapiens’,[”])).
datum serial num(561765,datum source(561764,end)).

datum serial num(561766,rxn_location (561699,

[organism (‘Homo’,‘sapiens’, ‘nil’,‘nil’),tissue(‘liver’),
cell_type(‘erythrocytes’),cell line(“’),organ(‘liver’)])).

datum serial num(561767,datum source(561766,end)).
datum_serial num(561768,event(561699,created,1114368491 nil,
reaction(561699,APRT" []),agora_transaction(2181),"APRT")).
datum serial num(561769,datum_source(561768,end)).
datum_serial num(561770,comment (561699, This reaction seems
to be the only mechanism through which free adenine is
incorporated into its corresponding nucleotide in humans.”)).
datum serial num(561771,datum source(561770,end)).

95

Data file Information entered

datum source.pl datum_source(561700,end).
datum source(561702,end).
datum _source(561704,end).
datum _source(561706,end).
datum source(561708,end).
datum_source(561710,end).
datum_source(561712,end).
datum _source(561714,end).
datum _source(561716,end).
datum _source(561718,end).
datum_source(561720,end).
datum_source(561722,end).
datum _source(561724,end).
datum _source(561726,end).
datum _source(561728,end).
datum _source(561730,end).
datum _source(561733,end).
datum _source(561735,end).
datum _source(561737,end).
datum _source(561739,end).
datum_source(561741,end).
datum_source(561743,end).
datum_source(561745,end).
datum _source(561747,end).
datum _source(561749,end).
datum source(561751,end).
datum source(561753,end).
datum source(561756,end).
datum _source(561758,end).
datum _source(561760,end).
datum _source(561762,end).
datum_source(561764,end).
datum source(561766,end).
datum _source(561768,end).
datum _source(561770,end).

Table 10: Data entries for an enzymatic reaction deposit.

26

3.4.8 Re-engineering the Workflow of Nomenclature

Since the data for END depend on the Nomenclature, our workflow design for END
extended to the JCBN. However, I would not observe the JCBN’s workflow directly,
since all of the relevant members work individually, asynchronously, and at a dis-
tance. In fact that the workflow for Nomenclature is itself in transition. Another
contributing factor to the difficulty was the remote location of the database designers
and managers. Since the database design and logical view of was made by the original
designers of the Enzyme Nomenclature [12], automating the process was time con-
suming and difficult to understand the stages involved in the curation process. This
was because the database designers were located at a remote location and all corre-
spondence with them was made through phone calls and emails. Since such forms of
communication always results in communication gaps and misunderstandings, insuffi-
cient amount of information provided, delayed responses during email exchange, etc.,
it made the task extremely difficult. It was not until the key person visited late last
fall that I could observe the actual workflow. This proved to differ somehwat from
what she had previously described, and was automated as part of the END workflow.
These differences can be accommodated by adding an extra subpath to the current

workflow to accommodate entry drafting and the public comment period.

57

4 Discussion

In The Agora, I have not only brought workflow technology to database curation,
but also automated the processes that were mechanical to reduce human errors. The
“back end” of The Agora is designed to increase the overall efficiency and perfor-
mance of the participating databases, making them sturdier and more consistent.
However, it took a great deal of observation to identify the key components in the
data flow process that could be automated or consolidated. The initial version of
The Agora was a pretty straight forward database, but it had many drawbacks. The
entire process of adding and revising data was manual and it was very time consum-
ing and error-prone. So, the first step in automating the curation process was to
identify the stages of manual entry and then automate them. This was acheived by
running experiments using sample data sets and then examining the various actions
performed on the data, or in response to various sets of data and conditions. During
this examination, the processes and subprocesses that slow down the overall work-
flow because humans must act were identified. Since some of the processes involved
human expertise and external searches, it was not possible to automate them in the
current version. These processes included verifying information from resources such
as journals and publications, which could not be automated at this time. Maybe in
furutre, I might be able to automate this process once I have complete information
on all the possible resources for a particular type of information. However, manual
processes like file updates and making basic decisions based on the information, which
currently require human agents, were replaced by computer agents and automated.
During this process of automation, I also identified a few key processes like notification
of the current status of data to depositors or reviewers and arbiter. So I automated
the communication process to automatically contact the person and providing the

relevant information. In the entire design process, one key factor that was considered

o8

was to make the entire automation process completely transparent to the user. The
user still used the existing interface to deposit, review, revise or curate data, but had
absolutely no idea of the machinery running in the background.

The process of automating workflow is difficult because it involves understanding
the entire existing workflow for the current process, its purpose, the input data and
the expected outputs, etc, before one can list and differentiate between the processes
which can be automated and those that cannot. Not every human action can be
replaced with an automatic executor, and not every step in the prior process should
be retained. In The Agora, I designed a workflow for the curation process and then
automated all the possible processes and subprocesses for best results and efficiency.
The mechanism was designed in such a way that the same technique can be applied
to other processes which are similar to database curation. Having one single overall
workflow framework was a major issue in our research. It was necessary to have one
common workflow logic for similar processes to minimize costs and improve consis-
tency. Keeping this factor in mind, the workflow for The Agora was designed so that
all the three types of database, namely END, BND, and Klotho use the same frame-
work with slight differences in the format of the data and the relationships among
them. This framework can now be termed as a general workflow that can be applied
to any processes which perform similar operations, not just in database curation, but
also in other industrial processes.

I provided for very fine attribution and management of data to have complete
details about every new addition or modification to the database. The main reason
for tracking information for new data being added or modified is to roll back to a prior
state if the database becomes unstable for any reason. By looking at the tracking
information file, one can check which datum was modified before the application

became unstable, and then make any changes to either correct the datum if the

29

reason for the error is known, or remove it completely from the database and notify
the arbiter. The possible reasons for this kind of failure are that the arbiter overlooked
some information which was not in accordance with the rules of data type information,
or a syntax error in the datum, or there might be some conflict among the existing
data and the one just entered. In the current version of The Agora, I do not have
any checks for these kinds of errors, but I might enter some checkpoints for making
sure that the application runs smoothly in the future.

Although designing the automated machinery was pretty straight forward, there
were certain problems faced during its implementation. Most of the processes for the
Klotho and the Biochemical Names Database were easy to implement as they were
designed and implemented from scratch at the same location. I did iterate several
times over the new Klotho workflow to make sure it provided all the functionalities of
the current workflow. However, automating process related to the Nomenclature was
difficult. The fundamental problems stemmed from the changing relationship between
END and the Nomenclature. Originally, data were added to END by parsing HTML
pages at the JCBN web site, and suggested changes to those pages emailed back to
the web site maintainer. As long as I focussed on automating reaction deposit (for
all types of reactions, not just enzymatic), design and implementation were relatively
straightforward. Only gradually did the curators of Nomenclature realize this pro-
cess could help them, so that they then started explaining the actual workflow they
use. It turns out this is not an efficient process and has many problems with data
consistency and control. The process of adding to Nomenclature has many problems
of logical data consistency because the roles of the actors are not clearly defined or
enforced. For example, the data can be silently modified by more than one person
acting independently of the others. In spite of agreement that this is inappropriate,

the situation persists for historical and personal reasons. While I set out to improve

60

this position by redesigning the workflow, I only gradually learned the details of the
various versions of the current Nomenclature workflow. Changing the workflow for
END to accomodate the current Nomenclature workflow would be a significant step
backward. What I did not appreciate at the begining was how novel and potentially
threatening a different workflow for the Nomenclature could be; the genuine strengths
of the existing workflow; and how slowly one must sometimes negotiate the process of
workflow design. As a result of this work, the current workflow is changing and I am
adapting our design to what I understand is the end-point of this evolution. As the
main process for the Nomenclature workflow is implemented at many remote loca-
tions, many errors resulted in the automation design and implementation. This might
seem obvious, since the basis of modifying workflow is examining and understanding
the existing workflow. Running experiments with sample data sets and observing
the process was a problem. The information received through email and telephonic
conversations was not good enough to easily automate this process, and misunder-
standings, communication gaps, and lack of information on basic assumptions made
the task very difficult. To summarize, one can say that automation is simple if studied
properly, but very difficult without strong cooperation between users and designers.
Not only the end results, but the many odd situations that arise must be analyzed.
If the intermediate stages are not understood, it is very difficult to automate even
the simplest process. One error at any stage, and the result will not be accurate
any more. It is advisable that the entire process is located at one location for easy
communication, testing, verification, and management. The automation task can be
difficult if the database is distributed across many locations but is still tightly bound
together.

The most important factor while designing the automated process is to make it

flexible enough for future inclusions and modifications. If this is ignored, it might not

61

be possible to easily add more advances in the future. Every addition would require
re-engineering of the entire process, which could be time consuming and expensive.
The process should be modular so that with few adjustments, new features can be
incorporated into the system. Most management experts realize that in order to stay
on top, an organization must be constantly evolving [3]. Coding a process into a
computer system can have the effect of freezing the process at one instance, and may
make it costly to change. Clearly, workflow systems need to have specific features to
support process evolution. By making the workflow implementation flexible enough
I can diminish the barrier of change and make the system more easy to change and
continously evolve into a better system. In The Agora, this was accomplished by
learning the process of database curation as it existed in its initial stages. A step
by step schema was determined and then each step was inspected for any cause that
might be slowing the curation process. 1 identified all the known bottlenecks in the
process and subsequently redesigned and coded them for optimum efficiency. Once
the current processes were corrected, a detailed analysis of the curation process was
completed, all the possible data types and formats were listed, and then the code was
redesigned to make it flexible for future changes. Once the workflow was automated
and improvements were added, the curation process was repeatedly tested with all
the currently supported data samples for the different databases. Once the tests were
successfully passed, the workflow was examined again for any further improvements
in the workflow or data processing for improved efficiency. Thus, having the workflow
automated and future possible expansions with minimum efforts made available in
the workflow, The Agora can now support continous evolution and turn itself into a

better system.

62

4.1 Future Improvements

After the successful implementation of the automated design to The Agora, I am
now planning to improve it further by bringing new functionalities and features to it.

Some of the key improvements that could be incorporated are listed as follows:

e Prouviding curation of existing data in the participating databases. This will help
in curating information that was included in The Agora before the “front end”

was released. Curating existing data makes them cleaner and more current.

e Continued automation of the Nomenclature workflow. Since the workflow of
Nomenclature is extremely complicated, and involves large amounts of data with
each new information, I would like to automate more processes in Nomenclature

workflow for faster results and better consistency.

e Precheck data for stability. It might be the case that the new data included in
the database could crash the core application for some reason, maybe because
of a conflict with the existing data in the database. By having some checkpoints
or conditions, I can eliminate this possibility before the application is rebuilt

and made available to the public.

e Route review data based on type of information. In order to improve reviews
on deposited information, I would try to select reviewers based on the type of
information. For example, for the same type of deposit, I would look at the
information and select a reviewer who has more expertise about those data.
So, it would be an additional criterion for selecting reviewers for a particular

deposit.

e Automate the review process. In the current implementation, two reviewers

review the deposited information and make their decision about the deposit.

63

This process consists of manually verifying the deposited information against
the references or other sources of information as quoted in the deposit, and
then checking for their validity. If I can automate this stage or some of its
parts, I will be able to reduce the time in the review process. This can be
made possible by writing some robots that can look up publication databases
or journal collections, and check for the references mentioned in the deposit. If
the deposited information could be found in the references by these robots in
conjunction with a text search program, then I can reduce the need for human
agents as reviewers, and automate more of the review process. However, since
there are a number of such databases, building such a robot and a text search
program which can search for all kinds of text, would require time and knowledge

of these databases for accurate search procedures.

Communicate with remote databases. Since the automation process has a com-
mon design procedure, I am planning to communicate with databases besides
the ones that already are a part of The Agora. This will allow The Agora to au-
tomate community deposits to these remote databases. This communication can
be made possible using a central hub and linking all the participating databases
using a common syntax and semantics of data. Once the new databases are
connected to The Agora, it would be possible to have the same services of de-
positing, reviewing, revising and curating information for the new databases as
a part of The Agora. This way, I will not just automate the processes on the
participating databases, but also provide a separate interface similar to that
of The Agora for the people. This makes it easy for the scientific community
to have a common standardized interface for the processes involved in building
different types of curated databases at the same time. That will be the time

when The Agora would really be The Agora. In early Greek history, the agora

64

was primarily used as a place for public assembly; later it functioned mainly as
a center of commerce. By providing a common service for all databases, it can

have a similar center of scientific information.

65

BIBLIOGRAPHY

Alonso, G. and H. J. Schek, 1996. Research issues in large workflow management

systems. Technical Report 1996PA-as96-nsfws.

Conradi, R., Liu, C., and M. Hagaseth, 1995. Planning support for cooperating
transactions in EPOS. Inf. Syst. 20(4):317-336.

Donovan, J. J., 1994. Business Reengineering with Information Technology.

Prentice-Hall, New Jersey.

Dunford-Shore, B. H., Sulaman, W., Feng, B., Fabrizio, F., Holcomb, J., Wise,
W., and T. Kazic, 1994-present. Klotho: Biochemical Compounds Declarative
Database. University of Missouri, Columbia, MO, http://www.biocheminfo.-

org/klotho/.

Ellis, C. and J. Wainer, 1994. A conceptual model of groupware. In CSCW ’94:
Proceedings of the 1994 ACM Conference on Computer Supported Cooperative
Work, pages 79-88. ACM Press, New York.

Gary, K., Lindquist, T., Koehnemann, H., and L. Sauer, 1997. Automated process
support for organizational and personal processes. In GROUP ’97: Proceedings
of the International ACM SIGGROUP Conference on Supporting Group Work :
The Integration Challenge, pages 221-230. ACM Press, New York.

Jiang, J., Sanghi, G., Kutikkad, G., Bugrim, A., Boyce, S., Slomczynski, J.,
McDonald, A., Mummaneni, A., Seth, R., Sulaman, W., Fabrizio, F., Chilukuri,
P., Feng, D., Engel, T., Wise, W. B., Ellis, L., Shapshak, P., Tipton, K. F.,
and T. Kazic, 2002-present. The Agora. University of Missouri, Columbia, MO,

https://www.the-agora.org.

66

10.

11.

12.

13.

14.

15.

16.

Kazic, T., Jiang, J., Kutikkad, G., Yao, G., Bugrim, A., and J. Slomczynski,
2000—present. Glossa Semzotes. University of Missouri, Columbia, MO, http://-

www.the-agora.org/glossa/semiote_list.ps.

Khoshafian Setrag, B. M., 1995. Introduction to Groupware, Workflow, and

Workgroup Computing. J. Wiley and Sons, New York.

Markley, J. L., Ulrich, E. L., Doreleijers, J. F., Mading, S., Maziuk, D., Tolmie,
D., Wenger, R. K., Miller, Z., Yao, H., and J. Lin, 2004—present. BioMagResBank.

University of Wisconsin, Madison, http://www.bmrb.wisc.edu/.

McDonald, A., Seth, R., Richardson, M., Sachs, N., Wise, W. B., and T. Kazic,
2002-present. BND. University of Missouri, Columbia, MO, https://www.-

the-agora.org/bnd/.

Mummaneni, A., Boyce, S., Bugrim, A., McDonald, A., Slomczynski, J., Fab-
rizio, F., Sulaman, W., Akunuri, B., Wise, W. B., Tipton, K., and T. Kazic,
2000-present. END: Enzyme Nomenclature Database. University of Missouri,

Columbia, http://www.biocheminfo.org/end.

National Center for Biotechnology Information, 1995. GenBank. National Cen-
ter for Biotechnology Information, http://www.ncbi.nlm.nih.gov/GenBank/-

index.html.

of the IUBMB, M., 2004. http://www.chem.qmul.ac.uk/iupac/usage/summary.

Reiner B, Siegel E, C. J., 2002. Workflow optimization: current trends and future

directions. Journal of Digital Imaging 15(3):141-52.

Shapshak, P., Duncan, R., Torres-Munoz, J. E., Minagar, A., and C. K. Pe-

tito, 2002. Preliminary gene expression studies in AIDS: problems and solutions.

67

html.

17.

In Granda, W. V., ed., Proceedings of the Second Virtual Conference on Ge-
nomics and Bioinformatics, page under processing. North Dakota State Univer-

sity, http://www.ndsu.edu/virtual-genomics/.

Sheth, A., Georgakopoulos, D., Joosten, S. M. M., Rusinkiewicz, M., Scacchi, W.,
Wileden, J., and A. L. Wolf, 1997. Report from the NSF workshop on workflow
and process automation in information systems. SIGSOFT Softw. Eng. Notes
22(1):28-38.

68

