THE UNIVERSITY OF MISSOURI
ENGINEERING REPRINT SERIES
Reprint Number 65

Engineering Experiment Station
Columbia, Missouri

THREE AND FOUR COIL SYSTEMS
FOR HOMOGENEOUS MAGNETIC FIELDS

M. E. Pittman
Research Assistant, Physics Department
University of Maryland

D. L. Waidelich
Professor, Electrical Engineering
University of Missouri

Reprinted from
IEEE Transactions on Aerospace
February, 1964
The Engineering Experiment Station was organized in 1909 as a part of the College of Engineering. The staff of the Station includes all members of the Faculty of the College of Engineering, together with Research Assistants supported by the Station Funds.

The Station is primarily an engineering research institution engaged in the investigation of fundamental engineering problems of general interest, in the improvement of engineering design, and in the development of new industrial processes.

The Station desires particularly to co-operate with industries of Missouri in the solution of such problems. For this purpose, there is available not only the special equipment belonging to the Station but all of the equipment and facilities of the College of Engineering not in immediate use for class instruction.

Inquiries regarding these matters should be addressed to:

The Director
Engineering Experiment Station
University of Missouri
Columbia, Missouri
THREE AND FOUR COIL SYSTEMS FOR HOMOGENEOUS MAGNETIC FIELDS

by

M. E. Pittman* and D. L. Waidelich+
(Received 9/19/63)

Summary:

In the magnetic testing of satellites and spacecraft, very homogeneous fields are needed. One method of obtaining such fields is to use a number of circular coils on a common axis. The parameters of the best three- and four-coil systems were obtained by making zero as many terms as possible of the series for the field along the axis of the system. The parameters are presented in the form of tables and curves.

Introduction:

In the testing of the magnetic properties and instruments of satellites and spacecraft, there is a need to cancel the earth's magnetic field and then produce a very homogeneous controlled magnetic field. There should be ample access to the working volume and the electrical design and construction should be as simple as possible. Since the working volume required is large, it appears as if air-core coils are the only practical solution. Most of the previous work done has been on circular coils and this will be followed here, although square coils might have some constructional advantages. The volume of homogeneity for two coils (Helmholtz pair) is so small that prohibitively large coils would be needed for the required uniformity. For four coils, a much larger volume of homogeneity may be obtained for a given size of the coils. A few special solutions have been given for the four-coil system but no general solution over the whole range of parameters seems to have been made. It is the purpose of this paper to present such a solution and to indicate the various optimum values. The availability of a general solution will allow the design of a system when various factors such as the size or shape of the object being tested do not allow an optimum value to be used. In preparing for the solution of the four-coil system, it was found that the solution of the three-coil system was useful. The general solution of the three-coil system is also presented here although access to the volume of uniform field is quite limited because of the position of the center coil.

Theory:

The magnetic field of a single circular coil may be obtained by various methods such as the use of a scalar or vector magnetic potential. The magnetic field H along the axis of the coil is

$$H = \sum_{n=0}^{\infty} a_n z^n \quad (1)$$

where z is the distance along the axis measured from the origin O as shown in Figure 1, $z < b$ and

$$a_n = \frac{NI(1-\frac{z}{b})}{2b^{n+1}} P_{n+1}'(x) \quad (2)$$

where N = number of turns on the coil

I = current through the coil

$$P_{n+1}'(x) = \frac{dP_{n+1}(x)}{dx}$$

where $P_n(x)$ is the nth order Legendre polynomial and

$$x = \cos \alpha.$$
Two or more of the coils on a common axis may be used to produce a more homogeneous magnetic field than is possible with one coil. This is done by making as many terms zero beyond \(a_n\) in (1) as is possible. The same results may be obtained by use of a potential.

For a symmetrical four-coil system as shown in Figure 2, the magnetic field along the axis is

\[
H = \sum_{n=0, 2, 4, \ldots} a_n x^n
\]

where

\[
a_n = \frac{N_1 N_2 (1-x_1)}{b_1^{n+1}} P_{n+1}(x_1) + \frac{N_1 N_2 (1-x_2)}{b_2^{n+1}} P_{n+1}(x_2)
\]

The terms for odd \(n\)'s in (3) are zero because of symmetry.

Three coil results:

The three coil solution is obtained by setting \(x_2 = 0\) or \(a_1 = 90^\circ\). This has the effect of making the two inner coils of Figure 2 become the one center coil of Figure 3. With three coils it is possible to make \(a_2\) and \(a_4\) of (3) zero and then \(a_6\) may be made a minimum. The solution in more detail is carried out in the appendix and the results are shown in Figures 4 and 5. Additional results are presented in Table I. The range of \(x_2\) in Figures 4 and 5 is from 0.4472 to 0.7651 and the ratio of the radius \(b = b_2/b_1\) ranges from infinity to zero as shown in Figure 4. This indicates that when \(x_2\) is close to 0.4472, the diameter of the center coil should be smaller than that of the two outer coils, while when \(x_2\) is close to 0.7651, the diameter of the center coil should be larger than that of the two outer coils.

From Table I all three coils would have equal ampere turns at \(x_2 = 0.6402\). The most homogeneous field would be the one which made the remainder of the series of (3) a minimum, i.e., in

\[
H = a_0 \left[1 + a_6 x^6 + a_8 x^8 + \ldots\right]
\]

the sum of the terms in \(a_6, a_8, \text{ and so on}\) should be a minimum. Since the term containing \(a_6\) usually is much larger than that containing \(a_8\) and any of the succeeding terms, making the \(a_6\) term a minimum should give a close approximation to the optimum field. This may be done in a number of ways depending upon which of the parameters or combinations of the parameters are assumed to remain constant. As an example let

\[
A_6 = b_1^2 b_2^4 \frac{a_6}{a_0} = b_6 \frac{a_6}{a_0}
\]

In (6) if the mean radius, from the center of the system \(b = (b_1 b_2^2)^{1/3}\), for the three coils were constant, the \(a_6\) term would have its minimum at \(x_2 = 0.76163\) as shown in Figure 5 and Table I. As a second example let
In (7) if the larger radius \(b \) from the center of the system to the coils were constant, they increase would have its minimum at \(x = 0.6947 \) as shown in Figure 5 and Table I. If the system must be limited to a certain largest volume, probably the second optimum, that of \(B_6 \), would be the better of the two to use. It is possible to define other optima as well but it is believed that the two mentioned above are the most useful and practical.

Four coil results:

With a four coil system such as that shown in Figure 2, it is possible to make zero \(a_2 \), \(a_4 \) and \(a_6 \) of (3) and to make \(a_8 \) a minimum. This solution is carried out in more detail in the appendix and the results are shown in Figures 6 and 7 and in Table II. The range of \(x_2 \) in Figures 6 and 7 is from 0.44721 to 0.87174 and the corresponding \(x_1 \) as shown in Figure 6 decreases from 0.20929 to a minimum of 0.20360 and then increases to a maximum of 0.44721. The ratio of the radii \(b = b_2/b_1 \) ranges from infinity to zero as shown in Figure 6. Thus when \(x_2 \) is close to 0.44721, the diameter of the two inner or No. 1 coils should be smaller than that of the two outer or No. 2 coils, while when \(x_2 \) is close to 0.87174, the diameter of the No. 1 coils should be larger than that of the No. 2 coils. As indicated in Table II at \(x_2 = 0.68519 \) all four coils have the same diameter, while at \(x_2 = 0.76505 \) the four coils lie on the surface of a sphere and at 0.85363 both the No. 1 and No. 2 coils lie in the same plane perpendicular to the axis of the system with the No. 1 coils having the larger diameter of 3.76797 times that of the No. 2 coils. From \(x_2 = 0.85363 \) to 0.87174, the No. 2 coils are closer to the center of the system than the No. 1 coils. It is interesting to notice that if the No. 1 and No. 2 coils are interchanged the two end points of Table II become identical. The range of the ratio of ampere-turns, \(I = N_2 I_2/N_1 I_1 \), goes from infinity to zero as shown in Figure 6. When \(x_2 \) is close to 0.44721 the ampere-turns of the No. 1 (inner) coils would be smaller than that of the No. 2 (outer) coils while for \(x_2 \) close to 0.87174, the ampere-turns of the No. 1 coils would be larger. All coils will have equal ampere-turns at \(x_2 = 0.74207 \).

The most uniform field would be the one which made the remainder of the series of (3) a minimum, i.e., in

\[
H = a_0 \left[1 + \frac{a_8}{a_0} x^8 + \frac{a_{10}}{a_0} x^{10} + \cdots \right] \quad (8)
\]

the sum of the terms involving \(a_2, a_4, a_6, \) etc. should be made a minimum. A good approximation to this minimum should be that which makes the \(a_8 \) term a minimum. This may be done in a number of ways, one of which is to make the mean radius from the center of the system, \(b = (b_1 b_2)^{1/2} \), constant and define

\[
A_8 = b_4 b_2 \frac{a_8}{a_0} = \frac{b^8 a_8}{a_0} \quad (9)
\]

Figure 7 shows a curve of \(A_8 \) plotted against \(x_2 \) and Table II gives some values of \(A_8 \) including those at the end points. The minimum value of \(A_8 \) as given in Table II and as shown in Figure 7 is -2.21988 and occurs at \(x_2 = 0.75298 \) and \(x_1 = 0.27505 \). Another way of making the \(a_8 \) term a minimum is to put

\[
B_8 = b_4 \frac{a_8}{a_0} = \begin{cases} b_2 \frac{a_8}{a_0} & \text{when } b_2 \geq b_1 \\ b_1 \frac{a_8}{a_0} & \text{when } b_1 \geq b_2 \end{cases} \quad (10)
\]
where \(b \) is the larger radius from the center of the system to the coils. A curve of \(B_0 \) against \(x_0 \) is shown in Figure 7 and some values of \(B_0 \) are given in Table II. One of the values in Table II is the minimum value of \(B_0 = -2.25510 \) which occurs at \(x_0 = 0.76505 \) and \(x_1 = 0.28523 \). If more than one term is considered in the series of (8), the minimum depends upon the magnitude of \(z \). For example if the \(a_0 \) and \(a_{10} \) terms are considered in (8) they may be written as

\[
\left(\frac{a_{10}}{a_0} \frac{z}{b} \right)^8 + \left(\frac{a_{10}}{a_0} \frac{z}{b} \right)^{10} = A_8 \left(\frac{z}{b} \right)^8 + A_{10} \left(\frac{z}{b} \right)^{10} = C \left(\frac{z}{b} \right)^8
\]

(11)

where

\[A_{10} = b^{10} a_{10} a_0 \]

\[C = A_8 + A_{10} \left(\frac{z}{b} \right)^2 \]

The minimum value of \(C \) is the same as the minimum value of \(A_0 \) when \(z = 0 \) but when \(z/b = 0.21677 \), the minimum value of \(C \) occurs at \(x_0 = 0.74842 \) and \(x_1 = 0.27235 \) as given in Table II.

There are several other well known four coil solutions which do not have as great a uniformity as the solutions given in Figures 6 and 7 and in Table II because only two coefficients of \((3) \) namely, \(a_2 \) and \(a_{10} \) are made zero. As an example Neumann6 and Fanselau4,8, put \(x_1 \) and \(x_2 \) at the roots of \(P_5' (x) = 0 \) to make \(a_2 \) zero, then chose the ampere-turns of both No. 1 and No. 2 coils equal and found \(b \) by putting \(a_{10} = 0 \). Further details are given in Table III. Fanselau10 in another solution made \(a_2 \) zero by using the roots of \(P_5' (x) = 0 \). Both coils on one side of the system were put in the same plane perpendicular to the axis of the system and \(a_2 \) was made zero by choosing \(I = 28.2897 \). The ratio of the diameter of the smaller coil to that of the larger coil was \(0.250495 \) and \(b = 0.37230 \). Fanselau also indicated that a similar solution could be made where both sets of coils would have the same radius. Several additional four coil solutions with both \(a_2 \) and \(a_{10} \) zero are given by McKeehan6. Scott1 used four coils with the inner pair having a smaller diameter than the outer pair. His solution had both \(a_2 \) and \(a_{10} \) zero. Franzen12 used Garrett's theory5 to develop a theory of finite coil cross-section for a four coil system.

In Table III is presented the specifications of several coil systems along with an indication of how large a sphere about the center of the system will have a given homogeneity. Several three- and four-coil systems are given along with the two coil system of Helmholtz and the presently known six- and eight-coil systems. These are compared on a basis of an inhomogeneity of \(10^{-5} \) and as an example choose the minimum \(A_0 \) solution for the four-coil system. Then

\[
\left| A_8 \left(\frac{z}{b} \right)^8 \right| = 10^{-5}
\]

(12)

and

\[
\left(\frac{z}{b} \right) = 0.21677 \text{ or } 21.677\%
\]

This means that if \(b = 10 \) feet and considering only the \(A_0 \) term, the inhomogeneity of the magnetic field inside a sphere of 2.1677 feet radius would be less than or equal to \(10^{-5} \) or \(0.001 \% \). If \(B_0 \) were used

\[
\left| B_0 \left(\frac{z}{b} \right)^8 \right| = 10^{-5}
\]

(13)

and
The ampere-turns in the middle coil of the three coil system should be \(2N_1 I_1 \). For the six-coil systems, the x's for the Neumann-Fanselau and the Williams-Cain solutions are the roots of \(P'_{1/2} (x) = 0 \). Similarly for the eight-coil systems, the x's for the Neumann-McKeehan and the Williams-Cain solutions are the roots of \(P_{1/4} (x) = 0 \). Similar solutions using the roots of \(P'_{2n} (x) = 0 \) where \(n \) is even could be made for systems containing ten, twelve or higher (n) number of coils. In fact Garrett mentions the fact that the solution for a sixteen-coil system could be made readily. The Williams-Cain solution always gives the optimum solution for minimum \(B_{2n} \).

Conclusions:

Complete solutions along with tables and curves that should be useful in design work have been presented for the three and four circular-coil systems with zero cross-sectional area of the coils. Comparisons of these results have been made with the two-coil (Helmholtz) and the known six and eight coil systems. At the present time there is needed:

1. A complete study of the six-coil problem over the ranges of all of the parameters.
2. An investigation of the square or rectangular coil systems.
3. An analysis of the effect of finite cross-sectional area of the coils.

References

APPENDIX

Solution of the coil systems

1. Three coil system

Put \(x_1 = 0 \) in (4) and let \(b = b_2/b_1 \) and \(I = N_2 I_2/N_1 I_1 \). Then for \(n = 2 \) and \(n = 4 \) in (4):

\[
\left(\frac{3}{2} \right) b^\frac{1}{2} + I \left[1 - x_1 \right] P_3' (x_4) = 0 \quad (A-1)
\]

\[
\left(\frac{15}{8} \right) b^\frac{1}{2} + I \left[1 - x_1 \right] P_3' (x_4) = 0 \quad (A-2)
\]

where

\[
P_3' (x_4) = \left(\frac{3}{2} \right) (5 x_4^2 - 1)
\]

and

\[
P_3' (x_4) = \left(\frac{15}{8} \right) \left[21 x_4^2 - 14 x_4^2 + 1 \right]
\]

From (A-1) and (A-2):

\[
I \left[1 - x_1 \right] = \left(\frac{3}{2} \right) b^\frac{1}{2} P_3' (x_4) = \left(\frac{15}{8} \right) b^\frac{1}{2} P_3' (x_4)
\]

From (A-3):

\[
b^\frac{1}{2} = \frac{1 - 14 x_4^2 + 21 x_4^2}{1 - 5 x_4^2}
\]

or

\[
b^\frac{1}{2} = \left(\frac{1 - x_4^2}{1 - 5 x_4^2} \right) (5 x_4^2 - 1)
\]

In (A-4) \(b^\frac{1}{2} \) must be positive so the only possible solutions must have \(0.0 \leq x_4 \leq 0.2852 \) or \(0.4472 \leq x_4 \leq 0.7651 \) where \(0.4472 \) is the root of \(P_3' (x_4) = 0 \) and \(0.2852 \) and \(0.7651 \) are the roots of \(P_3' (x_4) = 0 \). The range of values of \(x_4 \) from 0.4472 to 0.7651 produces positive values of \(I \) while the range from 0.0 to 0.2852 produces negative values of \(I \). A negative value of \(I \) means that the current direction in the center coil is reversed from those in the two outer coils.

For the \(x_4 \) term of (3) let

\[
A_k = b_1^2 b_2^4 a_k = b_1^4 b_2^4 a_k
\]

where \(a_k \) and \(a_0 \) are given by (2). Then by the use of (4), (A-4) and (A-5):

\[
A_k = \frac{7}{16} \left[15 x_4^4 - 9 x_4^4 + 5 x_4^2 + 5 \right]/x_4^2 + 1
\]

The value of \(x_4 \) at which (A-7) has its minimum value is 0.6163. This value of \(x_4 \) is in the range for which \(I \) is positive. Hence the three-coil solution at least, making all currents flow in the same direction will produce a more homogeneous field. Another minimum value may be obtained by defining

\[
b_k = b_1^4 b_2^4 a_k
\]

where \(b_1 = 1.0 \) at \(x_4 = 0.6547 \). Then the minimum value of \(B_k \) occurs at \(x_4 = 0.6547 \).

2. Four coil system

For \(n = 2,4,6 \) from (4) and putting \(b = b_3/b_1 \) and \(I = N_2 I_2/N_1 I_1 \):

\[
b^\frac{1}{2} \left[1 - x_1 \right] P_3' (x_4) + I \left[1 - x_2 \right] P_5' (x_5) = 0 \quad (A-9)
\]

\[
b^\frac{1}{2} \left[1 - x_1 \right] P_3' (x_4) + I \left[1 - x_2 \right] P_5' (x_5) = 0 \quad (A-10)
\]

\[
b^\frac{1}{2} \left[1 - x_1 \right] P_3' (x_4) + I \left[1 - x_2 \right] P_5' (x_5) = 0 \quad (A-11)
\]

where

\[
P_3' (x_4) = \frac{7}{16} \left[429 x_4^4 - 495 x_4^4 + 135 x_4^2 - 5 \right]
\]

and \(P_3' \) and \(P_5' \) are given under (A-2). From (A-9), (A-10) and (A-11):

\[
I \left[1 - x_1 \right] = -b_1^\frac{1}{2} P_3' (x_4) - \frac{b_3^\frac{1}{2} P_3' (x_4)}{P_3' (x_4)} + \frac{b_1^\frac{1}{2} P_3' (x_4)}{P_5' (x_5)}
\]

From (A-12):

\[
b^\frac{1}{2} = P_3' (x_4) P_5' (x_5) / P_3' (x_4) P_3' (x_5) = \frac{P_3' (x_4) P_5' (x_5)}{P_5' (x_5)}
\]

From (A-13):

\[
P_3' (x_4) P_5' (x_5) = \frac{P_3' (x_4) P_5' (x_5)}{P_3' (x_5)} = f(x_4)
\]

or

\[
P_3' (x_4) P_5' (x_5) = f(x_4) \left[P_3' (x_4) \right]^2 = 0
\]

For a given \(x_4 \), (A-15) was solved for \(x_4 \) and the ratio of the radii \(b \) was obtained from (A-13). The ampere-turn ratio \(I \) may be obtained by the use of (A-12):

\[
I = -b_1^\frac{1}{2} \left[1 - x_1 \right] P_3' (x_4)/P_3' (x_4)
\]
The use of a computer allowed numerous solutions to be obtained over the range for \(x_2 \) from 0.4472 which is a root of \(P_3'(x) = 0 \) to 0.8717 which is a root of \(P_7'(x) = 0 \). The corresponding range for \(x_1 \) is from 0.2036 to 0.4472. For these values \(I \) is positive. I may be negative when both \(x_1 \) and \(x_2 \) lie in the range between 0.4472 and 0.5917 where 0.5917 is a root of \(P_9'(x) = 0 \). The values for \(I \) negative were not calculated because the more useful values were in the range where \(I \) is positive.

For the \(a_n \) term of (3) let

\[
A_n = b_1^* b_2^* s_n / s_0
\]

(A-17)

where \(s_n \) and \(s_0 \) are given by (2). Then by the use of (4), (A-13) and (A-16)

\[
A_n = \frac{P_1'(x_1) P_2'(x_2) P_3'(x_2) P_4'(x_1) P_5'(x_1) P_6'(x_1) P_7'(x_2)}{P_1'(x_2) P_2'(x_2) P_3'(x_2) P_4'(x_1) P_5'(x_1) P_6'(x_1) P_7'(x_2)}
\]

(A-18)

where

\[
P_9'(x) = \frac{45}{128} (2431 x^8 - 4004 x^4 + 2002 x^4 - 308 x^2 + 7)
\]

The minimum value of \(|A_9|\) is 2.21989 and occurs at \(x_1 = 0.27505 \) and \(x_2 = 0.75209 \). If the sum of both the \(a_n \) and \(a_{10} \) terms is minimized

\[
B_n = \begin{cases} \frac{b_1^* a_n}{a_0} = \frac{b_1^*}{a_0} & \text{when } x_2 \leq 0.75209 \\ \frac{b_2^* a_n}{a_0} = \frac{b_2^*}{a_0} & \text{when } x_2 \geq 0.75209 \end{cases}
\]

(A-19)

The minimum value of \(B_n \) occurs at \(x_1 = 0.28523 \) and \(x_2 = 0.76505 \). The next term in the series has

\[
A_{10} = b_1^* b_2^* s_{10} / s_0
\]

(A-20)

where \(s_{10} \) and \(s_0 \) are given by (2).

If solutions of greater accuracy are needed than those available in the curves and tables here presented, they may be obtained by numerical solution of the equations given in the appendix using the present solutions as a starting point.

Figure 1 - The single circular coil

Figure 2 - The four-coil system

Figure 3 - The three-coil system
Figure 4 - Calculated values of d_2, I and b for the three-coil system

Figure 5 - Calculated values of A_6 and B_6 for the three-coil system

Figure 6 - Calculated values of x, I and b for the four-coil system

Figure 7 - Calculated values of A_8 and B_8 for the four-coil system
Table I

Particular Three-Coil Systems

<table>
<thead>
<tr>
<th>(x_2)</th>
<th>(\alpha_2) (degrees)</th>
<th>b</th>
<th>I</th>
<th>(A_6)</th>
<th>(B_6)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4472</td>
<td>63.42°</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>-2.100</td>
<td>(-\infty)</td>
<td>End point</td>
</tr>
<tr>
<td>0.6051</td>
<td>52.76°</td>
<td>1.256</td>
<td>3.763</td>
<td>-2.0369</td>
<td>-3.214</td>
<td>Coils of equal diameter Barker's solution(^3)</td>
</tr>
<tr>
<td>0.6163</td>
<td>51.96°</td>
<td>1.197</td>
<td>3.076</td>
<td>-2.0364</td>
<td>-2.925</td>
<td>Minimum</td>
</tr>
<tr>
<td>0.6402</td>
<td>50.19°</td>
<td>1.074</td>
<td>2.000</td>
<td>-2.0388</td>
<td>-2.351</td>
<td>Coils of equal ampere-turns</td>
</tr>
<tr>
<td>0.6547</td>
<td>49.10°</td>
<td>1.000</td>
<td>1.531</td>
<td>-2.043</td>
<td>-2.043</td>
<td>Minimum</td>
</tr>
<tr>
<td>0.7651</td>
<td>40.08°</td>
<td>0.000</td>
<td>0.000</td>
<td>-2.167</td>
<td>(-\infty)</td>
<td>End point</td>
</tr>
</tbody>
</table>

Table II

Particular Four-Coil Systems

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>b</th>
<th>I</th>
<th>(A_8)</th>
<th>(B_8)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20929</td>
<td>0.44721</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>-2.35384</td>
<td>(-\infty)</td>
<td>End point</td>
</tr>
<tr>
<td>0.20360</td>
<td>0.51961</td>
<td>2.49155</td>
<td>46.00025</td>
<td>-2.34170</td>
<td>-90.24299</td>
<td>Minimum (x_1)</td>
</tr>
<tr>
<td>0.23629</td>
<td>0.68519</td>
<td>1.33407</td>
<td>2.26058</td>
<td>-2.47133</td>
<td>-7.82798</td>
<td>All coils have equal diameters Barker's solution(^3)</td>
</tr>
<tr>
<td>0.26786</td>
<td>0.74207</td>
<td>1.09795</td>
<td>1.000</td>
<td>-2.23448</td>
<td>3.24721</td>
<td>All coils have equal ampere-turns Braunbek's solution(^6),(^7)</td>
</tr>
<tr>
<td>0.27235</td>
<td>0.74842</td>
<td>1.07127</td>
<td>0.90406</td>
<td>-2.22196</td>
<td>2.92648</td>
<td>Optimum using both (A_8) and (A_{10}) terms</td>
</tr>
<tr>
<td>0.27505</td>
<td>0.75208</td>
<td>1.05576</td>
<td>0.85165</td>
<td>-2.21988</td>
<td>2.75803</td>
<td>Optimum using (A_8) only</td>
</tr>
<tr>
<td>0.28523</td>
<td>0.76505</td>
<td>1.000</td>
<td>0.68211</td>
<td>-2.25510</td>
<td>2.25510</td>
<td>All coils on surface of a sphere Optimum using (B_8), McKeehan's solution(^5),(^6)</td>
</tr>
<tr>
<td>0.39864</td>
<td>0.85363</td>
<td>0.46699</td>
<td>0.024569</td>
<td>-2.34225</td>
<td>-49.24825</td>
<td>Both No. 1 and No. 2 coils lie in the same plane perpendicular to the axis of the system</td>
</tr>
<tr>
<td>0.44721</td>
<td>0.87174</td>
<td>0.000</td>
<td>0.000</td>
<td>-2.35384</td>
<td>(-\infty)</td>
<td>End point</td>
</tr>
</tbody>
</table>
Table 3
Specifications of Various Coil Systems.

<table>
<thead>
<tr>
<th>Source</th>
<th>Neumann-Neuau (References 6 and 8)</th>
<th>Braunbek (Reference 7)</th>
<th>Barker (Reference 3)</th>
<th>Neumann-McKeehan (References 5 and 6)</th>
<th>Minimum A₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Coils</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Assumptions</td>
<td>Coils have equal ampere-turns</td>
<td>Coils have equal ampere-turns</td>
<td>Coils have equal diameters</td>
<td>Coils on surface of sphere</td>
<td>None</td>
</tr>
<tr>
<td>The a's that are zero</td>
<td>a₁, a₂</td>
<td>a₁, a₂, a₃</td>
<td>a₁, a₂, a₃</td>
<td>a₁, a₂, a₃</td>
<td>a₁, a₂, a₃</td>
</tr>
<tr>
<td>Coefficient of next term, A₃</td>
<td>-1.289</td>
<td>-2.23448</td>
<td>-2.47133</td>
<td>-2.251102</td>
<td>-2.2219639</td>
</tr>
<tr>
<td>x₁</td>
<td>0.26</td>
<td>0.27346</td>
<td>0.27346</td>
<td>0.27346</td>
<td>0.27346</td>
</tr>
<tr>
<td>x₂</td>
<td>0.745055</td>
<td>0.74207</td>
<td>0.74207</td>
<td>0.74207</td>
<td>0.74207</td>
</tr>
<tr>
<td>b</td>
<td>1.136009</td>
<td>1.136009</td>
<td>1.136009</td>
<td>1.136009</td>
<td>1.136009</td>
</tr>
<tr>
<td>l</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>For an inhomogeneity of 10⁻⁵ (percent)</td>
<td>z/b₀</td>
<td>14.07</td>
<td>21.672</td>
<td>21.672</td>
<td>21.672</td>
</tr>
</tbody>
</table>

Table 3 (continued)

<table>
<thead>
<tr>
<th>Source</th>
<th>Neumann-Neuau (References 6 and 8)</th>
<th>Braunbek (Reference 7)</th>
<th>Barker (Reference 3)</th>
<th>Neumann-McKeehan (References 5 and 6)</th>
<th>Minimum A₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Coils</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Assumptions</td>
<td>Coils have equal ampere-turns</td>
<td>Coils have equal ampere-turns</td>
<td>Coils lie on surface of sphere</td>
<td>Coils have equal ampere-turns</td>
<td>Coils lie on surface of sphere</td>
</tr>
<tr>
<td>The a's that are zero</td>
<td>a₁, a₂</td>
<td>a₁ to a₃</td>
<td>a₁ to a₃</td>
<td>a₁ to a₃</td>
<td>a₁ to a₃</td>
</tr>
<tr>
<td>x₁</td>
<td>0.20929922</td>
<td>0.19065</td>
<td>0.20929922</td>
<td>0.1652754</td>
<td>0.1652754</td>
</tr>
<tr>
<td>x₂</td>
<td>0.59170018</td>
<td>0.550274</td>
<td>0.59170018</td>
<td>0.4779250</td>
<td>0.4779250</td>
</tr>
<tr>
<td>kₙ</td>
<td>0.87174003</td>
<td>0.8433007</td>
<td>0.87174003</td>
<td>0.7387739</td>
<td>0.7387739</td>
</tr>
<tr>
<td>xₜₜ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.9195342</td>
<td>0.9195342</td>
</tr>
<tr>
<td>bₜₜ/bₜₜ</td>
<td>1.071723</td>
<td>1.046147</td>
<td>1.00</td>
<td>1.0222398</td>
<td>1.00</td>
</tr>
<tr>
<td>bₜₜ/bₜₜ</td>
<td>1.242359</td>
<td>1.157907</td>
<td>1.00</td>
<td>1.1827288</td>
<td>1.00</td>
</tr>
<tr>
<td>bₜₜ/bₜₜ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.2382925</td>
<td>1.00</td>
</tr>
<tr>
<td>Nₙ₁/Nₙ₁</td>
<td>1.00</td>
<td>1.00</td>
<td>0.8270469</td>
<td>1.00</td>
<td>0.891626</td>
</tr>
<tr>
<td>Nₙ₁/Nₙ₁</td>
<td>1.00</td>
<td>1.00</td>
<td>0.5108492</td>
<td>1.00</td>
<td>0.686404</td>
</tr>
<tr>
<td>Nₙ₁/Nₙ₁</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
<td>0.406992</td>
</tr>
<tr>
<td>For an inhomogeneity of 10⁻⁵ (percent)</td>
<td>z/bₜₜ</td>
<td>31</td>
<td>34</td>
<td>36</td>
<td>16</td>
</tr>
</tbody>
</table>
PUBLICATIONS OF THE ENGINEERING REPRINT SERIES

Copies of publications may be secured from the Director of the Engineering Experiment Station, University of Missouri. Single copies may be obtained free unless otherwise indicated until the supply is exhausted. Requests for additional copies will be considered upon further inquiry.

Reprint No.

53. Thermodynamic Properties of n-Propyl Alconol by J. L. Cosner, Graduate Student, Department of Chemical Engineering, University of Missouri, J. E. Gagliardo, Student Assistant in Chemical Engineering, University of Missouri and T. S. Storvick, P. E., Assistant Professor of Chemical Engineering, University of Missouri, Reprinted from Journal of Chemical & Engineering Data, Vol. 6, No. 3 July, 1961.

55. Transfer of Load Between Precast Bridge Slabs by Adrian Pauw, P.E. and John E. Breen, Assistant Professor, Department of Civil Engineering, University of Missouri, Reprinted from Bulletin 279 (1961) Highway Research Board, Washington, D.C.

58. Controlled-Deflection Design Method for Reinforced Concrete Beams and Slabs by Adrian Pauw, Professor of Civil Engineering, University of Missouri. Reprinted from Journal of The American Concrete Institute, Vol. 59, No. 5, May 1962.

60. Discussion of an Article by G. S. Ramaswamy and M. Ramaiah: Characteristic Equation of Cylindrical Shells—A Simplified Method of Solution by Adrian Pauw, Professor of Civil Engineering, University of Missouri, and W. M. Sangster, Professor of Civil Engineering, University of Missouri. Reprinted from Journal of The American Concrete Institute Concrete Briefs, pages 1505-1509, October 1962.

The University of Missouri
SCHOOLS AND COLLEGES

For the Divisions at Columbia:
College of Agriculture
School of Forestry
School of Home Economics
College of Arts and Science
School of Social Work
School of Business and Public Administration
College of Education
College of Engineering
Engineering Experiment Station
Graduate School
School of Journalism
School of Law
School of Medicine
School of Nursing
University Extension Division
School of Veterinary Medicine

For the Division at Rolla:
School of Mines and Metallurgy