

Targeting Tick-Pathogen-Host Interactions

Why are Tick-Borne Diseases Important?

- Ticks transmit the majority of vector-borne pathogens to humans in the USA and to domestic animals worldwide
- Four of five major bovine vector-borne diseases are tick-borne

Cattle Worldwide		
Disease	Etiologic Agent	Vector
Nagana	Trypanosoma brucei	Tsetse Flies (Glossina spp.)
East Coast Fever	Theileria parva	Rhipicephalus spp
Redwater	Babesia bigemina, B. bovis	Rhipicephalus (Boophilus) spp.
Heartwater	Ehrlichia (Cowdria) ruminantium	Amblyomma spp.
Anaplasmosis	Anaplasma marginale	Rhipicephalinae &

Tick-borne Zoonoses in the USA

Etiologic Agent

Borrelia burgdorfer

Rickettsia rickettsii

Ehrlichia chaffeensis

Anaplasma

phagocytophilum

E. ewingii

Vector

Dermacentor spp

Amblyomma

Ixodes spp.

Ixodes son

- Human tick-borne diseases are zoonotic
 - Most zoonotic tick-borne pathogens infect dogs
 - Ticks that parasitize humans also parasitize dogs
 - Dogs have several potential roles in the investigation of tick-borne-zoonoses
 - o Models
 - o Sentinels
 - o Reservoirs
- Six of the tick-borne diseases tabulated above are caused by bacteria classified in the order Rickettsiales

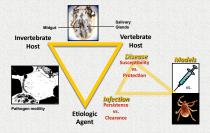
Disease

Rocky Mountain spotted fever

Human

Human Monocytic

Anaplasmosis


Human Granulocytic Ehrlichiosis

Human Babesiosis

- · Five of these rickettsial diseases are enzootic to Missouri
- · Bacteria classified in the Order Rickettsiales are:
 - o Obligate intracellular parasites (analogous to viruses)
 - o Utilize an invertebrate host at some point in their life cycles
 - o Divided into families Rickettsiaceae and Anaplasmataceae
 - ✓ Rickettsiaceae are free in the host cell cytoplasm
 - ✓ Anaplasmataceae reside within a parasitophorous vacuole

Our Interests

- Mechanisms affecting rickettsial infection of acarine and mammalian hosts
- · Manipulation of host cell actin
- · Interference with tick acquisition and transmission of infections
- Immunology and pathology of anaplasmosis and ehrlichiosis
- · Immune responses associated with ehrlichiosis
- Influence of vector feeding on outcomes of infection
- · Immunoprophylaxis of clinical disease
- · latrogenic risk factors for exacerbation of clinical disease

Our Capabilities

- Tick feeding and pathogen transmission with large animal models
 - Canine
 - Bovine
- Large animal disease models
 - Anaplasmosis
- Ehrlichiosis
- PCR assay development and implementation
- Immunological, proteomic, cellular and molecular biological methods to identify vaccine candidate antigens

Our Facilities

- Colleges of Medicine, Veterinary Medicine and Agriculture on the same campus, including MU Veterinary Medical Diagnostic Lab
- BSL2 facilities to investigate tick-pathogen-host interactions
- BSL3 facilities are planned for work with tick-pathogen-host interactions (e.g., with Rickettsia rickettsii, Coxiella burnetii and Francisella tularensis)
- Access to graduate programs at MU
- Pathobiology Area Program
- Joint Program in Veterinary Pathobiology/Molecular Microbiology and Immunology
- Comparative Medicine and Pathology Residents
- Access to international collaborations for affordable projects involving food and companion animal populations