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MODELS OF GESTATIONAL DIABETES AND OFFSPRING OUTCOMES IN MICE 

Omonseigho O. Talton 

Dr. Laura C. Schulz, Dissertation Supervisor 

ABSTRACT 

Gestational diabetes mellitus (GDM) is the most common pregnancy disorder. GDM 

pregnancies result in offspring that are more likely to develop metabolic syndrome in 

adolescence than the background population. As offspring experience these adverse 

effects during their reproductive years, GDM has the potential to propagate disease for 

many generations.  

Hyperleptinemia, a key characteristic of both GDM and maternal obesity has not been 

studied in isolation to determine its role in programming offspring outcomes. 

Hyperglycemia in the absence of obesity has also not been widely modeled without 

surgical or chemical means. My research goal was to study the offspring outcomes of 

these two facets of GDM in C57B6 mice.  

We observed that maternal hyperleptinemia improved offspring insulin sensitivity, and 

protected the offspring from developing glucose intolerance. These outcomes were partly 

mediated by reduced fatty acid accumulation in the liver. Our findings suggest that 

maternal hyperleptinemia is protective of offspring glucose control. 

Maternal hyperglycemia in lean dams increased offspring adiposity while glucose 

tolerance was unchanged. This effect was mediated by a preference for glucose over 
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lipids for substrate utilization, and multiple gene expression changes in the male adipose 

tissue and liver. Our results indicate that lean maternal hyperglycemia results in 

metabolically healthy obesity in offspring. 

This work demonstrates that GDM in lean women may not negatively affect glucose 

tolerance, and that maternal hyperleptinemia may mediate this, through improving insulin 

sensitivity. It supports other data that suggest that the liver and adipose tissue are key 

regulators of whole body metabolism. 
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CHAPTER I 

REVIEW OF THE LITERATURE 

Gestational Diabetes – Definition, Prevalence and Risk Factors 

Gestational diabetes mellitus (GDM), described as glucose intolerance during pregnancy 

[1], is the most common complication of gestation and affects one in seven pregnancies 

worldwide according to the International Diabetes Federation [2].  

In 2010 the prevalence of GDM was up to 14% in the United States [3], with a relative 

increase of 122% between the late 1980s and the mid-2000s [4]. Recent studies place the 

global prevalence as high as 25% depending on the diagnostic criteria used [5], making 

GDM a global epidemic. The American Congress of Obstetricians and Gynecologists (ACOG) 

guidelines commonly used in the USA and International Association of the Diabetes and 

Pregnancy Study Groups (IADPSG) criteria preferred outside the United States provide the 

most common criteria for diagnosing GDM (Table 1). 

Typically diagnosed in women during the middle of pregnancy, GDM has a number of 

risk factors. A meta-analysis of twenty GDM studies spanning 2000 to 2005 revealed that 

the odds ratio for developing GDM was 3.56 for obese women compared to lean women 

[6].  Obesity is accompanied by insulin resistance, and in obese women, this has been 

suggested to bethe basis for a higher risk of developing GDM [7]. In a study of 455 

women, Hedderson et al showed that women from Hispanic and Asian backgrounds are 

more likely to develop GDM than Caucasians and African-Americans [8]. Aside from 

maternal BMI and ethnic background, a previous history of GDM [9] and parental 
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diabetes [10] are also risk factors. While the cause of GDM remains unknown, it involves 

prior insulin resistance [11], and impairments in the maternal adaptation to glucose 

control during pregnancy. 

Normal versus GDM Pregnancy  

Normal pregnancy is characterized by modulations in insulin sensitivity to mediate 

glucose control. During early pregnancy, insulin sensitivity is similar to that of the non-

pregnant state. [12] This is partly to allow insulin-mediated lipogenesis to occur, building 

maternal fat stores for the latter part of pregnancy and lactation [13]. As gestation 

advances, insulin sensitivity declines and by the third trimester, insulin sensitivity is 50% 

lower in pregnant compared to non-pregnant women [14, 15]. This is partially facilitated 

through an increase in maternal estrogen, progesterone, and human placental lactogen, 

which inhibit insulin signaling in peripheral tissues [16]. These pregnancy hormones 

cause insulin resistance by decreasing levels and subsequent phosphorylation of the 

insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) in skeletal muscle [17]. PI-3 

kinase activity downstream of IR is also inhibited by placental hormones further 

inhibiting insulin signaling [18]. Accompanying this increased insulin resistance is 

reduced blood glucose, which drops as pregnancy progresses. The cause for the decrease 

is the redirection of maternal glucose to the fetus, to accommodate its growing energy 

requirements [19].  

In the fasted state, this maternal insulin resistance results in the preferential trafficking of 

glucose to the maternal-fetal interface, where glucose is diffused into fetal blood. Insulin 

resistance promotes this by reducing the uptake of glucose by maternal tissues and by 
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uninhibited hepatic glucose production [12]. Maternal feeding results in a rise in blood 

glucose which, under pregnancy-induced insulin resistance, would result in 

hyperglycemia. To compensate for the reduced insulin action in maternal tissues, and 

prevent post-prandial hyperglycemia during pregnancy, the pancreas expands to increase 

insulin secretion [20, 21]. This maintains maternal blood glucose levels and results in 

hyperinsulinemia as part of the normal milieu of pregnancy [19]. Thus, despite insulin 

resistance similar to what is observed in type 2 diabetics, pregnant women are not 

glucose intolerant. 

In women with gestational diabetes, there is higher-than-normal post-prandial blood 

glucose in maternal circulation due to increased insulin resistance and inadequate insulin 

response to glucose [22-25]. Additionally, hepatic glucose production is higher in GDM 

pregnancies, due to increased insulin resistance [12]. As GDM pregnancies progress, 

insulin sensitivity decreases by the same proportion as it does in normal pregnancy. The 

apparent further reductions in insulin sensitivity are due to lower insulin sensitivity in the 

pre-gravid state, which has been observed in both lean and obese GDM women [26].  

There remains much to be elucidated about the pathophysiology of GDM; however 

studies have revealed some of the mechanisms underlying the development of gestational 

hyperglycemia. Insulin resistance in GDM pregnancy involves further reductions of IR 

protein levels and reduced phosphorylation of IR as well [17]. The insulin response is 

further weakened by an inability of the pancreas to expand in response to the stress of 

pregnancy [27, 28]. Thus despite being high, insulin levels are not sufficient to overcome 

the degree of insulin resistance encountered by GDM women, and post-prandial 

hyperglycemia results. 
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Gestational diabetes is a health concern because of the complications that follow in 

affected pregnancies. Premature labor, preeclampsia and fetal macrosomia often resulting 

in shoulder dystocia are some of the common issues associated with GDM pregnancies 

[29-32]. The effects of GDM go beyond the pregnancy, affecting the future health of the 

mother. Women with GDM are seven times more likely to develop type 2 diabetes than 

women with normal glycemia during gestation [33], and more likely to experience 

recurring GDM in subsequent pregnancies [4]. 

Offspring Outcomes of GDM  

The consequences of GDM are compounded by numerous adverse outcomes in the 

offspring. Left untreated, GDM fetuses have a four-fold higher risk of stillbirth. Less 

severe perinatal complications of GDM at the time of birth include shoulder dystocia, 

fetuses who are large for gestational age and fetal hypoglycemia [34, 35].  

Of additional concern are the long-term negative effects in offspring, particularly when 

occurring in offspring of reproductive age. Children born to mothers with GDM are 

predisposed to diabetes and obesity in adulthood. The Diabetes in Pregnancy study, 

founded in Northwestern University, contains data on a large cohort of women enrolled 

between 1977 and 1983 and is used to study the offspring of women with GDM. Using 

these data, Silverman et al showed that maternal diabetes conferred an increase in glucose 

intolerance and hyperinsulinemia in adolescent offspring [36]. The Arizonian Pima 

Indian population has a high prevalence of diabetes, and glucose tolerance data has also 

been collected on that group to study diabetic pregnancies. Exposure to maternal diabetes 

is the major risk factor for the high prevalence of diabetes in the children of Pima Indians 
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[37]. In a Pima Indian study of siblings born to mothers before or after a diagnosis of 

diabetes, the siblings born after the diagnosis had an increased risk for developing 

diabetes when compared to siblings born prior, with an odds ratio of 3.7 [38]. Pettitt et al 

showed that the prevalence of non-insulin-dependent diabetes in Pima Indian offspring of 

GDM mothers is 45% compared to 1.4% in offspring not exposed to diabetes in utero 

[39]. Studies have also been conducted in populations at a low risk for developing GDM 

with similar results [40, 41], including a Danish study which determined that the 

prevalence of impaired glucose tolerance was 21% for 18-27 year old offspring born to 

GDM mothers compared to 4% for offspring of women from the background population 

[42].  

A study of the Pima Indian population showed that offspring born to diabetic mothers had 

a higher incidence of obesity than those born to non-diabetic mothers [43]. In the same 

population, siblings had different birth weights depending on whether they were born 

before or after their mother was diagnosed with diabetes, with children born after the 

diagnosis weighing more [38]. A European study including over 280,000 men determined 

that exposure to maternal diabetes increased offspring BMI independently of maternal 

BMI [44]. Other human studies show the same higher risk for obesity in offspring of 

GDM mothers [45-48] including a multi-ethnic study showed that as maternal glycemia 

values from a glucose challenge test increased, so did offspring obesity in children aged 

5-7 years [49]. Further evidence of the association between maternal GDM and offspring 

obesity comes from intervention studies, including a follow-up study in offspring born to 

GDM women who were treated with insulin [50]. Compared to offspring of untreated 
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mothers, the offspring that were exposed to insulin-treated GDM in utero had decreased 

adiposity. 

Aside from obesity and diabetes, offspring born to mothers with gestational diabetes are 

also at an increased risk for developing GDM in their own pregnancies, with one study 

showing that women exposed to in utero hyperglycemia are more likely to develop GDM 

than the background population [51].  

The rising rates of childhood obesity, diabetes, and metabolic syndrome are a cause for 

concern both for the present and future. While therapies exist to control diabetes and 

obesity, including drugs and lifestyle interventions, they are still leading causes of death, 

and confer a heavy burden on the economy. Since GDM pregnancies are implicated in 

promoting these offspring diseases [52], there is a compelling basis for research into how 

GDM affects offspring. Studies that can elucidate these mechanisms and present 

therapeutic strategies are essential in curbing the negative effects of the disease on 

individual lives as well as society at large. 

Mechanisms Underlying GDM Offspring Outcomes  

Genetic 

Diabetes and obesity, often termed “diabesity” are the two main offspring outcomes 

associated with GDM. Combinations of genetic and environmental factors mediate the 

development of diabetes and obesity in offspring of GDM mothers. There are several 

gene variants associated with GDM and type 2 diabetes [53, 54], and studies have shown 

that mutations in maturity onset diabetes in the young (MODY) genes are also associated 
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with increased risk of GDM [55]. The clustering of GDM among families, and among 

certain ethnic groups also point toward genetic inheritance; in fact, one study shows that 

nearly 80% of type 2 diabetics have either one or both parents with diabetes [56]. Thus 

women with diabetes during pregnancy might carry GDM-associated polymorphisms and 

transmit them genetically to their offspring.  

The aforementioned study demonstrated that the risk of developing diabetes was much 

higher if the mother had diabetes than the father [56], suggesting that maternal diabetes is 

a stronger determinant of the offspring phenotype. Numerous other studies have 

confirmed this stronger association of maternal diabetes with both diabetes and obesity in 

offspring [57-60], including a compelling study which showed that siblings born to 

mothers prior to a diagnosis of diabetes weighed less than their siblings born afterwards 

[38]. These data suggest that independent of genetic inheritance, the intrauterine 

environment also confers offspring outcomes.  

Direct effects of Intrauterine Environment  

The intrauterine environment of a GDM pregnancy is characterized by increased fetal 

availability of glucose, leading to fetuses that are large for gestational age [61, 62]. 

Maternal blood glucose is diffused across a concentration gradient to the fetus, as 

maternal blood in the intervillous space bathes the placental villi containing fetal blood 

vessels [63]. Higher post-prandial blood glucose levels in GDM mothers, due to 

insufficient insulin response, promote glucose uptake to the fetus, resulting in a 

macrosomic, or large-for-gestational age (LGA) fetus. Pedersen’s hypothesis states that 

maternal hyperglycemia promotes fetal hyperglycemia which then promotes a 
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hyperactive fetal pancreas than secretes high levels of insulin in response to glucose 

which has angiogenic effects on the fetus [64]. Ample studies show that birth weight and 

cord insulin/C-peptide levels correlate, supporting this hypothesis [65-68].   

The placenta responds to changes in maternal hormones, and alters fetal growth 

accordingly [69]. Insulin receptors are expressed on the human placenta, primarily on the 

maternal side in early pregnancy, with a progressive shift toward the fetal side with 

advancing gestation [70, 71]. Maternal and fetal insulin, elevated in GDM pregnancies, 

may act on placental receptors to affect fetal growth. Additionally, Jansson et al, along 

with other groups, have shown that elevated levels of insulin can increase the activity of 

amino acid transport systems in the placenta, potentially promoting fetal growth and 

metabolism [72, 73]. The larger placentas in GDM pregnancies may also increase 

nutrient transfer and fetal growth [74].  

As such, the in utero environment of GDM pregnancies directly affects fetal outcomes, 

promoting fetal macrosomia, which confers an increased risk of developing obesity in 

adolescence [75, 76].  Studies have also found that high BMI increases the risk for type 2 

diabetes [77, 78], thus there is evidence that offspring predisposition to diabetes and 

obesity is directly due to in utero insults. Examining the effect of offspring macrosomia 

on future risk for metabolic diseases such as obesity, high blood pressure, and diabetes in 

offspring, Boney et al showed that the prevalence of metabolic syndrome was higher in 

6-11 year old children who were large for gestational age (LGA) and born to a mother 

with GDM than LGA offspring from a mother with normal glucose tolerance [79]. This 

implies that aside from macrosomia, exposure to maternal glucose intolerance in utero 

promotes long-term impaired health of the offspring. 
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Developmental Programming and Epigenetics 

The study of how the maternal environment during early development can program 

offspring susceptibility for diseases later in life is referred to as the developmental origins 

of health and disease [80-82], and originates with the historical Dutch Hunger Winter 

studies. Women who were pregnant during Holland’s 1944 famine were severely 

undernourished. They gave birth to offspring who went on to develop metabolic diseases 

such as diabetes, obesity, and hypertension in adulthood [83-85]. Santos et al. recently 

studied 7-year-old children of diabetic mothers and observed a positive association 

between maternal diabetes and offspring adiposity independent of maternal BMI and 

offspring birthweight [86]. This provides evidence that the effects of maternal diabetes on 

offspring adiposity are largely due to programming events in the uterus, and other studies 

indicate that the maternal milieu comprising GDM can alter fetal tissues conferring 

disease risk beyond genetic inheritance and beyond birth weight [87]. 

Epigenetics, which literally means “above genetics,” refers to mitotic or meiotic 

inheritance without changes in DNA or gene sequence. Epigenetic modifications, 

including DNA methylation, histone acetylation and imprinting, affect which genes are 

silenced and expressed and can change the pattern of inheritance [88]. The external 

environment influences mitotic inheritance through changes in the epigenome [89, 90], 

and specifically, high insulin and glucose have been shown to affect the epigenetic 

regulation of gene expression in a hepatic cell line [91]. In pancreatic islets from patients 

with type 2 diabetes, differential DNA methylation was observed compared to non-

diabetic control subjects [92]. In another study, a pancreatic beta cell line exposed to high 

glucose had increased DNA methylation of the insulin promoter compared to control 
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[93].  During early development, the epigenome is most susceptible to change; thus, 

changes in the maternal environment during fetal development have an increased 

potential to alter the methylation status [94]. In comparing genome-wide methylation 

patterns between fetuses from mothers with and without GDM, Haertle et al found that 

GDM offspring have a different epigenetic status, with methylation differences spanning 

multiple genes in fetal cord blood [95]. Other studies have shown that GDM alters 

placental and cord blood gene methylation [96, 97] in pathways related to metabolic 

disease [98]. Thus epigenetic changes in utero due to GDM might program a greater 

susceptibility to diseases like obesity and diabetes by changing the expression of genes 

involved in the development of these diseases. 

Rodent models for GDM pregnancy 

These studies in humans confirm that GDM programs offspring risk for metabolic 

disease, but they are limited in the scope of the work that can be done. Ethical 

boundaries, the lack of non-invasive imaging techniques, and sample size limitations do 

not allow detailed study into how GDM affects various tissues in offspring, and how 

these in utero effects result in long-term development of disease. Additionally, the 

difficulty in following up with children of diabetic mothers into adulthood, and improper 

completion of questionnaires and surveys typically used to collect data also present 

challenges. The aforementioned reasons detail the need for animal models to study the 

phenotypes observed in GDM offspring and their underlying mechanisms. Various 

animal models have been used to model GDM pregnancy, including sheep [99, 100], 

monkeys [101], and pigs [102, 103]. Conducting studies in these larger animals is cost-
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inhibiting, which is part of the reason why rodents are the preferred models of GDM 

pregnancy [104].  

Aside from their small size and the economics of their maintenance, there are many 

factors that make rodents an ideal model of GDM pregnancy. In studying the link 

between maternal insults and offspring outcomes, the placenta, as the site of nutrient and 

oxygen transfer, is of importance. While it is clear that no animal model can recapitulate 

human placentation, [105] rodents have an advantage over other animals in that they have 

structurally similar placentas to humans [106, 107]. Both possess a hemochorial placenta, 

in which the maternal blood is in direct contact with the fetal trophoblast cells.  

Additionally, studies have shown molecular similarity with conserved genes between 

human and mouse sites of placental transfer [108], namely the villous tree and labyrinth 

in humans and mice respectively. The physiology of rodent pregnancy also confers 

multiple benefits. Pregnancy in mice and rats lasts approximately 3 weeks, which allows 

studies to be performed more quickly than in animals with longer gestation periods. 

Rodent pregnancy is also multiparous, which reduces the number of animals required to 

obtain an adequate offspring sample size.  

Finally, mouse models of GDM are able to recapitulate many of the features observed in 

GDM such as reduced insulin response [109-111], spontaneous glucose intolerance [109, 

112], impairments in pancreatic adaptation to pregnancy [109, 113, 114], as well as many 

of the offspring outcomes clinically observed such as macrosomia/fetal growth restriction 

[115-118], and a predisposition to type 2 diabetes and obesity in adulthood [118-121]. 
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Current Rodent Models of GDM 

Surgical 

The beta cells of the pancreas are the site of insulin production. During early pregnancy, 

hyperinsulinemia develops to promote the passive diffusion of glucose to the fetus, and 

this diversion of glucose is maintained in late pregnancy by elevated levels of placental 

hormones, which promote insulin resistance [20, 122]. Insulin production must increase 

to protect against maternal hyperglycemia in late pregnancy, and this is facilitated by beta 

cell expansion through hypertrophy [20, 114, 123]. In human pregnancy, a postmortem 

study has suggested that deficient beta cell expansion drives the pathophysiology of 

GDM [28]. Consequently pancreas excision has been used a model of GDM. 

Surgical removal of part of the pancreas and the beta cells therein recapitulates 

inadequate beta cell proliferation and produces a mild diabetic phenotype during 

pregnancy; however, not many studies have been performed using this technique in 

rodents [124, 125], and only one group has examined fetal outcomes to my knowledge. 

The fetal mortality rate among offspring of pancreatectomized rats was higher than in 

controls, and the offspring had higher birth weights and aberrant glucose tolerance 

compared to controls [126]. The invasiveness of surgery, high mortality and high 

abortion rates have contributed to the disuse of pancreatectomized rodents in GDM 

studies [104]. In addition, removal of whole portions of the pancreas attenuate both 

endocrine and exocrine pancreas functions, which has implications beyond maternal 

hyperglycemia for food processing and digestion [127]. 
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Chemically induced 

An alternative to pancreatectomy is the selective ablation of the insulin producing beta 

cells which proliferate during gestation [114]. This has the benefit of leaving the 

remainder of the pancreas intact for exocrine functions, and can be accomplished through 

the administration of drugs that selectively destroy beta cells. Alloxan and streptozotocin 

(STZ) are two drugs that kill beta cells upon administration, and while alloxan was 

developed first, the latter has less dangerous side effects, and is consequently the 

preferred drug for use in animal models [127]. STZ is similar in structure to glucose, such 

that it can enter the GLUT2 channel receptors located on pancreatic beta cells. Upon 

entry, STZ educes an inflammatory response resulting in beta cell death [128].   

GDM models using STZ vary in the dosage and timing of STZ administration. High 

doses result in more severe maternal hyperglycemia than that observed in typical GDM, 

while lower doses give moderate hyperglycemia [129]. Deeds et al have reviewed the 

STZ doses typically used in mice [128]. 

The various streptozotocin treatments result in different fetal outcomes. Moderate 

maternal hyperglycemia from single or low doses of STZ can result in macrosomic 

offspring or offspring with no differences in birth weight [129, 130]. Correspondingly, 

when dams are given one or more high doses of streptozotocin resulting in severe 

maternal hyperglycemia, their offspring present with low birth weights (37,[129]. Both 

fetal outcomes are observed in GDM pregnancies at a higher rate than in the background 

population [131, 132]. In adulthood, offspring of STZ diabetic dams display aberrant 

glucose tolerance regardless of the dosage [121, 129, 130].  
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STZ-treated dams make good models of hyperglycemia that is due to insulin-deficiency 

in pregnancy [133], and are particularly useful in studying populations with pre-existing 

diabetes prior to pregnancy since the model more closely resembles type 1 diabetes than 

GDM [133]. Additionally, STZ models of GDM recapitulate the incidence of neural tube 

defects observed in children of GDM mothers [134]. As a result this model has been 

widely used to study the development of these congenital malformations in offspring 

from diabetic pregnancies [134-136].  

STZ, particularly in one or more high doses has proven toxic to other tissues, and can 

cause nephropathy, among other diseases [137-139]. To avoid these side effects of the 

STZ drug on pregnancy and embryogenesis, the drug must be given prior to pregnancy, 

resulting in diabetes that carries over to pregnancy, rather than diabetes that develops 

during pregnancy [140]. Additionally, treatment during pregnancy risks direct effects of 

STZ on the fetus; one study has shown that STZ crosses the placenta in rhesus monkeys 

[141], although in this study, no further effects were observed. Prager and Padmanabhan 

have separately shown that STZ induces morphological changes in the rat placenta [142, 

143] which has implications for fetal growth and may be responsible for the growth 

restriction observed in fetuses of STZ-induced diabetic dams. 

An additional caveat of STZ and surgical models of diabetes is that typically, GDM 

women develop hyperglycemia spontaneously, rather than as a direct consequence of an 

intervention. Additionally, women with GDM do not display the same severity of 

hyperglycemia observed in most STZ models [129]. As a result, the offspring phenotype 

produced may be due to any number of the maternal insults caused by STZ 

administration. 
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Diet-induced 

Feeding rodents a long-term high fat diet results in hyperglycemia and abnormal glucose 

tolerance, along with obesity. When fed a 45%  kcal/fat diet 6 weeks prior to mating and 

throughout gestation and lactation, Sprague-Dawley rats more than doubled in weight and 

developed glucose intolerance prior to pregnancy, but did not exhibit fasting 

hyperinsulinemia and hyperglycemia until mid-gestation [115]. Offspring were 

macrosomic at birth and by 7 weeks of age, they exhibited increased body weight. Other 

phenotypes in the offspring of the diet-induced GDM dams included increased adiposity, 

hyperinsulinemia, markedly reduced expression of IR-beta and liver steatosis compared 

to offspring of lean controls [115]. A limitation of this model is that glucose intolerance 

develops prior to pregnancy, thus is more suitable as a model of type 2 diabetes during 

pregnancy than of GDM.  

Models of long-term (4-12 weeks) high-fat (45% - 60% kcal/fat)-induced GDM exist 

wherein glucose intolerance begins during gestation [111, 144-146], and offspring 

outcomes are similar with a propensity towards obesity, non-alcoholic fatty liver disease 

and diabetes beginning at 13-15 weeks of age [145, 146]. The high-fat fed rodent is 

commonly used to model GDM as it is a largely side-effect-free method of inducing 

GDM, as well as being effective and relatively simple. The spontaneous development of 

glucose intolerance only during pregnancy is an added benefit, as it is similar to the 

pathophysiology of clinical GDM in obese women.  

However studies have shown that high maternal BMI causes adverse pregnancy 

outcomes independently of maternal hyperglycemia [147, 148], including a lot of the 
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same offspring outcomes that are observed in diet-induced GDM models, such as weight 

gain, inflammation, and elevated lipid accumulation in the liver [149]. Maternal high-fat 

feeding has been found to alter the developmental programming of offspring, with effects 

on the epigenome predisposing the offspring for metabolic syndrome [150-153]. 

Additionally, obesity has implications for germ cell development. Studies by the Moley 

lab have shown that diet-induced obesity in mice results in oocyte abnormalities [154-

156]. In one study, Jungheim et al showed that feeding C57BL6 mice a 35.8% g/fat diet 

for 16 weeks resulted in increased follicular death, and decreased size and growth of 

oocytes [157]. Thus the effects of maternal high fat feeding on the oocytes might also 

affect offspring development. 

In spite of these concerns, the high-fat-induced GDM model remains ideal for 

recapitulating the effects of obese GDM on offspring outcomes, which is present in about 

42% percent of the GDM human population [158]. More women of child-bearing age are 

obese now than ever in history [159], and obesity is a major risk factor for the 

development of GDM [160]. It also serves to confirm and mimic studies characterizing 

the effects of maternal hyperglycemia on offspring in humans that are also often 

performed in obese individuals [65, 161]. 

It is important to separate maternal hyperglycemia from maternal obesity in studying 

their respective outcomes on offspring. Indeed, many studies on the effects of maternal 

obesity on offspring health make no mention of maternal glycemia, whereas the 

aforementioned studies show that the two comorbidities often present together. 

Epidemiological research has shown that around 30% of women with GDM are lean 

[162], outlining the need for GDM models that are representative of this population. 
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Catalano et al have shown that there are differences in the pathophysiology of lean and 

obese GDM. While both lean and obese women who will go on to develop GDM begin 

their pregnancies with slight insulin resistance, the two groups diverge as pregnancy 

progresses. In obese women, first and second phase insulin responses are increased and 

hyperinsulinemia develops whereas in lean women, the first phase insulin response is 

reduced and overall insulin secretion is lower [26]. One recent study showed that the 

effects of obese GDM on pregnancy outcomes are worse than those of lean GDM  in 

women carrying twins [163], further illustrating the need for a more accurate model for 

lean GDM. Furthermore, isolating specific features of GDM and studying their respective 

offspring outcomes would prove useful in the development of therapeutic strategies.  

In response to this need, we previously developed a high-fat, high-sucrose fed model of 

GDM in which dams exhibit glucose intolerance and reduced insulin response to glucose 

challenge only during pregnancy, without accompanying obesity [109]. When female 

C57B6 mice were fed a high-fat, high-sucrose (HFHS) diet (45% kcal/fat, 17% 

kcal/sucrose) one week prior to mating and throughout gestation for a total of 4 weeks, 

they exhibited normal glucose tolerance and no weight difference at day 0 of pregnancy. 

By mid-pregnancy, glucose tolerance was impaired in the HFHS fed dams, and they 

maintained similar weights to controls. A blunted insulin response to glucose was 

observed, which was attributed to insufficient beta cell expansion. This model aptly 

recapitulates spontaneous glucose intolerance that begins during pregnancy and is 

resolved postpartum.  In a similar model, dams fed a diet high in sugar and fat (HFHS 

diet: fat, 30g%; protein, 17g%; CHO, 53g% (simple sugar, 36%); 18.3 MJ/kg) from D1 

of gestation to term exhibited hyperinsulinemia and hyperglycemia on D16, although 
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they weighed less than control dams [164]. The isolation of GDM from the confounding 

variable of maternal obesity provides a promising model for studying the etiology of lean 

GDM, and its offspring outcomes. 

Genetic 

Prolactin 

Knockouts in a number of genes have resulted in the development of spontaneous 

hyperglycemia during pregnancy, including knockouts of the prolactin and leptin 

receptors.  

During mouse and human pregnancy, prolactin levels are elevated, as estrogen and 

progesterone promote pituitary secretion of prolactin that is required for mammary gland 

development [165]. Prolactin, along with placental lactogen, acts through the prolactin 

receptor to stimulate pancreatic beta cell proliferation to counteract heightened insulin 

resistance [20, 21]. As such, mice lacking the prolactin receptor are deficient in the beta 

cell remodeling required for glucose control during pregnancy. Banerjee et al 

demonstrated that conditional inactivation of the prolactin receptor on beta cell islets in 

mice results in decreased beta cell mass, reduced insulin secretion and glucose 

intolerance in mice during pregnancy [166].  

Knockout mice are more widely used as GDM models. Homozygous Prlr-/− mice are 

glucose intolerant prior to [167] and during pregnancy [168] however, they also exhibit 

severely decreased fertility and, when pregnancy is successful, do not lactate [169], 

whereas heterozygotes (Prlr+/−) are fertile and display hyperglycemia, decreased islet 
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mass, and impaired beta cell proliferation during but not before pregnancy [113]. Female 

offspring of Prlr+/− mice have a higher likelihood of developing GDM in their own 

pregnancies, due to decreased beta cell proliferation during pregnancy [170, 171] 

consistent with human data showing that there is a higher risk of GDM in pregnancies of 

women born to mothers with GDM [51, 172]. 

Leptin  

Pregnancy is a state of hyperleptinemia and leptin resistance, and the action of leptin has 

been widely studied during pregnancy. Leptin, a 16 kDa protein encoded by the obesity 

gene, was discovered in 1994 by Zhang et al [173] and is best known for regulating food 

intake, which led to it being aptly named for the Greek word “leptos” meaning thin. 

Leptin is a cytokine produced by adipocytes that reflects adipose tissue mass. Secretion 

of leptin by adipocytes signals satiety, decreasing food intake, and increasing energy 

expenditure [174-176]. In the years since its discovery, the known functions of leptin 

have quickly expanded from a homeostatic regulator, to, among many other things, a key 

reproductive hormone [177]. Leptin is required for pregnancy, as proven by studies 

which show that leptin null animals are infertile, and that leptin administration to null 

mice reverses this [178, 179]. In the non-pregnant state, leptin acts through its receptors 

to maintain energy balance and influence reproduction. The leptin receptor (LEPR) is a 

receptor tyrosine kinase and member of the class I cytokine family of receptors [180]. 

Leptin receptors exist as 6 different isoforms, as a result of alternative splicing of the 

same gene; LEPRa-f. LEPb is the primary signaling form of the receptor, and highly 

expressed in the hypothalamus in humans and mice. The remaining isoforms have limited 

ability to transduce leptin signals, with LEPRe lacking the transmembrane and 
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intracellular domains [181]. The leptin receptor intracellular domain contains docking 

sites for Janus kinase (JAK) and other kinases, which activate signaling cascades [181].   

During pregnancy, adipose tissue mass expands to increase maternal nutrient stores [182] 

and consequently, leptin secretion is elevated [183]. However hyperleptinemia is present 

prior to increased adiposity [184] suggesting that it is promoted by other factors as well. 

In fact, there is evidence that the human placenta produces and secretes leptin, which 

contributes to the elevated leptin levels in maternal circulation during pregnancy [185, 

186]. Leptin levels are elevated to ~ 2 fold in humans [187] and ~10 fold in rodents [188] 

In rodents, the placenta does not produce leptin, but the increased production of the 

soluble form of the leptin receptor, LEPRe, from the rat and mouse placentae is largely 

responsible for increased serum levels of leptin by increasing the half-life of circulating 

leptin [189, 190].  

The purpose for elevated leptin levels is not fully known. The high levels of leptin in 

maternal circulation during pregnancy are unaccompanied by decreased food intake and a 

reduction in adipose mass, thus pregnancy is a state of leptin resistance. Ladyman et al 

have performed elegant studies detailing the attenuation of the JAK/STAT signaling 

pathways of leptin during pregnancy. Upon leptin administration, hypothalamic STAT3 

phosphorylation was reduced in pregnant rats [191] and mice [192] compared to controls, 

and food intake was not suppressed. Leptin does not cross the placenta [193, 194] but 

both human and mouse placentas contain leptin receptors [195, 196]. Moreover, leptin 

has been shown to regulate placental nutrient transport [72], indicating that it plays a role 

in the growth and development of the fetus. In GDM, hyperleptinemia beyond that 

observed in normal pregnancy is observed [197, 198]. 
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Homozygous leptin receptor mutant mice (Lepr-/-) have been used as a model for 

diabetes, however, the null mice are sterile, precluding their use in programming studies 

[199]. Mice that are heterozygous for the leptin receptor mutation are severely 

hyperleptinemic and display spontaneous glucose intolerance during pregnancy, leading 

to their use as a model of GDM [200]. Yamashita et al observed that offspring of Lepr+/- 

dams are macrosomic, and as adults the female offspring were hyperinsulinemic [112].  

Unfortunately, other groups have been unable to reproduce the GDM phenotype. Plows et 

al. performed controlled experiments to identify possible contributors to the presence of 

GDM in some studies, and absence in others [201]. They did not observe GDM in any of 

their experimental models, and there were no clear associations with any potential 

contributors, leading to the conclusion that the Lepr+/- mouse is not an appropriate model 

of GDM. Nonetheless, the model consistently displays hyperleptinemia above normal 

pregnancy levels [201], as observed in GDM [202], and may be useful for determining 

what role this characteristic of GDM pregnancy plays in conferring offspring outcomes. 

Research Goals 

Deficient in the literature are isolated studies, where specific facets of GDM are assessed 

to determine their role in mediating the outcome measures observed in GDM, specifically 

diabetes and obesity. This is essential in understanding the pathophysiology of GDM, and 

its method of altering offspring phenotypes. It is also necessary in identifying factors that 

can be modulated by lifestyle and drug interventions to curb the negative effects of the 

disease.  



22 
 

The aim of the first study was to determine the role that hyperleptinemia, which is 

exacerbated in GDM pregnancies, played in programming offspring metabolic outcomes. 

Leptin has been implicated in the developmental programming of offspring health [203-

206], and is present in many rodent models of GDM and maternal obesity. However, in 

these animal models it is accompanied by maternal glucose intolerance, and obesity, and 

its independent effects on offspring metabolism had not been shown. Our study compared 

offspring from two maternal hyperleptinemic models to their respective controls. We 

developed the first model of hyperleptinemia using the Lepr+/- mouse. Lepr-/-) mice 

have a mutation in the gene that encodes the leptin receptor, resulting in a truncated long 

form of the leptin receptor. Homozygous mice are hyperleptinemic, obese, diabetic, and 

infertile. As previously mentioned, GDM is spontaneously developed during the 

pregnancies of some heterozygous mice, but it did not develop in ours. Our heterozygous 

Lepr+/- mice had a normal glucose tolerance phenotype, but exhibited hyperleptinemia. 

For the second hyperleptinemic model, wildtype females were implanted with mini-

osmotic pumps which release leptin (350ng/hr), or saline prior to mating, and throughout 

gestation. The LEP dams have mild hyperleptinemia compared to the DB dams, allowing 

for dose-dependent studies. Weights and activity had previously been analyzed in the 

offspring of these mice, with offspring of hyperleptinemic dams having lower weights 

and increased activity [204]. Assessments of offspring metabolism including glucose and 

lipid control suggested that maternal hyperleptinemia alone does not cause metabolic 

disease in offspring, and may be protective of insulin and leptin sensitivity. 

The aim of the second study was to study the isolated effects of maternal glucose 

intolerance during gestation on offspring outcomes. As models of GDM are often 
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confounded by maternal obesity, or the side effects of drug treatment and genetic 

manipulations, we wanted to remove those factors. Additionally, we wanted a model that 

was representative of lean GDM women. Using the lean GDM model developed by 

Pennington et al [109] and previously described, we assessed offspring metabolism.  Our 

findings indicate that maternal glucose intolerance in lean dams has moderate effects on 

offspring, programming increased adiposity without predisposing the offspring to 

develop diabetes.  
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  IADSPG ACOG

24‐28 week test  Fasted 2hr 75g OGTT Non‐fasting 1hr 50g GCT

Fasted 3hr 100g OGTT 

Basis of GDM Diagnosis  1 abnormal value on OGTT 1 positive screen, 2 
abnormal values on OGTT 

Glucose Target Level for 
Diagnosis 

Screen: >130 mg/dL

Fasting glucose: 92 mg/dL Fasting glucose: 95 mg/dL

1hr glucose: 180 mg/dL 1hr glucose: 180 mg/dL

2hr glucose: 153 mg/dL 2hr glucose: 155 mg/dL

  3hr glucose: 140 mg/dL

 

 

 

 

 

 

 

 

 

Table 1. IADSPG and ACOG criteria for diagnosing gestational diabetes mellitus [207]. 
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CHAPTER II 

MATERNAL HYPERLEPTINEMIA IMPROVES OFFSPRING INSULIN 
SENSITIVITY IN MICE 
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Abstract  

Maternal obesity and gestational diabetes are prevalent worldwide. Offspring of mothers 

with these conditions weigh more and are predisposed to metabolic syndrome. A 

hallmark of both conditions is maternal hyperleptinemia, but the role of elevated leptin 

levels during pregnancy on developmental programming is largely unknown. We 

previously found that offspring of hyperleptinemic mothers weighed less, and had 

increased activity. The goal of this study was to determine whether maternal leptin affects 

offspring insulin sensitivity by investigating offspring glucose metabolism and lipid 

accumulation. Offspring from two maternal hyperleptinemic models were compared. The 

first model of hyperleptinemia is the Leprdb/+ mouse, which has a mutation in one copy of 

the gene that encodes the leptin receptor, resulting in a truncated long form of the 

receptor, and hyperleptinemia. Wildtype females served as the control for the Leprdb/+ 

females. For the second hyperleptinemic model, wildtype females were implanted with 

mini-osmotic pumps which released leptin (350ng/hr), or saline (as the control) just prior 

to mating, and throughout gestation. In the offspring of these dams, we measured glucose 

tolerance, serum leptin, insulin, and triglyceride levels, liver triglycerides, pancreatic 

alpha and beta cell numbers, body composition, incidence of non-alcoholic fatty acid 

disease (NAFLD), and the expression of key metabolic genes in liver and adipose tissue. 

We found that the offspring of hyperleptinemic dams exhibited improved glucose 

tolerance, reduced insulin and leptin concentrations, reduced liver triglycerides, and a 

lower incidence of NAFLD. Overall, maternal hyperleptinemia was beneficial for 

offspring glucose and lipid metabolism. 
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Introduction 

Pregnancies complicated by gestational diabetes mellitus (GDM) are on the rise globally. 

Recent data place the prevalence of GDM in the United States at 9.2%, or up to 18%, by 

some diagnostic criteria [3]. GDM has emerged as a risk factor not only for adverse 

maternal health outcomes [208, 209], but for a number of childhood conditions related to 

metabolic syndrome [210], wherein researchers have found that children born to women 

with GDM have an increased risk for obesity [211, 212] and type 2 diabetes [213, 214]. 

There is compelling evidence linking GDM to the development of offspring type 2 

diabetes. Damm et al. showed that children born to women with GDM were over seven 

times more likely to develop type 2 diabetes than the background population [215], and 

Hamman et al. found that the association between GDM and offspring diabetes prevailed 

regardless of age, sex or ethnicity [216]. In one study, children born to the same mother 

prior to, or after a maternal diagnosis of diabetes were compared. The children exposed to 

diabetes in utero had a risk of developing diabetes exceeding threefold that of siblings 

born prior to the diagnosis [38].  

Leptin, an adipose-derived satiety hormone that is elevated during pregnancy [217], is 

significantly higher in pregnant women with GDM [197, 202, 218], suggestive of leptin 

resistance. In the non-pregnant state, leptin promotes energy expenditure and decreases 

food intake [219-221]. Leptin has also been shown to increase insulin sensitivity [222], 

and in leptin-null mice, leptin treatment normalizes serum insulin and improves glucose 

tolerance, correcting diabetes [223]. During obesity, leptin levels are high 

(hyperleptinemia) but do not serve to reduce food intake or BMI, indicating leptin 
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resistance [224]. Additionally, elevating plasma leptin to a level similar to that observed 

in overweight and insulin resistant people decreased glucose-mediated insulin secretion 

[225]. This suggests that under high leptin conditions, leptin resistance leads to a lack of 

leptin action that promotes insulin resistance and obesity.  

The in utero environment affects offspring metabolism, a phenomenon referred to as 

developmental programming [226-228]. While maternal leptin does not cross the 

placenta to directly act on the fetus [229, 230] it has been implicated in developmental 

programming. We have previously hypothesized that elevations in maternal leptin during 

maternal obesity and GDM contribute to the mal-programming of the fetus [204]. 

Alternatively, maternal leptin signaling may improve offspring metabolism, such that 

leptin resistance impairs it. To test this, we studied the offspring of hyperleptinemic dams 

using a pharmacological hyperleptinemia model (dams infused with leptin via osmotic 

pumps compared to saline treated controls), and a genetic hyperleptinemia model 

(Leprdb/+ dams compared to wildtype controls). Rather than promoting offspring 

macrosomia and obesity, exposure to high maternal leptin resulted in lower offspring 

weights and increased offspring activity [204]. Others have also found that maternal 

hyperleptinemia resulting from acute leptin treatment during late gestation [205], or 

genetic disposition [231] reduced diet-induced obesity in offspring.  

These studies indicate that leptin resistance, rather than high leptin itself, may be 

problematic in GDM and maternal obesity. That is, a lack of leptin action promotes the 

programming of offspring obesity, which normal leptin action protects against. In the 

present study, the aim was to determine whether maternal leptin also protects insulin 

sensitivity in offspring, by examining glucose tolerance and insulin concentrations in the 
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same offspring in which weights and behavior were previously assessed [204]. 

Additionally, factors that may influence insulin sensitivity, including offspring body fat 

percentage, liver triglyceride accumulation, and serum leptin levels were examined. 

Hepatic steatosis, and non-alcoholic fatty liver disease (NAFLD) are implicated in the 

pathogenesis of type 2 diabetes. Furthermore, NAFLD can be developmentally 

programmed by an adverse maternal environment, such as that of high fat fed dams 

[232]. We previously found evidence that the combination of hyperleptinemia and caloric 

restriction in dams alters the risk of NAFLD [233]. Thus, in the present study, liver 

histopathology and triglyceride content were examined, as well as the expression of two 

genes, Cd36 and Srebp1c, which transport fatty acids into the liver.  These have been 

implicated in NAFLD, and the developmental programming of NAFLD [232, 234-240]. 

Additionally, we assessed levels of transcripts encoding Hsd11b, which metabolizes 

cortisol, and which is altered in the liver of sheep that have increased lipid accumulation 

following developmental exposure to maternal undernutrition [241]. 

Materials and Methods 

Animals and Tissue Collection 

Animal procedures were approved by the University of Missouri Institutional Animal 

Care and Use Committee and performed according to the NIH Guide for the Care and 

Use of Laboratory Animals. The Leprdb colony was established as previously described 

[204] by mating Leprdb/+ males from Jackson Laboratories (Bar Harbor, Maine) with 

wildtype females from the University of Missouri. Data reported here were collected 

from mice involved in behavioral experiments that have been published previously [204]. 
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We studied the effects of maternal hyperleptinemia using two different models; a genetic 

model (WT vs. DB/+) and a pharmacological model (SAL vs. LEP).  

In the genotypic model, wildtype females (treatment group WT) served as the control 

group for Leprdb/+ females (DB/+). DB/+ females have a point mutation in one copy of 

Leprb; the long form of the leptin receptor, excising the portion of the cytoplasmic region 

of the receptor that is responsible for leptin signaling [242]. The DB/+ females were 

mated with wildtype males, and reciprocal crosses (wildtype females mated with Leprdb/+ 

males) were performed to ensure that each litter contained an equal proportion of 

offspring genotypes [204].  

In the pharmacological model, wildtype females infused with saline (SAL) throughout 

gestation via insertion of a subcutaneous Alzet Mini-Osmotic Pump (Model 2004, Durect 

Corporation, Cupertino, CA) served as the controls for wildtype females with 

subcutaneously inserted leptin-filled pumps (LEP). Surgeries were performed a week 

before mating with wildtype males [204].  

Maternal characteristics were reported previously [204]. Briefly, DB/+ females exhibited 

severe hyperleptinemia (127.0 ng/ml vs 53.1 ng/ml WT), while LEP females exhibited 

milder hyperleptinemia (47.7 ng/ml vs 31.4 ng/ml SAL), allowing for dose dependent 

studies. DB/+ dams weighed significantly more than WT controls, while LEP dam 

weights were only numerically higher than SAL controls. Maternal fasting glucose, 

serum insulin, and serum leptin were not different among treatment groups [204]. 

Forty-nine females were mated, producing 20 litters (7 WT, 3 DB/+, 4 SAL, 6 LEP). 

Two months later, an additional 63 females were mated, producing 32 litters (6 WT, 8 
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DB/+, 10 SAL, 8 LEP). Pups were genotyped at weaning, as previously described [204] 

and up to two male and two female wildtype offspring from each litter were retained for 

study. Offspring from the first mating were kept on a standard chow diet (LabDiet 5008 

Purina, St. Louis, MO) along with two male offspring from dams mated in the second 

period, to provide a sufficient sample size for the chow diet cohort (male offspring: n= 11 

WT, 8 DB/+, 8 SAL, 10 LEP; female offspring: n= 11 WT, 6 DB/+, 8 SAL, 10 LEP). 

Offspring from the second mating period were placed on a high fat, high sucrose diet 

(45% kcal/fat DIO HFD D12451, Research Diets, New Brunswick, NJ) at 23 weeks of 

age (male offspring: n= 9 WT, 12 DB/+, 20 SAL, 14 LEP; female offspring: 8 WT, 9 

DB/+, 18 SAL, 16 LEP). Weights and behavior data for these offspring  were reported 

previously [204].   

All offspring were sacrificed by CO2 inhalation at 31 weeks of age, following ad libitum 

food access. At sacrifice, blood was collected via cardiac puncture, and then centrifuged 

to obtain serum which was stored at -20oC. Liver, subcutaneous fat and visceral fat were 

excised and snap-frozen in liquid nitrogen prior to storage at -80oC. Pancreatic samples 

were fixed in 4% paraformaldehyde (PFA), paraffin-embedded and stored at room 

temperature. Liver samples were also fixed in 4%PFA, and embedded in Optimum 

Cutting Temperature Compound (Fisher Scientific, Pittsburgh, PA) prior to storage at 

−80oC. 

Glucose Tolerance Tests 

At 30 weeks of age, glucose tolerance was assessed in the offspring following the Animal 

Models of Diabetic Complications Consortium protocol. The OneTouch Ultra glucose 
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meter was used to measure blood glucose levels as instructed by the manufacturer 

(LifeScan Inc.). Following a 6 hour fast, blood glucose was measured from a sample 

collected from a tail vein incision. Offspring were then given an intra-peritoneal injection 

of 1mg/g body weight glucose, and blood was collected at 15, 30, 60 and 120 minutes 

post-injection for glucose determination. GraphPad Prism (GraphPad Software, San 

Diego California USA) was used to obtain a value for the area under the curve for each 

animal as a measure of glucose tolerance. 

Serum Insulin  

Serum insulin was measured in offspring in terminal blood collections from mice with 

free access to food. Insulin concentrations were measured using the Rat/Mouse Insulin 

ELISA kit (Millipore, St. Charles, MO intra-assay variation: 14%, inter-assay variation: 

3%) according to the manufacturer's instructions, save that the primary antibody was 

incubated overnight.  

RNA Isolation and qRT-PCR  

RNA was isolated from offspring liver, subcutaneous adipose tissue, and visceral adipose 

tissue samples collected upon sacrifice at 31 weeks. Liver samples of approximately 

30mg were homogenized in 500ml TRI Reagent (Sigma-Aldrich, St. Louis MO) on a 

General Laboratory Homogenizer (OMNI International, Kennesaw, GA). Phase-lock gel 

tubes (5 Prime Inc., Gaithersburg, MD) were used to separate the aqueous phase and 

further RNA isolation was performed using the RNeasy Mini Kit (Qiagen, Valencia, CA) 

by using the manufacturer's protocol. Adipose tissue samples of approximately 60 mg 

were homogenized in 1 mL TRI Reagent. Samples were centrifuged to separate and 
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remove the lipid layer and RNA isolation was performed using the Nucleospin RNA 

Clean-up kit (Clonetech, Mountain View, CA; Mancherey-Nagel, Bethlehem, PA) 

following the manufacturer's protocol. Genomic DNA was eliminated from all RNA 

samples using the Turbo DNA-Free Kit (Ambion by Life Technologies, Grand Island, 

NY).  

One µg of liver RNA, or 500 ng adipose RNA were reverse transcribed using the 

SuperScript First-Strand Synthesis System (Invitrogen Life Technologies, Carlsbad, CA) 

according to the manufacturer's protocol with random hexamer primers. Real-time PCR 

with SYBR Green Master Mix (Superarray, Qiagen, Valencia, CA) was performed to 

quantify the relative mRNA concentrations of  genes involved in (1) glucose metabolism: 

Gck, Ghr, Igf1r, Igfbp1 and Insr; and (2)  lipid accumulation: Cd36, Hsd11b1 and 

Srebp1c in liver and of Lep, Leprb, Insr and Srebp1c in adipose tissue. Gapdh was used 

as the internal reference gene for liver, and Actb and Hprt were used as the references for 

adipose tissue. PCR cycling was as follows: 50.0 °C for 2 min (1 rep), 95°C for 10 min (1 

rep) and 95°C  for 15 sec, followed by 60°C for 1 min (40 reps). Cd36 and Srebp1c 

primers have previously been published [243] and Gck, Hprt, Hsd11b1, Igf1r, Gapdh, 

Igfbp1and Insr primers were designed with Primer Express (Applied Biosystems) and 

synthesized by Integrated DNA Technologies (Coralville, IA). Ghr and Lep primers were 

designed and synthesized by Integrated DNA Technologies. All primers were tested for 

efficiency relative to the internal control, by using serial dilutions of template. Internal 

control genes were determined not to differ in expression across treatment groups. PCR 

results are expressed as fold change relative to CD WT, by the ΔΔCt method [244]. 

Primer sequences are detailed in Table 1.  
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Pancreatic Morphology 

Pancreatic tissue was assessed by immunohistochemistry as previously described [233]. 

Pancreas sections were incubated overnight with primary antibodies mouse anti-glucagon 

(Abcam ab10988) to mark alpha cells and rabbit anti-insulin (Abcam ab63820) to mark 

beta cells at 1:200 and 1:250 dilutions, correspondingly. Alexa Fluor 568 goat anti-mouse 

and Alexa Fluor 488 goat anti-rabbit were used as secondary antibodies at 1:500 

(Invitrogen Life Technologies, Carlsbad, CA).  Six 5µm sections separated by 50µm 

intervals were examined in each pancreas. At least 3 islets per section, up to 16 islets 

total, were photographed from each pancreas, and then 12 of these images were selected 

for analysis by using a random number generator. Alpha cells, beta cells and nuclei were 

pseudo-colored and alpha and beta cell numbers were counted by an operator blinded to 

treatment group using ImageJ software, and the average number of cells per islet per 

section was calculated for each animal. 

Magnetic Resonance Imaging 

Body composition was measured in the offspring at 29 weeks of age. A Micro-MRI high 

performance 7T MR Imaging and Spectroscopy system (Bruker Corp., Billerica, MA)  

equipped with a 86 mm inner diameter volume coil was used to determine body 

composition as described elsewhere [245]. Data were analyzed with Mnova7 Software 

(Mestrelab Research, Santiago de Compostela, Spain). 

Serum Leptin  

At 31 weeks of age, upon sacrifice of mice with free access to food, offspring blood 

samples were collected by cardiac puncture for serum analysis. Serum leptin 
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concentrations were measured using the Mouse Leptin ELISA kit (Millipore, St. Charles, 

MO, intra-assay variation: 8.9% inter-assay variation: 10%) according to the 

manufacturer's instructions, save that the primary antibody was incubated overnight.  

Serum and Liver Triglycerides  

Triglyceride and free glycerol concentrations were measured in the terminal serum 

samples via the Serum Triglyceride Determination Kit (Sigma-Aldrich, St. Louis, MO). 

We modified the manufacturer's protocol, by using 96-well plates instead of cuvets. 

Triglyceride concentrations were measured in liver samples using a modified Folch 

protocol [246]. Briefly, liver samples of ~100mg were homogenized in 

chloroform/methanol (2:1) and washed with 0.9% saline solution, then centrifuged at 

4000 RPM for 10 min, after which the organic phase was collected. The organic phase 

was dried and resuspended in glycerol reagent, and triglycerides were measured 

following the same protocol. 

NAFLD Assessment 

Liver histopathology was performed on offspring to evaluate non-alcoholic fatty liver 

disease (NAFLD) as previously described [245]. In brief, slides with liver sections were 

stained with Oil Red O (Sigma) as instructed in the Biological Stain Commission 

guidelines [247], then counter-stained with Mayer's hematoxylin (Sigma-Aldrich, St. 

Louis, MO). Liver sections were graded on a scale of 0-3 (0 = less than 33% of the 

sample contains the defect, 1 = 33-50%, 2 = 50-66%, and 3 = 66-100%) for common 

characteristics of NAFLD, namely hepatocellular ballooning, steatosis and portal 
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inflammation. The score for each sample is the sum of the scores for each of the three 

features. Three 8µm sections separated by 50µm intervals were examined per animal.  

Statistical Analysis 

All data were analyzed using SAS(R) (SAS Institute, Cary, NC). In each test, the wildtype 

offspring of hyperleptinemic models were compared to their respective controls (WT vs. 

DB/+ and SAL vs. LEP). Glucose concentrations across the time points of the GTT were 

analyzed by nested repeated measures three-way ANOVA, with offspring sex, diet, and 

maternal treatment group as fixed effects, and with offspring nested in mother. All other 

parameters (including GTT area-under-the-curve) were analyzed by nested three-way 

ANOVAs with offspring sex, diet, and maternal treatment group as fixed effects and with 

offspring nested in mother. Real-time RT-PCR data were analyzed by comparing ΔCt 

values. In order to correct for unequal variance, insulin concentrations were log 

transformed prior to analysis. 

Results 

Regulation of Glucose Tolerance in Offspring 

Maternal hyperleptinemia significantly improved offspring insulin sensitivity and glucose 

tolerance. At age 30 weeks, fasting blood glucose was not different among offspring from 

any of the maternal treatment groups (Fig. 1A-D). In a glucose tolerance test, as 

measured by the area under the curve, glucose tolerance was significantly improved in 

offspring of DB/+ dams, independent of offspring sex or diet (Fig. 1 A,C, p<0.05). There 

was no difference in glucose tolerance between the offspring of SAL and LEP dams on 
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either diet (Fig. 1, B,D). Glucose tolerance deteriorated in each offspring group following 

high fat, high sucrose feeding. 

Insulin was measured at sacrifice, in mice with ad libitum access to food. Offspring of 

DB/+ dams had significantly lower insulin than offspring of WT dams (p= 0.007) (Fig. 

1E), and offspring of LEP dams had significantly lower insulin than offspring of SAL 

dams (p=0.002) regardless of sex or diet (Fig. 1F) 

Alpha and beta cells were identified by immunostaining (Fig. 2 A-D) in a random sample 

of islets to determine whether differences in insulin production were driven by 

differences in beta cell number. There was no difference in the number of alpha or beta 

cells per pancreatic islet between the male offspring of control and hyperleptinemic dams 

whether the offspring were fed chow or HFD (Fig. 2 E,F). Consuming HFD increased 

beta cell numbers and reduced alpha:beta cell ratios in male offspring (Fig. 2 E-H), 

whereas it increased alpha cell numbers in SAL and LEP females (Fig. 2J). Female 

offspring of DB/+ dams had a significantly higher alpha to beta cell ratio (p=0.013) than 

controls when consuming the HFD (Fig. 2K). Female offspring of LEP dams on the chow 

diet also had a significantly higher alpha to beta cell ratio (p=0.05) than controls (Fig. 

2L).  

Real-time RT-PCR was used to examine expression of key insulin-related genes in the 

liver that were previously shown to be altered by concomitant maternal hyperleptinemia 

and food restriction [233].   HFD-fed offspring of DB/+ dams had significantly lower 

Igfbp1 mRNA (p=0.004) than HFD-fed offspring of WT controls in pairwise 

comparisons (Fig. 3A,B). Male offspring of LEP dams had significantly reduced liver 
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Insr mRNA (p=0.02) compared to controls in pairwise comparisons, independent of diet 

(Fig. 3B). Corresponding to an improved insulin response, transcript levels of Gck, a 

hexokinase responsible for the initial step of glucose phosphorylation that precedes 

glycogen synthesis or glycolysis, significantly higher in female offspring of DB/+ dams 

independently of diet, and Insr transcript levels were higher on CD. (Fig. 3C)  

Adipose Tissue and Lipid Metabolism in Offspring  

We next investigated whether differences in insulin sensitivity among offspring were 

associated with differences in adiposity and lipid accumulation that can reduce insulin 

sensitivity. Despite previously observed differences in body weight [204], at 29 weeks of 

age, neither the offspring of DB/+ or LEP dams differed in body fat percentage from the 

offspring of WT and SAL dams respectively (Fig. 4A,B). Placement on HFD increased 

the body fat percentage in all groups, and it was not further affected by maternal 

treatment. 

At 31 weeks of age, leptin concentrations in the offspring of DB/+ dams were 

significantly lower than in offspring of WT controls on the chow diet (p=0.01). High fat, 

high sucrose feeding significantly elevated serum leptin and abrogated the effect of 

maternal leptin (Fig. 4C). Serum leptin concentrations exhibited the same trend within the 

offspring of SAL and LEP, but were not significantly different (Fig 4D). 

Total serum triglycerides were significantly higher in the offspring of DB/+ dams 

compared to WT controls, but neither free glycerol nor true serum triglycerides were 

different (Fig. 4E). In the offspring of LEP and SAL dams, HFD decreased total serum 

triglycerides, free glycerol and true serum triglyceride content (Fig. 4F). 
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Real-time RT-PCR was used to investigate the source of differences in serum leptin. 

High fat, high sucrose feeding increased Lep mRNA in both visceral and subcutaneous 

fat, concomitant with the increase in serum leptin (Fig 5A-F). In contrast, Lep mRNA did 

not differ between offspring of DB/+ and WT dams in visceral fat (Fig 5A) and female 

offspring of DB/+ dams actually had significantly higher expression of Lep (p=0.02) than 

offspring of WT controls in subcutaneous fat (Fig. 5E).  

However, differences in expression in visceral fat of Leprb, the main signaling isoform of 

the leptin receptor, and a determinant of leptin sensitivity, were inversely related to serum 

leptin concentrations. In visceral fat, offspring of DB/+ dams expressed higher Leprb 

mRNA than offspring of WT controls (p=0.03) on the chow diet (Fig. 5A). In all groups, 

HFD feeding decreased the expression of Leprb by visceral fat (Fig. 5a, b). There were 

no differences in Leprb expression in subcutaneous fat (Fig. 5C-F).  

In parallel with increases in serum insulin (Fig. 1), adipose tissue Insr mRNA decreased 

with HFD in visceral fat from all offspring groups, and in subcutaneous fat from 

offspring of SAL and LEP dams (Fig. 5A-F). In subcutaneous fat, male offspring of LEP 

dams had significantly higher Insr expression (p=0.047) compared to SAL controls (Fig. 

5D), consistent with greater insulin sensitivity and lower serum insulin. 

Expression of the genes encoding fatty acid transporters Srebp1c and CD-36 were 

examined in adipose tissue and liver (Fig. 5-6).  In offspring of LEP and SAL dams, HFD 

decreased Srebp1c mRNA expression in both visceral and subcutaneous fat, though it 

was not affected by diet in the offspring of WT and DB/+ dams. There was less mRNA 
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for fatty acid transporter Cd-36 (p=0.0002) in the liver of male offspring of LEP dams 

than of SAL dams, independent of offspring diet (Fig. 6B). 

To determine whether this reduction in Cd-36 expression resulted in less hepatic lipid 

accumulation in the offspring of hyperleptinemic dams, hepatic triglycerides were 

measured. Offspring of DB/+ dams had significantly reduced hepatic triglycerides when 

compared to WT controls, and offspring of LEP dams also had reduced hepatic 

triglycerides compared to SAL controls, though only on the HFD (Fig. 7A,B). 

Accumulation of fat in the liver was also analyzed by histopathological scoring, as non-

alcoholic fatty liver disease (NAFLD) is associated with insulin resistance (Fig. 7C-F). 

As expected, on the HFD, the mean score for NAFLD was significantly higher than it 

was on the chow diet (p=0.001), where there was no indication of NAFLD, with scores of 

zero for all but one animal. Males on the HFD displayed an increased severity of NAFLD 

compared to females (p=.002). Compared to the male offspring of SAL dams, male 

offspring of LEP dams had significantly less severe NAFLD (p=0.05) (Fig. 7D).  

Discussion 

We have previously shown that high maternal leptin reduces offspring weights from age 

23 weeks through sacrifice at age 31 weeks, and increases spontaneous activity, pointing 

to an anti-obesity effect of maternal hyperleptinemia on adult offspring [204]. Here we 

sought to examine the role of maternal hyperleptinemia in programming of offspring 

insulin sensitivity. Overall, we found that offspring born to hyperleptinemic dams had 

improved insulin sensitivity at 30 weeks of age. Exposure to maternal hyperleptinemia 

was also associated with lower serum leptin and reduced hepatic lipid accumulation in 
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adult offspring. There was no difference in overall body fat percentage, which, combined 

with the reduction in body weights, indicates a proportional reduction in total fat and lean 

mass.  Thus, maternal leptin may have protected offspring by changing the distribution of 

lipids, and reducing overall growth, but not by altering body composition. These benefits 

may have been programmed directly, or may be secondary to the reduced body weight 

and increased activity levels that we documented previously [204]. Together, these data 

show that high maternal leptin promotes long-term metabolic health in offspring.  

Improved Insulin Sensitivity  

The mechanisms by which GDM predisposes the fetus to diabetes and obesity have not 

been clearly outlined, but a number of studies have shown that exposure to GDM 

decreases offspring insulin sensitivity [248, 249] and impairs glucose tolerance, 

increasing risk of type 2 diabetes [213]. Here we found that prenatal exposure to maternal 

hyperleptinemia improves offspring insulin sensitivity regardless of offspring diet. 

Increased insulin sensitivity in male offspring of dams treated with leptin during late 

gestation was seen in a previous study [205], consistent with this finding. Offspring of 

both models of maternal hyperleptinemia had reduced insulin concentrations, with no 

increase in blood glucose, suggesting an improved response to insulin [250]. There were 

no changes in beta cell number associated with maternal hyperleptinemia, supporting the 

conclusion that differences in insulin sensitivity, rather than insulin production, underlie 

the serum differences.  The reduction in insulin concentrations in offspring of 

hyperleptinemic dams was maintained on the HFD, although the diet increased insulin 

concentrations in all groups. Similarly, although HFD raised blood glucose 

concentrations in the GTT, on HFD offspring of DB/+ dams still had significantly better 
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glucose tolerance than offspring of controls.  These results parallel our initial 

observations of offspring weights, [204] in that maternal hyperleptinemia does not 

abolish the impact of high fat, high sucrose diet, but does significantly protect offspring 

from its full consequences.  

Differences in Insr and Gck gene expression in liver and subcutaneous fat among 

offspring with differing developmental leptin exposures were closely related to changes 

in insulin sensitivity, with the exception of Insr expression in the liver of male offspring 

of LEP. Unfortunately, skeletal muscle, a major determinant of insulin sensitivity, was 

not collected, and insulin signaling in this tissue should be examined in future studies in 

order to develop a clear mechanism. There was also a pattern of improved lipid 

metabolism that may underlie the improved insulin sensitivity in offspring of 

hyperleptinemic dams. 

Improved Lipid Metabolism 

Infants born to mothers with GDM have elevated leptin levels [251] along with increased 

weights [252] indicating greater adiposity, and potentially leptin resistance, which has 

been implicated in the pathogenesis of type 2 diabetes [253, 254]. While body fat 

percentage of adult offspring was not affected by maternal leptin, offspring of DB/+ dams 

had lower serum leptin concentrations on the chow diet. In addition, maternal 

hyperleptinemia resulted in increased visceral fat expression of Leprb in these offspring, 

indicating improved leptin sensitivity. While female offspring of DB/+ dams expressed 

more Lep mRNA than controls, this was not reflected by protein levels, suggesting 

increased leptin clearance, or decreased translation or release. These differences were lost 
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on HFD; Lep transcript levels were significantly increased regardless of maternal 

treatment group, and there were no differences in serum leptin concentrations among 

treatment groups, showing that some of the effects of maternal hyperleptinemia are 

dependent on offspring diet. Unexpectedly, serum leptin did not increase with the 

increase in transcript levels.  

Greater metabolic activity in fat was suggested by excess free glycerol in the offspring 

DB/+ dams, which, although not statistically significant, contributed to the significant 

increase in total serum triglycerides in these offspring of DB/+ dams. Higher serum 

glycerol suggests increased lipolysis, a process stimulated by leptin to metabolize fat 

tissue [255, 256]. In addition to lipolysis, leptin also promotes fatty acid oxidation 

preventing tissue lipotoxicity [257]; thus improved leptin sensitivity in offspring of DB/+ 

dams may protect against lipid accumulation, reducing the risk of inflammation and 

resultant type 2 diabetes [258, 259].  

There was consistent evidence of reduced hepatic lipid accumulation in offspring of 

hyperleptinemic dams. Hepatic triglyceride levels were reduced in the liver from 

offspring of DB/+ under both diet conditions. Offspring of LEP exhibited decreased 

hepatic triglyceride levels, reduced NAFLD in male offspring on HFD and reduced Cd-

36 expression under both diet conditions. Cd-36 is a free fatty acid transporter that 

contributes to the pathogenesis of NAFLD [260] and the development of type 2 diabetes, 

and thus, its reduced expression may protect offspring of hyperleptinemic dams [235]. 

Collectively, these data indicate that the programming of the insulin sensitive phenotype 

in these offspring by maternal leptin likely involves decreasing fatty acid accumulation in 

the liver.  
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Differences in hyperleptinemic models. 

We used two models of hyperleptinemia (DB/+ dams and LEP dams) to determine if the 

degree of maternal hyperleptinemia would determine the metabolic consequence in the 

offspring, and to control for potential confounding factors specific to each model. LEP 

dams had lower serum leptin than DB/+ dams, and we observed some dose-dependent 

outcomes. For instance, the offspring of DB/+ dams had significantly lower serum leptin 

compared to controls on the chow diet, while the offspring of LEP dams had numerically, 

but not significantly, reduced leptin compared to controls. This was also true of glucose 

tolerance curves on HFD, and a similar dose-dependency was seen in the offspring 

weights [204].  

However, not all of the observed changes can be credited to the concentration of leptin 

exposure in utero. Particularly, NAFLD assessment, and some of the gene expression 

differences we observed were only present in the offspring of LEP or offspring of DB/+ 

dams compared to their respective controls. HFD feeding resulted in decreased mRNA 

expression of Srebp-1c in both fat depots in offspring of SAL and LEP dams, but not in 

offspring of WT or DB/+ dams, independent of maternal leptin level. Some of these 

differences may be due to differences in sample size, as the SAL/LEP arm was larger  

[204]. There may also be differences in the two models. Unlike the wildtype LEP dams, 

the DB/+ dams lack one copy of the gene for the leptin receptor, and the impact on leptin 

sensitivity has not been characterized. These mice had extremely high serum leptin, yet 

only moderate overweight, and normal or improved glucose tolerance, suggesting mild or 

mixed resistance. Conversely, SAL and LEP dams underwent pump surgeries and 

maintained the pumps throughout pregnancy, while WT and DB/+ dams were not 
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similarly stressed, which may contribute to differences between the hyperleptinemic 

models. 

While it increases the complexity of our results, using two models concurrently is 

instructive in clarifying whether the outcomes observed are due to maternal 

hyperleptinemia, or experimental manipulations. That both models resulted in improved 

insulin sensitivity suggests that this is a specific effect of maternal hyperleptinemia, and 

not an artifact of experimental design. 

Comparisons with other models of maternal hyperleptinemia 

We previously examined the effects of maternal hyperleptinemia during early pregnancy 

only, with concomitant maternal food restriction [233], and found effects on offspring 

essentially opposite to what is reported here, namely increased offspring weights, and 

reduced insulin sensitivity. There, hepatic expression of Insr, Igfbp1, Gck, and Igf1r were 

altered in HFD-fed offspring of restricted, leptin-treated dams relative to HFD-fed 

offspring of either control or restricted dams [233, 243]. Here, only Igfbp1expression in 

HFD-fed, male offspring of DB/+ dams was affected. While different from the study of 

high leptin with food restriction, the results of the present study are consistent with 

studies from other laboratories of maternal hyperleptinemia in well-fed mothers [231, 

261]. Thus, the long term effects of maternal leptin on offspring are dependent on the 

nutritional milieu of pregnancy.  This may also explain why hyperleptinemic Leprdb/+ 

dams have an obesogenic effect on offspring metabolism when the dams are also diabetic 

[112]. These differences in effects of maternal leptin, combined with the inability of 

leptin to cross the placenta [229, 230], suggest that maternal leptin affects offspring by 
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acting in concert with the nutritional environment to change maternal and/or placental 

metabolism. Finally, the effects of maternal hyperleptinemia are different than those of 

direct fetal and neonatal leptin treatment. Offspring of rat dams treated with from the 

latter half of pregnancy through lactation were protected from weight gain and insulin 

resistance, similarly to the offspring in this study [261].  In contrast, acute leptin 

treatment of neonates has been shown to both protect and predispose offspring to obesity, 

depending on both timing and prior exposures of the offspring [206, 262-264], and 

injection of  leptin directly into the fetal brain inhibits adult glucose tolerance [265].  

Conclusion 

The focus of this study was to elucidate the effect of elevated leptin levels during 

pregnancy on the programming of insulin response. Previous studies have shown that 

leptin alone does not predispose offspring to obesity [231]. This study demonstrates that 

maternal leptin improves insulin sensitivity and reduces hepatic fat accumulation in 

offspring. These findings are potentially relevant to human pregnancies complicated by 

hyperleptinemia and leptin resistance. Outside of pregnancy, obesity leads to 

hyperleptinemia, and eventually to diminished transport of leptin to the brain and 

inhibition of leptin signaling [266, 267]. It is difficult to assess directly whether leptin 

resistance complicates some pregnancies, as some resistance to the appetite-suppressing 

and weight-reducing effects of leptin is present even in normal pregnancies [192, 268]. 

Nonetheless, the combination of high serum leptin with lack of leptin-induced weight 

loss is strongly suggestive of leptin resistance. Recent meta-analyses found that leptin 

concentrations are elevated in early pregnancy in women who will go on to develop 

GDM, even when controlling for BMI [269]. The leptin response to OGTT is also 
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dysregulated in women with prior GDM pregnancy [270]   Likewise, pregnancies 

complicated by obesity are associated with higher maternal leptin concentrations, and do 

not show the normal association between weight gain and leptin concentrations[271, 

272].  It has been proposed that this elevated maternal leptin may mediate negative 

impacts of GDM or obesity on offspring metabolism [227]. The present study suggests 

that it is instead a lack of maternal leptin action, i.e. leptin resistance that is responsible.  

Whether the protective actions of leptin identified here are maintained in the presence of 

other features of GDM or maternal obesity remains to be tested.  
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Gene of Interest Primer Sequence (5'-3’) 
Leprb Sense GAGCCCTGAACCCATTTCAGAAG 
 Antisense ACCATAGCTGCTGGGACCAT 
Actb Sense GATGACCCAGATCATGTTTGAGACC 
 Antisense AGATGGGCACAGTGTGGGTGA 
Cd36 Sense GGTCCTTACACTACAGAGTTCGTTA 
 Antisense CATTGGGCTGTACAAAAGACACA 
Srebp1c Sense TGGTGGGCACTGAAGCAAA 
 Antisense GCAAGAAGCGGATGTAGTCGAT 
Gck Sense ATGTGAGCTCGGCATGATTGT 
 Antisense CCTTCCACCAGCTCCACATT 
Ghr Sense CTTCGCTGAACTCGCTGTA 
 Antisense AGAAGTAAATGAATCAAAATGGAAAGTG
Hsd11b1 Sense GGCGGACTGGACATGCTT 
 Antisense GAGTGGATGTCGTCATGGAAGAG 
Igf1r Sense GCATTTAGAGAAACGAACATTCC 
 Antisense CAAGTCCAAATATGGTCCATGCT 
Igfbp1 Sense GGAGATTTCCTCATCGTCTCACA 
 Antisense TATGGGACGCAGCTTTCCA 
Insr Sense CCACCAAGAACTCGTGAAAGG 
 Antisense TGCACGCAGGAAAGAACCT 
Gapdh Sense TGCACCACCAACTGCTTAGC 
 Antisense GGCATGGACTGTGGTCATGAG 
Hprt Sense TGACACTGGCAAAACAATGCA 
 Antisense GGTCCTTTTCACCAGCAAGCT 
Lep Sense GTGAAATGTCATTGATCCTGGTG 
 Antisense GTGGCTTTGGTCCTATCTGTC 

 

 

 

 

 

 

 

 

 

Table 1. Primer Table 
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Figure 1: Insulin response in wildtype offspring.  Glucose tolerance tests were performed 
at 30 weeks of age in offspring of (A,C)  WT and DB/+ dams and in offspring of (B,D) 
SAL and LEP dams  fed either (A, B) chow diet (CD) throughout or (C,D)switched to 
high fat, high sucrose diet (HFD) at age 23 weeks. Area under the curve is shown inset. 
Sample size (offspringdam): (A) Males: WT 77, DB/+ 55 Females: WT 66, DB/+ 33 (B) 
Males: SAL 44, LEP 55 Females: SAL 44, LEP 55 (C) Males: WT 66, DB/+ 55 Females: 
WT 44, DB/+ 66 (D) Males: SAL 99, LEP 88 Females: SAL 1010, LEP 77. Serum insulin 
concentrations at age 31 weeks in ad libitum fed offspring of (E) WT and DB/+ dams and 
(F) SAL and LEP dams. Male Sample size:  (CD, HFD) WT 87,33 DB/+ 33,77 SAL 44,99 
LEP 66,88. Female Sample size:  (CD, HFD)  WT 66,55 DB/+ 33,66 SAL 44,88 LEP 55,88. 
* indicates significantly different than control (p < 0.05). Data are represented as mean ± 
SEM. 



50 
 

 

 

 

 

 

 

Figure 2: Pancreatic endocrine cell counts. Representative images of an islet 
immunostained for nuclei (A), insulin (B), glucagon (C) and a merge of insulin-positive 
β-cells (blue) and glucagon-positive α-cells (red) counterstained with DAPI 
(pseudocolored green) (D).  The number of alpha and beta cells per islet, per level in 
(E,F) male and(I,J) female wildtype offspring of (E, I) WT and DB/+ or (F,J) SAL and 
LEP dams. Alpha to beta cell ratio in male (G,H) and female (K, L) offspring. CD=chow 
diet; HFD=high fat, high sucrose diet. Male sample size (offspringdam): (CD,HFD)  WT 
65,65 DB/+ 53,55 SAL 43,65 LEP 54,66. Female sample size (offspringdam): (CD,HFD) WT 
65,65 DB/+ 33,44 SAL 33,99 LEP 44,55  *indicates significant difference between diets(p < 
0.05). K) # p<0.05 vs. WT HFD. L)# p<0.05 vs SAL CD.  Data are represented as mean 
± SEM. 
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Figure 3: Real-time PCR analysis of glucose metabolic gene expression in liver from 
male and female offspring of (A,C) WT and DB/+ dams and  (B,D) SAL and LEP dams 
at 31 weeks of age. Data are represented as mean fold change relative to control group 
mean on chow diet. Error bars represent range of fold changes based on SEM of ΔΔCt.. # 
p<0.05 in pairwise comparisons between maternal groups within diet and sex. Male 
sample size (offspringdam):  (CD,HFD) = WT 77,66  DB/+ 33,77  SAL 44,88  LEP 55,88. 
Female sample size (offspringdam): (CD,HFD)  WT 55,44 DB/+ 42,55 SAL 44,1010 LEP 
55,77. For Igf1r female offspring of DB/+ dams on CD n =22. 



52 
 

 

Figure 4: Magnetic Resonance Imaging and serum measurements in adult offspring. 
Body fat percentage in offspring of (A) WT and DB/+ dams and (B) SAL and LEP dams 
at 29 weeks of age. * indicates significant difference between diet groups (p<0.05). Male 
Sample size (offspringdam): (CD,HFD) WT 77,33  DB/+ 33,55  SAL 44,99  LEP 55,66. 
Female Sample size (offspringdam): (CD,HFD) WT 66,33  DB/+ 33,33  SAL 44,77  LEP 
44,88. Serum leptin concentrations at 31 weeks in ad libitum fed offspring of (C) WT and 
DB/+ dams and (D) SAL and LEP dams. # Significantly different from WT CD in 
pairwise comparison (p < 0.05). Data are represented as mean ± SEM. Male Sample size 
(offspringdam): (CD,HFD) WT 77,44  DB/+ 33,66  SAL 44,22  LEP 55,44. Female Sample 
size (offspringdam): (CD,HFD) WT 66,22  DB/+ 33,33 SAL 44,88 LEP 55,77. Total serum 
triglyceride, free glycerol and true serum triglyceride concentrations in offspring of (E) 
WT and DB/+ dams and (F) SAL and LEP dams at 31 weeks. *significant difference (p < 
0.05). Data are represented as mean ± SEM. Male Sample size (offspringdam): (CD,HFD) 
WT 116,33  DB/+ 63,77  SAL 84,1910  LEP 116,148. Female Sample size (offspringdam): 
(CD,HFD) WT 116,85 DB/+ 53,96  SAL 84,1810  LEP105,168. 
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Figure 5: Real-time PCR analysis of lipid metabolic gene expression in adipose tissue at 
31 weeks. Relative gene expression levels in (A,B) visceral fat and  (C-F) subcutaneous 
fat. Data from males and females are combined for visceral fat, as there were no 
differences by sex. Data are represented as mean fold change relative to CD WT mean. 
Error bars represent range of fold changes based on SEM of ΔΔCt. * significant 
difference between diets. # signficantly different from WT CD in pairwise comparison. 
Sample size (offspringdam): (CD,HFD) (A,B) Males: WT 44,75 DB/+ 33,44  SAL 44,33 
LEP75,33 Females: WT 33,43 DB/+ 32,33  SAL 54,33 LEP44,33; (C,D) )= WT 33,32 DB/+ 
54,55 SAL 54,33 LEP54,66; (E,F) WT33,43  DB/+53,54  SAL53,33  LEP33,33. 
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Figure 6: Real-time PCR analysis of lipid metabolic gene expression in liver tissue at 31 
weeks. Relative gene expression levels liver (A-D). Data are represented as mean fold 
change relative to CD WT mean. Error bars represent range of fold changes based on 
SEM of ΔΔCt. * significant difference between diets. # signficantly different from WT 
CD in pairwise comparison. Sample size (offspringdam): (CD,HFD) (A,B)  WT 77,66  
DB/+ 33,77  SAL 44,88  LEP 55,88; and (C,D) WT 55,44 DB/+ 42,55 SAL 44,1010 LEP 
55,77.  
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Figure 7:  Lipid accumulation in livers of offspring at 31 weeks. (A,B)  Triglyceride 
concentrations in livers from offspring of (A) WT and DB/+ dams and (B) SAL and LEP 
dams. # p<0.05 vs. SAL HFD. Male sample size (offspringdam): (CD,HFD) = WT 55,54, 
DB/+ 33,55, SAL 54,139, LEP 55,117. Female Sample size (offspringdam): (CD,HFD) = 
WT 66,55, DB/+ 33,66, SAL 44,76, LEP 55,66. Mean NAFLD score ± SEM in (C,D) male 
and (E,F) female offspring. *indicates significant difference (p < 0.05). Male sample size 
(offspringdam): WT 66, DB/+ 77, SAL 109, LEP 88; Female sample size (offspringdam) : 
WT 65, DB/+65, SAL 1010, LEP88.  (G)Representative images of NAFLD in offspring 
from each maternal condition and offspring diet group. Black arrows indicate steatosis, 
white arrows indicate hepatocyte ballooning, black circles indicate lobular inflammation. 
Lipid droplets are stained with Oil red O.
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CHAPTER III 

LEAN MATERNAL GLUCOSE INTOLERANCE INCREASES OFFSPRING 
ADIPOSE MASS AND IMPROVES INSULIN SENSITIVITY IN MICE 
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Abstract 

Gestational diabetes mellitus (GDM) increases the risks of metabolic syndrome in 

offspring. We previously developed a lean model of GDM in which dams exhibit glucose 

intolerance and reduced insulin response to glucose challenge. Here, we aimed to 

determine effects on offspring metabolism. 

One cohort of offspring was sacrificed at 19 weeks, and half of the offspring in the 

second cohort were placed on a high fat high sucrose (HFHS) diet at 23 weeks, prior to 

sacrifice at 31 weeks. We examined offspring weight, body composition, food 

consumption, activity, glucose tolerance, adipose and liver gene expression, liver and 

serum triglycerides, serum insulin and leptin.  

Exposure to maternal glucose intolerance increased weights of HFHS-fed offspring, and 

adiposity of offspring fed both diets. Increased adiposity in offspring of GDM dams was 

accompanied by increased respiratory quotient (CO2 produced /O2 consumed) which is 

suggestive of preferential utilization of glucose for energy over lipids. Increased mRNA 

levels of Pparg, Adipoq Insr and Lpl in adult male offspring subcutaneous fat suggest 

greater capacity for fatty acid uptake. Glucose control was unaffected by exposure to 

maternal glucose intolerance, potentially due to increased mRNA levels of Insr in both 

liver and subcutaneous fat.  

Our findings show that GDM comprising glucose intolerance only during pregnancy in 

lean dams programs increased adiposity in offspring, and increases the insulin sensitivity 

of subcutaneous adipose tissue and liver.   
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Introduction 

Gestational diabetes mellitus (GDM), defined as maternal hyperglycemia first diagnosed 

during pregnancy, is an emerging global epidemic [273]. It affects up to 25% of 

pregnancies [5], contingent on the diagnostic criteria and population studied, and is on 

the rise worldwide. Diabetic pregnancies can increase the risk of serious complications 

for the mother such as hypertensive disorders like preeclampsia [274], premature delivery 

[275], stillbirth and cesarean delivery [35]. GDM also has consequences for the offspring, 

both perinatally and long-term. 

The incidence of fetal macrosomia is higher in offspring born to mothers with gestational 

diabetes [61], and these offspring also have increased risks for diabetes [276-279] and 

obesity [277, 280-282] in late childhood and early adulthood. Baptiste-Roberts et al 

showed that offspring born to GDM mothers are 61% more likely to be overweight at the 

age of 7 than their counterparts [283], while Clausen et al showed that offspring exposed 

to GDM in utero are at an 8-fold higher risk of developing type 2 diabetes [215]. In 2011, 

the International Diabetes Federation stated that type 2 diabetes is responsible for one 

death every seven seconds, amounting to 4.6 million deaths per year[284]. The incidence 

of metabolic syndrome in young people born to GDM mothers indicates that the global 

rise of diabetes, obesity, and other metabolic diseases is partly due to the rise of GDM 

[285], however the mechanisms by which maternal hyperglycemia programs offspring 

metabolism remain unclear.  

Among the challenges in understanding how GDM affects offspring is the variety of 

clinical characteristics found among women with GDM. For example, obesity is a major 
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risk factor for GDM, and roughly half of women with GDM are also obese [162]. 

Maternal obesity is itself a risk factor for obesity and diabetes in offspring [286] and may 

interact in complex ways with maternal diabetes to influence fetal growth [287]. One 

study found that overweight in offspring was a consequence of GDM in obese, but not 

lean mothers [288]. Secondly,  preexisting type I and type II diabetes make up 

approximately 26% of diabetes cases during pregnancy [289] and these can affect oocyte 

and early embryonic development, which occur before onset of symptoms in other GDM 

cases [290-292]. Researchers have modeled various aspects of GDM impacts on 

offspring using rodent models. One such model is  long-term feeding of a 40-60% fat, 

high sugar diet for at least 4 weeks prior to mating [111, 144], which leads to obesity, 

insulin resistance and glucose intolerance during gestation.  Offspring weights vary, with 

some studies reporting macrosomia [115, 116], others reporting no weight difference, or 

growth restriction at birth [117, 120, 293]. Later in life, offspring of obese, insulin-

resistant rodents weigh more, and are at a higher risk of type 2 diabetes [119, 120, 294]. 

Streptozotocin (STZ)-treated rodents are models of non-obese, insulin-deficient diabetes, 

with onset depending on the timing of administration [295, 296]. STZ permanently 

destroys pancreatic beta cells, and can have toxic effects on other tissues as well [297]. 

Thus, the maternal phenotype most closely resembles type 1 diabetes [133].These 

animals display mild or severe hyperglycemia, depending on the dosage of STZ [298] 

with varying offspring outcomes. Mild maternal hyperglycemia results in macrosomic or 

normal weight offspring [129, 130] while severely hyperglycemic dams have offspring 

with low birth weights [129, 299], which also occurs at higher-than-normal frequency in 
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GDM pregnancies [131, 132]. Adult offspring are insulin-resistant regardless of the 

severity of maternal hyperglycemia [121, 130].  

Previously, we developed a mouse model of GDM [109] that resembles the 28% of 

women with GDM who are not overweight or obese [162].  Among lean women with 

GDM, there is subclinical insulin resistance pre gravidas, and impaired glucose-

stimulated insulin response during mid-late pregnancy compared to pregnant women with 

normal glucose tolerance [300].  In our model, mice are fed a high fat, high sucrose diet a 

week prior to, and through the three weeks of gestation, for a total of 4 weeks. These 

mice have mild insulin resistance and normal glucose tolerance at the time of conception, 

spontaneously develop glucose intolerance and reduced insulin response to glucose in the 

latter half of pregnancy, and return to normal glycemia postpartum [109]. These dams do 

not differ in weight to controls, allowing us to hone in on the effects of pregnancy-

specific hyperglycemia in lean dams. The goal of the present study is to use this model to 

determine how moderate gestational glucose intolerance, in the absence of maternal 

obesity affects offspring risk of metabolic dysfunction, particularly obesity and insulin 

resistance. 

Methods 

Animals and tissue collection 

Animal procedures were approved by the University of Missouri Institutional Animal 

Care and Use Committee and animals were handled according to the National Institutes 

of Health Guide for the Care and Use of Laboratory Animals. 
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Gestational diabetes was induced as previously described [109]. Briefly, 14 female 

wildtype C57Bl6/J mice (JAX) were fed a high fat, high sucrose (HFHS) diet (D12451, 

Research Diets Inc.) one week prior to mating to WT sires, and for the duration of 

gestation, for a total of four weeks. Twenty control females were fed a chow breeder diet 

(LabDiet 5008, Purina) throughout. The GDM dams produced 7 litters, for a total of 34 

offspring (18 males, 16 females) and the CON dams produced 16 litters for a total of 82 

offspring (52 males, 30 females).  

Two male and two female offspring from each litter were maintained on the chow diet; 

one of each was sacrificed at 19 weeks of age, and one at 31 weeks of age.  An additional 

male and female offspring from each litter was kept on the chow diet until 23 weeks of 

age, and then fed HFHS diet until sacrifice at 31 weeks of age.  

Beginning at 4 weeks of age, offspring were weighed weekly. A subset of the offspring 

was sacrificed by CO2 inhalation followed by cervical dislocation at 19 or 31 weeks of 

age after ad libitum food access. Another subset was anesthetized with isoflurane and 

underwent blood pressure assessment for a cardiovascular study prior to cervical 

dislocation at 19 (n=16) and 31 (n=47) weeks of age after ad libitum food access. Blood 

was collected at the time of sacrifice by cardiac puncture, and centrifuged to acquire 

serum, which was stored at −20°C. Samples of liver and subcutaneous fat were removed 

and snap-frozen in liquid nitrogen before storage at −80°C.  
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Magnetic resonance imaging 

At 4, 12, 20 and 28 weeks of age, body composition was measured in CD fed male and 

female offspring via nuclear magnetic resonance imaging (Echo MRI mouse, Echo 

Medical Systems). Body composition was also measured in HFHS-fed male and female 

offspring from each treatment group at 30 weeks. Each conscious mouse was inserted 

into the MRI chamber in a plastic cylinder, and lean mass, fat mass and water were 

quantified. 

Metabolic Cage Assessments 

Male and female CD-fed offspring of CON and GDM dams at 4, 12, 20 and 28 weeks of 

age, and HFHS-fed offspring of CON and GDM dams at 30 weeks of age were placed in 

metabolic monitoring systems (PromethION; Sable Systems International).  Animals 

were singly housed with ad libitum access to food and water and metabolic parameters 

were assessed for 3 days, consisting of three light and dark cycles of 12 hours each. 

Animals were placed in the cages in the middle of the light cycle and data from the first 

light and dark cycles were excluded from the analysis to account for acclimation; data 

from the following 48 hours were assessed. The metabolic cages assess food intake, 

energy expenditure, distance travelled and respiratory quotient using algorithms designed 

by the manufacturer (Sable Systems International). Food mass is weighed by sensors 

continuously, to determine food intake. Energy expenditure is calculated according to the 

Weir equation, where kcal per hour = 60*(0.003941*Vol O2+0.001106*Vol CO2) and 

where VO2 and VCO2 are in ml/min. Distance travelled is the sum of all distances 

traveled within the beam break system in meters, including fine movement (such as 
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grooming and scratching) and direct locomotion. Respiratory quotient is calculated as 

Vol CO2/Vol O2.   

Glucose tolerance and Insulin Sensitivity 

At 19 and 30 weeks of age, glucose tolerance tests (GTT) were performed on the 

offspring according to the Animal Models of Diabetic Complications Consortium 

protocol (https://www.diacomp.org/shared/showFile.aspx?doctypeid=3&docid=11). 

Blood glucose was measured using dual ReliOn PRIME glucometers (Walmart) 

according to the manufacturer’s instructions. Offspring were fasted for 6 hours, following 

which blood was collected from the tail vein for assessment of fasting glucose and 

insulin. Offspring were injected intraperitoneally with 1 mg of glucose per kg body 

weight, and blood glucose was measured at 15, 30, 60, and 120 minutes post- injection. 

GraphPad Prism (GraphPad Software) was used to calculate the area under the curve for 

each animal. 

The concentration of insulin was measured using the Rat/Mouse Insulin ELISA kit 

(Millipore) (intraassay variation: 6.7%, interassay variation: 6.0%) according to the 

manufacturer's protocol, with the exception that the primary antibody incubation was 

performed overnight. 

RNA isolation and quantitative RT-PCR 

RNA was isolated from offspring liver and subcutaneous adipose tissue samples collected 

at both 19 and 31 weeks of age by homogenization in TRI Reagent (Sigma-Aldrich), 

using a General Laboratory homogenizer (OMNI International). Adipose tissue samples 
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were centrifuged to separate and remove the lipid layer. Following phase separation 

according to TRI reagent instructions, RNA from both liver and adipose samples was 

further purified using the Nucleospin RNA clean-up kit (Clontech; Mancherey-Nagel) 

according to the manufacturer’s protocol. Genomic DNA was eliminated from RNA 

samples using the Turbo DNA-free kit (ThermoFisher Scientific). 

Reverse transcription was performed using the SuperScript First-Strand Synthesis System 

(ThermoFisher Scientific) according to the manufacturer's protocol. Briefly, 1 µg of liver 

RNA or 500 ng adipose RNA was reverse transcribed using random hexamer primers. 

Relative mRNA levels were quantified by real-time PCR with SYBR Green Master Mix 

(Qiagen) for the following genes in liver: Insr, Acaca, Cpt1a and Ppara; and in adipose 

tissue: Insr, Srebp1c, Pparg, Pgc1a, Pck1, Il6, Adipoq, Lep, Lpl, Tnfa, and 

Ucp1. Gapdh and Hprt were used as the internal reference genes for liver, 

and Actb and Hprt were used as the internal reference genes for adipose tissue. PCR was 

performed on a CFX Connect Real-Time PCR Detection System (Bio-Rad Laboratories) 

with the following cycling conditions: 95°C for 10 minutes (1 rep), and 95°C for 15 

seconds, followed by 60°C for 1 minute (40 reps).  

Insr, Lep, Gapdh, Hprt and Srebp1c primer sequences have previously been published 

[301],and Acaca, Pparg, Il6, Adipoq, Lpl, Tnfa, Ucp1, Cpt1a, Pgc1a, Pck1 and Ppara 

primers were designed by Integrated DNA Technologies, which synthesized all primers 

(Table 1). Primer efficiencies were validated by using serial dilutions of the respective 

template. Reference genes did not differ in expression across the treatment groups. PCR 

results are displayed as fold change relative to CON offspring, by the ΔΔcycle threshold 

method [244].  
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Serum leptin 

The concentration of leptin was measured in terminal serum samples by using the Mouse 

Leptin ELISA kit (Millipore; intraassay variation: 8.9%; interassay variation: 10%) 

according to the manufacturer's protocol, with the exception that the primary antibody 

incubation was performed overnight. 

Serum and liver triglycerides 

Serum triglyceride concentrations were measured in the terminal serum samples by using 

the Serum Triglyceride Determination kit (Sigma-Aldrich) according to the 

manufacturer's protocol with the exception that 96-well plates, with a total reaction 

volume of 250 uL were used instead of cuvettes. An adapted Folch protocol was used to 

extract liver triglycerides as previously described [246, 301], and then measured by using 

the serum triglyceride determination kit.  

Statistical analysis 

Data analysis was performed using SAS (SAS Institute).  

Each of the metabolic cage response variables (food intake, energy expenditure and 

respiratory quotient) were regressed on the maternal effect (GDM or control), age effect 

(4th, 12th or 20th week since birth), cycle effect (day or night), offspring sex effect (male 

or female), and interactions among these factors. The models were constructed by both 

biological and statistical considerations. To model the correlations among the repeated 

measurements that were obtained at different time points for each offspring, the 
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compound symmetry covariance structure was used. The mothers are considered a 

random effect in the models to account for the correlations among offspring of the same 

dam. Optimal models were selected by AIC, BIC, and AICC criteria. We used the 

studentized residual plot and normal quantile plot for checking model fitting. For 

pairwise comparisons, we used Tukey-Kramer method for multiple test adjustment.  

The metabolic cage data corresponding to the 28th and 30th weeks were analyzed 

separately. For average respiratory quotient, total food uptake and total distance of 

locomotion a model was built including maternal effect (GDM or control), offspring diet 

effect (high fat diet or control), cycle effect (day or night), offspring sex effect (male or 

female), and interactions among these factors. The mothers are considered a random 

effect in the models to account for the correlations among offspring of the same dam. 

Optimal models were selected by AIC, BIC, and AICC criteria. We used the studentized 

residual plot and normal quantile plot for checking model fitting. For the pairwise 

comparisons, we used Tukey-Kramer method for multiple test adjustment. To comply 

with the normality assumption, the total distance of locomotion was transformed to log 

scale, and the square root transformation was used for the total food uptake.  

Data from the glucose tolerance tests at 19 weeks were analyzed by nested, two-way 

ANOVA, with maternal treatment (GDM or control) and offspring sex effect (male or 

female) as fixed effects, with time as a repeated measure, and with dam considered a 

random effect. Data from the glucose tolerance tests at 30 weeks were analyzed by 

nested, three-way ANOVA, with maternal treatment (GDM or control), offspring diet 

(high fat diet or control), and offspring sex effect (male or female) as fixed effects, with 

time as a repeated measure, and with dam considered a random effect.  
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Weights from age 3-22 weeks were analyzed by nested, three-way ANOVA, with 

maternal treatment, offspring sex and offspring age as fixed effects, with time as a 

repeated measure, and with dam considered a random effect. Weights from age 23-31 

weeks were analyzed by nested, four-way ANOVA, with maternal treatment, offspring 

sex, age and diet as fixed effects, with time as a repeated measure, and with dam 

considered a random effect.  

For all additional analyses of samples collected at 19 weeks, data were analyzed by 

nested, two-way ANOVA with maternal treatment and offspring sex as the fixed effects 

and with dam considered a random effect. For samples collected at 31 weeks of age, data 

were analyzed by nested, three-way ANOVA with maternal treatment, offspring diet, and 

offspring sex as the fixed effects and with dam considered a random effect. The ΔΔcycle 

threshold values were compared for the real-time RT-PCR data analysis. To comply with 

the normality assumption, the Δcycle threshold values for liver Insr were transformed to 

log scale, and the square root transformation was used for the Δcycle threshold values for 

liver Ppara. 

Results 

Energy Balance in Mice Exposed to Gestational Diabetes in Utero 

Prenatal GDM exposure increased offspring obesity risk. Offspring weights (Fig. 1) were 

not different when they were maintained on the CD. However, when fed a HFHS diet, the 

offspring of GDM dams weighed significantly more than offspring of CON (p=0.0002) 

fed the HFHS diet, independent of offspring sex. Additionally, exposure to maternal 

glucose intolerance resulted in increased adiposity on the CD in both male and female 
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offspring of GDM dams at 4, 12, and 20 weeks of age (p=0.001) (Fig. 2). Thirty week old 

offspring fed the HFHS but not the CD also had higher body fat percentages than 

offspring of CON (p=0.026).  

To determine whether this energy imbalance resulted from increased energy intake or 

reduced energy expenditure, food intake, locomotor activity, and total energy expenditure 

were measured in metabolic cages over a three-day period each time at 4 (juvenile), 12 

(post-pubertal), 20 (young adult) and 28 (middle adult) weeks of age. Offspring food 

consumption was not different among treatment groups, although offspring of GDM, but 

not CON, dams reduced their food consumption at 30 weeks when fed the HFHS diet 

(p=0.0075) (Fig. 3a-d). Energy expenditure was not different among treatment groups 

(Fig. 3e-h.), and there were no major differences observed in distance travelled 

(Supplemental Figure 1).  

Lipid Metabolism in Mice Exposed to Gestational Diabetes in Utero 

Next, we explored the hypothesis that increased adiposity in offspring of GDM dams was 

due not to overall energy imbalance, but rather to differences in the utilization and 

storage of lipids. Metabolic cages were used to determine respiratory quotient (RQ), the 

ratio of CO2 produced to O2 consumed, which reflects substrate utilization. An RQ close 

to 1 reflects pure carbohydrate oxidation, while ratios close to 0.7 reflect pure fatty acid 

oxidation. RQ were not different between the offspring of GDM and CON dams at 4 and 

12 weeks, but in offspring of CON dams, RQ decreased after 4 weeks (p<0.0001) while 

in offspring of GDM dams it did not (Fig. 4). In male offspring at 20 weeks RQ (p=0.01) 

maternal glucose intolerance resulted in higher RQs (Fig 4a,c). At 28 weeks, offspring of 
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GDM dams also had higher RQs (p=0.004) on both diets independent of sex, but in 

separate pairwise comparisons, the difference was only significant in males (p<0.0001). 

Fatty acid oxidation in the liver involves the action of major transcriptional regulator 

SREBP1C (Fig. 5). Steady-state mRNA levels of SREBPC1c and other genes related to 

beta oxidation were not changed in the liver, suggesting that the increase in adiposity in 

these animals attributed to decreased fatty acid oxidation is not mediated by these gene 

transcripts in the liver.  

The steady-state mRNA levels of genes that facilitate fatty acid uptake were elevated in 

subcutaneous adipose tissue of adult male offspring (Fig. 6). The mRNA levels of Pparg 

(p=0.013) and Adipoq (P=0.002) were elevated in 31 week old CD-fed male offspring of 

GDM dams, while 31 week old male offspring of GDM dams had higher mRNA levels of 

Lpl (p=0.047) on both diets. There was some indication of an increase in Pck1 mRNA 

levels in male and female 31 week old CD-fed offspring of GDM dams compared to 

controls, though it was not significant (p=0.058).  

At 19 weeks, there were no differences in serum leptin or triglyceride concentrations 

(Fig. 7a, c). At 31 weeks, leptin levels were elevated in female offspring of GDM dams 

fed the HFHS diet (p=0.0005) (Fig. 7b). Liver triglycerides were not different (Fig. 7e, f), 

and serum triglycerides were numerically lower in offspring of GDM dams at 31 weeks 

on either diet, but not significantly different (p=0.052) (Fig 7d). 
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Glucose Tolerance, Insulin and its Receptor in Mice Exposed to Gestational Diabetes in 

Utero  

Thirty-one week old male offspring of GDM dams exhibited higher mRNA levels of Insr 

on both diets in the liver (p=0.033) (Fig. 5a) and in subcutaneous fat (p=0.001) (Fig 6a). 

There were no differences in offspring insulin concentrations as a result of maternal 

GDM, and glucose tolerance was not different among the treatment groups. Males had 

higher insulin than females at 19 weeks (p=0.0245) and at 30 weeks (p<0.0001) (Fig. 8a, 

b). Males also had higher blood glucose over time when compared to females at every 

time-point measured (p<0.0001) (Fig 8c-h). HFHS feeding also elevated blood glucose in 

the offspring, regardless of maternal treatment or sex (p<0.0001). 

Discussion 

Epidemiological studies clearly demonstrate increased risks of obesity and insulin 

resistance in the offspring of pregnancies complicated by maternal diabetes [65, 278, 279, 

281]. In such studies, GDM is often accompanied by maternal obesity or preexisting 

diabetes, which also impact offspring health [117, 302, 303]. By using an animal model, 

we have been able to separately examine the impact of maternal glucose intolerance, 

limited to gestation, without maternal obesity. While the prevalence of GDM is higher 

among obese women [304], about a third of women diagnosed with GDM are lean. Due 

to the absence of typical risk factors for GDM, this population is not widely studied 

[305]. Studying this population is not only useful from a clinical perspective [306], but 

also from a mechanistic perspective, particularly when combined with data from other 

models.  Taken together, our findings suggest that maternal glucose intolerance of mid-
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late pregnancy alone increases offspring risk of obesity without impairing offspring 

insulin sensitivity.  

Prenatal GDM Exposure Increases Adiposity 

The most striking finding of this study is that in utero exposure to maternal glucose 

intolerance promotes fat accumulation in offspring. This fat accumulation does not seem 

to result from an imbalance between energy intake and energy output, but rather from 

alterations in lipid metabolism.  First, changes in gene expression in subcutaneous fat are 

suggestive of greater sensitivity to insulin stimulation of lipid storage.  There were 

increased levels of Insr, Lpl, Pparg and Adipoq mRNA in subcutaneous fat of adult male 

offspring of GDM dams. Adipoq enhances whole body insulin action, and Lpl and Pparg 

promote insulin action in the adipose tissue. PPARG increases the expression and 

secretion of adiponectin [307], and also promotes adipogenesis, protecting against lipid 

overload in other places [308, 309]. Adiponectin expression improves whole body insulin 

sensitivity, partly decreasing triglyceride content in muscle and liver in obese mice [310, 

311]. Insulin acts through its receptor to upregulate adipose lipoprotein lipase [312], and 

adipose tissue takes up fatty acids via the action of LPL [313]. Thus, working in tandem, 

Pparg, Adipoq, Insr, and Lpl, promote insulin action in adipose tissue, increasing adipose 

tissue lipid accumulation and GLUT4 mediated glucose uptake, thereby preventing 

ectopic fat storage and the resulting insulin resistance in other peripheral tissues [314].   

Second, increased RQ measurements at 20 and 28 weeks suggest that the increase in 

adiposity in the offspring of GDM dams is also due to a preference for carbohydrate 

utilization for energy over fatty acids. However, genes related to fatty acid oxidation 
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were not decreased in the liver. Protein quantification or isotope-labelled analysis of fatty 

acid oxidation might clarify the role of hepatic beta oxidation in mediating these 

differences in RQ. Alternatively, beta oxidation elsewhere in the body might be reduced.  

“Healthy Fat”? 

There is a well-established relationship between obesity and insulin resistance [315-317]. 

Increased adiposity leads to inflammatory responses that interfere with insulin signaling, 

promoting insulin resistance, and adipose tissue lipolysis, and lipid accumulation in other 

tissues [318]. For example, feeding mice a high fat diet for 10 weeks promotes tissue 

inflammation and insulin resistance [319]. Early animal studies have also shown that the 

presence of inflammatory cytokines in adipose tissue disrupt insulin signaling [320]. 

Inhibition of insulin action in adipose tissue leads to uncontrolled lipolysis, increasing the 

triglycerides in the bloodstream and in peripheral tissues, such as the liver [321, 322]. 

Ectopic deposition of lipids in the liver promotes the development of NAFLD and liver-

specific insulin resistance, which prevents gluconeogenesis inhibition, leading to high 

blood glucose [153].  

In the present study, we found no evidence of these further consequences of adiposity in 

offspring of GDM dams. There was no evidence of inflammation, as inflammatory 

markers Tnfa and Il6 in adipose tissue were not elevated. Neither serum nor liver 

triglycerides were higher in offspring of GDM animals.  Fasting insulin also wasn’t 

higher, and the ability to clear glucose was unaffected in offspring of GDM dams, even 

after they became more obese than offspring of CON dams following HFHS feeding.  It 

should be noted, however, that offspring were only followed through 31 weeks of age, 
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after just 8 weeks of HFHS challenge. It is possible that further aging or a more 

prolonged HFHS feeding may have led to more of the negative consequences of obesity.  

Several changes in transcript levels observed in the offspring of GDM mice may 

contribute to protecting their insulin sensitivity, despite altered lipid metabolism. For 

example, we observed an increase in insulin receptor mRNA in the liver and adipose 

tissue of adult male offspring that persisted when the animals were placed on HFHS 

feeding. In addition to insulin receptor, levels of mRNA encoding adiponectin, which has 

been shown to prevent insulin resistance in the liver, [323] were elevated. Yamauchi et 

al. showed that adiponectin ameliorates insulin resistance and hyperglycemia in ob/ob 

mice, which display obesity, diabetes and other facets of metabolic syndrome [324]. 

Adipose overexpression of phosphoenolpyruvate carboxykinase (PEPCK) activity can 

lead to obesity without insulin resistance [325], as it facilitates fatty acid re-esterification 

and promotes fat storage [326]. We measured adipose levels of Pck1 transcript in our 

animals to determine if this was a mechanism through which they maintained glucose 

tolerance in spite of increased adiposity. While not quite statistically significant 

(p=0.0579), there is some evidence that the levels of Pck1 in subcutaneous fat are 

upregulated to protect the offspring against insulin resistance.  

Collectively, these findings point to a "healthy fat" phenomenon [327, 328], with the 

offspring of GDM dams having no excess insulin resistance despite high fat mass. The 

gene expression data suggest that the adipose tissue exhibits hyperplastic rather than 

hypertrophic propensities. Hypertrophy, or increase in adipocyte size, is accompanied by 

increased expression inflammatory cytokines such as IL-6 in [329], which is not elevated 

in the offspring of our GDM dams. In humans, adipocyte size has been positively 
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correlated with insulin resistance and decreased adiponectin gene expression [330, 331]. 

Hyperplasia, an increase in adipocyte number, or adipogenesis, is a mechanism by which 

adipose tissue mass can increase without hypertrophy. Hyperplasia is facilitated by an 

increase in adipogenic transcription factors such as PPARG [332] and prevents 

inflammation and insulin resistance [318]. It has been shown that adipose tissue can adapt 

protective mechanisms to maintain insulin sensitivity in spite of high adiposity and 

obesity [333]. In humans, insulin sensitive obesity is associated with differential adipose 

gene expression, including increased expression of adiponectin and a higher ratio of 

subcutaneous to visceral fat [334, 335]. The storage of fats in the adipose tissue may 

itself prevent ectopic fat storage and resultant lipotoxicity [336]. Adipose tissue accretion 

has been previously shown to positively affect metabolism, with mouse models that lack 

the capacity to promote adipogenesis developing hepatic steatosis and glucose intolerance 

[337]. This suggests that offspring of lean vs obese GDM mothers may exhibit increased 

adiposity while remaining metabolically healthy, without an increased risk for diabetes. 

Potential Role of Leptin 

One factor protecting offspring may have been in utero exposure to elevated 

concentrations of maternal leptin.  We and others have previously shown that in dams 

with normal glucose tolerance, hyperleptinemia protects offspring from developing 

insulin resistance [231, 301, 338]. The GDM model dams exhibit hyperleptinemia despite 

normal pregnancy weights [109]. It is not clear whether this hyperleptinemia is a direct 

result of the HFHS diet composition, or an indication of leptin resistance [339]. There is 

also not yet a full understanding of the leptin resistance associated with obesity or with 

normal pregnancy [267, 268]. Thus, additional study is needed to understand how 
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maternal leptin protects offspring insulin sensitivity, and whether this might differ in 

obese and lean GDM.  

Broader Relevance 

Overall our results suggest that some of the well-documented impacts of GDM on 

offspring may not occur in lean GDM.  This underscores the importance of separately 

studying the facets of GDM to determine how offspring outcomes are conferred. 

The pathophysiology of lean GDM may be somewhat different from obese GDM, with 

women displaying lower glucose-stimulated insulin secretion, similar to our mouse 

model [23].  Our data suggest that maternal glucose intolerance in lean mothers does not 

promote offspring insulin resistance and glucose intolerance, but does elevate adiposity. 

Offspring insulin resistance may instead be a result of factors like glucose intolerance 

prior to, or in early pregnancy, or of obesity in combination with GDM. 

Mouse studies of maternal obesity with hyperglycemia support this. Nivoit et al showed 

that diet induced obesity led to offspring with insulin resistance and increased adiposity 

[340], and Jungheim et al fed dams a 35.8% fat g/g diet that resulted in offspring obesity 

as well as alterations in offspring glucose tolerance [157]. Unfortunately, maternal 

obesity studies do not always report maternal glucose tolerance [119] making it difficult 

to determine whether offspring outcomes can be attributed to maternal obesity alone, or 

to maternal hyperglycemia as well. One study showed that in humans, increased fat mass 

is only present in offspring of mothers with both maternal obesity and GDM versus 

maternal obesity alone [302], consistent with the present finding that increased offspring 

adiposity is caused by maternal glucose intolerance. 
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Here, the effects of maternal glucose intolerance alone appear to be limited to adiposity, 

and offspring may even be protected against the development of type 2 diabetes through 

increased adipose storage of fat. This is mediated by a preferential utilization of 

carbohydrates to lipids in the offspring of GDM dams. In adult male offspring the 

increased expression of genes related to fat storage in subcutaneous adipose tissue 

appears to contribute to the increased adiposity. The sex-specific gene expression 

differences suggest that the programming of increased adiposity in the offspring is partly 

modulated by offspring sex hormones.  

Collectively, our data suggest that while maternal glucose intolerance alone does not alter 

offspring glucose tolerance, GDM even in normal weight mothers affects offspring 

adiposity, and promotes obesity on a western obesogenic diet.  
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Gene of Interest Primer Sequence (5'-3’) 
Actb Sense GATGACCCAGATCATGTTTGAGACC 
 Antisense AGATGGGCACAGTGTGGGTGA 
Srebp1c Sense TGGTGGGCACTGAAGCAAA 
 Antisense GCAAGAAGCGGATGTAGTCGAT 
Insr Sense CCACCAAGAACTCGTGAAAGG 
 Antisense TGCACGCAGGAAAGAACCT 
Gapdh Sense TGCACCACCAACTGCTTAGC 
 Antisense GGCATGGACTGTGGTCATGAG 
Hprt Sense TGACACTGGCAAAACAATGCA 
 Antisense GGTCCTTTTCACCAGCAAGCT 
Lep Sense GTGAAATGTCATTGATCCTGGTG 
 Antisense GTGGCTTTGGTCCTATCTGTC 
Pck1 Antisense GCGAGTCTGTCAGTTCAATACC 
 Sense GGATGTCGGAAGAGGACTTTG 
Cpt1a Antisense AGTGTCCATCCTCTGAGTAGC 
 Sense CAGCAAGATAGGCATAAACGC 
Acaca Antisense GTCCAACAGAACATCGCTGA 
 Sense AACATCCCCACGCTAAACAG 
Ppara Antisense TGCAACTTCTCAATGTAGCCT 
 Sense AATGCCTTAGAACTGGATGACA 
Pgc1a Antisense TCGCTCAATAGTCTTGTTCTCAA 
 Sense AGAAGTCCCATACACAACCG 
Il6 Antisense TCCAGTTGCCTTCTTGGGAC 
 Sense AGTCTCCTCTCCGGACTTGT 
Ucp1 Antisense ACTGCCACACCTCCAGTCATT 
 Sense CTTTGCCTCACTCAGGATTGG 
Adipoq Antisense GCAGGATTAAGAGGAACAGGAG 
 Sense TGTCTGTACGATTGTCAGTGG 
Tnfa Antisense TCTTTGAGATCCATGCCGTTG 
 Antisense AGACCCTCACACTCAGATCA 
Pparg Sense TGCAGGTTCTACTTTGATCGC 
 Antisense CTGCTCCACACTATGAAGACAT 
Lpl Sense CTTCTGCATACTCAAAGTTAGGC 
 Antisense CTAGACAACGTCCACCTCTTAG 

 

 

 

Table 1. Primer Table 
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Figure 1: Offspring weights. Male (a) and Female (b) offspring weights measured weekly 
from 3 – 31 weeks of age. Offspring were maintained on a CD except for a subset of 
offspring placed on HFHS feeding at 23 weeks of age. Sample size (offspringdam):  Male 
CD (CON1121, GDM 613) Male HFHS (CON1111, GDM 55) Female CD (CON1217, 
GDM 710) Female HFHS (CON77, GDM 66). Data are represented as mean ± SEM. 
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Figure 2: Body fat percentage measured by Magnetic Resonance Imaging in offspring at 
4, 12, 20 and 28 weeks of age on CD and at 30 weeks on HFHS. Sample size 
(offspringdam): Male CD (4wk CON99, GDM 55, 12wk CON1010, GDM 66, 20wk 
CON1010, GDM 66, 28wk CON1010, GDM 66) Male HFHS (CON1010, GDM 55) Female 
CD (4wk CON99, GDM 55, 12wk CON99, GDM 77, 20wk CON99, GDM 77, 28wk 
CON99, GDM 66) Female HFHS (CON77, GDM 66). Data are represented as mean ± 
SEM. 
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Figure 3: Food consumption (a-d) and energy expenditure (e-h) assessed in offspring at 4, 
12, 20 and 28 weeks of age on CD and at 30 weeks on HFHS. Sample size (offspringdam): 
Male CD (4wk CON99, GDM 55, 12wk CON1010, GDM 66, 20wk CON1010, GDM 66, 
28wk CON1010, GDM 66) Male HFHS (CON1010, GDM 55) Female CD (4wk CON99, 
GDM 55, 12wk CON99, GDM 77, 20wk CON99, GDM 77, 28wk CON99, GDM 66) 
Female HFHS (CON77, GDM 66). Data are represented as mean ± SEM. 
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Figure 4: Respiratory quotient assessed in male (a, c) and female (b, d) offspring at 4, 12, 
20 and 28 weeks of age on CD and at 30 weeks on HFHS. Sample size (offspringdam): 
Male CD (4wk CON99, GDM 55, 12wk CON1010, GDM 66, 20wk CON1010, GDM 66, 
28wk CON1010, GDM 66) Male HFHS (CON1010, GDM 55) Female CD (4wk CON99, 
GDM 55, 12wk CON99, GDM 77, 20wk CON99, GDM 77, 28wk CON99, GDM 66) 
Female HFHS (CON88, GDM 66).  
* indicates significantly different than control (p < 0.05). Data are represented as mean ± 
SEM. 
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Figure 5: Steady state mRNA levels of genes related to beta oxidation in male (a) and 
female (b) offspring liver assessed at 31 weeks of age. Sample size (offspringdam): Male 
CD (19wk CON77, GDM 46, 31wk CON1010, GDM 66) Male HFHS (CON55, GDM 55) 
Female CD (19wk CON55, GDM 33, 31wk CON1212, GDM 66) Female HFHS (CON66, 
GDM 66). Data are represented as mean fold change relative to control group mean on 
chow diet. Error bars represent range of fold changes based on SEM of ΔΔCt. Columns 
with different superscripts are significantly different (p < 0.05). * indicates significantly 
different than control overall, but no difference in pairwise comparisons (p < 0.05).  
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Figure 6: Steady state mRNA levels of genes related to fatty acid synthesis in male (a) 
and female (b) offspring subcutaneous adipose tissue assessed at 31 weeks of age. 
Sample size (offspringdam):  Male CD (19wk CON88, GDM 46, 31wk CON66, GDM 55) 
Male HFHS (CON55, GDM 56) Female CD (19wk CON55, GDM 33, 31wk CON66, 
GDM 66) Female HFHS (CON66, GDM 66). Data are represented as mean fold change 
relative to control group mean on chow diet. Error bars represent range of fold changes 
based on SEM of ΔΔCt. Columns with different superscripts are significantly different (p 
< 0.05). * indicates significantly different than control (p < 0.05). # (p<0.06). 
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Figure 7: Serum leptin (a,b) and triglycerides (c,d) and liver triglycerides (e,f) were 
measured in offspring at 19 (a,c,e) and 31 (b,d,f) weeks of age. Sample size (offspringdam)   
Serum leptin: Male CD (19wk CON66, GDM 47, 31wk CON1111, GDM 66) Male HFHS 
(CON1111, GDM 55) Female CD (19wk CON55, GDM 33, 31wk CON1111, GDM 77) 
Female HFHS (CON77, GDM 55). 
Serum triglycerides: Male CD (19wk CON1010, GDM 47, 31wk CON1111, GDM 66) 
Male HFHS (CON1111, GDM 55) Female CD (19wk CON55, GDM 33, 31wk CON1111, 
GDM 77) Female HFHS (CON77, GDM 66). 
Liver triglycerides: Male CD (19wk CON99, GDM 47, 31wk CON1111, GDM 66) Male 
HFHS (CON1111, GDM 55) Female CD (19wk CON55, GDM 33, 31wk CON1212, GDM 
77) Female HFHS (CON77, GDM 66) * indicates significantly different than control (p < 
0.05). Data are represented as mean ± SEM. 
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Figure 8: Glucose control in offspring. Serum fasting insulin measures at 19 (a) and 30 
(b) weeks in offspring. Glucose tolerance tests in 19 week old male (c) and female (f) 
offspring, and in 30 week old male (d,e) and female (g,h) offspring on CD and HFHS. 
Sample size (offspringdam):   
Serum insulin: Male CD (19wk CON1010, GDM 47, 31wk CON1111, GDM 66) Male 
HFHS (CON1111, GDM 55) Female CD (19wk CON55, GDM 33, 31wk CON1212, GDM 
77) Female HFHS (CON77, GDM 55).* indicates sex difference (p < 0.05). Data are 
represented as mean ± SEM. 
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