VARIABLE-MESH DIFFERENCE EQUATION FOR THE STREAM FUNCTION IN AXIALLY SYMMETRIC FLOW

J. C. Lysen
Associate Professor, Mechanical Engineering
University of Missouri

Reprinted from AIAA Journal 1964
The Engineering Experiment Station was organized in 1909 as a part of the College of Engineering. The staff of the Station includes all members of the Faculty of the College of Engineering, together with Research Assistants supported by the Station Funds.

The Station is primarily an engineering research institution engaged in the investigation of fundamental engineering problems of general interest, in the improvement of engineering design, and in the development of new industrial processes.

The Station desires particularly to co-operate with industries of Missouri in the solution of such problems. For this purpose, there is available not only the special equipment belonging to the Station but all of the equipment and facilities of the College of Engineering not in immediate use for class instruction.

Inquiries regarding these matters should be addressed to:

The Director
Engineering Experiment Station
University of Missouri
Columbia, Missouri
Variable-Mesh Difference Equation for the Stream Function in Axially Symmetric Flow

J. C. Lysen*
University of Missouri, Columbia, Mo.

A finite difference equation is developed for the stream function in cylindrical coordinates with axial symmetry which is applicable to an irregular mesh having different length and radial dimensions. In addition, the length and radial dimensions may be varied, and the mesh made finer in any interior region. The equation also takes into account an irregular boundary.

The stream function in cylindrical coordinates for the case of axial symmetry is

\[\frac{\partial^2 \psi}{\partial r^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{\partial^2 \psi}{\partial z^2} = 0 \]

(1)

A five-point mesh crossing an irregular boundary is used and is shown in Fig. 1. The mesh under consideration has spacing of \(h \) units in the \(z \) direction and \(k \) units in the \(r \) direction, and \(\alpha \) and \(\beta \) are the ratios of the distance to the boundary divided by the mesh distance. If the function \(\psi(z,r) \) is expanded in a Taylor’s series in the \(r \) direction, dropping the argument for the derivatives, the following equations result:

\[\psi(z + \alpha k, r) = \psi(z,r) - \alpha k \frac{\partial \psi}{\partial r} + \frac{\alpha k^2}{2!} \frac{\partial^2 \psi}{\partial r^2} + \ldots \]

(2)

\[\psi(z - \alpha k) = \psi(z,r) + \alpha k \frac{\partial \psi}{\partial r} + \frac{\alpha k^2}{2!} \frac{\partial^2 \psi}{\partial r^2} + \ldots \]

(3)

If Eq. (2) is multiplied by \(\alpha \) and the result added to Eq. (3),

\[\frac{\partial^2 \psi}{\partial r^2} = \frac{2\psi(z + \alpha k)}{k^2(1 + \alpha)} + \frac{2\psi(z - \alpha k)}{k^2(1 - \alpha)} - \frac{2\psi(z,r)}{k^2\alpha^2} + \]

\[\left(\alpha^2 - 1\right)0k + 0k^2 \]

(4)

where \(0k \) and \(0k^2 \) are terms of the order of \(k \) and \(k^2 \), respectively.

If Eq. (2) is multiplied by \(\alpha^2 \) and the result subtracted from Eq. (3), the following is obtained when dividing by \(r \):

\[\frac{\partial \psi}{\partial r} = \frac{\alpha \psi(z + \alpha k)}{rk(1 + \alpha)} - \frac{\psi(z - \alpha k)}{rk\alpha(1 + \alpha)} + \frac{(1 - \alpha)\psi(z,r)}{rk\alpha} + 0k^2 \]

(5)

In a similar way,

\[\frac{\partial^2 \psi}{\partial z^2} = \frac{2\psi(z - \beta r)}{h^2(1 + \beta)} + \frac{2\psi(z + \beta r)}{h^2\beta(1 + \beta)} - \frac{2\psi(z,r)}{h^2\beta^2} + \]

\[\left(\beta^2 - 1\right)0h + 0h^2 \]

(6)

Equations (4–6) can be substituted in Eq. (1), and the result is a difference form of the stream function for the point \(\psi(z,r) \) in terms of the four surrounding points:

\[\psi(z + k) \left(\frac{2}{1 + \alpha} \right) \left(1 - \frac{\alpha k}{2r} \right) + \]

\[\psi(z - \alpha k) \left(\frac{2}{1 + \alpha} \right) \left(1 + \frac{k}{2r} \right) + \]

\[\psi(z + \beta r) \left[\frac{2\lambda^2}{\beta(1 + \beta)} \right] + \psi(z - k, \beta r) \left(\frac{2\lambda^2}{1 + \beta} \right) \]

\[2\psi(z,r) \left[\frac{\lambda^2}{\beta} \frac{1}{\alpha} - \frac{1}{2\alpha} \right] + (1 - \beta^2)Oh - \]

\[\left(1 - \alpha^2 \right)0k + 0k^2 + 0k^3 = 0 \]

(7)

Equation (7) is valid for any mesh point near a boundary. It also applies to an interior point where a change in mesh size is introduced. This feature is particularly valuable when evaluating the stream function near an abruptly changing boundary. For example, evaluating Eq. (7) near a change in mesh size in the \(z \) direction corresponds to a vertical boundary in Fig. 1 through the point \(\psi(z + h, r) \), and \(\beta \) becomes the ratio of the mesh sizes. The mesh need not be square nor regular, that is, \(k \) and \(h \) need not be equal nor do they always have to be constant.

For an interior point in a mesh where \(h = k = \text{const} \), Eq. (7) reduces to the familiar form (e.g., see Salvadori and Baron).\n
\[\psi(z + \beta r) + \psi(z - k, \beta r) - 4\psi(z,r) = 0 \]

(8)

The error involved is of the order of \((1 - \beta^2)h \) in Eq. (7).

Care must be exercised to ensure that \(\beta \) does not approach zero. In constructing the net it is necessary to make \((1 - \beta^2) \to h \) if the whole term is to be of the order of \(h^2 \). The same argument holds for \(\alpha \). If the net is made fine enough, \(h, k \ll 1 \), and the characteristic dimension of the body under consideration is unity, the terms \(0k^2 \) and \(0k^3 \) tend to zero.

Also, it is assumed when using Taylor’s expansion that all derivatives are bounded. This is, of course, not true at the stagnation point of a body of revolution for example. However, if the value of the mesh point at the stagnation point

Reprinted from AIAA JOURNAL

Copyright, 1964, by the American Institute of Aeronautics and Astronautics, and reprinted by permission of the copyright owner.
is defined as part of the boundary, the unboundedness problem will be avoided for interior points near the singularity.

The stability problem may be discussed along the lines presented by Forsythe and Wasow.\(^2\) The term \(1 - (\alpha k / 2r)\) will be positive if \(\alpha < (2r / k)\). If this latter condition is met and if \(\alpha, \beta, k, h, r\) are all positive and finite, Eq. (7) merely represents \(\psi(z,r)\) as a weighted average of four surrounding points. Since the boundary is specified and finite, and since all derivatives are bounded in the region under consideration, all interior points must be finite: \(0 \leq m \leq \psi(z,r) \leq M \leq \infty\). Thus, the difference equation should be stable throughout the region interior to the boundary.

References

PUBLICATIONS OF THE ENGINEERING REPRINT SERIES

Copies of publications may be secured from the Director of the Engineering Experiment Station, University of Missouri. Single copies may be obtained free unless otherwise indicated until the supply is exhausted. Requests for additional copies will be considered upon further inquiry.

Reprint No.

55. Transfer of Load Between Precast Bridge Slabs by Adrian Pauw, P.E. and John E. Breen, Assistant Professor, Department of Civil Engineering, University of Missouri, Reprinted from Bulletin 279 (1961) Highway Research Board, Washington, D.C.

56. The Present Status of Structural Lightweight Concrete in the U.S.A. by Adrian Pauw, P.E., Professor of Civil Engineering, University of Missouri. Reprinted from "De Ingenieur," Vol. 73, No. 34, Aug. 25, 1961, The Netherlands.

58. Controlled-Deflection Design Method for Reinforced Concrete Beams and Slabs by Adrian Pauw, Professor of Civil Engineering, University of Missouri. Reprinted from Journal of The American Concrete Institute, Vol. 59, No. 5, May 1962.

60. Discussion of an Article by G. S. Ramaswamy and M. Ramaiah: Characteristic Equation of Cylindrical Shells—A Simplified Method of Solution by Adrian Pauw, Professor of Civil Engineering, University of Missouri, and W. M. Sangster, Professor of Civil Engineering, University of Missouri. Reprinted from Journal of The American Concrete Institute Concrete Briefs, pages 1505-1509, October 1962.

The University of Missouri
SCHOOLS AND COLLEGES

For the Divisions at Columbia:
 College of Agriculture
 School of Forestry
 School of Home Economics
 College of Arts and Science
 School of Social Work
 School of Business and Public Administration
 College of Education
 College of Engineering
 Engineering Experiment Station
 Graduate School
 School of Journalism
 School of Law
 School of Medicine
 School of Nursing
 University Extension Division
 School of Veterinary Medicine

For the Division at Rolla:
 School of Mines and Metallurgy