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ABSTRACT

Decision making under uncertainty is certainly the most important task of an

economics agent and it is often a very difficult one. In most cases, the goal of further

analysis of uncertainty is not necessarily to reduce it, but to better understand it and

its implications for the decision makers. In this regard, this dissertation focuses on

an useful concept called stochastic dominance (SD) and its econometric inference on

various applications. SD is not only a comprehensive measure of risk and uncertainty,

but has strong implications for the welfare and utility of economic agents.

The dissertation consists of three chapters. The first chapter proposes a non-

parametric Bayesian method for providing probabilistic measurement on stochastic

dominance (SD) of any order. We use the approach of Rubin (1981) for implement-

ing the model of Ferguson (1973, 1974) with an improper noninformative Dirichlet

process prior. The posterior is not only logically coherent among all orders of SD,

but relevant for decision making under uncertainty in welfare analysis. Monte Carlo

results show our Bayesian procedure outperforms other nonparametric frequentist

tests in terms of Bayes risk in many cases. We extend the model to consider sample

weights and clustered sampling error. The results are illustrated using data from the

Panel Study of Income Dynamics.

Chapter two discusses the improper use of ordinal data as a measure of health

in empirical research. In particular, we focus on a kind of questions, in which its

qualitative nature in measurement restricts the scope of questions it can answer. To

illustrate this limitation, we present two examples using ordinal self-reported health

status (SRHS). In the first example of age effect on health, we find SRHS alone may

not be adequate for inferring health inequality or dispersion. It shows only that aver-

age health declines with age. We also study the inter-cohort trend in health inequality

(i.e., cohort effect). The main findings are 1) the elderly is reported healthier today
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than before and 2) the health of the Black elderly is largely improved over years and

becomes less unequal since year 2010. Appropriate statistical inferences on ordinal

data are recommended.

Chapter three proposes and implements an enhanced indexing strategy based on

the stochastic dominance (SD) decision criteria, nonparametric Bayesian (NPB) in-

ference and stochastic optimization algorithm. SD and NPB share a distribution-free

assumption framework which allows a robust approach for non-normal return distri-

butions. Further, NPB provides the probabilistic basis for optimization when un-

certainty is present in problems of decision making. In particular, SD/NPB method

can be applied by constructing an optimization problem constrained by stochastic

dominance relations. We discuss the uncertainties around these relation and find the

optimal portfolio using the mixed-integer linear programming (MILP) algorithm. Our

method yields important ex-ante performance improvements relative to heuristic di-

versification, Mean-Variance optimization and widely-used Standard&Poor 500 index

(SP500). Relative to SP500, our method improves average out-of-sample return by

more than nine percentage points per annum, with higher Sharpe ratio, three-month

re-balancing and no short sales.
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Chapter 1

Nonparametric Bayesian inference
on stochastic dominance

1.1 Introduction

We obtain posterior probabilities of first-order and higher-order stochastic dominance

relationships by using a nonparametric Bayesian method under an improper nonin-

formative prior. The basic model is due to Ferguson (1973, 1974), Rubin (1981), and

Banks (1988). We further extend it to allow sample weights Lo (using 1993) and/or

clustered errors. Three valuable features of this particular nonparametric Bayesian

approach, as pointed out by Chamberlain and Imbens (2003, p. 12), are maintained

here. First, it simultaneously provides probabilistic measurement on all possible dom-

inance relationships. Second, it does not assume any fully parametric specification

for the distributions being compared for stochastic dominance. Third, the noninfor-

mative prior reflects minimal subjective opinion and makes implementation easy.

Stochastic dominance (SD) has been fundamental in analyzing income inequality

and social welfare because it does not impose assumptions on the functional forms of

income distributions or specifications of utility function (see, e.g., Ravallion (1994)
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and Deaton (1997)). The SD approach is appealing since it can provide a robust

comparison between distributions, and such ordering holds true for a large set of

preferences. For example, the income distribution in society A second-order stochas-

tically dominates the distribution in another society if and only if A has a higher

welfare given any non-satiated (non-decreasing) and risk-averse (concave) social util-

ity.

SD is also helpful when studying treatment effects. For example, we may wish to

know whether the treated potential outcome distribution first-order or second-order

stochastically dominates the untreated distribution. This is much more informative

than the average treatment effect and more relevant to the policy question of whether

to adopt the treatment. The methods in this paper may be applied not only to data

from randomized experiments, but also conditional distributions (under unconfound-

edness) and regression discontinuity designs, applying results from Canay and Kamat

(2017) as in Goldman and Kaplan (2017, §6).

Most previous methods for SD inference are frequentist. Among others, Davidson

and Duclos (2000) characterize the null hypothesis of SD as inequality constraints at

a fixed number of arbitrary chosen points and derive the asymptotic sampling distri-

bution of related test statistics. Barrett and Donald (2003) propose a more powerful

method by testing the inequalities at all points in the support of the distributions.

They use the bootstrap to simulate the critical value of a Kolmogorov–Smirnov type

test for SD.

Others in the frequentist literature consider the null hypothesis of nondominance

(nonSD). Kaur et al. (1994) originally propose such a null to avoid difficulties in

constructing a valid rejection region without simulation/bootstrap. They show that

when the (least favorable) null of nonSD is true, the limiting distribution of their

intersection–union t-test statistic is a standard normal distribution. Davidson and

Duclos (2013) further advocate the nonSD null since rejecting it provides stronger

2



evidence of SD than failing to reject a null of SD. In fact, the null of nonSD is widely

used in finance. For example, Post (2003) tests the SD efficiency of a given portfolio

by considering whether it is dominated by any other feasible portfolio.

Although the nonparametric Bayesian approach to SD inference has been largely

unexplored, there are (at least) three reasons to study it. First, the Bayesian frame-

work deals with non-dominance and dominance simultaneously and provides their

posterior probabilities based on the data. It treats nonSD and SD in a full prob-

ability model, in which the posterior probabilities of the three possible dominance

relationships (i.e., XSDY , Y SDX, and nonSD) sum to one. Second, it remains un-

clear if Bayesian and frequentist inferences on SD can be reconciled. Kaplan and Zhuo

(2017) find that even when the frequentist sampling distribution and Bayesian poste-

rior distribution are asymptotically equivalent, frequentist and Bayesian approaches

may reach opposite conclusions on a joint test of multiple inequalities. SD of any

order can be written as such a set of inequalities. Third, the reliability of parametric

inferences are often overshadowed by misspecification of the likelihood. To increase

robustness within the Bayesian framework, Lubrano and Ndoye (2016) and Lander

et al. (2016) suggest income be modeled as a finite mixture distribution, which is a

collection of simple parametric distributions. But it is potentially flawed (and vulner-

able to manipulation) by the ad hoc number of components and choice of parametric

distribution.

In this article, we use a simple nonparametric Bayesian method for inference on

the cumulative distribution function (CDF) F (·), which is treated as an infinite-

dimensional parameter, for each population of interest. As in Rubin (1981), an im-

proper noninformative Dirichlet process (DP) prior in the framework of Ferguson

(1973) is used over F (·) to facilitate the computation of its posterior distribution. In

particular, we take the limit as the DP prior’s hyperparameter approaches the zero

function. Rubin (1981) names this the Bayesian bootstrap and discusses sampling

3



from the posterior distribution of F (·) via Monte Carlo simulation. Banks (1988)

provides a continuity correction for use with continuous CDFs. Lo (1987) and Weng

(1989) show the centered and scaled posterior of F (·) to have the same asymptotic

limit regardless of the DP prior used, so the effect of the improper DP prior (versus

using another DP prior) is small in large datasets. With independent samples, draws

from each posterior may be taken independently, and the posterior probability of any

SD relationship is the proportion of draws in which it holds.

Although motivated by Chamberlain and Imbens (2003), who discuss the merits

of the Bayesian bootstrap in economics, our approach is more than a simple exten-

sion of theirs. Chamberlain and Imbens (2003) argue that the posterior distribution

is useful in accommodating parameter uncertainty for decision making through an

instrumental variable example and that the posterior provides better inference when

the asymptotic approximation to the sampling distribution is poor, through a quan-

tile regression example. Three differences in our paper should be noted. First, the

CDF itself is of interest here, whereas it is only a nuisance parameter in their study.

In particular, since SD relations depend on the tails, the continuity correction for

continuous CDFs is very important, since otherwise SD may be falsely rejected with

100% probability at the sample maximum or minimum in some cases. Second, the

notion of SD involves inequalities at infinitely many points. We find our nonpara-

metric Bayesian conclusions are strikingly different from the frequentist ones on these

joint inequality constraints. Such findings are also seen in Kline (2011) and Kaplan

and Zhuo (2017). Third, we develop extensions to accommodate sampling weights

and clustering in survey data.

Two specific problems concerning empirical SD testing are unequal probability

sampling and a clustering structure. First, ignoring sample weights in survey data

can lead to incorrect inferences about the population of interest. To incorporate

sample weights into the Bayesian bootstrap, Lo (1993) introduces the normalized

4



weighted gamma process prior. Under this prior, he shows the modified Bayesian

bootstrap approximation to the posterior distribution of the mean is accurate when

probabilities of selection, the inverse of sample weights, are modeled through the

weighting distribution model (Rao, 1965). It is not required that one rescales weights

inside each bootstrap sample, which is inevitable in frequentist bootstraps (Rao and

Wu, 1988). Second, clustering is about within-group/cluster correlation and hence is a

common phenomenon in economics, especially with panel data. But such correlation

violates the iid assumption in basic bootstrap techniques. Cameron et al. (2008)

consider the cluster bootstrap that resamples the whole cluster as one sampling unit.

Similar to the cluster bootstrap, the Bayesian bootstrap can also simulate at the level

of clusters, instead of individual observations.

Section 1.2 contains the algorithms of implementing our nonparametric Bayesian

analysis in the basic setting as well as with complex sampling. Section 1.3 contains

a brief review of SD and formulation of the corresponding hypotheses. Sections 1.4

and 1.5 contain simulation results and empirical examples, respectively. Acronyms

and abbreviations used include those for Bayesian bootstrap (BB), cumulative dis-

tribution function (CDF), Dirichlet process (DP), random variable (RV) and jth-

order stochastic dominance (SDj). Notationally, random and non-random vectors

are respectively typeset as, e.g., X and x, while random and non-random scalars are

typeset as X and x. The Dirichlet distribution with parameters a1, . . . , aK is written

Dir(a1, . . . , aK).

1.2 Bayesian bootstrap method

We present a nonparametric Bayesian method where a noninformative prior is used

to derive the posterior of a CDF, which serves as a crucial function in SD inference. It

is “nonparametric” because the true CDF F (·) is an infinite-dimensional parameter.
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For such parameter, the most commonly used prior is the Dirichlet process prior

proposed by Ferguson (1973). In particular, Rubin (1981) coins the term “Bayesian

bootstrap” (BB) when using an improper and noninformative prior, developing a

Bayesian analogy to the frequentist bootstrap. In fact, the BB is a valid frequentist

bootstrap, but we use it with a Bayesian interpretation.

In section 1.2.1, the basic method of the BB with iid data is introduced. We then

discuss the similarities between Bayesian and frequentist uniform confidence/credible

bands for the CDF in section 1.2.2. In sections 1.2.3 and 1.2.4, BB is further extended

to account for sample weights and clustering, respectively.

1.2.1 Basic method

Let {Xi}ni=1
iid∼ F . To learn about the unknown F ∈ F from a Bayesian perspective, a

prior is specified over the set F of possible CDFs, and then the posterior distribution

of F on F is computed given the sample {Xi}ni=1.

A preliminary example is to address the posterior distribution of discrete F having

the finite support {dk}Kk=1. The prior of F is often assumed to have a Dirichlet

distribution, which is a multivariate distribution having support over a K × 1 vector

whose entries are real numbers in the interval [0, 1] and sum together to 1. Given the

data sampled from F , the posterior distribution is obtained as usual, made simple by

the conjugacy of the Dirichlet distribution prior and the multinomial likelihood.

When it comes to continuous F , the prior distribution is of great importance, since

the CDF is an infinite-dimensional parameter. So, the Dirichlet distribution prior

fails to manage the task since it can only account for a fixed number of parameters.

One solution is to use the Dirichlet process prior, defined by Ferguson (1973, 1974)

for the general nonparametric Bayesian framework. The Dirichlet process (DP) is a

random probability measure, which defines the joint distribution for every measurable

partition (B1, . . . ,BK) on the sample space. That is, DP defines the distribution of

6



(
P(B1), . . . ,P(BK)

)
for all K. For a particular K and the corresponding partition,

the marginal distribution is Dirichlet. Roughly speaking, DP is a joint distribution

over all these (varying K) marginalized distributions. It is uniquely controlled by the

parameter α(·). Ferguson (1973, p. 217) shows if the prior knowledge of F can be

summarized by a DP with hyperparameter α(·) and the sample X of size n is drawn

from F , then the posterior distribution of F is also a DP with updated parameter

α(·) +
∑n

j=1 δxj(·), where δx(A) = 1{x ∈ A}.

The BB in Rubin (1981) is a practical implementation of this nonparametric

Bayesian framework. It uses an arguably noninformative DP prior by letting its hyper-

parameter α(·)→ 0.1 Under this type of peculiar prior, the DP posterior distribution

becomes much more tractable: α(·) only updates at observed values in the sample;

and, at the rest of values in the support, α(·) are all zero with the posterior probabil-

ity one. It is a Dirichlet posterior distribution. A great advantage of Rubin’s BB is

that the posterior distribution of F can be approximated directly by a Monte Carlo

simulation from this Dirichlet posterior distribution. Each simulation corresponds to

a realization of the discrete distribution for p1 = F (Xn:1), p2 = F (Xn:2) − F (Xn:1),

etc., up to pn = F (Xn:n)−F (Xn:n−1), where (Xn:1, . . . , Xn:n) are the order statistics of

the sample X. Also, the Dirichlet-distributed weights p = (p1, . . . , pn) in BB lead to

smoothing when compared to the original (multinomial weights) bootstrap of Efron

(1979).2

Asymptotic studies of BB have focused on the (lack of) influence of the prior in

large samples. Major contributions are made by Lo (1987) and Weng (1989), among

others. Lo (1987) shows, for any DP prior over F , its posterior distribution can be

first-order approximated by the conditional distribution of Tn(·) used in Rubin (1981).

1For the DP prior, Gelman et al. (2014) claim α(·) reveals in some sense a prior sample size.
2Another way to view it is from the perspective of a smoothing bootstrap as in Lancaster (2003):

instead of resampling data directly, it assigns a random probability to each observation, and random
probabilities are simulated from a posterior distribution.
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The random CDF Tn(·) is defined as

Tn(x) ≡
n∑
k=1

pk 1{Xn:k ≤ x}, (1.1)

where pk ≡ P(X = Xn:k) as above. The conditional distribution of Tn(·) (given data

sample X) is obtained by simulating (p1, . . . , pn) from the posterior distribution many

times, say B times, to have T 1
n , . . . , T

B
n .

Lo (1987, Thm. 2.1) proves, for almost all sample sequences X, the recentered

and rescaled Tn(·) converges to a Brownian bridge. That is, with  denoting weak

convergence,
√
n
(
Tn(·)− F̂ (·)

)
 B

(
F (·)

)
(1.2)

where F̂ (·) is the empirical CDF from data and F is the true CDF, and B is a standard

Brownian bridge. This result holds for any DP prior, including the improper nonin-

formative one. Hence, It implies, asymptotically, the noninformative DP prior does

not affect the posterior distribution. Furthermore, Weng (1989) shows such approxi-

mation is better than the normal approximation or classical bootstrap approximation

in obtaining the posterior distribution of F , because it is also second-order accurate.

Despite its appealing properties above, the BB posterior only includes discrete

distributions (with support equal to the sample values) even if the true F (·) is con-

tinuous. To correct this continuity problem, histospline smoothing is introduced in

Banks (1988). The idea, similar to linear interpolation in the smoothed bootstrap, is

to spread probability p evenly between the two closest values in the sample. That is

to say, it assigns the posterior Dirichlet mass uniformly across statistically equivalent

blocks, formed by distinct values in the data. As n distinct values split a real line

into n + 1 intervals, we need n + 1 probabilities for those intervals. For example,

let Xn:0 and Xn:n+1 be the lower and upper bound of RV X. We have the posterior

(p1, . . . , pn+1) | X = x ∼ Dir(1), where pk is the probability for interval (Xn:k−1, Xn:k]

8



and 1 is an (n+ 1)× 1 vector of ones.

For the continuity correction, pk is uniformly spread over the interval (Xn:k−1, Xn:k]

in the sense that the density in the interval is given by pk/(Xn:k −Xn:k−1). By inter-

polating within all intervals, the CDF in the Banks (1988) BB is not a step function

but an increasing linear spline function with knots at the sample values. In terms of

comparing SD, it helps avoid the situation that the SD is decisively rejected by some

single extreme value, such as the right endpoint at which an empirical CDF is always

1.

The algorithm for our basic BB inference on F (·) can be summarized as follows.

Step 1. For an ordered sample {Xn:i}ni=1, simulate {pi}n+1
i=1 from the posterior distri-

bution Dir(1, . . . , 1): draw n + 1 independent RV {Ci}n+1
i=1 from the gamma

distribution Γ(1, 1), and let pk = Ck/
∑n+1

i=1 Ci.

Step 2. Construct the random distribution function Tn(·) with the continuity correc-

tion suggested by Banks (1988): letting Xn:0 and Xn:n+1 be the lower and

upper bounds of the support of F ,

Tn(z) =


k∑
i=1

pi if z = Xn:k

k∑
i=1

pi + pk+1(z−Xn:k)

Xn:k+1−Xn:k
if Xn:k < z < Xn:k+1.

Step 3. Repeat the above steps independently B times to obtain T 1
n(·), . . . , TBn (·).

Step 4. The empirical distribution function of T 1
n(·), . . . , TBn (·) approximates the pos-

terior distribution of F (·) for large B.

1.2.2 Bayesian/frequentist connection

We have shown that the BB method can yield the posterior distribution of CDF

F (·) given data X = {Xi}ni=1. Now, we want to show its similarity to the frequen-
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tist sampling distribution and, more visually, uniform confidence band. Despite the

equivalence (as we will show) of the posterior and sampling distributions, and the

equivalence of uniform confidence and credible bands, the subtle yet philosophical

differences between Bayesian and frequentist perspectives can be extremely impor-

tant when dealing with SD as they answer essentially different questions.

Suppose (Xn:1, . . . , Xn:n) are the order statistics of an iid sample X from a popula-

tion having a continuous F (·). Wilks (1962, 8.7.1–2) presents that the sampling dis-

tribution of random variables, F (Xn:1), F (Xn:2), . . . , F (Xn:n), is the ordered n-variate

Dirichlet distribution Dir∗(1, . . . , 1; 1), and the marginal distribution of F (xn:k) is the

beta distribution Beta(k, n+ 1− k). It is easier to see the frequentist/Bayesian con-

nection by using Wilks’ coverages U1 = F (Xn:1), U2 = F (Xn:2) − F (Xn:1), . . . , Un =

F (Xn:n)− F (Xn:n−1), Un+1 = 1− F (Xn:n). Such coverages can be understood as the

probabilities assigned to the intervals formed by consecutive order statistics. Wilks

(1962, 8.7.4) states that they follow the Dirichlet distribution Dir(1, . . . , 1).

Therefore, the frequentist sampling distribution of the coverages in Wilks (1962)

is obtained in the same way as their posterior distribution from Banks (1988), specifi-

cally from a (n+1)-variate Dir(1, . . . , 1). The posterior probabilities p = (p1, . . . , pn+1)

correspond to the coverages U = (U1, . . . , Un+1). The differences lie in: the frequentist

approach considers the sampling distribution of U over the possible sample {Xn:k}nk=1

values conditional on the true unknown value of p, whereas the Bayesian makes prob-

abilistic inference on the unknown true value of p conditional on the observed values

of {Xn:k}nk=1. Such differences affect their interpretations but do not affect their finite-

sample and limiting distributions. Thus, the Banks (1988) posterior distribution and

the Wilks (1962) sampling distribution are identical.

The 1 − α uniform confidence band for an unknown function F (·) represents

the uncertainty in its estimate, say F̂ (·), such that it attains simultaneous coverage

probability of 1 − α. When the sampling distribution for F (Xn:1), . . . , F (Xn:n) is
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available as above, Aldor-Noiman et al. (2013) provide a computational algorithm

to derive a uniform confidence band for F (·). First, for a given pointwise coverage

probability 1 − γ, the two-sided and equal-tailed confidence interval for F (Xn:k),

∀k ∈ {1, . . . , n}, is constructed from its marginal distribution Beta(k, n + 1 − k),

with the endpoints being its γ/2 and 1− γ/2 quantiles. Second, adjust the pointwise

coverage level γ such that the confidence intervals for all {F (Xn:k)}nk=1 cover the true

values simultaneously with 1 − α coverage probability. This can be done by finding

the smallest two-sided p-value for each simulated sample and setting γ to the 100α-

percentile over these p-values. Third, form a uniform confidence band for F (·) by

interpolating the n confidence intervals. In particular, extend the lower endpoint

of the confidence interval at Xn:k horizontally toward Xn:k+1 (and then jump up

to its lower endpoint), and extend the upper endpoint of the confidence interval at

Xn:k+1 horizontally toward Xn:k (and then jump down to its upper endpoint). The

monotonicity of F (·) guarantees the band maintains exact coverage probability.

The uniform confidence band constructed above is also a valid uniform credible

band for the BB method in the Banks (1988). A 1 − α credible band is similarly

formed by the set of credible intervals at the order statistics, which have joint 1− α

credibility. It should be noted that the credible band does not specify the pointwise

posterior probability as constant. On the other side, it has been shown that the

posterior distribution matches the frequentist sampling distribution in Wilks (1962).

Such a sampling distribution is utilized in the first two steps of uniform confidence

band construction. The third step does not change the confidence level of the band.

Thus, the particular frequentist method provides a uniform credible band for the

unknown F (·) in our nonparametric Bayesian problem.

Though the two equivalences are established, their philosophical difference still

matters in terms of interpretation. The Bayesian credible band, given the current

data, measures (our belief of) the probability that the true F falls within the band.
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In contrast, the frequentist confidence band is, when repeated sampling data from

population, a measure of how often the constructed band can cover the true F .

In short, they answer different questions, though their procedures are superficially

identical.

1.2.3 Sampling weights

We consider next the situation where observations are still sampled independently

from a population but with different selection probabilities. That is, the sample

weights are defined as inverse of selection probabilities. It is easier to extend our

basic Bayesian method to account for sample weights than frequentist solutions.3

The sample weights, when available, are indispensable in estimating population

descriptive statistics such as the CDF. As the National Longitudinal Survey of Youth

1997 (NLSY97)’s technical report puts it, weighting makes the sample representa-

tive of the target population. For example, Solon et al. (2015) show the importance

of sample weights by using raw data alone in the Panel Study of Income Dynamics

(PSID) to estimate the 1967 poverty rate, which is 26%, twice as high as the official

measurement by the US census. Therefore, it is almost impossible to obtain unbi-

ased and consistent estimates on descriptive statistics without incorporating sample

weights.

One way to use sample weights for inference on F is through the concept of a

weighted distribution defined in Rao (1965). One example is to sample the fiber

length X: it is more likely to select a longer fiber. That is, the likelihood of a fiber’s

inclusion in the sample is decided not only by the distribution of X, but the length

itself. It makes the recorded length Xi not an observation on X, but on another

RV Xw. Therefore the distribution of Xw is called the weighted distribution of the

3For example, Kolenikov (2010) discusses variance estimations in complex survey data by three
resampling methods, including the frequentist bootstrap. All of them involve repeated calculation
of implied weights for each replicate, and method-wise requirements on the number of replications.

12



original RV X. Formally, for the CDF F of X and its weighted counterpart G, the

weighted distribution model can be defined as

X1, · · · , Xn | F are an iid sample from a univariate distribution G(· | F ) (1.3)

where

G(ds | F ) = w(s)F (ds)
/∫

w(s)F (ds) (1.4)

w(s) is a known weighting function with 0 < w(s) <∞ and has same support as F .

Lo (1993) obtains the posterior distribution of F when the sample can be modeled

by the model in (1.3) and (1.4). His idea is to pick a prior that contains knowl-

edge of w(s). Specifically, w(s) are sample weights in surveys and are known be-

fore inference. A natural choice of prior is to extend the previous DP prior: the

new prior is defined by normalized weighted gamma process, in the same manner of

DP(α(·)) defined in terms of normalized gamma process (Ferguson, 1973, p. 271). In

particular, the weighted gamma process is defined by Dykstra and Laud (1981) as

γ
(
t;α(·), β(·)

)
=
∫ t
0
β(s)Z(ds), where β(·) is a rate parameter and Z(ds) is a gamma

process with independent increments corresponding to shape parameter α(ds). A nor-

malized weighted gamma process, denoted as γ̃
(
t;α(·), β(·)

)
, is γ(t)

/
γ(∞). Note DP

is a special case of normalized weighted gamma process, i.e., DP(α(·)) = γ̃
(
α(·),1

)
.

Further, Lo (1993) proves, under this improper prior, the posterior distribution of the

original F could be first-order approximated by the BB’s random distribution of Tn

in (1.1).

In practice, only Step 1 of the algorithm in section 1.2.1 needs to be modified for

sample weights. Here we illustrate only the major change when considering sample

weights. Let {Wi}ni=1 be sample weights associated to a sample {Xi}ni=1. Instead

simulating each Zi identically from Γ(1, 1), we do the following.

Step 1. Simulate Ci from the gamma distribution Γ(1, 1/Wi) with rate parameter
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being the reciprocal of its weight. Note Cn+1 is used for continuity correction

and can be drawn from Γ(1, 1/W̄ ) where W̄ is the average weight;

1.2.4 Clustering

Clustering arises when arbitrary correlations exist within clusters and independence

only holds across clusters. In the frequentist framework, failure to account for the

clustering structure can lead to a downward-biased standard error and then over-

rejection of the null hypothesis. Cameron et al. (2008) deal with it by resampling,

instead of observations at the individual level, the whole set of observations at the

cluster level.

Clustering structure is also important in the Bayesian framework. The correlation

within cluster poses a huge danger to the validity of BB since it also hinges on the iid

assumption. In fact, the number of independent information is indeed the number of

clusters for the clustered sample. For example, when investigating the SD relationship

between income distributions in two year, a reasonable cluster would be state since

people from the same state may be affected by the same economic environment and

state-level policies. Thus, the actual number of independent “observations” on income

is 50, the number of states. Regarding CDF estimation, we treat each cluster as one

“observation” and apply BB to obtain the posterior probability for each cluster.

Within each cluster, the probabilities can further be shared by units according to

their sample weights.

Consider, specifically, a sample {Xig} with G clusters (subscripted by g) and each

having Ng observations (subscripted by i); {Wig} are associated sample weights. Now

Step 1 of the algorithm in section 1.2.1 is modified to simulate posterior probabilities

{pig} from the following two steps.

Step 1a. Simulate the cluster-level posterior probability {pg}G+1
g=1 by pg = Cg/

∑G+1
j=1 Cj,
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where Cg is drawn from the gamma distribution Γ(1, 1/
∑

iWig) with rate

parameter being the reciprocal of the sum of weights within cluster g. Note

CG+1 is used for continuity correction and can be drawn from Γ(1, 1/W̄ ).

Step 1b. The individual-level posterior probability pig is equal to pgWig/
∑Ng

j=1Wjg.

1.3 Nonparametric Bayesian inference on SDj

Here we present nonparametric Bayesian inferential procedures in the context of SD.

Section 1.3.1 first characterizes the relevant SD relationships. Then section 1.3.2

shows a Bayesian inferential procedure, obtaining simultaneously the posterior prob-

abilities of all dominance relationships (SD and nonSD). It also attempts to quantify

the differences between two CDFs by a uniform credible band.

1.3.1 Characterization of SDj

Stochastic dominance (SD) provides an unambiguous (partial) stochastic ordering

between two RVs or distributions. Its connection to economics has been rigorously

studied for poverty and inequality (Ravallion, 1994), and more broadly, for social

welfare problems (Deaton, 1997). For example, the income distribution X stochasti-

cally dominates Y at the first order, denoted as XSD1Y , iff X has less poverty than

Y for any given income level, and X is also preferable for any non-decreasing social

utility function. In addition, XSD2Y is the sufficient and necessary condition for X

having higher social welfare for any non-decreasing, concave social utility function.

Second-order SD is also equivalent to generalized Lorenz dominance, which implies

(among other properties) that the average income X̄ is no less than that Ȳ . Moreover,

third-order SD implies higher social welfare when social utility is further restricted

to decreasing absolute risk aversion (DARA).
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Generally, SD between any two RVs X and Y is defined by their CDFs FX and

FY :

1. X SD1 Y ⇐⇒ FX(z)− FY (z) ≤ 0 for any z ∈ R;

2. X SD2 Y ⇐⇒
∫ z
−∞[FX(v)− FY (v)] dv ≤ 0 for any z ∈ R;

3. X SD3 Y ⇐⇒
∫ z
−∞

∫ w
−∞[FY (v)− FX(v)] dv dw ≤ 0 for any z ∈ R;

and so on. Davidson and Duclos (2000) introduce a function D(·) to make the char-

acterization of SD neat and convenient. Let D1(z) ≡ F (z) and

Dj(z) ≡
∫ z

−∞
D(j−1)(v) dv =

1

(j − 1)!

∫ z

∞
(z − v)(j−1) dF (v), j = 1, 2, . . . . (1.5)

Therefore, distribution X is said to dominate distribution Y stochastically at order

j if and only if Dj
X(z)−Dj

Y (z) ≤ 0 for any z ∈ R.

Although the SD relationships can be hypothesized directly as the conditions

above, specifically over the whole support like z ∈ R, there are few papers doing so.

The main reason, as Davidson and Duclos (2013) point out, is that the whole support

range is not statistically feasible because of too little reliable information on income

and other variables in the tails. For example, it still rejects the null of SD when one

CDF curve is everywhere lower than another except at some endpoints. Such rejec-

tions are often awkward, as the extreme values may be due to measurement error or

sampling error. Therefore, we consider the SD relationships over a restricted support

of incomes z ∈ [z, z̄], where z = max{min(x),min(y)} and z̄ = min{max(x),max(y)}.

The general hypotheses for testing stochastic dominance of order j are formed as

Hj
0 : Dj

Y (z)−Dj
X(z) ≤ 0 for all z ∈ [ z, z̄ ]

Hj
1 : Dj

X(z)−Dj
Y (z) ≤ 0 for all z ∈ [ z, z̄ ]

Hj
2 :

 Dj
X(z1)−Dj

Y (z1) < 0

Dj
Y (z2)−Dj

X(z2) < 0
for some z1, z2 ∈ [ z, z̄ ]

(1.6)
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The three hypotheses Hj
0 , Hj

1 , and Hj
2 respectively correspond to Y SDjX, XSDjY ,

and neither X nor Y dominating at order j.

1.3.2 Nonparametric Bayesian inferential procedure

The Bayesian approach can summarize the data about the relationship between two

distributions in two useful ways. First, the hypothesized statements in (1.6) can be

assigned posterior probabilities. Second, a uniform credible band for the difference

between the two CDFs can be computed. Additionally, posterior probabilities can be

converted to a binary decision such as reject/accept by minimizing posterior expected

loss based on a chosen loss function.

If X and Y are independent, then the posterior probabilities of all possible domi-

nance relationships at order j can be simulated based on Dj(·) in (1.5) and the poste-

rior distributions of FX(·) and FY (·) in section 1.2. For example, consider second-order

SD given samples {Xi}ni=1 and {Yi}mi=1, where n and m may differ. Let Z = {Zl:i}li=1

be the order statistics in the union of distinct values of the two samples, so l ≤ n+m.

The posterior probabilities for SD2 are simulated as follows.

Step 1. Simulate pX from the posterior distribution Dir(1, . . . , 1) derived in sec-

tion 1.2.1 and construct D2
X(z) for all z ∈ Z. Similarly, draw pY and con-

struct D2
Y (z) for sample Y.

Step 2. Let ∆2(z) ≡ D2
X(z)−D2

Y (z).

Step 3. Repeat Step 1 and Step 2 R times. For large enough R, the posterior proba-
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bilities of dominance relationships are well-approximated by

P(H2
0 : XSD2Y | X,Y) =

1

R

R∑
r=1

1{∆2(z) ≤ 0,∀z ∈ Z}

P(H2
1 : Y SD2X | X,Y) =

1

R

R∑
r=1

1{∆2(z) ≥ 0,∀z ∈ Z}

P(nonSD2 | x, y) = 1− P(H2
0 | X,Y)− P(H2

1 | X,Y).

The Bayesian approach is quite appealing because the notion of the probability

of a hypothesis, such as P(H0 | X,Y), can only be defined in the Bayesian way.

In particular, XSDjY is an unknown population relationship and to be tested from

data. Its posterior probability, given the data, provides a probabilistic measurement

on the degree of belief on this fixed and hypothesized statement. What’s more, three

possible situations in (1.6) are systematically inferred by treating them symmetric. It

is a striking difference from the frequentist approach, which places asymmetric roles

in null and alternative hypotheses.

Moreover, a uniform credible band4 of ∆j(·) can be derived from the simulations.

Specifically, replace Step 3 with the following.

Step 3. Repeat Step 1 and Step 2 many times to approximate the joint posterior

distribution of ∆j(z) for all z ∈ Z.

Step 4. Find the constant width w such that the band [∆j(·)−w,∆j(·) +w] contains

∆j(·) with posterior probability 1− α, where ∆j(·) is the posterior mean.

Finally, it is often pragmatic to require a deterministic conclusion on the hypothe-

ses by restricting the decision space to {Accept, Reject}, or equivalently {0, 1}. To

this end, a loss function is needed. For instance, the 0–1 loss, formalized by Neyman

and Pearson, incurs the penalty (loss) of one if the decision is wrong and zero other-

wise. It is a qualitative loss in the sense that it does not differentiate the two types of

4The notion is discussed in section 1.2.2.
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error and thus fails to weigh the importance of the null hypothesis in the loss. More

quantitatively, a weighted 0–1 loss takes value 1 − α for type I error, α for type II

error, and zero otherwise. To minimize its posterior expected loss (PEL), the optimal

decision is given in proposition 1.

Proposition 1. Under the weighted 0–1 loss above, reject H0 if P(H0 | X) ≤ α;

otherwise, accept H0.

Intuitively, the PEL is minimized when the posterior expected loss from false

rejections is equal to the posterior expected loss from false acceptance, that is, (1 −

α) P(H0 | X) = α(1 − P(H0 | X)). The ratio of (1 − α)/α in the loss reveals the

relative importance of the type I error against the type II error. The larger it is, the

smaller the posterior probability of H0 needs to be for H0 to be rejected.

1.4 Simulations

It is instructive to place frequentist and Bayesian inference together under scrutiny. In

this section, we compare our Bayesian bootstrap inference (BB) with the Kolmogorov–

Smirnov (KS) type bootstrap tests in Barrett and Donald (2003) (hereinafter BD03)

and the empirical likelihood ratio (ELR) tests in Davidson and Duclos (2013) (here-

inafter DD13). Such comparisons are measured using two relevant criteria: the first

one is the frequentist risk (i.e., the expected loss averaged over random data only); the

second is the Bayes risk (i.e., the expected loss averaged over the data and unknown

parameters). The latter can also be understood as the frequentist risk averaged over

the parameter space against to its prior distribution.5

The major conclusions are summarized here. Comparing to frequentist inference,

BB inference on SD is better when measured by Bayes risk, while it is worse when

measured by frequentist risk. In the frequentist sense, it is anti-conservative for

5Details on the two criteria connections can be found in Robert (2007).
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the null of SD, but conservative for the null of nonSD. These results agree with the

findings in Kaplan and Zhuo (2017). Here, they imply that the Bayesian inference may

not necessarily have the frequentist properties in joint hypothesis testing contexts.6

However, when we account for uncertainties in parameters and use Bayes risk, the

BB outperforms its frequentist counterparts.

1.4.1 Frequentist risk of tests of the SD null

Our first simulation aims to inspect the null of SD by replicating the Monte Carlo

experiment in BD03. Though all five cases in their paper are investigated, only the

first and fourth cases are illustrated here in order to focus on size control and power.

In particular, the two DGPs assume iid sampling with X and Y independent, with

distributions specified as follows.

Case 1: Xi ∼ ln N(0.85, 0.62) and Yi ∼ ln N(0.85, 0.62), where ln N(µ, σ2) is a log-

normal distribution with location µ and scale σ.

Case 2: Xi is the same as in Case 1, and Y has the following mixture distribution:

Yi ∼ ln N(0.8, 0.52) w.p. 0.9 and Yi ∼ ln N(0.9, 0.92) w.p. 0.1.

Therefore, all SD hypotheses are true for Case 1 and false for Case 2.

We consider stochastic dominance of X by Y up to order 3. The Bayesian decision

is, as shown in proposition 1, to reject Hj
0 if P(Hj

0 | X,Y) ≤ α. The posterior

probability P(Hj
0 | X,Y) is calculated by the algorithm in section 1.3.2. The decision

rule for the KS-type test is to reject Hj
0 if p̂j ≤ α, where p̂j is the p-value for the

corresponding test statistic. The p-value is obtained by the second bootstrap method

detailed in BD03.

6In fact, the BB inference shows asymptotically correct size control when testing a general one-
sided hypothesis of a location parameter. For example, imagine one population CDF touches another
at a single point, and otherwise stays on its left side. This equality at the lone contact point is crucial
in inferring the population SD1.
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A total of 1000 Monte Carlo replications are performed for each case. We consider

two sample sizes of Nx = Ny = 50 and Nx = Ny = 500. Table 1.1 reports the rejection

rates for BB and KS tests at a significance level of 5%.

Table 1.1: Rejection probability, α = 5%.

Case 1 Case 2

H0 Nx(= Ny) Bayesian frequentist Bayesian frequentist

Y SD1X 50 75.1 % 3.3 % 84.2 % 7.1 %
Y SD2X 50 31.3 % 6.0 % 33.3 % 13.8 %
Y SD3X 50 25.0 % 5.8 % 24.5 % 13.7 %
Y SD1X 500 87.8 % 5.0 % 99.3 % 46.9 %
Y SD2X 500 29.3 % 4.7 % 63.8 % 45.7 %
Y SD3X 500 23.3 % 5.2 % 42.8 % 43.9 %

Note: all H0 in Case 1 are true, while all H0 in Case 2 are false.

Case 1 focuses on size control. The BB test fails to control its rejection probability

(RP) at the nominal level of 5% for all orders (e.g., it rejects the SD1 null in 75.1% of

repetitions when Nx = 50). However, Kline (2011) argues that this behavior is more

appropriate and intuitive than controlling size, in an example equivalent to testing

discrete SD. Kaplan and Zhuo (2017) try to explain the phenomenon geometrically,

due to the DGP in Case 1 being not only on the boundary of the null hypothesis

space, but at a very (very) sharp corner of it. For example, if the null of SD1

contains k inequalities, say v1 = Fx(z1) − Fy(z1), . . . , vk = Fx(zk) − Fy(zk), then

the orthant, or hyperoctant, of Euclidean space Rk = (v1, . . . , vk) satisfying H0 is

convex. The volume of the corresponding hypercube makes up only 1/2k proportion

in Rk. When k is large, its volume is so small that the likelihood of SD1 cannot be

substantial without strong evidence favoring it. Such explanations are also consistent

with 1) higher-order SD suggests a larger volume of the hypercube satisfying SD

and thus larger posterior probability and lower RP; 2) larger sample size may mean

more inequalities and smaller proportion of the hypercube, and thus lower posterior

probability and higher RP. It should be mentioned that the high RP for the Bayesian
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inference is also observed by Kline (2011), which claims the frequentist test is too

conservative when testing one-sided multivariate hypotheses.

Case 2 checks the power of the tests. Overall, BB inference makes type II error

less often and has better power. It dominates the KS test for all orders when sample

size is small (Nx = 50). Though the KS test sees a rapid increase in power for a larger

sample, it still makes more type II errors than BB. Along with Case 1, this shows

that BB inference is logically coherent: the higher-order SD null always has a lower

RP since it is less restrictive. In contrast, the KS test does not have this property.

1.4.2 Bayes risk of the SD null

We now turn to a one-sample problem and investigate SD relationships with a known

CDF. This Monte Carlo study shows (Bayes risk) measures by which BB inference

is the better choice. The DGPs are as follows. Now, X is known to be standard

uniformly distributed, i.e., FX(z) = z for z ∈ [0, 1]. The RV Y is also defined

separately over h equal sub-intervals in [0, 1], with FY (·) linearly increasing on each

segment. That is, the distribution function of Y is fully specified by (F
(1)
Y , . . . , F

(h−1)
Y ),

i.e., FY at the k − 1 kink points.

To calculate Bayes risk, we treat F = (F
(1)
Y , . . . , F

(h−1)
Y ) as random. A total of

5000 Monte Carlo replications are performed. Each replication first draws F from the

ordered (h − 1)-variate Dirichlet distribution (see definition in Wilks, 1962, p. 236).

Second, given this realized F and corresponding FY (·), a data sample of size Ny is

drawn from this realized distribution function.7

Table 1.2 compares Bayes risk of the BB and KS-type hypothesis tests. We use

the weighted 0–1 loss function with α = 0.05. BB has smaller Bayes risk than KS test

in almost every situation. Both of them have higher Bayes risk for second-order SD.

7For practical purpose, we also assume the lower and upper boundary uniformly over [−0.01, 0.01]
and [0.99, 1.01].
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Table 1.2: Bayes risk (measured at one thousandth)

h = 4 h = 8

H0 Ny Bayesian frequentist Bayesian frequentist

Y SD1Unif(0, 1) 50 10.59 25.48 8.86 27.70
Y SD2Unif(0, 1) 50 28.66 28.19 26.36 30.22
Y SD1Unif(0, 1) 500 2.32 16.18 2.02 11.26
Y SD2Unif(0, 1) 500 13.10 21.02 11.37 19.84

1. Loss function takes value 0.95 for type I error, 0.05 for type II error, 0 otherwise.
2. h− 1 is number of random parameters in FY (·).

In the sample size of 50, the Bayes risk for BB decreases when h increases to 8 from

4. In contrast, the KS test suffers from more parameter uncertainties and increases

its Bayes risk. It suggests BB inference may be better when we have small sample

and more uncertainty. Naturally, the larger sample size helps both to reduce their

Bayes risks. But BB inference still remains a better choice.

1.4.3 The null of nonSD

The last Monte Carlo study replicates DD13, whose focus is on the null of nonSD. For

a frequentist test, if one wants to seek a conclusion of dominance, it is better to posit

nonSD as the null hypothesis: it is more conclusive to reject non-dominance than to

fail to reject dominance. But such a null hypothesis is very statistically demanding.

This simulation study not only shows the coherence and flexibility of BB inference

on SD and nonSD, but gives another chance to look at its frequentist properties.

Two samples of X and Y are independent. X is drawn from the standard uni-

form distribution and Y is defined over eight equal sub-intervals in [0, 1], with FY (·)

continuous and linearly increasing on each segment. The values of FY (·) evalu-

ated at the upper limit of each segment are 0.03, 0.13, 0.20, 0.50, 0.57, 0.70, and

1.00. To sum up, FY (·) stays below FX(·) everywhere, except at z = 0.5, where

FX(0.5) = FY (0.5) = 0.5. This DGP is on the boundary between SD and nonSD, so
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rejection probabilities may be interpreted as type I error rates for either null.

In table 1.3, we give the rejection rates of various tests under different sample

sizes and nominal level α for a total of 1000 Monte Carlo replications.8 We compare

our BB inference with DD13’s empirical likelihood ratio (ELR) test for the null of

nonSD, and with BD03’s KS-type test for the null of SD.

Table 1.3: Rejection probability, nominal level α.

α = 1% α = 5%

H0 Nx Bayesian frequentist Bayesian frequentist

Y nonSD1 X 32 0.1 % 0.1 % 0.6 % 1.8 %
Y nonSD1 X 128 0.1 % 0.6 % 1.5 % 4.9 %
Y nonSD1 X 512 0.3 % 1.0 % 2.0 % 4.9 %
Y nonSD1 X 1024 0.3 % 1.0 % 3.0 % 5.1 %
Y SD1X 32 4.0 % 0.0 % 15.3 % 1.4 %
Y SD1X 128 3.1 % 0.0 % 11.6 % 1.1 %
Y SD1X 512 2.7 % 0.0 % 7.5 % 1.0 %
Y SD1X 1024 1.3 % 0.0 % 6.8 % 0.8 %

Note: DGPs and methods as described in the text. “Frequentist” uses the ELR test
in DD13 for the nonSD1 null, and the KS test in BD03 for SD1.

As is evident in table 1.3, BB inference under-rejects the nonSD1 null, but over-

rejects the SD1 null. For a given sample size, these facts could also be explained by

the “convexity” of the null hypothesis. If H0, for example, contains k inequalities,

the volume of the SD1 hypercube makes up only 1/2k proportion, while the volume

of the nonSD1 hypercube takes the rest proportion. Therefore, it is more likely to

satisfy the null of nonSD1. That is, RP is higher for SD1 than for nonSD1. Besides,

as the sample size grows, RP is converging to the nominal level α, and the difference

between the two nulls is closing. It is consistent with the findings of Casella and

Berger (1987) in the one inequality case: the Bayesian posterior probability can equal

the frequentist p-value. In this DGP, only one inequality at z = 0.5 would be binding

at zero and the rest would not in large samples.

8According to DD13, the samples drawn from X are of sizes Nx = 32, 128, 512, 1024. Corre-
spondingly, Ny = 19, 91, 379, and763, the rule being Ny = 0.75Nx − 5.
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On the frequentist side, they are conservative for both SD and nonSD nulls in small

samples. Asymptotically, only the ELR test for nonSD has correct size, while the

KS test becomes more conservative. Therefore, the differences between two opposite

nulls are widening, rather than closing. The ELR test is asymptotically size-correct

for the null of nonSD, though it under-rejects the null of nonSD in the small sample.

This observation could possibly be explained by that it is easier to fail to reject SD

than to reject SD. Several questions could be raised, such as does the KS test fail to

control the size for this specific question? Is the KS test a still consistent test for the

case where we have, instead FY (0.5) = FX(0.5) like here, FY (0.5) = Fx(0.5) + ε and

ε→ 0+?

1.5 Empirical applications

In this section we consider the Bayesian bootstrap (BB) test in the context of an em-

pirical example. The data we use comes from the Panel Study of Income Dynamics

(PSID) for years 1997 and 2013. We consider comparisons of the income distribu-

tions9 in 1997 and 2013 without and with sample weights. In table 1.4 we provide

some basic descriptive statistics for these data. In addition, in fig. 1.1A we plot the

emprical CDFs (ECDF) for the income data with the 1997 distribution being the

solid line. Figure 1.1B contains the difference between the 1997 and 2013 ECDFs

against income values and gives a much clearer picture. Similarly, Figures 1.2A and

1.2B show the weighted ECDFs and their difference when sample weights are used to

guarantee its representativeness of the populations. As indicated by the figures, the

difference between these distributions is quite erratic even though the distributions

themselves are close. The maximum absolute difference of the two CDFs, around 2%,

9The incomes are defined as per capita incomes, that is, the average real income earned per
person in a household. The individual weight in a household is 1 for adult and 0.5 for children. All
incomes are measured in the dollar of the year 2000.
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is relatively large if we recall CDFs range from 0% to 100%. Moreover, Figures 1.1B

and 1.2B also give one an idea of the importance of considering sample weights: the

weighted difference is dramatically different from the unweighted one. Therefore, the

conclusions based on the raw ECDFs may be inaccurate, even misleading.

Table 1.4: Descriptive statistics of real per capita income (in year 2000 dollars)

Raw Weighted

Year Sample Mean Std. Dev. Median Mean Std. Dev. Median

1997 6747 22 880 24 229 17 182 26 149 26 635 19 956
2013 8907 23 468 29 378 17 186 27 724 33 393 20 697

Note: weighted mean Ẽ =
∑
wx/

∑
w; and Std. Dev=

√∑
w(x− Ẽ)2/(

∑
w − 1).

In table 1.5 we present p-values for the bootstrap KS test in BD0310 and the

posterior probabilities for our BB method in this paper, for the 1997/2013 income

distribution comparison. The left panel labeled “1997 SDj 2013” presents the results

for testing whether the income distribution in year 1997 stochastically dominates the

income in 2013 at order j, while the other panel tests the opposite hypothesis.11

We have the frequentist and Bayesian results for the raw income in table 1.5. There

is not much agreement between the two tests because they are essentially answering

two different questions. The Bayesian framework tries to gauge the probability of

H0 conditional on data; the frequentist one measures how well data support the

condition/assumption of H0 being true. In particular, our BB tests suggest there is

essentially zero chance that 1997 dominates 2013 at the first order, but the possibilities

of SD2 and SD3 rise to 5.0% and 14.8% respectively. For the converse hypotheses, the

Bayesian interpretation is that it is essentially impossible that 2013 dominates 1997

for any order up to 3. According to proposition 1, BB tests indicate that, when the

loss function takes value 0.95 for Type I error and value 0.05 for Type II error, neither

10The p-value is calculated by the code from the authors’ homepages.
11For example, the null hypothesis for the j = 1 column of the panel labeled “1997 SDj 2013” is

that Dj=1
1997(z)−Dj=1

2013(z) ≤ 0 for any z, i.e., the CDF in 1997 is less than or equal to that in 2013.
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Figure 1.1A: Per capita real income CDF
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Figure 1.1B: Per capita real income CDF difference
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Figure 1.2A: Per capita real income weights-adjusted CDF

0 2 4 6 8 10

-0
.0

2
-0

.0
1

0
0.

01
0.

02

Income Level ($10,000)

D
iff

er
en

ce
 in

 C
D

F
s

1997 - 2013 

Figure 1.2B: Per capita real income weights-adjusted CDF difference
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distribution dominates the other in a first-order or second-order sense, and one can

accept that the 2013 distribution is dominated by 1997 in a third-order sense. On

the other hand, the KS tests suggest one can only reject that the 2013 distribution

first-order dominates 1997 at the 5% significance level; other than that, one cannot

reject the rest of the stochastic dominance relationships between the two income

distributions. Regarding the binary decision (reject/not reject) on the hypothesized

stochastic orderings between two income distributions, the BB test rejects more than

the KS test does, with the same rejection being made for H0 : 2013SD11997. But it

is well-known that non-rejection in frequentist tests is often inconclusive, especially

when power is low. A more reasonable approach is to compare the p-value and

posterior probability. The KS test favors the evidence when the 2013 distribution is

assumed to dominate 1997 for higher orders, with their p−values (38.8% and 54.5%)

being much higher than those under the converse hypotheses (10.4% and 13.8%). In

contrast, the BB test yields higher chances of the latter hypotheses being true after

observing the data. To conclude this paragraph, we urge readers to explore fig. 1.1B

when trying to understand the divergences between two tests. If, for example, 1997

SD1 2013 is true in the population, the CDFs’ difference curve should be negative

and stay below the zero all the time.12 Our BB test examines literally this fact in

the difference’s posterior distribution, while the KS test focuses on the most positive

distance and gives the size protection for the peak of curve.

Sample weights reverse most conclusions above from the Bayesian analysis.13 In

the last row of table 1.5, the BB tests imply that there are zero possibilities that

1997 dominates 2013 at the first two orders, and as slim as 0.2% chance for the third

order. For the converse hypotheses, the BB tests indicate there is a 47.4% chance

that the 2013 distribution dominates 1997 at either the second or third order. It is

12Similarly, the SD2 can also be expressed in terms of the integral of the difference curve being
negative.

13The bootstrap-version KS test does not consider sample weights partly since it is relatively hard
to re-weight during resampling.
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Table 1.5: Stochastic dominance in PSID.

Include
weights

1997 SDj 2013 2013 SDj 1997

Method j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

No BB 0.0 % 12.1 % 25.1 % 0.0 % 0.01 % 0.2 %
No KS 10.8 % 10.4 % 13.8 % 0.6 % 38.8 % 54.5 %
Yes BB 0.0 % 0.0 % 0.2 % 0.0 % 47.4 % 47.4 %

1. “X SD Y” means the income distribution in year X stochastically dominates Y.
2. “KS” gives the p-value; “BB” gives the posterior probability.

easier to perceive these changes with the help of fig. 1.2B. For example, most of the

difference curve stays above zero, except some fluctuations around zero in a short

income range below 18 000. It thus is somehow tempting to infer that 2013 SD 1997.

But the weighted median income in 1997 is 19 956, which means that the sample size

of incomes within the range is close to half of the total. The BB test quantifies these

observations by giving 0% posterior probability for 2013 SD1 1997 and 47.4% for 2013

SD2 1997. What’s more, it implies there is a 47.7% probability that the 2013 income

distribution should be preferred when the social utility function is non-satiated and

risk-averse.

1.6 Conclusion and extensions

In this paper, we have studied first-order and higher-order stochastic dominance be-

tween two income distributions X and Y in a nonparametric Bayesian model. We

have used the smoothed Bayesian bootstrap of Banks (1988) to obtain the posterior

probabilities of three hypotheses, for any order of stochastic dominance: (1) X domi-

nates Y ; (2) Y dominates X; and (3) neither distribution is dominant. Although the

corresponding hypothesis test we consider does not attain frequentist size control, it

often has lower Bayes risk (also a frequentist measure) than frequentist tests. This

approach has several other advantages, including coherent probabilistic measurement
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of the three dominance hypotheses, robustness against parametric misspecification of

the distribution, minimal impact of prior information, computational efficiency, and

incorporation of sample weights and clustered errors.

Future work may proceed in several directions. First, the methods in this paper

may be applied to conditional distributions (under unconfoundedness) and regression

discontinuity designs, using results from Canay and Kamat (2017) as in Goldman and

Kaplan (2017, §6). Second, it would be interesting to determine the prior (or perhaps

loss function) to achieve frequentist size control for the Bayesian test that minimizes

posterior expected loss of the accept/reject decision. However, usually “probability

matching priors” are to ensure correct coverage probability of credible sets, which

is already true here; it is instead the particular shape of the stochastic dominance

hypotheses that cause Bayesian and frequentist conclusions to diverge. Third, in

ongoing work, we are applying our methods to a portfolio choice problem using a

probabilistic version of second-order stochastic dominance efficiency.
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Chapter 2

Inferring health inequality from
ordinal data

2.1 Introduction

Ordinal data are one of the most popular measures of individual health. These data

are often collected as responses to a generic question such as, “Would you say your

health in general is excellent, very good, good, fair, or poor?” and hence called self-

reported health status (SRHS). SRHS is available in many large-scale surveys and

has a considerable predictive power for health-related objectives, such as mortality.

On the other hand, its ordinal nature limits its role in characterizing the distribution

of “true” health.

Our interest here is to interpret properly the distributional information carried

by SRHS data. In particular, we are concerned with the following two effects on

the health distribution: 1) the age effect, i.e., how health inequality (dispersion)

evolves with age; 2) the cohort effect, i.e., how health inequality is changing across

generations.

When using SRHS for health inequality, the main problem is that many measures
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of inequality are mean-based and hence not well defined with ordinal data. Generally,

one can either assume a cardinal variable underlying SRHS and then study latent

inequality, or else redefine the concept of inequality using quantiles. For the first

approach, Deaton and Paxson (1998) specify a discrete health variable and find that

its variance increases with age. One can also assume a continuous latent variable with

known parametric distribution. For example, Wagstaff and Van Doorslaer (1994)

assume a log-normal latent health variable and then transform SRHS into a discrete

variable through threshold points.1 This latent approach is appealing since one can

employ many statistical inequality tools for “true” health. However, it may be plagued

with the choice of latent distribution and, more broadly, misspecification. Different

specifications may yield different inequality rankings. Allison and Foster (2004), for

instance, find that mean-based inequality rankings may be highly sensitive to re-

scaling of ordinal data. Therefore, they propose a considerably different methodology,

which defines inequality by using the median as the reference point. Specificallly, an

ordinal health distribution F displays more inequality than another distribution G if

F is obtained from G via a sequence of median-preserving spreads. Though it serves a

similiar goal as the cardinal concept of “mean-preserving spread,” it actually reworks

first-order stochastic dominance (SD) and hence relies only on cumulative proportions

of ordinal data. To the best of our knowledge, the current health literature does not

further provide inferences on these partial orderings. Instead, median-based indices

are proposed as alternatives to overcome statistical difficulties in inferring median

preserving spread or SD.2 These indices introduce ad hoc parameters and may lack

ethical robustness.3

Another problem is SRHS itself as a health measure, which is subject to reporting

1See more examples: Cutler and Richardson (1997) and Groot (2000) for ordered probit model,
Contoyannis et al. (2004) for dynamic panel ordered probit model, van Doorslaer and Jones (2003)
for interval regression, and Jürges (2007) and Bago d’Uva et al. (2008) for generalized models.

2Examples of indices: Abul Naga and Yalcin (2008), Jones et al. (2011), and Kobus and Mi loś
(2012).

3See arguments in Davidson and Duclos (2000).
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biases. Some reporting bias need not be a major concern providing it is random.4

However, Currie and Madrian (1999) suggest there also exists non-random measure-

ment error in SRHS. One example is heterogeneity in reporting behavior. Lindeboom

and van Doorslaer (2004) show that individuals with the same “true” health may use

systematically different threshold levels when reporting SRHS.5 They further classify

such reporting heterogeneity into two types, based on whether the thresholds move

in a parallel way (“index shift”) or not (“cut-point shift”). Empirically, they present

some evidence of both shifts for age and sex in the Canadian National Population

Health Survey, where the index shift is much more significant. Hernández-Quevedo

et al. (2005) also find evidence of an index shift in threshold in the British Household

Panel Survey, but little evidence of the cut-point shift. On the other hand, the Panel

Study of Income Dynamics (PSID) reveals that when respondents are further required

to rate health in their youth, the youth SRHS distribution does not vary significantly

across age cohorts. This suggests no systematic heterogeneity in reporting behavior.

Overall, evidence of reporting bias is mixed.

We illustrate the limitations of SRHS in inferring health inequality through two

important empirical questions. First, we study health inequality over the life cycle.

This dynamic is key to understanding individual choices regarding working, saving,

and retirement, and thus forming public policies concerning health care, financing,

and pensions. Arguably, the most predominant hypothesis is that the dispersion of

health grows with age. Deaton and Paxson (1998) provide supporting but shaky evi-

dence since SRHS is contentiously assumed a quantitative variable. Van Kippersluis

et al. (2009) use external information to scale SRHS and do not consistently find sup-

porting evidence among European countries. Second, we focus on inter-cohort trends

4Investigating (random) measurement error in SRHS, Crossley and Kennedy (2002) find that
when SRHS is asked twice within a survey, 28% of people change their response, though only 3% of
changes are more than one category.

5Their “true” health is measured by a continuous variable called the McMaster Health Utility
Index Mark 3 (HUI3).
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in health inequality for the elderly. Their health not only reflects consequences of

health policies or changes in the health system in the past, but predicts the future

use of health services. The current literature focuses mainly on either how persistent

health inequality is after retirement (Heiss, 2011; Heiss et al., 2014) or generational

differences of health inequality for the young (van Kippersluis et al., 2009).

We contribute to the literature in two ways. First, we provide direct inference

on median preserving spread or SD, which are formulated as sets of inequality con-

straints. Such joint hypothesis testing has recently received great attention in the

econometrics literature. In particular, we develop a frequentist test based on the

refined moment selection (RMS) procedure in Andrews and Barwick (2012), as well

as Bayesian inference using the Dirichlet–multinomial model. Second, both latent

and quantile approaches are placed together for comparison. We also comment on

connections we perceive under the assumption of fixed thresholds.

The remainder of the paper is in three sections. Section 2.2 presents latent health

and quantile approaches used for comparing two health distributions. We further

discuss how the particular assumption of stable thresholds links both approaches to-

gether. Section 2.3 provides various applicable statistical inferences. Their algorithms

are also provided. Section 2.4 presents two age-specific examples using SRHS data

from the Current Population Survey (CPS). Section 2.5 concludes the paper.

2.2 Concepts

Let X ∼ F , a discrete distribution with the support being k ordered categories (from

poor to excellent), and let p ≡ (p1, . . . , pk) be the associated population probabilities.

Similarly, G and q ≡ (q1, . . . , qk) are defined for Y . We now describe different concepts

helpful for characterizing and learning about inequality.
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2.2.1 Quantile approach: first-order stochastic dominance

First-order SD is a scaling-robust ranking for ordinal random variables, which relies

only on their cumulative probabilities.

Definition 1. Given any two ordinal random variables, X and Y , we say that X

first-order stochastically dominates Y , written X SD1 Y , if

Fj ≤ Gj, ∀ j = 1, . . . , k, (2.1)

where Fj ≡
∑j

i=1 pi is the cumulative share of the population in the first (bottom) j

categories of X, and Gj is the analogous quantity for Y .

In the context of health distributions, the inequality Fj ≤ Gj ensures that, for peo-

ple rating their health at category j and better, the cohort Y has a higher percentage

of its population than X.

Though second-order SD is equivalent to general Lorenz dominance for income

inequality, higher-order SD here is of little help because it requires cardinal value as-

signments for ordinal data and thus becomes sensitive to arbitrary numerical scaling.

2.2.2 Quantile approach: median-preserving spread

Allison and Foster (2004) propose to use the median preserving spread relationship for

health inequality as an alternative to (general) Lorenz dominance. They characterize

inequality comparisons by using the median as the reference point and modifying

first-order SD as follows.

Definition 2. Given any two ordinal random variables, X and Y , we write X MD Y

to denote that X dominates Y in the sense of Y being a median preserving spread of

X if

1. the median in X and Y remains in the same category m;
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2. for all j < m, Fj ≤ Gj;

3. for all j ≥ m, Fj ≥ Gj;

where, as in definition 1, Fj ≡
∑j

i=1 pi and Gj ≡
∑j

i=1 qi.

That is, Y is a median preserving spread of X if X SD1 Y below the median

while Y SD1 X for the median and above. It suggests that X has less of its mass

concentrated in the extremes, thus less inequality.

Figure 2.1 concludes sections 2.2.1 and 2.2.2 by giving two pedagogical examples.
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Figure 2.1: Illustration of X SD1 Y (left) and X MD Y (right).

2.2.3 Latent health approach

Consider the following assumptions about the SRHS variable X, whose categories we

enumerate as 1 (poor), 2 (fair), 3 (good), 4 (very good), and 5 (excellent).
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Assumption 1. People report health status X according to their “true” latent health

X∗ and thresholds γ = (γ1, γ2, γ3, γ4):

X = j if γj−1 < X∗ ≤ γj, j = 1, . . . , 5, (2.2)

where γ0 = −∞ and γ5 = +∞.

Assumption 2. Latent health X∗ has continuous CDF F ∗(·).

Assumption 3 (Stable thresholds). For comparing latent health X∗ and Y ∗, the

corresponding thresholds satisfy γX = γY + c, where c is a constant scalar.

Assumptions 1 and 2 are standard in latent variable models. Assumption 3 plays

an important part in identifying the latent variance(s) in the inequality context. For

example, suppose latent health X∗ ∼ N(µx, σ
2
x) and Y ∗ ∼ N(µy, σ

2
y). The parameters

to estimate are µx, σx, µy, σy, γ
x
1 , γx2 , γx3 , γx4 , γy1 , γy2 , γy3 , and γy4 . These are not all

identified given two five-category ordinal variables: the distribution of observables

is described by only 10 probabilities (P(X = 1), P(Y = 1), etc.), but there are 12

parameters.6 However, our interest is only in comparing σx and σy. Assumption 3

implies γxj = γyj + c, where c is a constant. Therefore, X∗ and Y ∗ can be re-scaled as

X̃∗ =
X∗ − γx1
γx4 − γx1

=
X∗ − γx1

∆
, Ỹ ∗ =

Y ∗ − γy1
γy4 − γ

y
1

=
Y ∗ − γx1 + c

∆
.

With the rescaling, the parameters reduce to {µ̃x, σ̃x, µ̃y, σ̃y, γ̃2, γ̃3} and are all iden-

tified. The relationship (=, >, or <) between σ̃x and σ̃y remains the same as that

between σx and σy. Moreover, the term Y ∗ − γx1 + c illustrates the argument by

Hernández-Quevedo et al. (2005) that, generally speaking, it is not possible to sepa-

rately identify whether a change in Y ’s location is due to a shift in the thresholds γy

or due to a shift in the underlying health Y ∗.

6In other contexts where variance is not a parameter of interest, it is often normalized to equal
one. For example, Wagstaff and Van Doorslaer (1994) assume X∗ ∼ N(0, 1).
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A important question remains: how reasonable is Assumption 3? It is widely

agreed that a parallel shift in thresholds exists for age and sex, while it is still unclear

if thresholds are further affected differently (i.e., “cut-point shift”). The empirical

evidence is mixed. Lindeboom and van Doorslaer (2004) find that the cut-point

shift is statistically significant for the young cohort, but not so for the old cohort;

Hernández-Quevedo et al. (2005) show little evidence to suggest that reporting bias

induced by a change in wording is characterized by a cut-point shift.

Another piece evidence of showing no cut-point shift comes from our own analysis

on the PSID. In the year 1999, respondents are asked to describe their health from

birth to age 16. Their SRHS before age 16 is distributed in a very similar way for

different age cohorts, implying people may have stable thresholds. To sum up, we

think Assumption 3 is fairly reasonable.

2.3 Inference

In section 2.3.1, we formally write out the null hypotheses of interest. We show

first-order SD and median preserving spread relationships can be written as sets of

inequality constraints, which can be jointly tested. Such multiple hypothesis testing

has received considerable attention in recent decades. In section 2.3.2, we show how

to apply the refined moment selection (RMS) of Andrews and Barwick (2012). In

section 2.3.3, we show how to conduct a simple Bayesian inference. It is important to

consider both frequentist and Bayesian inference in cases like this since the conclusions

may be very different even when the Bayesian prior is noninformative, as explained

by Kline (2011) and Kaplan and Zhuo (2017), for example.
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2.3.1 Hypotheses

The problem of interest is to assess 1) whether or not a particular inequality ordering

exists between two health distributions, and 2) whether their latent variances are

equal.

The null hypothesis of latent variance equality is

H∗0 : σx = σy, or equivalently H∗0 : σ̃x = σ̃y. (2.3)

It is straightforward to carry out a popular likelihood ratio (LR) test when latent

normality is assumed.

The null hypothesis for first-order SD or for a median preserving spread can be

written as a finite number of inequalities. In both cases,

H0 : θj ≤ 0 for all j = 1, . . . , 5. (2.4)

The first-order SD null of H0 : F SD1 G corresponds to (2.4) with θj = Fj − Gj, or

θj = Gj−Fj to test H0 : G SD1 F . The median preserving spread null of H0 : F MD G

corresponds to (2.4) with θj = Fj − Gj if j < m and θj = Gj − Fj if m ≤ j ≤ 5,

where m is the (shared) median category; and vice-versa for H0 : G MD F .

2.3.2 Frequentist testing

When the null hypothesis is “composite” like the H0 in (2.4), a commonly used device

in the frequentist literature is referred to as “the least favorable null.” It reduces the

composite null hypothesis to a “simple” one by assuming all inequality constraints are

binding, i.e., all θj = 0 in (2.4). Although this guarantees (asymptotic) size control

of a test, it may result in poor power when only a single constraint is violated (and

others are satisfied as strict inequalities).
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Andrews and Soares (2010) define a testing procedure called generalized moment

selection (GMS) to improve power. GMS tries to select only the binding inequalities

and then recomputes the worst-case critical value as a function of only these con-

straints. By not considering the constraints that are easily satisfied, the critical value

is smaller, increasing power. In our specific context with SRHS, we can also remove

the last inequality constraint from H0 because θ5 = F5 −G5 = 1− 1 = 0.

We now describe the refined moment selection (RMS) testing procedure of An-

drews and Barwick (2012), building on Andrews and Soares (2010). For testing (2.4),

the RMS algorithm can be sketched as follows.

1. For the sample {Xi}ni=1, the estimated F̂j and estimated asymptotic covariance

matrix Σ̂(F ) are

F̂j = n−1
n∑
i=1

1{Xi ≤ j}; Σ̂jh(F ) = F̂b − F̂jF̂h (2.5)

where 1 ≤ j, h ≤ 4 and b = min{j, h}. Similarly, estimate Ĝj and Σ̂(G) for the

sample {Yi}mi=1. The estimated parameter vector of interest is θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4),

with θ̂j = F̂j − Ĝj. Given the independence between the two samples, the

estimated covariance matrix of θ̂ is Σ̂(θ) = Σ̂(F ) + Σ̂(G).

2. Compute the adjusted Gaussian quasi-likelihood ratio (AQLR) test statistics

for the original sample (see details in Andrews and Barwick (2012)).

3. Simulate R bootstrap samples of sizes n and m (respectively) from the original

X and Y samples.

4. In each bootstrap sample, estimate θbj and Σb(θ) by Step 1. Then perform

inequality-by-inequality t-tests of the null hypothesisHj
0 : θj ≤ 0 versusHj

1 : θj >
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0 for j = 1, 2, 3, 4. The jth inequality constraint is “selected” if

n1/2(θ̂j − 0)

Σ̂jj(θ)
≤ κ̂, (2.6)

where κ̂ is a tuning parameter provided by Andrews and Barwick (2012). Then,

compute the re-centered AQLR test statistic using the selected constraint(s) and

corresponding covariance submatrix from Σ̂(θ)

5. The critical value is the 1 − α quantile of the bootstrap distribution of the

moment selection version of AQLR test statistic.

2.3.3 Bayesian inference

It is relatively straightforward in the Bayesian framework to make inference on the

joint inequality constraints hypothesis H0 in (2.4). First, Bayesian methods directly

provide probabilistic measurement of the constraints, i.e., the posterior probability of

H0. The posterior describes how likely the inequalities hold true given the samples.

Second, if desired, posterior probabilities can be converted into a binary decision,

such as accept/reject, via a loss function chosen by decision-makers. Moreover, the

Bayesian approach can provide coherent, simultaneous inference on all possible rela-

tions in the partial ordering. More discussion of Bayesian inferences in the testing

context can be found in other studies such as Goutis et al. (1996), DeGroot (2004),

and Robert (2007).

Here we briefly introduce the Bayesian Dirichlet–multinomial likelihood model

for the ordinal SRHS health variable. Let the number of observations falling in the

jth category be denoted by nj. Thus the data will be represented by (n1, . . . , n5),

and their sum is equal to the sample size n. That vector’s likelihood function is

then multinomial distribution, denoted by Multi(p1, . . . , p5; n). The interpretation is

simple: a draw from Multi(p1, . . . , p5; n) can be understood as drawing n iid values
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from an ordered categorical distribution of X with PMF f(X = i) = pi. We then

place a Dirichlet prior, denoted Dir(a1, . . . , a5), over the population probability vector

p. By its conjugacy, the posterior distribution of p is

(p1, . . . , p5) ∼ Dir(a1 + n1, . . . , a5 + n5). (2.7)

It is easy to sample directly from the posterior in (2.7) and obtain Monte Carlo

estimates of various quantities. For example, given a single posterior draw (p1, . . . , p5),

the corresponding CDF Fj is
∑j

i=1 pj.

Our concern here is to summarize the evidence supporting the H0 in (2.4), in

terms of its posterior probability. Lacking any (agreed upon) prior knowledge, one

may use a noninformative prior, as below.7 Under the assumption of independent X

and Y samples, the posterior of H0 is computed by the following algorithm.

1. The posterior for X is p ≡ (p1, . . . , p5) ∼ Dir(n1 + 1, . . . , n5 + 1). Similarly, the

posterior for Y is q ≡ (q1, . . . , q5) ∼ Dir(m1 + 1, . . . ,m5 + 1).

2. Draw R posterior samples of p and q. In each, compute the corresponding θ.

For the rth draw, let Ir = 1 if θ satisfies H0, otherwise Ir = 0.

3. The (approximated) posterior probability of H0 is R−1
∑R

r=1 Ir.

2.4 Examples

The data used here are from the Current Population Survey (CPS). For the analysis

presented here, the Annual Social and Economic (ASEC) supplement to CPS is used.

It has collected information about health and benefits since 1994. The ASEC is a

repeated cross-sectional survey and contains SRHS data on different cohorts.

7There are multiple “noninformative priors” in this case, but the differences are practically neg-
ligible with even moderate sample sizes, since they all have 0 ≤ aj ≤ 1 for each j.
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2.4.1 Dynamics of health over the life cycle

The first example is concerned with how dispersion of health evolves with age, which

is the question raised by Deaton and Paxson (1998). Their hypothesis is that health

inequality increases with age. But we will show that evidence from SRHS alone may

not be adequate for supporting this hypothesis.

Table 2.1 gives an overview of a group of individuals born between the years 1972

and 1976. Thanks to the richness of the data, we can follow this same birth cohort

every five years and have up to five cohort-year pairs, which are non-overlapping. For

example, respondents in this cohort would age from 20 to 24 years old in year 1996,

and from 25–29 in 2001. It is clear that the SRHS distribution is deteriorating with

age. Also, the demographic composition is relatively stable.

Table 2.1: Summary statistics for birth cohort born between 1972 and 1976

Age Wave year Obs. Mean SD Black (%) Male (%)

[ 20, 24 ] 1996 8093 4.13 0.89 11.19 47.65
[ 25, 29 ] 2001 13 126 4.07 0.92 12.36 47.46
[ 30, 34 ] 2006 13 589 4.01 0.95 10.62 47.52
[ 35, 39 ] 2011 13 928 3.91 0.97 10.35 47.60
[ 40, 44 ] 2016 12 381 3.82 1.01 11.79 48.39

Excellent = 5, Very good = 4, Good = 3, Fair = 2, Poor =1

Figure 2.2 presents the proportion of each health status category at five different

stages of life. From the top panel, it shows a steady increase in the cumulative fraction

at every level of health for both males and females. Regarding race, it is still true

for whites. But blacks seem to become healthier when moving into the second half of

their 20s, after which they have similar declining trend.

In table 2.2, we conduct pairwise tests among five black cohort-year groups. When

testing the equality of latent variances, the LR test only rejects the null twice when

comparing the youngest with the oldest and the second-oldest. It implies the latent

health variance does change over time, but not as dramatically as the ordinal “vari-
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Figure 2.2: Fraction of heath status category by sex (top row) or race (bottom).
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ances” suggest. On the other hand, the change in the latent variance is not fully

revealed in ordinal partial orderings since the group of younger individuals almost

always first-order stochastically dominates the older group. That is, the declining

health is so overwhelming that it swamps information about health inequality. The

argument we want to make is, when first-order SD is present in the ordinal data, it

may be difficult or infeasible to elicit answers to questions of inequality or similar

subjects.

Table 2.2: Inference for health changes with age, for black cohort born 1972–1976.

H∗0 : σX = σY H0 : X SD1 Y H0 : Y SD1 X

X Y LR RMS Bayes RMS Bayes

[ 20, 24 ] [ 25, 29 ] 6.35 % 8.0 % 0.8 % 63.6 % 13.1 %
[ 30, 34 ] 8.90 % 100 % 42.3 % 3.7 % 0.1 %
[ 35, 39 ] 2.68 % 100 % 74.7 % 0.1 % 0.0 %
[ 40, 44 ] 0.20 % 100 % 86.0 % 0.0 % 0.0 %

[ 25, 29 ] [ 30, 34 ] 85.63 % 100 % 67.2 % 0.0 % 0.0 %
[ 35, 39 ] 66.67 % 100 % 85.2 % 0.0 % 0.0 %
[ 40, 44 ] 13.94 % 100 % 86.0 % 0.0 % 0.0 %

[ 30, 34 ] [ 35, 39 ] 54.21 % 100 % 57.0 % 1.8 % 0.5 %
[ 40, 44 ] 9.54 % 100 % 88.3 % 0.0 % 0.0 %

[ 35, 39 ] [ 40, 44 ] 28.95 % 100 % 75.7 % 1.0 % 0.0 %

1. p-value for LR and RMS; posterior probablity of H0 for Bayes.
2. Entries in bold indicate rejection at 5% significance level.

Though the Bayesian and frequentst (RMS) procedures agree most of time, they

conclude differently for the comparison between the age ranges X = [20, 24] and

Y = [25, 29]. There, RMS fails to reject SD1 (p-value of 8.0%), but the Bayesian

posterior probability of X SD1 Y is only 0.8%. Given this disrepency, we further

study the second partial ordering, median preserving spread.

Table 2.3 is similar to table 2.2 for age ranges X = [20, 24] and Y = [25, 29], but

for median preserving spread instead of SD1. RMS again fails to reject all possible

partial orderings, with the highest p-value for Y SD1 X. The Bayesian test rejects

the nulls of both X SD1 Y and Y MD X (i.e., posterior probability is below 5%).
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Table 2.3: Testing partial orderings between age ranges X = [ 20, 24 ] and Y =
[ 24, 29 ], 1972–1976 black cohort.

H0 : X SD1 Y H0 : Y SD1 X H0 : X MD Y H0 : Y MD X

p-value 8.0 % 63.2 % 37.2 % 9.3 %
Post. prob. 0.8 % 13.1 % 7.7 % 0.0 %

1. Entries in bold indicate rejection at 5% significance level.

2.4.2 Trends in health inequalities for the elderly cohorts

Older Americans are living longer and health expenditure is booming. But are they

living healthier? Is population health today more equal than before? In this section,

SRHS data are used to answer these two questions, using the methodology from

section 2.3.

To study the inter-cohort trends in health inequality for the elderly, we focus on

five cohorts born in different periods and select their SRHS data when aged between 65

and 70.8 Table 2.4 provides descriptive statistics for the cohorts. The “average” health

rating is getting better and the “standard deviation” is decreasing over generations.

Table 2.4: Sample: cohorts of the elderly aged 65-70

Cohorts Birth year Wave year Obs. Mean SD Black (%) Male (%)

SG1 1926-1931 1996 5642 3.03 1.17 8.06 46.44
SG2 1932-1936 2001 7203 3.09 1.13 13.66 46.19
SG3 1937-1941 2006 7160 3.13 1.13 12.12 46.98
SG4 1942-1946 2011 8145 3.17 1.11 12.62 45.84
EBB 1947-1951 2016 9726 3.20 1.11 13.26 47.12

1. Excellent = 5, Very good = 4, Good = 3, Fair = 2, Poor = 1.
2. SG, or the Silent Generation, includes 4 cohorts, from early SG1 to late SG4; cohort
EBB is early baby boomers.

Figure 2.3 presents the proportion of each health status category for the five

cohorts. The top panel show that a steady health improvement has been seen over

generations, regardless of race. When broken down by sex and race, the black male

8We purposely choose this age interval to limit the effect of survivorship bias (Heiss, 2011; Heiss
et al., 2014) and the effect of financial burden (e.g., full retirement age starts at 65).

47



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

White

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Black

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

White male

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Black male

SG_1 SG_2 SG_3 SG_4 EBB

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

White female

Cohorts

SG_1 SG_2 SG_3 SG_4 EBB

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Black female

Cohorts

0

Poor Fair Good Very good Excellent

Figure 2.3: Fraction of SRHS category for the elderly by sex or race
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group shows different patterns of changes in the fraction at each health category.

Therefore, our tests are carried out with emphasize on black males. In particular,

we investigate the partial orderings between SG3 and SG2 for black individuals (all,

male, female), and those between SG4 and EBB for males (all, black, white). In

table 2.5, results from both frequentist and Bayesian methods are provided. Bayesian

interpretation will be used for the sake of probabilistic measurement.

Table 2.5: Comparing different birth cohorts at ages 65–70

H0 : X MD Y H0 : X SD1 Y H0 : Y SD1 X

X Y Sample RMS Bayes RMS Bayes RMS Bayes

SG3 SG2 black (all) 100 % 25.8 % 39.7 % 3.2 % 100 % 17.9 %
black male 76.4 % 11.7 % 12.4 % 0.1 % 100 % 39.4 %

black female 100 % 10.3 % 100 % 25.4 % 61.2 % 4.3 %

EBB SG4 male (all) 100 % 26.9 % 51.4 % 9.3 % 58.9 % 6.8 %
black male 100 % 38.3 % 4.6 % 1.2 % 16.4 % 2.0 %
white male 100 % 12.4 % 100 % 15.8 % 65.3 % 10.3 %

1. p-value for LR and RMS; posterior probablity of H0 for Bayes.
2. Entries in bold indicate rejection at 5% significance level.

Table 2.5 shows results from frequentist (RMS) and Bayesian inference on both

SD1 and median preserving spread relationships, for certain demographic groups and

cohorts. In terms of median preserving spread, the Bayesian posterior probability

for black individuals in SG3 being more equal than those in SG2 is 25.8%, but it is

lower for both black males and black females. This suggests that the improvement in

inequality may result from the closing gap between black males and females. This is

supported by results for the black male and black female groups: for black males, there

is more evidence that SG3 first-order stochastically dominates SG2 (i.e., SG3 is less

healthy), whereas it is the opposite for black females. For the second comparison, the

Bayesian posterior assigns 26.9% probability of EBB males being more equal than ones

in SG4, in the sense of median preserving spread. For black males, the Bayesian test

rejects both SD hypotheses at a 5% level, and it assigns 38.3% posterior probability
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to the EBB cohort having less inequality.

2.5 Conclusion

Neither the parametric latent variable approach nor the median preserving spread is

fully satisfactory in measuring inequality based on ordinal data. The latent variable

approach is not robust to misspecification, while the requirement of common medians

for the median preserving spread is not always satisfied. Nonetheless, the simple

SRHS variable can be exploited to compare health distributions.

This paper attempts to show what the ordinal variable is capable of answering in

two different contexts. When studying the age effect on health, we find SRHS is able

to answer how health changes with age, but it fails to account for the dynamics of

health inequality. For the cohort effect on health inequality, we take advantage of the

common median and redefine the inequality concept.

Empirical researchers often choose the best available measures of quantities and

concepts of interest. Nevertheless, it is important to bear in mind there always are

boundaries of what questions the best available measures can answer. This paper

provides evidence on both the limitations and abilities of SRHS to provide insight

into health inequality.
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Chapter 3

Portfolio selection using stochastic
dominance and nonparametric
Bayesian method

3.1 Introduction

Stochastic dominance (SD) is a well-established rule for investment decision making

under uncertainty. Its superiority comes from the fact that it avoids the usual nor-

mal approximation to the return distributions and, more importantly, imposes few

restrictions on specification of investor preferences (Hadar and Russell, 1969; Hanoch

and Levy, 1969; Rothschild and Stiglitz, 1971; Bawa, 1975; Levy, 2015). This or-

dering rule is particularly appealing for investment strategy and asset classes with

higher-order moment risk, like small-cap stocks and junk bonds. In these cases, the

traditional variance does not fully capture the asymmetric risk profile, as it fails to

distinguish between upside potential (“good risk”) and downside risk (“bad risk”).

Portfolio construction based on SD is a theoretically appealing alternative to

Markowitz’s Mean-Variance (MV) analysis, given its robustness on return distribu-

tions and welfare/utility implication for a broad class of investors. A popular crite-
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rion is the second-order SD (SSD), which can be defined by conditional value at risk

(CVaR), a widely used risk measure (Dentcheva and Ruszczyński, 2003). Besides,

any risk-averse investor would strictly prefer the portfolio enhanced by SSD criterion.

However, its applications face the following difficulties. First, SSD-enhanced portfolio

should be considered from all possible portfolios, each of which compares with the

benchmark; that is, the problem involves infinitely many pair-wise SD comparisons.

Second, a distribution-free assumption in SD requires the nonparametric statistical

inference methods on return distributions.

The operations research (OR) literature mainly focuses on solving the first issue.

The typical optimization problem with SSD constraints often assumes that a reference

portfolio (i.e., benchmark) is available and another portfolio is constructed, whose re-

turn distribution dominates the benchmark with respect to SSD. In most cases the

problem has a large number of constraints, since it involves a infinitely large number

of pairwise SD relations and each relation involves a large number of inequalities.

Dentcheva and Ruszczyński (2003, 2006) consider the problem of constructing such

optimal portfolio of finitely many assets whose return is discretely distributed. The

discreteness assumption enables them to develop, based on the theory of majoriza-

tion, a linear programming (LP) where the objective is to maximize the portfolio

expected return with SSD constraints over the benchmark. However, the size of LP

problem grows at a quadratic rate with the number of observations and becomes very

large in applications with hundreds or thousands of possible outcomes. To avoid this

obstacle, Luedtke (2008) describes a compact linear programming formulation based

on the Strassen Theorem, which greatly reduces the number of constraints needed for

SSD requirements. Alternatively, Roman et al. (2006) propose a multi-objective op-

timization problem whose Pareto optimal solution portfolio second-order dominates

the benchmark. A particular solution is chosen whose return distribution comes close

to the benchmark in a uniform sense. Uniformity is defined by the differences among
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tails risk (or, CVaR). In practice, it does not work well since the tail risk is treated

equally in the optimization. Therefore, Fábián et al. (2011) describe an enhanced

version of the multi-objective model, which compares the scaled values of different

objectives. Such scaled objectives reflect different confidence levels at the tail risks of

a return distribution. An efficient algorithm, called the cutting-plane representation,

is applied by Fábián et al. (2011) for the SSD multi-objective optimization. Roman

et al. (2013) investigate it through re-balancing and back-testing by using several

data sets, including SP 500 and FTSE 100.

Though the OR literature successfully address the first issue, most of them ig-

nore another: the statistical inference of the joint return distribution of base assets.

The statistical accuracy is particularly important in portfolio optimization, because

the optimal portfolio weights can be very sensitive to estimation error and then the

constructed portfolios may have a quite poor out-of-sample performance.

The econometrics and finance literature mainly focuses on testing hypotheses of

dominance or non-dominance for a given set of choice alternatives. Among others,

Davidson and Duclos (2000) hypothesize SD between two distributions as inequality

constraints at a fixed number of arbitrary chosen points and derive the asymptotic

sampling distribution of related test statistics. Barrett and Donald (2003) advance

such test of pair-wise SD relation by checking the inequalities at all points in the

support of the distribution. Linton et al. (2005) go beyond the pair-wise dominance

and propose a general test for the general K random variables (or, distributions). On

the other hand, the test of nonSD null is advocated due to its analytical convenience

(Kaur et al., 1994) and practical usefulness (Davidson and Duclos, 2013). In fact, the

null of nonSD is widely used in finance. Post (2003) defines a portfolio is SSD efficient

if and only if it is not dominated by any other feasible portfolio. He further develops

an easy-to-implement LP test for the SD efficiency of a particular portfolio relative

to all possible portfolios constructed from base assets. Linton et al. (2014) further
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improve the power of the LP-type stochastic dominance efficiency test. Nevertheless,

the definition of SD efficiency is not exclusive. For example, Kuosmanen (2004)

defines a portfolio is SD efficient if it dominates all alternative portfolios. Scaillet

and Topaloglou (2010) examine the version of SD efficiency in Kuosmanen (2004)

and develop a Kolmogorov–Smirnov (KS) type test based on the Barrett and Donald

(2003)’s approach.

These studies unfortunately offer little guidance for constructing a dominant port-

folio with full diversification possibilities, though they certainly provide a stimulus

to the further study for research relevant to portfolio selection and evaluation. The

existing optimization problem with SSD constraints generally uses the empirical dis-

tribution function (EDF). This approach is statistically accurate when the available

time series is long and the number of base assets is relatively moderate. In practice,

however, the sample size is relatively small and the uncertainty about population

distribution function becomes the problem encountered by all investors.

This study first evaluates current optimization formulations using same data set.

It is meaningful in terms of comparing their validity and performances. Second, we

proposes a new formulation in order to account for statistical uncertainties. These

estimation errors are quantified by the probabilistic constraints and nonparametric

Bayesian (NPB) inference (Ferguson, 1973, 1974; Rubin, 1981), such that the optimal

solution should satisfy the SSD relation with a prescribed (posterior) probability.

Bayesian inference has several desirable statistical properties and information-

theoretic implications. In the literature of portfolio selection and analysis, model

uncertainty and parameter uncertainty are two important problems. Avramov and

Zhou (2010) advocate the use of Bayesian framework for these uncertainties and

review many Bayesian portfolio studies, including the seminal work of Zellner and

Chetty (1965), prior update (Black and Litterman, 1992), asset pricing prior (Pástor,

2000; Pástor and Stambaugh, 2000). Though the informative / subjective prior is ex-
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tensively used in these researches, the focus of our NPB method is on noninformative

asset prior

We consider the realized return vectors as the support of a multinomial distri-

bution.1 The posterior probability for each return vector is computed by the NPB

model of Ferguson (1973, 1974). Specifically, we use the approach of Rubin (1981)

to implement with an improper and noninformative Dirichlet process prior. This

approach preserves the information of the historical returns and their cross-sectional

dependence. Meanwhile, it allows for a finite, state-dependent representation of the

portfolio optimization problem. The probabilistic feature of Bayesian method can

naturally used to construct the stochastic programming with probabilistic SSD con-

straints.

Importantly, NPB combines well with SD, due to a shared nonparametric as-

sumption on distribution function. The complementary relation between NPB and

SD was recognized earlier by Zhuo (2017) and Kaplan and Zhuo (2017). Those

earlier studies use NPB to test stochastic dominance relations among two random

variables/distributions. By contrast, our study uses the posterior distribution of pop-

ulation distribution for SSD-enhanced portfolio’s construction. The fusion of SD and

NPB better serves to account for model uncertainty and parameter uncertainty by a

tractable mixed-integer linear programming.

Post and Karabati (2016) conduct a study close to ours. They develop a portfolio

optimization method based on SSD and the empirical likelihood (EL) estimation

method. Their SD/EL method can be implemented using by two steps. Step one is

to elicit the EL probabilities by minimizing the Kullback–Leibler (KL) divergence;

Step two is to plug these probabilities into LP for the optimal portfolio construction.

We investigate SSD optimization formulations using two types of data sets. One

data set is weekly return to 442 equities (stocks) from 11/2004 to 04/2016, 592 weeks

1For each cross section, returns of base assets is a vector. This vector is one of many points in
the support for the joint return distribution.
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in total. The benchmark is the Standard & Poor’s 500 (SP 500). Another one is daily

returns to 49 equity industry portfolios from 01/03/2000 to 12/30/2016. It should be

noted that base assets are portfolios, upon which the optimal portfolio is built. We

use the heuristic weighted portfolio as the benchmarks, and also consider the mean-

variance weights for comparisons. Since the objective is active portfolio selection, we

re-balance the optimal portfolio periodically and do not assume that the benchmark

portfolio is efficient.

The rest of paper is organized as following: Section 3.2 discusses the formulation

of SSD-based optimization, nonparametric Bayesian methods and a new formula-

tion; Section 3.3 apply the methods to two empirical examples. All conclusions and

suggestions are in the Section 3.4.

3.2 Methodology

This section presents two major SSD-efficient optimization formulations and proposes

a new formulation based on Mixed Integer Linear Programming (MILP) and posterior

probability of NPB.

3.2.1 Preliminaries

Suppose we have n distinct base assets with random return vector r = (r1, . . . , rn) ∼

F (·), where F (·) is the joint Cumulative Distribution Function (CDF) with the sup-

port of R ⊂ Rn.2 We can define any portfolio X by a convex combination of base

assets as follows:

X(λ) = r1 λ1 + . . .+ rn λn = rᵀλ

2It should be noted that the base assets are not limited to individual securities/equities. For
example, they can be portfolios.
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where the asset weights (λ1, λ2, . . . , λn) ∈ Λ ≡
{
λ ∈ Rn : λᵀ1n = 1, λ ≥ 0n

}
. Here

we only consider portfolio construction based on the long strategy, though the sell

short is also important.

The marginal CDF of portfolio X is given by

FX(z) ≡
∫

{r∈R: rᵀx≤z}

dF (r) (3.1)

Let Y be random return of a particular reference/benchmark portfolio of interest.

We attempt to find a set of portfolio weights λ such that its portfolio return, i.e.,

X = rᵀλ, second-order stochastically dominates Y.

Definition 3. A portfolio X second-order stochastic dominates (SSD) the benchmark

Y , or X SD2 Y if and only if any one of the following equivalent conditions is satisfied:

1.

∫ z

−∞
FX(v)dv ≤

∫ z

−∞
FY (v)dv, ∀z ∈ R

2.

∫ α

0

QX(v)dv ≥
∫ α

0

QY (v)dv, ∀α ∈ (0, 1), where Q(·) is the quantile function

3. Eu(X) ≥ Eu(Y ), ∀u ∈ U ≡ {u(·) : u′ ≥ 0, u′′ ≤ 0}

In the first and second definitions of the SSD criterion, random portfolio return

rates are compared by the distribution function or quantile funciton. There are

fundamental relations between these functions and risk management. For example,

the integral of the distribution function is connected with the expected shortfall in

the finance by

∫ z

−∞
FX(v)dv ≤

∫ z

−∞
FY (v)dv ⇐⇒ E

[
(z −X)+

]
≤ E

[
(z − Y )+

]
(3.2)

where the shortfall (z−X)+ = max(z−X, 0). Then X SD2 Y iff the expected shortfall

of X is less for X at any level Z. Furthermore, The connection between the quantile
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function and Conditional Value at Risk (CVaR) can be established as, for ∀α ∈ (0, 1)

CVaRα(X) = −
∫ α

0

QX(v)dv.

Beyond it, the economic interpretation of SSD is shown in the third definition, which

suggests, for any increasing and concave utility function, the expected utility under

the return distribution X would be higher and then strictly preferred. In short,

SSD has strong connection with important risk measures such as CVaR, and strong

implication in the welfare theory.

The original concept of stochastic dominance can apply to only two random vari-

ables / distributions. It is clearly not applicable when it comes to an infinite set

of diversification strategies used in the portfolio construction. To overcome it, Post

(2003) and Kuosmanen (2004) extend the pair-wise stochastic dominance relation and

discuss one type of general dominance relations among infinitely many alternatives,

called stochastic dominance (in)efficiency.

Definition 4. A portfolio Y is SSD inefficient if and only if there exists some portfolio

X such that X SD2 Y . Alternatively, portfolio Y is SSD efficient if and only if no

portfolio X SD2 Y .

In this study, we assume the benchmark portfolio Y is SSD inefficient.3 Our goal

is to find a set of portfolio weights (λ), such that the portfolio X = rᵀλ can dominate

Y at the second order. It is done by a portfolio optimization with SSD constraints. In

general, these constraints are not trivial from many aspects: the constraints are not

linear and the number of these constraints is infinitely large. However, as we will see

later, the discreteness return assumption allows us to build a finite system of linear

constraints for this problem.

3Many statistical tests are proposed to study the stochatic dominance efficiency (Post, 2003;
Kuosmanen, 2004; Scaillet and Topaloglou, 2010; Linton et al., 2014).
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It is worthy discussing why SSD efficiency is better than mean-variance (MV)

efficiency. The MV paradigm is valid in the sense of von Neumann–Morgenstern

utility maximization axioms if one of the following assumptions are true: 1. the

utility function is quadratic (e.g., second-degree polynomial); 2. the portfolio return

distribution is from a two-parameter exponential family and the utility function is

concave (Baron, 1977). If both conditions are satisfied, the MV approach is the

simplest and best. But it is often not the case. Porter and Gaumnitz (1972) claim

the SD rule is less restrictive than MV rule. They further claim that highly risk-averse

investors may violate the MV maximization of expected utility, while low risk-averse

investors are indifferent to MV and SD rule. In short, SD rule is more comprehensive

and robust approach to manage risk than MV rule.

3.2.2 Formulation of SSD optimization

The SSD optimization can be understood as an enhanced indexing strategy in finance.

It attempts to outperform the benchmark indexing/portfolio Y by finding a new set

of portfolio weights λ. In particular, the SSD rule enhances the benchmark Y by

managing its tail risk, that is, reduce the downside (bad) risk and increase the upside

(good) risk.

A generic SSD optimization problem, under some regular assumptions, can be

summarized as

max
λ

f(λ)

subject to X(λ) SD2 Y

λ ∈ Λ.

(3.3)

It is a stochastic optimization in the sense that X and Y are in a probability space

(Ω,F , P ). Generally, there are two lines of formulations, depending on how f(·) is

specified. Dentcheva and Ruszczyński (2003, 2006) pioneer the first kind of formula-

tion, whose objective is to maximize the expected return of a portfolio subject to the

59



second-order stochastic dominance. The second approach is proposed by Roman et al.

(2006). Their objectives are, instead of expected return, the differences of CVaRα be-

tween the benchmark and the portfolio by λ, for any α ∈ (0, 1). In other words, their

approach is a multi-objective framework with emphasis on risk management.

The weights λ must satisfy the stochastic constraints X(λ) SD2 Y . If X and

Y are continuous, it implies the number of inequalities is infinitely many, from which

the issue of feasibility may arise. To get around it, the discreteness of the joint CDF

F (·) for base assets is assumed. Therefore, X and Y are also discrete.

Some notation in this section will be described in Table 3.1.

Table 3.1: Notation for SSD optimization problem

Symbol Description

n Number of assets
T Number of periods/observations
λi Portfolio weight for asset i
rit Rate of return (RoR) for asset i at time t

X RoR for the enhanced portfolio rᵀλ
Y RoR for the benchmark portfolio Y ,

Y is a discrete variable with finite supports
D Number of finite supports for Y
xt RoR of X at time t
pt Probability for xt, or for rit, ∀i
yk Ordered RoR of Y, (i.e., y1 ≤ · · · ≤ yk ≤ · · · ≤ yD)
qk Probability for Y = yk

Return-based SSD optimization formulation

Dentcheva and Ruszczyński (2003) are interested at the expected return of enhanced

portfolio, that is

f(λ) = E[X(λ)] = E[rᵀλ].

They seek the highest expected return of portfolios among those dominating the

benchmark w.r.t. SSD. This specific objective function is inspired by the MV frame-
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work, which is to maximize the expected return under the constraint of variance.

Here, the variance-based constraint in MV is replaced by a more robust SSD deci-

sion criterion, though the problem also becomes more complicated. Such trade-off is

worthwhile: the asymmetric risk profile is a common feature in asset markets. Vari-

ance fails to recognize it and treats the upward risk as well as downward risk, while

SSD decision rule can effectively distinguish them.

They also show that the SSD constraints in Equation (3.3) define a convex feasible

region, regardless what kind of objective function is used. Further, they introduce a

decision variable s = z − rᵀλ for solving the non-smoothness in E
[
(z − rᵀλ)+

]
.

A return-based version of Equation (3.3) is

max
λ, skt

E[rᵀλ]

s.t.
n∑
i=1

λirit + skt ≥ yk k = 1, . . . , D, t = 1, . . . , T

skt ≥ 0 k = 1, . . . , D, t = 1, . . . , T
T∑
t=1

ptskt ≤ F2(Y ; yk), k = 1, . . . , D

λi ≥ 0 i = 1, . . . , n
n∑
i=1

λi = 1

(3.4)

where F2(Y ; yk) = E
[
(yk − Y )+

]
=
∑D

j=1 qj(yk − yj)+.

We refer to this formulation as DR. It is a linear programming with n + DT

variables (i.e., λ and s) and (D + 1)T constraints.4 The optimal portfolio X = rᵀλ?

to this system dominates the benchmark portfolio Y by SSD. Correspondingly, we

have the optimal solution s?kt = max
{

0, zk −Xt

}
.

4Many linear programming solvers, such as free open-source R package “lpSolve” and commercial
solver IBM Ilog CPLEX, are readily available for solving it.
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Risk-based SSD optimization formulation

Roman et al. (2006) explore the connections of SSD with Conditional Value at Risk

(CVaR) at different levels. The CVaR of a random return R at α ∈ [0, 1] can be

understood as a way to describe the expected losses in the worst α × 100% of sce-

narios.5 Fábián et al. (2011) define another relevant concept, Tailα(R), which is the

unconditional expectation of the least α× 100% outcomes of the random variable R.

That is

Tailα(R) =

∫ α

0

QR(v)dv = −CVaRα(R) (3.5)

Then the SSD above can be written as

X SD2 Y ⇐⇒ Tailα(X) ≥ Tailα(Y ), ∀α ∈ (0, 1)

In the case of discrete return with equal probability for all D support points, they

propose a multi-objetive approach, in which the D objective functions can be written

as Tail at D different levels. Therefore, the SSD efficient portfolios are Pareto optimal

solutions to the following multi-objective model:

f(λ) =
(

Tail 1
D

(rᵀλ), . . . ,Tail i
D

(rᵀλ), . . . ,TailD
D

(rᵀλ)
)

(3.6)

where f(·) is a D × 1 vector and λ ∈ Λ.

Moreover, the reference-point method is needed in order to choose a particular

SSD efficient solution, whose return distribution comes closest, in a uniform sense, to

the benchmark portfolio Y. It can be done by a single objective optimization problem.

Let a reference point be

τ̂ = (τ̂1, . . . , τ̂D) ≡
(

Tail 1
D

(Y ), . . . ,TailD
D

(Y )
)
.

5The formal definition of CVaR is given for example in Rockafellar and Uryasev (2000, 2002).
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The reference point method also introduces a concave “achievement function” for each

element of the objective in Equation (3.6). For example, the simplest achievement

function is

Γτ (τ1, . . . , τD) ≡ min
1≤i≤D

(τi − τ̂i)

Different achievement functions yield different results, which can reflect the preference

of the model developer. In particular, under the achievement function above, the

single-objective optimization problem takes the form

max
λ

Γτ̂

(
Tail 1

D
(rᵀλ), . . . ,TailD

D
(rᵀλ)

)
subject to λ ∈ Λ.

Letting ϑ = min
1≤i≤S

(
Tail i

S
(λᵀr) − τ̂i

)
, the worst partial achievement, we can re-write

the problem above as

max
λ

ϑ

s.t. ϑ ∈ R, λ ∈ Λ

ϑ ≤ Tail i
S

(rᵀλ)− τ̂i ∀i = 1, . . . , D.

(3.7)

Many new constraints are introduced, due to the fact that λ is an optimizer. In

fact the number of new constraints is on the order of D2. Therefore, Fábián et al.

(2011) proposed a cutting-plane approach to compute the quantities Tail i
S

(rᵀλ),

which proves faster and more effective on larger number of constraints. The idea

is to create a sequence of iterates λ1,λ2, . . . ∈ Λ; at each iterate λ, we check each

constraint one by one, if the current iterate becomes a feasible solution of the original

problem, stop moving to the next iterate; otherwise, the violated constraint would

define a plane, which cuts the Λ into two halves. We move to the next iterate and

make sure the new λ stays in the half where the constraint violated before is satisfied

this time; keep searching until every constraint is satisfied. Surprisingly, it usually
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needs only a small number of cutting-planes before reaching the optimal solution.

Fábián et al. (2011) propose a scaled version of RMZ, which uses the “scaled”

Tail i
S

(rᵀλ) as follows:

max
λ

ϑ

s.t. ϑ ∈ R, λ ∈ λ
i
D
ϑ ≤ Tail i

D
(rᵀλ)− τ̂i ∀i = 1, . . . , D.

(3.8)

We refer to this formulation as RMZ. As Roman et al. (2013) discuss, the “unscaled”

RMZ model (3.7) often outputs the portfolio that improves most on the worst out-

come of the benchmark distribution (i.e., the left tail). The RMZ model (3.8) im-

proves accordingly based on the weights of position, indexed by i/D, i = 1, . . . , D.

On average, the RMZ show some advantages over the un-scaled counterpart from a

theoretical and practical point of view. Interested readers are referred to Fábián et al.

(2011).

It should also be noted that both risk-based models are never infeasible. They

always provide a solution that is SSD efficient, the extreme case being where the

benchmark itself is SSD efficient.

To conclude this section, the SSD optimization above is an effective and convenient

approach to account for risks in decision-making under uncertainty. However, there

is one drawback. The optimal solution depends crucially on the assumption: the

population joint CDF of returns is known and discrete; moreover, each discrete event

has equal probability. In practice, we only observe series of historical data, instead of

knowing the population distribution of random variables; moreover, events may not

be equally likely to happen, though observations in the sample can be viewed as a

discrete realization from the population. These questions are out of OR’s scope and

then largely ignored in the OR community. But it is relatively straightforward in

econometrics research, as we will see in the next section.
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3.2.3 Posterior probability of return distribution

The joint CDF F (·) of base assets’ return is unknown and has to be estimated using a

longitudinal data of historical return, Rt = (R1t, R2t, . . . , Rnt)
ᵀ ∼ F (·), ∀t = 1, . . . , T .

To estimate it, we need one assumptions:

Assumption. (Serially IID) for any t 6= s, cov(Rit, Rjs) = 0, i, j = 1, . . . , n

The cross-sectional correlation is left unrestricted here. Under the assumption,

we present a nonparametric Bayesian method which provides the posterior distribu-

tion of F (·). This approach is appealing in two aspects. First, its nonparametric

property is compatible with SSD constraints, modeling the true CDF F (·) as an

infinite-dimensional parameter. Second, the probabilistic nature of Bayesian meth-

ods enables us to consider parameter uncertainties within an optimization scheme,

which will be discussed later. A particular nonparametric Bayesian method, called

“Bayesian bootstrap” (BB), is well suited for this application. Not only does it effi-

ciently compute the posterior distribution, but its posterior distribution is discrete.

The discreteness is particularly helpful here as it is the key assumption SSD optimiza-

tion used for various formulations. BB method, originally proposed by Rubin (1981),

implements the Dirichlet process (DP) model of Ferguson (1973, 1974) by using an

improper and noninformative prior.

A general DP model is described as

F ∼ DP
(
α(·)

)
F | R ∼ DP

(
α(·) +

∑T

t=1
δRt(·)

)
where DP(·) is a Dirichlet process, a distribution over distributions. The parameter

α(·) includes a prior guess at F , say F0, and reflects how concentrated the prior is

around F0. The function δXi
(·) is the measure giving mass one to the point Xi.

Rubin (1981) sets α −→ 0 and calls it the Bayesian bootstrap (BB). It has two
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advantages. First, the prior tends to be noninformative and does not involve the

guess or subjective belief from decision makers. Second, the method becomes very

scalable since it is much easier to draw from a finite-dimensional Dirichlet distribution

than from a stochastic process like DP. Then, the particular inference we used for the

return distribution can be expressed as

FT (v) =
∑T

t=1
1(Xt ≤ v) pt

(p1, . . . , pt, . . . , pT ) ∼ Dirichlet(1T×1)

(3.9)

where v is a real value in R, pt is the posterior probability for X = Xt, and Dirichlet(·)

is the Dirichlet distribution. Figure 3.1 provides an illustration for the posterior

distribution of a standard Gaussian sample of size 100.
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Figure 3.1: Left : Discrete probability function from a single draw from Dirichlet(·).
Right : Population CDF (in red), EDF (in blue), 100 posterior draws (in dark gray),
and 95% uniform credible band for the CDF based on 100 posterior draws.

In the portfolio case, X ∈ R1 in BB becomes the vector of R ∈ Rn. Under the

assumption above, we can compute P (R = rt) = pt in a similar way of computing
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P (X = Xt). Now, pt means the probability for all cross-sectional observations at

time t. By doing it, we can keep all the cross-sectional information in our inference.

Therefore, an estimate on F (·) can be expressed by a discrete function F̂T (r) =
T∑
t=1

1(Rt ≤ r) pt. Here, we relax the restriction of equally-likely event in empirical

distribution function and set P (R = rt) = pt, instead of T−1. To estimate two CDFs

of interest, that is, FY (·) for the benchmark and FX(·) for new portfolio, we can write

P (X = rᵀtλ) = pt, t = 1, . . . , T

P (Y = yk) = qk, k = 1, . . . , D

(3.10)

where yk is the ordered return rate of Y (i.e., y1 ≤ · · · ≤ yk ≤ · · · ≤ yD), and D is

number of support points of Y . An extreme case is that Y has all distinct returns in

T periods and then D = T ; otherwise, we can expect D ≤ T in all cases. We can also

imply there exists a mapping from pt to qk

qk =
T∑
t=1

πtk pt, k = 1, . . . , D

where πtk ≡ P (Y = yk | R = rt), an indexing for ranking time-series return Y . Thus,

we have πtk ∈ {0, 1},∀ t, k and
∑D

k=1 πtk = 1, for t = 1, . . . , T . We have shown that

the joint CDF F (·) can be characterized by p = (p1, . . . , pT ), and the probability

vector p can further describe distributions of any new portfolio X and the benchmark

Y.

3.2.4 Mixed Integer Linear Programming for probabilistic
constraints

The SSD optimization formulations in Section 3.2.2 work well when T is “large.”

It is because the population distribution function is assumed known there. Under

the serial IID assumption, the empirical distribution function (EDF) is a statistically
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consistent nonparametric estimator of the CDF. Therefore, it is reasonable for the

formulations above to assume the EDF is the population distribution.6

However, it could be very inaccurate if the time series is short. Post and Karabati

(2016) propose to use an empirical likelihood (EL) method for improving the estima-

tion accuracy. In particular, they replace the equal probabilities 1/T in the EDF by

the probabilities implied by a set of moment conditions for common risk factors in

the EL framework. Here we discuss another data-driven idea that builds upon the

Bayesian thinking and optimization with probabilistic (or, chance) constraints.

In a typical chance-constrained optimization problem, decision makers are inter-

ested in satisfying a constraint, which involves random variable(s), by a pre-specified

probability 1− α. In our case, we can write

max
λ

f(λ)

subject to P
{
X(λ) SD2 Y

}
≥ 1− α

λ ∈ Λ

(3.11)

where P(·) represents the probability measures on the second-order stochastic domi-

nance. Other notations are same as in Equation (3.3). The probabilistic constraints

restrict the feasible set of λ into the region where the probability of X(= rᵀλ) second-

order dominating Y is not less than 1− α.

Zhuo (2017) proposes a nonparametric Bayesian method for providing probabilis-

tic measurement on a pair-wise SD of any order. In particular, the posterior proba-

bility of the second-order SD relation, like X(λ) SD2 Y , is equal to the fraction of

posterior drawings where SD relation holds true. We can also apply similar logic to

the optimization problem here: in each draw from the posterior for F̂ (·), all inequality

constraints are checked. The pre-specified level 1− α can be quantified by requiring

6Homem-de Mello and Bayraksan (2014) extensively discuss its validity from convergence rates
of the optimal value and solutions.
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a least 1− α proportion of cases when the asset weights λ satisfy the constraints.

This idea can be formulated based on Equation (3.4) in a Mixed Integer Linear

Program (MILP) as

max
λ, skt, zb

E[rᵀλ]

s.t.
n∑
i=1

λirit + skt ≥ yk k = 1, . . . , D, t = 1, . . . , T

skt ≥ 0 k = 1, . . . , D, t = 1, . . . , T
T∑
t=1

pbtskt − zbM ≤ F b
2 (Y ; yk), k = 1, . . . , D, b = 1, . . . , B

zb ∈ {0, 1}, b = 1, . . . , B

λi ≥ 0 i = 1, 2, . . . , n
B∑
b=1

zb ≤ αB

n∑
i=1

λi = 1

(3.12)

where F b
2 (Y ; yk) = Eb

[
(yk − Y )+

]
=
∑D

j=1 q
b
j(yk − yj)+, zb is an indicator function

which keeps track if the SSD constraints is met. M is an infinitely large constant, such

that the optimal solution for zb takes value 0 if X SD2 Y ; otherwise takes value 1. By

considering this formulation, the set of our decision variables expands to {λ, skt, zb}

here from {λ, skt} in Equation (3.4); the number of constraints also increases con-

siderably. Though it looks like a computational burden, commercial solvers like Ilog

CPLEX can handle this size optimization skillfully.

3.3 Empirical study

This section examines and compares two major SSD optimization formulations (i.e.,

DR and RMZ ), using two data sets from the U.S. stock markets. We aim to construct

a portfolio over n available assets according to the SSD criteria. That is, we must
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decide how much of each asset should be invested in the portfolio constructed by

specific optimization formulations. The purpose is to compare the performance of

different SSD-efficient portfolio constructions based on the same data.

3.3.1 Data and investment strategy

Two data sets we used are the daily industry portfolios return from Fama & French

Data library, and the weekly stock returns from the Center of Research in Security

Prices (CRSP). The data can be used as input for several portfolio construction

methods.

Our empirical implementation is based on a rolling-window scheme, as shown in

Figure 3.2. That is, the investment strategy is to re-balance the portfolio after each

block of a fixed number of time periods. For example, we compute portfolio weights

using a rolling in-sample window of 250 return observations. We initially set the

in-sample window on the first 250 trading days and solve the model for the optimal

portfolio weights, which would be used to select assets for next trading days. Then we

evaluate the performance of the selected portfolio on the following 60 (out-of-sample)

trading days. Next, we update the in-sample window by including the 60 previously

out-of-sample periods and removing the first 60 periods from the in-sample window.

We then re-balance the portfolio by re-solving the model, and repeat until the end of

the data set.

3.3.2 Performance measures

The out-of-sample performance of a portfolio construction is often evaluated by a

number of performance measures. In this study, we choose the following six perfor-

mance metrics widely used in the finance literature (e.g., see DeMiguel et al. 2007).
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Figure 3.2: Scheme of the rolling time window in the Fama–French industry dataset

For notation, we denote the out-of-sample portfolio return by Rout and set a constant

risk-free rate of return rf = 0.

• Max Drawdown (MDD) is the maximum loss from a peak to a trough of a

portfolio, before a new peak is attained. It is an indicator of downside risk over

a specified time period:

MDD(T ) = max
0≤τ≤T

(
max
0≤t≤τ

V (t)− V (τ)
)

where V (·) is the value of portfolio. The smaller the value is, the better the

portfolio performance is.

• Sharpe Ratio (Sharpe, 1966, 1994) is the ratio between the average of Rout−rf

and its standard deviation, that is,

Sharpe Ratio =
E(Rout − rf )
σ(Rout)

.
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It is one of the most important reward-vesus-risk ratios. It reflects how much

excess return is earned for every unit of risk exposure. The larger is the ratio,

the better is the portfolio performance.

• Sortino Ratio (Sortino and Price, 1994) is the ratio between the average of of

Rout − rf and the downside deviation, that is,

Sortino Ratio =
E(Rout − rf )

σ
(

min(Rout − rf , 0)
) .

It singles out the “bad” risk exposure from all risks. The larger the value is,

the better the portfolio performance is.

• Ulcer Index (UI) is another measure of volatility in the downward direction:

R% = 100× Rout −max(Rout)

max(Rout)
,

UI =

√
N−1

(
R%

1 + · · ·+R%
T

)
.

The larger the value is, the better the portfolio performance is.

• Omega Ratio (Keating and Shadwick, 2002) is a risk-return performance mea-

sure based on the distribution function of Rout, say F out:

Ω(r) =

∫ +∞

r

(
1− F out(v)

)
dv∫ r

−∞
F out(v) dv

where we set r = 0 in our empirical study for the sake of convenience. The

larger the value is, the better the portfolio performance is.

• Win Ratio is the fraction of time periods with positive excess return:

Win Ratio =

∑T
t=1 1(Rout

t ≥ rf )

T
.
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The larger the value is, the better the portfolio performance is.

For each data set, we will report these six performance metrics along with the

common statistics (i.e., the average daily return, the compound annual growth rate,

standard deviation, skewness and kurtosis), where the best results are marked in bold.

3.3.3 Fama & French industry portfolios

In this data set, the base assets include a set of 49 industry portfolios, which are

formed by grouping individual stocks listed on NYSE, AMEX and NASDAQ markets

by their four-digit Standard Industry Classification (SIC) codes. We study the daily

return of these base assets from 01/03/2000 to 12/30/2016, with 250 trading days for

estimation and 30 days for holding, and re-balance the portfolio at the end of each

holding period.

The benchmark here is the equal-weighted (EW) average of the base assets (i.e.,

the naive 1/N portfolio). Such heuristic diversification is a simple but effective way to

achieve robust performance. DeMiguel et al. (2007) claim the EW is a good choice for

the benchmark given the fact that EW often outperforms many “optimal” methods

like the MV method in terms of out-of-sample return. Since the base assets are

already diversified industry portfolios, we can expect there should be no consistent

concentrated position in a single “asset”.

Table 3.2 summarizes the out-of-sample performance of the competing portfolios.

The benchmark (‘EW’) on average yields 17.25% per annum with a standard deviation

of 1.20 percentage points in the sample period. The negative skewness shows the

higher chance of losses than of gains. That is, the downside risk is not reduced

by heuristic diversification. Besides, it is clearly dominated by the SSD-enhanced

portfolio strategy for most of the performance metrics, except the win ratio.

The performance enhancement from DR and RMZ is significant. The DR im-
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Table 3.2: Performance in Fama & French industry data set

Metrics DR RMZ EW

Avg. Daily Ret. Rate 0.0746% 0.0810% 0.0686%
Comp. Ann. Growth Rate 19.19% 21.46% 17.25%

Std. Dev. 0.0120 0.0112 0.0120
Skewness -0.1609 -0.3028 -0.3164
Kurtosis 4.9046 5.4569 7.2037

Max Drawdown 45.98% 48.60% 59.01%
Sharpe Ratio 0.9880 1.1428 0.9096
Sortino Ratio 1.6135 1.8422 1.4397
Ulcer Index 9.9332 9.3326 12.0146

Omega Ratio 1.1928 1.2255 1.1816
Win Ratio 54.93% 55.87% 56.28%

Note: value in bold is the best performer (highest in row).

proves the average annual return by 1.67 percentage points to 19.19%, and the RMZ

by 4.21 points to 21.46%, respectively. RMZ reduces the standard deviation by 0.08

percentage points. Though DR has same standard deviation as the benchmark EW,

it is less left-skewed as its skewness is −0.1609, less than −0.3164 of EW. Both DR

and RMZ score better for all performance metrics, except the win ratio. EW has the

highest win ratio at 56.28%, which reflects the return of EW portfolio may be very

volatile. Other than this, our SSD-enhanced portfolios have a better ratio of reward

over risk.

Figure 3.3 shows the development of the dollar value of three portfolios over the

entire sample period. The initial investment in the first period in every portfolio is one

dollar. The portfolios are formed and rebalanced at the beginning of a 30-trading-day

holding period based on a trailing 250-trading-day estimation window of daily returns.

The first estimation window is 01/03/2000 - 12/28/2000 and first holding period is

12/28/2000 - 02/12/2001. The top panel illustrates the cumulative performance of the

competing portfolios for the entire sample period. Not surprisingly, all three portfolios

have a similar trend and pattern. Among them, RMZ ranks above all other portfolio

most of time, while DR is very close to RMZ until year 2011. The second and third
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Figure 3.3: Out-of-sample performance in the Fama & French data set
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panels show the benchmark is very volatile and has larger drawdown for most of the

time. To conclude, both DR and RMZ show good signs of improvement over EW.
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Figure 3.4: 12 months rolling returns in the Fama & French data set

Figure 3.4 presents the rolling return, Sharpe ratio and standard deviation of

three portfolios. The rolling returns is a more realistic way of looking at investment

returns, which provide a dynamic look at each data point of re-balance. The first

rolling return is the annualized average return for a period spanning from 12/28/2000

to 12/28/2001. The second rolling return is computed after 30 trading days. The

rolling returns among the three portfolios are similar, but DR and RMZ have a higher

Sharpe ratio since their standard deviations are relatively small.
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3.3.4 Standard & Poor’s 500

The data used here contains weekly returns of 442 base assets over 595 weeks, from

11/2004 to 04/2016. The base assets are individual stocks with more than ten years

of observations. A natural benchmark is the Standard & Poor’s 500 (SP500). RMZ

and DR formulations are applied to construct the portfolio that enhances SP500.

Different from previous empirical study, we use 52 weeks for estimation and 12 weeks

for holding, and keep rebalancing every 12 weeks.

Table 3.3 summarizes the out-of-sample performance of the competing portfolios.

The benchmark (‘EW’) on average yields 4.92% per annum with a standard deviation

of 1.21 percentage points in the sample period. The negative skewness shows the

higher chance of losses when compared to of gains. That is, the downside risk is not

reduced by heuristic diversification. Besides, it is clearly dominant by SSD-enhanced

portfolio strategy for all performance metrics.

Table 3.3: Performance in SP500 data set

Metrics DR RMZ SP500

Avg. Daily Ret. Rate 0.0603% 0.0593% 0.0264%
Comp. Ann. Groth Rate 10.00% 13.34% 4.92%

Std. Dev. 0.0205 0.0149 0.0121
Skewness -0.0818 0.2395 -0.0539
Kurtosis 39.1423 39.4033 36.3180

Max Drawdown 66.32% 49.57% 56.43%
Sharpe Ratio 0.4660 0.6308 0.3462
Sortino Ratio 0.6894 0.9445 0.5062
Ulcer Index 28.8132 15.7746 18.2660

Omega Ratio 1.2042 1.2916 1.1520
Win Ratio 54.42% 56.83% 54.61%

Note: value in bold is the best performer (highest within row).

RMZ is a clear winner, though both SSD formulations provide significant perfor-

mance enhancement. The DR improves the average return by 5.08 percentage points

to 10.00%, and RMZ by 8.42 points to 13.34%. Their higher standard deviations may

be due to their portfolio having more upward risk exposure. It is especially true for
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RMZ whose skewness is positive. Such preferable asymmetric return profile for RMZ

results in its advantages over DR in most of the performance metrics. For example,

the factor that RMZ has highest Sortino ratio can reflect its superior management

on the downside risk. Interestingly, the DR is supposed to control the downside risk,

but it has a larger Max Drawdown and Ulcer index than EW, though its Sharpe and

Sortino ratios are still higher.
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Figure 3.5: Out-of-sample performance in the SP500 data set

Figure 3.5 shows the dynamic development of the dollar value of three portfolios

78



over the entire sample period. At the end of period, top panel shows RMZ and DR

outperform the SP500 by a large margin. The bottom panel further reveals that DR

has the largest peak-to-trough decline in the value of its portfolio, which suggests its

largest standard deviation is mainly associated with the bad risk.
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Figure 3.6: 12 months rolling returns in the SP500 data set

Figure 3.6 presents the rolling return, Sharpe ratio and standard deviation of

three portfolios. DR has on average similar rolling return like RMZ, but its average

standard deviation is much higher. Therefore, the rolling Sharpe ratio for DR is lower

than RMZ, but still higher than SP500. To conclude, the SSD-efficient portfolios are

more profitable and/or safer than the popular index SP500.
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3.4 Conclusion

Stochastic dominance is an effective way to enhance a benchmark portfolio. It is

also practical thanks to rapidly developing computing technology. However, some

issues need to be addressed for their better performance. First, we need to make sure

the optimization formulation can successfully select a portfolio that stochastically

dominates the benchmark at the second order. Second, the optimization may be

sensitive to estimation errors. We propose an idea to solve this question, which

combines the probabilistic nature in the Bayesian inference and mixed-integer linear

programming to construct a feasible set of dominant portfolios at some confidence

level. Further research can focus on exploring an effective way to implement the

optimization formulation we propose here.

We contribute to the portfolio optimization literature by developing a framework

to incorporate statistical uncertainty in the sample. We also hope to contribute to

the stochastic optimization literature by showing that Bayesian inference may provide

insight into the study of data-driven chance constraints.
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Appendix A

Technical Appendix to Chapter 3

A.1 More formulations for SSD optimization

Luedtke (2008) develops two new formulations for optimization under SSD con-

straints. He claims these two formulation gain a huge reduction in terms of size

of the problem, and therefore are faster and efficient. Two approaches are based on

a different idea, which is to find another variable W such that Xt = rt
ᵀλ ≥ Wt, ∀t

and W SD2 Y . Assume πtk = prob(Y = yk | W = wt)

max
λ

E(r)ᵀ λ

s.t.
D∑
k=1

πtk = 1 t = 1, . . . , T

T∑
t=1

ptπtk = qk, k = 1, . . . , D

n∑
i=1

ritλi ≥
D∑
k=1

ykπtk t = 1, . . . , T

(A.1)
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We refer it to the formulation above L1, the formulation below L2.

max
x

E(r)ᵀ λ

s.t.
D∑
k=1

πtk = 1 t = 1, . . . , T

n∑
i=1

ritλi ≥
D∑
k=1

ykπtk t = 1, . . . , T

vk −
T∑
t=1

ptπtk = 0 k = 1, . . . , D

k−1∑
j=1

vj(yk − yj) ≤
k−1∑
j=1

qj(yk − yj) t = 1, . . . , T

(A.2)

These two linear programming for SSD optimization have only O(N+D) constraints,

as opposed to O(ND) constraints in the formulation DR. It is supposed to yield a

huge improvement in solution time, especially for cases in which N = D.

A.2 Simulation

This purposes of this simulation study is two-fold; first, it illustrates and compares all

SSD optimization formulation in one same setting, with emphasize on sanity check of

within sample SD2, and second, it computes and compares the in-sample cumulative

returns / values by adopting the asset weights each formulation suggests. For the

sake of convenience, we list the competing models in table A.1.

Here is a brief description of DGP. We draw 100 observations on 10 assets from

a joint distribution, which is characterized by a multivariate t distribution with zero

means and non-diagonal covariance matrix. The benchmark portfolio Y is constructed

by investing 10 assets equally. We implement both the MV and SSD-efficient approach

to compute the optimal asset weights respectively.

In Figure A.1a, we plot the distribution functions for benchmark (dash line) as
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Table A.1: Portfolio selection models

Model Name Formulation Reference

DR (3.4) Dentcheva and Ruszczyński (2006)
L1 (A.1) cSSD1 in Luedtke (2008)
L2 (A.2) cSSD2 in Luedtke (2008)
RMZ (3.7) Roman et al. (2013)
RMZ scaled (3.8) Roman et al. (2013)
MV - Markovic’s Mean-Variance method
EW - Equal weights method

well as other portfolios constructed. A visual check tells that DR, RMZ and RMZ

scaled work, while L1 and L2 do not. In particular, RMZ is very conservative in the

sense that it has the smallest variance. That is to say, it sacrifices rewards for minimal

risks. RMZ scaled is slightly better job for a reward-risk tradeoff. DR performs best

in this simulation; it controls the bad risk as good as RMZ scaled, while it has a

larger good risk exposure. On the other side, the portfolios constructed by L1 and

L2 are not dominant over the benchmark w.r.t. SSD. They are more volatile than

the benchmark, though they strongly control the outcome of extremely bad scenario.

Figure A.1b studies, if one dollar is invested, what the ultimate the return we

can have by each strategy. The MV approach is the worst, not only has the lowest

value at the end, but very volatile. All SSD-based strategy perform better than the

benchmark. Though L1 and L2 rank the top two, we still exclude them in the main

body and attribute their success to lucks.
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A.3 Dynamics of asset weights in SP500
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Fábián, C. I., G. Mitra, D. Roman, and V. Zverovich (2011). An enhanced model

for portfolio choice with SSD criteria: a constructive approach. Quantitative Fi-

nance 11 (10), 1525–1534.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals

of Statistics 1 (2), 209–230.

Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. Annals

of Statistics 2 (4), 615–629.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin

(2014). Bayesian Data Analysis (3 ed.). Chapman & Hall/CRC.

Goldman, M. and D. M. Kaplan (2017). Comparing distributions by multiple testing

across quantiles or CDF values. Working paper, available at https://faculty.

missouri.edu/~kaplandm.

Goutis, C., G. Casella, and M. T. Wells (1996). Assessing evidence in multiple hy-

potheses. Journal of the American Statistical Association 91 (435), 1268–1277.

Groot, W. (2000). Adaptation and scale of reference bias in self-assessments of quality

of life. Journal of Health Economics 19 (3), 403–420.

Hadar, J. and W. R. Russell (1969). Rules for ordering uncertain prospects. American

88



Economic Review 59 (1), 25–34.

Hanoch, G. and H. Levy (1969). The efficiency analysis of choices involving risk. The

Review of Economic Studies 36 (3), 335–346.

Heiss, F. (2011). Dynamics of self-rated health and selective mortality. Empirical

Economics 40 (1), 119–140.

Heiss, F., S. F. Venti, and D. A. Wise (2014). The persistence and heterogeneity of

health among older Americans. NBER Working Paper 20306, National Bureau of

Economic Research.

Hernández-Quevedo, C., A. M. Jones, and N. Rice (2005). Reporting bias and hetero-

geneity in self-assessed health. evidence from the British Household Panel Survey.

HEDG Working Paper 05/04, Health, Econometrics and Data Group, The Univer-

sity of York.

Homem-de Mello, T. and G. Bayraksan (2014). Monte Carlo sampling-based meth-

ods for stochastic optimization. Surveys in Operations Research and Management

Science 19 (1), 56–85.

Jones, A. M., N. Rice, S. Robone, and P. R. Dias (2011). Inequality and polarisa-

tion in health systems’ responsiveness: a cross-country analysis. Journal of Health

Economics 30 (4), 616–625.

Jürges, H. (2007). True health vs response styles: exploring cross-country differences

in self-reported health. Health Economics 16 (2), 163–178.

Kaplan, D. M. and L. Zhuo (2017). Bayesian and frequentist nonlinear inequality

tests. Working paper, available at https://faculty.missouri.edu/~kaplandm.

Kaur, A., B. L. S. Prakasa Rao, and H. Singh (1994). Testing for second-order

stochastic dominance of two distributions. Econometric Theory 10 (5), 849–866.

Keating, C. and W. F. Shadwick (2002). A universal performance measure. Journal

of Performance Measurement 6 (3), 59–84.

Kline, B. (2011). The Bayesian and frequentist approaches to testing a one-sided

hypothesis about a multivariate mean. Journal of Statistical Planning and Infer-

ence 141 (9), 3131–3141.
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