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ABSTRACT

Quasi-two-dimensional (2D) systems, such as an electron gas confined in a quan-

tum well, are important model systems for many-body theories, and we are interested

in studying collective excitations in such systems using a linear-response approach

based on time-dependent density-functional theory.

In the second chapter, we consider a non-spin-polarized electron gas confined in a

quantum well, and we study three- to two-dimensional crossover in time-dependent

density-functional theory. Earlier studies of the crossover from 3D to 2D in ground-

state density-functional theory showed that local and semilocal exchange-correlation

functionals which are based on the 3D electron gas are appropriate for wide quantum

wells, but eventually break down as the 2D limit is approached. We now consider

the dynamical case and study the performance of various linear-response exchange

kernels in time-dependent density-functional theory. We compare approximate local,

semilocal, and orbital-dependent exchange kernels, and analyze their performance for

inter- and intrasubband plasmons as the quantum wells approach the 2D limit. 3D

(semi)local exchange functionals are found to fail for quantum well widths comparable

to the 2D Wigner-Seitz radius r2D
s , which implies in practice that 3D local exchange

remains valid in the quasi-2D dynamical regime for typical quantum well parameters,

except for very low densities.

In the third chapter, we consider a partially spin-polarized electron gas in a semi-

conductor quantum well in the presence of Rashba and Dresselhaus spin-orbit cou-

pling. Larmor’s theorem holds for magnetic systems that are invariant under spin

rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor’s
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theorem is broken: for systems of interacting electrons, this gives rise to a subtle

interplay between the spin-orbit coupling acting on individual single-particle states

and Coulomb many-body effects. Using a linear-response approach based on time-

dependent density-functional theory in our system, we calculate the dispersions of

spin-flip waves. We obtain analytic results for small wave vectors and up to second

order in the Rashba and Dresselhaus coupling strengths α and β. Comparison with

experimental data from inelastic light scattering allows us to extract α and β as well

as the spin-wave stiffness very accurately. We find significant deviations from the

local density approximation for spin-dependent electron systems.

In the last chapter, we consider a two-dimensional electron gas (2DEG) with

equal-strength Rashba and Dresselhaus spin-orbit coupling. This system sustains

persistent helical spin-wave states, which have remarkably long lifetimes. In the

presence of an in-plane magnetic field, there exist single-particle excitations that

have the character of propagating helical spin waves. For magnon-like collective

excitations, the spin-helix texture reemerges as a robust feature, giving rise to a

decoupling of spin-orbit and electronic many-body effects. We prove that the resulting

spin-flip wave dispersion is the same as in a magnetized 2DEG without spin-orbit

coupling, apart from a shift by the spin-helix wave vector. The precessional mode

about the persistent spin-helix state is shown to have an energy given by the bare

Zeeman splitting, in analogy with Larmor’s theorem. We also discuss ways to observe

the spin-helix Larmor mode experimentally.

xiv



Chapter 1

Introduction

In this thesis, we study the collective charge and spin excitations of itinerant electronic

systems in quasi-two-dimensional semiconductor nanostructures. Our main focus is

on the fundamental properties of a two-dimensional electron gas (2DEG) in a doped

semiconductor quantum well because it is a paradigm of an electronic many-body

system. The 2DEG has been thoroughly studied for many decades [1, 2], and it still

is a subject of great fundamental and practical interest.

Let us begin by discussing some basic concepts of semiconductor quantum wells

[3, 4]. A semiconductor quantum well is illustrated on the left-hand side of Fig. 1.1,

where material A, with a smaller band gap Eg, is sandwiched between two layers of

material B (with a larger band gap). We only consider semiconductors with direct

band gaps, such as GaAs, where the energy dispersions of the valence band and

conduction band are aligned with maxima and minima, respectively, at the Brillouin

zone center; electrons can then directly emit photons when undergoing interband

transitions.
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Figure 1.1: Left: Combining two semiconductor materials, A and B, with differ-
ent band gaps, gives rise to a potential well in conduction and valence band. The
electronic levels within the well are quantized into so-called subbands. Here, three
subband levels ε1, ε2, and ε3 are shown. Right: intersubband excitations where the
first subband is occupied up to the conduction band Fermi level εF .

Here we are interested in n-doped systems where the electrons live in the conduc-

tion band of the quantum well (material A in Fig. 1.1). Since the electronic structure

has a periodically-repeating environment, the electronic states, according to Bloch’s

theorem, have the form ψnq(r) = eiqrunq(r), where unq(r) is a function with lattice

periodicity. It can be proven that the electrons that are placed in the bottom of

the conduction band of the crystalline semiconductor behave as free electrons, except

that the electron mass must be replaced with the effective mass, m∗. Within the

so-called effective mass approximation, the energy dispersion of the the conduction

subbands are parabolic, see the right-hand side of Fig. 1.1. Transitions between

different subbands are called intersubband transitions.
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Figure 1.2: Left: Single-particle excitation of a 2DEG which is not spin polarized.
The excitation is between states inside the Fermi circle εF to states outside. Right:
a 2DEG in the presence of a magnetic field, which lifts the spin degeneracy and
splits the bands by the effective Zeeman energy Z∗. The thin blue arrow indicates a
single-particle spin-flip transition.

If only the lowest subband is occupied, and the Fermi energy is not too high (so

that the subband remains parabolic), we have the idealized situation of a 2DEG. The

left part of Fig. 1.2 shows excitations in a conduction band where the lowest subband

is occupied up to the Fermi level, and we have excitations from occupied states to

unoccupied states within the first subband. The Fermi surface of a 2DEG is a circle,

so these excitations are between filled states within the Fermi circle to states outside.

We also refer to these excitations as intrasubband transitions.

In the absence of magnetic fields, spin-up and spin-down subbands are exactly on

top of each other. An external in-plane magnetic field, Bext, causes a Zeeman splitting

of the subbands, where spin-up and spin-down subbands will be shifted apart by

the effective Zeeman energy Z∗ which is proportional to an effective magnetic field,

Beff . As we will discuss in more detail in Chapter 3, the effective magnetic field,

Beff = Bext + Bxc, includes an exchange and correlation contribution Bxc caused by

Coulomb many-body effects. In this case, we can distinguish between spin-conserving

3



and spin-flip excitations. The example shown in Fig. 1.2 is of the spin-flip type.

In many semiconductor materials, spin-orbit coupling effects are playing an im-

portant role [5, 6]. In recent years, spin-orbit coupling has attracted much interest in

the context of spintronics [7], as well as in novel materials such as graphene [8] and

topological insulators [9, 10, 11]. Spin-orbit coupling is present in all matter, and

with various consequences for the electronic structure. Here, our interest is in those

spin-orbit effects that are a consequence of the breaking of inversion symmetry of the

system: the Dresselhaus and the Rashba effect. The Dresselhaus effect is related to

the breaking of the crystalline inversion symmetry; the Rashba effect is caused by the

breaking of symmetry in a structure or device, such as a quantum well in an electric

field (which causes a linear potential).

Spin-orbit coupling is a relativistic effect, where moving electrons in motion ex-

perience electric fields as magnetic fields in their rest frame, which then interact with

their spin. Hence, we can describe the effects of spin-orbit coupling in terms of effec-

tive crystal magnetic fields BSO(k), where k is the wavevector. In other words, Bloch

electrons will experience different spin-orbit magnetic fields depending on their state

of motion. Figure 1.3 indicates the symmetry of the Rashba and Dresselhaus fields,

given, in a 2DEG, by

BRashba
SO (k) =

2α

g∗µB

 ky

−kx

 , BDresselhaus
SO (k) =

2β

g∗µB

 kx

−ky

 . (1.1)

Here, α and β are the coupling strengths, g∗ is the effective g-factor, and µB is the

Bohr magneton. As can be seen, the Rashba field has a vortex-like structure, whereas

the Dresselhaus field is anti-vortex-like.
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Figure 1.3: Symmetry of the Rashba and Dresselhaus spin-orbit effective magnetic
fields. Note that if both effects are present, the net spin-orbit field strength has
elliptic symmetry.

The central theme of this thesis will be those situations where Coulomb interac-

tions have important consequences, causing new forms of collective behavior. Most

notably, Coulomb interactions are responsible for the formation of plasmons. Another

example is spin waves in the spin-polarized 2DEG, which can be thought of as a col-

lective spin precession propagating through the system [12]. Electronic spin waves are

the itinerant-electron counterpart of magnons, which are collective precessions in lat-

tices of localized spins. Magnon spintronics [13, 14], a new and promising subfield of

spintronics, is based on the idea that information can be encoded and transported by

spin waves. The spin-orbit interaction plays an important role in magnon spintronics

since it provides a coupling mechanism between spin dynamics and electrical signals

[15, 16]. However, so far, the interplay between spin-orbit coupling and Coulomb

many-body effects has been relatively little explored.
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In this thesis, we will investigate the following questions:

• What happens when a system of electrons in a quantum well becomes more

and more confined, so that it goes through a cross-over between a 3D to a 2D

state [17]? In particular, can we find theoretical methods to calculate plasmon

modes in the system that are robust under such a cross-over? We will answer

these questions in Chapter 2.

• How are collective spin-wave excitations in a spin-polarized 2DEG affected by

the presence of Rashba and Dresselhaus spin-orbit interactions [18]? Spin waves

are well-ordered collective modes of the electron system; will their order be

destroyed by the spin-orbit effects, or will it be modified in more subtle ways?

How do our theoretical methods hold up under comparison with experimental

results? We will study this in Chapter 3.

• There is an intriguing special situation in which the Rashba and Dresselhaus

fields have the same strengths, α = β. From the recent literature, it is known

that this leads to so-called spin-helical states. What happens to collective spin

waves in this situation? The answer will be given in Chapter 4, including a

proposal for an experimental setup to observe a new exact dynamical many-

body state which we call the spin-helix Larmor mode.

Each Chapter is self-contained, with additional technical details given in several

Appendices. However, several cross-references and connections between the Chapters

will be pointed out. In the final Chapter 5, a summary and an outlook are given.
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Chapter 2

Three- to two-dimensional
crossover in time-dependent
density-functional theory

The key concept of density-functional theory (DFT) [19] is that all electronic many-

body systems can be uniquely characterized by their electron density n(r). The

density can be obtained in principle exactly via the Kohn-Sham equation (here and

in the following we use atomic units) [20],

[
−∇

2

2
+ v0(r) + vH[n](r) + vxc[n](r)

]
ϕj(r) = εjϕj(r), (2.1)

where v0(r) is a given external potential, vH[n](r) =
∫
d3r′n(r′)/|r−r′| is the Hartree

potential, and vxc[n](r) is the exchange-correlation (xc) potential. The density is

obtained from the self-consistent solution of Eq. (2.1) as n(r) =
∑N

j=1 |ϕj(r)|2, where

N is the number of electrons, and all physical observables follow therefrom.

The xc potential is defined as the functional derivative vxc[n](r) = δExc[n]/δn(r).
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The xc energy Exc[n] is a universal functional of the density: this means that there

is one and only one exact density functional of the xc energy that is valid for all

electronic systems with a given form of the electron-electron interaction, for any N .

If this exact xc functional were known, it would give exact ground-state results, via

Eq. (2.1), for all conceivable forms of matter, including atoms, molecules, and periodic

or non-periodic solids.

In real matter, v0(r) consists of the Coulomb potentials of positively charged

atomic nuclei. But the universality of Exc[n] and vxc[n](r) extends beyond real matter,

and includes all mathematically reasonable forms of v0(r), whether they exist in

nature or not. In particular, it includes systems of lower dimensionality, for instance

electrons confined in a two-dimensional (2D) plane [21].

A stringent test for approximate xc functionals is their performance during a

dimensional crossover. The crossover from 3D to 2D has been previously studied in the

DFT literature [22, 23, 24, 25]. It was found that local and semilocal functionals such

as the local-density approximation (LDA) and generalized gradient approximations

(GGAs) fail badly at this task. To see this, consider the LDA exchange energy

ELDA
x,3D [n] = −3

4

(
3

π

)1/3 ∫
d3r n(r)4/3 . (2.2)

What happens if we try to evaluate ELDA
x,3D [n] for a 2D system? Let the density be

n2D(r) = n(r||)δ(z), where r|| = (x, y) denotes a 2D position vector. Using the delta

function in the form δ(z) = limε→0+(4πε)−1/2e−z
2/4ε, one finds

ELDA
x,3D [n2D] = lim

ε→0+

311/6

45/3
√
πε1/6

∫
d2r|| n(r||)

4/3 . (2.3)
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This clearly shows that the 3D form of the LDA exchange energy diverges in the 2D

limit, instead of approaching the proper form of the 2D LDA [2],

ELDA
x,2D [n] = −4

3

√
2

π

∫
d2r|| n(r||)

3/2 . (2.4)

All standard 3D GGAs will exhibit a similar divergence in the 2D limit.

To capture the 3D-2D crossover correctly, nonlocal xc functionals are needed.

Some improvement over LDA and GGAs can be achieved with meta-GGA and hyper-

GGA xc functionals [24, 25], but only fully nonlocal xc functionals such as the average

density approximation [23] or the inhomogeneous STLS [26, 27] show a proper be-

havior as the 2D limit is approached.

Here we extend the study of the dimensional crossover into the domain of time-

dependent density-functional theory (TDDFT) [28, 29, 30]. However, we will not

explore the full dynamical range of TDDFT, which allows one to study electronic

systems under the influence of arbitrary external time-dependent potentials, v(r, t);

instead, we will limit ourselves to the linear-response regime and consider electronic

excitation energies [31, 32]. Furthermore, in this chapter we will only consider ex-

change, but not correlation effects.

The main questions are the following. What characteristic effects or signatures

occur in the excitation spectrum of a system as it crosses over from three to two

dimensions, and how will the expected failure of LDA and GGA manifest itself? Will

the breakdown be as drastic as in ground-state DFT, or will it perhaps be less severe,

under some circumstances? How do nonlocal orbital functionals perform under the

3D-2D crossover?

Apart from the inherent fundamental interest, there are important practical rea-
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F

Figure 2.1: Illustrations of intersubband (top) and intrasubband (bottom) plasmon
excitations with wavevector q|| in a quantum well with conduction band Fermi level
εF in the lowest subband. Intersubband plasmons involve collective transitions be-
tween two subbands, leading to density oscillations of the quasi-2D electron system
perpendicular to the quantum well plane. Intrasubband plasmons (collective transi-
tions within the lowest subband) are characterized by density oscillations and currents
flowing along the plane.

sons that motivate such a study. Quasi-2D [33] electron gases (2DEGs) can be pre-

pared in very high quality along interfaces and in heterostructures of a wide range

of materials (most notably semiconductors and oxides), with many practical applica-

tions [3, 4]. It is important to be able to model the electronic structure and dynamics

in these systems accurately and numerically efficiently. Since no DFT method beats

the LDA in terms of simplicity and efficiency, one would like to know whether the

3D LDA is reliable in the quasi-2D regime, and under what circumstances it starts

to fail. We will answer these questions in the following.

Figure 2.1 illustrates the two types of collective excitations that we will study in
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this chapter. In a quantum well, electrons are free to move in the plane, but the

levels are quantized into subbands due to quantum confinement perpendicular to the

plane. Intersubband plasmons involve transitions from occupied to empty subbands;

since different subbands have different envelope functions, this implies density oscil-

lations perpendicular to the well plane. By contrast, intrasubband plasmons involve

transitions within a subband; the accompanying currents and density oscillations are

parallel to the plane. We will study what happens to these excitations as the quantum

well becomes more and more narrow, approaching the strictly 2D limit.

This chapter is organized as follows. In Section 2.1 we discuss the necessary

theoretical background: we introduce our quantum well model, review the TDDFT

linear-response formalism for collective excitations in quantum wells, and list various

exchange functionals. In Section 2.2 we present our results, and Section 2.3 gives

conclusions. Some technical details are given in the Appendix.

2.1 Theoretical background

2.1.1 Quantum well model

We consider n-doped semiconductor quantum wells of width L in which the electrons

are confined along the z direction and free to move in the x− y plane. The number

of electrons per unit area (the sheet density) is denoted by Ns. In the following, we

assume that the material of the quantum well is GaAs, with effective mass m∗ =

0.067m and effective charge e∗ = e/
√

13 (m and e are the free electron mass and

charge). We choose units in which e∗ = m∗ = ~ = 1. The effective Hartree unit of
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energy is 10.8 meV; the effective Bohr radius is 103 Å.

The quantum well is assumed to be confined within infinitely high barriers at

z = 0 and z = L. We further assume that the solutions of the Kohn-Sham equation

for the quantum well envelope functions [3, 4] have the standard particle-in-a-box

form,

ϕj(z) =

√
2

L
sin

(
jπz

L

)
, j = 1, 2, 3, . . . , (2.5)

with Kohn-Sham energies

εj =
1

2

(
jπ

L

)2

. (2.6)

The Kohn-Sham potential vs(z) = vext(z) + vH(z) + vxc(z) that gives rise to these

solutions is an infinitely deep square-well potential. This means that for each L

and Ns the external quantum well potential vext(z) is chosen such that, if added to

the Hartree and xc potentials vH(z) and vxc(z), the resulting sum is a constant for

0 < z < L. Thanks to the Hohenberg-Kohn theorem [19], a unique choice of such a

vext(z) is always possible in principle; further details of the ground-state potentials

do not need to be specified in the following.

We emphasize that the particle-in-a-box form of the Kohn-Sham eigenstates is

only a matter of convenience, and does not lead to a loss of generality of the results

of the 3D-2D crossover that we study here.

The ground-state density in the well is given by

n0(z) =
1

π

∑
j

εj<εF

ϕ2
j(z)(εF − εj) , (2.7)

where the factor (εF −εj)/π comes from the summation of all occupied single-particle
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states in the jth subband. To determine the Fermi energy εF , we integrate the density

over z: ∫ L

0

dzn0(z) = Ns =
1

π

Nocc∑
j=1

(εF − εj) , (2.8)

where Nocc is the number of occupied subbands. Hence,

εF =
πNs

Nocc

+
1

Nocc

Nocc∑
j=1

εj, (2.9)

and Nocc is fixed by requiring εNocc < εF < εNocc+1.

2.1.2 Excitations within linear-response TDDFT

In the following, we are interested in the frequency-dependent spin-density response in

a quantum well. Because of the translational symmetry in the x−y plane, we Fourier

transform with respect to the in-plane position vector r|| = (x, y); this introduces the

in-plane wavevector q||. The TDDFT linear-response equation [34] then becomes

n1σ(q||, z, ω) =

∫
dz′χsσσ(q||, z, z

′, ω)vs1σ(q||, z
′, ω) . (2.10)

The noninteracting response function is diagonal in the spin σ:

χs,σσ′(q||, z, z
′, ω) = δσσ′

Nocc∑
j=1

∞∑
l=1

Flj(q||, ω)ϕj(z)ϕl(z)ϕj(z
′)ϕl(z

′) , (2.11)
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where

Flj(q||, ω) =

∫
d2k||
(2π)2

[
θ(εF − εj − k2

||/2)

ω − ωlj − q||k|| − q2
||/2 + iη

−
θ(εF − εj − k2

||/2)

ω + ωlj + q||k|| + q2
||/2 + iη

]
. (2.12)

Here, ωlj = εl−εj, and η is a positive infinitesimal. The linearized effective potential,

vs1σ = v1σ + vHxc1σ, consists of an external scalar perturbation plus a linearized

Hartree-xc contribution:

vHxc1σ(q||, z, ω) =
∑
σ′

∫
dz′
[

2π

q||
e−q|||z−z

′| + fxc,σσ′(q||, z, z
′, ω)

]
n1σ′(q||, z

′, ω) .

The xc kernel fxc,σσ′ will be discussed in more detail below.

The following external perturbation triggers both single-particle and collective

excitations with a finite in-plane wave vector q||:

v1σ(q||, z, ω) = S±σ E0e
q||z , (2.13)

which couples to the charge (+) and the spin (−) channel via S±σ = δσ,↑ ± δσ,↓,

respectively. Having solved the response equation (2.10) self-consistently, we obtain

the absorption cross section [35] as

σ(q||, ω) = − 2ω

E0q2
||
=
∑
σ

S±σ

∫
dz eq||zn1σ(q||, z, ω) . (2.14)

This expression can be viewed as a generalization of the so-called reflection amplitude,

which determines the infrared absorption of quantum wells in the presence of a grating
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coupler [36, 37].

The absorption cross section (2.14), when plotted as a function of frequency, has

peaks at those frequencies that are resonant with an excitation energy of the system;

the peak height is a measure of the oscillator strength.

The alternative to calculating the absorption cross section is to directly calculate

the excitation energies of the system. The idea is that an electronic excitation can

be viewed as an electronic eigenmode, i.e., a dynamical response of the system that

is self-sustained and does not require an external perturbation. The characteristic

eigenmode frequencies are thus obtained as those frequencies Ω where the linear-

response equation has a nontrivial solution in the absence of an external perturbation

[30, 31]. The resulting general formalism for calculating excitation energies in TDDFT

has the form of an eigenvalue equation [29, 32]:

 A K

K A


 X

Y

 = Ω

 −1 0

0 1


 X

Y

 , (2.15)

where the matrix elements of A and K are given by

Aiaσ,i′a′σ′(ω) = δii′δaa′δσσ′ωaiσ +Kiaσ,i′a′σ′(ω) (2.16)

Kiaσ,i′a′σ′(ω) =

∫
d3r

∫
d3r′ϕ∗i (r)ϕa(r)

{
1

|r− r′| + fxcσσ′(r, r
′, ω)

}
ϕi′(r

′)ϕ∗a′(r
′) (2.17)

and i, i′ and a, a′ run over occupied and unoccupied Kohn-Sham orbitals, respec-

tively. In almost all applications of this formalism one uses frequency-independent

approximations for the xc kernel.
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Equation (2.15) can be adapted in a rather straightforward manner to calculate

inter- and intrasubband charge and spin plasmon frequencies in quantum wells; all

one needs to do is use the explicit form ϕj(r) = A−1/2ϕj(z)eik||·r|| of the single-particle

wave functions and then Fourier transform with respect to r||.

Rather than giving the general formalism, let us consider the much simpler (but

very important) quasi-2D case. Assume that only the lowest subband is occupied,

and consider the lowest intersubband plasmon modes at wavevector q|| = 0. Ignoring

the influence of the third and higher subbands, the intersubband charge and spin

plasmon frequencies are given by

Ω2
c,s = ω2

21 + ω21Ns(K↑↑ ±K↑↓) , (2.18)

where ω21 = ε2 − ε1 and

Kσσ′ =

∫
dz

∫
dz′ϕ1(z)ϕ2(z)[−2π|z − z′|+ fxc,σσ′(z, z

′)]ϕ1(z′)ϕ2(z′). (2.19)

For finite wavevectors, analytic expressions for the plasmon frequencies can be ob-

tained for small values of q|| by Taylor expansion of the response function; however,

it is easier to determine the plasmon frequencies numerically.

2.1.3 Exchange kernels

The main purpose of this chapter is to compare the performance of different ap-

proximate xc kernels in the crossover from 3D to 2D. In the following we shall limit

ourselves to the exchange-only case. For systems that are not spin polarized, the

spin-resolved exchange kernel fx,σσ′ is obtained from the spin-unresolved exchange
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kernel fx as

fx,σσ′ = 2δσσ′fx . (2.20)

We compare three different frequency-independent exchange kernels: ALDA, PBE,

and PGG. The ALDA exchange kernel is defined as follows:

fALDA
x (r, r′) =

d2ehx(n̄)

dn̄2

∣∣∣∣
n̄=n(r)

δ(r− r′) , (2.21)

where ehx(n) is the exchange energy density of a homogeneous electron liquid of density

n.[2] Hence, the 3D and 2D ALDA exchange kernels are given by

fALDA
x,3D (r, r′) = −[9πn2(r)]−1/3δ(r− r′) (2.22)

fALDA
x,2D (r||, r

′
||) = −[πn2D(r||)/2]−1/2δ(r|| − r′||) . (2.23)

The PBE functional [38] is probably the most widely used GGA; it is defined only

for 3D systems. The explicit expression for the PBE exchange kernel turns out to be

quite lengthy, and is given in Appendix A.

In contrast with ALDA and PBE, the so-called PGG functional [31, 39] is a

nonlocal orbital functional, given by

fPGG
x (r, r′) = −2

∣∣∣∑Nocc

j=1 ϕj(r)ϕ∗j(r
′)
∣∣∣2

|r− r′|n(r)n(r′)
, (2.24)

where the sum runs over Nocc doubly occupied orbitals. PGG can be viewed as an

approximation to the exact exchange kernel [29]. We give the explicit form of the

PGG kernel for quasi-2D systems and for the 2D limit in Appendix B, and discuss
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its relation to exchange-only ISTLS in Appendix C.

2.2 Results and Discussions

2.2.1 Plasmons: from bulk to quasi-2D

Plasmons in homogeneous electron liquids have been thoroughly studied for many

decades [40]. The plasmon dispersions in 2D and 3D follow from the exact conditions

[
4π

q2
+ fxc,3D(q,Ω3D)

]
χ3D

0 (q,Ω3D) = 1 (2.25)[
2π

q||
+ fxc,2D(q||,Ω2D)

]
χ2D

0 (q||,Ω2D) = 1 , (2.26)

where χ3D
0 (q,Ω) and χ2D

0 (q||,Ω) are the 3D and 2D Lindhard functions [2]. In the

limit of small wavevectors, one obtains

Ω3D(q → 0) = ωpl

[
1 +

(
3(k3D

F )2

10ω2
pl

+
fxc,3D(0, ωpl)

8π

)
q2

]
, (2.27)

where ωpl =
√

4πn is the classical plasma frequency of a 3D electron liquid of density

n, and k3D
F is the associated Fermi wavevector. The corresponding relation in 2D is

Ω2D(q|| → 0) = k2D
F

√
q||
[
1 +

q||
2π
fxc,2D(0, 0)

]1/2

. (2.28)

Ω3D(q) and Ω2D(q||) both describe charge plasmons (i.e., collective oscillations of the

charge density n). There are no corresponding 3D and 2D spin plasmons (i.e., col-

lective oscillations of the spin density) as long as the system is not magnetic: the
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conditions for spin plasmons in homogeneous systems, fxc,3D(q,Ωs)χ
3D
0 (q,Ωs) = 1

and fxc,2D(q||,Ωs)χ
2D
0 (q||,Ωs) = 1, cannot be satisfied, i.e., there is no real or complex

frequency Ωs which makes the left-hand side equal to one.

Suppose now that we start from a homogeneous 3D system and let one of its

dimensions, say z, become confined: this defines a neutral jellium slab [36, 37]. Let

us consider a jellium slab that corresponds to the quantum well model with hard

boundaries that we described in Section 2.1.1. What happens to the plasmon mode

as the width L of this system shrinks down to the quantum limit?

As soon as L becomes finite, the collective excitations are described using the

formalism of intersubband plasmons. We consider the case where the average 3D

density n̄ in the well is constant, letting

n̄ = Ns/L . (2.29)

If L is very large, the difference between two consecutive energy levels εj and εj+1, see

Eq. (2.6), is very small, and a large number of subbands is occupied. As L shrinks,

the level spacing increases and fewer and fewer subbands are occupied. Let Lν be

that width where the Fermi energy εF coincides with the νth level εν . From Eqs.

(2.6) and (2.9) it is straightforward to show that

L3
ν =

πν

12n̄
(4ν2 − 3ν − 1) , (2.30)

where we used
∑ν

j=1 j
2 = ν(ν + 1)(2ν + 1)/6. In particular, for ν = 2 we have

L2 =

(
3π

2n̄

)1/3

. (2.31)
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Figure 2.2: Photoabsorption cross section for q|| = 0 intersubband excitations in
quantum wells. Left panels: charge-density excitations. Right panels: spin-density
excitations. Insets: density profiles at given values of Nocc. The calculations were
done with Eq. (2.14), setting q|| = 0 and using the 3D ALDA exchange kernel to
obtain n1σ.

For L < L2, only the lowest subband is occupied (the quantum limit). Equation

(2.31) can also be rewritten in terms of the 2D Wigner-Seitz radius r2D
s as [22]

L2 =

√
3π

2Ns

= πr2D
s

√
3

2
≈ 3.85r2D

s . (2.32)

Figure 2.2 shows ALDA intersubband excitation spectra at q|| = 0, in the charge

and spin channel, for quantum wells with different numbers of occupied subbands,

ranging from Nocc = 1 to 35. L and Ns are chosen such that the average density

remains constant at n̄ = 0.30 a∗0
−3. The insets in the middle show how the density

profile becomes more and more square shaped as Nocc increases.

In the quasi-2D limit where Nocc = 1, the spectra only show a single peak in
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the energy range below 10 a.u.: the intersubband charge plasmon at 5.17 a.u. (left

bottom panel) and spin plasmon at 4.53 a.u. (right bottom panel). As more subbands

become occupied, the spectra acquire more and more peaks, and eventually approach

very simple bulk limits for large Nocc.

At Nocc = 35, the charge-density excitation spectrum is dominated by a single

peak at 1.94 a.u., which is the bulk plasmon frequency ωpl corresponding to n̄. There

is also a small peak around 0.22 a.u., which corresponds to the surface plasmon of

a large jellium slab with a sharp density profile [41]. On the other hand, the spin-

density excitation spectrum has become essentially featureless; in other words, the

spin plasmon is seen to disappear in the bulk limit, as expected.

Thus, there is a seamless transition between the 3D bulk plasmon and the inter-

subband plasmons as the 2D limit is approached. In this regime, the 3D ALDA (or

any 3D semilocal functional) is appropriate.

2.2.2 2D Limit of intersubband plasmons

We now focus on the situation where only the first subband is occupied (Nocc = 1),

i.e., we consider quantum wells of width L < L2. Figure 2.3 shows the intersubband

charge and spin plasmon dispersions for quantum wells with Ns = 1012 cm−2 and

L = 100 and 40 Å, respectively, calculated with RPA, ALDA, PBE and PGG. In all

cases, the charge plasmon dispersion lies above the spin plasmon dispersion (except

for RPA, which has no spin plasmon). However, the position of the intersubband

plasmon dispersions relative to the particle-hole (p-h) continuum varies.

For the 100 Å wide quantum well we find that the charge plasmon branches are

above the p-h continuum and spin plasmon branches are below. For the 40 Å well,
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Figure 2.3: Intersubband plasmon dispersions Ω(q||), for Ns = 1012 cm−2 and well
widths 100 Å and 40 Å. The black full lines indicate the intersubband p-h continuum.
The RPA only gives intersubband charge plasmons; ALDA, PBE and PGG give both
charge (full lines) and spin plasmons (dashed lines). ALDA and PBE break down
when their charge plasmons falls below the p-h continuum.

however, the charge plasmon branch has moved below [42] the p-h continuum for

ALDA and PBE, but not for RPA and PGG. This is a remarkable difference between

semilocal and orbital-dependent exchange functionals, and we will now investigate

this effect in more detail.

Let us consider the case q|| = 0 and keep the sheet density Ns fixed. As L → 0,

the system transitions from quasi-2D to strictly 2D [33]. In this limit, the intersub-

band excitation energies become infinitely large, because the system is so strongly

confined in the plane that density fluctuations perpendicular to the quantum well

plane (see Fig. 2.1) become impossible. However, it is interesting to observe how the
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Figure 2.4: Intersubband plasmon energies, at q|| = 0, versus well width L, for
Ns = 1012 cm−2. The horizontal line indicates the lowest p-h transition ω21 (all
energies are scaled by L2). The RPA only gives intersubband charge plasmons; ALDA,
PBE and PGG give both charge (full lines) and spin plasmons (dashed lines). ALDA
and PBE break down when the charge plasmon falls below the p-h line.

intersubband plasmons behave as this limit is approached. This is shown in Fig. 2.4.

We have calculated the q|| = 0 intersubband charge and spin plasmon energies

with RPA (charge plasmon only), ALDA, PBE, and PGG. According to Eq. (2.6)

the lowest p-h transition energy is ω21 = 3π2/2L2. Hence, ω21L
2 is constant, as

indicated by the thin horizontal line in Fig. 2.4. As L becomes smaller, the plasmon

energies (scaled by L2) approach and eventually merge with the p-h line.

The RPA plasmon energy follows from Eq. (2.18) as

(ΩRPA
c L2)2 =

9π4

4
+

20πNsL
3

3
, (2.33)

where the Hartree part of the intersubband matrix element (2.19) is given by

− 2π

∫
dz

∫
dz′ϕ1(z)ϕ2(z)|z − z′|ϕ1(z′)ϕ2(z′) =

20L

9π
. (2.34)

23



Hence, the RPA charge plasmons are always shifted above the p-h line, but the sepa-

ration vanishes as L→ 0.

In ALDA, we find

(ΩALDA
c L2)2 =

9π4

4
+

20πNsL
3

3
− c1

(
48π2NsL

5
)1/3

(2.35)

(ΩALDA
s L2)2 =

9π4

4
− c1

(
48π2NsL

5
)1/3

, (2.36)

where c1 =
∫ π

0
dx sin2(2x) sin2/3(x) = 1.20027. For the PBE and PGG plasmon ener-

gies no simple analytic expressions exist; however, numerical evaluation is straight-

forward using the formulas in Appendix B.

As can be seen from Fig. 2.4, the ALDA and PBE charge plasmons cross over the

p-h line: this happens at L = 54.6 Å in ALDA and at L = 79 Å in PBE. No such

crossover is observed for PGG.

The critical width Linter
crit at which the crossover occurs in ALDA and PBE is plotted

in Fig. 2.5 as a function of the sheet density Ns. In ALDA we can use Eq. (2.35) to

find the analytical result

Linter
crit =

3c
3/4
1

5
√
Ns

(
5

4π

)1/4

=
0.546√
Ns

a.u. (2.37)

For PBE, we obtain numerically Linter
crit = 0.79/

√
Ns a.u. In terms of the 2D Wigner-

Seitz radius, this becomes Linter
crit = 0.975 r2D

s and 1.40 r2D
s for ALDA and PBE, respec-

tively. In the case of ALDA, this is about 4 times smaller than L2 [Eq. (2.32)], the

width of the quantum well below which only the lowest subband is occupied; in the

case of PBE, it is about 3 times smaller.

In PGG, we find that the charge and spin plasmons always lie above and below
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Figure 2.5: Critical width Linter
crit at which the intersubband plasmon breakdown occurs,

as a function of sheet density Ns. Full line: ALDA, dashed line: PBE.

the p-h continuum, respectively. This is similar to the case of excitation energies in

atoms, where the bare Kohn-Sham exictations are found to lie between the singlet

and triplet excitations [43, 44, 45]. Hence, the crossover of ALDA and PBE indicates

a general failure of semilocal functionals in the 2D limit of intersubband transitions.

However, it is important to note that this failure does not appear to be a catas-

trophic breakdown, as in the case of the diverging exchange energy that we discussed

in the Introduction. The intersubband plasmons may have a wrong position with

respect to the p-h continuum, but they still exist as collective modes, and deviate not

too far from the PGG results. Furthermore, the separation between charge and spin

plasmons (the analog of the singlet-triplet splitting in atoms) remains well described

in ALDA and PBE for all L.

In practice, the width of quantum wells is limited by the underlying material (for

GaAs, the lattice constant is 5.65 Å). Typical semiconductor quantum wells have

widths of several hundreds of Å, so that one is usually sufficiently far away from the

critical widths where the ALDA breaks down for the intersubband dynamics, except

for situations where Ns is very small.
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2.2.3 2D limit of intrasubband plasmons

Let us now consider the intrasubband plasmons in a quantum well with Nocc = 1, in

the limit where L → 0. For convenience, we shift the bottom of the quantum well

potential such that the lowest subband level ε1 = 0. Assuming, furthermore, that

the second and higher subband levels are energetically well separated from the lowest

subband, the response function (2.11) is given by

χs,σσ′(k||, z, z
′, ω) = δσσ′Φ(z, z′)χ2D

0 (k||, ω) , (2.38)

where χ2D
0 (k||, ω) is the 2D Lindhard function, and where we abbreviate Φ(z, z′) =

ϕ2
1(z)ϕ2

1(z′). The response equation (2.10) for the eigenmodes then becomes

n1(q||, z
′,Ω) =

∫
dz1Φ(z′, z1)χ2D

0 (q||,Ω)

∫
dz2fHxc(q||, z1, z2)n1(q||, z2,Ω) . (2.39)

Multiply both sides with ϕ2
1(z)fHxc(q||, z, z′) and integrate over z and z′. Then, n1

cancels out and we are left with the condition

1 =

∫
dz

∫
dz′Φ(z, z′)

[
2π

q||
e−q|||z−z

′| + fxc(q||, z, z
′)

]
χ2D

0 (q||,Ω) . (2.40)

The intrasubband plasmons of the quasi-2D quantum well are those frequencies Ω

where Eq. (2.40) is satisfied. The question is now this: if L→ 0, will Eq. (2.40) turn

into Eq. (2.26) for the 2D plasmons?

A straightforward calculation shows that this is indeed the case for the Hartree
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part, as expected. Using the particle-in-a-box wave function (2.5) we obtain

∫
dz

∫
dz′ Φ(z, z′)e−q|||z−z

′| =
q||L

(q2
||L

2 + 4π2)2

×
{

3q2
||L

2 + 20π2 +
32π4

q3
||L

3
(e−q||L − 1 + q||L)

}
−→ 1 for L→ 0. (2.41)

For the PGG exchange kernel, it is straightforward to show that

∫
dz

∫
dz′ Φ(z, z′)fPGG

x (q||, z, z
′) −→ fPGG

x,2D (q||) (2.42)

for L → 0, where fPGG
x (q||, z, z′) and fPGG

x,2D (q||) are given in Appendix B, see Eqs.

(B.4) and (B.6). Thus, the PGG exchange kernel behaves correctly in the 2D limit.

However, it is hardly surprising to find that the ALDA does not give the correct

2D limit. We have

∫
dz

∫
dz′ Φ(z, z′)fALDA

x,3D (z, z′) = −2c2

3π

(
6

πL

)1/3

n
−2/3
2D , (2.43)

where c2 =
∫ π

0
dx sin8/3(x) = 1.4003. This clearly disagrees with the form of fALDA

x,2D =

−
√

2/πn2D, and in fact diverges as L→ 0. Other semilocal functionals such as PBE

show similar trends.

Figure 2.6 shows the plasmon dispersions in the strictly 2D limit, calculated by

solving Eq. (2.26). The ALDA and PGG calculations were done with the 2D exchange

kernels fALDA
x,2D and fPGG

x,2D , respectively. The upper boundary of the particle-hole con-

tinuum is given by the relation Ω̃ = q̃||
2/2+ q̃||, where q̃|| = q||/k2D

F and Ω̃ = Ω/(k2D
F )2.

One observes that the RPA plasmon dispersion always lies above ALDA and PGG,
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Figure 2.6: Plasmon dispersions Ω(q||) for strictly 2D systems with sheet densities
Ns = 1010, 1011, and 1012 cm−2, calculated with RPA, 2D ALDA and PGG. The
full lines denote the upper boundaries of the particle-hole (p-h) continuum. Here,
q̃|| = q||/k2D

F and Ω̃ = Ω/(k2D
F )2.
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reflecting the downshift of excitation energies caused by exchange.

Figure 2.7 compares the intrasubband plasmon dispersions of PGG and 3D ALDA

for well widths L = λL2, where we let the scaling parameter λ take on values between

1 and 0.001 [recall that L2, Eq. (2.31), is the maximum well width for which only

the lowest subband is occupied for a given Ns]. The sheet density is Ns = 1010 cm−2,

and we have L2 = 217 nm.

As expected, PGG nicely approaches the 2D limit that was shown in Fig. 2.6.

For λ < 0.01, the intrasubband plasmon dispersion becomes indistinguishable from

the strictly 2D limit.

The situation is drastically different for the ALDA. As λ decreases from 1 to

0.1, the intrasubband dispersion appears to approach the 2D limit. However, below

λ = 0.1 the 3D ALDA starts to fail. The performance at small values of q|| is still good,

but the plasmon branch enters the particle-hole continuum too soon, and the trend of

the entry point as a function of q|| is reversed. Eventually, as λ→ 0, the intrasubband

plasmon completely disappears, rather than approaching the 2D plasmon shown in

Fig. 2.6.

We have repeated these calculations for several different values of the sheet density

Ns, focusing on the wavevector q̃||p−h where the intrasubband plasmon enters the p-h

continuum, as indicated by the blue squares in Fig. 2.7.

Figure 2.8 shows q̃||p−h versus the well width scaling factor λ for Ns = 1010, 1011,

1012, and 1013 cm−2, calculated with ALDA and PGG. For PGG we see in each case

that q̃||p−h smoothly approaches its limiting value for the strictly 2D plasmon, shown

by the dashed line. The ALDA initially approaches the 2D limit as λ decreases from

1. However, around λ = 0.1 all ALDA curves turn around and rapidly drop off,
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Figure 2.7: Intrasubband plasmon dispersions for quantum wells with sheet density
Ns = 1010 cm−2, for different widths L = λL2, where λ takes on the values 1, 0.5, 0.2,
0.1, 0.05, 0.02, 0.01, 0.005, 0.002, and 0.001. L2 = 217 nm is the largest width for
which only the lowest subband is occupied. The individual plasmon dispersions are
offset for clarity. The dashed lines are the upper boundaries of the p-h continuum. The
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Figure 2.8: Wavevector q̃||p−h at which the intrasubband plasmon merges with the p-h
continuum, plotted versus well width scaling factor λ, calculated with PGG (blue) and
ALDA (red). The dashed lines indicate the respective limits for the strictly 2D case.
The calculations were done for sheet densities Ns = 1010, 1011, 1012, and 1013 cm−2, as
indicated. The breakdown of the 3D ALDA occurs around λ = 0.1 for all Ns.

moving away from the 2D limit.

Thus, we find that the 3D ALDA exchange kernel behaves reasonably as long as the

well width is sufficiently large. The breakdown for intrasubband (in-plane) dynamics

occurs for Lintra
crit ≈ 0.1L2 ≈ 0.4r2D

s . Interestingly, this is significantly smaller than the

critical intersubband width Linter
crit ≈ r2D

s , see Section 2.2.2.
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2.3 Conclusions

In this chapter we have carried out systematic numerical studies of the electron dy-

namics in quantum wells whose width L crosses over from the 3D to the quasi-2D

regime (where only the lowest subband is occupied, but the finite size is still relevant)

and finally to the strictly 2D limit (where L = 0). The purpose was a comparison

of different classes of exchange kernels in TDDFT: standard semilocal kernels (such

as ALDA and PBE) and nonlocal kernels (such as PGG and ISTLS). ALDA and

PBE are based on the electron gas as reference system, whereas PGG and ISTLS are

orbital functionals, whose definition does not invoke any reference system.

The main conclusion does not come as a surprise: ALDA and PBE fail in the

3D-2D crossover, PGG succeeds. This is already well known for the ground state

[22, 23, 24, 25], and there was no reason to expect otherwise for the dynamical case.

However, the details are interesting and of practical relevance.

First of all, we discover a universal behavior of the breakdown of the inter- and

intrasubband dynamics in 3D ALDA. At a critical well width of Linter
crit ≈ r2D

s , inter-

subband plasmons are no longer qualitatively correctly described (the charge plasmon

falls below the single-particle excitation ω21). For well widths below Lintra
crit ≈ 0.4r2D

s ,

intrasubband plasmon dispersions start to become suppressed compared to the 2D

limit. The interesting finding is thus that Lintra
crit < Linter

crit , so the in-plane dynamics

appears to be well described using the 3D ALDA down to much smaller widths than

the out-of-plane dynamics.

Compared to the ground state, the failure of the (semi)local xc functionals in the

dynamical case is of a different nature. In fact, while the exchange energy diverges

for L → 0, intersubband plasmons can still be reasonably described (apart from
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the fact that they drop below the p-h continuum [42], which is an artifact of these

functionals). In turn, intrasubband plasmon dispersions become suppressed and cease

to exist, instead of approaching the limit of 2D plasmons.

In practice, it is important to know for what quantum well widths the 3D ALDA

is still applicable. For instance, if Ns = 1011 cm−2 (which is a very typical value

for many semiconductor quantum well samples), we find Linter
crit = 17 nm for GaAs,

which is rather narrow. Higher sheet densities allow one to push this limit to even

narrower wells; and the breakdown for intrasubband dynamics occurs at even smaller

well widths, as low as a few Å. This is certainly good news, considering the popu-

larity of the ALDA and its ease of implementation. We also find that these values

can be significantly higher for the PBE; in other words, using gradient-corrected xc

functionals for quantum wells does not seem to pay off [46].

Clearly, the best option to describe the dynamics in strongly confined systems is

using nonlocal orbital functionals such as PGG or ISTLS, since these are not tied to

a particular choice of reference system (such as the 2D or 3D ALDA) and hence have

no problem with dimensional crossover.

Finally, let us say a few words about correlation. In the ground state [22, 23,

24, 25], it was observed that local and semilocal correlation functionals break down

in a similar manner as exchange functionals. This will also be the case for the dy-

namics. However, nonlocal, orbital-dependent correlation functionals are much more

complicated than exchange functionals; for instance, implementing the ISTLS beyond

exchange in linear response will remain a task for the future.

There is another aspect of correlation that is unique to the dynamical case, namely,

it leads to dissipation of plasmon excitations even outside the particle-hole continuum.
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Plasmon damping in quantum wells has been studied within time-dependent current-

DFT [47, 48, 49, 50], using the complex and frequency-dependent xc kernel of Vignale

and Kohn [51, 52, 53]. This xc kernel is a local approximation of the current, and can

lead to overdamping of charge plasmons if the system becomes too inhomogeneous

[48, 54]. The effect is even more dramatic for spin plasmons, where the damping due to

the spin Coulomb drag effect is significantly overestimated using a local approximation

[55]. Again, it is found that the cure to this overdamping is provided by orbital

functionals [56].
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Chapter 3

Spin precession and spin waves in a
chiral electron gas: beyond
Larmor’s theorem

Larmor’s theorem [57, 58] states that in a system of charges, all with the same charge-

mass ratio q/m, moving in a centrally symmetric electrostatic potential and in a

sufficiently weak magnetic field B, the charges precess about the direction of the

magnetic field with the frequency

ΩL = g
qB

2m
(3.1)

(in SI units), where g is the gyromagnetic ratio or g-factor.

In condensed-matter physics, Larmor’s theorem applies to the long-wavelength

limit of spin-wave excitations in magnetic systems which are invariant under spin

rotation [59]. In particular, the electrons in a two-dimensional electron gas (2DEG)

in the presence of a constant uniform magnetic field carry out a precessional motion
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at the single-particle Larmor frequency, despite the presence of Coulomb interactions.

If spin-rotational invariance is broken—for instance, in the presence of spin-orbit

coupling (SOC)—Larmor’s theorem is no longer guaranteed to hold, and there will

be corrections to ΩL. This was experimentally observed over three decades ago for a

2DEG in a GaAs/AlGaAs heterostructure, using electron spin resonance (ESR) [60].

Subsequently, several theoretical studies addressed Larmor’s theorem in collective

spin excitations in 2DEGs [61, 62, 63, 64, 65, 66, 67]. The corrections to ΩL are

caused by a subtle interplay between SOC and Coulomb many-body effects, which

poses significant formal and computational challenges; on the other hand, this offers

interesting opportunities for the experimental determination of SOC parameters and

the study of many-body interactions.

In this chapter, we present a joint experimental and theoretical study of the spin-

wave dispersions of a partially spin-polarized 2DEG in a semiconductor quantum

well. The influence of Rashba and Dresselhaus SOC on collective electronic modes

in quantum wells was first theoretically predicted to cause an angular modulation

of the intersubband plasmon dispersion [68, 69]. The effect was later experimentally

confirmed [70], and then extended to spin-wave dispersions [71, 72, 73, 74].

In the absence of SOC, the real part of the spin-wave dispersion of a paramagnetic

2DEG has the following form for small wave vectors [75]:

~ωsw(q) = Z +
1

2
Sswq

2 , (3.2)

where Z is the bare Zeeman energy, and Ssw is the spin-wave stiffness, which depends

on Coulomb many-body effects (explicit expressions for Z and Ssw will be given in

Section 3.1). Note that for a partially spin polarized 2DEG the spin-wave stiffness
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Ssw is negative; by contrast, for ferromagnetic systems one finds Ssw > 0 [59].

It was recently discovered in our group [74] that, to first order in the Rashba

and Dresselhaus spin-orbit coupling strengths α and β, the spin-wave dispersion is

unchanged apart from a chiral shift by a constant wave vector q0 (defined in Sec. 3.2)

which depends on α, β and the angle ϕ between the magnetization direction and the

[010] crystalline axis (see Fig. 3.1). In other words, to quadratic order in the wave

vector, we find

~ωSO
sw (q) = Z +

1

2
Ssw|q + q0|2 +O(α2, β2). (3.3)

The spin-wave stiffness Ssw remains unchanged, to leading order in α, β. The physical

interpretation is that the spin wave behaves as if it were transformed into a spin-orbit

twisted reference frame. This opens up new possibilities for manipulating spin waves,

which may lead to new applications in spintronics.

To account for higher-order SOC effects in the spin-wave dispersion, it is sensible

to rewrite Eq. (3.3) in a more general manner:

ωSO
sw (q) = E0(ϕ) + E1(ϕ)q + E2(ϕ)q2 , (3.4)

where the coefficients E0, E1 and E2 depend on the propagation direction ϕ (see

Fig. 3.1). From Eq. (3.3), the linear coefficient is given to leading order in SOC by

E1(ϕ) = Sswq · q0/q, which can be expressed as [74]

E1(ϕ) = −2

ζ

Z

(Z∗ − Z)
(α + β sin 2ϕ) , (3.5)

where ζ is the spin polarization of the 2DEG, and Z∗ is the renormalized Zeeman

splitting, to be defined below in Section 3.1.2.
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We will present a linear-response approach based on time-dependent density-

functional theory (TDDFT) which allows us to obtain analytical results for E0, to

second order in α, β, and numerical results for E1 and E2 to all orders in SOC.

The breaking of Larmor’s theorem is expressed in the coefficient E0, which has ϕ-

dependent corrections to Z. In Section 3.3 we will obtain the following result to

leading order in SOC:

E0(ϕ) = Z +
2πNs

Z∗fT

[
(α2 + β2)(3fT + 2) + 2αβ sin(2ϕ)(fT + 2)

]
, (3.6)

where fT = (Z − Z∗)/Z∗.

Our analytical and numerical results will be compared with experimental results,

obtained via inelastic light scattering in a CdMnTe quantum well sample. The ex-

periment was carried out by our collaborators, Florent Perez and Florent Baboux, at

the Universit Pierre et Marie Curie in Paris [76]. By fitting E0, E1 and E2 we are

able to extract values for Z∗, α and β and present evidence for the ϕ dependence of

E0 and E2, which had not been considered in the earlier work done by our group [74].

Comparison to theory shows significant deviations from the standard approximation

in TDDFT, the adiabatic local-density approximation (ALDA). This provides new

incentives to search for better exchange-correlation functionals for transverse spin

excitations of electronic systems.

This chapter is organized as follows. In Section 3.1 we discuss Larmor’s theorem

without SOC: first, for completeness, we present a general proof for interacting many-

body systems, and then we discuss Larmor’s theorem from a TDDFT perspective.

This will lead to a new constraint for the exchange-correlation kernel of linear-response

TDDFT. In Section 3.2 we consider the electronic states in a quantum well with SOC
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and an in-plane magnetic field. Section 3.3 contains the derivation of the spin-wave

dispersions from linear-response TDDFT, in the presence of SOC. In Section 3.4 we

compare our theory with experimental results and discuss our findings. Section 3.5

gives our conclusions.

3.1 Larmor’s theorem

In this section we consider Larmor’s theorem in a 2DEG, from a general many-body

perspective (the proof given in Sec. 3.1.1 is not new [58] but included here to keep the

chapter self-contained), and from the perspective of TDDFT. This will set the stage

for the discussions in the following sections where the effects of SOC are included.

3.1.1 Long-wavelength limit of spin waves a 2DEG

Let us consider a 2DEG in the presence of a uniform magnetic field B = Bêz, where

êz is a unit vector lying in the plane of the 2DEG. The Hamiltonian is

Ĥ =
∑
i

[
p̂2
i

2m
+
Z

2
σ̂z,i

]
+
e2

2

∑
ij

1

|ri − rj|
. (3.7)

Here, m and e are the electron mass and charge, Z = gµBB is the Zeeman energy

(the splitting between the spin-up and spin-down bands), and µB = |e|~/2m is the

Bohr magneton. For a 2DEG embedded in a semiconductor, m, e, and g are replaced

by the effective mass, charge and g-factor, m∗, e∗ and g∗, where g∗ could be a positive

or negative number.

Since the magnetic field is applied in the plane of the 2DEG (in this section, we
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assume for simplicity that the 2DEG has zero thickness), its only effect is on the

electron spin and there is no Landau level quantization. Later on, when we discuss

quantum wells of finite width, we will exclude situations where the magnetic length

lB =
√

~/|eB| is smaller than the well width, and hence continue to disregard any

orbital angular momentum contributions.

Let us define the spin-wave operator [58, 77, 78, 79]

Ŝ+,q =
1

2

∑
i

σ̂+,ie
−iq·ri , (3.8)

where σ̂+ = σ̂x + iσ̂y. This operator satisfies the Heisenberg equation of motion

d

dt
Ŝ+,q =

1

i~
[Ŝ+,q, Ĥ] = iωsw(q)Ŝ+,q , (3.9)

where ωsw(q) is the spin-wave frequency dispersion of the 2DEG. We are interested

in the special case q = 0, and abbreviate ωsw(q = 0) = ωsw,0. The operator Ŝ+,0 =

1
2

∑
i σ̂+,i commutes with the kinetic and electron-electron interaction parts of Ĥ, and

we obtain

[Ŝ+,0, Ĥ] =
Z

4

∑
i

[σ̂+,i, σ̂z,i] = −ZŜ+,0 ,

where we used the standard commutation relations between the Pauli matrices σ̂x,

σ̂y and σ̂z. Together with Eq. (3.9), this yields

d

dt
Ŝ+,0 =

i

~
ZŜ+,0 , (3.10)

and hence

~ωsw,0 = Z . (3.11)
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Larmor’s theorem thus says that the long-wavelength limit of the spin-wave dispersion

of a 2DEG is given by the bare Zeeman energy, regardless of the presence of Coulomb

interactions. By comparison with Eq. (3.1) we have ΩL = Z/~.

3.1.2 TDDFT perspective

TDDFT is a formally exact approach to calculate excitations in electronic systems

[29, 34]. In the most general case of a magnetic system, TDDFT can be formulated

using the spin-density matrix n as basic variable, whose elements are defined as

nσσ′(r, t) = 〈Ψ(t)|ψ̂†σ′(r)ψ̂σ(r)|Ψ(t)〉 , (3.12)

where Ψ(t) is the time-dependent many-body wave function, and ψ̂σ(r), ψ†σ′(r) are

fermionic field operators for spins σ and σ′, respectively. The spin-density matrix is

diagonal for spatially uniform magnetic fields if the spin quantization axis is along

the direction of the field. However, spin-flip excitations involve the transverse (off-

diagonal) spin-density matrix response.

The frequency- and momentum-dependent linear-response equation for a 2DEG

has the following form:

n
(1)
σσ′(q, ω) =

∑
ττ ′

χint
σσ′,ττ ′(q, ω)v

(1)
ττ ′(q, ω) , (3.13)

where v
(1)
τ ′τ ′(q, ω) is a spin-dependent perturbation, and χint

σσ′,ττ ′(q, ω) is the spin-

density matrix response function of the interacting many-body system.
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The TDDFT counterpart of Eq. (3.13) is

n
(1)
σσ′(q, ω) =

∑
ττ ′

χσσ′,ττ ′(q, ω)v
(1)eff
ττ ′ (q, ω) , (3.14)

where χσσ′,ττ ′(q, ω) is the response function of the corresponding noninteracting 2DEG,

and the effective perturbation is

δv
(1)eff
ττ ′ (q, ω) = v

(1)
ττ ′(q, ω) +

∑
λλ′

[
2π

q
+ fxc

ττ ′,λλ′(q, ω)

]
n

(1)
λλ′(q, ω). (3.15)

Here, fxc
ττ ′,λλ′(q, ω) is the exchange-correlation (xc) kernel for the spin-density matrix

response of the 2DEG.

Let us now consider a noninteracting spin-polarized 2DEG with the Kohn-Sham

Hamiltonian

ĥ =
∑
i

[
p̂2
i

2m
+
Z∗

2
σ̂z,i

]
, (3.16)

which produces two parabolic, spin-split energy bands ~2k2/2m + ε↑,↓ (spin-up and

spin-down are taken with respect to the z axis). In the following let us assume that

ε↑ − ε↓ > 0, so ζ < 0. The renormalized Zeeman energy is therefore given by

Z∗ = ε↑ − ε↓ = Z + vxc↑ − vxc↓ . (3.17)

From the xc energy per particle of a spin-polarized 2DEG [80], exc(n, ζ) (where n and

ζ are the density and spin polarization, respectively), the spin-dependent xc potentials
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are obtained as

vxc↑ = exc + n
∂exc

∂n
+ (1− ζ)

∂exc

∂ζ
(3.18)

vxc↓ = exc + n
∂exc

∂n
− (1 + ζ)

∂exc

∂ζ
, (3.19)

so the renormalized Zeeman energy is [78, 81]

Z∗ = Z + 2
∂exc

∂ζ
. (3.20)

Now let us calculate the collective spin-flip excitations using linear response theory.

Since the ground state of the 2DEG has no transverse spin polarization, the spin-

density-matrix response decouples into longitudinal and transverse channels, and we

can write the associated noninteracting response functions as

χ
L
(q, ω) =

 χ↑↑,↑↑ χ↑↑,↓↓

χ↓↓,↑↑ χ↓↓,↓↓

 (3.21)

χ
T

(q, ω) =

 χ↑↓,↑↓ χ↑↓,↓↑

χ↓↑,↑↓ χ↓↑,↓↑

 , (3.22)

and similar for the interacting case. The transverse part of the interacting response

function is diagonal, and can be expressed via TDDFT as

χint

T
(q, ω) =

 χ↑↓,↑↓
1−χ↑↓,↑↓fxc↑↓,↑↓

0

0
χ↓↑,↓↑

1−χ↓↑,↓↑fxc↓↑,↓↑

 . (3.23)

We now consider the case q = 0, where the spin-flip Lindhard functions have the
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simple form

χ↑↓,↑↓(0, ω) = − nζ

ω − Z∗ (3.24)

χ↓↑,↓↑(0, ω) =
nζ

ω + Z∗
(3.25)

(for a comprehensive discussion of the Lindhard function—the response function of

the noninteracting electron gas—see Ref. [2]). We get a collective excitation at

that frequency where χint
T

is singular. We substitute Eqs. (3.24) and (3.25) into Eq.

(3.23) and set the determinant of the 2 × 2 transverse response matrix χint
T

to zero.

Furthermore, because the system has no transverse spin polarization in the ground

state, we have

fxc
↑↓,↑↓(q, ω) = fxc

↓↑,↓↑(q, ω) ≡ fxc
T (q, ω) . (3.26)

This yields the q = 0 limit of the spin-flip wave of the 2DEG as

ωsw,0 = Z∗ − nζfxc
T (0, ωsw,0). (3.27)

This expression is formally exact. Comparing with the many-body result (3.11), and

using Eq. (3.20), gives

fxc
T (0, Z) =

2

nζ

∂exc

∂ζ
. (3.28)

Equation (3.28) is an exact constraint on the transverse xc kernel of the 2DEG,

based on Larmor’s theorem. It is not difficult to show that it is satisfied by the

adiabatic local-density approximation (ALDA), where the xc kernel is frequency- and

momentum-independent [78, 82].

Larmor’s theorem in the 2DEG can be understood from rather simple physical
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arguments [78]. A collective excitation of the spin-polarized ground state by coher-

ently flipping all spins does not change the overall exchange energy of the 2DEG;

hence, the q = 0 spin-wave mode has no Coulomb contributions, and ωsw,0 = Z. By

contrast, flipping the spin of a single electron with respect to all other spins causes an

exchange energy penalty; the energy difference between collective and single-particle

excitation is Z∗ − Z > 0.

For small but finite wave vectors, one obtains the long-wavelength spin-flip wave

dispersion [78]:

ωsw,q = Z − 1

|ζ|
Z

Z∗ − Z
~

2m
q2 (3.29)

which yields the spin-wave stiffness Ssw = − 1
|ζ|

Z
Z∗−Z

~
m

, see Eq. (3.2). Interestingly,

and in contrast with magnon dispersions in ferromagnetic systems, Ssw is negative,

except for very low densities (rs & 25). To understand this, we use the expression

e0 = πn(1+ζ2)/2 for the noninteracting kinetic energy per particle of a spin-polarized

2DEG [2], and recast the spin-wave stiffness as Ssw = (e′xc+e′0)/|ζ|e′xc, where the prime

is a shorthand for ∂/∂ζ. Ssw thus has kinetic and xc contributions, which have oppo-

site signs, except for the low-density limit in which the 2DEG becomes ferromagnetic.

The xc contribution tends to increase the Coulomb energy as q increases, since more

spins become antiparallel; however, the kinetic energy contribution becomes more

negative, and turns out to be the dominant one. Therefore, the spin-wave energy

decreases with q.
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Figure 3.1: Reference frames R′ (black) and R (red) used to describe the electronic
states in a quantum well with in-plane magnetic field B and spin-wave propagation
direction q.

3.2 Quantum well with in-plane magnetic field and

SOC

In this Section we will consider the electronic ground state of an n-doped semi-

conductor quantum well with in-plane magnetic field and Rashba and Dresselhaus

SOC, using DFT and the effective-mass approximation. The problem of interact-

ing 2D electrons in the presence of SOC and external fields has been well-studied

[65, 66, 67, 83, 84, 85, 86, 87, 88, 89]; however, to our knowledge the results derived

in this Section have not been given in the literature before.

The setup is illustrated in Figure 3.1, which defines two reference frames. The

reference frame R′ is fixed with respect to the quantum well: the quasi-2DEG lies in

the x′ − y′ plane, where the x′-axis points along the crystallographic [100] direction

and the y′-axis points along the [010] direction. The z′-axis is along the direction of

quantum confinement of the well.
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The coordinate system R is oriented such that its x− z plane lies in the quantum

well plane, and the z-axis points along the in-plane magnetic field B. In the inelastic

light scattering experiments that we will discuss below, B is always perpendicular to

the wave vector q of the spin waves. Here, q is along the x-axis, which is at an angle

ϕ with respect to the x′-axis.

The single-particle states in the reference frame R′ can be written as

Ψ′jk(r′) = eik·r
′
ψ′jk(z′) . (3.30)

Here, k = (kx′ , ky′ , 0) is the in-plane wave vector and j is the subband index; in the

following, we are only interested in the lowest spin-split subband, so the subband

index j will be replaced by the index p = ±1. The two-component spinors ψ′pk(z′)

are obtained from the following Kohn-Sham equation:

[h0σ̂0 + hx′σ̂x′ + hy′σ̂y′ ]ψ
′
pk(z′) = Epkψ

′
pk(z′) , (3.31)

where σ̂0 is the 2× 2 unit matrix. The spin-independent, diagonal part of the single-

particle Hamiltonian is

h0 =
k2

2
− 1

2

d2

dz′2
+ vconf(z

′) + vH(z′) + v+
xc(z

′) . (3.32)

Here, vconf(z
′) is the quantum well confining potential (an asymmetric square well),

vH(z′) is the Hartree potential, and we define v±xc(z
′) = [vxc↑(z′)± vxc↓(z′)]/2.

The off-diagonal parts in Eq. (3.31) contain the Zeeman energy Z plus xc and
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SOC contributions:

hx′ = −
(
Z

2
+ v−xc(z

′)

)
sinϕ+ αky′ + βkx′ (3.33)

hy′ =

(
Z

2
+ v−xc(z

′)

)
cosϕ− αkx′ − βky′ , (3.34)

where α and β are the standard Rashba and Dresselhaus coupling parameters.

To find the solutions of the Kohn-Sham system, it is convenient to transform into

the reference system R of Fig. 3.1, whose z-axis is along the magnetic field direction.

We introduce two in-plane vectors, q0 and q1, whose components (in the frame R′)

are

q0x′ = 2(α cosϕ+ β sinϕ) (3.35)

q0y′ = 2(α sinϕ+ β cosϕ) (3.36)

and

q1x′ = 2(−α sinϕ+ β cosϕ) (3.37)

q1y′ = 2(α cosϕ− β sinϕ) . (3.38)

With this, Eq. (3.31) transforms into

[
h0σ̂0 +

(
Z − k · q0

2
+ v−xc

)
σ̂z +

k · q1

2
σ̂x

]
ψpk = Epkψpk (3.39)

(the scalar products k · q0 and k · q1 are invariant under this coordinate transforma-
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tion). The solutions of Eq. (3.39) can be written as follows:

Epk =
k2

2
+
ε↑ + ε↓

2
+
p

2

√
(Z∗ − k · q0)2 + (k · q1)2 , (3.40)

where Z∗ = ε↑ − ε↓ and p = ±1. The associated eigenfunctions are

ψ+,k(y) =
1√

1 + b2

 1

b

φ(y) (3.41)

ψ−,k(y) =
1√

1 + b2

 −b
1

φ(y) (3.42)

and

b =
1

k · q1

[√
(Z∗ − k · q0)2 + (k · q1)2 − Z∗ + k · q0

]
. (3.43)

The solutions (3.40)–(3.43) have been expressed in terms of the solutions in the ab-

sence of SOC, ε↑,↓ and φ(y), which follow from

[
h0 −

k2

2
±
(
Z

2
+ v−xc

)]
φ↑,↓ = ε↑,↓φ↑↓ . (3.44)

The spin-up and spin-down envelope functions φ↑ and φ↓ are practically identical

for the systems considered here, which allowed us to use φ↑ ≈ φ↓ ≡ φ to express

the solutions (3.41) and (3.42) in a relatively compact form. This implies that the

dependence of v−xc(z
′) on z′ can be neglected in Eq. (3.44).

Finally, let us expand the solutions (3.40)–(3.43) in powers of the SOC coefficients
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α and β. We obtain to second order in SOC

Epk =
k2

2
+
ε↑ + ε↓

2
+
p

2

(
Z∗ − k · q0 +

(k · q1)2

2Z∗

)
(3.45)

and

ψ+(y) =

 1− (k · q1)2

8Z∗2

k · q1

2Z∗
+

(k · q0)(k · q1)

2Z∗2

φ(y) (3.46)

ψ−(y) =

 −
k · q1

2Z∗
− (k · q0)(k · q1)

2Z∗2

1− (k · q1)2

8Z∗2

φ(y). (3.47)

We illustrate the energy dispersion (3.40) of the lowest spin-split subband in Fig.

3.2. Here, we consider an asymmetrically doped CdMn quantum well of width 20 nm

and electron density 2.6× 1011 cm−1. An applied magnetic field of B = 4.18 T leads

to the bare and renormalized Zeeman energies Z = 0.40 meV and Z∗ = 0.573 meV,

respectively, using the LDA. Here, we use the effective-mass parameters m∗ = 0.105m,

e∗ = 1/
√

10, and g∗ = −1.64 for CdTe.

We choose the Rashba and Dresselhaus parameters α = 2.2 meVÅ and β = 3.9

meVÅ (see below), which causes the two subband to be slightly displaced horizontally

with respect to one another (in Fig. 3.2, we plot k along the [110] direction, i.e., for

ϕ = 45o).
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Figure 3.2: Spin-split lowest subband, Eq. (3.40), of an asymmetrically doped 20
nm CdTe quantum well with B = 4.18 T, with α = 2.2 meVÅ and β = 3.9 meVÅ,
taken at an angle ϕ = 45o (i.e. along [110]). The inset shows the quantum well profile
and the electronic density distribution.

3.3 Spin-flip waves dispersion

3.3.1 Linear-response formalism

In the following, we are interested in the collective spin-flip modes in a quantum well

with in-plane magnetic field and SOC. Based on the translational symmetry in the

x − z plane, one can Fourier transform with respect to the in-plane position vector

r = (x, z); this introduces the in-plane wave vector q. The TDDFT linear-response

equation (3.14) then becomes

n
(1)
σσ′(q, y, ω) =

∑
ττ ′

∫
dy′χσσ′,ττ ′(q, y, y

′, ω)v
(1)eff
ττ ′ (q, y′, ω), (3.48)
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where the noninteracting response function is given by

χσσ′,ττ ′(q, y, y
′, ω) =

−
±1∑
pp′

∫
d2k

(2π)2

ψpσ(k, y)ψ∗p′σ′(k− q, y)ψ∗pτ (k, y
′)ψp′τ ′(k− q, y′)

ω − Epk + Ep′k−q + iη
θ(EF − Epk)

+
±1∑
pp′

∫
d2k

(2π)2

ψp′σ(k + q, y)ψ∗pσ′(k, y)ψ∗p′τ (k + q, y′)ψpτ ′(k, y′)

ω + Epk − Ep′k+q + iη
θ(EF − Epk).

(3.49)

The energy eigenvalues Epk and the single-particle states ψpσ(k, y) are defined in

Eqs. (3.45)–(3.47). θ is the step function, and the Fermi energy is given by EF =

πNs − (α2 + β2), where Ns is the electronic sheet density (the number of electrons

per unit area). We assume here that both spin-split subbands are occupied, which is

different from the situation considered in Refs. [87, 88, 89].

In the response function (3.49) we only consider spin-flip excitations within the

lowest spin-split subband of the quantum well; contributions from higher subbands

are ignored, because they will be irrelevant as long as the Zeeman splitting is small

compared to the separation between the lowest and higher subbands, which is safely

the case here.

An interesting property of the response equation (3.48) is that it is invariant

under the simultaneous sign changes α → −α, β → −β, and q → −q, as can easily

be seen from the form of the response function (3.49). From this we conclude that

an expansion of the coefficients E0 and E2 in Eq. (3.4) only has even orders of α, β,

while only odd orders of α, β contribute to E1.

The 4 × 4 matrix response equation (3.48) can be solved numerically, within the
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ALDA, to yield the spin-wave dispersions [68, 69]. However, much physical insight

can be gained by an analytic treatment, which can be done for small wave vectors

q: the spin-wave dispersion then takes on the form of Eq. (3.4), and our goal is to

determine the coefficients E0 and E2 and compare them to experiment. We have done

this analytically for E0 and numerically for E2, as discussed below.

Instead of the spin-density-matrix response (3.48), it is convenient to work with

the density-magnetization response (especially for the calculations carried out in Ap-

pendix D, where we obtain corrections to second order in SOC): we replace the spin-

density matrix nσσ′ , defined in Eq. (3.12), with the total density n ≡ m0 and the

three components of the magnetization mx,y,z as basic variables. In the following, we

replace the labels (x, y, z) with (1, 2, 3) to streamline the notation.

The connection between the two sets of variables is made via the Pauli matrices:

mi(r) = tr{σ̂in(r)} , i = 0, . . . , 3. (3.50)

We can also express this through a 4 × 4 transformation matrix T , connecting the

elements mi and nσσ′ arranged as column vectors: ~m = T~n. In detail,



m0

m1

m2

m3


=



1 0 0 1

0 1 1 0

0 i −i 0

1 0 0 −1





n↑↑

n↑↓

n↓↑

n↓↓


. (3.51)

In a similar way, one can transform the spin-density-matrix response equation (3.48)
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into the response equation for the density-magnetization:

m
(1)
i (q, y, ω) =

3∑
k=0

∫
dy′Πik(q, y, y

′, ω)V
(1)
k (q, y′, ω) , (3.52)

where Π = 2T χT−1 is the noninteracting density-magnetization response function,

and ~V (1) = 1
2
T~v(1)eff is the effective perturbing potential.

We are only interested in the spin-flip excitations, which are eigenmodes of the

system: hence, no external perturbation is necessary. Furthermore, the Hartree con-

tributions drop out in the spin channel, so the effective potential only consists of the

xc part:

V
(1)
k (q, y, ω) =

3∑
l=0

∫
dy′hxc

kl (q, y, y
′, ω)m

(1)
l (q, y′, ω) . (3.53)

In the ALDA, the xc kernels hxc
kl do not depend on frequency and wave vector [68].

Once we have the density-magnetization response, we can multiply it with the xc

matrix. The xc matrix has a simple form, because in this reference frame the spin

polarization direction is along z:

Hxc =



hxc
00 0 0 hxc

03

0 hxc
11 0 0

0 0 hxc
22 0

hxc
30 0 0 hxc

33


(3.54)
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where

hxc
00 = 2

∂exc

∂n
+ n

∂2exc

∂n2
− 2ζ

∂2exc

∂n∂ζ
+
ζ2

n

∂2exc

∂n2
(3.55)

hxc
03 = hxc

30 =
∂2exc

∂n∂ζ
− ζ

n

∂2exc

∂ζ2
(3.56)

hxc
11 = hxc

22 =
1

nζ

∂exc

∂ζ
(3.57)

hxc
33 =

1

n

∂2exc

∂ζ2
. (3.58)

All quantities are evaluated at the local density n(y) and spin polarization ζ(y) and

multiplied with δ(y − y′). Here, exc is the xc energy per particle of the 3D electron

gas [90].

To find the collective modes, we can recast the response equation (3.52) in such a

way that the y-dependence goes away; the xc kernels hxc
kl are then replaced by their

averages over φ4(y). We need to determine those frequencies where the matrix

M(q, ω) = Hxc(q, ω)Π(q, ω) (3.59)

has the eigenvalue 1. In other words, we solve the 4× 4 eigenvalue problem

M(q, ω)~x = λ(q, ω)~x (3.60)

and find the mode frequencies by solving λ(q, ω) = 1 for ω, where q is fixed. In

general there will be 4 solutions. This is in principle exact, provided we know the

exact Hxc matrix, which, in general, depends on (q, ω). In ALDA, it is a constant

(for given density and spin polarization).
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3.3.2 Beyond Larmor’s theorem: leading SOC corrections

In the presence of SOC, the spin-wave dispersions are modified in an interesting and

subtle manner. For small values of q, the spin-wave dispersion has the quadratic form

given in Eq. (3.4). Our goal is now to obtain the coefficient E0 to leading order in

the Rashba and Dresselhaus coupling strengths α and β. To do this, we carry out a

perturbative expansion of the eigenvalue problem (3.60) in orders of SOC. At q = 0,

the matrix can be written as

M(0, ω) = M (0) +M (2) + . . . (3.61)

where superscripts indicate the order of SOC (the linear order vanishes at q = 0).

We first solve the zero-order eigenvalue problem M (0)~x(0) = λ(0)~x(0). The zero-

order spin-flip response function is

Π(0)(0, y, y′, ω) =
Z∗φ2(y)φ2(y′)

π(ω2 − Z∗2)



0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0


. (3.62)

Defining

fT =

∫
dy

φ4(y)

πn(y)ζ(y)

∂exc

∂ζ

∣∣∣∣
n(y),ζ(y)

, (3.63)
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where fT < 0, we obtain

M (0) =
Z∗fT

ω2 − Z∗2



0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0


. (3.64)

This matrix has eigenvalue 1 for

ω = Z∗ + Z∗fT = Z (3.65)

(we discard the negative-frequency solution) in accordance with Larmor’s theorem.

The associated eigenvector is ~x(0) = 2−1/2(0,−i, 1, 0).

To obtain the change of the collective spin precession caused by the presence of

SOC, we need to determine λ(2). Using perturbation theory we obtain the second-

order correction of the eigenvalue as

λ(2) = [~x(0)]†M (2)~x(0) , (3.66)

To constructM (2) we need Π(2)(0, ω), the spin-flip response matrix expanded to second

order in α and β, which requires a rather lengthy calculation (see Appendix D). We

end up with

λ(2) =
2πNs

Z∗2f 2
T

[
(α2 + β2)(3fT + 2) + 2αβ sin(2ϕ)(fT + 2)

]
(3.67)

The condition 1 = λ(0) + λ(2) gives the final result for E0, see Eq. (3.6).
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Let us now turn to the other two coefficients in Eq. (3.4). The leading contribution

to the linear coefficient E1 is in first order in α and β, see Eq. (3.5), and was already

obtained in Ref. [74]. The quadratic coefficient E2 describes the renormalization of

the spin-wave stiffness Ssw due to SOC. We did not attempt to derive an analytical

expression for E2, as it was done without SOC in Eq. (3.29), although this could in

principle (and with much effort) be done along the same lines as for E0. Instead, we

extract E2 from a fully numerical solution of the linear-response equation for the spin

waves, which includes all orders of α and β.

3.4 Results and discussion

According to the theory presented above, the spin-flip excitations in a 2DEG in the

presence of SOC depend on the direction of the applied magnetic field (direction z in

Fig. 3.1). Figure 3.3 depicts the spin-excitation spectra for ϕ = 45o and ϕ = 135o,

calculated using ALDA, for the same quantum well as in Fig. 3.2. Clearly, the spin-

wave dispersions and single-particle spin-flip continua differ drastically, depending on

the direction of the in-plane momentum. In the following, we will compare our theory

with experiment.

3.4.1 Electronic Raman scattering

We now describe the experimental work done by our collaborators in Paris: Electronic

Raman scattering was used, whereby a well-controlled in-plane momentum q is trans-

ferred to the spin excitations of the 2DEG. Under the quasi-scattering geometry shown

in Fig. 2.4a, the transferred momentum is given by q = κi,‖−κs,‖ ' 4π
λ

sin θ ex, where
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Figure 3.3: Spin-flip excitation spectra with SOC for ϕ = 45o and ϕ = 135o, calcu-
lated using the ALDA for the same quantum well as in Fig. 3.2. Solid black lines:
boundaries of the single-particle spin-flip continuum. Blue dashed lines: spin-wave
dispersions.
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κi and κs are the wave vectors of the linearly cross-polarized incoming and scattered

photons, and λ is the incoming wavelength. Our setup allows us to vary q both in

magnitude and in-plane orientation, while the magnetic field Bext is applied in the

plane of the well and always perpendicular to q.

Our sample is an asymmetrically modulation-doped, 20 nm-thick Cd1−xMnxTe

(x ' 0.13%) quantum well, grown along the [001] direction by molecular beam epi-

taxy, and immersed in a superfluid helium bath at temperature 2 K. The density of

the electron gas is Ns = 2.6×1011 cm−2 and the mobility is 1.7×105 cm2V−1s−1. The

small concentration of Mn introduces localized magnetic moments into the quantum

well, which are polarized by the external B-field, and act to amplify it [81, 91].

Figure 3.4b shows a series of spin-wave Raman lines obtained at fixed Bext = 2 T

and q = 0, and for various in-plane angles ϕ. A clear modulation of the spin-wave

energy with ϕ was observed, evidencing the above predicted breakdown of Larmor’s

theorem.

To better understand the phenomenon, the full spin-wave dispersion by varying

the transferred momentum q was measured. Fig. 3.4c shows the dispersions for three

different values of ϕ: they exhibit a quadratic dependence with q, with a maximum

shifted from the zone center. This shift from the zone center is well understood in the

frame of the spin-orbit twist model [74]: SOC produces a rigid shift of the spin-wave

dispersion by a momentum −q0, see Eq. (3.35), which depends on ϕ. This produces

the linear term in q in the energy dispersion of Eq. (3.4).

The spin-wave dispersions for angles ϕ between zero and 360o have systematically

been measured; for each angle, the data are fit to a parabola (as in Fig. 3.4c), which

allows us to extract the coefficients E0,1,2(ϕ). The experimental results are shown in
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Figure 3.4: (a) Electronic Raman scattering geometry: ki and ks are the incoming
and scattered light wave vectors, respectively; q is the transferred momentum, of
in-plane orientation measured by the angle ϕ from [100]. An external magnetic field
Bext is applied perpendicularly to q. (b) Raman spectra of the spin wave, obtained
at Bext = 2 T and q = 0, for a series of in-plane angles ϕ. (c) Momentum dispersion
of the spin wave for different in-plane angles.
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both Figs. 3.5 and 3.6 (dots), clearly exhibiting the predicted sinusoidal modulations.

The modulation of E0, with a relative amplitude of about 6%, demonstrates the

breakdown of Larmor’s theorem. This effect is of second order in the SOC. By

contrast, the modulation of E1 is a first-order SOC effect. Another second-order

SOC effect is the modulation of the curvature of the spin-wave dispersion, i.e. the

spin-wave stiffness Ssw. The bottom panels of Figs. 3.5 and 3.6 show the curvature

E2 = Ssw/2 as a function the in-plane angle ϕ. Again, a sinusoidal variation is

observed, with a relative amplitude of about 10%; the phase of the modulation is

opposite to that of E0 and E1.

3.4.2 Comparison with theory

In Figures 3.5 and 3.6, the experimental data for E0(ϕ), E1(ϕ), and E2(ϕ) is compared

with theory (lines). In our calculations, we consider, as before, a CdTe quantum well

of width 20 nm and density Ns = 2.6×1011 cm−2. The value of bare Zeeman splitting

Z is extracted from the data as follows. According to Eq. (3.6), E0 can be written

in the form E0(ϕ) = Z − a − b sin(2ϕ). For the range of input parameters α, β, Z

and Z∗ under consideration (see below), the ratio b/a ≈ 1.5 is almost constant. We

temporary fix this ratio, and a fit with the data from the top panel of Fig. 3.5 then

yields Z = 0.40 meV and b = 0.024 meV to within about 3 µeV. We can then calculate

Z∗ using the ALDA xc kernel [see Eq. (3.65)], where Z∗ALDA = Z/(1 + fT ) = 0.573

meV. Now fixing Z, Z∗ and letting b/a = 1.5, we fit α and β from E0(ϕ) and E1(ϕ).

An optimal agreement with the experimental results for E0 and E1 is achieved with

α = 1.6 meVÅ and β = 3.1 meVÅ [92].

Having determined the set of parameters Z, Z∗, α and β, we run the fully nu-
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Figure 3.5: Coefficients E0, E1, and E2 of the spin-wave dispersion, Eq. (3.4), as
a function of angle ϕ. Dots: experimental data. Lines: theoretical results using
Z∗ = 0.573 meV obtained with ALDA, and α = 1.6 meVÅ and β = 3.1 meVÅ
obtained by fitting E0 and E1. The red lines follow from the fully numerical solution
of Eq. (3.60), the dashed blue lines follow from the analytical formulas (3.6) and
(3.5).
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merical solution of the linear-response equation (3.60) for the spin-flip waves, and

fit the small-q dispersion to a parabola for a given angle ϕ to extract E0, E1, and

E2. As shown in Fig. 3.5, both the analytical formulas of Eqs. (3.5) and (3.6) and

the numerical solutions (the dashed blue and solid red lines, respectively) are in very

good agreement with the experimental data for E0 and E1, apart from a shift in the

phase of the experimental modulation of E0, which is not accounted for by the theory.

An additional observation from Fig. 3.5 is that the analytical formulas and the

numerical results for E0 and E1 are extremely close to each other. This is not sur-

prising, since the next higher-order corrections to E0 and E1 are of fourth and third

order in α, β, respectively (as we showed in Section 3.3.1), and hence negligible.

On the other hand, the bottom panel of Fig. 3.5 shows that the calculation

dramatically fails to reproduce E2. Therefore, we repeated the calculations, but now

using a renormalized Zeeman energy Z∗ that does not follow from the ALDA, but

from a numerical fit. We fit the numerical solutions with Z∗, α and β and then find

that using α = 2.2 meVÅ, β = 3.9 meVÅ and Z∗fit = 0.63 meV we obtain an excellent

agreement with the experimental results for all three modulation parameters, E0, E1,

and E2, as shown in Fig. 3.6.

The comparison between theory and experiment of the spin-wave modulation pa-

rameters thus demonstrates that the ALDA underestimates Z∗ by about 10%, which

seems to be a relatively minor deviation. However, E0, E1, and E2 depend very sen-

sitively on Z∗, which suggests a need for a more accurate description of dynamical xc

effects beyond the ALDA.

We finally mention that additional contributions to the angular modulation of the

spin-wave dispersion could arise from an in-plane anisotropy of the g-factor of the
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form gxy sin(2ϕ), where gxy is the off-diagonal component of the g tensor [93, 94, 95].

However, by slightly varying the applied magnetic field around 2 T, we have found

that this effect contributes less that 15% of the modulations amplitude of E0, and

leads only to ∼ 7% changes of the parameters α and β used to fit the data in Figs.

3.5 and 3.6; details are given in Appendix E.

3.4.3 Density dependence of E0

To further test our theoretical prediction for the breakdown of Larmor’s theorem [Eq.

(3.6)], we will now explore the density dependence of the parameter E0. In order to

vary the electronic density in our sample, An additional continuous-wave green laser

beam (514.5 nm) on the quantum well was shone. This illumination is above the band

gap and generates electron-hole pairs in the barrier layer: the electrons neutralize

some donor elements of the doping plane, while the holes migrate to the quantum

well where they capture free electrons. This leads to a depopulation of the electron

gas, which can be precisely controlled by the power of the above-gap illumination

[72]. Using this technique, the density in our sample can be reproducibly reduced by

up to a factor 2. E0(ϕ) for different values of Ns was measured, and in Fig. 3.7 the

amplitude of the q = 0 modulation (solid circles), ∆E0 = (MaxE0 −MinE0)/2, as a

function of the electron density was plotted.

Again, the data is well reproduced by the analytical result of Eq. (3.6) (blue

line). The red circle represents the amplitude of E0 for the reference density N ref
s =

2.6 × 1011 cm−2, obtained from our numerical fit in the top panel of Fig. 3.6. To
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Figure 3.7: Amplitude of the modulation of the q = 0 spin-wave energy, ∆E0 =
(MaxE0 −MinE0)/2, as a function of the sheet density Ns of the electron gas in the
quantum well. Black dots: experimental data. Blue line: analytical results using Eq.
(3.6).

generate the blue line, we need Z∗ as a function of Ns, which we approximate as

Z∗(Ns) ≈ Z∗fit(N
ref
s )

Z∗ALDA(Ns)

Z∗ALDA(N ref
s )

= 1.10Z∗ALDA(Ns) , (3.68)

i.e., we approximate the density scaling using the ALDA. We also need the density

dependence of the Rashba and Dresselhaus parameters α, β. We approximate their

density scaling using the k · p results of Ref. [72]. Both approximations are well

justified by the excellent agreement between theory and experiment in Fig. 3.7.
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3.5 Conclusions

In this chapter, we presented a detailed theoretical and experimental study of spin-

wave dispersions in a 2DEG in the presence of Rashba and Dresselhaus SOC. In

earlier work [74] we had limited ourselves to the leading (first-order) SOC effects,

which causes a momentum-dependent shift of the spin-wave dispersions, but leaves

the spin-wave stiffness as well as Larmor’s theorem intact. We have now discovered

some subtle corrections which arise when second-order SOC effects are taken into

account: Larmor’s theorem is broken, and the spin-wave stiffness is modified. Both

corrections are relatively small (of order 10% or less) but experimentally detectable.

We presented a linear-response theory, based on TDDFT, to fully account for

SOC effects to first, second and higher orders in SOC. A detailed comparison with

experimental data, obtained using inelastic light scattering, confirmed the accuracy

of the theory and allowed us to extract the SOC parameters α and β, as well as the

renormalized Zeeman splitting Z∗.

A major outcome of our study is that we discovered that the ALDA does not

lead to a satisfactory description of the second-order SOC modulation effects of the

spin waves. At present, there are only few approaches in ground-state DFT for

noncollinear magnetism that go beyond the LDA, such as the optimized effective

potential (OEP) [96] or gradient corrections [97, 98, 99]. This provides motivation for

the search for better xc functionals in TDDFT for noncollinear spins. In particular,

as we mentioned in chapter 2, any such new xc functional should be well-behaved in

the crossover between three-and two-dimensional systems.

The study of spin waves in electron gases confined in semiconductor quantum

wells under the presence of SOC is also of practical interest. Manipulation of the
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Rashba and Dresselhaus coupling strengths can be used to control the spin-wave group

velocity [74]. Since spin waves can be used as carriers of spin-based information, this

may lead to applications in spintronics. Here we have provided a suitable theoretical

framework to describe these effects.
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Chapter 4

Spin-helix Larmor mode

Spin-flip waves are collective excitations of magnetic systems [100, 101]: rather than

flipping individual magnetic moments, which causes a large exchange energy penalty,

the periodic reversal of magnetic moments extends as a precessional wave over the

entire system, which is energetically favorable. There has been recent interest in spin

waves in ferromagnetic thin films as an information carrier, which constitutes the

basis for magnonics [13, 14]: Spin waves exist in systems with localized and itinerant

magnetic moments. In the latter case, the precession of the interacting spins, the

charge motion, and the spin-orbit coupling (SOC) due to inversion asymmetry are all

interrelated and lead to novel phenomena. For example, chiral spin waves have been

observed in asymmetric monolayers of iron [102, 103], helical spin waves have been

predicted in a two-dimensional electron gas (2DEG) subject to Rashba SOC [87], and

twisted spin waves have been predicted and observed in magnetized 2DEGs [74].

The fundamental and practical aspects of spin waves in the presence of SOC have

drawn interest recently in the context of spintronics [5, 6, 7, 104]. SOC provides
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the conversion of charge based information into the spin wave [15, 105]. However,

the presence of both SOC and Coulomb interaction still poses interesting challenges,

especially in the dynamical regime.

In this chapter, we will study spin waves in a 2DEG in the presence of in-plane

magnetization and SOC. This system exhibits a rich interplay between Coulomb

many-body effects, Rashba and Dresselhaus SOC, applied magnetic field, and electron

density, which we have studied in chapter three and in several earlier publications by

our group [71, 72, 73, 74]. What we found is that the spin waves are modified by the

SOC in a subtle manner: the spin waves get a boost of their group velocity whose

magnitude and orientation depends on the crystallographic propagation direction in

the quantum well plane. This interesting behavior of the spin waves can be understood

via a transformation into a spin-orbit twisted reference frame; however, in general this

only holds to lowest order in SOC [74].

In this chapter, we now consider a very special case in which exact results can be

proved to all orders in SOC, namely, the case of a persistent spin helix [106, 107, 108,

109, 110, 111, 112, 113, 114]. The spin helix arises in a 2DEG in which the strengths

of the Rashba and Dresselhaus fields, α and β, are equal (we here consider a 2DEG

embedded in a zincblende quantum well grown along the [001] direction). SU(2)

symmetry is then partially restored, and a helical spin texture can be sustained along

the [110] direction. The main experimental signature of this state is that spin packet

excitations are protected from decoherence, leading to extraordinarily long lifetimes

[109, 112].

If a magnetic field is applied in the plane of a 2DEG with α = β, spin-packet

excitations can sustain long-lived precessional motion [110]. Furthermore, some in-
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teresting magnetoelectronic effects can occur in 2DEGs [115, 116, 117] or quantum

wires [118, 119] which reflect the special condition α = β. However, to our knowledge

the spin-wave dynamics under these circumstances, which involves Coulomb interac-

tions between the electrons, has not been explicitly addressed before.

Our treatment of spin waves is based both on time-dependent density-functional

theory (TDDFT) in the linear-response regime [29] and on an equation-of-motion

approach featuring the full many-body Hamiltonian [74, 79]. We derive the exact

form of the spin-wave dispersion for systems with a spin-helix texture in the absence

of magnetic fields, and find that it is obtained from the dispersion without SOC by a

simple wave vector shift. The spin-wave stiffness Ssw remains unchanged.

The main result of this chapter is that we identify an exact dynamical state of

the 2DEG with α = β, which can be characterized as a collective precession of

the 2DEG about the spin-helix state. The precession occurs at the bare Zeeman

frequency, and we therefore refer to it as the spin-helix Larmor mode. This mode

will be characterized by its long lifetime, and we will discuss ways in which it can be

experimentally observed.

4.1 Results

4.1.1 2DEG with spin-orbit coupling in a magnetic field: the
spin helix

We consider the electronic ground state of a 2DEG in an n-doped zincblende quantum

well in the presence of an in-plane magnetic field and Rashba and Dresselhaus SOC.

Since the magnetic field is parallel to the 2DEG, it only acts on the spin and there
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Figure 4.1: Reference frames R′ (black) and R (red) for the electronic states in
a 2DEG with SOC and in-plane magnetic field B. The striped pattern along the
ϕ = 45o direction indicates the persistent spin helix state of the 2DEG, with wave
vector Q, which forms in the absence of B if the Rashba and Dresselhaus coupling
strengths are equal.

is no Landau level quantization (as long as the magnetic length lB =
√

~/|eB| is not

significantly smaller than the well width). We will use the effective-mass approxima-

tion and work in units where ~ = e∗ = m∗ = 1, where e∗ and m∗ are the effective

charge and mass, respectively (This is a special case of what we did in chapter 3, but

we include the derivation here to keep chapter 4 self-contained).

Figure 4.1 defines two reference frames. The primed frame R′ is fixed with respect

to the quantum well: the x′-, y′- and z′-axes point along the crystallographic [100],

[010], and [001] directions, respectively; the 2DEG is in the x′−y′ plane. The Rashba

and Dresselhaus SOC fields will be introduced in R′, but it will be convenient for

the discussion of spin waves to work in a coordinate system R which is oriented such

that its x and z axes lie in the quantum well plane, and the z-axis points along the

in-plane magnetic field B. As shown in Fig. 4.1, the x-axis is at an angle ϕ with

respect to the x′-axis.
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Single-particle states

Without magnetic field or SOC, the lowest electronic conduction subband in the

quantum well is spin-degenerate. For simplicity, we will treat the electronic states

as purely two-dimensional; however, the main results in this chapter will not change

significantly if one takes the finite well width into account. The magnetic field lifts

the degeneracy and splits the lowest subband into two, which we shall denote by the

index p = ±1. In the reference frame R′, the associated single-particle states can

be written as Φ′pk(r′) = eik·r
′
Ψ′pk, where r′ = (x′, y′), k = (kx′ , ky′), and Ψ′pk is a

two-component spinor of the form

Ψ′pk(z′) =

 ψ′pk↑

ψ′pk↓

 . (4.1)

Here, “spin-up“ and “spin-down” (↑ and ↓) refer to the spin quantization axis z′.

The states Ψ′pk are obtained from the following single-particle Schrödinger equa-

tion: (
k2

2
σ̂0 + hx′σ̂x′ + hy′σ̂y′

)
Ψ′pk = EpkΨ′pk , (4.2)

where σ̂0,x′,y′,z′ are the usual Pauli matrices. The off-diagonal parts in Eq. (4.2)

involve

hx′ = −Z + Zxc

2
sinϕ+ αky′ + βkx′ (4.3)

hy′ =
Z + Zxc

2
cosϕ− αkx′ − βky′ . (4.4)

Here, Z = g∗µBB is the bare Zeeman energy (µB is the Bohr magneton, and g∗ is
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the effective g-factor), and α and β are the usual Rashba and Dresselhaus coupling

parameters. The presence of Coulomb many-body effects in the interacting 2DEG

gives rise to the Zeeman exchange-correlation (xc) energy Zxc, which we discuss below.

It is convenient to change the reference frame for the spin, and go over to reference

system R, whose z-axis is along the magnetic field direction. We introduce two in-

plane vectors, q0 and q1, given in R′ by

q0 = (α cosϕ+ β sinϕ)êx′ + (α sinϕ+ β cosϕ)êy′ (4.5)

q1 = (β cosϕ− α sinϕ)êx′ + (α cosϕ− β sinϕ)êy′ . (4.6)

With this, Eq. (4.2) transforms into

[
k2

2
σ̂0 +

(
Z + Zxc

2
− k · q0

)
σ̂z + k · q1σ̂x

]
Ψpk = EpkΨpk, (4.7)

where the scalar products k · q0 and k · q1 remain invariant under R′ → R. Ψpk is

now a two-component spinor whose spatial coordinates and spin quantization axes

are defined with respect to R.

Let us now discuss the xc contribution. The in-plane magnetic field causes the

2DEG to become uniformly magnetized. The xc energy per particle of a homogeneous

2DEG [80], exc(n, ζ), can be written as a functional of the density n and the spin

polarization ζ, where n = n↑+n↓ and ζ = (n↑−n↓)/n (↑ and ↓ are now defined with

respect to êz). The Zeeman xc energy is then given by

Zxc = 2
∂exc

∂ζ
. (4.8)
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The renormalized Zeeman energy [81] can now be defined as Z∗ = Z + Zxc.

The general solution of Eq. (4.7) has been considered in chapter 3; instead, we

concentrate here on the special case α = β and ϕ = π/4 or 5π/4. Under these

circumstances, q1 = 0 and Eq. (4.7) simplifies considerably:

[
k2

2
σ̂0 +

Z∗ − k ·Q
2

σ̂z

]
Ψpk = EpkΨpk, (4.9)

where

Q = ±4αêx , ϕ =

 π/4

5π/4.
(4.10)

To keep the discussion a bit simpler, we will limit ourselves to the case ϕ = π/4 in

the following, so Q = 4αêx (the ϕ = 5π/4 case is essentially the same, just in the

opposite direction).

The solution of Eq. (4.9) is straightforward. We obtain

Ψ+,k =

 1

0

 , Ψ−,k =

 0

1

 , (4.11)

where

E±,k =
k2

2
± Z∗ − k ·Q

2
. (4.12)

The single-particle energies (4.12) have the important property

E+,k+Q = E−,k + Z∗ , (4.13)

which is illustrated in Fig. 2.2b, using the parameters Z∗ = 0.0381 and α = 0.05. This
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Figure 4.2: Single-particle energies E−,k and E+,k for α = 0.05 and k along the [110]
direction, see Eq. (4.13). (a) No magnetic field (Z∗ = 0). Linear combinations of
E−,k and E+,k+Q states have spin helix texture, but these cancel out if summed over
all occupied states below EF . A persistent spin helix appears if a quasiparticle is
injected at the Fermi surface, as shown. (b) Finite magnetic field (Z∗ = 0.0381).
Single-particle excitations across the Fermi energy with momentum transfer Q (green
arrow) give rise to propagating spin helices.
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large value of α (typical experimental values of α are about an order of magnitude

smaller) was chosen for clarity of presentation.

B = 0: spin-helical single-particle eigenstates

In the absence of external magnetic fields, i.e., for Z∗ = 0 (see Fig. 2.2a), the

degeneracy of the two energy branches E+,k+Q and E−,k gives rise to a persistent

spin-helix state of the 2DEG, as illustrated by the stripe-like pattern in Fig. 4.1.

This is easy to see: Due to the degeneracy, linear combinations of the eigenstates

Ψ−,k and Ψ+,k+Q are also solutions of Eq. (4.9). The single-particle wave functions

for wave vector k can therefore be written as

Φ±k (r) = a

 1

0

 ei(k+Q)·r ± b

 0

1

 eik·r , (4.14)

where |a|2 + |b|2 = 1. From the associated spin-density matrix it is straightforward

to determine the magnetization in the R frame. We obtain mz = |a|2 − |b|2, and

since the macroscopic magnetization must vanish (i.e., mz = 0), this implies |a| = |b|.

Writing a, b = eiφa,b/
√

2 and defining δab = φa − φb, we get

mx = ± cos(Q · r + δab) , my = ∓ sin(Q · r + δab) . (4.15)

Accordingly, the stripes in Fig. 4.1 indicate a periodic rotation of the electronic

spin in and out of the plane, with a wave vector Q = 4αêx oriented at a 45o angle

with respect to the x′-axis (i.e., the [110] direction). This is the spin helix pattern

[107, 114].
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The magnetizations mx and my associated with the states Φ+
k and Φ−k cancel

out; therefore, adding up all occupied spin-helix states below the Fermi energy EF

gives zero. This means that the ground state of the N -electron system has no spin

texture. The persistent spin helix pattern can be observed if additional quasiparticles

are injected at the Fermi level, as shown in Fig. 4.2a. Such states will have a very

long lifetime [107, 109, 110].

B 6= 0: spin-helical single-particle excitations

For a finite magnetic field (Z∗ > 0), the degeneracy of the two energy branches

E+,k+Q and E−,k is lifted, as shown in Fig. 4.2b. As a consequence, the spin-helix

pattern (4.15) is not a property of the ground state anymore: instead, the spin helix

becomes a nonequilibrium feature.

To see this, consider a single-particle excitation across the Fermi surface, with

wave vector transfer Q, as illustrated by the green arrow in Fig. 4.2b. First-order

perturbation theory tells us that the time-dependent wave function has the form

Φk→k+Q(r, t) = γ

 1

0

 ei(k+Q)·re−i(E−,k+Z∗)t +

 0

1

 eik·re−iE−,kt , (4.16)

where |γ| � 1 and we made use of Eq. (4.13). In theR frame, the x and y components

of the associated magnetization are given by

mx(t) = 2|γ| cos(Q · r− Z∗t+ φγ) (4.17)

my(t) = −2|γ| sin(Q · r− Z∗t+ φγ) , (4.18)
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where φγ is the phase of γ. This defines a forward propagating spin helix (i.e.,

a spin-flip wave), with amplitude 2|γ| and group velocity Z∗Q/Q2. Single-particle

excitations of this type, which are long-lived due to the property (4.13), were optically

probed by Walser et al [110].

So far, our discussion of the excited states has ignored the effects of Coulomb in-

teractions. In the following Section, we will consider a very special case of a collective

mode, which we call the spin-helix Larmor mode, which can be viewed as a coher-

ent superposition of left- and right-propagating single-particle spin helices considered

above. As we will see, this gives rise to a collective, standing precessional wave with

wave vector Q which is undamped. Propagating collective spin-flip waves and their

wave vector dispersions will be considered in Methods.

4.1.2 Spin-helix Larmor mode

We consider a 2DEG in the presence of a uniform magnetic field B = Bêz, in the

reference frame R of Fig. 4.1. The many-body Hamiltonian without SOC is

Ĥ0 =
∑
i

(
p̂2
i

2
+

1

2
Zσ̂z,i

)
+

1

2

∑
ij

1

|ri − rj|
. (4.19)

The SOC Hamiltonian for the spin-helix case is given by [see Eq. (4.9)]

ĤSOC = −1

2

∑
i

Q · p̂iσ̂z,i . (4.20)

The total Hamiltonian of the system is Ĥ = Ĥ0 + ĤSOC. We now show that the

SOC contribution can be transformed away. We consider the spin-wave operator
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[77, 78, 74]

Ŝ+,q =
1

2

∑
i

σ̂+,ie
iq·ri (4.21)

(σ̂+ = σ̂x + iσ̂y), whose Heisenberg equation of motion is

i
d

dt
Ŝ+,q = [Ŝ+,q, Ĥ] = −ωsw(q)Ŝ+,q . (4.22)

Here, ωsw(q) is the spin-wave dispersion, which in general has a real part and an

imaginary part (related to the inverse of the lifetime). We now introduce the SU(2)

unitary transformation Û = exp[−i∑i Q · riσ̂z,i/2], which leads to

Û Ŝ+,qÛ
† = Ŝ+,q−Q . (4.23)

Û causes a boost of the wave vector argument of the spin-wave operator, q→ q−Q,

which leaves the Coulomb and the Zeeman parts of Ĥ0 unchanged, and transforms

the momentum operator of the ith electron into Û p̂iÛ
† = p̂i + Qσ̂z,i/2. Thus, we

obtain

ÛĤÛ † = Ĥ0 −
Q2

8
σ̂0 . (4.24)

Since Q2σ̂0/8 commutes with Ŝ+,q−Q, the transformed equation of motion (4.22)

becomes

[Ŝ+,q−Q, Ĥ0] = −ωsw(q)Ŝ+,q−Q . (4.25)

Therefore, the spin waves of the system with α = β are those of the system without

SOC (governed only by Ĥ0), but where the wave vector is shifted:

ωsw(q) = ωsw,0(q−Q). (4.26)
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Let us now consider the important special case q = Q. It is known [58] that,

in the absence of SOC, the spin-polarized electron system carries out a collective

precessional motion with ωsw,0 = ωL. The Larmor frequency ωL is equal to the bare

Zeeman energy, ωL = Z. The Larmor mode has infinite lifetime (zero line width),

because it can be represented as a superposition of two exact eigenstates of the system

Hamiltonian Ĥ0: the many-body ground state |0〉0 (the subscript 0 indicates absence

of SOC), with ground-state energy E0, and the many-body eigenstate Ŝ+,0|0〉0, with

energy E0 + Z.

Coming back to the case with SOC with the full Hamiltonian Ĥ, we can now

formulate the spin-helix Larmor theorem. If the spin wave has wave vector Q, com-

mensurate with the spin-helix texture, all Coulomb many-body contributions drop

out and the frequency is given by the bare Zeeman energy:

ωsw(Q) = ωsw,0(0) = Z , (4.27)

which follows directly from Eq. (4.26). The spin wave then has vanishing group

velocity, ∇qωsw(q)|q=Q = 0, which means that it is a standing wave. All electronic

spins precess about their local orientation, given by the spin helix configuration, with

the Larmor frequency ωL = Z. The spin-helix Larmor mode is a superposition of two

many-body eigenstates of Ĥ: the ground state |0〉 and the state Ŝ+,Q|0〉.

An important feature of the Larmor’s mode is that it does not carry any spin current

in the plane. This is obvious in absence of SOC, where the exact equation of motion

for Ŝ+,q reads [79]:

i
d

dt
Ŝ+,q = [Ŝ+,q, Ĥ0] = −ωLŜ+,q − q · Ĵ+

q . (4.28)
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Here, Ĵ+
q is the transverse spin-current operator at wave vector q. The second term

on the right-hand side arises from the commutator of Ŝ+,q with the kinetic part of

Ĥ0. Hence, for the Larmor’s mode which occurs at q = 0, no current is induced by

the homogenous precession. In the presence of SOC, the Larmor’s mode occurs at

q = Q and is not a homogenous mode anymore; however, one still has the property

that no spin-current is driven by the precession. Indeed, the exact equation of motion

for Ŝ+,q in the presence of SOC is given by

i
d

dt
Ŝ+,q = [Ŝ+,q, Ĥ0 + ĤSOC] = −ωLŜ+,q + (−q + Q) · Ĵ+

q . (4.29)

Hence, when q = Q the total current term disappears. SOC induces spin currents

opposite to the spin currents induced by the motion.

We illustrate the spin-wave dispersions with and without SOC in Fig. 4.3. The left

panel shows ωsw,0(q) (which is independent of the direction of q), and the right panel

shows ωsw(q) for q parallel to Q, i.e., along the [110] direction. For this particular

case, ωsw(q) is simply obtained by a horizontal shift by Q of ωsw,0(q) (likewise for the

particle-hole continua). The spin-wave dispersions plotted in Fig. 4.3 are obtained

from the numerical solution of Eq. (4.39), see below. The small-wave vector expansion

(4.41) is very close to the exact result.

4.1.3 Experimental schemes

Experimental observation of the the spin-helix Larmor mode should be possible in

specially designed doped semiconductor quantum well samples where the α = β

condition is met. The spin-flip waves under an in-plane magnetic field can be detected
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Figure 4.3: (a) Spin-wave dispersion ωsw,0(q) (line) and single-particle spin-flip contin-
uum (shaded area) without SOC. (b) Spin-wave dispersion ωsw(q) and single-particle
spin-flip continuum, plotted along [110], for α = β = 0.003 (Q = 0.012). The 2DEG
parameters are rs = 2, ζ = −0.0762, Z = 0.02, and Z∗ = 0.0381 (all values are in
atomic units). The inset shows the position of Larmor’s mode in the wave vector
plane (qx′ , qy′).
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using inelastic light scattering, similar to our earlier work [71, 72, 73, 74]. The Larmor-

type precessional mode about the virtual spin-helix state should then be recognizable

by a significant narrowing of the linewidth.

We also propose a device design which would allow to excite Larmor’s mode opti-

cally and probe it electronically. As shown in Fig. 4.4, the idea would be to deposit

metal stripes on top of the sample, separated by a distance of 2π/Q (for typical values

of α, of order ∼ 1 meV Å, this corresponds to a few µm). The stripes are aligned

parallel to the applied magnetic field, perpendicular to the [010] direction, which is

commensurate with the standing-wave spin-helix Larmor mode. The metal stripes

represent a grating coupler [120, 121, 122], which acts as an antenna and transducer

for short, few-cycle microwave pulses impinging on the sample. By induction, the

alternating currents in the metal stripes generate concentric magnetic fields, which

exert torques on the spin-polarized 2DEG underneath. If the right frequency, ωL, is

chosen, this will trigger a helical standing spin wave which will persist after the end of

the pulse. Detection of the spin-helix Larmor mode, and measurement of its lifetime,

should then be possible via the currents induced in the metal stripes from the stray

magnetic fields associated with the spin wave.

4.2 Discussion

In this chapter, we have considered the spin dynamics in a 2DEG in the presence of

SOC, under the very special condition where the Rashba and Dresselhaus coupling

strengths are equal (α = β) and where an in-plane magnetic field is applied perpendic-

ular to the [110] direction. Without this magnetic field, the system sustains persistent

85



Qπ2

B

Figure 4.4: Proposed experimental design of the optical excitation and subsequent
detection of the spin-helix Larmor mode using a grating coupler (see text for details).

spin-helix states which have been widely studied in the literature. The magnetic field

lifts the degeneracy that leads to the persistent spin-helix states; it instead leads to

single-particle excitations that have the form of propagating spin helices.

The presence of Coulomb interactions causes these single-particle excitations to

combine and form collective spin waves, which are robust against any decoherence

caused by SOC. We have found that for the 2DEG with α = β the spin-wave disper-

sion is the same as for the system without SOC, apart for a rigid wave vector shift

by Q (the spin-helix wave vector). The case of q = Q thus produces the special sce-

nario which we have termed the spin-helix Larmor mode, where all many-body effects

vanish and the precession frequency is given by the bare Zeeman energy (divided by

~). This is a new and exact result for electronic many-body systems, which opens up

new ways of manipulating and driving electronic spins by optical means.
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4.3 Methods

We now discuss the spin-wave dispersions in the quantum well system considered

above. We have seen that in the case α = β the single-particle states (4.11) are

pure up and down spinors. Therefore the longitudinal and transverse spin response

channels are decoupled, and the noninteracting transverse spin response function is

a diagonal 2× 2 matrix in frame R [2, 78]:

χ
T

(q, ω) =

 χ↑↓,↑↓(q, ω) 0

0 χ↓↑,↓↑(q, ω)

 . (4.30)

The general form of the individual elements of the noninteracting spin-density-matrix

response function for a 2DEG is [29]

χσσ′,ττ ′(q, ω) = −
±1∑
pp′

∫
d2k

(2π)2

f(Epk)

ω − Epk + Ep′k−q + iη

×{[δp,+1δσ↑ + δp,−1δσ↓] [δp′,+1δσ′↑ + δp′,−1δσ′↓] δστδσ′τ ′}

+
±1∑
pp′

∫
d2k

(2π)2

f(Epk)

ω + Epk − Ep′k+q + iη

×{[δp′,+1δσ↑ + δp′,−1δσ↓] [δp,+1δσ′↑ + δp,−1δσ′↓] δστδσ′τ ′} (4.31)

where σ, σ′, τ, τ ′ are spin indices (↑ or ↓), and η is a positive infinitesimal (since we will

be considering spin waves outside the particle-hole continuum, we can drop η). The

Fermi function is given by f(Epk) = θ(EF −Epk), where EF is the Fermi energy of a

paramagnetic 2DEG in the presence of SOC. It can be shown that EF = E0
F−α2−β2,

where E0
F = πn is the Fermi energy of a 2DEG without SOC, and with 2D electronic

density n.
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We recast Eq. (4.12) as E±,k = ±Z∗/2 + 1
2
|k∓Q/2|2 − 2α2. With a change of

the integration variable, k→ k±Q/2, the noninteracting spin-flip response functions

become

χ↑↓,↑↓(q, ω) = −
∫

d2k

(2π)2

f0(k
2

2
+ Z∗

2
)

ω − Z∗ − k · (q−Q) + |q−Q|2/2

+

∫
d2k

(2π)2

f0(k
2

2
− Z∗

2
)

ω − Z∗ − k · (q−Q)− |q−Q|2/2 (4.32)

χ↓↑,↓↑(q, ω) =

∫
d2k

(2π)2

f0(k
2

2
+ Z∗

2
)

ω + Z∗ − k · (q + Q)− |q + Q|2/2

−
∫

d2k

(2π)2

f0(k
2

2
− Z∗

2
)

ω + Z∗ − k · (q + Q) + |q + Q|2/2 , (4.33)

where the Fermi function f0 indicates that EF has been replaced by E0
F .

Equations (4.32) and (4.33) tell us that the spin-flip response functions of the

system with SOC can be expressed in terms of the corresponding functions without

SOC (denoted by the superscript 0):

χ↑↓,↑↓(q, ω) = χ0
↑↓,↑↓(q−Q, ω) (4.34)

χ↓↑,↓↑(q, ω) = χ0
↓↑,↓↑(q + Q, ω). (4.35)

This simple result only holds for the special case α = β. In TDDFT, the spin-

flip linear-response xc kernel of the 2DEG is given in the adiabatic local-density

approximation (ALDA) by [29]

fxc
↑↓,↑↓ = fxc

↓↑,↓↑ ≡ Kxc =
2

nζ

∂exc

∂ζ
. (4.36)

88



sr

swS
05.0=ς

95.0=ς

Figure 4.5: Spin-wave stiffness of the 2DEG, obtained with the ALDA, for various
values of the spin polarization ζ between 0.05 and 0.95.

The spin-flip wave dispersion now follows from solving

[Kxcχ
0
↑↓,↑↓(q−Q, ωsw)− 1][Kxcχ

0
↓↑,↓↑(q + Q, ωsw)− 1] = 0. (4.37)

Upon closer inspection of Eqs. (4.32) and (4.33), we find

χ0
↓↑,↓↑(q + Q, ωsw) = χ0

↑↓,↑↓(q−Q,−ωsw) . (4.38)

We are only interested in positive frequencies, so the spin-flip wave dispersion is

obtained from Eq. (4.37) as the implicit solution ωsw(q) of

χ0
↑↓,↑↓(q−Q, ωsw) = K−1

xc . (4.39)
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The spin-wave dispersion can be analytically determined for small wave vectors. To

second order, we find

ωsw(q) = Z∗
(

1 +
Kxc

2π

)
+
E0
F |q−Q|2
Z∗

(
1 +

2π

Kxc

)
. (4.40)

This can be rewritten as

ωsw(q) = Z +
1

2
Ssw|q−Q|2 , (4.41)

where the spin-wave stiffness of the 2DEG is

Ssw =
2E0

F

Z∗

(
1 +

2π

Kxc

)
. (4.42)

Since Kxc = Zxc/(nζ) and ζ = −Z∗/(2πn), this can also be written as

Ssw = −2E0
F

Z∗

(
Z

Z∗ − Z

)
. (4.43)

We plot the ALDA spin-wave stiffness for various values of the spin polarization

ζ and as a function of the 2D Wigner-Seitz radius rs in Fig. 4.5. The stiffness has

negative values for all practically relevant values of rs, and crosses over to Ssw > 0

for very low densities (at rs = 26.96 for ζ = 0.05 and at rs = 24.49 for ζ = 0.95).
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Chapter 5

Summary

In this dissertation, we have presented new theoretical developments and numeri-

cal calculations in the area of semiconductor and many-body physics. Specifically,

we have studied various properties of quasi-two-dimensional electron gases confined

in semiconductor quantum wells. The main methodology in this work was time-

dependent density-functional theory (TDDFT).

We first demonstrated that the TDDFT description of electron dynamics in low-

dimensional systems crucially depends on the proper choice of exchange-correlation

functional. Approximations that are based on the 2D or 3D homogeneous electron

gas as reference system (semilocal functionals such as ALDA or GGA) will fail in

situations that cross over between 2D and 3D. Instead, functionals that do not rely

on a reference system, such as the orbital-based PGG functional (an approximation

for exact exchange), perform much better during dimensional crossover.

We then studied 2DEGs in n-doped quantum wells under the presence of in-plane

magnetic fields and Rashba and Dresselhaus spin-orbit coupling. We took the SOC
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effects into the account, up to the second order, and found that Larmor’s theorem

no longer holds, and there is a small correction to the spin-wave stiffness in the

spin-wave dispersion. A detailed comparison with experimental results from inelastic

light scattering confirmed that our linear-response TDDFT approach, based on the

effective-mass approximation, is very accurate indeed. The systems under study

were sufficiently far away from the 3D-2D crossover point where semilocal exchange-

correlation functionals collapse, so it was safe to use the ALDA here. In spite of that,

we discovered some quantitative shortcomings of the ALDA in the calculation of the

effective Zeeman splitting.

Lastly we considered the very special condition where the Rashba and Dressel-

haus coupling coupling strengths are equal and the in-plane magnetic field is applied

perpendicular to the [110] crystallographic direction (assuming a zincblende semicon-

ductor system). This situation gives rise to the so-called persistent spin-helix states.

In our work, we shed new light on the spin helix by including Coulomb interactions.

We found that apart from a shift by the spin-helix wave vector, the spin-wave disper-

sion is identical to the system without SOC. This result comes out in TDDFT, and

we could also prove it for general many-body Hamiltonians. Thus, we discovered a

new exact result of many-body physics, which we call the spin-helix Larmor mode.

In the hope that this will stimulate some experimental work, we proposed a design

for an experiment to observe spin-helix Larmor modes.

The insights gained in this work open up many new research opportunities. The in-

terplay of spin-orbit and Coulomb many-body effects continues to be of great interest.

Interesting studies can be carried out to explore the impact of spin-orbit interactions

on collective spin-density and spin-flip excitation in low-dimensional systems.
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On a fundamental level, collective spin-density excitations in spin-polarized 2DEGs

are an ideal testing ground for new exchange-correlation functionals in TDDFT. As

we have pointed out, standard approaches such as ALDA and GGA suffer from the

dimensional cross-over problem, and, in addition, are not very quantitatively accu-

rate. New functionals for noncollinear magnetism are therefore needed. The PGG

functional is promising, but does not contain any correlation effects. One possibility

to include the latter is via the STLS formalism, which goes back to the work of Singwi,

Tosi, Land and Sjolander [123], who developed an exchange-correlation kernel for the

homogeneous electron gas which was highly successful, performing much better than

the RPA or other simpler methods. Generalizing the STLS methods for systems with

noncollinear spin (such as the spin-orbit coupled 2DEGs considered here) would be a

promising follow-up to the work done in this thesis.

On a more practical level, the methodologies developed in this thesis are very well

suited to be applied to other systems besides electron gases in doped semiconductor

quantum wells. There are new classes of low-dimensional systems with fascinating

electronic properties, such as graphene or beyond-graphene materials such as transi-

tion metal dichalcogenides, or systems with topological properties. In these systems,

Coulomb many-body effects are often only considered to be playing a minor role.

However, as we have seen, the interplay between Coulomb interactions and spin-orbit

coupling can have very intriguing properties. The framework developed in this thesis

will make such studies possible.
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Appendix A

The PBE exchange kernel

A.1 PBE exchange energy

The PBE exchange energy functional is defined as [38]

EPBE
x [n] =

∫
d3r′ ehx(n)

[
1 + κ− κ

1 + µs2/κ

]
. (A.1)

Here, the exchange energy density of a homogeneous 3D electron liquid of density n

is

ehx(n) = −3c

4
n4/3 , c =

(
3

π

)1/3

. (A.2)

In Eq. (A.1), κ = 0.804 and µ = 0.21951 are parameters given in atomic units.

The quantity s is defined as s = |∇n|/2nk3D
F , where k3D

F = (3π2n)1/3 is the Fermi

wavevector. Thus,

s =
|∇n|

2(3π2)1/3n4/3
. (A.3)
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Putting this into Eq. (A.1), we obtain

EPBE
x [n] =

∫
d3r′ ehx(n)

[
1 + κ− κ

1 + γ|∇n|2/n8/3

]
, (A.4)

where γ = (µ/4κ)(3π2)−2/3 = 0.007132 a.u. For what follows, it is convenient to

introduce the abbreviation

g(r) = 1 + γ|∇n(r)|2/n(r)8/3 . (A.5)

A.2 PBE exchange potential

The PBE exchange potential in its spin-unresolved form is given by

vPBE
x (r) =

δEPBE
x [n]

δn(r)

=

∫
d3r′

(
δehx(n(r′))

δn(r)

)[
1 + κ− κ

g(r′)

]
−

∫
d3r′ehx(n(r′))

δ

δn(r)

(
κ

g(r′)

)
. (A.6)

The first part is easy, with

δehx(n(r′))

δn(r)
= −cn(r′)1/3δ(r′ − r) .
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The second part requires more effort, involving functional derivatives of the gradient

of n, which leads to gradients of delta functions. The final result is

vPBE
x (r) = −cn(r)1/3

[
1 + κ− κ

g(r)

]
+

3c

4
n(r)−4/3 ∇

[
2κγ

g(r)2

]
· ∇n(r)

+
3c

4
n(r)−4/3 2κγ

g(r)2
∇2n(r) . (A.7)

The spin-dependent version of the PBE exchange energy functional follows from the

spin-scaling relation

Ex[n↑, n↓] =
1

2
Ex[2n↑] +

1

2
Ex[2n↓] . (A.8)

This gives the spin-resolved exchange potential

vPBE
xσ (r) = vPBE

x [2nσ](r) . (A.9)

For a system whose density is not spin polarized we have n↑ = n↓ = n/2. In this case,

all potentials are the same, i.e., vPBE
x↑ (r) = vPBE

x↓ (r) = vPBE
x (r).

A.3 PBE exchange kernel

The parallel-spin exchange kernel is defined as follows:

fPBE
x,σσ (r, r′) =

δvPBE
xσ (r)

δnσ(r′)
(A.10)
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(in the exchange-only case, the antiparallel-spin kernel is zero). For spin-unpolarized

systems, we have

fPBE
x,↑↑ (r, r′) = fPBE

x,↓↓ (r, r′) = 2 fPBE
x (r, r′), (A.11)

where fPBE
x (r, r′) = δvPBE

x [n](r)/δn(r′). After a rather lengthy calculation, one ob-

tains

fPBE
x (r, r′) = − c

3
n(r)−2/3δ(r− r′)

[
1 + κ− κ

g(r)

]
− cn(r)1/3 κγ

g(r)2
h(r, r′)

− cn(r)−7/3δ(r− r′)∇
[

2κγ

g(r)2

]
· ∇n(r)

− 3c

4
n(r)−4/3 ∇n(r) · ∇

(
4κγ2

g(r)3
h(r, r′)

)
+

3c

4
n(r)−4/3 ∇

[
2κγ

g(r)2

]
· ∇δ(r− r′)

− cn(r)−7/3δ(r− r′)
2κγ

g(r)2
∇2n(r)

+
3c

4
n(r)−4/3 2κγ

g(r)2
∇2δ(r− r′)

− 3c

4
n(r)−4/3 ∇2n(r)

4κγ2

g(r)3
h(r, r′) , (A.12)

where we defined

h(r, r′) =
2∇n(r) · ∇δ(r− r′)

n(r)8/3
− 8|∇n(r)|2

3n(r)11/3
δ(r− r′). (A.13)

To calculate excitation energies, one needs matrix elements of the exchange kernel.

We here consider the case of quantum wells where everything becomes a function of

z and z′, and we limit ourselves to intersubband excitations in the quasi-2D limit.
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Then, only the following matrix element is needed:

K12 =

∫
dz

∫
z′ϕ1(z)ϕ2(z)fPBE

x (z, z′)ϕ1(z′)ϕ2(z′). (A.14)

With the explicit form (A.12) of the PBE exchange kernel, and abbreviating ξ(z) =

ϕ1(z)ϕ2(z), one obtains

K12 = − c
3

∫
dz ξ(z)2n(z)−2/3(1 + κ)

+
cκ

3

∫
dz ξ(z)2n(z)−2/3

g(z)

+ 2cκγ

∫
dz ξ(z)

∂

∂z

(
ξ(z)n′(z)

g(z)2n(z)7/3

)
+

8c

3
κγ

∫
dz ξ(z)2 n′(z)2

n(z)10/3g(z)2

− 2cκγ

∫
dz ξ(z)2n(z)−7/3n′(z)

∂

∂z

(
1

g(z)2

)
− 6cκγ2

∫
dz ξ(z)

∂

∂z

(
n′(z) ∂

∂z
(ξ(z)n′(z)n(z)−4/3)

g(z)3n(z)8/3

)

− 8cκγ2

∫
dz ξ(z)

n′(z)2

n(z)11/3g(z)3

∂

∂z
(ξ(z)n′(z)n(z)−4/3)

− 3c

2
κγ

∫
dz ξ(z)

∂

∂z

[
ξ(z)n(z)−4/3 ∂

∂z

(
1

g(z)2

)]
− 2cκγ

∫
dz ξ(z)2n(z)−7/3

g(z)2
n′′(z)

+
3c

2
κγ

∫
dz ξ(z)

∂2

∂z2

(
ξ(z)n(z)−4/3

g(z)2

)
+ 6cκγ2

∫
dz ξ(z)

∂

∂z

(
ξ(z)n′′(z)n′(z)

n(z)4g(z)3

)
+ 8cκγ2

∫
dz ξ(z)2n

′′(z)(n′(z))2

n(z)5g(z)3
. (A.15)
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Appendix B

The PGG kernel for quasi-2DEGs

In a quantum well of finite width, the single-particle orbitals have the form

ϕj(r) = eiq||·r||ϕj(z) , (B.1)

where we ignore the normalization factor A−1/2 for simplicity. The PGG exchange

kernel (2.24) becomes

fPGG
x (r, r′) = − 2

|r− r′|n(z)n(z′)

∣∣∣∣∣∣
Nocc∑
j=1

ϕj(z)ϕj(z
′)
∑
k||

θ(kj − k||)eik||·(r||−r
′
||)

∣∣∣∣∣∣
2

(B.2)

where kj =
√

2(εF − εj). Carrying out the integral over k||, and defining ρ|| = r||−r′||,

one finds

fPGG
x (r, r′) = − 2

|r− r′|n(z)n(z′)

∣∣∣∣∣
Nocc∑
j=1

ϕj(z)ϕj(z
′)
kjJ1(kjρ||)

2πρ||

∣∣∣∣∣
2

, (B.3)
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where J1 denotes a standard Bessel function. Fourier transformation with respect to

ρ|| yields

fPGG
x (q||, z, z

′) = −
Nocc∑
j,l

kjkl
ϕj(z)ϕl(z)ϕj(z

′)ϕl(z′)

πn(z)n(z′)

×
∫ ∞

0

dρ||
J0(q||ρ||)J1(kjρ||)J1(klρ||)

ρ||
√
ρ2
|| + (z − z′)2

. (B.4)

If only the first subband is occupied, this simplifies to

fPGG
x (q||, z, z

′) = − 2

Ns

∫ ∞
0

dρ||
J0(q||ρ||)J2

1 (k1ρ||)

ρ||
√
ρ2
|| + (z − z′)2

. (B.5)

In the limit of a pure 2DEG, the PGG exchange kernel thus becomes

fPGG
x,2D (q||) = − 2

n2D

∫ ∞
0

dρ||
ρ2
||
J0(q||ρ||)J

2
1 (k2D

F ρ||) . (B.6)

Let us mention that the PGG exchange kernel (2.24) can also be written as

fPGG
x (r, r′) = 2

g0(r, r′)− 1

|r− r′| , (B.7)

where g0(r, r′) is the noninteracting pair correlation function. One then finds the

following alternative form of the PGG exchange kernel for a 2DEG:

fPGG
x,2D (q||) = − π

q||
GS
↑↑(q||) , (B.8)
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where

GS
↑↑(q||) = − q||

2π2n

∫
d2q′||

|q|| − q′|||
[S0(q′||)− 1] (B.9)

= − 2q||
π2n

∫ ∞
0

q′|| dq
′
||

q|| + q′||
K


√

4q||q′||

q|| + q′||

[S0(q′||)− 1] (B.10)

is the so-called Slater local field factor (S0 is the noninteracting static structure factor

and K is the complete elliptic integral of the first kind).[2]
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Appendix C

ISTLS in the exchange-only limit

In the inhomogeneous STLS (ISTLS) approach, the xc kernel has the following ten-

sorial form: [26, 27]

f ISTLS
xc,µν (r, r′) = − 2

ω2
[g(r, r′)− 1]

∂

∂µ

1

|r− r′|
∂

∂′ν
, (C.1)

where µ, ν denote Cartesian coordinates and g(r, r′) is the pair correlation function.

The exchange-only limit of this expression is obtained by using the noninteracting

pair correlation function, which yields

f ISTLS
x,µν (r, r′) = 2

∣∣∣∑Nocc

j=1 ϕj(r)ϕ∗j(r
′)
∣∣∣2

ω2n(r)n(r′)

∂

∂µ

1

|r− r′|
∂

∂′ν
. (C.2)

We consider the case of a quantum well with finite width, where the Kohn-Sham

orbitals have the form (B.1), and we limit ourselves to plasmon modes with in-plane

wavevector q|| = 0, so that the dynamics is uniform within the plane of the well and,
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hence, effectively one-dimensional. Then, only the zz component of the tensorial

xc kernel is relevant, and it is straightforward to transform it to a scalar exchange

kernel[29]. Using the same notation as in Appendix B, we obtain

f ISTLS
x (q|| = 0, z, z′) =

∫ ∞
z

dz1

∫ ∞
0

dρ||
ρ||

∣∣∣∑Nocc

j ϕ∗j(z1)ϕj(z
′) kjJ1(kjρ||)

∣∣∣2
πn(z1)n(z′)

×

 ∂

∂z1

1√
ρ2
|| + (z1 − z′)2

 . (C.3)

Comparing with Eq. (B.4) [notice that J0(0) = 1], we can rewrite this as

f ISTLS
x (0, z, z′) = fPGG

x (0, z, z′)

−
∫ ∞
z

dz1

∫ ∞
0

dρ||
ρ||

Nocc∑
l,m

klkmJ1(klρ||)J1(kmρ||)√
ρ2
|| + (z1 − z′)2

× ∂

∂z1

(
ϕl(z1)ϕ∗l (z

′)ϕ∗m(z1)ϕm(z′)

πn(z1)n(z′)

)
(C.4)

It thus turns out that the ISTLS exchange kernel is equal to the PGG exchange

kernel plus a correction term. If only the lowest subband is occupied (Nocc = 1), the

correction term vanishes because then the derivative with respect to z1 gives zero.

Figure C.1 gives a comparison of PGG and ISTLS for the case of a quantum well

with 5 occupied subbands. The figure shows the frequency-dependent photoabsorp-

tion cross section corresponding the intersubband charge plasmons. As can be seen,

the difference between PGG and ISTLS is marginal.
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Figure C.1: Photoabsorption cross section for q|| = 0 intersubband charge plasmons,
for a quantum well with 5 occupied subbands, comparing PGG and exchange-only
ISTLS.
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Appendix D

Derivation of Eq. (3.6)

In this Appendix we provide the derivation of Eq. (3.6), using the linear-response

formalism described in Sec. 3.3. The spin-flip response function, Eq. (3.49), is given

by

χσσ′,ττ ′(q, y, y
′, ω) = Fσσ′,ττ ′(q, ω)φ2(y)φ2(y′) , (D.1)

where

Fσσ′,ττ ′(q, ω) = −
±1∑
pp′

∫
d2k

(2π)2

f(Epk)

ω − Epk + Ep′k−q + iη[
δσ↑ψ

p↑
k + δσ↓ψ

p↓
k

] [
δσ′↑ψ

p′↑
k−q + δσ′↓ψ

p′↓
k−q

]
[
δτ↑ψ

p↑
k + δτ↓ψ

p↓
k

] [
δτ ′↑ψ

p′↑
k−q + δτ ′↓ψ

p′↓
k−q

]
+

±1∑
pp′

∫
d2k

(2π)2

f(Epk)

ω + Epk − Ep′k+q + iη[
δσ↑ψ

p′↑
k+q + δσ↓ψ

p′↓
k+q

] [
δσ′↑ψ

p↑
k + δσ′↓ψ

p↓
k

]
[
δτ↑ψ

p′↑
k+q + δτ↓ψ

p′↓
k+q

] [
δτ ′↑ψ

p↑
k + δτ ′↓ψ

p↓
k

]
. (D.2)
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To second order in SOC, the energy eigenvalues (3.40) are given by

Epk =
k2

2
+
ε↑ + ε↓

2
+
p

2

(
Z∗ − k · q0 +

(k · q1)2

2Z∗

)
, (D.3)

where q0 and q1 are defined in Eqs. (3.35)-(3.38), which leads to

k · q0 = 2k[α cos(ϕ− ϕk) + β sin(ϕ+ ϕk)] (D.4)

k · q1 = −2k[α sin(ϕ− ϕk)− β cos(ϕ+ ϕk)]. (D.5)

The single-particle states (3.46) and (3.47) are given to second order in SOC by

ψ+ =

 1− (k·q1)2

8Z∗2

k·q1

2Z∗
+ (k·q0)(k·q1)

2Z∗2

φ(y) (D.6)

ψ− =

 −
k·q1

2Z∗
− (k·q0)(k·q1)

2Z∗2

1− (k·q1)2

8Z∗2

φ(y) . (D.7)

In the following, we use the abbreviation h1k = k · q1/Z
∗.

We are interested in the spin-flip waves for small q. The response function (D.2)

at q = 0 can be written in the following way:

F (0, ω) = −
∫

d2k

(2π)2

f(E+k)

ω − E+k + E−k + iη
R+

+

∫
d2k

(2π)2

f(E+k)

ω + E+k − E−k + iη
R−

−
∫

d2k

(2π)2

f(E−k)

ω − E−k + E+k + iη
R−

+

∫
d2k

(2π)2

f(E−k)

ω + E−k − E+k + iη
R+ (D.8)
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where the matrices R+ and R− are given by

R+ =



h2
1k −h1k 0 −h2

1k

−h1k 1− 2h2
1k −h2

1k h1k

0 −h2
1k 0 0

−h2
1k h1k 0 h2

1k


(D.9)

R− =



h2
1k 0 −h1k −h2

1k

0 0 −h2
1k 0

−h1k −h2
1k 1− 2h2

1k h1k

−h2
1k 0 h1k h2

1k


. (D.10)

Now let us calculate the energy in the denominator and drop the iη. We have

F (0, ω) =

∫
d2k

(2π)2

f(E+k)− f(E−k)

ω − Z∗ + g0 − g1

R+

+

∫
d2k

(2π)2

f(E+k)− f(E−k)

ω + Z∗ − g0 + g1

R−

=
R+

ω − Z∗
∫

d2k

(2π)2

f(E−k)− f(E+k)

1 + g0−g1
ω−Z∗

+
R−

ω + Z∗

∫
d2k

(2π)2

f(E+k)− f(E−k)

1 + −g0+g1
ω+Z∗

, (D.11)

where we abbreviate

g0 = 2k · q0 , g1 =
2(k · q1)2

Z∗
. (D.12)

Next, we expand the integrands of Fσσ′,ττ ′(0, ω) up to second order in SOC, and carry
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out the integration over k for each element of the 4 × 4 matrices R+ and R−. We

use a notation where F±0 , F±1 , and F±2 come from those terms containing zeroth, first

and second order in h1k, respectively. After a lengthy calculation, the result is

F (0, ω) = (D.13)

F+
2 + F−2 −F+

1 −F−1 −F+
2 − F−2

−F+
1 F+

0 − 2F+
2 −F+

2 − F−2 F+
1

−F−1 −F+
2 − F−2 F−0 − 2F−2 F−1

−F+
2 − F−2 F+

1 F−1 F+
2 + F−2


where

F±0 =
±Z∗

2π(ω ∓ Z∗) ±
Ns(a− b)
Z∗(ω ∓ Z∗) +

2Ns(a+ b)

(ω ∓ Z∗)2

+
Ns(a− b)
(ω ∓ Z∗)2

± 2NsZ
∗(a+ b)

(ω ∓ Z∗)3
(D.14)

F±1 = ∓cNs

[
1

Z∗(ω ∓ Z∗) ±
1

(ω ∓ Z∗)2

]
(D.15)

F±2 =
±Ns(a− b)

2Z∗(ω ∓ Z∗) (D.16)

and a = α2 + β2, b = 2αβ sin 2ϕ and c = 2αβ cos(2ϕ).

Instead of the spin-density-matrix response, we will work with density-magneti-

zation response, Eq. (3.52). Further details of the transformation can be found in

the Appendix of Ref. [68]. It follows that all contributions to the density channel

vanish, and the remaining nonvanishing terms of the density-magnetization response
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function are

Π11 = χ↑↓↑↓ + χ↑↓↓↑ + χ↓↑↑↓ + χ↓↑↓↑

Π12 = −i(χ↑↓↑↓ − χ↑↓↓↑ + χ↓↑↑↓ − χ↓↑↓↑)

Π13 = χ↑↓↑↑ − χ↑↓↓↓ + χ↓↑↑↑ − χ↓↑↓↓

Π21 = i(χ↑↓↑↓ + χ↑↓↓↑ − χ↓↑↑↓ − χ↓↑↓↑)

Π22 = χ↑↓↑↓ − χ↑↓↓↑ − χ↓↑↑↓ + χ↓↑↓↑

Π23 = i(χ↑↓↑↑ − χ↑↓↓↓ − χ↓↑↑↑ + χ↓↑↓↓)

Π31 = χ↑↑↑↓ + χ↑↑↓↑ − χ↓↓↑↓ − χ↓↓↓↑

Π32 = −i(χ↑↑↑↓ − χ↑↑↓↑ − χ↓↓↑↓ + χ↓↓↓↑)

Π33 = χ↑↑↑↑ − χ↑↑↓↓ − χ↓↓↑↑ + χ↓↓↓↓

and Π00 = Π01 = Π02 = Π03 = Π10 = Π20 = Π30 = 0. Therefore, the total response

function is a 4× 4 matrix whose elements defined as follows:

Π11 = F+
0 + F−0 − 4(F−2 + F+

2 )

Π12 = −i(F+
0 − F−0 − 2F+

2 + 2F−2 )

Π13 = −2(F+
1 + F−1 )

Π21 = i(F+
0 − F−0 − 2F+

2 + 2F−2 )

Π22 = F+
0 + F−0

Π23 = 2i(F−1 − F+
1 )
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Π31 = −2(F+
1 + F−1 )

Π32 = −2i(F−1 − F+
1 )

Π33 = 4(F+
2 + F−2 )

where each element is multiplied with φ2(y)φ2(y′). In order to find the collective

modes, we need to determine those frequencies where the matrix

M(q, ω) = Hxc(q, ω)Π(q, ω) (D.17)

has the eigenvalue 1, where the xc matrix Hxc is given by Eq. (3.54). In other words,

we solve the 4× 4 eigenvalue problem

M(q, ω)~x = λ(q, ω)~x (D.18)

and find the mode frequencies by solving λ(q, ω) = 1 for ω, where q is fixed. Since here

our goal is to obtain the coefficient E0 to second order in the Rashba and Dresselhaus

coupling strengths α and β, we carry out a perturbative expansion of the eigenvalue

problem (D.18) in orders of spin-orbit coupling. At q = 0, the matrix can be written

as

M(0, ω) = M (0) +M (2) + . . . (D.19)

where superscripts indicate the order of spin-orbit coupling (the linear order vanishes

at q = 0).

We now write Π = Π(0) + Π(2), where Π(0) and Π(2) are in zero and second order
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in spin-orbit coupling, respectively. Let us first work out the zero-order case and

solve the zero-order eigenvalue problem M (0)~x(0) = λ(0)~x(0). The zero-order response

function matrix is

Π(0) =
Z∗φ2(y)φ2(y′)

π(ω2 − Z∗2)



0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0


. (D.20)

Now we need to do the multiplication with the xc kernel matrix (see Eq. (3.60)):

M (0) =
Z∗/π

ω2 − Z∗2



hxc
00 0 0 hxc

03

0 hxc
11 0 0

0 0 hxc
22 0

hxc
30 0 0 hxc

33





0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0


(D.21)

The elements of the xc matrix, hijxc, are given in Eqs. (3.55)-(3.58), averaged over

φ4(y). In particular, we find hxc
11 = hxc

22 = πfT , see Eq. (3.63). When we work this

out, we find

M (0) =
Z∗fT

ω2 − Z∗2



0 0 0 0

0 Z∗ −iω 0

0 iω Z∗ 0

0 0 0 0


. (D.22)
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The spin-flip wave at q = 0 is at that frequency where the 4 × 4 matrix M (0) has

eigenvalue 1. Working out the determinant leads to the following result:

ω0 = Z∗ + Z∗fT = Z (D.23)

(there is also a solution with a negative frequency, which we discard). We substitute

ω0 back into Eq. (D.22), and end up with

M (0) =



0 0 0 0

0 1
2+fT

−i1+fT
2+fT

0

0 i1+fT
2+fT

1
2+fT

0

0 0 0 0


. (D.24)

The normalized eigenvector which makes the eigenvalue of M (0) equal to 1 is

~x(0) =
1√
2



0

−i

1

0


. (D.25)

To obtain the change of the eigenmodes caused by the presence of SOC, we need to

determine λ(2). In perturbation theory, we obtain the second-order correction of the

eigenvalues as

λ(2) = [~x(0)]†M (2)~x(0), (D.26)
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where we can construct M (2) by using Π(2):

M (2) =



0 0 0 0

0 hxc
11Π

(2)
11 hxc

11Π
(2)
12 hxc

11Π
(2)
13

0 hxc
22Π

(2)
21 hxc

22Π
(2)
22 hxc

22Π
(2)
23

0 hxc
33Π

(2)
31 hxc

33Π
(2)
32 hxc

33Π
(2)
33


. (D.27)

With the substitution of the terms in second-order in α and β in the spin-flip response

matrix, λ(2) in Eq. (D.26) will be

λ(2) =
πfT

2
(Π

(2)
11 + Π

(2)
22 + iΠ

(2)
12 − iΠ(2)

21 )

= πfT (2F+
0 − 4F+

2 )

=
4πNsfT (a+ b)

(ω − Z∗)2
+

2πNsfT (a− b)
(ω − Z∗)2

+
4πNsfTZ

∗(a+ b)

(ω − Z∗)3
. (D.28)

To remain within second order of SOC, we substitute ω0 in Eq. (D.23) back into λ(2),

and get

λ(2) =
6πNsa

Z∗2fT
+

2πNsb

Z∗2fT
+

4πNsZ
∗(a+ b)

Z∗3f 2
T

=
2πNs

Z∗2f 2
T

[
(α2 + β2)(3fT + 2) + 2αβ sin(2ϕ)(fT + 2)

]
(D.29)

The condition for the spin wave at q = 0 is that the eigenvalue is equal to 1, so to
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second order perturbation theory we have

1 = λ(0) + λ(2) , (D.30)

where λ(0) is known, so

1 =
Z∗fT
ω − Z∗ + λ(2) (D.31)

which gives

ω − Z∗ = Z∗fT + λ(2)(ω − Z∗). (D.32)

To lowest order in SOC, we replace ω on the right-hand side by ω0:

ω = Z∗ + Z∗fT + λ(2)(ω0 − Z∗) (D.33)

and using ω0 = Z∗ + Z∗fT we obtain

ω = ω0 + λ(2)Z∗fT (D.34)

Using expression (D.29), we obtain the final result

E0 = Z +
2πNs

Z∗fT

[
(α2 + β2)(3fT + 2) + 2αβ sin(2ϕ)(fT + 2)

]
, (D.35)

which is given as Eq. (3.6).
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Appendix E

In-plane anisotropy of the g-factor

In this Appendix we consider the additional contributions to the angular modulation

of the spin-wave dispersion due to an in-plane anisotropy of the g-factor of the form

gxy sin(2ϕ), where gxy is the off-diagonal component of the g tensor [93, 94, 95].

We have determined the magnitude of gxy experimentally in our CdMnTe quantum

well sample by measuring the modulation amplitude of E0(ϕ) as a function of applied

magnetic field B, for field strengths around 2T, and found a linear behavior. From

the slope, we extracted a value of gxy = 0.024.

gxy can also be calculated using the following formula [93]:

gxy =
2γ

µB

e

~
(
〈k2
z〉〈z〉 − 〈k2

zz〉
)
, (E.1)

with γ = 43.9 eVÅ3 from k · p theory [5] in CdTe, and expressions like 〈k2
z〉 are first

quantized level wave function averages, where the wave function is deduced from a

Schrödinger-Poisson algorithm. Our calculated value, gxy = 0.037 for an electron
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density of 2.6× 1011cm−2, is in good agreement with the experimentally determined

value for gxy.

Similarly, the Rashba coefficient α can be calculated as α = r6c6c
41 e〈Ez〉, with e

the electronic charge and 〈Ez〉 the wave-function averaged electric field along the

growth axis deduced from a Schrödinger-Poisson algorithm, assuming that the elec-

trons experience the delta-doping layer as an infinite sheet of positive charge, and

using r6c6c
41 = 6.93 Å2 calculated by k · p perturbation theory [5] for CdTe. The Dres-

selhaus coefficient β can be calculated as β = γ〈k2
z〉. We used γ = 43.9 eVÅ3 from

k · p theory [5] and estimated 〈k2
z〉 from the Schrödinger-Poisson algorithm. Note

that the same coefficient γ determines both gxy and β.

The g-factor anisotropy will add extra terms to the Kohn-Sham single-particle

Hamiltonian in Section 3.2. Specifically, the off-diagonal parts of the Kohn-Sham

Hamiltonian in Eq. (3.31) in the reference frame R′ (see Fig. 3.1) become [93, 94, 95]

hx′ = −
(
Z

2
+ v−xc(z

′)

)
sinϕ+ αky′ + βkx′ +

1

2
gxyµBB cosϕ (E.2)

hy′ =

(
Z

2
+ v−xc(z

′)

)
cosϕ− αkx′ − βky′ −

1

2
gxyµBB sinϕ . (E.3)

Now we need to transform into the reference system R, where the magnetic field is

along the z-axis. With the additional anisotropy terms, Eq. (3.39) transforms into:

[
h0σ̂0 +

(
Z − k · q0 − gxyµBB sin(2ϕ)

2
+ v−xc

)
σ̂z +

k · q1

2
σ̂x

]
ψpk = Epkψpk . (E.4)

It immediately follows that the Kohn-Sham eigenvalues Epk and eigenfunctions ψpk

are the same as Eqs. (3.40)-(3.43), with Z∗ replaced by Z∗ − gxyµBB sin(2ϕ). The

TDDFT linear response formalism then goes through as before, and the analytical
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Table E.1: Parameters to reproduce experimental spin-wave dispersions. “ALDA”:
Z∗ is calculated using the ALDA, and α and β are fitted to reproduce E0 and E1.
“full”: α, β and Z∗ are fitted to reproduce E0, E1 and E2.

α (mevÅ) β (meVÅ) Z∗ (meV)
gxy = 0 ALDA 1.6 3.1 0.57
gxy = 0.024 ALDA 1.4 3.0 0.57
gxy = 0 full 2.2 3.9 0.63
gxy = 0.024 full 2.1 3.5 0.63

formulas for E0 and E1, Eqs. (3.5) and (3.6), are unchanged, apart from the replace-

ment of Z∗ by Z∗− gxyµBB sin(2ϕ) in Eqs. (3.5) and (3.6) and the replacement of Z

by Z − (1 + fT )gxyµBB sin(2ϕ) in Eq. (3.6).

In Figs. E.1 and E.2, the experimental data for E0(ϕ), E1(ϕ), and E2(ϕ) is

compared with the theory that includes the gxy anisotropy, using the same fitting

procedures as in Figs. 3.5 and 3.6. We find that the contributions of the gxy anisotropy

are very small, and we obtain fits of the same quality as before, with fitted parameters

(α, β, and Z∗) that differ only slightly from those obtained without gxy.

The results are summarized in Table E.1.
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Figure E.1: Coefficients E0, E1, and E2 of the spin-wave dispersion, Eq. (3.4), as
a function of angle ϕ. Dots: experimental data. Lines: theoretical results with
gxy = 0.024, using Z∗ = 0.569 meV obtained with ALDA, and α = 1.4 meVÅ and
β = 3.0 meVÅ obtained by fitting E0 and E1. The red lines follow from the fully
numerical solution of Eq. (3.60), the dashed blue lines follow from the analytical
formulas (3.6) and (3.5).
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Figure E.2: Same as Fig. E.1, but using Z∗ = 0.63 meV, α = 2.1 meVÅ, and β = 3.5
meVÅ obtained from a best fit to the experimental data.
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113315 (2006).

[63] Y.-T. Zhang, Z.-F. Song, and Y.-C. Li, Phys. Lett. A 373, 144 (2008).

[64] R. Roldán, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B 82, 205418 (2010).

125



[65] S. S. Krishtopenko, Semicond. Sci. Technol. 29, 085005 (2014).

[66] S. S. Krishtopenko, Semicond. 49, 174 (2015).

[67] S. Maiti, M. Imran, and D. L. Maslov, Phys. Rev. B 93, 045134 (2016).

[68] C. A. Ullrich and M. E. Flatté, Phys. Rev. B 66, 205305 (2002).
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