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ABSTRACT

Deep learning has received a lot of attention in the fields such as speech recognition and
image classification because of the ability to learn multiple levels of features from raw data.
However, 3D deep learning is relatively new but in high demand with their great research values.
Current research and usage of deep learning for 3D data suffer from the limited ability to process
large volumes of data as well as low performance, especially in increasing the number of classes
in the image classification task. One of the open questions is whether an efficient as well as an
accurate 3D Deep Learning model can be built with large-scale 3D data.

In this thesis, we aim to design a hierarchical framework for 3D Deep Learning, called
H3DNET, which can build a DL 3D model in a distributed and scalable manner. In the H3DNET
framework, a learning problem is composed of two stages: divide and conquer. At the divide
learning stage, a learning problem is divided into several smaller problems. At the conquer
learning stage, an optimized solution is used to solve these smaller subproblems for a better
learning performance. This involves training of models and optimizing them with refined division
for a better performance. The inferencing can achieve the efficiency and high accuracy with fuzzy
classification using such a two-step approach in a hierarchical manner.

The H3DNET framework was implemented in TensorFlow which is capable of using GPU
computations in parallel to build 3D neural network. We evaluated the H3DNET framework on a
3D object classification with MODELNET10 and MODELNET40 datasets to check the efficiency of

the framework. The evaluation results verified that the H3DNET framework supports hierarchical



3D Deep Learning with 3D images in a scalable manner. The classification accuracy is higher than

the state-of-the-art, VOXNET[7] and POINTNET.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Machine learning is the area of computer science which allows computers to act without
being explicitly programmed or without giving any command. The study of pattern recognition and
computational learning theory are the areas from where machine learning has been grown. Machine
learning investigates the development of algorithms that can make data-driven predictions to
overcome the conventional software’s following strictly designed programs. Machine Learning model
is developed from training data to answer certain questions. For example, we can build model using
lot of images of “cat” and “dog” and then use that model to check if a given image is either dog or cat.
The areas such as self-driving cars, language translation, computer vision, smart search, data security,
speech recognition, autonomous robots extensively use the Machine Learning algorithms [10]. The
“Deep Learning”[1] is the extended and most powerful form of machine learning which builds the
neural network, an advanced and complex mathematical structure which work similar to human
brain. To build the deep neural network which powers such new applications, it requires having a
massive amount of computing resources which is really a huge challenge. The building of neural
networks may take too much time ranging from days to months for even the supercomputers. Recent
the advancements in GPU computations have speedier the neural network training 10 -20 times than
the normal CPUs. The number of deep learning SDKs are developed which are based on NVIDIA
GPUs[4] to make the neural network training faster. There are so many organizations which are
developing and using such frameworks for building the neural network and this number is
continuously increasing. With the increment in neural network applications, the number of models
developed are also increasing and even there is a need to combine or use part of some models to

serve the purpose.



With the advancement in machine learning and computation power, there is also
advancement in the processing and usage of 3D objects. The fields like gaming, virtual reality,
autonomous robotics extensively use the 3D data or 3D point cloud. 3D Data is growing enormously
each day and because of this, there is a need for distributed and scalable deep learning network. This
research presents one such approach, which is distributed and scalable.

1.2 Problem Statement

Various approached are developed using the deep learning framework to solve the supervised
machine learning problems such as natural language processing, text classification, and image
classification but the 3D object classification is the relatively underrated topic. 3D object classification
is the crucial task for many applications such as autonomous robots operating in unstructured
environments, autonomous vehicles. 3D gaming etc. There are also some basic neural network
models are available for 3D object classification which either used 2D neural network or single neural
network.

Few open research questions for distributed 3D object classification are: can we distribute
learning tasks to multiple CPU/GPU machines while minimizing loss? Data parallelism, task
parallelism, and model parallelism are a different approach for distributed learning and predictions.
Data parallelism uses the different data with the same model in the entire cluster. Model parallelism
splits the model into the entire cluster for same data. Task parallelism is using different machines of
the cluster for different tasks.

The existing deep learning libraries such as Tensorflow, caffe etc support the distributed
model training, i.e. distributed computing is available to them. But they do not allow to do distributed
learning or prediction with conventional approaches. The inference using the complex neural network

needs millions of operations so distributed model inference is must for better performance.



The model needs to learn continuously about the new data as the data grows. For an instance,
the recommendation and user behavior systems require updated model based on the preferences of
the users which changes time-to-time. In conventional approaches, the existing model is replaced
with the new model once the model is retrained for the new data. It becomes even worse when we
need to add new class or category for the existing model as it requires to redesign the model and train
it from the scratch. Existing approaches do not provide support for distributed deep learning for
building models that can evolve efficiently new requirements and data from the users.

To increase the model’s performance, more complex models are being developed. These
often involve using multiple models i.e. also use visual and audio for image classification. Such
implementations require more distributed approaches. As machine learning algorithms advances,
user expectation also advances which leads to building model to perform multiple tasks by combining
the existing models.

1.3 Proposed Solution

This thesis presents a scalable and distributed deep learning framework. The presented
approach aims to solve the 3d object classification problem but can be applied to many machine
classification problems which are supervised in nature.

The deep learning problem is divided into two portions hierarchically. The two parts are called
divide learning and conquer learning. At the divide learning level, the classes are divided into smaller
subsets so large problem is divided into smaller supervised classification subproblems. At conquer
learning, the one neural network is trained for each of these subproblems and this neural network is
less complex and can be heterogeneous as per the requirements of subproblems. After training each
of the models, if we are getting the desired accuracy then higher layer model is trained otherwise
optimization is performed by redistributing the confusing class which includes identifying the

confusing class by checking the confusion matrix, move the confusing class to another subproblem



and retrains the lower layer model. At the higher level, lower layer’s subproblems are considered as
the classes and another neural network is prepared. This network can be same as lower level models
or can be more or less complex.

The approach makes use of Convolutional Neural Networks [5, 12, 13, 14]. TensorFlow [15],
open source library for deep learning, numerical computation and machine intelligence is used. The
proposed approach can be extended to solve for most other classification problems like speech
recognition, image classification, natural language processing. The evaluation of several case studies
is presented to verify that the H3DNET framework can achieve a high rate of accuracy while supporting

the distributed deep learning.



CHAPTER 2
BACKGROUND AND RELATED WORK

In this chapter, we will learn about the terminology that has been used in the thesis and
discusses the background technologies. The work related to our problem and available solutions will
also discuss at the end of the chapter.

2.1 Terminology and Technology
2.1.1 Machine Learning

Machine learning is the area of computer science which allows computers to act without
being explicitly programmed or without giving any command. The roots of the machine learning can
be found in the field of computational learning theory in artificial intelligence and pattern recognition.
It aims to overcome the strict static program instruction by developing and studying algorithms which
can make the data-driven predictions or decisions. The methods, theory and application domains are
delivered by the mathematical optimization which is the base of the Machine Learning.

It is strongly dependent on the mathematical optimization, which delivers methods, theory
and application domains to it.

“A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks the in T, as measured by P, improves with
experience E.” [11]

Machine learning tasks are typically classified into three broad categories and this categorization is
based on the available learning system’s nature of the learning. These categories are

e Supervised Learning

e Unsupervised Learning

¢ Reinforcement Learning



The labeled training data is used for learning in a supervised learning [18]. It designs inferred
function by analyzing the training data. The new examples are mapped using this produced inferred
function. The training dataset consists of input data and response values which are used by the
algorithm to train itself and then the model is validated using another set of data. The accuracy of
model largely depends on the size of training data so larger training datasets often results in higher
accuracy of the supervised learning algorithm.

Supervised learning algorithms can be further divided into two sub-categories:

e Classification: In this supervised problem, the algorithm takes inputs of two or more classes and
predicts the class of the inputs after training.

e Regression: In this problem, algorithm tried to predict the continuous-response values for input.

An unsupervised learning is the branch of machine learning in which algorithm uses the
unlabeled dataset to draw the inferences. The commonly used approach for unsupervised algorithms
is clustering in which clusters are modeled using metrics which measure the similarity between them
and such measures are Euclidean or probabilistic distance.

In reinforcement learning, a computer program must perform certain goal by interacting with
a dynamic environment. The goals are like playing a game against an opponent or driving a vehicle.
As program explores problem space, it is rewarded or punished to provide feedback.

2.1.2 Neural Network

An Artificial Neural Network (ANN) is a mathematical model which process the information in
a way that is inspired by the way biological nervous systems, such as the brain (Figurel and Figure2).
It consists of millions of processing elements which are highly interconnected and aims to solve the
specific problem. These elements are called neuron which takes several inputs and generates a one

or multiple real-valued outputs. It is estimated that the human brain is the densely interconnected



network of approximately 10! neurons in which on an average 10* other neurons are connected to
the single neuron.

impulses carried
toward cell body
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cell body

Figure 1: Biological Neuron’s Cartoon Drawing [1]
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Figure 1. Biological Neuron’s Mathematical Model [1]

ANN system is designed using the component called a perceptron (Figure 3). A perceptron
is an artificial neuron which takes a vector of real-valued inputs and computes a linear combination
of these vectors to generates binary result based on certain threshold.

0i iwix; < threshold
Output= .lf Z] %
1if ¥;wjx; > threshold
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Figure 2. Artificial Neuron’s Mathematical Model [1]

This function which generates output is called “activation function”. Various activation functions are:
Sigmoid: The Sigmoid function has the following equation

1
1+ exp™

y=okx =
It takes a real value and outputs between 0 and 1. However, the gradient at the tail of O or 1
is almost zero because of the saturation.
Hyperbolic Tangent: The mathematical form of TanH is non-linearity is as follows
y=2002x)—1
It outputs a real-valued number int the range of -1 and 1.

Rectified Linear Unit: The mathematical form of RELU is

y = max(0, x)



2.1.3 Convolutional Neural Networks

Convolutional Neural Network(CNN)s are designed by the number of neurons that have
weights and biases which are learnable. Each neuron takes some inputs then performs a mathematical
function and optionally applies it a non-linearity. The whole network still expresses a single
differentiable score function. On the one end of the neural network, there are raw image pixels while
on the other end of the neural network there are scores for classes. In between these ends, there is
loss function on the last layer and other configurations parameters.

For the images of size 32x32x3 (32 wide, 32 high, 3 color channels) and if we design a regular
neural network using fully-connected then a single fully-connected neuron in a first fully-connected
layer of a Network would have 3072 (32 * 32 * 3) weights. This amount is still manageable, but clearly,
this fully-connected network does not scale as the images become larger. For example, if an image
has the size of 200x200x3 then the first layer would have 120,000 (200*200*3) weights. Moreover,
the only single layer may not serve the purpose, so we would like to have several such layers, so the
situation becomes worse! Clearly, this full connectivity with a large number of parameters would
become the lead cause of overfitting.

3D volumes of neurons: The inputs are images or 3D objects which constrain the architecture
in the more effective way. The Convolutional Neural Network takes advantage of this fact for
designing the network. In contrast to a regular Neural Network one dimensional structure, the layers
of Convolutional Neural networks have the width, height, and depth where neurons are arranged.

Here is a visualization:
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Figure 3. Left - 3-layer Neural Network. Right - Convolutional Neural networks

2.1.4 Model Training
The model training involves providing a training data to a designed algorithm for learning. The
out of the training process is the artifact which is referred to the model.
The training data must have a target or target attribute which is the correct answer. The aim
of the learning algorithm is to find the patterns in the training data which can be mapped between
the input data attributes and the target (the answer that you want to predict), and it generates an ML

model which captures these patterns.

The generated ML model can be used to make predictions of new data for which the target is
unknown. For example, to train an ML model to classify the email as spam or not spam, you should
input the training data that has emails and labels for that email which is either spam or not spam.
Once the training model is completed using these data, the generated model will attempt to classify

the new email whether it will be spam or not spam.

2.2 TensorFlow
TensorFlow is an open source library which is used for numerical computation using data flow
graphs. The graph contains the nodes and the edges. The node represents the mathematical
operations and the edges represent the multidimensional data arrays which are communicated to

them. Because of the flexibility of architecture, one or more GPUs or CPUs can be used for deployment
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of computations. Researcher and engineers of Google Brain Team have developed the Tensorflow for
the purposes of conducting machine learning and deep neural networks research.

TensorFlow can be used for designing the large-scale distributed machine learning training
and inference. As it is a cross-platform library, can be used across desktop, mobile etc. The
architecture of Tensorflow is shown in Figure 4. TensorFlow has a layered architecture. The core
runtime kernels which are implemented in different languages are separated from user level code
using C API. On the top of Networking kernel implementation resides and the master and dataflow

executors on the top of that. The parameter of Tensorflow is from disbelief [3].

, Training libraries ][ Inference libs ]

Python client ] [ C++ client]

C API ]

[ Distributed master ] [ Dataflow executor

[Cunst] [MatMuI] [Cnnuz D] [RELU ] [Queue]

Kernel implementations

. .

-

r[RPC][HDMA]-u [CPU][GPU].”1
Networking layer Device layer

- .

Figure 4. TensorFlow Architecture [15]

The main abstraction of Tensorflow is data flow graph which is used for describing the
mathematical computation using the nodes and edges.
e Mathematical operations represented by the nodes

e The i/o relationships between several operations described using the edges of the graph
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e Dynamically-sized multidimensional arrays called tensors are carried by the edges of the

graph
TensorFlow gets its name from the flow of tensors. Once incoming edges get all the tensors,
different computational devices get the nodes and asynchronous operations are performed from the

all the nodes. The model becomes more distributed with this design.

Periodic
checkpoint

Parameters
o

Read params Apply grads
S

Training

A schematic TensorFlow dataflow graph for a training pipeline contains subgraphs for reading input data,
preprocessing, training, and checkpointing state.

Figure 5. Example TensorFlow dataflow graph [15]

2.3 Point Cloud

A point cloud is a collection of data points represented in the coordinate system. In a three-
dimensional system, X, Y, and Z coordinates define these points and often are aimed to represent the
object’s external surface.

3D Scanners are used to create the point cloud. These compute the number of points on the
surface of an object and generate a data file which contains a point cloud. The generated point cloud
has the points which are computed by 3D Scanner which are used in so many applications which
includes creating 3D CAD models as a process of manufacturing and quality inspection. The
applications like rendering, visualization, mass customization applications and animations also use the

point clouds.
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Point clouds can be inspected and rendered directly but usually, 3D applications do not use
point clouds directly. Therefore, polygon mesh, NURBS models, triangle mesh or CAD Models are

created from the point cloud using the surface reconstruction.

Industrial metrology can directly use the point clouds for inspection. In the manufacturing
process, a CAD model is aligned with the point cloud of manufacture product for comparing and
checking quality and differences of products. The color maps can be created from these differences
which give the indicator about the deviation using color visualization. The point cloud can also use to
extract the geometric tolerances and dimensions.

2.4 Related Work

The research focuses on building deep learning models and predicting the class of 3D objects.
The easiest comparison one would make with this approach is pre-processing the 3D data into voxels
and then feed them into neural network for training and prediction. All these approaches build CNN
or RNN model and trained them with 3D datasets converted into voxels or point clouds. Our approach
uses the same voxelization approach but also converts processed volumetric data into binary format.
After performing preprocessing of the 3D dataset uses the hierarchical neural network build using the
top-down approach and predict the class by combining the prediction from all models.

VOXNET[7][8] discusses a basic 3D convolutional neural network architecture to perform the
fast and accurate object classification. It takes a point cloud segment as input and performs
classification. This approach consists of two components: a volumetric grid or voxel grid and a 3D
CNN. Occupancy Grids represents the 3D objects as a 3D grid of variables and maintain a probabilistic
estimate of their occupancy. This approach creates three types of occupancy grids: the first one is
binary occupancy grid, second one is density occupancy grid, and third is hit occupancy grid. In binary
occupancy grid, occupied and unoccupied are two states which can voxel choose. In density

occupancy grid, voxel state is based on the continuous probability. The 3D CNN model takes this

13



occupancy grid and predicts the labels. With the various combinations of filters and hyperparameters,
this approach allows creating countless architectures for 3D object classification. The overall loss of
neural network is optimized using Scholastic Gradient Descent (SGD) with momentum optimizer. The
only similarity between this approach and our approach is the use of occupancy grid for converting
3D objects into a 3D lattice. Our approach uses binary occupancy grid for preprocessing of input data.
3D ShapeNet[7] proposes a Deep Belief Network which aims for object class recognition and
also aims for shape completion. In this approach, a occupancy grid is used to represent a 3D geometric
shape. It uses a ModelNet, 3D object dataset with large number of object for training and testing of
the neural network. To optimize the neural network, Next-Best-View-Prediction method was used
which try to predict the shape from multiple views. This approach also uses the voxel grid to represent
the binary variables of 3D shape and then provide them to the neural network for prediction of shape.
We also used same voxel grid approach to represent the 3D shape, but the grid size for their approach
was 30 x 30 x 30 compared to 40 x 40 x 40 in our approach. The neural network used in this is a single
convolutional deep neural network for comparing all possible view while we have used multiple
convolutional neural networks with fewer numbers of layers. This makes our approach significantly
different when compared by number of layers, complexity of network and number of networks.
PointNet: Deep Learning on Point Sets [9] is another deep learning neural network for 3D
object classification and segmentation. This is approach eliminates the requirements of creating voxel
grid from the 3D object and uses point cloud or 3D point sets as an input to the neural network for
classification. It also achieves the objective of segmentation of 3D objects. To perform classification,
it follows the three steps process inside the neural network. The first step is aggregating the
information from the points, the second step prepare the local and global aggregation information
generated by max pooling which combined in the third step for final prediction. This model uses the

CNN for performing the object classification which is the only similarity between our approach and
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this approach. Although its uses the concept of local and global information, it does not use the
multiple models for prediction and the neural network used by this approach is typically complex than
us.

Figure 6 shows the qualitative comparison between the VoxNet[7], PointNet, ShapeNet and

our approach.

SHAPENET H3DNET
POINTNET [9] VOXNET [7]
(8] (our work)

Voxelization YES NO YES YES
3D CNN NO NO YES YES
Classification YES YES YES YES
Segmentation NO YES NO NO
Heirarchical NO NO NO YES

Figure 6. Qualitative Comparison between SHAPENET, POINTNET, VOXNET[7] and H3DNET
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CHAPTER 3
The Hierarchical 3D Net for 3D Object Classification
3.1 Overview

The proposed solution is the generalized approach for any type of supervised learning
algorithm. We have used this framework for 3D object classification with the convolutional neural
network. The overall architecture which used in 3D CNN model is shown in Figure 7. The problem in
our approach consists of two stages, divide learning and conquer learning. In divide learning phase,
this set of classes are divided into smaller subsets using some class hierarchy or some clustering
algorithm. Conquer learning is to solve these subproblems using the suitable neural networks
approaches i.e. softmax regression, multilayer perceptron, feed-forward neural network or
convolutional neural networks. As we are dividing the problem into small subsets, the neural network
we need to solve these problems will be less complex with fewer parameters. We called these models
conquer model which corresponds to each subset. The training and optimizing conquer model
includes training neural network for each subset, check the confusion matrix, shuffle the confusing
the classes and again train the neural network until the desired threshold is achieved.

Once the training is completed for subproblems, we will use each subset as a class for training
the upper-level model. These include training upper level to conquer model with each possible
hyperparameters, shuffle or move the subset problems to upper level if they are affecting the
performance. For higher level, it may be possible that we need the more complex neural network with
the higher number of parameters. After the completion of training for all models, we first load the
higher-level model to make the prediction about the generalized class for input and after that, we
load the lower conquer model based on the output of the higher-layer model to make the final

prediction.
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Figure 7. Proposed H3DNET Framework for 3D Object Classification

To solve the problem of 3D object classification using this approach with Tensorflow
framework, we followed the three steps which includes preprocessing 3D datasets to convert into
Tensorflow standard format, then divide the classes into subproblems and prepare the conquer

learning model for sub-problems and last prepare the higher level conquers learning model using sub-

problems as a class.
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3.2 Data Preprocessing
We have addressed the problem of 3D object classification using the above approach. To use
this approach, we must need to preprocess the 3D objects. The structure of the 3D object is not similar
to 2D images as 2D images are regular in terms of size i.e. length and width, but it is not same with 3D
objects. 3D objects might differ in terms of width, length, and depth so it is necessary to convert them
into regular size 3D objects. Figure 8 shows steps of data preprocessing. The steps include reading 3D

data, voxelized them and then create the binary record of them.

Step 1-
3:Convert
Feature Vector

. i to TensorFlow
Data Points OXElizE data (TFRecord

Feature Vector file)

Step 1-2:
Step 1-1: Read Generate

Figure 8. 3D Object before and after voxelization

e Read 3D Data

3D data comes in various formats and the structure used in these formats differ from format
to format. The 3D format includes OFF (Autocad Format), MAT (MatLab Format), NPY (Numpy Array
Format), PLY (Point cloud). To read different format, we need to apply different techniques. The
numpy, pandas and matplot libraries allow reading 3D data by providing the various method which
can read the as 3D or 2D dimensional array. We have used OFF format for the evaluation of our
approach.
e Voxelization

The dimensions of 3D objects are not fixed. They come in various formats with heterogeneous
length, width, and height. It is difficult to fit them into the fixed dimension of the neural network.
Voxelization converts 3D objects into the fixed size voxel or occupancy grid using sampling and

clipping of 3D objects. We have used binary voxel grid which has only two states: occupied state and
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unoccupied state. Voxelization fits different sized 3D object into fixed size homogenous grid without
losing the spatial information of 3D objects. Numpy library provides the various methods which allow
doing voxelization by clipping and sampling of points.
3.3 Divide Learning

In this step, smaller subproblems are created from the set of classes which are solved in
conquer learning phase using the neural network. There are several ways to select the size of the
smaller sub-problems, the number of classes in smaller sub-problems. As we discussed, one way is
based on the future needs of incremental and distributed model. If there is no way to decide the sub-
problem size based on future needs, there is the more practical method of clustering which identifies
patterns in features. Multi-class Discrimination Distribution Model [2] is such algorithm which can be
used to find the appropriate clusters. The classes are distributed based on the evidence from the
confusion matrix. The Euclidean distances can be used to calculate the degree of heterogeneity of
classes.
The algorithm of Hierarchical Distribution:

Step 1: Original dataset classification

Step 2: Several measurements such as Euclidean distance (ED) or normalized ED for Confusion

matrices can be used to compute the heterogeneity

Step 3: K-means clustering with the matrices

Step 4: The k matrices classification (distributed classification)

Repeat until the accuracy < threshold orvn < 4

The MCDD model’s visual representation is shown in Figure 9.
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Figure 9. Multi-Class Discrimination Distribution Model (MCDD) for Group Selection [2]

As the number of classes in sub-problems is less, we need the less complex neural network
with the lesser number of parameters. The accuracy and the performance of conquering learning are
also better than the single large problem.

Consider the classification ModelNet10 [16] dataset of 3D objects. It consists of 3D CAD
models of 10 object classes namely Bathtub, Bed, Chair, Desk, Dresser, Monitor, Nightstand, Sofa,
Table, and Toilet. Before using these 3D objects for our models, we have preprocessed them to
convert them into binary format. Initially, the classes are grouped using the ImageNet [21] hierarchy
and divided into 3 subproblems with the name as the bathroom, bedroom, and hall. Bathroom
subproblem contains bathtub, toilet, and dresser while bedroom contains classes like the bed, desk,
and nightstand. The remaining classes are grouped into subproblem calls Hall. Figure 10 shows the

initial class distribution of ModelNet10 using the ImageNet class hierarchy.
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ModelNet10

Bathroom Bedroom

=
=

IMAGENET is a large visual dataset designed for the visual object recognition. The WordNet

BATHTUB ‘

Figure 10. Initial Distribution of ModeINET10 Classes
IMAGENET:
hierarchy is used to organize the IMAGENET. There are hundreds and thousands of images on the

each node of the hierarchy. In ImageNet there are over 10 million of images and more than 100 classes

of images. Figure 11 shows the hierarchy and images in the ImageNet.
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Figure 11. ImageNet Image Hierarchy
3.4 Conquer Learning

Once the classes are divided into smaller subproblems in divide learning, all the subproblems
are conquered at this stage. In this stage, all the subproblems are solved using the optimized neural
network. This includes designing of the neural network, choosing optimal parameters and training of
neural network using the chosen hyperparameter. It also includes optimization of the neural network.
In optimization phase, classes are redistributed to subproblems to get the optimal distribution of
classes.

The neural network we have used is the 3D convolutional neural network has 3 convolutional

layers, 2 max-pooling layers and 1 RELU activation layer with softmax as the output layer. The
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hyperparameter we have used are tweaked as per the requirements to get the optimal performance
of subproblem.
3.5 Optimization
After divide and conquer learning, if we are not getting the desired accuracy then it is required
to do optimization by redistributing the classes. First, we need to redistribute classes to get the
desired accuracy for lower level learning model. The steps to do optimization at the lower:
e Train the neural network at in divide learning step for each subproblems
e If any network is not getting desired performance, check the confusion matrix for that model
e |[f there are any classes which confusing with each other, then initially redistribute them among
subproblems
e Train once again the subproblems which are redistributed
e If redistribution among subproblem does not work, then try to move confusing class to upper
level
o Follow the same divide and conquer learning until you get optimal solutions

Figure 12 shows the basic optimization strategy algorithm.
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Figure 12. Optimization Algorithm

Optimization
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Once optimization is completed at the lower learning level, train the model for the higher
level. Also follows the same optimization strategy at higher level. It is also possible to add more layers
or parameters to make the model more complex for higher layer learning. For the higher layer
learning, we have tried all the possible hyperparameters and redistribution criteria to get the desired
performance. The aim is to get the highest accuracy, we can achieve by tweaking all the possible
hyperparameters.

3.6 Fuzzy Classification

Many 3D objects have similar spatial features and hence they have similar shapes and
dimensions. The examples of such classes are desk and table, nightstand and dresser, cup and bowl.
These classes always got confused with each other when we train the neural network to classify them
and affect the accuracy and performance of classification model. It is better to predict the range of
label instead of the single label, so we can make the better prediction about the possible label of class.
This is we called the fuzzy classification and the number of labels predicted is decided using the fuzzy
parameter k. If k = 1 then we will predict one label if k = 2 for the first layer, then we will predict 2
labels at first layer and one layer at the lower level. Now, the question is how to decide the value of

k? The strategy show in Figure 13 can be used to decide the value of k.

Start with k=1

Number of subproblems s

Decide threshold (can be overall accuracy, can be accuracy at higher level or any other
parameter)

While (performance < threshold)

Train the models
Predict labels
if (performance = threshold)
choose k as final fuzzy parameter
Start making prediction
k++

Figure 13. Fuzzy Parameter Selection
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The performance can be overall accuracy, accuracy at higher level or any parameter. For our
case, we have used the combination of accuracy at higher level and overall accuracy to decide the k.
We have used confused classes to finalize the value of k. For the confused classes, first check the high-
level accuracy for different value of k. If it is increasing, then check the overall accuracy for that k.
When there are minor changes in the value of accuracy at high level and overall accuracy, we are

choosing that k. Figure 14 shows such procedure using the nightstand class example.

NightStand
K=1

S0 50% False Prediction
True prediction at Owt of which 30% is
Higher Lewvel Dresser

Figure 14. Fuzzy Classification Example (k=1)

When we start with k = 1, when we make prediction there are 50% prediction are true at
higher level and we further proceed to next level the predictions are correct for Nightstand. But for
the other 50% false predictions, around 30% predictions are predicted for Dresser and 20% prediction

are others. This is shown in the Figure 14.
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MightStand

K=2

50% 30%

True prediction at True Prediction at
Higher Leve| with first Higher Level with
prediction second prediction

20% other prediction

Figure 15. Fuzzy Classification Example (k=2)

Figure 15 shows the prediction sample for k = 2. If we take k = 2, then those 30% prediction
which are predicted as Dresser will be predicted as Nightstand and out of 20% false prediction, some
of the predictions will be predicted true. Now for k = 3, at the higher level almost 96% predictions are

true, so it does not make any sense to increase the value of k and final value of k = 2.
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environment is also discussed here. The factors like training time taken compared to existing state of

the are deep learning algorithms, the accuracy and the hyperparameters are also verified in this

CHAPTER 4

RESULTS AND EVALUATION

4.1 Introduction

The evaluation conducted on the H3DNEt framework is described in this chapter. The testing

chapter.

4.2 Hardware Configuration

H3DNet Framework for 3D object classification is implemented using the following system

configuration:

Memory: 31.3 GiB
Processor: Intel® Xeon(R) CPU E5-2630 v4 @ 2.20GHz x 15
Operating System: Ubuntu 14.04 LTS
OS Type: 64 bit
Disk: 1.9TB
Graphics: TITAN X (Pascal)/PCle/SSE2 (12 GiB)
4.3 Software Configuration
To implement the H3DNET, following software and library have been used:
TensorFlow-gpu 1.0.1
Numpy Library
Scipy Library

MatplotLib Liberary

4.4 CNN Configuration
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The solution presented by VOXNET [7] for 3D object classification contains three
convolutional layers (one convolution and one pooling in each convolution layer), one fully-connected
layer followed by one dropout layer and one softmax layer. The 3D CNN model used by our framework
has the three convolutional layers, 2 max pooling layers, one RELU activation layer, one fully
connected layer, one dropout layer and one softmax or readout layer. Figure 16 shows the

configuration parameters of the neural network.

Property Value

Conv3D1 Filter: [5, 5, 5, 1, 16], Strides: [1, 1,1, 1, 1]

Conv3D2 Filter: [5, 5, 5, 16, 32], Strides: [1, 1,1, 1, 1]
Maxpool3D1 Kernel: [1, 2, 2, 2, 1], Strides: [1, 2, 2, 2, 1]
Activationl RELU

Conv3D3 Filter: [5, 5, 5, 32, 64], Strides: [1, 1,1, 1, 1]
Maxpool3D1 Kernel: [1, 2, 2, 2, 1], Strides: [1, 2, 2, 2, 1]

Densely Connected Shape: [10 x 8 x 8 x 64, 1024]
Dropoutl Dropout probability — 0.7
Output Softmax

Figure 16. CNN Model Configuration

The hyperparameter used in this neural network is shown in Figure 17. For the selection of
hyperparameter is done using the brute force approach. We have tried all the possible

hyperparameter and selected those parameters which give the best performance.
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Property Value

Batch Size 64

Grid Size 48 x 48 x 48
Number of Iteration 150K
Dropout Probability 0.7
Initial Learning Rate 0.1

Optimizer AdaGradOptimizer
Cross Entropy (Loss) Reduce Mean

Regularizer L2 Regularizer

Figure 17. CNN Model Hyper Parameters

4.5 Datasets
In this section, different datasets that are used for Evaluation are discussed. They are
ModelNet10 and ModelNet40. Both are used for common machine learning benchmarks.
4.5.1 ModelNet10
The ModelNet10 contains CAD models from the 10 categories used to train the deep network
in our 3D deep learning project. It is a subset of a larger set of Princeton University dataset. The classes
in this dataset are bathtub, bed, chair, desk, dresser, monitor, nightstand, sofa, table, and toilet. The

models are in OFF format. The Figure 18 shows the sample for each class.
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Figure 19 shows the statistics about the number of object in each class of ModelNet10.

Figure 18. Classes in ModelNet10
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Figure 19. Number of object per Class in ModelNet10

4.5.2 ModelNet40
The ModelNet40 contains CAD models from the 40 categories used to train the deep network
in our 3D deep learning project. Itis a subset of a larger set of Princeton University dataset. The models

are in OFF format. The classes in this dataset are shown in Figure 20:



Airplane Chair Glass Box Night Stand Table

Bathtub Cone Guitar Piano Stool
Bed Curtain Keyboard Plant Tent
Bench Cup Lamp Radio Toilet
Book Shelf Desk Laptop Range Hood TV Stand
Bottle Door Mantel Sink Vase
Bowl Dresser Monitor Sofa Wardrobe
Car Flower Pot Person Stairs Xbox

Figure 20. Classes in ModelNet40

Figure 21 shows the statistics about the number of object in each class.
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Figure 21. Number of objects in each class of ModelNet40
4.6 Performance Evaluation
The datasets we have used to evaluate the performance are ModelNet10 and ModelNet40.
For both dataset we have followed the preprocessing, divide learning, model learning, and

optimization stages to get the optimal neural network.

32



4.6.1 ModelNet10 Performance Evaluation
Objective: Verify the performance of the framework using ImagNet Image Hierarchy
Divide Learning:
In this case, the classes are divided into subproblems using ImageNet image hierarchy. We have
divided the classes into the three subproblems, namely bathroom, bedroom, and hall. Figure 22 shows

the initial distribution of ModelNet10 classes.

ModelNet10

Bathroom Bedroom

MONITOR

TABLE

BATHTUB TOILET

a =

Figure 22. ModelNet10 Initial Class Distribution using ImageNet class hierarchy

H B
B B 0

NIGHT STAND

From the image, we can see that the bathroom subproblems includes the objects which can
be seen in the bathroom such as bathtub, toilet. Similarly, the bedroom subproblems contain the
Dresser, Bed, Desk and Night Stand classes while the Hall subproblem contains the Chair, Monitor,
Sofa and table classes.

Conquer Learning:
After dividing classes into three subproblems in divide learning phase, three convolutional

neural network models are built for 3 groups with configuration discussed above. The



hyperparameters for this model is also shown above. We have used the grid size of 32 x 32 x 32 for
voxelized 3D objects. The initialization of weights and biases are done using the random normal
initialization method and we have tried all the possible optimizer algorithms. We were able to get the
best performance using the Adam Gradient Descent optimizer algorithm. We have trained model for
the 100K iteration with the 64-batch size of 64 and 0.01 initial learning rate. For the all the graphs in
the figure, x axis represents the number of iterations while y axis represents the accuracy in the scale
of 0to 1.

CNN Model for Bathroom Subproblems:

We can see the accuracy and cross entropy for this model in Figure 23 and 24.

accuracy_1

100

0.000 5.000Kk 10.00% 15.00% 2000k 2500k 30.00k 35.00k 40.00k 45.00k 50.00k

Figure 23. Accuracy of ModelNet10 Conquer Learning for Bathroom

cross_entropy_1

0,000 500K 1000k 15000 2000k 25,00k 3000k 35,00k 40 00k 45,00k 50.00k

Figure 24. Antropy of ModelNet10 Conquer Learning for Bathroom

CNN Model for Bedroom Subproblems:

The graph of accuracy and cross entropy is shown in Figure 25 and 26.
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Figure 25. Accuracy of ModelNet10 Conquer Learning for Bedroom
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Figure 26. Cross Antropy of ModelNet10 Conquer Learning for Bedroom

CNN Model for Hall Subproblem:

The accuracy and cross entropy throughout the training and testing is shown in Figure 27 and 28.
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Figure 27. Accuracy of ModelNet10 Conquer Learning for Hall
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Figure 28. Antropy of ModelNet10 Conquer Learning for Hall

Overall Performance of ModelNet10 with initial distribution:
With this distribution, the highest accuracy we able to get for the training at the upper layer is
0.9687 and for the testing is 0.8925. The graph in Figure 29 shows the accuracy for all subproblems

and upper layer.
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Figure 29. Independent Accuracy of Subproblems and Higher Layer
The overall accuracy of the hierarchical model is always less than a topmost layer. The mathematical

accuracy for all subclasses of subproblems is given in Figure 30.

Subproblem Training Testing
Bathroom 0.9534 0.8645
Bedroom 0.9383 0.8367

Hall 0.9534 0.8645

Figure 30. Mathematical Accuracy of subproblems for initial distribution
From the Figure 30, the accuracy with initial distribution is not even comparable with the

state of art accuracy so it is necessary to redistribute the classes to get the optimal performance.
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ModelNet10 Performance After Optimization

With the initial distribution of classes, the classes which are confused were in the bedroom
subproblem. We apply redistribution for this subproblem and moved dresser class to the bathroom
and trained the model again for bathroom and bedroom. After redistribution, the performance of
bathroom was not affected but the accuracy of the bedroom was not close to the threshold. So we
again redistributed the classes and move all the classes of the bedroom to the upper layer and treated
them as separate subproblems. After several rounds of optimization, the final class hierarchy which

gives the optimal performance was in Figure 31.

=

ModelNet10

1

|__TOILET |

-

MONITOR [ soFa ] TABLE

BRDRESE
Figure 31. Class Hierarchy After redistribution and optimization
CNN Model for Hall and Bathroom subproblems:
No classes are added or removed from the Hall subproblem, so there is no need to retrain
the model for hall subproblem. We have added dresser class the bathroom subproblem, so we have

retrained the model for bathroom subproblem. The accuracy and cross entropy throughout the

training and testing of bathroom subproblem is shown in Figure 32 and 33.
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Figure 32. Accuracy of ModelNet10 Conquer Learning for Bathroom
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Figure 33. Antropy of ModelNet10 Conquer Learning for Bathroom

After completing training for lower layer subproblems, the conquer learning is applied to the
upper layer classes which are bathroom, bed, nightstand, desk, and hall. The 3D CNN used to train
this model is same as the lower level model. There are the operations for the different layers, gradient
update, accuracy calculation. Figure 34 to Figure 50 shows the graph for accuracy, cross-entropy,
summaries, activations, and histograms for all the layers in the model. The weights and parameters
are getting updates in each iterations of mini-batches which can be verified by looking at pre-

activations and activations which get stabilized with consistency of accuracy and cross-entropy.
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Figure 34. Accuracy of ModelNet10 Upper Layer Model
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Figure 35. Cross Antropy of ModelNet10 Upper Layer Model
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Figure 36. Conv1 Layer Summaries of ModelNet10 Upper Layer Model
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Figure 37. Conv2 Layer Summaries of ModelNet10 Specialized Learning for Top Layer Model
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Figure 38. Conv3 Layer Summaries of ModelNet10 Top Layer Model
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Figure 39. Fully Connected Layer Summaries of ModelNet10 Top Layer Model
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Figure 40. Softmax Layer Summaries of ModelNet10 Top Layer Model
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Figure 41. Conv1 Layer Activations of ModelNet10 Top Layer Model
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Figure 42. Conv2 Layer Activations of ModelNet10 Top Layer Model
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Figure 43. Conv3 Layer Activations of ModelNet10 Top Layer Model
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Figure 44. Fully Connected Layer Activations of ModelNet10 Top Layer Model
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Figure 45. Softmax Layer Activations of ModelNet10 Top Layer Model
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Figure 46. Conv1 Layer Histograms of ModelNet10 Top Layer Model
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Figure 48. Conv3 Layer Histograms of ModelNet10 Top Layer Model
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Figure 50. Softmax Layer Histograms of ModelNet10 Top Layer Model

After the redistribution of classes and moving the confused classes, the accuracy for each
lower level subproblems and the higher level general model increase above the performance of

state of art algorithms. The accuracy for all first level five classes are shown in Figure 51.
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Figure 51. Accuracy for Subproblems of ModelNet10
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Based on the final accuracy of the upper level and two subproblems at the lower level, Figure
52 shows the mathematically calculated accuracy for two lower level subproblems bathroom and hall
and also for three separate classes bed, nightstand and desk at the upper level which is really good

when compared with initial distribution accuracy in figure 30.

Subproblem Training Testing
Bathroom 95.34% 92.32%
Hall 95.34% 92.32%

Bed 96.87% 95.31%
Desk 96.87% 95.31%
Night Stand 96.87% 95.31%

Figure 52. Mathematical Accuracy for Subproblems and Individual Classes after Optimization
Prediction for ModelNet10 with k=1:

To evaluate the prediction accuracy for ModelNet10, we have tried to predict the labels for 5
objects per class. The procedure is basically top-down approach. The procedure includes giving the
3D input to the upper layer model and predict the labels at the upper layer. If predicted label at the
upper layer is the label for class then that is the final label for class and if it is the label for another
subproblem, load model for subproblem and predict the label. Follow this top-down procedure until
final label for the class is predicted. Figure 53 shows the final confusion matrix for ModelNet10 50

objects. The accuracy in this case 86% for 50 objects.
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Confusion matrix, without normalization
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Figure 53. Confusion Matrix for ModelNet10 50 objects for k=1
Figure 54 shows the normalized confusion matrix which gives idea about the accuracy per
classes.
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Normalized confusion matrix
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Figure 54. Normalized Confusion Matrix for ModelNet10 50 objects with k=1
From the confusion matrix, we can see that accuracy are affected by some of the classes and
these classes are confused with each other at even lower level. The similarity between their shapes
and spatial features justify this confusion between them. Figure 55 shows the confused classes which

give the idea of their shapes and features.
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Figure 55. Confused Classes (Dresser & Night Stand, Bed — Desk and Table)

From Figure 56, we can see that desk and nightstand has almost similar shapes and that is the
reason why they are confused. It is even possible that human may confuse about these classes, so it
makes sense to predict the range of labels instead of a single label. We also try to check performance
by predicting the two labels at the higher level.

Prediction for ModelNet10 with k=2:

The fuzzy parameter k =2 means the predicting 2 labels at first level. The prediction strategy
is same as the k=1 but instead of taking label with the highest probability, takes 2 labels with first and
second highest priority then follow the same top-down approach for prediction. Figure 56 shows the

confusion matrix for ModelNet10 50 objects with k=2. The accuracy, in this case, is 94% for 50 objects.
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Confusion matrix, without normalization
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Figure 56. Confusion Matrix for ModelNet10 50 objects for k=2

Figure 57 shows the normalized confusion matrix which gives idea about the accuracy per classes.
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Normalized confusion matrix
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Figure 57. Normalized Confusion Matrix for ModelNet10 50 objects k=2
From the confusion matrix, we can say that by predicting 2 labels at higher level eliminate few
similarities between the shapes and spatial features, thus predict the correct labels for some confused
classes. Figure 58 shows the prediction time for k=1 and k=2 for the cases of predicting label at first

level and predicting label at the second level. The time is in the milliseconds.
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Figure 58. Prediction Time for ModelNet10 with k=1 and k=2
From the Figure 58, we can say that as we increase the layers and value of k, prediction time
also increased. For k=1, if labels are predicted at first layer time is 3.8s while if it is predicted at second
layer time is 5.871s. For k=2, if labels are predicted at first layer time is 6.045s while if it is predicted

at second layer time is 12.753s.

4.6.2 ModelNet40 Performance evaluation
In this section, we are evaluating our approach using the ModelNet40 dataset. Figure 59

shows the statistics about the ModelNet40 classes in terms of number of object per class.
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Figure 59. Number of Object per Class
In this case, the classes are divided into subproblems using ImageNet image hierarchy.
Initially, classes are divided into the seven subproblems using ImageNet image hierarchy. The name
of subproblems is bathroom, bedroom, electronics, external, hall, kitchen, and others. Figure 60

shows the initial class distribution per subproblem.

ModelNet40

Bathroom Bedroom ¢

Bathroom Bedroom Electronic Hall Kitchen Others External
Bathtub Bed Guitar Chair Bottle Airplane Car
Toilet Bookshelf Keyboard Door Bowl Bench Flower Pot
Curtain Desk Laptop Mantel Cup Cone Glass Box
Dresser Night Stand Monitor Sofa Lamp Person Plant
Vase Piano Stool Range Hood Tent Stairs
Wardrobe Radic Table Sink
TV Stand
XBox

Figure 60. Initial Class Distribution per Subproblem in ModelNet40



As the ModelNet10 initial distribution, this distribution was also not giving the expected

performance so there was a need for optimization. Figure 61 shows the class hierarchy after the

ModelNet40

redistribution and optimization.

KithHall

LamOther

BathBed ElecExt

Bathroom Electronics Kitchen Others Lamp I

Bathroom Bedroom Electronic External Kitchen Hall Others
Bathtub Bed Guitar Car Bottle Bowl Airplane
Curtain Bookshelf Keyboard Flower Pot Cup Chair Bench
Dresser Desk Laptop Glass Box Range Hood Door Cone
Plant Night Stand Meonitor Stairs Sink Mantel Person
Toilet Vase Piano Sofa Tent

wWardrobe Radio Stool

TV Stand Table

Figure 61. Class hierarchy after redistribution and optimization for ModelNet40

In the process of optimization, we have added one more layer of subproblems which classify
the two subproblems at third level. The lamp class is also moved to upper level as it was confusing
with all the classes in lower level subproblems. The name of lower level subproblems are same as the
initial distribution but some classes are redistributed. At second level, 4 subproblems are added with
name bathbed, elecext, kithhall, and lampother. These names represent the subproblems it classifies
at the third level such as bathbed subproblems classify between bathroom and bedroom and similarly
for others.
CNN Model for ModelNet40 Bathroom subproblems:

The bathroom subproblem is last layer subproblem which classifies the bathtub, curtain,
dresser, plant and toilet classes. Figure 62 and Figure 63 shows the accuracy and losses throughout

the training and testing of subproblem.
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Figure 62. Accuracy of ModelNet40 Bathroom Subproblem for Conquer Learning

cross_entropy_1
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Figure 63. Antropy of ModelNet40 Bathroom Subproblem for Conquer Learning

CNN Model for ModelNet40 Bedroom Subproblem:

The bedroom subproblem is last layer subproblem which classifies the bed, bookshelf,
nightstand, desk, vase and wardrobe classes. Figure 64 and Figure 65 shows the accuracy and losses

throughout the training and testing of subproblem.

accuracy_1

Figure 64. Accuracy of ModelNet40 Bedroom Subproblem for Conquer Learning
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Figure 65. Antropy of ModelNet40 Bedroom Subproblem for Conquer Learning
CNN Model for ModelNet40 Electronics Subproblem:
The electronics subproblem is last layer subproblem which classifies the guitar, keyboard,
laptop, monitor, piano, radio, tv stand and Xbox classes. Figure 66 and Figure 67 shows the accuracy

and losses throughout the training and testing of subproblem.

accuracy_l

Figure 66. Accuracy of ModelNet40 Electronics Subproblem for Conquer Learning

cross_entropy_1

Figure 67. Antropy of ModelNet40 Electronics Subproblem for Conquer Learning
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CNN Model for ModelNet40 External Subproblem:

The external subproblem is last layer subproblem which classifies the car, flower pot, glass

box and stairs classes. Figure 68 and Figure 69 shows the accuracy and losses throughout the training

and testing of subproblem.

accuracy_|

Figure 68. Accuracy of ModelNet40 External Subproblem for Conquer Learning

cross_entropy_1

Figure 69. Antropy of ModelNet40 External Subproblem for Conquer Learning

CNN Model for ModelNet40 Kitchen Subproblem:

The kitchen subproblem is last layer subproblem which classifies the bottle, cup, range hood

and sink classes. Figure 70 and Figure 71 shows the accuracy and losses throughout the training and

testing of subproblem.
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Figure 70. Accuracy of ModelNet40 Kitchen Subproblem for Conquer Learning

cross_entropy_1

Figure 71. Antropy of ModelNet40 Kitchen Subproblem for Conquer Learning
CNN Model for ModelNet40 Hall Subproblem:
The hall subproblem is last layer subproblem which classify the bowl, chair, mantel, door,
sofa, stool and table classes. Figure 72 and Figure 73 shows the accuracy and losses throughout the

training and testing of subproblem.

accuracy_1

Figure 72. Accuracy of ModelNet40 Hall Subproblem for Conquer Learning
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cross_entropy_1

Figure 73. Antropy of ModelNet40 Hall Subproblem for Conquer Learning
CNN Model for ModelNet40 Others Subproblem:
The others subproblem is last layer subproblem which classifies the airplane, bench, cone,
person, and tent classes. Figure 74 and Figure 75 shows the accuracy and losses throughout the
training and testing of subproblem.

accuracy_1

Figure 74. Accuracy of ModelNet40 Others Subproblem for Conquer Learning

cross_entropy_1

S

Figure 75. Antropy of ModelNet40 Others Subproblem for Conquer Learning
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CNN Model for ModelNet40 Bathbed Subproblem:
The bathbed subproblem is second layer subproblem which classifies the bathroom and
bedroom subproblems. Figure 76 and Figure 77 shows the accuracy and losses throughout the training

and testing of subproblem.

accuracy_1

Figure 76. Accuracy of ModelNet40 Bathbed Subproblem for Conquer Learning

cross_entropy_1

Figure 77. Antropy of ModelNet40 bathbed Subproblem for Conquer Learning
CNN Model for ModelNet40 ElecExt Subproblem:
The elecext subproblem is second layer subproblem which classifies the electronics and
external subproblems. Figure 78 and Figure 79 shows the accuracy and losses throughout the training

and testing of subproblem.
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Figure 78. Accuracy of ModelNet40 ElecExt Subproblem for Conquer Learning

cross_entropy_1

Figure 79. Antropy of ModelNet40 ElecExt Subproblem for Conquer Learning

CNN Model for ModelNet40 HallKith Subproblem:

The hallkith subproblem is second layer subproblem which classifies hall and kitchen

subproblems. Figure 80 and Figure 81 shows the accuracy and losses throughout the training and

testing of subproblem.

accuracy_1

Figure 80. Accuracy of ModelNet40 HallKith Subproblem for Conquer Learning
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cross_entropy.1

Figure 81. Antropy of ModelNet40 HallKith Subproblem for Conquer Learning

CNN Model for ModelNet40 LampOthers Subproblem:

The LampOthers subproblem is second layer subproblem which classifies the others

subproblem and the lamp class. Figure 82 and Figure 83 shows the accuracy and losses throughout

the training and testing of subproblem.

accuracy_1

Figure 82. Accuracy of ModelNet40 LampOther Subproblem for Conquer Learning

cross_entropy.1

Figure 83. Antropy of ModelNet40 LampOther Subproblem for Conquer Learning
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CNN Model for ModelNet40 Top Layer Subproblem:

The top layer subproblem classifies the bathbed, elecext, hallkith and lampothers
subproblems which are the second layer subproblems. There are the operations for the different
layers, gradient update, accuracy calculation. Figure 84 to Figure 101 below shows the graph for
accuracy, cross-entropy, summaries, activations, and histograms for all the layers in the model. The
weights and parameters are getting updates in each iterations of mini-batches which can be verified
by looking at pre-activations and activations which get stabilized with consistency of accuracy and

cross-entropy.
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Figure 84.Computation Graph of ModelNet40 Top Layer Subproblem for Conquer Learning
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accuracy_1

Figure 85. Accuracy of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 86. Antropy of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 87. Convl Summaries of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 88. Conv1 Activations of ModelNet40 Top Layer Subproblem for Conquer Learning

I conv1/activations
test

20000
= 60000
0000
] 8 12 6 2 28
i
I conv1/conv3d/pre_activations
test
20000
= 60000
00000

conv1/activations
train
s
lE
0 o 20 0
conv1/conv3d/pre_activations
train

ra
La

! conv1/biases/summaries/histogram
test

4 L.
\ & \/

ra
La

I conv1/weights/summaries/histogram
test

L -
A ‘y m i

convl/biases/summaries/histogram

Y

B
ES fui

20000

100000

I conv1/weights/summaries/histogram

train
20000
60000
100000

Figure 89. Convl Histograms of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 90. Conv2 Summaries of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 91. Conv2 Activations of ModelNet40 Top Layer Subproblem for Conquer Learning

67



conv2/activations
test

conv2/conv3d/pre_activations
test

I train

conv2/activations
train

La

conv2/conv3d/pre_activations

LA,

| conv2/biases/summaries/histogram
test

conv2/biases/summaries/histogram
train

conv2/weights/summaries/histogram
train

Figure 92. Conv2 Histograms of ModelNet40 Top Layer Subproblem for Conquer Learning

conv3/biases/summaries/max

3.00

40.00k B80.00k

La

conv3/sparsity
0.980

0.920

0000 4000k 8000k
i

conv3/weights/summaries/stddev_1

0000 4000k BOD DOk

120.0k

120.0k

120 0k

conv3/biases/summaries/mean

1.00
0.600
0200 |y
-0.200
-0.600
0.000 40.00k 80.00k 120.0k
o3
conv3/weights/summaries/max
450
4.40
4 3(
0.000 40 00k 8000k 200
HH—

conv3/biases/summaries/min

80
2.20
2,60 e
3.00
3.40
0.000 40.00k BO.0Ck 120.0k
oE

conv3/weights/summaries/mean

0000

40 00k

80 00k

120 0k

conv3/biases/summaries/stddev_1

1.80
1.40
00 —_—
0.600
0.200
0.000 40.00k 80.00k 120.0k
HH—
conv3/weights/summaries/min
0 000 40.00k 8000k 1200k

Figure 93. Conv3 Summaries of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 94. Conv3 Activations of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 95. Conv3 Histograms of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 96. Fully Connected Summaries of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 97. Fully Connected Activations of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 98. Fully Connected Histograms of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 99. Softmax Summaries of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 100. Softmax Activations of ModelNet40 Top Layer Subproblem for Conquer Learning
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Figure 101. Softmax Histograms of ModelNet40 Top Layer Subproblem for Conquer Learning
After optimization and training, the accuracy for lower layer subproblems is shown in Figure

102.
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Figure 102. Accuracy of Lower Layer Subproblems (ModelNet40)
Prediction for ModelNet40:

The prediction strategy for ModelNet40 is same as the ModelNet40 but the only difference is
we need to follow three level hierarchy instead of two level. Using the same top-down approach for
prediction, we tried to predict labels for 299 objects over 40 classes. With the fuzzy parameter k =1
(predicting one label at top layer) out of 299 objects 246 objects label are predicted correctly while
with the fuzzy parameter k = 2 (predicting two labels at top layer) out of 299 objects 260 objects were

predicted correctly. Figure 103 shows these statistics with accuracy for k=1 and k = 2.

Total Object Correctly Classified Accuracy
K=1 299 246 0.8227
K=2 299 260 0.8695

Figure 103. Accuracy for k =1 and k = 2 (ModelNet40)
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=1.

Figure 104 shows the per class accuracy of ModelNet40 for k
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Figure 104. Per class Accuracy for k

=2.

Figure 105 shows the per class accuracy of ModelNet40 for k
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Figure 105. Per Class Accuracy for k

The accuracy of ModelNet40 is highly affected by some classes because of two reasons. One

is the similarity between their 3D features which was also the case for ModelNet10 prediction. While

the other reason is that the classes which have less than 200 objects such as the wardrobe. Because

of the less number of objects, the model was not training properly for these classes and thus it was

not able to predict them correctly. Figure 106 shows the classes which have less than 200 objects. If
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we remove these classes from the evaluation, then the accuracy for k = 1 is 88.94% while for k= 2 is

94.21%. It is necessary to have a large number of objects to train the model optimally.

Class # of Objects Class # of Objects
Bowl 84 Laptop 169
Cone 187 Person 108
Cup 99 Plant 130
Curtain 158 Radio 124
Door 129 Stairs 160
flower_pot 169 Stool 190
Keyboard 165 wardrobe 107
Lamp 144 Xbox 123

Figure 106. Classes with less than 200 objects
Figure 107 shows the prediction time in milliseconds for k = 1 and k = 2 with respect to

different layers.

Timing for Prediction (ms)
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(K=1) (K=1) (K=2) (K=2)

B ModelNet40

Figure 107. Prediction Time for ModelNet40

75



The prediction time increased as the number of layers and value of k increased. In our class
hierarchy, first class appears at the second level which is lamp while all other 39 class are at last level.
For k = 1, if label predicted at second level the time will be 6.726s while if it is predicted at the third
level then the time will be 10.112s. For k = 2, if label predicted at second then the prediction time will
be 12.046s while if it is predicted at the third level then prediction time will be 32.2s. It is very

important to choose the correct value of levels and k.

4.6.3 Performance Comparison
Performance Comparison for ModelNet10
Figure 108 shows the accuracy comparison between ShapeNet, VoxNet[7], PointNet and

H3DNET.

Accuracy

1.00

0.80

0.60

0.40

0.20

0.00
SHAPENET POINTNET VOXNET H3DNET(K=1) H3DNET(K=2)

W Accuracy

Figure 108. Performance Comparison for ModelNet10
With H3DNET, the state of the art accuracy is achieved for k = 2 while for k = 1 it is the bit less
than the current state of the art accuracy. In comparison with Pointnet which is not based on

voxelization, the performance for H3DNET is very good.
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Performance Comparison for ModelNet40:

Figure 109 shows the accuracy comparison between the ShapeNet, VoxNet[7] and H3DNET.

Accuracy

SHAPENET VOXNET H3DNET(K=1) H3DNET(K=2)

W Accuracy

Figure 109. Performance Comparison for ModelNet40

For the ModelNet40, the accuracy for k=2 is better than the state of the art algorithm’s
accuracy while for k = 1 it is comparable to the it. The performance is very good than SHAPENET which
has the accuracy of 77%.

Dataset Size Comparison:

Because of the voxelization and converting objects into binary records, there is a significant
reduction in the size of the dataset. For ModelNet10, it is reduced from 4.8 GB to 314 MB while for s
ModelNet40, it is reduced from 9.8 GB to 1.4 GB. Figure 110 shows the statistics about the size.

Original Size  After Preprocessing Size
ModelNet10 4.8 GB 0.3 GB
ModelNet40 9.8 GB 1.5GB

Figure 110. Dataset Size Comparison before and after preprocessing
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Training Time Comparison:

Our model takes around 11s for 100 iterations and preprocessing of ModelNet40 requires
nearly 1 hours. If we train the network for 100K iteration, it will collectively take 5 to 7 hours which
was 6 to 12 hours in the case of VoxNet[7] but it cannot be compared until tested on the same
environments.

4.7 Summary

The results from the test cases clearly show that the approach presented here showcases the
distributed learning with a desired accuracy and training time. The approach also gives the optimal
performance even with the larger dataset by dividing the classes into smaller subproblems. There are

so many possibilities to improve the approach to make it more robust and autonomous.
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CHAPTER 5
CONCLUSION AND FUTURE WORK
5.1 Conclusion

The presented framework H3DNET can be used to prepare the distributed machine learning
model for 3D object classification or any other machine learning problem. The distribution and
optimization technique presented can be scale well with larger datasets to divide them into the
smaller problem and get the optimal overall accuracy with less complex networks. The divide learning
and conquer learning is not dependent on any of the parameters of another model so it possible to
train them in the separate machine and then use them to predict the class. It is also possible to add
new subproblems at higher layer or add the new class to lower layer model which does not require to
retrain the other models, so this approach can also achieve distributed and incremental learning.
Here we have used the same models for all the learning, but it is not necessary. We can use a different
model for different subproblems.

Even during inference stage, it is possible to implement the distributed computation to reduce
the resource usage of the machine. As discussed above, in the system where new data comes very
often, this approach can be the better choice as adding new data does not require to rebuild the
network but the partial update of the model. This together with distributed learning and prediction,
makes it efficient compare to another model which performs 3D object classification. This approach
can also be applied to any similar problems, such as image classification, gesture recognition or any
classification problems which is not same for other models.

5.2 Limitations

The overall performance of approach presented in this thesis dependent on the higher layer

model accuracy. Another big time-consuming task is optimization of the distribution of class as there

is no straightforward rule to select the optimum grouping of classes. The top layer learning takes too
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much time to optimize as there might be the classes which look same and distributed among different

subproblems. To solve this, it requires redesigning the top layer model with more complex structure

with a large number of parameters. In this hierarchical approach, the number of levels is also
important as there is a trade-off between the number of levels and performance of the network.
5.3 Future Work

The thesis presented here can be more reliable and accurate if we implement some of the below

extension to the approach.

e The presented architecture is evaluated on object classification, which can be applied to any other
supervised problems

e For 3D object classification, density voxel grid can also be used instead of binary grid to provide
the color information of 3D object.

e The Presented architecture can be improved by using a more appropriate method in selecting the
proper conquer learning model group size and group set.

e A dynamic machine learning model can be the extension to this framework where the distribution
of classes can be done automatically by looking at the generated confusion matrix and this
continues until desired performance is not achieved

e The proposed model can also be useful for multitasking such as object recognition and gesture

recognition which can provide some insights about the transfer learning.
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