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ABSTRACT

I present a lexicographic, threshold-based model of choice used to evaluate decision

makers’ preferences among risky alternatives. Using a hierarchical Bayesian frame-

work, this model is able to account for observed individual differences by allowing for

variable threshold values in attribute features, as well as the order that individuals

consider attributes of the choice alternatives. Performance of the model is evaluated

via a parameter recovery test using simulated data. I also apply the model to the

choice data from a decision-making-under-risk experiment (Davis-Stober, Brown &

Cavagnaro, 2015). Bayesian p-values are obtained to check the model fits for every

individual, and sensitivity analysis is carried out to measure the degree to which

choices of prior distributions affect the results. Finally, I discuss the implications of

the Bayesian hierarchical model of lexicographic choice I present in this paper.
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Chapter 1

Introduction

Multi-attribute problems require people to integrate multiple pieces of information

into their decisions. Such problems require decision makers (DMs) to consider more

than one aspect of each alternative. How DMs process this information to form pref-

erences has been a fundamental issue in decision making research. Decision making

researchers have proposed various models to address this issue, including rational

models (e.g., Weighted additive model; Payne, Bettman, & Johnson, 1993) as well

as heuristic models (e.g., Take the best model; Gigerenzer, Hoffrage, & Kleinbolting,

1991). Rational models are considered compensatory or optimal because they uti-

lize all relevant pieces of information to arrive at a decision. Heuristic models, on

the other hand, are usually considered non-compensatory, thus sub-optimal or even

irrational, because they utilize just a part of the available information to arrive at

a decision. For example, when deciding where to move to, you may consider only

the quality of the neighborhood. When deciding what university to enter, you may

decide solely on the basis of whether or not you received a scholarship. Many studies

have shown that heuristic models often describe people’s behavior better than ratio-

nal models (Payne, Bettman, & Johnson, 1988; Payne et al., 1993; Gigerenzer, Todd,

& the ABC Research Group, 1999).
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Indeed, heuristic models have a number of advantages over rational models in

accounting for human decision-making. As Shah and Oppenheimer (2008) argued,

all heuristic models can be recast into an effort-reduction framework. While rational

models require great mental effort, people only have a limited processing capacity.

They argued that all heuristics are intended to help people reduce such mental effort

by relying on one or more of the following methods: 1) examining fewer cues, 2) reduc-

ing the difficulty associated with retrieving and storing cue values, 3) simplifying the

weighting principles for cues, 4) integrating less information, and 5) examining fewer

alternatives. Many decision making researchers consider heuristics as an adaptive

way for humans to make decisions (Goldstein & Gigerenzer, 2002).

One of the most well-known heuristics is a lexicographic heuristic (Tversky, 1969,

1972). Lexicographic heuristics describe a decision process that resembles the way

that a dictionary orders words over letters. That is, a DM processes attributes of

alternatives one at a time in order of importance, and stops considering subsequent

attributes if the current attribute sufficiently distinguishes the alternatives. This

simple, yet strong decision process, is supported by empirical evidence (Drolet &

Luce, 2004; Buchanan, 1994; Ford, Schmitt, Schechtman, Hults, & Doherty, 1989),

and many researchers in the past have mathematically modeled this process (Yee,

Dahan, Hauser, & Orlin, 2007; Kohli & Jedidi, 2007). Most of the models were

developed under the framework of maximizing the utility of alternatives, which does

not describe actual DMs’ decision-making processes. This paper thus aims to present

a process model of lexicographic heuristics.

1.1 Lexicographic heuristic

As described above, lexicographic heuristics refer to the decision process that a DM

considers only one attribute at a time. If there is a tie, she moves on to the second
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attribute, and so forth. Imagine a person who is buying a used car. There might be

numerous factors that need to be considered, but suppose that only price and mileage

of the car matter to this person. A lexicographic rule assumes that she processes only

one piece of information at a time in her own order. If the price of the car came to

her mind first, the mileage information wouldn’t play any role while the price is under

her consideration. Only when she finds the prices equal between the alternatives, the

mileage starts to come into consideration. This example illustrates two aspects of

the lexicographic heuristic as a non-compensatory strategy: 1) While one attribute

is under consideration, the other attribute has no way to come into the agent’s mind,

and 2) if the first attribute of one alternative dominates that of the other alternative,

there is no way for other attributes to compensate for it.

Due to the non-compensatory property, lexicographic heuristics can be utilized

when DMs want to avoid tradeoffs. Typically, people don’t want to tradeoff between

complex choices, or too many choices. For example, Perry (1991) argues that the

justices of the US Supreme Court select cases using lexicographic rules. In this case,

the selection of cases offer too many choices, so they use lexicographic rules to simplify

them. Also, Kohli and Jedidi (2007) and Yee and his colleagues (2007) report that a

substantial portion of their participants used lexicographic rules to evaluate personal

computers and smart phones, which have many attributes to consider. Even when

tradeoffs are not difficult to make, there is much evidence that people use lexicographic

rules. Tversky, Sattah, and Slovic (1988) argue that people use lexicographic rules

on decision tasks where alternatives have two attributes. Slovic (1975) reports that

people use lexicographic rules to break ties among equally-valued alternatives. And

more evidence can be found in consumer research (see e.g., Colman & Stirk, 1999;

Dhar & Nowlis, 1999; Roedder-John, 1999; Gonzalez-Vallejo, Bonazzi, & Shapiro,

1996).

There have been many attempts to mathematically model lexicographic heuris-
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tics. For example, Kohli and Jedidi (2007) propose an algorithm for identifying lexico-

graphic rules. They characterize the necessary and sufficient conditions under which a

linear model represents lexicographic preferences. They then derive a utility function

that corresponds to lexicographic preferences under some constraints. With this al-

gorithm, they were able to confirm that about two thirds of participants use any type

of lexicographic rules to choose personal laptops. More recently, Davis-Stober (2012)

suggests a lexicographic random preference model (see also, Davis-Stober, Brown, &

Cavagnaro, 2015). This model allows DMs to change their preferences so long as they

always use lexicographic rules in making decisions. Although the model is general

in that it allows for any changes in lexicographic preferences, it is still parsimonious

enough to be testable against empirical data. These previous approaches, however, do

not need to address the actual processes of how DMs arrive at their decisions. Such

as which order a particular DM used in her making decisions, and what threshold

values this DM used to evaluate the various alternatives. This information is essential

when we describe how DMs actually make decisions.

To this end, I present a lexicographic, threshold-based model. This model is

a process model that naturally describes how lexicographic rules work in making

decisions. Let’s consider the car example above. When describing how the person

arrives at her purchase on cars, it is necessary to know the following: 1) whether the

person considers price or mileage the most important attribute and 2) the thresholds

for a particular attribute that are similar enough to one another that the person

would not be able to distinguish between the options on the basis of this attribute.

For example, suppose that the person is considering three different cars: Car 1 costs

$8,000 and has 60,000 miles, Car 2 costs $10,000 and has 30,000 miles, and Car 3

costs $8,500 and has 45,000 miles (see Figure 1). Assume that the person prioritizes

price over mileage, and the cars that differ in price $1,000 or less are not significant

enough to affect this person’s decision. When price is under consideration, Car 2 is
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< Car 1 > < Car 3 >< Car 2 >

$ 8,000
60,000 miles

$ 8,500
45,000 miles

$ 10,000
30,000 miles

Price:
Mileage:

Figure 1.1: Car example

more expensive than Car 1 by more than $1,000. Thus, Car 2 would be eliminated

from the consideration. Because Car 1 and Car 3 are indistinguishable in price, the

person will now move on to mileage. Assume that cars that differ 10,000 miles or less

are similar enough that the person would not distinguish between them. Considering

the remaining cars (i.e., Car 1 vs. Car 3), Car 3 has less mileage than Car 1 does by

more than 10,000 miles. Therefore, the person would end up choosing Car 3. This

method allows the model to account for DMs’ decision-making processes.

Hence, the current model emphasizes the following points: 1) The model is able

to estimate the order and threshold for every individual DM, which allows us to

have a complete profile for each DM with regard to lexicographic rules and thus

leads to better understanding of how they arrive at their decisions, 2) By comparing

one’s profile to one another, we are able to tell individual differences in applying

lexicographic rules, and 3) From the profiles for every DM, we are able to predict

ones’ future choices.
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Chapter 2

Model

2.1 Psychological process of the model

Suppose that there are two alternatives to choose from and each has two attributes

to consider. Let A = (a1, a2) be alternative A with the two attributes, a1 and a2, and

let B = (b1, b2) be alternative B with the two attributes, b1 and b2. Imagine a decision

maker (DM) who considers choosing one among the two alternatives and follows the

lexicographic rule. This DM would then compare one attribute at a time in her own

order. There are two orders in which she can compare attributes: the first attribute

(i.e., a1 vs. b1) then the second (i.e., a2 vs. b2) or the second attribute then the first.

Once the order is decided, she would start comparing the attributes in that order.

Let’s for now assume that she prioritizes the first attribute (i.e., a1 for A and b1 for B)

over the second (i.e., a2 for A and b2 for B). She would then compare a1 to b1 first. She

moves on to the next attribute only if she finds alternatives equal with regard to the

first attribute. Let τ1 denote her threshold for the first attribute that distinguishes

between alternatives. If |a1 − b1| > τ1, then she prefers the one that favors the first

attribute. Otherwise, she would move on to the second attribute and start comparing
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it. Suppose that the first attribute doesn’t help her distinguish alternatives and that

now the second attribute comes to her consideration. If τ2 is her threshold for the

second attribute, then she prefers the one that favors the second attribute only if

|a2 − b2| > τ2. She would end up being indifferent between alternatives otherwise,

because there are only two attributes to consider. The decision process described

here explains how the lexicographic rule works in making a preference in binary

choice tasks. It can be formally represented as follows:

L(A,B | τ , O) =


1, if A is preferred

2, if B is preferred

3, if indifferent

where L denotes a lexicographic preference, which refers to a preference made by the

lexicographic rule. The lexicographic preference is a function of attributes, A and

B, conditional on the threshold parameter, τ = (τ1, τ2), and the order parameter,

O, in which a DM compares attributes. The current model assumes that the order

parameter is a random variable that has the following probability distribution:

O ∼ Bernoulli(π),

where π corresponds to the probability that a DM chooses the first order (i.e., the

first attribute then the second), which implies the probability of choosing the second

order (i.e., the second attribute then the first) equals 1− π.

Even though she came to a preference between alternatives using the lexicographic

rule, however, there is still a chance that she chooses different alternative than the one

indicated by the lexicographic preference. She might want to change her mind and use

a different decision rule that leads to a different choice. Or she simply made a mistake

on executing the lexicographic rule correctly. The model thus assumes uncertainty
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on the behavior level, where she has a chance to choose different alternative. It

is formalized into the model as error parameter, ε, that accounts for all kinds of

uncertainty that could occur on the behavior level. By including this parameter in

the model, the lexicographic rule can be tested against empirical data. Note that the

lexicographic preference, L, itself is a deterministic function. Given O and τ , there is

no variability in L. The error parameter, ε, is the one that makes the lexicographic

preference testable. More specifically, observed choices are assumed to arise from a

multinomial distribution with probabilities disturbed by the error parameter, ε:

y | L ∼ Multinomial(P),

P =


(1− ε, ε

2
, ε
2
), if L = 1

( ε
2
, 1− ε, ε

2
), if L = 2

( ε
2
, ε
2
, 1− ε), if L = 3

where y is an observed choice taking values of either 1, 2, or 3, corresponding to

A, B, or indifference between the two alternatives, respectively, conditional on the

lexicographic preference, L.

Hence, the goal of the model specification described above is to estimate latent

parameters responsible for observed choices: the probability of choosing the first

order, π, and threshold parameters, τ . To estimate them, I will employ Bayesian ap-

proaches. Bayesian approaches have recently received significant amount of attention

because of the computational advances in Markov chain Monte Carlo (MCMC). This

approach needs to specify prior distributions to estimate the model, however. In the

following section, I first extend the model into more general cases and then suggest

prior distributions for the extended model.
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2.2 Model extension

In the previous section, the model considered only about a simple case, where one

DM makes a decision on one task. Now we extend the model into more general case

in which there are multiple DMs and multiple tasks to make a decision on. The

number of alternatives under comparison and the number of attributes, however, will

still remain same throughout the paper as it is not trivial to generalize them beyond

two. Hence, the current model can only deal with ternary choices (i.e., A, B, and

indifference between two alternatives) and two attributes.

Suppose that there are n DMs, i = 1, . . . , n, and m tasks, j = 1, . . . ,m. Then

each DM is supposed to make a series of decisions on m tasks. In the course of

making decisions, the order in which the DM considers attributes and the thresholds

for each attribute are fixed same. That is, a DM is assumed to apply the same

order and thresholds to every task she has to make a decision on. The estimate of

the probability of choosing the first order, π, will then reflect how much the order

parameter vary by across DMs. If Oi denotes the order for the ith subject, then we

have:

Oi ∼ Bernoulli(π), i = 1, . . . , n,

As explained above, thresholds are also fixed the same across m tasks, and every

DM has their own thresholds for each attribute. Let τi be a vector of thresholds

for the ith DM, which consists of the ith DM’s thresholds for the first attribute, τ1,i,

and the second attribute, τ2,i (i.e., τi = (τ1,i, τ2,i)). Putting the order parameter and

thresholds together, we have:

L(Aj,Bj | τi, Oi) =


1, if A is preferred

2, if B is preferred

3, if indifferent

9



where Aj and Bj correspond to a pair of alternatives presented on the jth task.

Once the lexicographic preference is decided, a DM would choose alternative in-

dicated by the lexicographic preference. But the model assumes uncertainty on the

behavioral level as described in the previous section. Let εi be error that could occur

on the behavioral level of the ith subject. If yij denotes the choice made by the ith

subject on the jth task, then we have:

yij | L ∼ Multinomial(Pij),

Pij =


(1− εi, εi2 ,

εi
2

), if L = 1

( εi
2
, 1− εi, εi2 ), if L = 2

( εi
2
, εi
2
, 1− εi), if L = 3

2.3 Priors

Bayesian approaches need priors to estimate a model. The model above involves free

parameters to be estimated: π, and τ1,i, τ2,i, and εi for the ith person, i = 1, . . . , n. So

we need to specify prior distributions for each of them. First, for π, a conjugate prior

was utilized to make computation efficient:

π ∼ Uniform(0, 1),

For τ1,i and τ2,i, a hierarchical structure of priors has been employed. What de-

termines a hierarchical structure is whether priors have its own priors. By having

a hierarchical structure of priors, the model is able to estimate the parameters for

each individual participant that reflects group-level information as well. A hierar-

chical structure of priors thus accounts for both similarities and differences between

individuals (e.g., Lee, 2006; Rouder & Lu, 2005; Nilsson, Rieskamp, & Wagenmak-
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ers, 2011). It also makes the estimates more reliable. In this model, τ1,i and τ2,i

independently arise from separate prior distributions as follows:

τ1,i ∼ Normal+(µτ1 , σ
2
τ1

), τ2,i ∼ Normal+(µτ2 , σ
2
τ2

),

µτ1 ∼ Normal+(0, 10000), µτ2 ∼ Normal+(0, 10000),

στ1 ∼ Uniform(0, 100), στ2 ∼ Uniform(0, 100),

where X ∼ Normal+(µ, σ2) denotes that X has a truncated Normal distribution with

mean of µ and variance of σ2, for X ∈ (0,∞).

Note that the priors for π, τ1,i, and τ2,i are all set to be as diffuse as possible. Given

that a posterior distribution can be viewed as compromise between data and prior

information, diffusive priors make estimating parameters rely more on data than on

priors.

Finally, a prior distribution for the error parameter is assumed to have a uniform

distribution, Uniform(0, 0.5). This specification of error represents that a DM is

assumed to use a lexicographic rule to make decisions at least a half of times. Since

the error parameter indicates the probability that the lexicographic preference doesn’t

lead to observed choices, it can be interpreted as a rough measure of the goodness-

of-fit of the model.

Thus far, we have extended the model into more general cases and specified priors

for extend parameters. The extended model is now able to deal with more than one

DM and multiple tasks to decide on. Before moving on, I would like to introduce

a graphical model (see e.g., Koller, Friedman, Getoor, & Taskar, 2007). Graphical

models are especially useful for illustrating how the model assumes the parameters

generate behavioral data and how the parameters are related to one another. Figure

2 shows a graphical model for the current model specification. The same notation

is used as in Lee (2008). In Figure 2, variables of interest are represented by nodes,

and dependencies between the variables are indicated by the graph structure; children

11



Pij

yij

Aj

Bj

L

Oi
µ⌧1

µ⌧2

�2
⌧1

�2
⌧2

⌧1,i

⌧2,i

⇡

ith DM(i = 1, . . . , n)

jth task(j = 1, . . . , m)

"i

Figure 2.1: Graphical model for lexicographic choices

(ones to which arrows are pointing) depends on their parents (ones from which arrows

are stretching out). Circular nodes represent continuous variables, and square nodes

represent discrete variables. Observed variables are shown with shading and unob-

served variables are shown without shading. Stochastic and deterministic unobserved

variables are distinguished by using single and double borders, respectively. Plate no-

tations, enclosing with square boundaries subsets of the graph that have independent

replications in the model, is also used.
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Chapter 3

Data set (Davis-Stober, Brown, &
Cavagnaro, 2015)

Davis-Stober and his colleagues (2015) carried out a set of experiments to tease apart

two theories regarding the algebraic structure of preferences. One is the strict weak-

order (i.e., utility) representation theory. This theory is formulated as a mixture

model in their analysis, weak order mixture model (WOMM), which allows people

to switch their preference freely per their decision so long as preference stays un-

der a strict weak order (i.e., a ranking with ties). The other is the lexicographic

semiorder representation theory. This theory is also formulated as a mixture model,

lexicographic semiorder mixture model (LSMM), whereby people’s choice preference

is allowed to switch so long as it is consistent with a lexicographic semiorder. By

differentiating those two models from one another, the main purpose of the paper

was to examine whether subjects’ preferences on the given alternatives are consistent

with the axiom of transitivity.

The design of the experiment followed a traditional Tversky (1969) gamble paradigm.

Subjects were presented with a pair of gambles and asked to indicate which one they

prefer to play or that those gambles are indifferent to them. The gambles in the

13



Set 1

Gamble A B C D E

Payoff $25.43 $24.16 $22.89 $21.62 $20.35

Prob. 7/24 8/24 9/24 10/24 11/24

Set 2

Gamble A B C D E

Payoff $31.99 $27.03 $22.89 $19.32 $16.19

Prob. 7/24 8/24 9/24 10/24 11/24

Table 3.1: Gamble stimulus sets, Set 1 and 2, from Davis-Stober, Brown and Cav-
agnaro (2015). Payoff value and probability of winning are given for each gamble.

experiment differed in payoff and probability of winning — the greater the proba-

bility of winning the gamble has, the smaller the payoff. There is no case for losing

money. People thus either win the corresponding amount of money or win nothing

with respective probabilities as a result of playing gambles. The experiment had five

different gambles. On each trial, two gambles were randomly chosen out of five and

showed up on the screen. Different pairs follow once the subjects make a decision on

the current pair. Subjects had kept making decisions on a series of gamble pairs until

they responded to all possible pairs of those five gambles 12 times for each, which

equals
(
5
2

)
×12 = 120 trials total.

It is worth noting that the authors manipulated three experimental conditions to

see if those manipulations (if any) could affect people’s gamble choices. First, they

manipulated the amount of payoff of the gambles used in the experiment. They used

two different gamble sets, Set 1 and 2, each of which has five different gambles in it

(see Table 3.1). Note that gambles in Set 2 has more variable payoff than those in

Set 1. The authors also manipulated the display format in which a pair of gambles is

presented. Gambles were presented either in a circle format or in a bar format (see

Figure 3.1). Finally, they manipulated time within which subjects had to respond to

14



Figure 3.1: Gamble display format: a circle format (A) and a bar format (B)

the given pair — the “Timed” and “Un-timed” conditions. In “Timed” condition,

subjects had only 4 seconds to make a decision on each trial. If they didn’t respond

within that time, the current trial ended with a message indicating that they ran out

of time, and the experiment moved on to the next trial. These trials were dropped

when encoded in the data set. In “Un-timed” condition, on the other hand, subjects

were able to stay on each trial as long as they wanted when making a decision.

The experiment was within-subject design, where every subject had to complete

all eight of the above conditions. 60 subjects participated in the experiment. Before

they began, they were told that the experimenter will randomly choose one gamble

among the ones they select during the experiment and play it for real money as an

incentive at the end of the experiment. The authors assumed that this way of giving

an incentive would encourage subjects to behave as if they were at real gambles. In the

current analysis, only one condition of the data set will be analyzed for illustration.

What can be gained by the model is similar regardless of the data set the model is

fitting to. I first present a simulation study to demonstrate if the Bayesian estimation

procedure is able to recover parameters of interest. I, then, analyze one condition of

their data set and discuss what the model can contribute to the existing literature.
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Chapter 4

Analyses

4.1 Study 1: Parameter recovery

A simulation study is carried out to confirm that the model is able to estimate pa-

rameters of interest accurately. One way to examine it is to see how well the model

recovers data-generating parameters. If the data is generated under the lexicographic

rule using the same parameters in the model, then the model should be able to recover

those parameters. Gamble set 1 (See Table 3.1) was used as stimuli and the number

of repetition was 12 for each gamble pair as in Davis-Stober et al. (2015).

The way people compare two gambles identifies the decision strategy they use.

People with the lexicographic rule would consider one attribute at a time with their

own threshold values. Since there are two attributes to consider (i.e., payoff value and

probability of winning), people are identified with a lexicographic rule with either one

of two orders and two different threshold values. In the given gamble stimulus set,

however, multiple threshold values can lead to the same preference. For example, let’s

consider about gambles A and B. If a DM has a threshold of $1.00 for payoff, then she

would be able to distinguish the gambles with regard to payoff (i.e., $25.43−$24.16 >
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$1.00). But this is also the case if the DM has a threshold of $0.50. Indeed, one

would be able to distinguish A from B with regard to payoff if she has any value of

threshold for payoff less than $1.27. The range of threshold values that results in the

same preference is called a equivalence class.

Another issue can arise when determining thresholds together with the order of

attributes to be considered. If a DM prioritizes payoff over probability of winning

in deciding a gamble and has a threshold of $0.10 for payoff, then she wouldn’t ever

consider about probability of winning. This is because the smallest difference in payoff

between gambles is greater than her threshold $0.10. She would thus pick whichever

that has better payoff. In this case, her threshold for probability never plays a role in

making a decision, thus the model is not able to estimate the threshold for probability.

In Study 1, all possible combinations of an order and threshold values have been

considered, which gives exhaustive lexicographic preferences for the given gamble

stimulus set (see Table 1). Note that ranges of thresholds in Table 1 specify equiva-

lence classes, which implies any value in the same class lead to the same lexicographic

preference. Some thresholds can not be estimated or only lower bound of thresholds

can be estimated because of the reason explained above. Data is then simulated

according to those preferences by adding various levels of error. Error used for this

simulation study ranges from 0.01 to 0.50. To include all the levels of error as equally

as possible, every level of error is picked up to be equally spaced from 0.01 to 0.50 and

randomly assigned to each combination. The last column of Table 1 corresponds to

error. For each combination, responses to all pairs of gambles are generated 12 times

per pair. This gives the same number of trials in the study of Davis-Stober et al.

(i.e., 120 trials per each DM). Then the Bayesian hierarchical model of lexicographic

choices is fitted to the generated data.
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4.1.1 Identification constraints and model fitting

In fitting the model to the generated data, an issue with model identification has

arisen. In other words, there exist multiple ways to get to the same lexicographic

preference. Imagine a DM who has thresholds of 0 for probability and $20.00 for

payoff. This DM would then choose whichever gamble that has higher probability

of winning no matter what order she has. If she prioritizes probability of winning

over payoff, she would choose B between gambles A and B. If she prioritizes payoff

over probability of winning, she would choose B between A and B. This happens

for all pairs of gambles, thus the model is not able to estimate the order parameter

correctly. To fix this problem, one constraint is placed on threshold parameters. That

is, the threshold for the attribute should be less than the maximum difference of the

gamble set in that attribute if this attribute is to be the first attribute to consider.

For example, the DM’s threshold for payoff, $20.00, shouldn’t be the first attribute,

because it exceeds the maximum difference the given gamble set can make in payoff

(i.e., $25.43− $20.35 = $5.08 < $20.00). If it is the first attribute for her to consider,

payoff value wouldn’t help her distinguish between gambles throughout entire trials.

By imposing such constraint, the model now becomes identifiable.

I estimate the model in JAGS (Plummer, 2013).The model is sampled for 9,000

iterations following an burn-in of 6,000 iterations. Model convergence is assessed via

time series plots.

4.1.2 Results

Table 3 summarizes the main results. Median of the posterior distributions is used

as a summary statistic. The left side of Table 3 shows true values of parameters

used to simulate the data, and the right side shows posterior mean of parameters of

interest. Even when the data is generated out of the considerable amount of error, the
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True values of data-generating parameters Posterior median of parameters
DM O τ1 τ2 ε O τ1 τ2 ε

1 1 0 ≤ τ1 ≤ 0.042 (NA) 0.062 1 0.024 (NA) 0.038
2 1 0.042 < τ1 ≤ 0.083 0 ≤ τ2 ≤ 1.27 0.474 1 0.066 0.783 0.436
3 1 0.042 < τ1 ≤ 0.083 1.27 < τ2 0.319 1 0.066 3.072 0.311
4 1 0.083 < τ1 ≤ 0.125 0 ≤ τ2 ≤ 1.27 0.371 1 0.108 0.783 0.359
5 1 0.083 < τ1 ≤ 0.125 1.27 < τ2 ≤ 2.54 0.216 1 0.108 1.97 0.203
6 1 0.083 < τ1 ≤ 0.125 2.54 < τ2 0.397 1 0.108 3.704 0.361
7 1 0.125 < τ1 ≤ 0.167 0 ≤ τ2 ≤ 1.27 0.500 1 0.149 0.788 0.467
8 1 0.125 < τ1 ≤ 0.167 1.27 < τ2 ≤ 2.54 0.268 1 0.149 1.962 0.293
9 1 0.125 < τ1 ≤ 0.167 2.54 < τ2 ≤ 3.81 0.242 1 0.149 3.125 0.227
10 1 0.125 < τ1 ≤ 0.167 3.81 < τ2 0.294 1 0.150 4.562 0.277
11 0 (NA) 0 ≤ τ2 ≤ 1.27 0.139 0 (NA) 0.755 0.130
12 0 0 ≤ τ1 ≤ 0.042 1.27 < τ2 ≤ 2.54 0.165 0 0.036 1.868 0.184
13 0 0.042 < τ1 1.27 < τ2 ≤ 2.54 0.010 0 0.155 2.019 0.030
14 0 0 ≤ τ1 ≤ 0.042 2.54 < τ2 ≤ 3.81 0.191 0 0.025 3.244 0.223
15 0 0.042 < τ1 ≤ 0.083 2.54 < τ2 ≤ 3.81 0.113 0 0.064 3.289 0.122
16 0 0.083 < τ1 2.54 < τ2 ≤ 3.81 0.448 0 0.161 3.279 0.416
17 0 0 ≤ τ1 ≤ 0.042 3.81 < τ2 ≤ 5.08 0.345 0 0.025 4.334 0.309
18 0 0.042 < τ1 ≤ 0.083 3.81 < τ2 ≤ 5.08 0.423 0 0.064 4.394 0.371
19 0 0.083 < τ1 ≤ 0.125 3.81 < τ2 ≤ 5.08 0.087 0 0.104 4.461 0.192
20 0 0.125 < τ1 3.81 < τ2 ≤ 5.08 0.036 0 0.187 4.554 0.039

Table 4.2: Results from the simulation study

model is able to recover the data-generating parameters including error. Recall that

the ranges of τ1 and τ2 in the left side represent equivalence classes. The recovered

values of τ1 and τ2 are considered okay if they fall within the ranges. Regardless of

the error rate, all threshold parameters are perfectly recovered. From this simulation

study, I conclude that the model is able to recover the data-generating parameter

values accurately. In the next section, the model is fitted to the empirical data from

Davis-Stober et al. (2015).

4.2 Study 2: Analysis of Davis-Stober et al. (2015)

In this section, I analyze the empirical data (Davis-Stober et al., 2015) using the

same model as in Study 1. The primary goal of the original study was to classify

subjects according to the WOMM or LSMM. People who made decisions using a

lexicographic rule were classified into LSMM in the original analysis. As the current
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model is to identify people’s lexicographic rule with a search order and thresholds, I

chose one condition out of their data set based upon the number of people classified

into the LSMM. In the original analysis, the condition “Set 1/Bar/Un-timed” had

the greatest number of people classified into LSMM among all of 8 conditions. 32

out of 60 subjects in this condition have Bayes factors greater than 3.14 in favor of

the LSMM versus an unconstrained model, and 9 subjects were best fitted by LSMM

among all the models they considered. Therefore the current analysis aims at this

condition of the data set in the rest of the paper.

As in Study 1, posterior distributions for parameters of interest are computed

via the MCMC simulation using JAGS (Plummer, 2013). The current simulation

initiates 3 chains with different starting values for each parameter. This way of sim-

ulation allows researchers to see if those chains converge to the posterior distribution

regardless of different starting values. Each chain draws 5,000 samples from posterior

distributions after 5,000 burn-in samples. The convergence of the model is judged

through time series plots and autocorrelation function plots.

4.2.1 Results

The current model has 4 free parameters, ε, τ1, τ2, and O, to be estimated, and those

parameters provide sufficient information on one’s lexicographic rule. Hence, the anal-

ysis from here on focuses on estimating and interpreting those parameters. Median

of posterior distributions is used as a summary statistic as in Study 1.

The estimated search order (O) and thresholds for probability of winning (τ1)

and payoff (τ2) are presented along with error (ε) in Table 4.3 and 4.4 for each

individual. It is easy to notice that majority of subjects prioritized probability of

winning over payoff (i.e., O = 1; O = 0 vice versa) when considering which gamble

to play. Only 6 subjects considered payoff first. This may be due to the design of the

experiment. Davis-Stober and his colleagues (2015) used two different gamble sets
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as stimuli for the experiment. The stimulus Set 1 originally came from the Tversky

(1969) gambles, where the expected value of the gambles increases as the probability

of winning increases. Hence, the strategy of choosing the gamble based solely on

the probability of winning, in fact, maximizes the expected utility. Plus, at the end

of the experiment, participants were allowed to play one of the gambles they chose

during the experiment for real money as an incentive. To increase the chance to

win money, it would be reasonable to choose the gamble with higher probability of

winning. All being considered, it is natural for people to prioritize probability of

winning over payoff. One thing I found interesting is, however, about 10% of people

still preferred payoff over probability of winning. Given the reasons mentioned here,

choosing gambles based primarily on payoff would be an inferior strategy to use in

this condition. It might make people consider different decision-making strategies if

payoff of the gambles matters to them. Which would be why the model tends to

induce more error when accounting for the data of those who prioritize payoff over

probability of winning. They may have used different strategies or constantly made

mistakes on their choices.

It is important to note that some thresholds may not be identifiable as pointed out

in Study 1. A search order combined with a low threshold for the first attribute would

keep one from considering the second attribute. This person would then always choose

whatever that favors the first attribute, and the threshold for the second attribute

for this person remains unidentifiable. It is not possible for the model to estimate it

that never affects one’s behaviors. The same logic applies to the threshold that goes

beyond the range of the attributes. Once the threshold gets greater than the range

of the attributes of the stimuli, any value of the threshold has the same effects on his

or her choices. No matter how big the threshold is, every possible pair of gambles

wouldn’t be distinguishable under this threshold. For these reasons, Table 4.3 and

4.4 include numerous “(NA)”s (i.e., unidentifiable) and some arbitrary large values
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Threshold for Threshold for
Subject Search Order (O) probability of winning (τ1) payoff (τ2) Error (ε)

1 1 .024 (NA) .031
2 1 .025 (NA) .079
3 1 .024 (NA) .006
4 1 .089 .863 .330
5 1 .025 (NA) .063
6 1 .025 (NA) .039
7 1 .025 (NA) .137
8 1 .025 (NA) .055
9 1 .054 .862 .129
10 1 .025 (NA) .039
11 1 .025 (NA) .014
12 1 .025 (NA) .129
13 1 .025 (NA) .204
14 0 (NA) .924 .088
15 1 .025 (NA) .137
16 1 .025 (NA) .137
17 0 (NA) .920 .436
18 1 .024 (NA) .089
19 1 .025 (NA) .039
20 1 .053 2.081 .335
21 0 107.770 2.829 .374
22 1 .025 (NA) .072
23 1 .025 (NA) .030
24 1 .025 (NA) .038
25 1 .025 (NA) .030
26 1 .025 (NA) .022
27 0 (NA) .920 .327
28 1 .025 (NA) .377
29 1 .025 (NA) .006
30 1 .025 (NA) .014

Table 4.3: Search order (O) and thresholds for probability of winning (τ1) and payoff
(τ2) for the first 30 subjects

23



Threshold for Threshold for
Subject Search Order (O) probability of winning (τ1) payoff (τ2) Error (ε)

31 1 .025 (NA) .121
32 1 .053 .864 .030
33 1 .089 2.919 .194
34 1 .025 (NA) .006
35 1 .025 (NA) .014
36 1 .025 (NA) .064
37 1 .025 (NA) .038
38 1 .025 (NA) .047
39 0 (NA) .923 .088
40 1 .025 (NA) .038
41 1 .053 .857 .196
42 1 .025 (NA) .030
43 1 .025 (NA) .096
44 1 .025 (NA) .228
45 1 .025 (NA) .138
46 1 .025 (NA) .261
47 1 .089 2.927 .277
48 0 112.127 1.787 .294
49 1 .025 (NA) .343
50 1 .025 (NA) .269
51 1 .025 (NA) .054
52 1 .054 .862 .336
53 1 .025 (NA) .063
54 1 .025 (NA) .294
55 1 .053 .865 .252
56 1 .025 (NA) .055
57 1 .025 (NA) .079
58 1 .025 (NA) .310
59 1 .054 .846 .137
60 1 .025 (NA) .145

Table 4.4: Search order (O) and thresholds for probability of winning (τ1) and payoff
(τ2) for the rest 30 subjects
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Figure 4.1: Histogram of Error.

for thresholds.

Under the design of the current experiment, estimated thresholds can be thought

of as discrete values rather than continuous values. This is mainly because the exper-

iment has only 5 different gambles, which yields only 10 unique pairs. In other words,

there are only 10 different values for thresholds to choose from. Also, the increment

and decrement in probability of winning and payoff are about equal between adjacent

gambles, which makes variability of thresholds much smaller. Under this setting, the

total number of different values thresholds for each attribute can have is 5. This is

why the same estimates for thresholds are repeatedly shown for different subjects in

Table 4.3 and 4.4. The results show that most thresholds fall within the smallest

category. That is, people tend to choose whichever wins the attribute they prioritize

most.

Finally, the estimated error (ε) is summarized in Figure 4.1 and Table 4.5. By

inspecting both the histogram and the cumulative frequency table for error, one can

learn about how many people utilized a lexicographic rule in this condition as well as

how often they used a lexicographic rule. In general, error (ε) in this condition is quite

25



Error (ε) Proportion

ε < .05 33.33%

ε < .10 55.00%

ε < .20 71.67%

ε < .30 85.00%

ε < .40 98.33%

ε < .50 100.00%

Table 4.5: Cumulative frequency table for Error.

low. One-third of subjects made choices consistent with a lexicographic rule with less

than the error rate of .05. Over half of people followed a lexicographic rule with less

than .10 error. In other words, more than half of subjects in this condition used a

lexicographic rule 9 out of 10 times to choose gambles to play. They are generally

willing to use the lexicographic rule to make their decisions in this condition.

4.2.2 Comparison with the original results

The main goal of the original study was to test WOMM and LSMM against empirical

data to differentiate one from another. Recall that LSMM is a mixture model of all

possible lexicographic semiorders on the given alternatives. People under a LSMM are

supposed to make choices consistent with lexicographic semiorders at every trial. The

same logic applies to the current model of this paper as well. Lexicographic semiorders

are the binary relations that account for lexicographic decision-making processes. An

important property of lexicographic semiorders is that decision makers are assumed

to have a threshold, above which his or her preferences change. This threshold is, in

fact, one of parameters the current model is trying to estimate. A major claim of

the current model is that together with one’s own search order, estimated thresholds

for each attribute of the alternatives give a sufficient information to identify his or

her lexicographic rule. Hence, it is important to compare the current results with
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the original results. Subjects well fitted by the current model should be classified

according to LSMM in the original results. This will serve as a converging evidence,

or external validity, of the current model.

Before comparing the current results with the original ones, it should be noted

that some types of lexicographic preferences can also be classified into WOMM. This

is due to the model mimicry, where one model generates a set of data that is also

well accounted for by the other model. For example, if one has very low threshold for

the attribute to be considered first, this person would always choose whichever favors

that attribute. This way of making decisions on gamble pairs allows him or her to

rank his or her preferences over the five gambles in the order of that attribute, thus

satisfying transitivity of preferences. This type of data is, of course, well supported by

WOMM, and this makes the data being classified according to WOMM than LSMM.

For this reason, in this section, I will consider only the subjects whose thresholds for

probability of winning, or payoff, or both are greater than the minimum differences

(i.e., .042 for probability of winning, $1.27 for payoff).

Table 4.6 shows the subjects whose thresholds are greater than the minimum dif-

ferences along with the original results. In the original paper, the authors employed

the Klugkist and Hoijtink (2007) Bayes factor methodology to classify subjects. Im-

portantly, the authors computed the Bayes factors which compared the model of

interest to the unconstrained model. Thus, the Bayes factors for each model indi-

cate how much more likely the observed data is generated from the model of interest

than from the unconstrained model. The original analysis divided LSMM further

into LSMM1 and LSMM2. LSMM1 represents a mixture model of all lexicographic

semiorders on probability of winning; LSMM2 on payoff.

The authors followed the standard Jeffreys (1998) interpretation scale to classify

the subjects: a Bayes factor between 1 and 3 is weak evidence for the model, a Bayes

factor between 3 and 10 is strong evidence, and a Bayes factor greater than 100 is
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Search Threshold for Threshold for Bayes factors
Sub. order (O) Prob. (τ1) Payoff (τ2) WOMM LSMM1 LSMM2

4 1 .089 .863 390.293 16.667 < .001
9 1 .054 .862 .310 30.702 < .001
20 1 .053 2.081 14.448 16578.95 < .001
21 0 107.770 2.829 1.397 30.702 4222.807
32 1 .053 .864 < .001 19.298 < .001
33 1 .089 2.919 < .001 76400.88 2824.561
41 1 .053 .857 124.810 43.860 < .001
47 1 .089 2.927 .034 19327.19 14.035
48 0 112.127 1.787 < .001 236.842 7339.474
52 1 .054 .862 859.259 .877 < .001
55 1 .053 .865 1723.828 34.211 < .001
59 1 .054 .846 21.431 24.561 < .001

Table 4.6: The Bayes factors for WOMM, LSMM1, and LSMM2. Only those whose
thresholds are greater than the minimum differences are included.

decisive evidence. As shown in Table 4.6, all subjects, except Subject 52, show strong

or decisive evidence for LSMM1 or LSMM2 against the unconstrained model. More

than half of the subjects is fitted best by LSMM1 or 2 among all three models. The

Bayes factors in the original results agree with the estimated search order as well.

The subjects who appeared to consider payoff first in the current analysis also gave

the highest Bayes factor to LSMM2 in the original analysis. Overall, the results from

both analyses mostly agreed even though the two models take the whole different

forms of analysis. The comparison in this section provides a converging evidence for

the current model.

4.2.3 Model checking

The last step of a Bayesian analysis is assessing adequacy of the model fit to the

data. A Bayesian model assumes a probability model over a entire prior-to-posterior

structure. If the model is poor, Bayesian inferences could be misleading. Therefore

it is crucial to include some check of how well the model fit to the data. The current
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analysis presents two different ways of checking the model: 1) Posterior predictive

checking and 2) Sensitivity analysis.

Posterior predictive checking

The posterior predictive checking is suggested by (Gelman, Carlin, Stern, & Rubin,

2014) to check the joint posterior predictive distribution p(yrep|y), where yrep repre-

sents the data that could have been observed under the same setting as the current

data set. If the model fits to the data well, posterior predictions of the model should

be consistent with the observed data. In other words, it assesses how plausible the

observed data is generated from the model. The joint posterior predictive distribution

p(yrep|y) can be obtained by:

p(yrep|y) =

∫
p(yrep|θ)p(θ|y)dθ,

where θ represents a collection of all parameters in the model. Once yrep is gener-

ated from the posterior predictive distribution p(yrep|y), one needs to decide how to

measure discrepancy between model and data. Following Gelman et al.’s (2014) sug-

gestion, I choose a test statistic denoted by T (y) and use this statistic to summarize

discrepancies between model and data. Note that it is a researcher responsible for

deciding what kind of a test statistic will be used. By defining the test statistic as

the researcher wants, he or she could investigate aspects of the data he or she wishes

to check. In this paper, I choose three test statistics, T1(y), T2(y), and T3(y), which

represent the number of choosing the gamble with better payoff over the other, the

number of choosing the gamble with higher probability of winning over the other, and

the number of choosing indifference between them, respectively. The reason I chose

them is that the main purpose of the paper is to identify one’s lexicographic rule with

the search order and thresholds for the attributes of the stimuli and to predict one’s
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future behavior based upon the identified lexicographic rule. Thus, the observed data

should at least be replicated under the model that assumes a lexicographic way of

decision-making.

To this end, I employed the tail-area probability of the test statistic to measure

lack of fit of the data with respect to the posterior predictive distribution (Gelman et

al., 2014). This is called the Bayesian p-value, pB, often considered as the Bayesian

counterpart of the classical p-value:

pB = Pr(T (yrep) ≥ T (y)|y).

As indicated by the above equation, the Bayesian p-value is the probability that the

test statistic of the replicated data is greater than that of the observed data (the

sign of inequality changes based upon the nature of the test statistic). Small values

of it imply that the model hardly generates the observed data, as measured by the

test statistics. In many practical applications, however, it is nearly impossible to

compute the above equation analytically. Hence, an estimate of the Bayesian p-

value is computed using posterior simulation of (θ, yrep). The algorithm for posterior

simulation Rubin (1984) suggested is as follows:

1. Generate N draws of the parameters θ1, θ2, . . . , θN from the posterior distribu-

tion p(θ|y)

2. Draws N replicated data sets yrep,n from the likelihood distribution p(yrep,n|θn),

n = 1, . . . , N

3. Compute an estimate of the Bayesian p-value from the simulated data sets,

pB ≈ 1
N

∑N
n=1 IT (yrep,n)≥T (y),

where I represents an indicator function.

In this paper, I generated 10,000 (i.e., N = 10, 000) data sets for each subject and
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Figure 4.2: Histograms of 10,000 simulated data sets for Subjects 49 (left) and 10
(right) with red vertical lines representing their observed values.

calculated the Bayesian p-values for all of the three test statistics using the algorithm

above. Since those three test statistics are dependent on each other (they must sum

up to 12), I generated 10,000 data sets for each test statistics, which makes 30,000

simulated data sets total. The Bayesian p-values for each test statistic were then

computed within the separated 10,000 data sets in trying to make them independent

of each other. Figure 4.2 illustrates how the Bayesian p-value works. The left side of

Figure 4.2 is the histogram of simulated data for Subject 49 with a red vertical line

representing his or her observed value. This subject chose Gamble A over C 7 out

of 12 times during the experiment, but most of 10,000 simulated data generated 0

or 1 out of 12 times on Gamble A for this subject. Given the simulation result, the

model with the parameters for this person is highly unlikely to generate the observed

data. Only 13 out of 10,000 simulated data did so, which yields the Bayesian p-value

of .0013. The histogram in the right side of Figure 4.2, on the other hand, shows an

adequate fit of the model to Subject 10’s observed data. Subject 10 chose Gamble

C over B 11 out of 12 times during the experiment. Most of the simulated data
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# of subjects # of subjects # of subjects
Gamble pair with pB1 < .05 with pB2 < .05 with pB3 < .05

A vs. B 7 7 3
A vs. C 5 3 1
A vs. D 2 2 1
A vs. E 3 2 1
B vs. C 5 6 1
B vs. D 3 2 0
B vs. E 1 1 1
C vs. D 14 10 1
C vs. E 4 4 1
D vs. E 9 7 4

Table 4.7: The number of subjects whose Bayes p-value is less than .05 for all gamble
pairs. The Bayes p-values were computed for all the three test statistics, T1(y), T2(y),
and T3(y)

generated 11 or 12 times of choosing Gamble C for this person, which yields the

Bayesian p-value of .3847.

Main results of the Bayesian p-values are summarized in Table 4.7. The Bayesian

p-values for the test statistics, T1(y), T2(y), and T3(y), are denoted by pB1, pB2, and

pB3, respectively. Cutoff point for deciding whether the model fits well to the data

is set by .05 following the tradition of the classical p-value. Numbers in Table 4.7

represent the number of subjects whose Bayesian p-value is less than .05 for each

gamble pair. Overall, the model provides an adequate fit to the given data. Total

number of misfits is 111 out of 1,800. In other words, only 6.2% of the data set is not

accounted for by the model. When investigating the data more closely, however, I

found some regularities in such misfits. First, the model appears better at accounting

for indifference. Numbers in the third column of Table 4.7 are remarkably smaller

than those in the other two columns. This might be because there were only a few

subjects who choose indifference between two gambles. Predicting the alternative

never chosen by subjects would be straightforward for the model as the model simply

allocates it zero probability mass. Secondly, there are some gamble pairs that tend to
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1st set of prior distributions 2nd set of prior distributions

π = Φ(z) π ∼ Exp[0,1](10)

z ∼ Normal(0, 1)

τ1,i ∼ Normal+(µτ1 , σ
2
τ1

) τ1,i ∼ Normal+(µτ1 , σ
2
τ1

)

µτ1 ∼ Normal+(0, 1) µτ1 ∼ Exp(10)

σ2
τ1
∼ Uniform(0, 10000) σ2

τ1
∼ Exp(1)

τ2,i ∼ Normal+(µτ2 , σ
2
τ2

) τ2,i ∼ Normal+(µτ2 , σ
2
τ2

)

µτ2 ∼ Normal+(0, 1) µτ2 ∼ Exp(1)

σ2
τ2
∼ Uniform(0, 10000) σ2

τ2
∼ Exp(1)

εi ∼ Normal[0,.5](0, 1) εi ∼ Exp[0,.5](10)

Table 4.8: Different sets of prior distributions used to assess the sensitivity of the
results

induce more misfits. The gamble pair of C and D, for example, induced the greatest

number of misfits among all gamble pairs. In general, adjacent gamble pairs (i.e., A

vs. B, B vs. C, C vs. D, and D vs. E) have more misfits than other gamble pairs

that are not adjacent. Similar attributes may have caused subjects to switch their

choices over time even for the same gamble pair. Finally, the model shows roughly

the same performance on the test statistics T1(y) and T2(y). This indicates that no

matter whether subjects choose gambles based upon probability of winning or upon

payoff, the model fits to both types of people about equally.

Sensitivity analysis

Sensitivity analysis can be used to examine the sensitivity of the results to the non-

informative prior distributions. Typically, researchers choose different prior distribu-

tions other than the ones used to estimate the model and re-estimate the model with

the different prior distributions to see if the results significantly change. Different

sets of prior distributions I choose for the sensitivity analysis are in Table 4.8.

Parameter estimates under different prior distributions mostly agreed with the
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original results. Some subjects, however, show a slight disagreement in the param-

eters for search order and thresholds. Search orders of Subjects 33 and 47 are both

estimated as being probability of winning first under the old and first priors in Table

4.8, while the second priors in Table 4.8 estimated them as being payoff first. Also,

the second priors in Table 4.8 make the thresholds of large numbers (i.e., Subject

21 and 48’s thresholds for probability of winning) shrink greatly toward less than 1.

This is not surprising, because under such exponential distributions, large numbers

are very unlikely to be generated. This might cause the slight disagreement in the

estimates. Other than that, all results nearly agree with the original results. The

agreement in parameter estimates indicates that the data dominate the priors.

34



Chapter 5

Discussion

The main purpose of the present paper is to present a hierarchical Bayesian model

to account for the choice data from a perspective of a lexicographic decision-making

process. The present paper has also shown how the models works on the empirical

data and provides various evidence to ascertain the model’s ability to estimate one’s

threshold and search order. First, the simulation study demonstrates that the model

is able to recover all data-generating parameters even when the data is generated

out of the high rate of error. Importantly, the model includes the parameter that

estimates the error itself. This gives useful information on how well the observed

data is consistent with a lexicographic rule, so researcher would know when to apply

a lexicographic rule to one’s choices. In the analysis of the empirical data (Davis-

Stober et al., 2015), the model was fitted to one of their experimental conditions,

“Set 1/Bar/Un-timed.” The main results I found is that a majority of subjects

relied on probability of winning to decide which gamble they prefer to play. Plus,

most of them appeared to have thresholds for that attribute less than the minimum

difference that the current gamble set possibly makes. In other words, most subjects

chose whichever has higher probability of winning while completely ignoring payoff

information of gambles. These results immediately enable researchers to predict these
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subjects’ future choices — they are highly likely to choose the gamble which has higher

probability of winning.

To validate the current results, I compared it with the original results. The

way the current model describes how people make decisions can be thought of as

a simple lexicographic semiorder (Davis-Stober, 2012). So, subjects shown to use

a lexicographic rule to make decisions in the current analysis should be classified

according to a LSMM in the original analysis. After accounting for the model mimicry

(i.e., a certain type of lexicographic choices is consistent with WOMM as well), the

current and original results both nearly agreed. Subject 52, however, showed an

inconsistency between the two models. The current model says that this person is

supposed to make decisions in a lexicographic way, but the original result says that

this person isn’t classified into LSMM. I would attribute it to the high rate of error,

.336, this person showed in executing a lexicographic rule. This inconsistent result

illustrates that one needs to apply the current results carefully given the error rate.

For everyone else, both models showed converging evidence, which gives the current

model an external validity.

Finally, I assessed the fit of the model to the data, or model checking. It is critical

to check how well the model fits to the data because a Bayesian model typically as-

sumes uncertainty over a whole prior-to-posterior structure. One mis-specification of

the model could lead to poor performance. The present paper included two different

types of model checking — Posterior predictive checking and sensitivity analysis. For

the posterior predictive checking, I employed the Bayesian p-value to measure the

discrepancy between the observed data and the model. One benefit from comput-

ing the Bayesian p-value is that it allows researchers to check various aspects of the

model, which sheds light on the part the researcher needs to improve on. The current

analysis shows that misfits of the model did not spread over gamble pairs randomly,

but it instead seemed to have a systemic structure behind it. As pointed out in the
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previous section, adjacent gamble pairs tend to induce more misfits than pairs that

are not adjacent. This may be because similar attributes had made people switch

their choices back and forth across trials. The model is not good at accounting for

this type of behaviors, since the model assumes lexicographic choices as determinis-

tic. All uncertainties that arise at the response level are due to error according to the

model. Thus, in future research, one needs to come up with another way to imple-

ment uncertainty into responses. Sensitivity analysis showed no significant changes

in results when the model is estimated using different sets of priors. It implies that

data dominates prior information. No matter what prior distributions are employed,

the results will stay mostly the same.

In sum, a lexicographic rule can help people ease their burden of having to consider

all relevant information when making decisions. Under a lexicographic rule, people

simply choose one attribute that matters to them the most and then make decisions

based upon it. Many studies have examined the lexicographic way of making decisions

(Kohli & Jedidi, 2007; Yee et al., 2007). While they found a considerable portion of

people actually use the lexicographic rule in a certain setting (Colman & Stirk, 1999;

Perry, 1991; Tversky et al., 1988; Slovic, 1975), a complete picture of the lexicographic

rule they employed has rarely been examined. In this regard, the current model has

incorporated the threshold and search order parameters into the model to identify

one’s lexicographic rule more completely. Once those parameters are successfully

estimated, one can have a sufficient information about people’s lexicographic rules.

Furthermore, this allows him or her to predict people’s future decisions on similar

problems.
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