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On the Euler characteristics of certain moduli spaces of 1-dimensional closed

subschemes

Mazen M Alhwaimel

Dr. Zhenbo Qin, Dissertation Supervisor

ABSTRACT

Generalizing the ideas in [LQ] and using virtual Hodge polynomials as well as torus

actions, we compute the Euler characteristics of some moduli spaces of 1-dimensional

closed subschemes when the ambient smooth projective variety admits a Zariski-

locally trivial fibration to a codimension-1 base. As a consequence, we partially verify

a conjecture of W.-P. Li and Qin [LQ]. We also calculate the generating function for

the number of certain punctual 3-dimensional partitions, which is used to compute

the above Euler characteristics.
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Chapter 1

Introduction

1.1 The goal of this thesis

The study of the Euler characteristics of the moduli spaces of 1-dimensional closed

subschemes in a smooth projective variety X has been of great interests in recent

years. The motivation comes from its relation with the study of Donaldson-Thomas

invariants and its interplay with Gromov-Wittin invariants [DT, MNOP1, MNOP2,

KLQ, LQ, Tho]. In [LQ], W.-P. Li and Qin proposed the following conjecture which is

the analogue to those in [MNOP1, MNOP2] regarding Donaldson-Thomas invariants

in dimension 3.

Conjecture 1.1. Let X be a smooth projective variety, and let In(X, �) be the moduli

space of 1-dimensional closed subschemes Z ofX satisfying (5.1.1), and let X [n] be the

Hilbert scheme of length-n 0-dimensional closed subschemes of X. Then the reduced

partition function of the Euler characteristics

P
n �

�
In(X, �)

�
qn

P+1
n=0 �(X

[n])qn
(1.1.1)

is a rational function of q, and is invariant under q ! 1/q when KX = 0.

Conjecture 1.1 was studied in [LQ] when X admits a Zariski-locally trivial fibra-

tion µ : X ! S where S is a smooth projective variety, and the fibers are smooth
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irreducible curves of genus g. Letting � 2 H2(X;Z) be the class of a fiber of µ, it

was proved in [LQ] that Conjecture 1.1 holds if 2  dimX  3 or KX = 0.

In this paper, we will continue the investigation of Conjecture 1.1 by generalizing

the ideas in [LQ]. Using the same notations from the previous paragraph, put

Md,n = Id(1�g)+n(X, d�).

for d, n � 0. An element of the moduli space Md,n consists of d fibers (possibly nonre-

duced counting with multiplicities) of µ together with n points (possibly embedded

in the fibers) of X. Our main result is the following.

Theorem 1.2. Assume that X admits a Zariski-locally trivial fibration µ : X ! S

such that the fibers are smooth irreducible curves of genus g. Let r = dim(X) > 2.

Then, the partition function
+1X

n=0

�
�
M2,n

�
qn is equal to

�(S)2 � �(S)

2
·
+1X

n=0

�
�
X [n]

�
qn ·

 P+1
n=0

ePr(n)qnP+1
n=0 Pr(n)qn

!4�4g

(1.1.2)

+ (r � 1) · �(S) ·
+1X

n=0

�
�
X [n]

�
qn ·

✓P+1
n=0 Ar(n) qnP+1
n=0 Pr(n) qn

◆2�2g

. (1.1.3)

In the above, Pr(n) denotes the number of r-dimensional partitions of n, and

ePr(n), Ar(n) denote the number of r-dimensional partitions of n punctured at the

subsets I =
�
(0, ..., 0)

 
,
�
(0, ..., 0), (1, 0, ..., 0)

 
⇢ (Z�0)r�1 respectively (see Defini-

tion 4.1 for details). The generating function of the Euler characteristics of the Hilbert

scheme X [n] has been calculated in [Che, ES, Go1] (see also [Go2, Qin]):

+1X

n=0

�(X [n])qn =

 
+1X

n=0

Pr(n)q
n

!�(X)

. (1.1.4)

Under our assumptions about X and µ, KX = 0 forces g = 1. Also,

X

n

�
�
In(X, 2�)

�
qn =

+1X

n=0

�
�
I2(1�g)+n(X, 2�)

�
q2(1�g)+n = q2(1�g) ·

+1X

n=0

�
�
M2,n

�
qn.
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Corollary 1.3. Assume that X admits a Zariski-locally trivial fibration µ : X ! S

such that the fibers are smooth irreducible curves. Let dim(X) > 2 and KX = 0.

Then, Conjecture 1.1 holds for the reduced partition function

P
n �

�
In(X, 2�)

�
qn

P+1
n=0 �(X

[n])qn
. (1.1.5)

By definition, P2(n) = eP2(n) = A2(n). By Lemma 7.5 in [LQ] (see (4.2.7)),

P+1
n=0

eP3(n)qnP+1
n=0 P3(n)qn

=
1

1� q
.

Moreover, by Proposition 4.4 below, when |q| < 1/3, we have

P+1
n=0 A3(n)qnP+1
n=0 P3(n)qn

=
1

1� q
· 1

1� q2
.

Corollary 1.4. Assume that X admits a Zariski-locally trivial fibration µ : X ! S

such that the fibers are smooth irreducible curves. Let 2  dim(X)  3 and |q| < 1/3.

Then, Conjecture 1.1 holds for the reduced partition function (1.1.5).

1.2 Organization of the thesis

Our main goal as stated in the Section 1.1 is to prove Theorem 1.2. In order to do so,

and to make the thesis self-contained as much as possible, I will do the following. In

Chapter 2, I will closely follow the book [HM] for the introduction of moduli problems

and how to construct moduli spaces. Next, I will reproduce the construction of Hilbert

scheme and Grothendieck Quot scheme analogue to the one found in [Qin, Nit]. To

this end, we will be equipped with the necessary concepts and definitions to proceed

to prove Theorem 1.2 as follows. First of all, we decompose the moduli space M2,n

into the disjoint union of two locally closed subsets M(2),n and M(12),n. The subset

M(2),n (respectively, M(12),n) consists of the elements in M2,n corresponding to those
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1-dimensional closed subschemes Z of X such that the support of the 1-dimensional

component ⇥Z of Z is a single fiber of µ (respectively, is the union of two distinct

fibers of µ). On one hand, since the support of ⇥Z with [Z] 2 M(12),n is the union

of two distinct fibers of µ, the computation of �(M(12),n) can be easily reduced to

�(M1,n) which has already been computed in [LQ]. The contribution of �(M(12),n)

gives rise to the term (1.1.2). On the other hand, since the support of ⇥Z with

[Z] 2 M(2),n is a single fiber of µ, the ideas in [LQ] can be generalized to compute the

Euler characteristic of M(2),n. Roughly speaking, we will use the properties of virtual

Hodge polynomials to reduce the calculation of �(M(2),n) to the relevant moduli space

over the local model Cr�1 ⇥ C where C denotes a fiber of µ. The relevant moduli

space over the local model Cr�1⇥C will be further reduced to a suitable moduli space

over Cr, to which torus actions will be applied. The contribution of �(M(2),n) gives

rise to the term (1.1.3).

4



Chapter 2

Moduli spaces

2.1 Basic definitions and constructions

The notion of a moduli space is central in various areas of mathematics. Since one

of the major tasks of mathematics is to classify, or to put similar objects together,

invoking the idea of moduli spaces leads to very important and happy consequences.

In the field of algebraic geometry, the notion of moduli spaces has been used in so

many areas to help to either investigate those spaces by their own, or to understand

the objects themselves that are being modulated by the space. A very basic example

of a moduli space is the projective space P2
C over complex numbers. This space

classifies all points in C3 � {O}, where any two points are in the same equivalence

class if there exists a line connects them that passes through the origin. While the

geometry of points is relatively simple and well understood, the new resulting moduli

space carries a more fascinating structure and reveals more interesting properties. To

rigidify the problem and make it more concrete, let us start by defining what a moduli

problem is, and then examine what a natural definition of a moduli space should look

like.

Consider the category of schemes, denoted by Sch, and the category of sets, de-
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noted by Set, such that for any object B of Sch, we assign a set S(B) which is a

family of objects over B, together with what it means for this family of objects to

be over B. To be more precise, the elements of S(B) must have some equivalence

relation between them which we are free to choose. Once an equivalence relation have

been chosen, we define a functor

F : Sch ! Set,

such that

F(B) = S(B)/equivalence relation.

As much as this description is too general, we can restrict this idea in a way that

enables us to relate some nice scheme to this moduli problem. Specifically, we want

a space, which we will soon call moduli space, to represent the image of the functor

in a way that its geometric points have a connection with the image of the functor F.

While we can always come up with moduli spaces of various di↵erent structures fitting

the description in the previous sentence, possibly trivial ones, one problem might arise

here is that these spaces could be discursive and uninformative. To be more explicit,

it is not always possible to make the moduli problem along with its chosen functor into

something that we can gain important properties and new insights from. Of course, it

is not hard to construct a moduli problem with its functor that can be turned into a

scheme or a vector space in a trivial way. For an example, we might turn an arbitrary

moduli problem into a scheme by just declaring that every point in the image of its

moduli functor to be an a�ne scheme. While this would trivially equip our moduli

problem with a scheme structure, we will not get any important information neither

about the new scheme itself, nor about the objects being represented by the new
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scheme. To avoid this type of triviality, one needs to attempt to control the moduli

problem by choosing its functor in a more precise way that enables us to find deeper

structures and properties. For this, we introduce the notion of fine moduli space.

Before doing so, we need to introduce further definitions.

Definition 2.1. Consider the functors F,G : Sch ! Set.A natural transformation

⌘ : F ! G is a family of Set-morphisms ⌘B : FB ! GB, where B ranges over all

schemes in Sch, such that for each morphism f : B ! C in Sch, ⌘C �Ff = Gf � ⌘B,

i.e. the following diagram commutes:

FB GB

FC GC.

⌘B

Ff

⌘C

Gf

Moreover, if for every object B in Sch, the natural transformation ⌘B is an isomor-

phism in the category Set, then we say that ⌘ is an isomorphism of functors.

Definition 2.2. LetM be an object in the category Sch. Then, we define the functor

of points

MorSch( ,M) : Sch ! Set

to be the functor that assigns to any scheme B 2 Sch, the set of all morphisms

B ! M.

Definition 2.3. The functor F is representable in the category of schemes if there

exist a scheme M, and a natural transformation ⌘ : F ! MorSch( ,M) that is an

isomorphism.
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Definition 2.4. Let F be a moduli functor for the moduli problem S(B) which is

representable by a scheme M. Then, we say that the scheme M is a fine moduli space

for the moduli problem S(B).

A significant outcome of representability is the existence of a universal family. The

universal family works as a dictionary translating information about the geometry of

the families of objects S(B) and the geometry of the fine moduli space M representing

it. To make this observation more concrete, let C be the family in S(M) corresponding

to IdM 2 MorSch(M,M). Then, C is called the universal family over the fine moduli

space M. The universality of the family C is interpreted in the following sense: let

 : D ! B be any family in S(B). Let ⌘ be as in above, and put � = ⌘( ). Then

there is a commutative fibered product diagram

D C

B M.

 IdM

�

 
After having introduced the notion of fine moduli spaces, we will examine two

examples of some moduli problems: one can be represented by a fine moduli space,

but the other can not. In the next section, we will construct in more details the

central objects we will be working with throughout this thesis which are the Hilbert

scheme and Quot scheme.

Example 2.5. Let F be the functor of the moduli problem that assigns the set of lines

passing through the origin of An+1
k . Then Pn

k is the fine moduli space representing

that functor, where k is algebraically closed field.
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Example 2.6. In this example, we will show the existence of some moduli problems

that can not be represented by a fine moduli space. Before we start the example,

which will be a very general phenomenon, let us examine the following situation.

Suppose we are trying to find a moduli space that parametrizes all 1-dimensional

vector spaces up to isomorphism, then one would expect the moduli space to be just

a point. We know a family of 1-dimensional vector spaces over a circle would give a

line bundle over the base variety S1. Also, it is well known that over a circle, we have

two non-isomorphic line bundles, namely, a cylinder and a Mobius strip. Therefore,

it is impossible for such a fine moduli space to exist. A more general case would be

the possibility of the existence of a moduli space Mg whose geometric points are the

isomorphism classes of smooth curves of genus g over a base scheme S, i.e. a scheme

Mg that represents the moduli functor

F : Sch ! Set

that assigns to a scheme S, the set of isomorphism classes of smooth curves of genus

g over S. Again, such a fine moduli space Mg would be impossible as some of these

curves have non-trivial automorphisms.

2.2 Hilbert scheme and Grothendieck Quot scheme

2.2.1 Hilbert scheme

While it is more natural to construct the Grothendieck Quot scheme first, and then

proceed to show how to obtain the Hilbert scheme from it, it is more insightful to

start with constructing the Hilbert scheme, and then proceed to the more general

Grothendieck Quot scheme. The treatment here is exactly the same as what a reader
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would find in [Qin, Nit]. Following the general discussion in the previous section,

we will resolve specific moduli problems in which their functors are representable by

schemes called Hilbert schemes and Grothendieck Quot schemes, respectively.

Let X be a quasi projective complex scheme over a locally noetherian scheme S,

i.e. we have a morphism µ : X ! S. Let OX(1) be a very ample line bundle on X.

Consider the contravarient functor

HilbX/S : Sch ! Set

given by

HilbX/S(U) : {Z ⇢ U ⇥S X | Z is a closed subscheme of U ⇥X, flat over U}.

For a morphism � : V ! U of locally noetherian S-schemes we have

HilbX/S(�) : HilbX/S(U) ! HilbX/S(V )

which sends Z to Z ⇥U V.

Let q : Z ! U be the projection, and u 2 U . We put Zu = q⇤(u). Then, the

Hilbert polynomial of Z at u is

pu(m) := � (OZu(m)) = � (OZu ⌦OX OX(m))

where pu is a polynomial in the variablem independent of the choice of u. LetHilbpX/S

be the subfunctor of HilbX/S that associates to U the set of closed subschemes of X

which are flat over U , and have Hilbert polynomial p. Then, we have the following

theorem that can be found in [Qin, Nit]:

10



Theorem 2.7. the functor HilbpX/S is represented by a projective scheme Hilbp
X/S,

called the Hilbert scheme.

From the discussion right after Definition 2.4, we should be able to describe a

universal family that comes with this Hilbert scheme. Specifically, there exists a

closed subscheme Z ⇢ Hilbp
X/S ⇥ X such that Z ! Hilbp

X/S is the universal family

in the following sense: if Z is flat family of closed subschemes in X parametrized by

U such that p is the Hilbert polynomial of the closed subschemes, then there exists a

unique morphism f : U ! Hilbp
X/S such that

Z = (f ⇥ IdX)
⇤Z.

Finally, if S = SpecC and the Hilbert polynomial p(m) = n is a constant positive

integer, then we drop S from the notation, call Hilbp
X the Hilbert scheme of n points

in X, and denote it by X [n].

2.2.2 Quot scheme

Similarly, I will briefly sketch the construction of Grothendieck Quot scheme. This

construction goes exactly as in [Nit]. Let X ! S be a finite type scheme over a

noetherian scheme S. Let E be a coherent sheaf on X. Let SchS be the category of

locally noetherian schemes T over S. A family of quotients of E parametrized by T

is a pair (F , q) consists of

1. a coherent sheaf F on XT = X ⇥S T such that the SuppF is proper over T and

F is flat over T , together with

2. a surjective OXT -linear homomorphism of sheaves q : ET ! F , ET = ⇡⇤(E)

where ⇡ : XT ! X is the projection.

11



Two families (F , q), and (G, f) parametrized by T are equivalent if ker(q) = ker(f).

We denote the equivalence class of (F , q) by < F , q >. The pull-back of < F , q >

under an S-morphism T 0 ! T is well defined. Therefore, we have a contravarient

functor denoted by QuotE/X/S from the category SchS to the category Set given by

QuotE/X/S(T ) = {All < F , q > parametrized by T}.

If E = OX , then the functor QuotOX/X/S associates to T the set of closed sub-

schemes Y ⇢ X ⇥S T that are proper and flat over T . Namely, this functor is the

functor HilbX/S(T ) defined above. As in the Hilbert scheme case, the Grothendieck

Quot scheme is the scheme representing the functor QuotE/X/S, and is denoted by

QuotE/X/S.

Let L be a relatively very ample line bundle on X. Let F be any coherent sheaf

on X whose schematic support is proper over S and which is flat over S. Let s 2 S

be a point, Xs be the fiber over the point s, and Fs be the restriction of F to Xs.

Then, the Hilbert polynomial is given by

ps(m) = � (Fs(m)) = �
�
Xs,Fs ⌦ L⌦m

s

�

where Ls is again the restriction of L to Xs. It is important to note as well that we

have the following decomposition

QuotE/X/S =
a

p

Quotp,LE/X/S.

We interpret the subfunctor Quotp,LE/X/S as follows: for any polynomial p(m) 2 Q[m],

12



Quotp,LE/X/S(T ) =

8
><

>:

all equivalence classes < F , q > such that for any t 2 T

the Hilbert polynomial of the restriction Ft computed

with respect to the pull-back of L is p(m).

9
>=

>;
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Chapter 3

Virtual Hodge polynomials and
Euler characteristics

Danilov and Khovanskii [DK] introduced virtual Hodge polynomials for reduced com-

plex schemes. These polynomials can be viewed as a convenient tool for computing

the Hodge numbers of smooth projective varieties by reducing to computing those of

simpler varieties. They can also be used to compute Euler characteristics. In this

chapter, we recall the basic properties of virtual Hodge polynomials.

First of all, let Y be a reduced complex scheme (not necessarily projective, irre-

ducible or smooth). Mixed Hodge structures are defined on the cohomology Hk
c (Y,Q)

with compact support (see [Del, DK]). The mixed Hodge structures coincide with the

classical one if Y is projective and smooth. For each pair of integers (m,n), define

the virtual Hodge number

em,n(Y ) =
X

k

(�1)khm,n(Hk
c (Y,Q)).

Then the virtual Hodge polynomial of Y is defined to be

e(Y ; s, t) =
X

m,n

em,n(Y )smtn. (3.0.1)

Next, for an arbitrary complex scheme Y , we put

e(Y ; s, t) = e(Yred; s, t) (3.0.2)
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following [Che]. By (3.0.2) and the results in [DK, Ful, Che] for reduced complex

schemes, we see that virtual Hodge polynomials satisfy the following properties:

(i) When Y is projective and smooth, e(Y ; s, t) is the usual Hodge polynomial of

Y . For a general complex scheme Y , we have

e(Y ; 1, 1) = �(Y ) (3.0.3)

where �(Y ) denotes the topological Euler number of Y .

(ii) If Y =
na

i=1

Yi is a finite disjoint union of locally closed subsets, then

e(Y ; s, t) =
nX

i=1

e(Yi; s, t). (3.0.4)

(iii) If f : Y ! Y 0 is a Zariski-locally trivial bundle with fiber F , then

e(Y ; s, t) = e(Y 0; s, t) · e(F ; s, t). (3.0.5)

(iv) If f : Y ! Y 0 is a bijective morphism, then

e(Y ; s, t) = e(Y 0; s, t). (3.0.6)

By the Lemma 5.6 in [Che] and the Theorem 4.1 in [LY], if Y is a reduced complex

scheme with a C⇤-action and if Y C⇤
denotes the set of fixed points, then

�(Y ) = �
�
Y C⇤�

. (3.0.7)
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Chapter 4

Torus actions on Hilbn(Cr, O)

4.1 r-dimensional partitions

In this section we introduce torus action following [LQ, Che]. This technique allows us

to reduce computations of M�,n (see Definition 5.9 ) to simpler computations of mod-

uli spaces MCr�1⇥C
⇠,n;n0

(see Definition 6.4), which will be further reduced to computations

of the punctual moduli spaces MCr

⇠,n;L,O (see chapters 6.1, and 6.2).

Definition 4.1.

(i) Let r � 2 and n � 0. An r-dimensional partition of n is an array

(ni1,...,ir�1)i1,...,ir�1 (4.1.1)

of nonnegative integers ni1,...,ir�1 indexed by the tuples

(i1, . . . , ir�1) 2 (Z�0)
r�1 (4.1.2)

such that

X

i1,...,ir�1

ni1,...,ir�1 = n, (4.1.3)

and ni1,...,ir�1 � nj1,...,jr�1 whenever i1  j1, . . . , ir�1  jr�1.

16



(ii) Let I be a finite subset of (Z�0)r�1. Then an I-punctual r-dimensional partitions

of n is an array

(ni1,...,ir�1)i1,...,ir�1 (4.1.4)

of nonnegative integers ni1,...,ir�1 indexed by the tuples

(i1, . . . , ir�1) 2 (Z�0)
r�1 � I

such that

X

i1,...,ir�1

ni1,...,ir�1 = n, (4.1.5)

and ni1,...,ir�1 � nj1,...,jr�1 whenever i1  j1, . . . , ir�1  jr�1.

(iii) Define P I
r (n) to be the number of I-punctual r-dimensional partitions of n. For

simplicity, we denote P I
r (n) by Pr(n), ePr(n), Ar(n), Br(n) when

I = ;,
�
(0, ..., 0)

 
,
�
(0, ..., 0), (1, 0, ...0)

 
,
�
(0, ..., 0), (1, 0, ..., 0), (0, ..., 0, 1)

 
,

respectively.

We remark that Definition 4.1 (i) is consistent with the one used in [MNOP1],

while our r-dimensional partitions are (r � 1)-dimensional partitions in [Che].

4.2 Generating series of plane partitions and torus
action

Lemma 4.2. The series
P+1

n=0 P
I
r (n)q

n is convergent if |q| < 1/r.

Proof. It su�ces to prove that

P I
r (n) 6 r · P I

r (n� 1). (4.2.1)
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Let SI
r (n) be the set of I-punctual r-dimensional partitions of n. Let

� = (ni1,...,ir�1)i1,...,ir�1 2 SI
r (n).

Define

j1 = max{i1|ni1,...,ir�1 > 0},

j2 = max{i2|nj1,i2,...,ir�1 > 0},

...

jr�1 = max{ir�1|nj1,...,jr�2,ir�1 > 0}.

By definition, nj1,...,jr�1 > 0. Define an element

f(�) = (mi1,...,ir�1)i1,...,ir�1 2 SI
r (n� 1)

by putting:

mi1,...,ir�1 =

⇢
ni1,...,ir�1 � 1, if (i1, . . . , ir�1) = (j1, . . . , jr�1)
ni1,...,ir�1 , otherwise.

This defines a map

f : SI
r (n) ! SI

r (n� 1).

Note that f is surjective. Moreover, |f�1(µ)| 6 r for each µ 2 SI
r (n� 1). Therefore,

we obtain (4.2.1).

Torus actions on the punctual Hilbert scheme Hilbn(Cr, O) have been studied in

[LQ, Che]. Let z1, . . . , zr be the coordinate functions of Cr. Then C⇤ acts on Cr by

t(z1, . . . , zr) = (tw1z1, . . . , t
wrzr), t 2 C⇤. (4.2.2)
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This C⇤-action on Cr induces a C⇤-action on Hilbn(Cr, O). Now choose w1, . . . , wr 2 Z

properly. Then, the C⇤-fixed points in Hilbn(Cr, O) are precisely those corresponding

to the colength-n ideals of C[z1, . . . , zr] generated by monomials. These ideals are

in one-to-one correspondence with r-dimensional partitions of n. Indeed, given an

r-dimensional partition (ni1,...,ir�1)i1,...,ir�1�0 of n, the ideal of C[z1, . . . , zr] generated

by the monomials zi11 · · · zir�1
r�1 z

ni1,...,ir�1
r has colength-n. Conversely, given a colength-n

ideal I of C[z1, . . . , zr] generated by monomials, we obtain an r-dimensional partition

(ni1,...,ir�1)i1,...,ir�1�0 of n by putting

ni1,...,ir�1 = min{ir| zi11 · · · zir�1
r�1 z

ir
r 2 I}. (4.2.3)

Therefore, by (3.0.7), we have (see the Proposition 5.1 in [Che]):

�
�
Hilbn(Cr, O)

�
= Pr(n). (4.2.4)

Proposition 4.3. We have

+1X

n=0

P2(n)q
n =

+1Y

n=1

1

1� qn
(4.2.5)

+1X

n=0

P3(n)q
n =

+1Y

n=1

1

(1� qn)n
(4.2.6)

+1X

n=0

P̃3(n)q
n =

1

1� q

+1X

n=0

P3(n)q
n. (4.2.7)

Proof. Formula (4.2.5) follows from the definition of P2(n). Formula (4.2.6) is known

as MacMahon’s formula. The formula and its proof can be found in [And]. Formula

(4.2.7) was proved in [LQ].

4.3 Important relation

In the following Proposition we prove an important relation that would be used later.
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Proposition 4.4. Let |q| < 1/3. Then

+1X

n=0

A3(n) q
n =

1

1� q
· 1

1� q2
·
+1X

n=0

P3(n) q
n.

Proof. We shall use notations and results from Sect. 11.2 of [And]. Identify our 3-

dimensional partitions with the plane partitions there, i.e., our 3-dimensional partition

(ni1,i2)i1,i2�0 is identified with the plane partition whose entry at the lattice point

(i1, i2), i1, i2 � 0 in the plane is equal to ni1,i2 . Similarly, our punctual 3-dimensional

partitions will correspond to the punctual plane partitions.

Let Sk,`(m,n), eSk,`(m,n), Sk,`(m,n), Ŝk,`(m,n) denote the sets of I-punctual plane

partitions of m with

I = ;, {(0, 0)}, {(0, 0), (1, 0)}, {(0, 0), (1, 0), (0, 1)}

respectively, and with at most ` columns, at most k rows, and with each entry  n.

Let pk,`(m,n) = |Sk,`(m,n)|, p̃k,`(m,n) = |eSk,`(m,n)|, pk,`(m,n) = |Sk,`(m,n)|, and

p̂k,`(m,n) = |Ŝk,`(m,n)|. Define the generating functions:

⇡k,`(n; q) =
+1X

m=0

pk,`(m,n) qm,

⇡̃k,`(n; q) =
+1X

m=0

p̃k,`(m,n) qm,

⇡k,`(n; q) =
+1X

m=0

pk,`(m,n) qm,

⇡̂k,`(n; q) =
+1X

m=0

p̂k,`(m,n) qm.

So

⇡+1,+1(+1; q) =
+1X

m=0

P3(m) qm, (4.3.1)
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⇡+1,+1(+1; q) =
+1X

m=0

A3(m) qm. (4.3.2)

Define

(q)i = (1� q)(1� q2) · · · (1� qi) (4.3.3)

for a positive integer i. By the Theorem 11.2 in [And],

⇡k,`(n; q) =
(q)1(q)2 · · · (q)k�1

(q)`(q)`+1 · · · (q)`+k�1

· (q)n+`(q)n+`+1 · · · (q)n+`+k�1

(q)n(q)n+1 · · · (q)n+k�1

. (4.3.4)

By (7.14) in [LQ], we have

⇡̃k,`(n; q) = q�n [⇡k,`(n; q)� ⇡k,`(n� 1; q)] . (4.3.5)

There is a relation among the numbers of di↵erent punctual plane partitions:

p̃k,l(m,n) = p̃k,l(m,n� 1) + 2pk,l(m� n, n)� p̂k,l(m� 2n, n)

which can be illustrated by the following diagram

2

6664

...
...

...
⇤ ⇤ ⇤ · · ·
⇤ ⇤ ⇤ · · ·

⇤ ⇤ · · ·

3

7775

with parts 6 n

=

2

6664

...
...

...
⇤ ⇤ ⇤ · · ·
⇤ ⇤ ⇤ · · ·

⇤ ⇤ · · ·

3

7775

with parts 6 n-1

+

2

6664

...
...

...
⇤ ⇤ ⇤ · · ·
⇤ ⇤ ⇤ · · ·

n ⇤ · · ·

3

7775

with parts 6 n

+

2

6664

...
...

...
⇤ ⇤ ⇤ · · ·
n ⇤ ⇤ · · ·

⇤ ⇤ · · ·

3

7775

with parts 6 n

�

2

6664

...
...

...
⇤ ⇤ ⇤ · · ·
n ⇤ ⇤ · · ·

n ⇤ · · ·

3

7775

with parts 6 n

.

In other words, every punctual plane partition with empty (0, 0)-entry and parts 6 n

is either a punctual plane partition with empty (0, 0)-entry and parts 6 (n� 1), or a

punctual plane partition with empty (0, 0)-entry, n at (1, 0)-entry and parts 6 n , or
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a punctual plane partition with empty (0, 0)-entry, n at (0, 1)-entry and parts 6 n.

Therefore

⇡̃k,`(n; q)

= ⇡̃k,`(n� 1; q) + 2
1X

m=0

pk,l(m� n, n)qm �
1X

m=0

p̂k,l(m� 2n, n)qm

= ⇡̃k,`(n� 1; q) + 2qn ·
1X

m=0

pk,l(m� n, n)qm�n � q2n ·
1X

m=0

p̂k,l(m� 2n, n)qm�2n

= ⇡̃k,`(n� 1; q) + 2qn · ⇡k,`(n; q)� q2n · ⇡̂k,`(n; q).

So

2qn · ⇡k,`(n; q)� q2n · ⇡̂k,`(n; q) = ⇡̃k,`(n; q)� ⇡̃k,`(n� 1; q).

Now, we want to use a parallel argument to the one found in [LQ]. To take the limits

k, `, n ! +1, we assume |q| < 1/3 in the rest of the proof. By (4.3.4), (4.3.5) and

the definition of (q)i from (4.3.3), we have

⇡k,`(n; q)�
qn

2
· ⇡̂k,`(n; q)

=
q�2n

2
· [⇡k,`(n; q)� ⇡k,`(n� 1; q)]� q�(2n�1)

2
· [⇡k,`(n� 1; q)� ⇡k,`(n� 2; q)]

=
⇡k,`(n� 2; q)

2
· q�2n · Ik,`(n; q)Qk�1

i=0 (1� qn+i�1) ·
Qk�1

i=0 (1� qn+i)
(4.3.6)

where Ik,`(n; q) is defined to be

q · (1� qn�1)(1� qn)2 · · · (1� qn+k�2)2 · (1� qn+k�1)

� (1 + q) ·
k�1Y

i=0

(1� qn+`+i�1) ·
k�1Y

i=0

(1� qn+i)

+ (1� qn+`�1)(1� qn+`)2 · · · (1� qn+`+k�2)2 · (1� qn+`+k�1).

It is straightforward to check that Ik,`(n; q) is equal to

q ·
⇣
qn�1(2qn + 2qn+1 + · · ·+ 2qn+k�2 + qn+k�1)
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+qn(qn + 2qn+1 + · · ·+ 2qn+k�2 + qn+k�1)

+qn(2qn+1 + · · ·+ 2qn+k�2 + qn+k�1)

+ · · ·

+qn+k�3(qn+k�3 + 2qn+k�2 + qn+k�1)

+qn+k�3(2qn+k�2 + qn+k�1)

+qn+k�2(qn+k�2 + qn+k�1)

+qn+k�2 · qn+k�1
⌘

� (1 + q) ·
⇣
qn · (qn+1 + · · ·+ qn+k�1)

+qn+1 · (qn+2 + · · ·+ qn+k�1) + · · ·+ qn+k�2 · qn+k�1
⌘

+ q2n+`�1 · fk,`(n, q) + q3n · fk(n, q)

where |fk(n, q)| < gk(q) and |fk,`(n, q)| < hk(q) for some functions gk(q) and hk(q) of

k and q. Therefore,

lim
k!+1

lim
n,`!+1

q�2nIk,n(n; q)

2

= 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + . . .

= (1 + q) · (1 + 2q2 + 3q4 + 4q6 + · · · )

= (1 + q) · 1

(1� q2)2

=
1

1� q
· 1

1� q2
.

Combining this with (4.3.6) and Lemma 4.2, we obtain

⇡+1,+1(+1; q) = ⇡+1,+1(+1; q) · 1

1� q
· 1

1� q2
.

23



By (4.3.1) and (4.3.2),

+1X

n=0

A3(n) q
n =

1

1� q
· 1

1� q2
·
+1X

n=0

P3(n) q
n.

Conjecture 4.5. Let |q| < 1/3, ` > 0 and I` = {(0, 0), · · · , (0, `)}. Then,

+1X

n=0

P I`
3 (n) qn =

`+1Y

i=1

1

1� qi
·
+1X

n=0

P3(n) q
n.

By (4.2.7) and Proposition 4.4, Conjecture 4.5 holds for ` = 0, 1.
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Chapter 5

The moduli spaces In(X, �) and
Md,n

5.1 Description of In(X, �) and Md,n

Let X be a smooth projective complex variety of dimension r. For a fixed class

� 2 H2(X;Z) and a fixed integer n, following the definitions and notations in [LQ],

we define In(X, �) to be the moduli space of 1-dimensional closed subschemes Z of

X satisfying the two conditions:

�(OZ) = n, [Z] = � (5.1.1)

where [Z] is the class associated to the dimension-1 component (weighted by their

intrinsic multiplicities) of Z.

Lemma 5.1. If dim(X) = 3, and H is a divisor on X, then

�(OZ(dH)) = ([Z] ·H) · d+ �(OZ) = (� ·H) · d+ n. (5.1.2)

Proof. By the Hirzebruch-Riemann-Roch formula, we have

�(OZ(dH)) = �(OZ ⌦OX(dH))
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= (ch(OZ ⌦OX(dH)) · td(TX))3

= (ch(OZ) · ch(OX(dH)) · td(TX))3

= ((0 + 0� c2(OZ) +
1

2
c3(OZ))

·(1 + dH +
1

2
d2H +

1

6
d3H3) · td(TX))3

= ((�c2(OZ) +
1

2
c3(OZ)� dH · c2(OZ)) · td(TX))3

= dH · [Z] + �(OZ)

since c2(OZ) = �[Z] = ��.

The degree-0 moduli space In(X, 0) is isomorphic to the Hilbert scheme X [n]

parametrizing length-n 0-dimensional closed subschemes ofX. In general, when � 6= 0

and when an ample divisor H on X is fixed, the space In(X, �) is only part of the

Hilbert scheme (see [Gro]) defined in terms of certain degree-1 Hilbert polynomial.

By Lemma 5.1, when dim(X) = 3, this degree-1 Hilbert polynomial is (� ·H) · d+ n.

By the Lemma 1 in [MNOP2], when dim(X) = 3, the virtual dimension of In(X, �)

is

�(� ·KX). (5.1.3)

In the rest of the paper, we adopt the following basic assumptions.

Assumption 5.2. We assume that X admits a Zariski-locally trivial fibration

µ : X ! S (5.1.4)

where S is a smooth projective variety, the fibers are smooth irreducible curves of

genus-g, and � 2 H2(X;Z) is the class of a fiber of µ.
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Let d, n � 0. Then,

Id(1�g)(X, d�) ⇠= S[d] (5.1.5)

where S[d] denotes the Hilbert scheme of d points on the variety S. Put

Md,n = Id(1�g)+n(X, d�). (5.1.6)

An element in Md,n denotes a 1-dimensional closed subscheme Z of X whose 1-

dimensional component is equal to some curve C⇠ 2 Md,0 (i.e, IZ ⇢ IC⇠
) such that

the quotient IC⇠
/IZ is supported at finitely many points in X with

h0(X, IC⇠
/IZ) = n.

Our goal is to determine, under Assumption 5.2, the partition function for the Euler

characteristics of the moduli spaces Md,n = Id(1�g)+n(X, d�), n � 0:

+1X

n=0

�
�
Md,n

�
qn. (5.1.7)

Lemma 5.3. Let Zd ⇢ S[d] ⇥ S be the universal codimension-2 subscheme, and

Quotn(Id
S[d]⇥µ)⇤IZd

/S[d]⇥X/S[d] be the Grothendieck Quot-scheme with the constant poly-

nomial n. Then, there exists an isomorphism

Md,n
⇠= Quotn(Id

S[d]⇥µ)⇤IZd
/S[d]⇥X/S[d] .

Proof. Note that every element in Md,n = Id(1�g)+n(X, d�) is of the form:

Z = ⌅+⇥ (5.1.8)

where ⌅ 2 X [n�n0] for some n0 satisfying 0  n0  n, Supp(⌅) \ Supp(⇥) = ;,

and the dimension-1 component ⇥ is equal to some curves C⇠ 2 Md,0 together with
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embedded points of length-n0 (i.e., I⇥ ⇢ IC⇠
and the quotient IC⇠

/I⇥ is supported at

finitely many points in C⇠ with h0(X, IC⇠
/I⇥) = n0). So we have a surjection

IC⇠
! IC⇠

/IZ ! 0

where the quotient IC⇠
/IZ is supported at finitely many points, and has length n.

It follows that the universal quotient over Quotn(Id
S[d]⇥µ)⇤IZd

/S[d]⇥X/S[d] induces a

bijective morphism �1 : Quotn(Id
S[d]⇥µ)⇤IZd

/S[d]⇥X/S[d] ! Md,n.

On the other hand, let Id,n be the universal ideal sheaf over Md,n ⇥ X. Let I 0
d,n

be the saturation of Id,n ⇢ OMd,n⇥X (see Definition 1.1.5 in [HL]). Then, I 0
d,n is a flat

family of ideal sheaves in Md,0
⇠= S[d], and fits in an exact sequence

0 ! Id,n ! I 0
d,n ! Q ! 0

over Md,n ⇥ X. Now the flat family I 0
d,n and the quotient I 0

d,n ! Q ! 0 induces a

morphism �2 : Md,n ! Quotn(Id
S[d]⇥µ)⇤IZd

/S[d]⇥X/S[d] which is inverse to �1.

In view of Lemma 5.3, we will make no di↵erence between Md,n and the Quot-

scheme Quotn(Id
S[d]⇥µ)⇤IZd

/S[d]⇥X/S[d] . In particular, we have a natural morphism:

Md,n ! S[d]. (5.1.9)

Moreover, over Md,n ⇥X, there exists a universal quotient

p⇤d,nIZd
! Q ! 0 (5.1.10)

where pd,n is the composition of the morphism Md,n ⇥ X ! S[d] ⇥ X induced from

(5.1.9) and the morphism IdS[d] ⇥ µ : S[d] ⇥X ! S[d] ⇥ S.

Definition 5.4. Let � and g be from Assumption 5.2. Let 0  n0  n.
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(i) We define Md,n;n0 to be the locally closed subset of Md,n consisting of all the

elements Z = ⌅+⇥ from (5.1.8) such that h0(X, IC⇠
/I⇥) = n0.

(ii) Let C be a union of fibers of X ! S. Fix a point x 2 C. We define Md,n;C

(respectively, Md,n;C,x) to be the closed subset of Md,n;n consisting of all the ele-

ments Z = ⌅+⇥ from (5.1.8) such that ⌅ = ;, and Supp(⇥) = C (respectively,

the embedded points in ⇥ are supported at x).

(iii) Let C be a union of fibers of X ! S. Fix a point x 2 C. Define X [n],n0

C to be the

locally closed subset of X [n] consisting of all the elements ⌅ = ⌅1 + ⌅2 2 X [n]

such that Supp(⌅1) \ C = ;, Supp(⌅2) ⇢ C, and `(⌅2) = n0. Define X [n]
C =

X [n],n
C , and define X [n]

x to be the closed subset of X [n] consisting of all ⌅ 2 X [n]

such that Supp(⌅) = {x} (i.e., X [n]
x is the punctual Hilbert scheme at x).

Remark 5.5. To emphasis the dependence on X, we will also denote the notations

Md,n, Md,n;n0 , Md,n;C , . . . by MX
d,n, M

X
d,n;n0

, MX
d,n;C , . . . respectively.

Let S(d) be the d-th symmetric product of S.

Definition 5.6. For 0  n0  n, define Zd,n;n0 to be the locally closed subset of

X [n] ⇥ S(d) consisting of all pairs (⌅, ⇠) such that

⌅ = ⌅1 + ⌅2,

Supp(⌅1) \ µ�1(Supp(⇠)) = ;, Supp(⌅2) ⇢ µ�1(Supp(⇠)), and `(⌅1) = n0. Put

Wd,n = Zd,n;n and Td,n = Zd,n;0.

Lemma 5.7. Let 0  n0  n. Then there exists a bijective morphism:

Wd,n�n0 ⇥S(d) Md,n0;n0 ! Md,n;n0 .
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Proof. Let ⇡1 and ⇡2 be the two projections of Wd,n�n0 ⇥S(d) Md,n0;n0 .

Over Md,n0;n0 ⇥X, there exists a universal quotient

p⇤d,n0
IZd

! Q1 ! 0. (5.1.11)

So over (Wd,n�n0 ⇥S(d) Md,n0;n0)⇥X, we have a surjection:

(⇡2 ⇥ IdX)
⇤p⇤d,n0

IZd
! (⇡2 ⇥ IdX)

⇤Q1 ! 0. (5.1.12)

Also, over X [n�n0] ⇥X, we have a universal quotient:

OX[n�n0]⇥X ! Q2 ! 0. (5.1.13)

Hence, over (Wd,n�n0 ⇥S(d) Md,n0;n0)⇥X, we have another surjection:

O(Wd,n�n0
⇥

S(d)Md,n0;n0
)⇥X ! ⇡⇤Q2 ! 0 (5.1.14)

where ⇡ is the composition:

(Wd,n�n0 ⇥S(d) Md,n0;n0)⇥X ! Wd,n�n0 ⇥X ! X [n�n0] ⇥X.

Note:

Supp((⇡2 ⇥ IdX)
⇤Q1) ⇢ (⇡2 ⇥ IdX)

�1p�1
d,n0

(Zd), (5.1.15)

(⇡2 ⇥ IdX)
�1p�1

d,n0
(Zd) \ Supp(⇡⇤Q2) = ;. (5.1.16)

So we get a surjection:

(⇡2 ⇥ IdX)
⇤p⇤d,n0

IZd
! (⇡2 ⇥ IdX)

⇤Q1 � ⇡⇤Q2 ! 0, (5.1.17)

and the quotient is flat overWd,n�n0⇥S(d)Md,n0;n0 . This surjection induces a morphism
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 : Wd,n�n0 ⇥S(d) Md,n0;n0 ! Md,n. (5.1.18)

One checks that im( ) = Md,n;n0 and  is injective.

Remark 5.8. Similarly, there exists a bijective morphism:

Wd,n0 ⇥S(d) Td,n�n0 ! Zd,n;n0 . (5.1.19)

Let � = (�1 � . . . � �`) be a partition of d. Let S(�) be the locally closed subset

of the d-th symmetric product S(d) consisting of all the elements of the form

⇠ = �1s1 + . . .+ �`s`

where s1, . . . , s` are distinct points in S.

Definition 5.9. Let � ` d be a partition of d. We define M�,n to be the locally

closed subset of Md,n consisting of all the elements Z = ⌅ + ⇥ in (5.1.8) such

that the support of ⇥ is equal to µ⇤(⇠) for some ⇠ 2 S(�). We adopt similar no-

tations M�,n;n0 ,M�,n;C ,M�,n;C,x, Z�,n;n0 ,W�,n, T�,n as those in Definition 5.4 and Def-

inition 5.6.

By Definition 5.9, we have the following decompositions:

Md,n =
a

�`d
M�,n, (5.1.20)

M�,n =
na

n0=0

M�,n;n0 . (5.1.21)

Moreover, as in Lemma 5.7 and Remark 5.8, we have the following bijective mor-

phisms:

W�,n�n0 ⇥S(�) M�,n0;n0 ! M�,n;n0 , (5.1.22)
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W�,n0 ⇥S(�) T�,n�n0 ! Z�,n;n0 . (5.1.23)

Let d=2. Then, there are exactly two partitions of d=2: (2), (12). So by (5.1.20)

and (5.1.21) , we have

M2,n = M(2),n

a
M(12),n, (5.1.24)

M(12),n =
na

n0=0

M(12),n,n0 , (5.1.25)

M(2),n =
na

n0=0

M(2),n,n0 . (5.1.26)

5.2 Various bijective morphisms

Now we fix some notations. Let C denote a fixed fiber of the fibration µ : X ! S.

Let m = dim(X)� 1 = r � 1, O be the origin of Cm, and C0 = {O}⇥ C.

The following is Proposition 4.3 in [LQ].

Proposition 5.10. Let O be the origin of Cm and C0 = {O}⇥ C. Let f : U ! Cm

be an étale morphism. Then there exists a bijective morphism over U :

 f : MCm⇥C
1,n;C0

⇥ U ! MU⇥C
1,n;n .

The goal of this section is to generalize Proposition 5.10 to the case when � = (2).

Lemma 5.11. There exists a bijective morphism over Cm:

 : MCm⇥C
(2),n;C0

⇥ Cm ! MCm⇥C
(2),n;n.

Proof. Let X0 = Cm ⇥ C. We view X0 as a fibration over Cm with the projection

X0 = Cm ⇥ C ! Cm. Over MX0
(2),n;C0

⇥X0, there exists a universal quotient

F0 ! Q0 ! 0 (5.2.1)
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where F0 is the pull-back of the universal sheaf coming from the punctual Hilbert

scheme Hilb2(Cm, O)⇥ Cm. Let

� : Cm ⇥ Cm ! Cm

be the subtraction: �(u, v) = u� v. Let ⌃ = Id
M

X0
(2),n;C0

⇥ � ⇥ IdC :

MX0
(2),n;C0

⇥Cm⇥X0 = MX0
(2),n;C0

⇥Cm⇥Cm⇥C ! MX0
(2),n;C0

⇥Cm⇥C = MX0
(2),n;C0

⇥X0.

Then we obtain a commutative diagram of morphisms:

MX0
(2),n;C0

⇥ Cm ⇥X0
⌃! MX0

(2),n;C0
⇥X0

# ⇡ #
Cm ⇥ Cm �! Cm

where the two vertical morphisms are the natural projections. We have overMX0
(2),n;C0

⇥

Cm ⇥X0 a quotient

⌃⇤F0 ! ⌃⇤Q0 ! 0. (5.2.2)

Let u 2 Cm. The restriction of (5.2.2) to MX0
(2),n;C0

⇥ {u}⇥X0
⇠= MX0

(2),n;C0
⇥X0 is

⌃⇤
uF0 ! ⌃⇤

uQ0 ! 0

where ⌃u is the automorphism of MX0
(2),n;C0

⇥X0 = MX0
(2),n;C0

⇥ Cm ⇥ C induced by

�u : Cm ! Cm

with �u(v) = u� v. By the universal property, (5.2.2) induces a morphism:

 : MX0
(2),n;C0

⇥ Cm ! MX0
(2),n;n.

The morphism  is bijective since every ⌃u is an automorphism.

33



Let U be a smooth variety. Let

M2(U) = {⇠ 2 (U)[2]|⇠ is supported at one point}.

Since U ⇠= U ((2)), the natural morphism MU⇥C
(2),n;n ! U ((2)) ⇢ U (2) induces the mor-

phism MU⇥C
(2),n;n ! U .

Lemma 5.12. Let f : U ! Cm be an étale morphism. Then there exists a bijective

morphism e f : MCm⇥C
(2),n;n ⇥Cm U ! MU⇥C

(2),n;n over U .

Proof. Let X = U ⇥ C and X0 = Cm ⇥ C. Then there exists a universal quotient

(⇡0)
⇤IZ2(Cm) ! Q ! 0 (5.2.3)

over MX0
(2),n;n ⇥ X0, where Z2(Cm) is the universal subscheme of M2(Cm) ⇥ Cm and

⇡0 is the composition:

MX0
(2),n;n ⇥X0 ! M2(Cm)⇥X0 = M2(Cm)⇥ (Cm ⇥ C) ! M2(Cm)⇥ Cm.

The projection MX0
(2),n;n⇥CmU ! MX0

(2),n;n and the morphism f⇥IdC : X ! X0 induce

F :
�
MX0

(2),n;n ⇥Cm U
�
⇥X ! MX0

(2),n;n ⇥X0.

Moreover it is known that there exists a bijective morphism over U :

M2(Cm)⇥Cm U M2(U).

U

g

(5.2.4)

Let f̃ be the follwing morphism which is induced by f :

�
M2(Cm)⇥Cm U

�
⇥ U �!

�
M2(Cm)⇥Cm Cm

�
⇥ Cm = M2(Cm)⇥ Cm.
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We have a commutative diagram:

�
MX0

(2),n;n ⇥Cm U
�
⇥X (M2(Cm)⇥Cm U)⇥ U M2(U)⇥ U

MX0
(2),n;n ⇥X0 M2(Cm)⇥ Cm

⇡ g ⇥ IdU

⇡0

F f̃

(5.2.5)

Pulling-back the surjection (5.2.3) via F , we obtain the surjection

F ⇤(⇡0)
⇤IZ2(Cm) ! F ⇤Q ! 0

over
�
MX0

(2),n;n ⇥Cm U
�
⇥X. Since F ⇤(⇡0)⇤ = (⇡0 �F )⇤ = (f̃ � ⇡)⇤ = ⇡⇤f̃ ⇤, we have the

surjection:

⇡⇤f̃ ⇤IZ2(Cm) ! F ⇤Q ! 0 (5.2.6)

over
�
MX0

(2),n;n ⇥Cm U
�
⇥X. Note that

(g ⇥ IdU)
�1(Z2(U)) = {(⇠, u; u) 2 (M2(Cm)⇥Cm U)⇥ U |Supp(⇠) = f(u)},

f̃�1(Z2(Cm)) = {(⇠, u1; u2) 2 (M2(Cm)⇥Cm U)⇥ U |Supp(⇠) = f(u1) = f(u2)}.

Since f : U ! Cm is étale, we conclude that f̃�1(Z2(Cm)) is the disjoint union of

(g ⇥ IdU)�1(Z2(U)) and some other irreducible components. Hence,

⇡⇤f̃ ⇤IZ2(Cm)|⇡�1(g⇥IdU )�1(Z2(U)) = ⇡⇤I(g⇥IdU )�1(Z2(U))|⇡�1(g⇥IdU )�1(Z2(U))

= ⇡̃⇤IZ2(U)|⇡̃�1(Z2(U))

where ⇡̃ = (g ⇥ IdU) � ⇡. So we obtain a surjection over
�
MX0

(2),n;n ⇥Cm U
�
⇥X:

⇡̃⇤IZ2(U) ! ⇡̃⇤IZ2(U)|⇡̃�1(Z2(U)) ! F ⇤Q|⇡̃�1(Z2(U)) ! 0. (5.2.7)

One checks that F ⇤Q|⇡̃�1(Z2(U)) is flat overM
X0
(2),n;n⇥CmU and that the quotient (5.2.7)

induces a morphism:

e f : MX0
(2),n;n ⇥Cm U ! MX

(2),n;n
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over U . Using the completions of the points in U , we see that e f is bijective.

Parallel to Proposition 5.10 we have

Proposition 5.13. Let O be the origin of Cm and C0 = {O}⇥ C. Let f : U ! Cm

be an étale morphism. Then there exists a bijective morphism over U :

 f : MCm⇥C
(2),n;C0

⇥ U ! MU⇥C
(2),n;n.

Proof. Follows from Lemmas 5.11 and 5.12 by putting  f = e f � ( ⇥Cm IdU).
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Chapter 6

Reducing the problem and the
computation of �(M(2),n)

6.1 Reduction to the local model Cr�1 ⇥ C

Lemma 6.1. Let O be the origin of Cr�1 and C0 = {O}⇥ C. Then,

+1X

n=0

e(M(2),n; s, t) q
n =

+1X

n=0

e(W(2),n; s, t) q
n ·

+1X

n=0

e(MCr�1⇥C
(2),n;C0

; s, t) qn. (6.1.1)

Proof. By (5.1.26), (5.1.22), (3.0.4) and (3.0.6), we obtain:

e(M(2),n; s, t) =
nX

n0=0

e(M(2),n;n0 ; s, t) =
nX

n0=0

e(W(2),n�n0 ⇥S((2)) M(2),n0;n0 ; s, t).

Since S((2)) ⇠= S, we have

e(M(2),n; s, t) =
nX

n0=0

e(W(2),n�n0 ⇥S M(2),n0;n0 ; s, t). (6.1.2)

Consider the commutative diagram for the fiber product W(2),n�n0 ⇥S M(2),n0;n0 :

W(2),n�n0 ⇥S M(2),n0;n0 �! M(2),n0;n0

# �1 # �2

W(2),n�n0 �! S.
(6.1.3)

By the Proposition I.3.24 in [Mil], there exist an open a�ne cover {Ui}i of S and

étale morphisms fi : Ui ! Cr�1. By Proposition 5.13, we see that for each i, there

exists a bijective morphism over the open a�ne subset Ui:

 fi : M
Cr�1⇥C
(2),n0;C0

⇥ Ui ! (�2)
�1(Ui).

37



So there exist a decomposition S =
a

i

Si of locally closed subsets Si and bijective

morphisms  Si : M
Cr�1⇥C
(2),n0;C0

⇥Si ! (�2)�1(Si). By (6.1.3), there exist a decomposition

W(2),n�n0 =
a

i

W(2),n�n0;i

of locally closed subsets W(2),n�n0;i and bijective morphisms

 W(2),n�n0;i
: MCr�1⇥C

(2),n0;C0
⇥W(2),n�n0;i ! (�1)

�1(W(2),n�n0;i).

Combining this with (3.0.4) and (3.0.6), we conclude that

e(W(2),n�n0 ⇥S M(2),n0;n0 ; s, t) =
X

i

e
�
(�1)

�1(W(2),n�n0;i); s, t
�

=
X

i

e
�
MCr�1⇥C

(2),n0;C0
⇥W(2),n�n0;i; s, t

�

=
X

i

e(W(2),n�n0;i; s, t) · e(MCr�1⇥C
(2),n0;C0

; s, t)

= e(W(2),n�n0 ; s, t) · e(MCr�1⇥C
(2),n0;C0

; s, t). (6.1.4)

By (6.1.2) and (6.1.4),

+1X

n=0

e(M(2),n; s, t) q
n =

+1X

n=0

nX

n0=0

e(W(2),n�n0 ; s, t)q
n�n0 · e(MCr�1⇥C

(2),n0;C0
; s, t)qn0

=
+1X

n=0

e(W(2),n; s, t) q
n ·

+1X

n=0

e(MCr�1⇥C
(2),n;C0

; s, t) qn.

Lemma 6.2. Let O be the origin of Cr�1 and C0 = {O}⇥ C. Then,

+1X

n=0

e(X [n] ⇥ S; s, t)qn =
+1X

n=0

e(W(2),n; s, t)q
n ·

+1X

n=0

e
�
(Cr�1 ⇥ C)[n]C0

; s, t
�
qn. (6.1.5)

Proof. By Definition 5.9,

X [n] ⇥ S(�) =
na

n0=0

Z�,n;n0 . (6.1.6)
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So

e
�
X [n] ⇥ S; s, t

�
= e

�
X [n] ⇥ S((2)); s, t

�
=

nX

n0=0

e
�
Z(2),n;n0 ; s, t). (6.1.7)

By (5.1.23), we have an analogue of (6.1.2):

e(X [n] ⇥ S; s, t) =
nX

n0=0

e(W(2),n�n0 ⇥S T(2),n0 ; s, t). (6.1.8)

Let � be a partition of n0, denoted by � ` n0. Express � as � = (�1, . . . ,�`) where

�1 � . . . � �` and �1 + . . .+ �` = n0. We define T(2),� to be the locally closed subset

of T(2),n0 consisting of all the pairs (⌅, s) such that ⌅ = ⌅1 + . . .+ ⌅` where

Supp(⌅i) = {xi} ⇢ µ�1(s),

`(⌅i) = �i, and the points x1, . . . , x` are distinct. Then,

e(X [n] ⇥ S; s, t) =
nX

n0=0

X

�`n0

e(W(2),n�n0 ⇥S T(2),�; s, t). (6.1.9)

Using the Lemma 2.1.4 in [Go2], we can prove that the natural morphism T(2),� ! S

is a Zariski-locally trivial fibration with fibers isomorphic to (Cr�1 ⇥ C)�C0
. Here

(Cr�1 ⇥ C)�C0
denotes the locally closed subset of (Cr�1 ⇥ C)[n0]

C0
consisting of

⌅0 = ⌅0
1 + . . .+ ⌅0

`

where Supp(⌅0
i) = {x0

i} ⇢ C0, `(⌅0
i) = �i, and x0

1, . . . , x
0
` are distinct. Hence

e(X [n] ⇥ S; s, t) =
nX

n0=0

X

�`n0

e(W(2),n�n0 ; s, t) · e
�
(Cr�1 ⇥ C)�C0

; s, t
�

=
nX

n0=0

e(W(2),n�n0 ; s, t) ·
X

�`n0

e
�
(Cr�1 ⇥ C)�C0

; s, t
�

=
nX

n0=0

e(W(2),n�n0 ; s, t) · e
�
(Cr�1 ⇥ C)[n0]

C0
; s, t

�
,
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where we used the fact that (Cr�1 ⇥ C)[n0]
C0

is the disjoint union of the locally closed

subsets (Cr�1 ⇥ C)�C0
,� ` n0. Therefore,

+1X

n=0

e(X [n] ⇥ S; s, t)qn =
+1X

n=0

nX

n0=0

e(W(2),n�n0)q
n0�n · e

�
(Cr�1 ⇥ C)[n0]

C0
; s, t

�
qn0

=
+1X

n=0

e(W(2),n; s, t)q
n ·

+1X

n=0

e
�
(Cr�1 ⇥ C)[n]C0

; s, t
�
qn.

Proposition 6.3. Let O be the origin of Cr�1 and C0 = {O}⇥ C. Then,

+1X

n=0

e(M(2),n; s, t) q
n =

+1X

n=0

e(X [n]; s, t) qn · e(S; s, t) ·
P+1

n=0 e(M
Cr�1⇥C
(2),n;C0

; s, t) qn

P+1
n=0 e

�
(Cr�1 ⇥ C)[n]C0

; s, t
�
qn

.

Proof. By (6.1), we have

+1X

n=0

e(M(2),n; s, t) q
n =

+1X

n=0

e(W(2),n; s, t) q
n ·

+1X

n=0

e(MCr�1⇥C
(2),n;C0

; s, t)qn .(6.1.10)

By Lemma 6.2 and (2.5) we have

+1X

n=0

e(W(2),n; s, t)q
n =

P+1
n=0 e(X

[n] ⇥ S; s, t)qn
P+1

n=0 e
�
(Cr�1 ⇥ C)[n]C0

; s, t
�
qn

, (6.1.11)

e(X [n] ⇥ S; s, t) = e(X [n]; s, t) · e(S; s, t). (6.1.12)

By combining (6,11),(6,12) with (6,10) the result follows.

Following Chapter 4, choose a C⇤-action on Cr�1 such that (Cr�1)C
⇤
= {O} and

the induced C⇤-action on the punctual Hilbert scheme Hilb2(Cr�1, O) has finitely

many fixed points. Let z1, ..., zr�1 be the coordinates of Cr�1. Then the elements in

(Hilb2
�
Cr�1, O

��C⇤
are in one-to-one correspondence with the following ideals:

(z21 , z2, . . . , zr�2, , zr�1), . . . , (z1, z2, . . . , zr�2, z
2
r�1). (6.1.13)
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Let C⇤ act on Cr�1 ⇥ C by acting on C trivially. Then C⇤-action induces an action

on the moduli space MCr�1⇥C
(2),n;C0

. Now, if ⇥ 2
�
MCr�1⇥C

(2),n;C0

�C⇤
, then the 1-dimensional

component of ⇥ is equal to µ⇤⇠ for some ⇠ 2
�
Hilb2

�
Cr�1, O

��C⇤
.

Definition 6.4. For each ⇠ 2
�
Hilb2

�
Cr�1, O

��C⇤
, define

MCr�1⇥C
⇠,n;C0

= {⇥ 2 MCr�1⇥C
(2),n;C0

| the 1-dimensional component of ⇥ is equal to µ⇤⇠}.

Then, each MCr�1⇥C
⇠,n;C0

admits a C⇤-action. Moreover,

�
MCr�1⇥C

(2),n;C0

�C⇤
=

a

⇠2
�
Hilb2

�
Cr�1,O

��C⇤

�
MCr�1⇥C

⇠,n;C0

�C⇤
. (6.1.14)

By (3.0.7),

�
�
MCr�1⇥C

(2),n;C0

�
= �

��
MCr�1⇥C

(2),n;C0

�C⇤�

=
X

⇠2
�
Hilb2

�
Cr�1,O

��C⇤
�
��
MCr�1⇥C

⇠,n;C0

�C⇤�

=
X

⇠2
�
Hilb2

�
Cr�1,O

��C⇤
�
�
MCr�1⇥C

⇠,n;C0

�
. (6.1.15)

Lemma 6.5. Fix an element ⇠ 2
�
Hilb2

�
Cr�1, O

��C⇤
.Then,

+1X

n=0

�
�
MCr�1⇥C

(2),n;C0

�
qn = (r � 1) ·

+1X

n=0

�
�
MCr�1⇥C

⇠,n;C0

�
qn. (6.1.16)

Proof. By (6.1.15) we have

+1X

n=0

�
�
MCr�1⇥C

(2),n;C0

�
qn =

+1X

n=0

X

⌘2
�
Hilb2

�
Cr�1,O

��C⇤
�
�
MCr�1⇥C

⌘,n;C0

�
qn

=
X

⌘2
�
Hilb2

�
Cr�1,O

��C⇤

+1X

n=0

�
�
MCr�1⇥C

⌘,n;C0

�
qn.

By (6.1.13), up to isomorphisms, MCr�1⇥C
⌘,n;C0

is independent of ⌘ 2
�
Hilb2

�
Cr�1, O

��C⇤
.

So
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+1X

n=0

�
�
MCr�1⇥C

(2),n;C0

�
qn = |

�
Hilb2

�
Cr�1, O

��C⇤
| ·

+1X

n=0

�
�
MCr�1⇥C

⇠,n;C0

�
qn

= (r � 1) ·
+1X

n=0

�
�
MCr�1⇥C

⇠,n;C0

�
qn.

6.2 Reduction to the punctual cases

From Proposition 6.3 and Lemma 6.5 we see that it su�ces to compute the virtual

Hodge polynomials of MCr�1⇥C
⇠,n;C0

and (Cr�1 ⇥ C)[n]C0
. These spaces are similar to the

Hilbert scheme X [n] in the sense that they are all built up from the punctual cases.

Cheah developed a method of computing virtual Hodge polynomials to deal with this

kind of situation. In order to apply the method to MCr�1⇥C
⇠,n;C0

and (Cr�1 ⇥ C)[n]C0
, we

will follow the presentation in Section 6 in [LQ] of Cheah’s original approach in [Che]

for the case of X [n].

Let Hilbn(Cr, O) be the punctual Hilbert scheme of Cr at the origin. Then there

exist unique rational numbers H`,m,n such that

+1X

n=0

e(Hilbn(Cr, O); s, t)qn =
+1Y

`=1

+1Y

m,n=0

✓
1

1� q`smtn

◆H`,m,n

(6.2.1)

as elements in Q[s, t][[q]]. Define hr(q, s, t) 2 Q[s, t][[q]] to be the power series:

hr(q, s, t) =
+1X

`=1

 
+1X

m,n=0

H`,m,ns
mtn

!
q`. (6.2.2)

Then the main result proved in [Che] states that

+1X

n=0

e(X [n]; s, t)qn = exp

 
+1X

n=1

1

n
e(X; sn, tn)hr(q

n, sn, tn)

!
. (6.2.3)

The key ingredients in Cheah’s proof of (6.2.3) can be summarized as follows:
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(A) Each element ⌅ 2 X [n] can be uniquely decomposed into ⌅(1) + . . .+⌅(`) where

every ⌅(i) 2 X [ni] is supported at a single point in X, n1 + . . . + n` = n, and

the supports of ⌅(1), . . . ,⌅(`) are mutually distinct.

(B) Every X [n]
x is isomorphic to Hilbn(Cr, O). Let X [n]

(n) be the closed subscheme

of X [n] consisting of all ⌅ 2 X [n] such that Supp(⌅) is a single point of X.

Then the natural morphism X [n]
(n) ! X sending ⌅ 2 X [n]

(n) to Supp(⌅) 2 X is

Zariski-locally trivial with fibers isomorphic to Hilbn(Cr, O).

(C) Using certain combinatorial arguments independent of X, one reduces the com-

putation to the virtual Hodge polynomials of X and Hilbn(Cr, O) which con-

tribute to the terms e(X; sn, tn) and hr(qn, sn, tn) in (6.2.3) respectively.

It follows that we can apply Cheah’s arguments to the computations of

+1X

n=0

e
�
(Cr�1 ⇥ C)[n]C0

; s, t
�
qn,

+1X

n=0

e(MCr�1⇥C
⇠,n;C0

; s, t) qn

in a straightforward fashion. For
+1X

n=0

e
�
(Cr�1 ⇥ C)[n]C0

; s, t
�
qn, we have

(A1) Each element ⌅ 2 (Cr�1 ⇥ C)[n]C0
can be uniquely decomposed into

⌅(1) + . . .+ ⌅(`)

where each ⌅(i) 2 (Cr�1 ⇥ C)[ni]
C0

is supported at a single point in C0,

n1 + . . .+ n` = n,

and the supports of ⌅(1), . . . ,⌅(`) are mutually distinct.
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(B1) Every (Cr�1 ⇥ C)[n]x , x 2 C0 is isomorphic to Hilbn(Cr, O). The natural mor-

phism

[

x2C0

(Cr�1 ⇥ C)[n]x ! C0

sending ⌅ 2
S

x2C0
(Cr�1 ⇥ C)[n]x to Supp(⌅) 2 C0 is Zariski-locally trivial with

fibers isomorphic to Hilbn(Cr, O).

(C1) The same combinatorial arguments from (C) reduces the computation to the

virtual Hodge polynomials of C0 and Hilbn(Cr, O).

Therefore, we conclude as in (6.2.3) the following formula:

+1X

n=0

e
�
(Cr�1 ⇥ C)[n]C0

; s, t
�
qn = exp

 
+1X

n=1

1

n
e(C0; s

n, tn)hr(q
n, sn, tn)

!
. (6.2.4)

The next lemma is from [LQ].

Lemma 6.6. Let C0 = {O}⇥ C ✓ Cr�1 ⇥ C. Then,

+1X

n=0

�
�
(Cr�1 ⇥ C)[n]C0

�
qn =

� +1X

n=0

�
�
Hilbn(Cr, O)

�
qn
�2�2g

. (6.2.5)

Proof. By (3.0.3),

e(C0; 1, 1) = �(C0) = �(C) = 2� 2g.

Also, by (6.2.1) and (6.2.2),

exp

 
+1X

n=1

1

n
hr(q

n, 1, 1)

!
=

+1X

n=0

�
�
Hilbn(Cr, O)

�
qn.

By (3.0.3) and (6.2.4),

+1X

n=0

�
�
(Cr�1 ⇥ C)[n]C0

�
qn =

+1X

n=0

e
�
(Cr�1 ⇥ C)[n]C0

; 1, 1
�
qn

= exp

 
+1X

n=1

1

n
e(C0; 1, 1)hr(q

n, 1, 1)

!
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= exp

 
+1X

n=1

1

n
(2� 2g)hr(q

n, 1, 1)

!

=
� +1X

n=0

�
�
Hilbn(Cr, O)

�
qn
�2�2g

.

Lemma 6.7 below is also from [LQ].

Lemma 6.7. Let C0 = {O} ⇥ C ⇢ Cr�1 ⇥ C. Let L = {z1 = .. = zr�1 = 0} ⇢ Cr.

Then,

+1X

n=0

�(MCr�1⇥C
1,n;C0

)qn =

 
+1X

n=0

�(MCr

1,n;L,O)q
n

!2�2g

where MCr

1,n;L,O parametrizes all the 1-dimensional closed subschemes ⇥ of Cr such

that I⇥ ⇢ IL, Supp
�
IL/I⇥

�
= {O}, and h0(Cr, IL/I⇥) = n.

Next, we fix ⇠ 2
�
Hilb2(Cr�1, O)

�C⇤
. Let MCr�1⇥C

⇠,n;C0
be from Definition 6.4. For the

computation of
+1X

n=0

e(MCr�1⇥C
⇠,n;C0

; s, t) qn, we have

(A2) Let ⇥ 2 MCr�1⇥C
⇠,n;C0

. By the definition of MCr�1⇥C
⇠,n;C0

, the quotient Iµ⇤⇠/I⇥ is sup-

ported at finitely many points in C0. Put

Iµ⇤⇠/I⇥ = Q1 � · · ·�Q`

where eachQi is supported at a single point in C0, and the supports ofQ1, . . . , Q`

are mutually distinct. Let f : Iµ⇤⇠ ! Iµ⇤⇠/I⇥ be the quotient map. For

1  i  `, define the subscheme ⇥(i) by putting

I⇥(i) = f�1(Qi).
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Then ⇥ 2 MCr�1⇥C
⇠,n;C0

gives rise to ⇥(1), . . . ,⇥(`). It is clear that the process can

be reversed. Hence ⇥ 2 MCr�1⇥C
⇠,n;C0

can be formally written as

⇥ = ⇥(1) + . . .+⇥(`)

in a unique way, where ⇥(i) 2 MCr�1⇥C
⇠,ni;C0

for 1  i  `, n1 + . . . + n` = n, each

quotient Iµ⇤⇠/I⇥i is supported at a single point in C0, and the supports of the

quotients Iµ⇤⇠/I⇥1 , . . . , Iµ⇤⇠/I⇥`
are mutually distinct.

(B2) Let x 2 C0. Since C is a smooth curve in X, we have an isomorphism

MCr�1⇥C
⇠,n;C0,x

⇠= MCr

⇠,n;L,O (6.2.6)

between the punctual moduli spaces, where

{L = (0, ..., 0, a)|a 2 C} ⇢ Cr,

O is the origin of Cr, and MCr

⇠,n;L,O parametrizes all the 1-dimensional closed

subschemes ⇥ of Cr such that I⇥ ⇢ Iµ⇤⇠, Supp
�
Iµ⇤⇠/I⇥

�
= {O}, and

h0(Cr, Iµ⇤⇠/I⇥) = n.

Let MCr�1⇥C
⇠,(n);C0

be the subset of MCr�1⇥C
⇠,n;C0

consisting of all ⇥ 2 MCr�1⇥C
⇠,n;C0

such that

Supp(Iµ⇤⇠/I⇥) is a single point in C0. By the construction in [Gro], there is a

natural morphism from MCr�1⇥C
2,n to the n-th symmetric product Symn(Cr�1 ⇥

C). Its restriction to MCr�1⇥C
⇠,(n);C0

gives rise to a morphism

� : MCr�1⇥C
⇠,(n);C0

! C0.

An argument similar to the proof of Proposition 5.13 shows that there exist a

decomposition of locally closed subsets

C0 =
a

i

C0,i,
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and bijective morphisms over the locally closed subsets C0,i:

�i : M
Cr

⇠,n;L,O ⇥ C0,i ! ��1(C0,i).

(C2) The same combinatorial arguments from (C) reduces the computation to the

virtual Hodge polynomials of C0 and MCr

⇠,n;L,O.

Hence once again, we conclude as in (6.2.3) the following:

+1X

n=0

e(MCr�1⇥C
⇠,n;C0

; s, t)qn = exp

 
+1X

n=1

1

n
e(C0; s

n, tn)cr(q
n, sn, tn)

!
, (6.2.7)

where the power series cr(q, s, t) 2 Q[s, t][[q]] is defined by

cr(q, s, t) =
+1X

`=1

 
+1X

m,n=0

C`,m,ns
mtn

!
q`, (6.2.8)

and the rational numbers C`,m,n are the unique rational numbers such that

+1X

n=0

e
�
MCr

⇠,n;L,O; s, t
�
qn =

+1Y

`=1

+1Y

m,n=0

✓
1

1� q`smtn

◆C`,m,n

. (6.2.9)

Lemma 6.8. Let C0 = {O}⇥ C ✓ Cr�1 ⇥ C. Then,

+1X

n=0

�
�
MCr�1⇥C

⇠,n;C0

�
qn =

� +1X

n=0

�
�
MCr

⇠,n;L,O

�
qn
�2�2g

. (6.2.10)

Proof. By (3.0.3),

e(C0; 1, 1) = �(C0) = �(C) = 2� 2g.

Also, by (6.2.8) and (6.2.9),

exp

 
+1X

n=1

1

n
cr(q

n, 1, 1)

!
=

+1X

n=0

�
�
MCr

⇠,n;L,O

�
qn.

By (3.0.3) and (6.2.7),

+1X

n=0

�
�
MCr�1⇥C

⇠,n;C0

�
qn =

+1X

n=0

e(MCr�1⇥C
⇠,n;C0

; 1, 1)qn
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= exp

 
+1X

n=1

1

n
e(C0; 1, 1)cr(q

n, 1, 1)

!

= exp

 
+1X

n=1

1

n
(2� 2g)cr(q

n, 1, 1)

!

=
� +1X

n=0

�
�
MCr

⇠,n;L,O

�
qn
�2�2g

.

Proposition 6.9. Fix ⇠ 2
�
Hilb(Cr�1, O)

�C⇤
. Let MCr

⇠,n;L,O be from ( 6.2.6). Under

Assumption 5.2, we have

+1X

n=0

�(M(2),n) q
n

= (r � 1) ·
+1X

n=0

�(X [n]) qn · �(S) ·
 P+1

n=0 �
�
MCr

⇠,n;L,O

�
qn

P+1
n=0 �

�
Hilbn(Cr, O)

�
qn

!2�2g

.

Proof. By Proposition 6.3, Lemma 6.5, Lemma 6.6, and Lemma 6.8, we have

+1X

n=0

�(M(2),n) q
n

=
+1X

n=0

e(M(2),n; 1, 1) q
n

=
+1X

n=0

e(X [n]; 1, 1) qn · e(S; 1, 1) ·
P+1

n=0 e(M
Cr�1⇥C
(2),n;C0

; 1, 1) qn

P+1
n=0 e

�
(Cr�1 ⇥ C)[n]C0

; 1, 1
�
qn

=
+1X

n=0

e(X [n]; 1, 1) qn · e(S; 1, 1) ·
(r � 1) ·

P+1
n=0 �

�
MCr�1⇥C

⇠,n;C0

�
qn

P+1
n=0 e

�
(Cr�1 ⇥ C)[n]C0

; 1, 1
�
qn

= (r � 1) ·
+1X

n=0

�(X [n]) qn · �(S) ·
 P+1

n=0 �
�
MCr

⇠,n;L,O

�
qn

P+1
n=0 �

�
Hilbn(Cr, O)

�
qn

!2�2g

.

6.3 Torus actions on MCr

⇠,n,L,O

According to (3.0.7), we can make use of a suitable C⇤-action on Cr and count the

number of the fixed points of the induced C⇤-action on MCr

⇠,n,L,O. The fixed points of
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torus actions on MCr

⇠,n,L,O are closely related to multi-dimensional partitions of n.

Let r � 3 and let z1, z2, ..., zr be the coordinate functions of Cr. Let

L = {z1 = . . . = zr�1 = 0} ⇢ Cr,

and

Cr�1 = {zr = 0} ⇢ Cr.

Consider the C⇤-action (4.2.2) on Cr, and choose the weights w1, . . . , wr 2 Z in (4.2.2)

properly. Then, we have an induced C⇤-action on Cr�1 ⇢ Cr, and the elements in

(Hilb2(Cr�1, O))C
⇤
are in one-to-one correspondence with the ideals in (6.1.13). Let

⇠ 2 (Hilb2(Cr�1, O))C
⇤
correspond to the ideal:

I⇠ = (z1, ..., zr�2, z
2
r�1).

Then, we obtain an induced C⇤-action on MCr

⇠,n,L,O. The C⇤-fixed points in MCr

⇠,n,L,O

are precisely those corresponding to the ideals I generated by monomials such that

I ⇢ I⇠ = (z1, . . . , zr�2, z
2
r�1), (6.3.1)

and

dimC
(z1, . . . , zr�2, z2r�1)

I
= n. (6.3.2)

These ideals are in one-to-one correspondence with the I-punctual r-dimensional

partitions of n (note that a linear basis of the ideal (z1, . . . , zr�1, z2r�1) consists of all

the monomials zi11 · · · zir�1
r�1 z

ir
r with

(i1, . . . , ir�1) 2 I := (Z�0)
r�1 � {(0, . . . , 0), (1, 0, . . . , 0)}).
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Indeed, in view of (6.3.1) and (6.3.2), given an I-punctual r-dimensional parti-

tion (ni1,...,ir�1)(i1,...,ir�1)2I of n, the ideal of C[z1, . . . , zr] generated by the monomi-

als zi11 · · · zir�1
r�1 z

ni1,...,ir�1
r has colength-n. Conversely, given a colength-n ideal I of

C[z1, . . . , zr] generated by monomials, we obtain an I-punctual r-dimensional parti-

tion

(ni1,...,ir�1)(i1,...,ir�1)2I

of n by putting

ni1,...,ir�1 = min{ir| zi11 · · · zir�1
r�1 z

ir
r 2 I}. (6.3.3)

Therefore, we obtain from (3.0.7) and Definition 4.1 (iii) that

�
�
MCr

⇠,n,L,O

�
= Ar(n). (6.3.4)

Theorem 6.10. Under Assumption 5.2, let r � 2. Then,

+1X

n=0

�(M(2),n) q
n = (r � 1) · �(S) ·

+1X

n=0

�(X [n]) qn ·
✓P+1

n=0 Ar(n) qnP+1
n=0 Pr(n) qn

◆2�2g

.

Proof. The formula follows from Proposition 6.9, (4.2.4) and (6.3.4).
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Chapter 7

The computation of �(M(12),n)

The following is parallel to Lemma 6.1.

Lemma 7.1. Let m = dim(X) � 1 = r � 1. Let O be the origin of Cm and C0 =

{O}⇥ C. Then,

+1X

n=0

�(M(12),n)q
n =

+1X

n=0

�(W(12),n)q
n ·

 
+1X

n=0

�(MCm⇥C
1,n;C0

)qn
!2

.

Proof. By (5.1.25), (5.1.22), (3.0.4) and (3.0.6), we obtain:

e(M(12),n; s, t) =
nX

n0=0

e(M(12),n;n0 ; s, t) =
nX

n0=0

e(W(12),n�n0 ⇥S((12)) M(12),n0;n0 ; s, t).

By (3.0.3),

�(M(12),n) =
nX

n0=0

�(W(12),n�n0 ⇥S((12)) M(12),n0;n0). (7.0.1)

For 0 6 i 6 n0, let

fi,n0�i : M1,i;i ⇥M1,n0�i;n0�i ! S ⇥ S = S2 (7.0.2)

be the product of the natural projections fi : M1,i;i ! S and

fn0�i : M1,n0�i;n0�i ! S

from (5.1.9). Let
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�S = {(s, s)|s 2 S} ⇢ S ⇥ S, (7.0.3)

S2
0 = S ⇥ S ��S. (7.0.4)

Then we have an unramified morphism

f�1
i,n0�i(S

2
0) ! M(12),n0;n0 .

The sum of these morphisms is a 2 : 1 unramified morphism:

f :
n0a

i=0

f�1
i,n0�i(S

2
0) ! M(12),n0;n0 .

By Proposition 5.10, there exists a decomposition

S =
a

Si

of locally closed subsets such that for each pair (i, j), there exists a bijection:

MCm⇥C
1,i;C0

⇥ Sj ! f�1
i (Sj).

To avoid the notations, we will simply write:

MCm⇥C
1,i;C0

⇥ Sj = f�1
i (Sj).

So we have

M1,i;i =
a

j

�
MCm⇥C

1,i;C0
⇥ Sj

�
, (7.0.5)

and

M1,i;i ⇥M1,n0�i;n0�i =
a

j1

�
MCm⇥C

1,i;C0
⇥ Sj1

�
⇥
a

j2

�
MCm⇥C

1,n0�i;C0
⇥ Sj2

�
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=
�
MCm⇥C

1,i;C0
⇥MCm⇥C

1,n0�i;C0

�
⇥
a

j1,j2

�
Sj1 ⇥ Sj2

�

=
�
MCm⇥C

1,i;C0
⇥MCm⇥C

1,n0�i;C0

�
⇥ S2. (7.0.6)

Under the identification (7.0.6), the morphism fi,n0�i in (7.0.2) is just the second

projection:

�
MCm⇥C

1,i;C0
⇥MCm⇥C

1,n0�i;C0

�
⇥ S2 ! S2.

Therefore we obtain

f�1
i,n0�i(S

2
0) =

�
MCm⇥C

1,i;C0
⇥MCm⇥C

1,n0�i;C0

�
⇥ S2

0 . (7.0.7)

It follows that

n0a

i=0

f�1
i,n0�i(S

2
0) =

n0a

i=0

�
MCm⇥C

1,i;C0
⇥MCm⇥C

1,n0�i;C0

�
⇥ S2

0 . (7.0.8)

Let

U =
n0a

i=0

(MCm⇥C
1,i;C0

⇥MCm⇥C
1,n0�i;C0

�
⇥ S2

0 .

Now consider the fiber product diagram

W(12),n�n0 ⇥S((12)) U U

W(12),n�n0 ⇥S((12)) M(12),n0;n0 M(12),n0;n0

W(12),n�n0 S((12))

f̃ f

(7.0.9)

where f̃ is the morphism induced by f . Since f is an unramified 2 : 1 map, so is f̃ .

Therefore by (7.0.1), we have

�(M(12),n) =
nX

n0=0

1

2
�

 
W(12),n�n0 ⇥S((12))

 
n0a

i=0

(MCm⇥C
1,i;C0

⇥MCm⇥C
1,n0�i;C0

)⇥ S2
0

!!

=
nX

n0=0

1

2
�

 
(W(12),n�n0 ⇥S((12)) S

2
0)⇥

n0a

i=0

(MCm⇥C
1,i;C0

⇥MCm⇥C
1,n0�i;C0

)

!
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=
nX

n0=0

1

2
�(W(12),n�n0 ⇥S((12)) S

2
0) · �

 
n0a

i=0

(MCm⇥C
1,i;C0

⇥MCm⇥C
1,n0�i;C0

)

!

=
nX

n0=0

1

2
�(W(12),n�n0 ⇥S((12)) S

2
0) ·

n0X

i=0

�(MCm⇥C
1,i;C0

) · �(MCm⇥C
1,n0�i;C0

).

Since S2
0 ! S((12)) is an unramified 2 : 1 cover,

�(W(12),n�n0 ⇥S((12)) S
2
0) = 2�(W(12),n�n0).

Therefore

�(M(12),n) =
nX

n0=0

�(W(12),n�n0) ·
n0X

i=0

�(MCm⇥C
1,i;C0

) · �(MCm⇥C
1,n0�i;C0

). (7.0.10)

It follows that

+1X

n=0

�(M(12),n)q
n (7.0.11)

=
+1X

n=0

nX

n0=0

�(W(12),n�n0)q
n�n0 ·

n0X

i=0

�(MCm⇥C
1,i;C0

)qi · �(MCm⇥C
1,n0�i;C0

)qn0�i

=
+1X

n=0

�(W(12),n)q
n ·

 
+1X

n=0

�(MCm⇥C
1,n;C0

)qn
!2

.

The following is parallel to Lemma 6.2, and its proof is similar to those of Lemma

6.2 and Lemma 7.1.

Lemma 7.2. Let m = dim(X) � 1 = r � 1. Let O be the origin of Cm and C0 =

{O}⇥ C. Then,

+1X

n=0

�(X [n] ⇥ S((12)))qn =
+1X

n=0

�(W(12),n)q
n ·

 
+1X

n=0

�
�
(Cm ⇥ C)[n]C0

�
qn
!2

. (7.0.12)

Proof. By Definition 5.9,

X [n] ⇥ S(�) =
na

n0=0

Z�,n;n0 . (7.0.13)
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So

e
�
X [n] ⇥ S((12)); s, t

�
=

nX

n0=0

e
�
Z(12),n;n0 ; s, t). (7.0.14)

By (5.1.23),

e
�
X [n] ⇥ S((12)); s, t

�
=

nX

n0=0

e(W(12),n�n0 ⇥S T(12),n0 ; s, t). (7.0.15)

By an argument similar to that for (7.0.10), we have

�
�
X [n] ⇥ S((12))

�

=
nX

n0=0

�(W(12),n�n0) ·
n0X

i=0

�
�
(Cm ⇥ C)[i]C0

�
· �
�
(Cm ⇥ C)[n0�i]

C0

�
.

It follows that

+1X

n=0

�
�
X [n] ⇥ S((12))

�
qn

=
+1X

n=0

nX

n0=0

�(W(12),n�n0)q
n�n0 ·

n0X

i=0

�
�
(Cm ⇥ C)[i]C0

�
qi · �

�
(Cm ⇥ C)[n0�i]

C0

�
qn0�i

=
+1X

n=0

�(W(12),n)q
n ·

 
+1X

n=0

�
�
(Cm ⇥ C)[n]C0

�
qn
!2

. (7.0.16)

The following is parallel to Theorem 6.10.

Theorem 7.3. Under Assumption 5.2, let r � 2. Then,

+1X

n=0

�(M(12),n)q
n =

�(S)2 � �(S)

2
·
+1X

n=0

�
�
X [n]

�
qn ·

 P+1
n=0

ePr(n)qnP+1
n=0 Pr(n)qn

!4�4g

.

Proof. Let m = dim(X)� 1 = r � 1. By Lemma 7.1 and Lemma 7.2,

+1X

n=0

�(M(12),n)q
n =

+1X

n=0

�
�
X [n] ⇥ S((12))

�
qn ·

 P+1
n=0 �(M

Cm⇥C
1,n;C0

)qn
P+1

n=0 �
�
(Cm ⇥ C)[n]C0

�
qn

!2
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where C0 = {O} ⇥ C ⇢ Cm ⇥ C. Recall S2
0 from (7.0.4). Since S2

0 ! S((12)) is an

unramified 2 : 1 cover,

�
�
X [n] ⇥ S((12))

�
= �

�
X [n]

�
· �
�
S((12))

�

=
1

2
· �
�
X [n]

�
· �(S2

0)

=
1

2
· �
�
X [n]

�
· �(S2 ��S)

=
1

2
· �
�
X [n]

�
·
�
�(S)2 � �(S)

�
.

Thus, we have

+1X

n=0

�(M(12),n)q
n

=
�(S)2 � �(S)

2
·
+1X

n=0

�
�
X [n]

�
qn ·

 P+1
n=0 �(M

Cm⇥C
1,n;C0

)qn
P+1

n=0 �
�
(Cm ⇥ C)[n]C0

�
qn

!2

.

Combining with Lemma 6.6 and Lemma 6.7, we obtain

+1X

n=0

�(M(12),n)q
n

=
�(S)2 � �(S)

2
·
+1X

n=0

�
�
X [n]

�
qn ·

 P+1
n=0 �(M

Cr

1,n;L,O)q
n

P+1
n=0 �

�
Hilbn(Cr, O)

�
qn

!4�4g

where L = {z1 = .. = zr�1 = 0} ⇢ Cr and O is the origin of Cr. By formula (7.7) in

[LQ], �(MCr

1,n;L,O) = ePr(n). By (4.2.4), �
�
Hilbn(Cr, O)

�
= Pr(n). It follows that

+1X

n=0

�(M(12),n)q
n =

�(S)2 � �(S)

2
·
+1X

n=0

�
�
X [n]

�
qn ·

 P+1
n=0

ePr(n)qnP+1
n=0 Pr(n)qn

!4�4g

.

56



Chapter 8

Euler characteristics of M2,n

In this chapter we sum up the previous results to compute the Euler characteristics

of M2,n.

Theorem 8.1. Under Assumption 5.2, let r > 2. Then,

+1X

n=0

� (M2,n) q
n

=
�(S)2 � �(S)

2
·
+1X

n=0

�
�
X [n]

�
qn ·

 P+1
n=0

ePr(n)qnP+1
n=0 Pr(n)qn

!4�4g

+(r � 1) · �(S) ·
+1X

n=0

�(X [n]) qn ·
✓P+1

n=0 Ar(n) qnP+1
n=0 Pr(n) qn

◆2�2g

.

Proof. By (3.0.3), (3.0.4), (5.1.24), Theorem 7.3 and Theorem 6.10, we have

+1X

n=0

�(M2,n)q
n

=
+1X

n=0

�(M(12),n)q
n +

+1X

n=0

�(M(2),n)q
n

=
�(S)2 � �(S)

2
·
+1X

n=0

�
�
X [n]

�
qn ·

 P+1
n=0

ePr(n)qnP+1
n=0 Pr(n)qn

!4�4g

+(r � 1) · �(S) ·
+1X

n=0

�(X [n]) qn ·
✓P+1

n=0 Ar(n) qnP+1
n=0 Pr(n) qn

◆2�2g

.
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Remark 8.2. The generating function of the Euler characteristics of �(X [n]) of the

Hilbert scheme X [n] was calculated in [Che, ES] (see also [Qin]):

+1X

n=0

�(X [n])qn =

 
+1X

n=0

Pr(n)q
n

!�(X)

.

Corollary 8.3. Under Assumption 5.2, let r > 2 and g = 1. Then,

+1X

n=0

� (M2,n) q
n =

�(S)2 + (2r � 3) · �(S)
2

·
 

+1X

n=0

Pr(n)q
n

!�(X)

.

Proof. By Theorem 8.1,

+1X

n=0

� (M2,n) q
n =

�(S)2 + (2r � 3) · �(S)
2

·
+1X

n=0

�
�
X [n]

�
qn.

By Remark 8.2,

+1X

n=0

� (M2,n) q
n =

�(S)2 + (2r � 3) · �(S)
2

·
 

+1X

n=0

Pr(n)q
n

!�(X)

.

Corollary 8.4. Under Assumption 5.2, for r = 3 and |q| < 1/3, we have

+1X

n=0

� (M2,n) q
n

=
�(S)2 � �(S)

2
·
 

+1Y

n=1

1

(1� qn)n

!�(X)

· 1

(1� q)4�4g

+2�(S) ·
 

+1Y

n=1

1

(1� qn)n

!�(X)

· 1

((1� q)(1� q2))2�2g .

Proof. By Theorem 8.1 and Remark 8.2 we have

+1X

n=0

� (M2,n) q
n

=
�(S)2 � �(S)

2
·
 

+1X

n=0

Pr(n)q
n

!�(X)

·
 P+1

n=0
ePr(n)qnP+1

n=0 Pr(n)qn

!4�4g
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+(r � 1) · �(S) ·
 

+1X

n=0

Pr(n)q
n

!�(X)

·
✓P+1

n=0 Ar(n) qnP+1
n=0 Pr(n) qn

◆2�2g

.

By (4.2.6) and (4.2.7) we get

+1X

n=0

� (M2,n) q
n

=
�(S)2 � �(S)

2
·
 

+1Y

n=1

1

(1� qn)n

!�(X)

· 1

(1� q)4�4g

+(r � 1) · �(S) ·
 

+1Y

n=1

1

(1� qn)n

!�(X)

·
✓P+1

n=0 Ar(n) qnP+1
n=0 Pr(n) qn

◆2�2g

.

Finally, the result follows by Proposition 4.4.
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