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ABSTRACT 
 

Warehousing is a significant component of the supply chain activities.  Modern 
distribution centers configure their warehouses in fast picking areas to fulfill orders more rapidly 
at a lower cost while achieving customer satisfaction.  Order picking and restocking of the fast 
picking area have been identified as the most labor-intensive and costly activities of any 
distribution center.  In a picker-to-item process environment, traveling is an important factor than 
can account up to 50% of the total labor time dedicated to order picking and restocking.  
Previous research has mostly focused in reducing costs from a myopic perspective, either 
analyzing the flows from order picking or restocking.  This research integrates order picking and 
restocking to generate a stock keeping unit (SKU) layout that minimizes the overall walking 
distance traveled within an S-shaped routing policy.  Given a set of order routes and SKU 
restocking frequencies, the assignment of SKUs to a location is formulated as a Binary Mixed 
Integer Linear Programming (BMILP) model which is able to solve small scale problems to 
optimality.  In the cases where the BIMLP model does not find the optimal solution, the best 
feasible solution falls within 20% of the lower bound.  For larger scale problems, a heuristic is 
presented obtaining solutions in little computation time.  The BMILP and the heuristic are 
compared to other scientific and popular methods in practice, and show that additional savings in 
labor can be obtained.   
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CHAPTER 1 

INTRODUCTION 

 

 

As today’s market environment forces companies to be competitive, the supply chain has been 

under increased study looking for improvements in costs, quality, delivery, flexibility and 

customer satisfaction.  As illustrated in Figure 1.1, distribution and logistics is a significant 

subsystem of the overall supply chain activities.  The supply chain costs are equivalent to 10% of 

the U.S. gross domestic product (GDP) demonstrating the huge impact it posses in the industry 

[1].   

 

Figure 1.1 An illustration of a company’s supply chain; the arrows represent the relationship flow. 

 

Warehousing is a critical component for distribution and logistics.  Warehouses are 

mostly used to: 1) protect the product from the environment; 2) consolidate products to reduce 

transportation costs, 3) respond quickly to changes in demand; and 4) provide value-added 

processing such as light assembly used in customized orders.  Requiring substantial labor, capital 

and information systems, warehousing systems are expensive, accounting for 20-25% of the total 
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distribution and logistics operational expenses (Frazelle, 2002).  According to Goldratt (2004), 

the three bottom line performance measurements any company should observe are throughput, 

inventory, and operating expense.  Thus, improvements in the planning and control of 

warehousing systems are essential for the success of any enterprise’s supply chain.  Warehouse 

systems planning includes: operating technology planning, equipment selection, layout design, 

space allocation, and strategies for assigning products to storage locations.  Control of a 

warehouse system involves sequencing, scheduling, re-profiles, and routing strategies.  In this 

paper, the layout design and product assignment strategies in warehouse planning are given more 

attention per the systems thinking assumption that better planning would lead to a better control. 

 

1.1 Warehouse Structure 

 

The main functional areas in a warehouse are: receiving, stock storage, replenishment, order-

picking, quality control, sortation and consolidation, and loading, see Figure 1.3. 

 

Receiving

Bulk 
Storage

Fast  
Picking 
Area

Quality Control

Sortationand 
Consolidation

Shipping

Replenishment Order Picking

 

Figure 1.2 Main work flow structure of a warehouse. 
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The receiving area involves unloading products from the supplier’s transport carrier, 

properly identifying and inspecting the quality of the product, updating the inventory level and 

preparing the product to be transferred to a storage location in the warehouse.   

The replenishment function transfers and puts away the product to a storage location.  

Depending on the warehouse configuration, replenishment is usually broken into two areas: 

reserve replenishment, and fast picking area replenishment.  The first puts away any receiving 

items into the bulk warehouse area, and the second replenishes the fast picking area from the 

bulk warehouse.   

Order-picking is the main core of the warehouse operation.  Its task is to fulfill the set of 

customer orders by reaching the right item location, obtaining the right amount, and putting them 

into the order box and properly labeling it.   

Quality control assures that the orders picked by the order-pickers are in compliance with 

the customer orders.  If orders are in compliance, they continue to be sorted and consolidated; 

otherwise, they are sent back to the order pickers. 

Sorting and Consolidation involves transferring the finished order to the outgoing door 

for shipment.  Prior to shipment, the picked orders are grouped and stacked to be palletized.  The 

pallets are then labeled accordingly, and staged close to the outgoing door waiting to be load into 

the shipping carrier.  
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1.2 Order Picking 

 

Several order picking systems exist nowadays, creating different warehousing environments to 

increase output productivity.  Three main systems are distinguished by their order picking 

approach: picker-to-item, item-to-picker, and automated picking.   

In a picker-to-item system, order pickers need to travel along the rack shelves to retrieve 

the items in their order lists. Three main methods of retrieval are observed, 1) one in which the 

orders are picked one at a time; 2) items are sorted during the picking route; and 3) items are 

picked in a single container and later at the end of the route sorted into their respective orders.  

The first method is widely used when orders are small or when the picking area is divided into 

zones.  A picking area divided into zones requires pickers to only pick items located in their 

zones and pass the order to the next zone.  Usually, the orders are transferred from zone to zone 

by means of a powered conveyor.  The second method requires batching.  Batch picking is very 

practical in warehouses since it allows several pickers to work on different orders, maximizing 

the throughput performance of the order pickers. Batching is also necessary when orders are very 

large, making it unfeasible to be picked by a single picker.  The third method is seen more when 

the items are similar among all the orders, making it easier for pickers to move from location to 

location.  This is similar to a consolidation problem, where similar products are picked together 

and then distributed to different customers.   

One of the technologies widely used in picker-to-item environments is the pick-to-light 

and pick-to-route technology.  The pick-to-light technology is mostly used in picking zones, 

where the pickers scans the picking list and the item location lights up displaying the quantity to 

be retrieved.  Pick-to-route technology is mostly used in batch picking, where the set of batched 
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orders are loaded into a portable system, then, by display or audio means the item location to 

visit is given along with the quantity to retrieve.  

In an item-to-picker environment, the picker enters the set of orders required and waits 

for the item to be retrieved and reach to him.  This picking environment is seen in cranes, AS/RS 

(Automated Storage and Retrieval Systems), Vertical Lift Modules (VLM), or carrousel systems, 

in which the items are picked as a unit load and received at the input/output point. 

New trends in technology development have led to many automated picking machines.  

An example is the A-frame, consisting of dispenser channels, where each channel holds a supply 

of at most one stock keeping unit (SKU).  A conveyor passes underneath the row of channels 

containing the order, and if the SKU is required in the order, the right amount of the SKU is 

dispensed into the order.   

 

1.3 Replenishment 

 

Order picking performance is highly impacted by the replenishment function.  The order picking 

areas need to be constantly kept with right inventory levels to meet customer demand.  

Inefficient or inaccurate replenishment can lead to on-hold orders, meaning that an order could 

not be fulfilled due to product unavailability at the picking location.  On-hold orders are one of 

the most unwanted incidents at any distribution center.  Not only will they slow down order 

picking and replenishment productivity, but they could also generate extra-costs associated with 

backordering.  Backordering extra costs involves: overtime labor for pickers and restockers, 

shipping expedites, and customer un-satisfaction.  Due to this, the planning of the replenishment 
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system is crucial for the accurate flow of items from the warehouse to the order picking 

locations.   

In typical distribution centers, the replenishment flow occurs either in full-pallet or single 

cases.  Full-pallet replenishment is similar to cross-docking; the pallet is staged in the back of 

the warehouse and then moved to a more convenient location in the order picking area.  This 

strategy minimizes the labor involved in extracting the item from the back of the warehouse, 

however, such labor savings may be minimized at front when the pallet needs to be broken into 

single cases to replenish the picking locations, which is the case for order picking gravity-racks. 

In a DC where there are thousands of SKUs, full-pallet pulls is not a feasible strategy due to 

space constraints.  In addition, an abuse of full pallets can overload the workload of restockers in 

the picking area.  As a result, the decision of which items to full-pull becomes critical when 

applying full-pallet replenishment. 

Single-case replenishment, contrary to full-pallet replenishment, deals with more labor in 

the back of the warehouse increasing the time to extract the necessary number of cases to 

replenish the picking area, but reduces the labor of restockers in the front picking area.  When 

extracting the items to be replenished in the front picking area, the case picker consolidates the 

single case replenishment orders to single pallets.  Afterwards, the single pallets are staged for 

delivery to the picking area.  The internal delivery flow to the picking are can be automated or 

manual.  In an automated replenishment flow system, an operator places the cases from the 

pallets onto a conveyor belt which diverts the cases to their respective picking areas.  Later, 

restockers at the picking area wait for the cases and put them away in their respective locations.  

Manual flow involves transferring single case pallets to their picking areas by means of a fork-

lift or pallet-jack.   
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1.4 Fast Picking Area 

 

Due to an increase of order customization with fluctuating demands, modern distribution centers 

configure their warehouses with fast picking areas to fulfill orders more rapidly at a lower cost 

and to increase order responsiveness to customer’s changes in demand.  Under this strategy, the 

warehouse is dived into a reserve area and a forward area, also called fast picking area.  The fast 

picking area may store only single case quantities of some or all SKUs, thus, increasing the SKU 

pick density significantly and reducing the amount of time associated with order picking.  The 

reserve area is then used to store bulk pallets coming from vendors and to replenish the fast 

picking area.  In some situations, items that are not assigned to the fast picking area are picked 

from the reserve area.   

The fast picking area may not be a separate area from the reserve all the time.  In some 

cases, the fast picking area and the reserve may share the space, i.e., the fast picking area may be 

in the bottom of the racks and the reserve area on top. 

Figure 1.4 illustrates the SKU flow in a forward-reserve warehousing configuration 

strategy, which is actuated by the replenishment and order picking functions.  From the 

replenishment side, incoming items are received and put away into pallets in the reserve area 

storage locations.  As new order sets are received from customers, items are pulled from the 

reserve area to replenish the fast pick area.  Depending on the replenishment system used, the 

replenishment can happen ahead of the picking schedule or during the order picking process.  On 

the order picking side, customer orders are fulfilled from the fast picking area and sent to the 

shipping area.  The orders that contain items that are not found in the fast pick area are then 

picked from the reserve area. 
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Figure 1.3 A forward-reserve warehouse configuration. 

 

There are important considerations to be taken into account when adopting a fast picking 

area strategy.  From a cost perspective, while it is true that a fast picking area reduces labor time 

dedicated to order picking, it is also a fact that it requires more frequent replenishments from the 

reserve area, thus, increasing the replenishment labor. In addition to this more space and 

increased material handling equipment investment is required.  These aspects create non-trivial 

tradeoffs between savings in the order picking process versus impact on replenishment labor.  

These tradeoffs have an inverse relationship between the size of the fast picking area and the 

number of replenishments.  As the size of the fast picking area increases, the order picking costs 

increase and the replenishment costs decrease, and vice-versa.  Deciding which items to place in 

the fast picking area and finding the optimal space allocation for each of them such that it 

minimizes the order picking, replenishment and equipment costs is known as the 

Forward/Reserve Problem (FRP), first introduced by Hackman and Rosenblatt (1990). 
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1.5 Focus of Research 

 

Order picking and replenishment have been identified as the most labor intensive and costly 

activities of any fast picking in a distribution center.  In a typical warehouse environment, 70% 

of the total operating cost is attributed to order picking and replenishment functions.  Thus, 

improvements in the order picking and replenishment function are of great interests.  Within a 

fast picking area, traveling is the most time consuming activity, shown in Figure 1.5.  Therefore, 

minimizing the travel distance is expected to significantly reduce the labor costs of the fast 

picking area and benefit the overall performance of the warehouse by fulfilling orders more 

rapidly and increasing the productivity of restockers. 

Due to the high relationship that exists between order picking and replenishment, this 

research integrates them to generate a SKU layout that minimizes the overall walking distance 

traveled.  The fast picking area warehouse configuration chosen for this research consists of a 

picker-to-item picking environment with batch picking and an automated single-case 

replenishment system. 

 

Traveling
31%

Put Away
36%

Extracting
17%

Documentation 
& other activities

16%

Replenishment

Traveling
50%

Searching
20%

Picking
15%

Documentation 
& other 
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15%

Order Picking

 

Figure 1.4 Labor costs in a fast picking area. 

9 
 



In the next chapter, a literature review is presented that describes previous work done on 

warehousing layout design, order picking slotting strategies, and replenishment systems with the 

objective to reduce labor costs in warehousing. 

Chapter 3 introduces the problem structure of the fast picking area to be analyzed. Then 

an integrated mixed integer linear programming model to optimize the total traveling distance by 

order pickers and restockers is presented.  Finally, a heuristic is proposed that solves large scale 

problems close to reality in a reasonable amount of time and with outstanding quality. 

Chapter 4 presents a sensitivity analysis to compare the solution quality and solution time 

obtained by both the mathematical model and the heuristic.  Results are compared to other 

approaches formed in the literature and it is shown that significant savings in labor can be 

obtained with the proposed model. 

Chapter 5 summarizes and concludes this research followed by proposed future research 

directions for the optimization of traveling distances within a fast picking area. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

As discussed in section 1.5, the objective of this research is to reduce the labor costs of a DC’s 

fast picking area by tackling the traveling distances incurred in order picking and replenishment 

functions.  In a DC, the traveling distances by order pickers and restockers is affected by four 

main warehousing factors: 1) material handling technology; 2) warehouse layout; 3) routing; and 

4) SKU slotting. 

Material handling technology is perhaps the basis under which warehousing planning has 

been  done lately.  In many cases it has been a strong constraint in a DCs layout configuration 

planning.  This requires the layout to work around the material handling system used, (i.e. if the 

chosen replenishment flow involves conveyors, the order picking zones need to be close to the 

conveyor diverts and the distance between aisles would need to be longer to allow the conveyor 

space requirements).    

The warehouse layout involves the decision of: a) number of racks and aisles –including 

length and width of aisles; b) orientation of aisles and picking racks; and c) location of 

input/output (I/O) points, which are the starting traveling points for order pickers and restockers, 

and incoming/outgoing doors dedicated for shipping.  

The travel distance by order pickers and restockers is significantly affected by the configuration 

chosen, i.e., if the aisles are too long, there would be potentially more walking involved within 
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the aisles, if too short, the traveling distance between aisles increases (see Roodbergen et al., 

2006, and Alagoz et al., 2008)   

Routing concerns the traveling direction of order pickers from location to location to 

retrieve the items needed in the order.  The routing policy becomes crucial in reducing the 

amount of idle walk involved during the order picking process.  Four routing methods are 

described in De Koster et al. (2007): S-shape, midpoint, largest gap, and combined. 

SKU slotting planning is also known as the SKU assignment problem.  Due to the fact 

that order pickers have to reach the location of the item to be picked and restockers have to put 

away the boxes of items in their respective slot, the location assigned to each item will determine 

the amount of distance to be at least traveled in the picking and restocking process.  The slotting 

decision concentrates on the flow of items, mainly dictated by demand and carton size, in order 

to assign a location or zone to every item that is picked in the fast picking area.   

Unlike the rest of the warehousing factors previously discussed, SKU slotting offers great 

advantages in the design of a warehouse since it works at the SKU level –the core of order 

picking and replenishment- and, thus, allows dynamic adjustments in the fast picking floor as 

SKU velocity changes during the year without needing to reconfigure the warehouse structure or 

change the material handling equipment.  Moreover, a good slotting strategy will benefit any 

routing policy. 

 

2.1 Slotting Policies in a Picking Area 

 

There are numerous ways one could assign products to storage locations in a fast picking area.  

Hausman et al. (1976) present three storage assignment policies which are nowadays very 
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popular in warehousing management: random storage, class-based storage, and dedicated 

storage.  The random storage assignment policy allows any incoming product to be stored 

anywhere in the picking area.  A class-based assignment policy reserves a space in the picking 

area which can be shared by a set of defined product groups.  The dedicated storage assignment 

policy gives to every product a unique area which cannot be occupied by any other product.  

Issues related to these three assignment policies are described next. 

 

2.1.1 Random Assignment 

The concept of randomized storage is to assign to every incoming product a location, randomly 

selected from all the available locations with equal probability randomly, in the fast picking area 

(see Petersen, 1997).  The random storage policy would only work in a computerized 

warehousing environment in order to keep track of the locations assigned to each product.  

Otherwise, the search-time of the items during the retrieval process would be seriously affected. 

A variation of the random storage assignment policy is the closest open location storage, 

discussed by De Koster et al (1997), in which the first empty location encountered by an 

employee during the put away process becomes a candidate location for the incoming product.   

The greatest advantage of random storage policy is its high space utilization, since any 

available space in the picking area becomes a candidate to store any incoming product, thus, 

minimizing the space requirements.  Also, in terms of productivity, the put away labor is 

reduced, which can be beneficial when there is a constant flow of incoming products that need to 

be put away as soon as possible.  Nevertheless, the amount of traveling involved in the retrieval 

of products by a manual picker is very likely to increase.  For such reasons, randomized storage 

is more practical in automated picking environments as: AS/RS, VLM’s, or carousels. 
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2.1.2 Class Based Assignment 

The class-based storage policy is a combination of random and dedicated storage policies.  The 

idea behind it is to divide the inventory items into classes.  Each class would have an assigned 

area, where any space available within it is randomly occupied by the products belonging to that 

class.  Randomized and class-based storage are also known as shared storage policies, for these 

allow different products to successively occupy the same location. 

The generation of classes can occur in many ways.  From an inventory management 

perspective, classes can be determined by the products life, i.e. perishable items could be 

grouped together versus non-perishable, or by their incoming sequence, i.e. first-in first-out 

(FIFO) and last-in first-out (LIFO).  The most common used class-based strategy follows 

Pareto’s popularity method; based on the assumption that 20% of the products contributes to 

80% of the sales or pick volume.  The arrangement of classes based on the products popularity 

would lead to the widely used ABC layout policy (see Le-Duc and De Koster, 2005).  In it, the 

most popular class or fast movers are the A-items, and would take over the most convenient 

locations in the warehouse; typically close to the I/O points or outgoing shipping door.  The next 

fastest moving class is the B-items, and take the next most convenient zone locations after A-

items.  The next class would be C-movers, and so on.  Although the class-based storage policy 

assigns the fast-moving items closer to the I/O points, the space requirements increase with the 

number of classes.  For these reason, no more than three classes are typically used. 

 

2.1.3 Dedicated Assignment 

Due to the nature of fast picking areas where every item needs to be assigned a specific location, 

as would be in the case of single-item gravity racks, dedicated storage is the most used policy in 
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DC’s.  Five dedicated assignment methods are discussed next: Cube-per-Order Index, 

Correlated Assignment, Quadratic Assignment Problem, Order-Orienting Slotting, and the 

Forward-Reserve Problem. 

 

2.1.3.1 Cube per Order Index 

One of the oldest and most popular assignment methods for the dedicated storage systems 

is the Cube-per-Order Index (CPO), introduced by Heskett (1963). In the literature, two basic 

elements in determining the stock location are described: stock size and product popularity.  On 

one hand, the stock size defines the space required  to be allocated to each product; on the other, 

product demand determines the turnover of the location, and the average number of times the 

product appears on orders over a period of time.  Hence, the COI can be defined as the ratio of 

the product’s required space to the number of trips required to fulfill the products order demand 

per period – the basis of Heskett’s (1964) algorithm to calculate the COI.  The COI algorithm 

focuses on dividing the allocated space of each item by its turnover in a given period of time, and 

then ranking the items from the lowest to highest COI.  Afterwards, following a space filling 

curve, the highest ranked COI items are assigned the easiest accessible and more convenient 

locations closest to the I/O.  Kallina and Lynn (1976) present advantages and disadvantages of 

the COI, and practical rules on the implementation of the COI method.   

The implementation of COI in warehousing has been very prevalent; however, the great 

disadvantage is that demand rates of products constantly change –in most of the cases due to 

products’ seasonalities.  Thus, COI would require several re-assignments on the picking floor, 

resulting in an increase of labor in stock reprofiling.  Moreover, in ordinary DC’s where order 

picking is performed in a sequenced manner, as it is in a batch picking processes, the COI looses 
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flexibility in assigning products that appear in the same picking route close to each other.  Thus, 

the risk of assigning SKU’s next to each other when the products are not related in the picking 

route is very high, leading to an increase in travel. Therefore, product correlation should be 

considered in warehouse product assignment policies.  

 

2.1.3.2 Correlated Assignment 

In warehousing, product correlation can be described as the set of products that are often 

requested/ ordered together.  For example, customers tend to purchase a toothbrush together with 

toothpaste, or flashlights with batteries.  In this case, it would be valuable to store correlated 

products close to each other to reduce traveling distances in the order picking process.   

To apply product correlation, Frazelle and Sharp (1989) present a statistical procedure that 

identifies pairs of products that are correlated and should be stored together.  They perform a 

simulation study on a one-aisle Miniload AS/RS to compare random storage and correlated 

assignment, and show that correlated assignments can reduce by 30-40% the number of required 

retrievals.   

The limitations of correlated assignment are quite challenging.  It requires readily 

available data about the relationship between items which might not be readily available in a 

warehouse with 10,000 different items – nearly 50 million product pairs.  Also, product 

correlation might have different characteristics such as: safety issues (i.e. flammability), product 

fragility, shape, weight, etc., which constraints the decision of location assignment.   
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2.1.3.3 Quadratic Assignment Problem 

The problem of assigning locations to a set of indivisible facilities was first modeled by 

Koopmans and Beckmann (1957) as a quadratic assignment problem (QAP).  In warehousing 

application, one can think of products as facilities, and storage locations as locations.  The QAP 

model considers facilities to be of equal shape and the distance is measured from centroid to 

centroid. It then locates facilities based on the flow between them, with the objective of reducing 

the total traveling distance.  The objective function results in a second degree function of the 

variables (from there the name of quadratic), see equation 2.1.  Montreuil (1990) formulated the 

facility layout problem using Mixed Integer Programming, with the difference from the original 

QAP that the facility is allowed to take irregular forms and the distance from facility to facility is 

measured from their respective I/O points instead of their centroids.   

Quadratic Assignment Problem formulated as a non-linear programming model: 
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Equation 2.1 minimizes the total traveled distance d between locations j and l, multiplied 

by the frequency of flow f between facilities i and k. Constraints 2.2 and 2.3 restrict locations to 

be assigned to more than one facility and facilities from occupying more than one location.  
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Finally, constraint 2.4 defines the decision variable X as binary: 1 if facility i is assigned location 

j; 0, otherwise. 

The QAP is a well known NP-Hard combinatorial facility layout problem where the 

computation time increases exponentially as the problem size enlarges, making it unrealistic to 

solve large scale problems.  Another approach to the facility layout problem is through space 

filling curves.  Targeted to production facilities, Bozer et al. (1994) introduce the use of 

spacefilling curves in the facility layout to exchange departments in more powerful routines than 

two-way or three-way exchanges.  However, despite the improvements in algorithms developed 

in the past, to date, there is no algorithm that can solve the QAP in polynomial time; thus, the 

large-scale application of the QAP only exists in the literature and theory. 

Furthermore, similar to product correlation, the QAP only considers weights between 

pairs of products, which would be meaningless in product assignment of a fast picking area 

where the picking routing contains multiple items.  Approaches dealing with location assignment 

in sequenced picking are presented next.  

 

2.1.3.4 Order Orienting Slotting 

Often in DC’s, order pickers follow a route to pick several items belonging to an order, 

just like shoppers would do in a grocery store, in which the traveling distance relies on the 

picking list content and the routing strategy used.  Thus, it is of great relevance to analyze the 

picking sequencing when assigning products to storage locations in a warehouse.  Following this 

idea, Heragu et al. (2007) proposed an assignment strategy called Order Oriented Slotting 

(OOS).  The concept of OOS integrates the picking frequency between items with their single 

popularity to assign them a storage location in the warehouse such that the total travel distance 
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needed to pick all the orders is minimized.  Different from COI which assigns locations to items 

based on their frequency and stock size, OOS stores in a sequenced manner sets of high flow 

items that appear together within a large number of orders.  Under the OOS approach, order 

pickers can pick many products belonging to an order in nearby locations without having to walk 

idle to reach the next item in the sequence.  Based on the QAP, the OOS was formulated as an 

integer linear programming model when the routing is S-shaped and for Vertical Lift Model 

(VLM).  Due to the complexity of the model when solving large scale warehousing problems, 

several heuristics were presented which delivered results within 6% of optimality.   

The OOS strategy proposes a promising approach to product assignment.  Nevertheless, 

the OOS model possesses a great disadvantage. It does not work well when the picking process 

is batched.  OOS would only be efficient when every SKU is picked in a fixed sequence among 

other items, meaning that a SKU should not appear in different picking sequences.  In a batching 

scenario, this is not the case.  SKUs may appear in multiple sequences with different items to be 

picked in different route lengths.  It should not be expected that customers would order the same 

set of products all the time.   

 

2.1.3.5 Forward-Reserve Problem 

As discussed in Chapter 1, many DC’s are configured in a forward area for broken-case 

and full-picking and a reserve area for pallet picking and stock storage, in order to minimize the 

total costs of picking and replenishing.  Bozer (1985) considers the problem of splitting a pallet 

rack into an upper reserve area and the lower as a forward area.  He also shows when a separate 

reserve area is justified.   
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The decision of what items to place in the forward or fast picking area and in what 

quantities is known as the forward-reserve problem (FRP), first modeled by Hackman and 

Rosenblatt (1990).  They present a heuristic that uses a ratio called Economic Assignment 

Quotient (EAQ) to solve the assignment-allocation problem.  The EAQ can be described as the 

ratio of the annual number of request R for item i and the square root of its annual demand D, 

shown in equation 2.5. 

 

i

i

D
R

  (2.5) 

 

The heuristic ranks the product based on their EAQ –highest to lowest- and assigns 

optimal quantities to the forward area for each product until it is full.  Hackman and Platzman 

(1990) develop a mathematical programming model that solves more general instances of the 

Hackman-Rosenblatt model.  Frazelle and Hackman (1994) formulate and develop two 

algorithms to solve the FRP, also incorporating congestion constraints and parameters being 

dependant on the storage volume.  They prove that items may be ordered a priori according to 

the EAQ which depends on the characteristics of the items and is independent of the warehouse 

parameters.  The algorithms determine the size of the forward area along with allocating items.  

They conclude that the costs of picking and replenishment of the forward area depends on the 

size of the forward area.  Lately, Bartholdi and Hackman (2008) formulate it the labor efficiency 

ratio based on the EAQ.    

Labor Efficiency =       
    

  (2.6) 
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The ratio represents the marginal net benefit measured in total labor –picking plus 

replenishment- of assigning an item into the forward area.  They present an analysis of the net 

benefit obtained by allocating products based on their labor efficiency, and demonstrate that 

greater benefits can be obtained over using traditional methods such as Equal Time Allocation 

and Equal Space Allocation.  They also compare labor efficiency to COI, and argue that the COI 

fails to consider restocking costs in the assignment of items, and therefore, is just a measure of 

picking efficiency, but not of labor efficiency. 

The FRP is an effective model in the allocation problem, but not so much in the 

assignment problem because it does not analyzes the most convenient locations for each item, 

neither does it includes the flow relationship between items and picking sequences. 

Other disadvantages related to the FRP are that in practice DC’s or any retail store would 

generally allocate all of its products in the forward fast picking area and leave only the reserve 

area as storage space to be used for replenishing the picking area.  This would literally give little 

value to the problem of deciding which items to put in the fast picking area.  In addition, typical 

storage of products in the fast picking area happens in predefined slot sizes given by the shelve-

configuration of the storage racks, thus, the amount of space to allocate for each item becomes 

trivial.   
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2.2 Sequencing Algorithms 

 

In an era of customized orders, it is of importance to enable assignment strategies to consider the 

existence of products in different picking sequences, as it would appear in a batching process.  

Some of the related research in order retrieval sequencing found in the warehousing literature is 

presented next. 

 

2.2.1 Order Retrieval Sequencing 

Bartholdi and Platzman (1986) analyze several algorithms that sequence the retrieval of items 

from a carousel conveyor.  They conclude that the appropriate choice of heuristic for retrieval 

depends on both the order-rate and the item-density.  As these increase, simpler greedy heuristics 

are recommended to sequence the retrievals.  In a similar work, Van den Berg (1996) presents an 

efficient dynamic programming algorithm to sequence the retrieval of a set of orders in a single 

carousel.  The problem is simplified to a Traveling Salesman Problem (TSP) and solved to 

optimality. 

Following retrieval strategies, Hwang and Song (1993) present a heuristic procedure to 

solve the problem of sequencing a given set of retrieval requests on a man-on-board storage and 

retrieval warehousing system.  The problem is studied as a TSP to obtain the optimal tour for the 

subset of orders.  They also develop the expected travel time models based on a probabilistic 

analysis for single and dual commands assuming a randomized assignment policy.  Elsayed et al. 

(1993) study the sequencing and batching procedures in an automated storage/retrieval system 

(AS/RS) for minimizing earliness and tardiness penalties in order retrievals.  An algorithm is 
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developed to rank the orders for assigning them to batches such that the time of completion of 

every batch minimizes the penalty of earliness or tardiness.   

As we can see, most of the literature related to sequencing of orders in a warehousing is 

focused on retrieval algorithms were the items’ storage locations are known a priori, if not, in 

most cases, the storage locations are randomly assigned.  Although not mentioned in the 

literature, we can proof by generalization, that if any retrieval strategy depends upon the location 

assigned to items, then, the location assigned to items possesses a significant impact in the 

retrieval performance, and therefore, an optimal storage assignment will certainly speed the 

retrieval process. 

 

2.2.2 Linear Placement Problem 

The storage location assignment in sequenced picking can be thought as the Linear Placement 

Problem (LPP). The LPP is a complex non-polynomial (NP) combinatorial problem, where all 

the possible ways of placing n items is n-factorial (n!). 

The LPP has had a significant application in the design of information systems, such as 

data mining and electronic integrated circuits.  In information systems, Morse (1971) 

concentrates in the optimal assignment of books in a bookstore such that the items more closely 

connected in content are close together, in order that a person looking for those items focuses his 

search on the smallest part of the store as possible.  The degree of connectedness between two 

items i and j is expressed in terms of a correlation index.  Several approximation equations are 

presented to estimate the correlation indices.  Once the correlation indices are known for each 

pair of items, a position xi is assigned for each item i along a linear classification scale which 

indicates the optimal ordering of books in the shelves. 

23 
 



Saab and Chen (1994) present an effective heuristic algorithm to the LPP in the design of 

integrated circuits.  The objective is to minimize the length of wire used to connect a set of 

nodes.  In the placement search of all nodes, the algorithm begins with simple moves and 

gradually shifts towards more complex moves.   

Applying LPP to warehousing, the problem objective would be to decide which locations 

should be assigned to items such that the distance between items that come in the same picking 

order is minimized.  In a recent work, Wutthisirisart (2008) constructs a greedy-heuristic 

algorithm which compares all the sequenced order picks and assigns to the most convenient 

location the items in the sequence that minimizes the delay of the rest of the sequences.  The 

concept of delay is defined as the number of locations that the order picker would need to travel 

idle, where no picking is done.  After a sequence has been assigned, the items contained in such 

sequence are eliminated from the rest of the order list, and the search for minimum delay is 

repeated until all items have been assigned.  The result of the algorithm comes as a linear ranking 

of items, which describes which items should be assigned to the first location before others.  

Although the heuristic runs in polynomial time, it is advantageous when the number of 

sequences p is smaller than the total number of items n to be assigned.   

  

24 
 



2.3 Replenishment Strategies 

 

In chapter 1, the importance of replenishment in warehousing was discussed. However, the 

research done in the replenishment area is still in its early stages, pointing out that further work 

should be done in this field. 

Van den Berg et al. (1995) formulate a binary programming model to find an assignment 

of unit-loads to the forward area that minimizes the expected labor-time during the picking 

period.  One of their assumptions is that the order picker performs concurrent picking and 

replenishment operations during the same period.  Under such an assumption, a second model is 

derived which adds a replenishment constraint that can be attributed to either possible congestion 

or staffing limits, in order to envision situations were concurrent replenishment during the 

picking period may be limited.  They compare the heuristics to popular methods in practice and 

show that significant savings can be obtained.    

Kim et al. (2003) present a tote replenishment logic to  minimize the set-up time between 

picking cycles for the efficient operation of a warehouse in short cycle time environment.  The 

set-up time is defined as the time to replenish the totes that contain the products to be retrieved in 

the next picking cycle.  Lastly, a negotiation-based algorithm is proposed to determine the 

storage location for each product.   

Hollingsworth (2003) focused on minimizing replenishment costs through a dock-to-

forward (DTF) strategy, which bypasses reserve storage to reduce additional material handling.  

The DTF strategy transfers the full pallets received at the dock door to the forward picking area.  

Several DTF strategies were tested via simulation, where the best-performing DTF strategy 

reduced replenishment trips by as much as 24% over a system with no DTF. 
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Jernigan (2004) considered multi-tier inventory systems to minimize the total cost of 

picking items and replenishing storage locations.  A multi-tier inventory system involves 

spreading inventory amounts closer to the order pickers; as would be a picking shelf that is 

replenished from a nearby storage location, and the location is replenished from bulk storage, 

forming a three-tier inventory system.  A heuristic is developed to determine the storage areas to 

which to assign items and the quantities in which to store them in each time period, while 

minimizing the costs of picking, costs of space dedicated to restocking storage locations, and 

reassigning the items over multiple periods.   

 

2.4 Summary of Literature 

 

Most of the SKU assignment methods described in the literature formulate the assignment 

problem without considering the sequencing structure of order pickers in ordinary fast pick areas.   

A critical observation of assignment methods such as COI and Labor Efficiency reveals 

that they are not a logical way of slotting because they assume that a pick tour consists of a 

single SKU.  But when a typical order contains multiple items and all of these must be picked in 

one tour, COI and Labor Efficiency loose the correlation of items that are picked together; so the 

risks of assigning SKUs next to each other when the products are not related in the picking route 

is very high, leading to an increase of travel for order pickers.   

More robust assignment methods as QAP and Correlated Assignment do consider the 

correlation of SKUs, but they do not capture their correlation with their respective sequences.   

Furthermore, in OOS, although the SKU assignment is done with respect to its order 

route, it does not work well when SKUs are picked in different orders. 
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As seen in the literature, surprisingly, the storage assignment of items in manual 

sequenced order-picking is relatively new within the warehousing application.  In addition, 

replenishment has not been integrated in the SKU assignment problem; instead, it has been 

formulated separately to minimize the number of restocks and the traveling involved from bulk 

warehouse to the fast pick area.  Thus, the motivation of this research is to present a SKU 

assignment model that is able to minimize the walking distances of order pickers and restockers 

in a fast picking area, while at the same time capturing the sequencing factors of order picking 

processes, which is the nature of typical order picking in DCs. 
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CHAPTER 3 

METHODOLOGY 

 

 

This chapter first introduces the problem structure for a fast picking area to be analyzed and 

solved.  Second, an integrated binary mixed integer linear programming model is formulated to 

optimize the total traveling distance by order pickers and restockers.  Finally, a set of heuristics 

are proposed to solve large scale problems in a reasonable amount of time. 

 

3.1 Problem Structure 

 

As mentioned in Chapter 1, the fast picking area warehouse configuration chosen for this 

research consists of a manual picker-to-item environment with multiple items per order.  The 

order picking and replenishment structures to be considered are presented next. 

 

3.1.1 Order Picking Structure 

3.1.1.1 Fast Pick Area Configuration 

In a fast picking area, the order picking process under study requires pickers to enter the 

aisle from the I/O point and follow an S-shaped route to pick the set of items that belong to a 

certain order.  During the picking process, order pickers travel through the aisles with a cart 

containing the box where the items are placed to fulfill the order.  For simplicity of analysis, it is 
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assumed that an order can be fulfilled in a single box.  Once an order is fulfilled, the box is 

dropped on a belt-conveyor and sent to the shipping area.  At this point, the order picker returns 

to the I/O point to start picking a new order.  See Figures 3.1 and 3.2.   

 

 

Figure 3.1 Single-aisle picking structure.  The arrows represent the traveling direction of the order pickers; a dashed 

arrow is a return to the I/O point after completing an order.  The black squares are the SKUs to be retrieved from the 

rack. 
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Figure 3.2 Multi-aisle picking structure following an S-shaped routing policy. 

 

It should be pointed out that for the problem structure the return distances to the I/O point 

are ignored.  This is because the purpose of this research is to minimize the traveling distances 

required to fulfill the orders, thus, it does not concern distances after picking.  However, it is 

expected that a minimum picking travel will result in a minimum return travel as well. 

The products are located in gravity-racks.  Every rack contains bays with several levels of 

shelves where products are slotted.  Since the use of gravity-racks requires products to be 

retrieved from the front of the rack, we will designate such access as the picking-face.  Figure 3.2 

illustrates the picking-face configuration. 
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 a) Top view of a picking- face. b) Front view of a picking-face.

Figure 3.3 Views of a rack configuration within a picking aisle.  

 

Although in practice a bay would contain multiple SKUs, for the study of this research it 

is assumed that each bay contains cartons of the same SKU to allow slotting flexibility and avoid 

dealing with explicitly ergonomic issues.  Another assumption is that the same SKU number 

cannot occupy more than a bay location in the entire fast pick area, thus, every SKU must have a 

single dedicated Bay location. 

 

3.1.1.2 Order Picking Sequencing 

As mentioned earlier, an order is defined as the set of products that need to be picked 

together from the racks to fulfill the order.  To gain a better understanding of how orders flow in 

the fast picking area, the fulfillment process is analyzed from the order perspective instead of the 

picker perspective.  By doing so, operational factors such as: order batching, batch size, required 

number of tours, etc, that affect order pickers, do not need to be considered.  In this way, the tour 
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or segment each individual order travels to be fulfilled will be called order picking sequence.  To 

avoid confusion, the order picking sequencing does not mean that the extraction of products is 

done in a restrictive sequential manner; it only describes the items that are picked together in a 

segment, and is called sequencing because one pick is done after another. 

In a DC, although customer orders tend to be customized, it is possible to see through 

time that several orders repeat the same product mix, thus, the same picking sequence.  This can 

be expressed as orders that follow the same picking sequence at a certain frequency.   

Order picking sequences can be generated for determined periods of time by means of 

forecasting or extraction of historical shipping data.  Although in real practice an order might 

take several days to get fulfilled, for our study it is assumed that an order has the ability to be 

fulfilled in one day. 

An example of a set order picking sequences is shown in Table 1.  From left to right: the 

first column is the order picking sequence number; the second column shows the Bay numbers to 

be visited to retrieve the SKUs for that order picking sequence; and the third column indicates 

the frequency in which orders repeat the sequence (product mix).  For example, the first 

sequence needs to visit Bays 1 and 3 six times, meaning that there are six orders that contain 

items in Bays 1 and 3; the second sequence visits Bays 1, 2, and 4 four times; and so on. 

  

32 
 



Table 3.1 Example of an Order Picking List. 

 

Sequence Frequency

1 1 3 6

2 1 2 4 4

3 5 6 7 8 9 4

4 2 8 4

5 7 9 3

6 4 5 6 3

7 2 6 7 8 9 1

8 1 2 7 8 9 1

SKU numbers / Bay Number

 

3.1.2 Replenishment Structure 

3.1.2.1 Replenishment of the Fast Pick Area 

For our study, restockers and order pickers are two different staff members, and so 

replenishment occurs in advance before order picking takes place. 

Figure 3.4 illustrates the replenishment structure in a single-aisle fast picking area.  Arriving 

from the bulk storage area, the SKU cartons to replenish the fast picking areas are staged at the 

I/O point.  Restockers are then required to put away the SKU cartons into their respective slots 

and, afterwards, return to the I/O point for more cartons to replenish.  Opposite to order picking, 

the replenishment process occurs at the back of the picking-face.   
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Figure 3.4 Replenishment structure.  The black square is the SKU to be replenished. 

 

The restockers are assumed to carry only one carton at a time from the I/O point to its 

respective slot location.  Return distances to the I/O point are ignored.  

In a multi-aisle fast picking area, the replenishment travel is similar to that of the order pickers, 

illustrated in Figure 3.2, except that the walking is done behind the picking-faces.   

 

3.1.2.2 Restocking Requirements 

The restocking requirements are generally a function of: carton volume, pick flow and 

safety stock.  The carton volume v indicates the standard quantity of units contained in the SKU 

carton.  The pick flow p is the total number of units of each SKU retrieved during the picking 

period, independently of the number of times the SKU location was visited.  Knowing the pick 
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requirements of each SKU and its carton volume, the minimum number of cartons R required to 

replenish the fast pick area can be easily obtained by R = p/ v.  Because the smallest 

replenishment unit is one case, any results with decimals have to be rounded up to the nearest 

integer. 

Safety stock is a common practice in DCs to absorb fluctuations in demand; however, for 

this research it is assumed that no safety stock is necessary for any of the SKUs. 

To illustrate how the restocking requirements work, Table 3.2 presents an example of the 

restocking requirements based on the order picking list of Table 3.1. 

 

Table 3.2 Example of Restocking Requirements. 

 

SKU Number Volume (v ) 
(units/carton) Pick Flow (p ) Cartons

Cartons Required 
to Replenish      

(R )

1 10 22 2.2 3

2 8 40 5 5

3 5 12 2.4 3

4 6 21 3.5 4

5 2 7 3.5 4

6 4 40 10 10

7 3 18 6 6

8 7 10 1.4 2

9 6 27 4.5 5
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3.2 Problem Analysis 

 

Having described the problem structure, the purpose of this research is to re-assign the Bays of 

the fast picking area to better locations such that the segment lengths of the order picking 

sequences and the traveling distance incurred by restockers are minimized.   

The decision to focus on the reduction of travel lengths for order picking sequences is 

based on the assumption that if the product mix belonging to a certain order is assigned close to 

the I/O point and kept closed to each other, then orders will require little travel to be completed; 

and order pickers will travel less to fulfill orders.  Even more, under this approach, subsequent 

operations, like order batching, become more efficient, i.e., batching orders according to their 

picking sequence segments increases the completion of multiple similar orders at minimum 

travel distance. 

 

3.2.1 Analysis of Order Picking Sequence 

The special structure of S-Shapes routes enables us to view the distances traveled by order 

picking sequences from a linear perspective.  Figure 3.5 illustrates the travel of each order 

sequence previously presented in Table 3.1 –the preliminary assignment of locations to SKUs 

was done in increasing order according to its number value.  In Figure 3.5, it can be observed 

that all of the orders have some idle travel, meaning that they are crossing bays where no picking 

is needed.  In an ideal warehousing world, we would want every order to only travel bays where 

picks are required, but because it is not physically possible to overlap one bay over another there 

will always be some idle walk involved.  During this study, we will refer to the length of an 

order sequence as the number of bays it has traveled until fulfillment.   
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 The total distance traveled by the set of orders can be observed at the right of Figure 3.5.  

The amount of distance D traveled by each order sequence is given by the product of its length L 

(the number of bays transited) times its frequency F (the number of orders containing the same 

product mix).  It becomes clear that to minimize the total distance D it is necessary to reduce the 

length L of order picking sequences.  The achievement of such a minimization is the core 

contribution of this research. 

 

 

Figure 3.5 Representation of the traveling path done by each order picking sequence and the amount of distance 

involved. 

 

 To reduce the number of bays transited by all orders it is necessary to swap or move 

around the SKU locations.  This leads to a combinatorial problem, where the total possible 
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combinations in which n SKUs can be arranged is n!.  The example given in Table 3.1 contains 9 

SKUs, thus, there are 9! = 362,880 ways of assigning SKUs to bay locations!  It will become 

very time consuming to list all the possible combinations to figure out the one that minimizes the 

total distance, and almost unrealistic to list when the number of SKUs increases. 

 According to the literature review discussed in Chapter 2, there have been several 

methods used in the assignment problem.  If we were to solve this problem using the Cube-per-

Order-Index (CPO) approach, the methodology would concentrate on ranking the SKUs by their 

number of visits.  Based on Table 3.1 all that would be needed to do is count how many times 

each SKU repeats in the order picking sequence list and sort them from highest to lowest.  The 

highest SKUs are then assigned to the locations closest to the I/O point.   

 Although the CPO method is very practical and straight forward, it would only give good 

results if the retrieval of products occurred in a single SKU command basis, basically, reaching a 

SKU and coming back to the I/O point.  However, the structure of the problem we are dealing 

with is different.  The order route has multiple SKUs, and the return to the I/O point is not done 

until the last SKU of an order is retrieved.  Therefore, applying CPO is not efficient since the 

assignment strategy will lose the correlation between SKUs belonging to the same order.   

 Another way to approach our problem is by using methods that consider SKU correlation 

such as the Quadratic Assignment Problem (QAP) or Order Oriented Slotting (OOS).  The 

solution method would then reduce the distance that exists between pairs of SKUs that are 

frequently visited together.  However, assigning SKUs to locations with respect to their 

frequency weights does not guarantee that the order sequence length is reduced as well because 

the information on which SKUs belongs to an order sequence is not considered..  Based on the 

fact that an order sequence is not completed until all of its SKUs are picked, even when distances 
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between pairs of highly correlated SKUs are minimized, the overall distance of an order 

sequence can potentially get worst.  For example, an order sequence could extend its fulfillment 

because pairs of SKUs that do not belong to that order were assigned before SKUs that actually 

belong to the order.  The fact that our problem contains SKUs that repeat in different order 

sequences at different frequencies downgrades the solution quality of correlated assignment 

strategies.   

 Finally, from a scheduling perspective, giving higher priority to the SKUs that belong to 

the most frequent order sequence sounds like an acceptable solution method.  However, SKUs in 

larger sequences may become candidates to be assigned first at the expense of increasing the 

lengths of other sequences that are almost equally frequent.  Thus, a more robust approach to this 

problem is necessary. 

 

3.2.1.1 Solution Approach for Order Picking Sequencing 

 Analyzing Figure 3.5, it can be observed that the factors that determine the distance 

traveled by each order sequence are their length and frequency.  The frequency of orders is a 

constant value that cannot be changed, thus, the only variable to this problem is the length of an 

order sequence.  Because an order sequence is not fulfilled until all of its SKUs have been 

picked, it can be concluded that the length of an order sequence is a function of the bay number 

in which the last SKU in the order list is located.  For example, sequence 1 has SKUs 1 and 3, 

located in bays 1 and 3, respectively; since the last pick is done at bay 3, then the length 

sequence 1 travels is equal to 3 distance units.   

 To express the distance of each order sequence the following notation will be used: 
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Di = Bay location number of SKU i 

Sk =Order sequence k 

Fk = Frequency of orders for sequence k 

Lk = Length of order sequence k 

 

where, 

 (3.1) 

 

 Equation 3.1 sets the length L of a given order sequence k to be equal to the maximum 

bay location number among the set of SKUs i belonging to order sequence k, times its frequency 

F; where the maximum bay location of a set of SKUs represents the farthest location in which an 

SKU is assigned. 

 The minimization of the lengths of all order sequences is then be expressed as: 

 

 ∑  ;  1,2,3, … ,  (3.2) 

 

 So far, the distance traveled by order picking sequences have been analyzed, now, in the 

next section replenishment distances will be covered.  
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3.2.2 Analysis of Replenishment Flows 

Compared to order picking sequences, the replenishment flow occurs in a simpler way.  The 

amount of traveling distance D required to replenish each SKU depends on two factors: the bay 

number location L and the SKU turnover velocity R, which is a function of the carton volume 

capacity and the number of picks for each SKU.  From the restocking data given in Table 3.2, the 

replenishment flow is visualized in Figure 3.6. 

 

 

Figure 3.6 Representation of the traveling path for the replenishment of SKUs. 

 

The distance travel for restocking each SKU is equal to the number of cartons (turnover) 

to replenish times the bay location where the SKU is located.  From a replenishment perspective, 

it becomes clear that in order to minimize the travel distance involved, it is necessary to reassign 
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the most replenished SKUs to bay locations closer to the I/O point, i.e., the highest replenished 

SKU is number 6, with 10 cartons, however it is not the closest SKU to the I/O point based on 

picking.  

Table 3.3 summarizes the traveling distances involved in order picking and replenishment 

based on Figures 3.5 and 3.6. 

 

Table 3.3 Traveling distance results for the exercise in Table 3.1 

 

Order Picking Replenishment Total

165 221 386

Distances

 

From a myopic view, without considering how SKUs behave in the order picking 

process, solving the replenishment problem is very straight forward.  All there is to do is to rank 

the SKUs from lowest to highest number of restocks.  Nevertheless, the objective of this research 

is to minimize both order picking and replenishment distances.  And assigning SKUs to bays 

locations with respect to their restocking velocity could potentially increase the distances of 

order picking sequences.  The integrated model which considers both order picking and 

replenishment flows is presented in the next section. 
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3.3 Model 

 

3.3.1 Binary Mixed Integer Linear Programming Model 

To formulate the Binary Mixed Integer Linear Programming Model (BMILP), let’s introduce 

some additional notation:  

 

Di = Bay location number assigned to SKU i = 1,2,…,n 

Sk =Order sequence k = 1,2,…,K 

Fk = Frequency of orders for sequence k = 1,2,…,K 

Lk = Length of order sequence k = 1,2,…,K 

Ri = Number of cartons to replenish for SKU i = 1,2,…,n 

b = Bay location number b = 1,2…,B 

 

3.3.1.1 Decision Variable  

As was seen in the previous section, the bottom line for distance minimization in order 

picking and replenishment relies on where the SKUs are assigned in the floor.  In this way, the 

decision variable is defined as a binary variable: 

 

 

            (3.3) 

   

1, if SKU i is assigned to bay number b;

0, otherwise. 
ib = X
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3.3.1.2 Objective Function and Constraints 

Based on what we have learned in Section 3.2, the minimization of order picking 

sequences and replenishment can be expressed as follows: 

 

 ∑  ;  1,2,3, … , ∑   (3.4) 

 

Equation 3.4 minimizes the total length distances within order picking sequences and the 

total replenishment distances.  It can be observed that this equation does not have a linear 

programming structure.  The linearization of the equation above can be achieved by setting 

, according to equation 3.1, and moving  to the constraints.  

The linearization yields the following Binary Mixed Integer Linear Programming (BMILP) 

formulation: 

 

 ∑ 1 ∑   (3.5) 

 

subject to, 

 

∑ 1        ;   ∀

b  (3.7) 

i  (3.6) 

∑ 1         ;   ∀

∀ i  (3.8) 

∀

∑     ;   

i  k  (3.9)                  ;   

 0,1               ;   i, b  (3.10) ∀
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The objective function (3.5) expresses in a linear form the minimization of the sum of 

distances of order picking and those of replenishment.  The first part of the equation sums the 

total length distances of all order picking sequences. The second part adds the distances of each 

replenishment flow for every SKU.  As learned in section 3.2, the replenishment flow distance of 

an SKU is equal to the bay location D where the SKU is assigned times the number of cartons R 

that flow to that location (replenishment distance = D x R).   

Notice that the equation contains a positive constant  that provides relative weight to the 

objective function in assigning SKUs in a way that it benefits more order picking or 

replenishment.  In real DCs, it is common to see that order picking and replenishment are not 

weighted the same because of distinct policies, i.e., labor cost rates, where the assignment of 

SKUs is done to exclusively benefit order picking at the expense of replenishment because the 

total labor costs of order picking is greater than those of replenishment.  Depending on what is of 

more interest for a DC, the value of  can be determined empirically between 0 and 1 so as to 

obtain the right weight of these two activities.   

Constraint (3.6) avoids SKUs to be assigned to more than one bay location.  Constraint 

(3.7) ensures that each bay location is a dedicated storage for an SKU, thus, a bay location 

cannot store more than one SKU.  Constraint (3.8) sets the bay location number for all SKUs 

when the value of the decision variable holds true.  Finally, constraint (3.9) is derived from the 

aforementioned expression .  In its linear form, it ensures that the length of the 

order picking sequence is given the highest bay location number of the set of SKUs belonging to 

that sequence. 
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3.3.2 Additional Constraints 

In practice, the way order sequences are fulfilled and SKUs are replenished is governed by the 

different aspects associated with the variety of SKUs in a DC, such as weight, volume, form, etc.  

For instance, an order containing heavy and light SKUs would most likely be fulfilled by picking 

the heavy SKUs first and the light ones at the end to ensure that the products are not damaged.  

Crushable SKUs, i.e. bows, would be picked at the end to optimize the box content capacity.  Or, 

for example, an order containing regular shaped SKUs and irregular shaped SKUs would have 

regular shaped SKUs picked first to better utilize the space inside the box.  On the replenishment 

side, there might be SKUs that only get replenished in full-pallets and so is more convenient to 

have their storage locations at the ends of the restocking aisle for better accessibility.  Or maybe 

a group of SKUs get restocked by the same pallet, so their storage locations need to be close to 

each other.  Indeed, there are numerous constraints that limit the assignment of SKUs in the 

floor, out of which three main types of constraints are formulated next. 

 

a) Order Sequencing Constraints 

 

 

  (3.12) 

 (3.11) 

 

The first equation (3.11) dictates that a given SKU i has to be assigned to a certain bay 

number.  This would be the case of light SKUs that need to be picked first or crushable SKUs 

that are to be picked last.  The second equation (3.12) ensures that a given SKU i has to picked 
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before an SKU j, as would be the case of heavy versus light SKUs, and regular versus irregular 

shaped SKUs.   

 

b) Replenishment Ranges 

 

  (3.13) 

 

Equation (3.13) indicates that a given SKU i needs to be stored within a certain range of 

bay locations.  This applies when SKUs should be replenished within certain bays because of 

their carton size. 

 

c) Grouping of SKUs 

 

G = Group number of SKUs to cluster 

E = Space between first and last SKU belonging to cluster G 

 

      ;    

 ∀   (3.15) 

∀

∀   (3.14) 

                      ;   

                      ;      (3.16) 

 

Equation (3.14) ensures that the distance between the farthest and shortest location of the 

set of SKUs in cluster G does not overpass the specified space constant E for such cluster.   
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Equation (3.15) and (3.16) define the farthest and shortest location, respectively, of the 

set of SKUs in the cluster group. 

The set of additional constraints discussed in a), b), and c) can be incorporated in the 

BMIP model and solved to optimality.   

 

3.3.3 BMILP Solver - LINGO 

In order to solve the BMILP mathematical model described in section 3.3.1 the use of an 

optimization solver software is necessary.  For our convenience, LINGO software was used.  

LINGO has the ability to model large systems by expressing a group of several very similar 

calculations or constraints into SETS.  A set might be a list of products, employees, trucks, etc.  

Each member in the set may have one or more characteristics associated with it (e.g. weight, 

location, price/unit, income).  In our model, the SETS are: SKUs, Bay locations, and Sequences.  

The decision variable Xib would then be a derived set of SKUs and Bay locations because it 

consists of every possible combination of assigning a SKU to a Bay location. 

While a SETS section describe the structure of the data for a particular class of problems, 

a DATA section provides the data to create a specific instance of this class of problem and 

allows isolating things that are likely to change.  In terms of our problem, based on Table 3.1, the 

data we know is the SKU number, the Bay Location Numbers, the Order Picking Sequences and 

their respective Frequencies.   

The third component of the LINGO model is composed of set looping functions, where 

the relationships among the various attributes are stated.  The power of these functions comes 

from the ability to apply an operation to all members of a set using a single operation.  For the 

BMILP, the set looping functions are used to express the objective function and constraints.   
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3.3.3.1 LINGO SETS Code 

Having described the three basic components of a LINGO model, the BIMLP model in 

LINGO for the exercise given in Table 3.1 is presented below. 

 
Sets: 
 
SKU; 
Location; 
SKU_Location(SKU, Location): Xib; 
SKU_Attributes(SKU): Di; 
Sequence; 
Sequence_Attributes(sequence): Lk, Fk; 
Replenishment_Flow(SKU): Ri; 
 
Endsets 
 
Data: 
 
SKU=@ole(); 
Location=@ole(); 
Sequence=@ole(); 
Fk=@ole(); 
Ri=@ole(); 
 
Enddata 
 
a=0.5; 
 
MIN=a*@sum(sequence(k):Lk(k)*Fk(k))+(1-a)*@sum(sku(i):Di(i)*Ri(i)); 
 
Order_Picking=@sum(sequence(k):Lk(k)*Fk(k)); 
Replenishment=@sum(sku(i):Di(i)*Ri(i)); 
 
 
Di(1) < Lk(1); 
Di(3) < Lk(1); 
 
Di(1) < Lk(2); 
Di(2) < Lk(2); 
Di(4) < Lk(2); 
 
Di(5) < Lk(3); 
Di(6) < Lk(3); 
Di(7) < Lk(3); 
Di(8) < Lk(3); 
Di(9) < Lk(3); 
 
Di(2) < Lk(4); 
Di(8) < Lk(4); 
 
Di(7) < Lk(5); 
Di(9) < Lk(5); 
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Di(4) < Lk(6); 
Di(5) < Lk(6); 
Di(6) < Lk(6); 
 
Di(2) < Lk(7); 
Di(6) < Lk(7); 
Di(7) < Lk(7); 
Di(8) < Lk(7); 
Di(9) < Lk(7); 
 
Di(1) < Lk(8); 
Di(2) < Lk(8); 
Di(7) < Lk(8); 
Di(8) < Lk(8); 
Di(9) < Lk(8); 
 
 
 
 
@for(sku(i):@sum(location(b):Xib(i,b))=1); 
!A sku is assigned to only one location; 
 
@for(location(b):@sum(sku(i):Xib(i,b))=1); 
!A location is assigned to only one sku; 
 
@for(sku(i):Di(i)=@sum(location(b):Xib(i,b)*b)); 
!Assign location number to sku i; 
 
@FOR(sku_location(i,b):@BIN(Xib(i,b))); 
@FOR(sku_attributes(i):@GIN(Di(i))); 
@FOR(sequence(k):@GIN(Lk(k))); 
 
 
 

3.3.3.2 LINGO Solver Status Window 

When solving a model in LINGO, it displays a solver status window which is useful for 

monitoring the progress of the solver and the dimensions of the model.  The solver status 

window for the exercise in Table 3.1 is presented in Figure 3.7. 
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Figure 3.7 LINGO solver status window for exercise in Table 3.1. 

 

Four important fields of the solver status window are discussed: state, solver type, best objective, 

and objective bound.  

State.  Gives the Status of the current solution. Possible states are "Global Optimum", 

"Local Optimum", "Feasible", "Infeasible", "Unbounded", "Interrupted", and "Undetermined".  

Once the solver can no longer find better solutions to the model, all optimized linear models will 

terminate in the global optimum state. 

Solver-type.  Since our model to be solved is an integer programming model, LINGO 

employs an optimization strategy called Branch-and-Bound (B-and-B).  Branch-and-bound is a 

systematic method for efficiently exploring a solution space without having to enumerate all 

possible solution combinations. 

Best objective.  This field displays the best feasible objective value found so far. 
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Objective bound.  This field displays the bound on the objective function.  This bound is 

a limit on how far the solver will be able to improve the objective.  At some point, the values of 

the best objective and objective bound may become very close.  Given that the best objective 

value can never exceed the bound, the fact that these two values are close indicates that LINGO's 

current best solution is either the optimal solution, or very close to it. 

 

3.3.4 BMILP Run Time Analysis 

The BMILP model was successfully ran in LINGO.  Further discussion in the solutions obtained 

for the example given in Table 3.1 and other case study scenarios are presented in the next 

Chapter.  But, before continuing to Chapter 4 it is fundamental to analyze the extent of the 

problem sizes the BMILP model is capable to solve in an acceptable period of time.   

A sensitivity run time analysis of the BMILP model, without considering the 

replenishment function, was performed over different problem sizes with respect to the number 

of SKU/Bays.  Table 3.4 presents the different problem sizes used in this sensitivity analysis, and 

the running time required to solve them is illustrated in Figure 3.8.  The lower part of Figure 3.8 

illustrates the approximation of the best solution found to the lower bound found by LINGO.   

 It can be observed that the BMILP model solves to optimality small scale problems of 

less than 26 SKUs/Bays in seconds, but as the number of SKUs (Bays) increases in the problem 

structure the running time experiences an exponential growth.  The largest problem size the 

BMILP model was able to solve consisted of 120 SKUs/Bays in 70 sequences, however, the 

solution did not improve after 14 minutes of running, and was only able to reach a feasible 

solution which was not a local or global optimal.  The BMILP was also run for 120Bays in 100 

sequences, but no solution was obtained in a reasonable amount of time.  Furthermore, the 
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BMILP was not able to reach optimal results in short time for problems with more than 10 

SKUs/Bays; therefore, the BMILP model can only be solved to optimality if the problem size is 

small.  However, for problems with less than 120 Bays the quality of the solutions is satisfactory, 

falling within 20% of the lower bound and, consequently, close or equal to the optimal value.   

 The sensitivity run time analysis provides evidence that the BMILP model runs in Non-

Polynomial time and, therefore, is not suitable for use to solve large scale problems where 

thousands of SKUs and hundreds of different order picking sequences are involved.  For this 

reason, heuristics are needed to obtain approximate solutions.  Simple heuristic approaches to 

solve this problem are presented in the next section. 
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Table 3.4 Problem sizes and their solutions used in the running time sensitivity analysis. 

Number of 
Sequences SKUs/ Bays Run Time 

(min)
Lower 
Bound

Solution 
Found

Distance from 
LB

3 5 0.02 50 50 0%

6 6 0.02 78 78 0%

8 9 0.03 147 147 0%

20 26 0.82 1409 1415 0.4%

30 44 1.73 11449 12538 9.5%

60 65 3.30 3934 3991 1.4%

50 91 8.52 43262 51586 19.2%

70 120 13.55 122802 144500 17.7%
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Figure 3.8 Graph of the running time of the BMILP model for distinct problem sizes and the quality of solutions 

with respect to the lower bound. 
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3.4 Heuristics for the SKU Assignment Problem in a Fast Picking Area 

 

Five heuristics are presented in increasing degree of complexity for the general problem of SKU 

assignment in a fast picking area. 

1. Random assignment heuristic.  This heuristic randomly assigns SKUs to Bay locations. 

2. SKU popularity heuristic.  This heuristic uses the COI concept.  First, count how many 

orders contain each SKU in the list of order picking sequences and sort them in 

decreasing order of their popularity.  Then assign the SKUs in that same order to the Bay 

locations closest to the I/O point. 

3. Sequence popularity heuristic.  First, sort the order picking sequences in decreasing 

order with respect to their frequency, and then by the number of SKUs contained in each 

sequence.  This way, highly frequent small sequences get assigned first.  Second, assign 

the SKUs contained in the highest ranked sequence closest to the I/O point based on their 

SKU popularity.  If there is a tie in their SKU popularity, the tie-breaker becomes the 

number of times the SKUs appears in other sequences. 

4. Maximum Dead-Walk Algorithm.  The concept of maximum dead-walk is to weight each 

order picking sequence by the longest dead-walk it could possibly have.  The main idea 

behind it is to avoid having order picking sequences with a significant amount of idle 

walk in between.   

The following provides the steps of this heuristic: 

Step 1. Calculate the maximum dead-walk of each sequence by subtracting the 

number of SKUs contained in each sequence from the total number of 
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unassigned Bays on floor, then multiple the result by the frequency of 

the sequence.   

Step 2. Second, sort the sequences by their maximum-dead walk value in 

decreasing order.   

Step 3. Assign the SKUs contained in the highest ranked sequence close to the 

I/O point.   

Step 4. Update the order picking list by eliminating the SKUs which have 

been already assigned and recalculate the maximum dead-walk.   

Step 5. Repeat steps 1-4 until all SKUs have been assigned.   

5. Maximum-Dead Walk Algorithm with replenishment.  The maximum dead-walk heuristic 

presented in the previous section can be slightly modified to include replenishment flows.  

The calculation of the maximum-dead walk for each order picking sequence stays the 

same, however, it is added the maximum restock walk.   

Below are the steps of this heuristic: 

Step 1. Sort the SKUs contained in each order sequence in decreasing order of 

their restock flow.   

Step 2. Assign the highest ranked SKU as far as possible from the I/O point 

and multiple its restock flow by the distance of such storage location 

from the I/O point (which is basically the number of unassigned Bay 

locations).   

Step 3. Repeat step 2 for the next ranked SKU in the sequence and added to 

the result obtained in step 2.  The summation of all the results becomes 

the maximum restock walk. 
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Step 4. Repeat steps 2-3 for all sequences. 

Step 5. For each sequence add the maximum restock walk to the maximum 

dead walk and sort the sequences in decreasing order of their total 

walk. 

Step 6. Assign the SKUs contained in the highest ranked sequence close to the 

I/O point. 

Step 7. Update the order picking list by eliminating the SKUs which have 

been already assigned, and recalculate the maximum dead-walk and 

maximum restock walk for each unassigned sequence. 

Step 8. Repeat steps 5-7 until all SKUs have been assigned 
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CHAPTER 4 

ANALYSIS OF RESULTS 

 

 

The results of the BMILP model for different case scenarios are presented in this Chapter.  An 

analysis is described on the differences in order picking and replenishment distances when the 

assignment of SKUs to locations is both unconstrained and constrained.  Further analysis is 

conducted in order to determine the benefits of integrating replenishment flows in the SKU 

assignment problem.  The BMILP model is also compared to Order Oriented Slotting (OOS) in 

several case studies considering only order picking distances.  Moreover, to validate the quality 

of the results that can be obtained from the proposed model, the BMILP and Integrated Max-

Dead Walk heuristic method are compared to other scientific and popular slotting approaches 

and it is shown that significant savings in distances can be obtained. 

 

4.1 Unconstrained and Constrained Case Study 

 

In practice, it is important to investigate how a new layout with constraints would perform and 

how much better it would perform if such constraints were ignored.  If the savings for an 

unconstrained layout are significantly larger compared to a restricted one, it would provide 

managerial insights that could lead to a relaxation of the layout at the expense of removing such 

constraints. 
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Based on the order picking data given in Table 3.1 and the replenishment flow in Table 

3.2, the BMILP model is solved for several constrained scenarios and then compared to the 

unconstrained results.  Hereafter, we will refer to Table 3.1 and 3.2 as Exercise 3.1.  

 

4.1.1 Unconstrained Scenario 

The solution to Exercise 3.1 using the BMILP model is given in Table 4.1 below and illustrated 

in Figure 4.1.  The value of  used was 0.5, meaning that both order picking and replenishment 

distances have equal weight.   

 

Table 4.1 Unconstrained solution to Exercise 3.1 

 

SKU Assigned to 
Bay

2 1

8 2

3 3

1 4

9 5

7 6

4 7

5 8

6 9

Lower Bound 132.5

Solution Found 132.5

Unconstrained
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Figure 4.1 Illustration of unconstrained layout solution for Exercise 3.1 

 

The solution found for this problem is the optimal since is equal to the lower bound.  

However, it should be pointed out that, because of constant , the solution values are not the 

actual score of the total distances of order picking and replenishment, so they need to be scored 

independently.  Using the SKU assignment solution of BMILP model, it is possible to score the 

total distances incurred in order picking and replenishment by calculating: order picking = 

∑ , and replenishment = ∑ .  The specific results for this solution in distances per 

each activity are shown in Table 4.2 and compared to the original layout.  The original layout 

was based on the simple assignment of SKUs 1,2,3, … ,9  to Bay locations 1,2,3, … ,9 . 
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Table 4.2 Unconstrained distance results for Exercise 3.1 

 

Layout Order Picking Restocking Total Order Picking Restocking Total

Original 165 221 386 ‐ ‐ ‐

BMILP Model 156 109 265 5% 51% 31%

Distances Improvement

 

The results above indicate that with the optimized layout order pickers would travel 156 

Bays to fulfill the whole set of orders, while restockers would travel 109 Bays to replenish all the 

SKUs. This represents an improvement of 5% and 51% over the original picking and restocking 

distances, respectively.  Although the savings in picking distance do not appear to be significant, 

the significant improvements made on the replenishment side helped the overall system to reduce 

31% of its original walk, going from 386 Bays to 265 Bays.   

 

4.1.2 Constrained Scenarios 

To study the unconstrained and constrained layout behavior, several constrained scenarios were 

created based on the three additional constraints discussed in Chapter 3: order sequencing 

constraints, replenishment ranges, and SKU grouping.   

Scenario 1:  Order Picking Sequencing Constrains. 

1. SKU 8 must be picked last a` `t all times because is a soft material. 

2. SKU 6 must be picked before SKU 7 to ensure good box space utilization. 
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Scenario 2:  Replenishment Ranges Constrain. 

3. SKUs 4, 6, and 9 must be stored within the first five Bays because of storage size 

requirements. 

Scenario 3:  Grouping Constrain. 

4. SKUs 2, 5, and 9 must be stored next to each other for diverse reasons, i.e., 

flammable products need to be stored together.  

Scenario 4:  All of the above. 

 

Formulating the above equations we obtain: 

 

9 

 (2) 

 (1) 

 

 9  (3) 1 5                 ;   ∀ 4, 6,

  (4) 2      ;   ∀ 1 

    (4)                     ;   ∀ 2, 5, 9    1

                     ;    2, 5, 9    1  (4) ∀

 

For each scenario, the BMILP formulation was solved with 0.5.  The results of each 

scenario are shown in Table 4.3.   

Analysis of Table 4.3 indicates that at each scenario the assignment of SKUs satisfy the 

constraints (the constrained SKUs are displayed in gray).  As expected, the unconstrained 

scenario allows more significant savings on the total traveling distances than the constrained 

scenarios.  Also, the improvement potential diminishes as more constraints are added to the new 
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layout.  Nevertheless, the difference in the total distance between the most constrained layout 

(scenario 4) and the unconstrained one is 10%, with relatively no difference in the restocking 

distance.  In this case, if the costs of removing the constraints in scenario 4 exceeded the 10% 

savings obtained in walking distances, the implementation of the unconstrained layout would be 

seriously questioned.  For this reason, it is of great value to analyze both constrained and 

unconstrained scenario results and based upon the difference in savings and the cost of removing 

the constraints decide which layout to implement. 
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4.2 BMILP Model Performance Analysis 

 

In this section, the performance of the BMILP model is investigated with respect to other 

assignment methods in the literature.  The BMILP model performance analysis is broken in two 

parts.  First, a comprehensive comparison of the BMILP model with other methods is presented 

from three different layout optimization perspectives: order picking, replenishment, and both 

activities.  Then, the integrated BMILP model is compared to the integrated Max-Dead Walk 

heuristic algorithm described in Chapter 3 in terms of quality of solution and solving time.   

 

4.2.1 Optimizing for Order Picking 

The following alternative assignment methods are to be compared to the BMILP model with 

respect to order picking distance:  

1) COI, by Heskett (1963);  

2) Sequence Popularity;  

3) Labor Efficiency, by Bartholdi and Hackman (2007); 

4) OOS, by Heragu (2007); 

5) Max Delay Algorithm, by Wutthisirisart (2008); and  

6) Max Dead-Walk Algorithm.   

To analyze the differences in the SKU assignment approach among the alternative methods and 

the BMILP model, Table 4.4 presents the assignment results of each method for Exercise 3.1 

compared to its original layout.  For convenience, the order picking sequence Table 3.1 is 

displayed again here. 
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Table 3.1 Order Picking Sequences of Exercise 3.1 

 

Sequence Frequency

1 1 3 6

2 1 2 4 4

3 5 6 7 8 9 4

4 2 8 4

5 7 9 3

6 4 5 6 3

7 2 6 7 8 9 1

8 1 2 7 8 9 1

SKU numbers / Bay Number

 

Table 4.4 Results of assignment methods for Exercise 3.1 

 

Layout Method I/O Point 1 2 3 4 5 6 7 8 9 Order Picking
Improvement from 

total original

Original 1 2 3 4 5 6 7 8 9 165

BMILP                   
(only order picking, α=1)

3 1 4 2 8 7 9 6 5 147 11%

COI 1 2 8 7 9 6 4 5 3 176 ‐7%

Sequence                
Popularity

1 3 2 8 7 9 6 4 5 154 7%

Labor Efficiency 1 6 8 4 7 2 5 9 3 195 ‐18%

OOS 9 7 8 6 5 2 4 1 3 171 ‐4%

Max Delay Algorithm 8 2 1 4 3 7 9 6 5 153 7%

Distances

SKU Assignment

Bay Location

 

Clearly, the most effective layout comes from the BMILP model and the Max Dead-Walk 

Algorithm, with 11% less picking walk distance than the original layout.  The Sequence 

Popularity and Max Delay heuristics appear to be the next best methods with 7% improvement 
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over the original.  The good solution and simplicity of the Sequence Popularity heuristic makes it 

a very good rule of thumb in generating layouts.  Nevertheless, the disadvantage of 

implementing the Sequence Popularity comes when highly frequent sequences contain large 

number of SKUs, and so its SKUs become candidates to be assigned first at the expense of 

increasing the lengths of other next-high frequent sequences.  The BMILP model evaluates both, 

the frequency of the sequences and the number of SKUs contained in them. 

As expected, some of the alternative assignment methods worsen the picking distances of 

the original layout due to the nature of their formulations, which fail to capture the sequencing 

structure of order picking.  Per example, COI and Labor Efficiency assign SKU 1 to the closest 

location to the I/O point, Bay location 1, because of its high demand, while SKU 3 is assigned to 

the farthest Bay Location from the I/O point because of its relatively low demand compared to 

the rest of the SKUs.  In the end, assigning SKUs 1 and 3 far from each other and far from the 

I/O point will increase the order picking distance of sequence 1, which is one of the most 

frequent routes.  OOS does a better job on assigning SKUs 1 and 3 next to each other; however, 

the order picking distance of sequence 1 is increased because both SKUs are assigned at the end 

of the picking aisle.  Contrary to COI, Labor Efficiency, and OOS, the BMILP model seeks to 

reduce the lengths of order picking sequences; this is why SKUs 1 and 3 were assigned close to 

each other and near the I/O point, resulting in advantage for order pickers.   

To validate the findings found above in the performance of each assignment method, a 

set of 4 more case problems, each different sequence and bay sizes, were constructed and solved.  

The case problems were conducted given the assumption of an empty fast pick area.  The results 

of each method are compared to the lower bound (LB), see Table 4.5 and Figure 4.2.  In the 

cases where the BMILP was unable to find the optimal solution, the best feasible solution found 

67 
 



is recorded.  Note that the OOS is removed from this part due to its data structure complexity in 

for large-scale problems, but it is compared later to the BMILP model for a set of smaller size 

cases.  

Observation of Figure 4.2 confirms that for all the case problems the BMILP achieves a 

better result than the rest of the methods.  The BMILP model and the Max Delay Algorithm 

achieve steady results from the LB, oscillating within 20% of the LB.  The most unstable method 

is the Max-Dead Walk algorithm which in the first 4 cases performed within 20% of the LB, but 

in case 5 jumped to almost 40%.  Not much surprisingly, the COI, Labor Efficiency, and 

Sequence Popularity methods reported the highest results. 

For further analysis, the case problems were intentionally constructed with two different 

classes of order picking sequence frequency distributions.  The first class, cases 2 and 4, contains 

frequencies which are not widely distributed, meaning that they are pretty much constant 

throughout the sequence list.  The second class, cases 1, 2, and 3, contains highly distributed 

frequencies.  It can be observed that for the first class of cases, COI, Labor Efficiency, and 

Sequence Popularity obtain decent approximations to the LB, but as the frequencies become 

more spread in the order picking process it is very likely that these methods will lead to higher 

deviations from the LB. 
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4.2.1.1 BMILP model versus Order Orienting Slotting 

Considering that OOS is the most order picking sequence oriented model among the rest 

of the alternative assignment methods, the BMILP model is compared to it.  The purpose of this 

comparison is to validate the ability of the BMILP model itself to find the optimal solution that 

globally minimizes the order picking distances in a fast pick area.  Thus, 6 short problems of less 

than 10 SKUs were constructed to guarantee optimal solutions for both methods.  Their optimal 

solutions are compared in Table 4.6. 

 

Table 4.6 Comparison of optimal solutions between OOS and the BMILP model. 

 

Case Sequences Bays OOS Model % Difference

1 8 9 171 147 14%

2 10 10 287 267 7%

3 10 10 358 318 11%

4 10 10 413 406 2%

5 10 10 419 406 3%

6 10 10 324 305 6%

Average 7%

Picking DistanceProblem Size

 

Per the table above, in all instances the BMILP obtained a better solution than the OOS; 

an average of 7% improvement from the OOS solution.  These results indicate that the 

formulation of the BMILP model assigns SKUs in the fast picking area in a better way than 

OOS.  Therefore, it is concluded that the BMILP model is more representative of the problem 

structure in fast picking areas than that approximated by OOS. 
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4.2.2 Integration Analysis 

As we have learned, previous research has mostly focused in reducing costs from a myopic 

perspective, either analyzing the flows from order picking or restocking.  Here, the importance of 

integrating these two different, but, very connected activities is demonstrated, and it is shown 

that additional savings can be obtained from such integration. 

In section 4.2.1, Exercise 3.1 was solved with respect to order picking flows ignoring the 

replenishment flow that occurs in the fast picking area.  Such an approach attempts to benefit the 

order picking distances; however, it is unknown how this approach impacts the replenishment 

distances and, therefore, the total distances of the fast pick area if both were considered.  In order 

to answer this question, Table 4.7 presents the results previously reported in Table 4.4 with the 

inclusion of the scores of the replenishment distances for each assignment method.  In addition, 

the integrated methods: integrated BMILP model and integrated Max Dead Walk algorithm are 

evaluated for this exercise as well.  Also, the results of the BMILP model considering only 

restocking is presented. 

The integrated BMILP model was solved to optimality for Exercise 3.1.  Clearly, it can 

be seen that the results for the overall distances obtained in the Integrated BMILP outperforms 

the rest of the models.  This is achieved because there is a substantial improvement in the 

replenishment distances which the other methods were unable to capture, except for the BMILP 

model based on restocking ( 0), which, as expected, significantly reduced the restocking 

distances at the cost of substantially increasing the picking distances. 
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4.2.2.1 Integration Benefits 

From Table 4.7, it can be concluded that additional savings can be obtained in the overall 

distances of the fast pick area if order picking and replenishment flows are taken into 

consideration for the SKU assignment problem.  However, it remains unknown if this statement 

will be true for all cases.  For this reason, an integration sensitivity analysis is performed for the 

same 5 cases presented in Table 4.5.  For each case, the BMILP is solved for 1, when 

replenishment is not integrated; and for 0.5 when both activities are integrated.  The results 

are presented in Table 4.8.   

The Integrated BMILP model was only able to find the optimal solution of cases 1 and 2, 

for the rest of the cases the best feasible solution was recorded along with the lower bound 

found.  According to Table 4.8, the integrated approach generates an average of 4% additional 

savings in the overall distances incurred in the fast picking area for all cases.  In case 3 the 

Integrated BMILP model presents a -0.2% deficit compared to the non-integrated approach.  

Nevertheless, for the cases in which the Integrated BMILP model did not find the optimal 

solution, the lower bounds found shows that there could be potential room for improvement.   

Moreover, the potential additional savings that could be obtained by the Integrated 

BMILP depend upon the nature of the fast picking area under study.  If the replenishment flow is 

close or higher than the order picking flow, it would be expected that more significant savings 

would be obtained using the integrated approach.  Per example, in case 2 and 4, the 

replenishment walk distance is higher than the order picking walk distance for the non-integrated 

BMILP model and, therefore, the overall walking distance figures an improvement when solved 

in the integrated approach. 
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4.2.2.2 Integrated BMILP model versus Integrated Max Dead-Walk Heuristic 

As it was discussed in the previous section, the Integrated BMILP model was only able to 

find a feasible solution for large problems over 26 SKUs.  Due to the discrete integer linear 

formulation of the BMILP model, it becomes evident that for larger problems one has to resort to 

heuristics to approximate the solution to the LB in reasonable computation time.   

In this section, the Integrated BMILP model and the Integrated Max-Dead Walk 

Heuristic are compared with respect to their computation time and the quality of the solutions 

obtained with respect to the LB.  Table 4.9 summarizes the comparison of results for each case 

problem.   

As expected, the solution time for the heuristic is significantly less compared to the 

Integrated BMILP model; it required less than a second to solve each case.  This gives the 

heuristic the advantage of being able to solve real case problems with thousands of SKUs.  

However, the quality of the solution obtained by the heuristic deviates farther from the LB as the 

problem size increases, reducing the accuracy of the SKU assignment to properly minimize the 

picking and restocking distances.  The need for faster and more accurate heuristics is further 

discussed in Chapter 5. 
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4.3 Sensitivity Analysis 
 

The problem structure presents three important factors: 

A. Number of SKUs 

B. Number of sequences 

C. Frequency distribution of orders 

In this section, a sensitivity analysis is performed on these factors, A, B and C, to determine in 

which way they are significant to the BMILP model computation time.  For the sensitivity run, 

the factors were combined into high and low levels as follows: 

• High A, High B, High C 

• High A, High B, Low C 

• Low A, High B, High C 

• Low A, High B, Low C 

The result of the sensitivity run with the above combination of factors is displayed in Figure 4.3.  

In the Figure, the x-axis indicates the problem size solved; it represents number of SKUs when 

solved for High A combinations, or number of Sequences when solved for Low A combinations.  

In the case where the problem was not solved to optimality in a reasonable amount of time or 

because the solution did not improve after 5 minutes, the best solution was recorded along with 

its deviation percent from the LB found.  

According to the results it can be observed that the combinations with Low A do not 

appear to be significant in the computation time.  Thus, it is relatively fast to solve the SKU 

assignment problem when the problem structure contains very few SKUs.  However, when the 
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level of A is high there is a significant increase in the computation time.  And if combined with 

high levels of C, the computation time increases even more than with low levels of C.   

From the sensitivity of analysis it can be concluded that the problem structure becomes 

complex when all of the described factors above are at high levels, meaning large number of 

SKUs and order sequences, and a disperse distribution in the frequency of orders.  In such case, 

it is expected that the computation time will present an exponential growth.  

When solving an SKU assignment problem with large number of SKUs (over 100), a 

relaxation to the problem would be to create groups or zones of SKUs in order to reduce the 

number of variables and achieve approximate solutions in less computation time. 
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Figure 4.3 Significance of factors in the BMILP model’s computation time. 
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CHAPTER 5 

CONLUSIONS AND FUTURE RESEARCH 

 

 

5.1 Research Summary 

 

Order picking and replenishment in a fast picking area are the most labor-intensive and costly 

activities of any DC, as traveling accounts for up to 50% of the total labor time.  Therefore, this 

research focused on SKU slotting planning, also known as the assignment problem, to optimize 

travel distances.  The previous SKU assignment literature has primarily focused on the 

assignment of SKUs from an order picking perspective.  A critical observation of previous 

assignment methods such as COI, Labor Efficiency, QAP, and Correlated Assignment reveals 

that they fail to capture the sequencing structure of order pickers in ordinary fast picking 

operations.  The most relevant assignment strategy with respect to order sequencing is OOS, 

however, it was found that it does not work well when SKUs are picked in different orders is 

common practice.  In addition, replenishment has not been integrated in the SKU assignment 

problem; instead, it has been formulated separately to minimize the number of restocks and the 

traveling involved from bulk warehouse to the fast pick area. 

Therefore, based on the observation that the SKU assignment for items in manual 

sequenced order-picking is a relatively new warehousing application, and that replenishment has 

not yet been considered in the slotting planning, this research developed a SKU assignment 
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model that is able to minimize the walking distances of order pickers and restockers in a fast 

picking area by capturing the sequencing factors of the order picking process.   

In this research, the integrated SKU assignment problem was formulated as a 

mathematical Binary Mixed Integer Linear Programming (BMILP) model for the S-shaped 

routing policy.  The BMILP model was successfully solved using the LINGO solver.  It was 

observed that the BMILP model runs in non-polynomial time.   

To analyze the performance of the BMILP model, it was tested against previous 

assignment models and several heuristics on a series of case problems.  The performance 

analysis was broken in two parts: first, a comprehensive comparison based on optimization for 

order picking; second, a comparison of the differences between an integrated and a non-

integrated BMILP model.  In the first part, the BMILP model outperformed the rest of the 

methods and achieved results within 20% of the lower bound (LB).  For the second part, the 

integrated BMILP achieved, on average, better results than the non-integrated BMILP.  To 

validate the optimality of the BMILP formulation, the BMILP model was compared to the OOS 

for several small cases.   

Finally, the Max Dead Walk Algorithm was tested against the Integrated BMILP model 

to compare the differences in the computation time and the quality of the solution.  It was 

observed that the Max Dead Walk heuristic required less computation time, but the quality of the 

solutions deviated from the LB as the problem size increased. 
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5.2 Conclusions 

 

According to the run time analysis conducted on the BMILP model, it is concluded that the 

model runs in non-polynomial time, since the computation time increases exponentially as the 

problem size increases.  The BMILP model was able to solve to optimality small size problems 

with less than 30 SKUs, for problem sizes of less than 150 SKUs it could only obtain a feasible 

solution after 5 minutes of no improvement in the solution, and for problems higher than 150 

SKUs the model could not reach a feasible solution in a reasonable amount of time.  The limits 

of the Integrated BMILP model become evident in this regard, thus, the need to develop fast and 

accurate heuristics is of great importance in order to solve large realistic size problems that 

involve thousands of SKUs and hundreds of different sequences.   

From the series of case problems analyzed, it was evident that the integrated BMILP 

model assigns SKUs in a more accurate way such that the distances involved in order picking 

and restocking are minimized.  The solutions obtained by the BMILP model delivered less 

walking distance compared to the rest of the methods tested.  This is partially obtained because 

the formulation of the BMILP model attempts to reduce the route lengths of each order, which 

make more sense to order pickers; as opposed to other practical methods that formulate the 

assignment either on a SKU turnover or correlation basis without looking at the order content.   

The validation of the optimality of the BMILP model was confirmed after comparing it to 

OOS.  The solutions of the BMILP model reached lesser values than the OOS.  This means that 

the solution approach formulated by the BMILP model is more appropriate for the structure we 

are addressing. 
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The integration analysis proved the importance of integrating order picking and 

replenishment in the SKU assignment problem.  From the series of case problems, the Integrated 

BMILP model obtained additional savings in the overall distance, 4% on average.  This is 

achieved because the Integrated Model substantially reduces the restocking distances involved 

which a non-integrated approach would ignore.  Moreover, it is concluded that the potential 

additional savings that could be obtained by the Integrated BMILP model vary depending on the 

replenishment flow of the problem.  If the replenishment flow is low, it is apparent that an 

integration approach would not substantially improve the overall distance; but if the 

replenishment flow is high, more significant savings in the overall distances are likely to be 

obtained. 

In terms of heuristics, the Integrated Max Dead Walk Algorithm experiences results close 

to the LB for small size problems, but increasingly deviates from it when the problem size 

increases.  For problems with just order picking, the Max Delay Algorithm appears to be a 

promising tool for the SKU assignment problem.  Its solutions constantly fell within 20% of the 

LB for each of the problem sizes tested, which makes it a tool worth testing in larger 

environments.  

 

5.3 Future Research  

 

In the future, some of the important aspects of multi-aisles fast picking areas that should be 

included within the BMILP model are:  

1. The ability to capture return distances to the I/O point after an order is fulfilled 

2. Consideration of separate replenishment I/O points per replenishment aisles 
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With respect to point a) it can be seen that as a picker enters a picking aisle, where the S-

shaped route flow goes in the direction to the I/O point, the SKU at the end of the aisle is 

actually the closest to the I/O point at a given return.  In this regard, it would be interesting to see 

the impact of penalizing the assignment of SKUs far from the I/O point.  With respect to b), the 

modeling of automated replenishment systems, i.e. divert conveyors, could be achieved.   

Another aspect to explore in the SKU assignment problem is the case of dynamic 

relayout with reprofiles.  As it is well known in DCs, the demands of SKUs fluctuates over time, 

so a given layout might not be accurate for later times when orders tend to visit other SKUs more 

frequently than they did before.  The extension of the BMILP model to a dynamic relayout could 

then study the cost-benefit of reprofiliing versus keeping the same layout.  In this same direction, 

considering that relayouts in a fast pick area are costly and very time consuming, the 

development of a SKU assignment model that optimizes walking distances with minimum SKU 

movement would definitely be a very practical tool for existing DCs. 
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APPENDIX 

 

 

A1. Tables of Case Studies for Performance Analysis 
 

Table A.1 Problem structure for 20 Sequences – 26 SKUs. 

 

Sequence Frequency
1 20 56 303
2 48 49 53 14
3 21 40 6
4 20 22 56 5
5 18 30 4
6 20 21 56 4
7 20 21 22 56 4
8 3 11 19 38 4
9 2 35 3

10 4 36 3
11 23 58 3
12 20 56 58 3
13 20 51 56 3
14 20 56 61 3
15 30 39 2
16 30 38 2
17 10 35 2
18 2 30 2
19 31 33 2
20 3 39 2

SKUs
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Table A.2 Problem structure for 30 Sequences – 44 SKUs. 

Sequence Frequency
1 13 40 20
2 35 36 39 17
3 14 33 15
4 13 15 40 30
5 11 23 12
6 13 14 40 25
7 13 14 15 40
8 2 6 12 31
9 1 28
10 3 29 10
11 16 41 15
12 13 40 41 8
13 13 38 40 26
14 13 40 43 5
15 23 32 23
16 23 31 9
17 5 28 12
18 1 23 36
19 24 26 21
20 2 32 12
21 35 37 39 24
22 10 13 40 19
23 17 21 22 24 35
24 13 14 16 34 48
25 2 27 30 32
26 14 15 19 40 14
27 11 20 25 30 27
28 14 15 19 40 42 45
29 4 7 8 9 18 32
30 13 40 44 13

SKUs

 

33
40
5

23

50
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Table A.3 Problem structure for 60 Sequences – 65 SKUs. 

 

Sequence Frequency
1 20 56
2 48 49 53
3 21 40
4 20 22 56
5 18 30
6 20 21 56
7 20 21 22 56
8 3 11 19 38 4
9 2 35
10 4 36 3
11 23 58 3
12 20 56 58 3
13 20 51 56 3
14 20 56 62 3
15 30 39 2
16 30 38 2
17 10 35 2
18 2 30 2
19 31 33 2
20 3 39 2
21 22 44 2
22 29 39 2
23 6 17 2
24 20 65 2
25 32 39 2
26 20 57 2
27 41 51 2
28 21 48 2
29 8 57 2
30 1 39 2
31 29 31 2
32 20 56 64 2
33 20 56 63 2
34 15 20 56 2
35 20 41 56 2
36 20 46 56 2
37 44 45 54 2
38 43 47 52 2
39 21 22 41 2
40 7 20 56
41 20 56 59 2
42 9 20 56
43 21 23 55 2
44 48 50 53 2
45 16 20 56 2
46 24 28 29 31 2
47 20 21 23 44 2
48 3 34 37 39
49 21 22 26 56 2
50 18 27 32 37 2
51 21 22 26 56 60 2
52 5 12 13 14 25 39
53 42 65 1
54 22 65 1
55 56 61 1
56 3 27 1
57 3 38 1
58 2 39 1
59 22 59 1
60 22 52 1

SKUs
303
14
6
5
4
4
4

3

2

2

2

2
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Table A.3 Problem structure for 50 Sequences – 91 SKUs. 

Sequence Frequency

1 7 33 30

2 36 37 39 68 20

3 36 89 17

4 5 24 25 27 45 62 15

5 59 62 30

6 36 83 12

7 65 74 25

8 2 60 61 62 33

9 37 38 47 81 40

10 67 69 75 5

11 37 70 10

12 37 38 65 15

13 9 36 81 8

14 34 52 59 61 26

15 36 81 85 5

16 17 36 81 23

17 11 83 9

18 37 39 80 12

19 70 72 76 36

20 1 62 21

21 32 36 81 12

22 53 58 24

23 36 80 89 90 19

24 12 66 82 35

25 11 40 63 81 82 48

26 14 17 71 79 80 23

27 66 89 14

28 4 15 19 36 37 38 80 27

29 36 37 38 40 80 81 82 89 45

30 36 37 38 66 77 79 80 81 50

31 38 89 13

32 37 38 74 82 85 87 89 90 53

33 36 37 40 79 80 86

34 4 17 66 77 78 87 14

35 20 77 78 85 89 69

36 4 10 11 13 17 18 37 38 40 79 80 82 89 70

37 4 6 16 36 38 39 10

38 36 40 66 80 82 8

39 17 36 66 73 80 82 83

40 4 6 7 9 18 32 36 37 70 80 83 84 85 89 6

41 1 2 35 70

42 36 37 38 66 77 78 81 87 89 72

43 4 17 18 20 77 78 80 81 82 86 88 90 10

44 17 36 77 79 89 94

45 21 22 23 82 8

46 4 11 20 38 71 85 59

47 3 8 26 28 29 30 31 34 41 42 43 44 46 48 49 50 51 54 55 56 57 87

48 4 11 17 20 37 40 21

49 40 64 79 81 29

50 37 77 85 86 91 34

SKUs

90 
 



Table A.4 Case 1 for BMILP model vs OOS. 

 

Sequence SKUs Frequency
1 1 3 2
2 4 5 6 8
3 1 4 6
4 7 9 10 3
5 1 5 3
6 5 6 8 7
7 2 4 6 8 9
8 1 3 5 7 4
9 1 10 5
10 3 6 1

 

Table A.5 Case 2 for BMILP model vs OOS. 

 

Sequence Frequency
1 7 10 6
2 4 8 9 5
3 1 5 10 8
4 2 6 8 9
5 4 7
6 3 9
7 7 9
8 1 2 3 4
9 2 6 7
10 2 3 3

SKUs

6
5
1
3
9
3

 

Table A.6 Case 3 for BMILP model vs OOS. 

Sequence Frequency
1 5 7 9
2 1 3 4
3 1 2 4 5
4 3 4 6 7
5 2 3 7 9
6 4 6 9 10
7 2 3 7 8
8 4 5 6 9 10
9 3 4 5 7 8 10
10 1 4 8 4

SKUs

  

6
1
8
3
5
5
9
8
5
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Table A.7 Case 4 for BMILP model vs OOS. 
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Sequence Frequency
1 1 5 3
2 5 6 8 7
3 2 4 6 8 9
4 1 3 5 7 4
5 1 10 5
6 3 6 1
7 4 6 9 10
8 2 3 7 8
9 4 5 6 9 10
10 3 4 5 7 8 10

SKUs

5
9
8
5

 

Table A.8 Case 4 for BMILP model vs OOS. 

Sequence Frequency
1 3 9
2 7 10
3 1 2
4 5 6
5 2 3
6 5 7 8
7 1 3 4
8 1 2 4 5
9 3 4 6 7
10 2 3 7 9 10

SKUs
1
3
6
3
3
6
2
8
5
10
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