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VISITORS IN AN UNCERTAIN ENVIRONMENT 
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Dr. Marjorie Skubic, Thesis Supervisor 

ABSTRACT 

 In this work, I have developed an algorithm to detect the presence of visitors in a 

noninvasive manner.  This algorithm is designed as part of an in home monitoring 

system.  The data from the algorithm will be used as a way to monitor the social health of 

the resident.  It will also be used to help isolate the times when the resident is in the 

apartment alone, so that parameters like activity levels can be calculated. 

Type-1 and Type-2 fuzzy systems are compared for classification performance.  A 

series of lab tests provided the information necessary to model the motion sensors.  

Results from the motion sensor tests are used as guides for the Footprint of Uncertainty 

(FOU) used in the Type-2 systems. It is shown that the FOU values do not significantly 

impact the classification accuracy of the Type-2 systems. Classification accuracy of the 

ground truth data collected in a test apartment reached 88%.  Additionally, the Type-2 

MISO 2 Agent and Type-2 SISO systems best identify the known visitor times in the 

resident apartments. 

 Ongoing human subject monitoring data is evaluated empirically.  The results 

from an organized set of tests in a test apartment are presented. 
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Chapter 1 

INTRODUCTION 

 

1.1 Visitor Detection Problem Statement 

 The goal of this project was to use sparse motion sensor data to detect the 

presence of visitors in a senior’s home.  The first step in this process is to model the 

motion sensors that my research group has deployed in a test group’s apartments.  

Lessons learned from the motion sensor model led to the creation of features used to 

detect occupants other than the senior.  By tracking motion density, approximated 

velocity, and event duration, I am able to detect visitors with a reasonable confidence.  

The last task is to reduce or remove high frequency noise from the results. 

Two important considerations for the appropriate sensor type are cost and privacy.  

PIR sensors fit both considerations.  The sensors can be purchased off the shelf for 

around 20 dollars apiece.  Using environmental sensors allows us to collect data in a 

natural and unobtrusive way (i.e. without the senior’s intervention).  The type of data 

collected and its use limits any privacy issues.  The data are then used to track a variety 

of metrics that tell us about the senior’s well being, as well as possible health events such 

as depression, falls, and other ailments. 

My part in this project has taught me a great deal of respect for the time and 

commitment it takes to perform research.  The work that went into this project has been 

rewarding, and I think the results will benefit the seniors that are able to take advantage 

of the smart home system being produced by the Eldertech group. 
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1.2 Overview 

  The Visitor Detection Algorithm is a piece of a larger project to benefit seniors.  

It is called the Eldertech project, and has been covered by a series of grants from NSF, 

NIH, and the U.S. Administration on Aging.  The work behind this thesis is through an 

NSF ITR grant.  The Eldertech research is aimed at producing a marketable noninvasive 

monitoring system that can be deployed in homes, independent living facilities, and 

assisted living facilities.  The completion of this system will allow seniors to remain 

independent longer and reduce care costs. 

The Eldertech project is concerned with all aspects of a senior’s well being.  A 

few of the areas being researched include: 

1. Self Care (Hygiene, Meals, etc.) 

2. Physical Ailments (Falls, Limps, Breathing Troubles, etc.) 

3. Mental Ailments (Alzheimer’s, Depression, etc.) 

4. Social Interaction (Visitor Detection, etc.) 

The focus of this paper is the creation of an algorithm to detect visitors.  This 

algorithm creates a history of visitor confidences in the apartment.  An additional 

algorithm produces a visual display for validation purposes.  Its appearance is based on a 

representation developed by Wang and Skubic [1]. 

The current methods for determining the social health of seniors are inadequate.  

Most health care providers must depend on questionnaires.  The questionnaires are 

subject to a lot of variance.  Nurses in the Eldertech group have described two primary 

concerns.  The first is when the senior feels that if they answer the questions truthfully, 

they will be forced to lose some of their independence.  The second case is that the senior 
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does not want to feel as though they will be inconveniencing anyone.  Both cases prevent 

honest answers to the questions on the survey. 

Another issue that has been brought up with the current testing method is that the 

questions are only taking a snapshot out of the senior’s day or week.  This problem also 

presents itself for other doctor office type tests.  A senior may have normal blood 

pressure at 10 am every Wednesday morning when they are tested, but exhibit high blood 

pressure and hypertension in the afternoon. 

Creating an environmental sensor network enables us to gather objective 

information that can be used to determine the health of the senior.  By looking at this 

objective information, it is possible to form a better model of the senior’s health.  

Consistent data is easier to analyze for small changes in behavior, and social health. 

Data for visitor detection is gathered using passive motion sensors, typically 

found in basic home security systems.  In measuring several features of the PIR sensors, 

the capabilities of the sensor can be derived.  This information is used to help form an 

uncertainty model of the sensors.  Modeling of the sensors is covered in detail in section 

3.3. 

Based on the fact that the environment and sensors we are working with are 

wrought with uncertainty, it is a natural choice to use fuzzy set theory to create a 

confidence for the presence of visitors.  Eight systems are tested in this paper.  The first 

classifier is a multiple input, single output function.  It is a fast classifier that 

approximates the fuzzy systems.  The second and third classifiers are Type-1 fuzzy 

inference systems, whose background is covered in section 3.2.1 and whose 

implementation is covered in 4.6.  One is a single input, single output (SISO) Type-1, and 



4 

the other is a multiple input, single output (MISO) Type-1 system.  The remaining 

systems are of the Type-2 variety.  A SISO Type-2 No FOU version (similar to SISO 

Type-1) is followed by two MISO Type-2 No FOUs.  The first MISO Type-2 No FOU 

averages two agents, while the second performs all calculations inside the inference 

system.  Similarly, two MISO Type-2 systems with FOU complete the list. 

 Type-2 fuzzy system proponents claim that Type-2 systems produce better 

models of uncertainty, which would be ideal for this problem.  The background for Type-

2 fuzzy systems is covered in section 3.2.2.  Implementation information can be found in 

4.7.  As a comparison point, I have also created a simple function that tries to imitate the 

behavior of the fuzzy classifiers.  If the results are similar to the fuzzy systems, the 

simpler design will make it an appealing alternative computationally.  The function 

creation is described in section 4.8. 

Some related Type-1 and Type-2 research can be found in Chapter 2 Section 1.  

Section 2 compares this work to other engineering approaches to monitoring senior 

health.  Chapter 3 contains a background of the techniques that were used in this paper, 

which include: social health of seniors, Type-1 fuzzy systems, Type-2 fuzzy systems, and 

motion sensors.  Chapter 4 covers the visitor detection algorithm, beginning with data 

extraction.  Chapter 4 continues with the construction of each of the features and their 

membership functions.  Chapter 4 concludes with the rule base and a description of the 

output data.  Chapter 5 contains a description of tests performed in the test apartment, 

with results following in Chapter 6.  Conclusions and some comments on future work 

may be found in Chapter 7.  
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Chapter 2 

RELATED WORKS 

 

2.1 Type-1 and Type-2 Fuzzy Systems 

 Modeling uncertainty in terms of classification membership is the realm of 

fuzzy systems.  The term “fuzzy,” as it applies to set theory, first appeared in Lofti 

Zadeh’s 1965 paper [2].  Ten years later, Zadeh wrote a trio of papers that included fuzzy 

sets with fuzzy membership functions [3], [4], and [5].  Zadeh named the new system 

“Type-2.”  So the primary conceptual difference between Type-1 and Type-2 fuzzy 

systems is how the membership functions are defined. 

 Type-1 fuzzy systems have been used in industry for control applications for 

several years now.  Type-1 systems are also becoming increasingly popular in other 

applications as well.  The step to Type-2 fuzzy systems is taking longer, generally due to 

the additional computational demands from the algorithm in a real time environment. 

 Type-2 fuzzy system proponents argue that Type-1 fuzzy systems are too crisp.  

This comes from the observation that the edges of the membership functions are 

generally uncertain, yet are crisply defined [6].  They argue that an expert opinion 

typically cannot be adequately defined using Type-1 membership.   

 Mendel and John coauthored a paper to encourage the fuzzy community to try 

the more complex fuzzy system, and discussed the computational issues [7].  The Type-2 

system benefits the user by providing a better model for the uncertainty involved in their 

problem.  The downside is the complexity, both in terms of understanding the algorithm 

and computation time.  Mendel and John have also produced a couple of papers that do a 
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good job simplifying the concepts required to implement Type-2 systems [7], [8].  

Research continues in the Type-2 community to reduce the computational complexity [9], 

[10]. 

Hani Hagras has compared Type-1 and Type-2 fuzzy systems in several 

applications and concluded that the Type-2 systems are the better choice [11], [12].  

Hagras found that in an uncertain environment, Type-2 has better generalization and can 

tolerate input and output noise in changing environments.  Hagras also points out that 

when performance of a Type-1 set degrades due to outside variables it must be re-tuned; 

which is a time consuming process.  He found that Type-2 sets are more robust and 

generally will not need to be re-tuned or re-tuned less often.  Hagras has also written an 

overview of his findings that provides a nice summary of his work with autonomous 

robots [13].  A particularly interesting application of Type-2 systems is modeling 

unanticipated network states that transmit video data [14].  

 Wang and Acar compare and contrast Type-1 and Type-2 fuzzy systems in their 

proof driven paper [15].  They show that Type-2 systems are better able to handle 

uncertainty regarding the rule base and memberships.  Wang and Acar create and prove 

two theorems that help the user convert a Type-1 system and its uncertainties into a 

Type-2 system.   

 Paetz’s paper discusses the fact that the calculations performed in fuzzy logic 

are still based on a finite subset of the real numbers [16].  Instead, inputs and outputs are 

quantized based on the variable length defined by the computer.  Since we are performing 

calculations in an exact space (limited significant digits), it makes sense to build fuzzy 

memberships to deal with the additional uncertainty from the data loss. 
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 This paper focuses primarily on classifying past data, because the visitor 

detection algorithm is not currently a real time application.  I compare a function, two 

Type-1 systems, SISO and MISO, as well as five Type-2 systems, a SISO and four 

MISOs (two with FOU, two without; two with 2 agents, two with 1 agent). 

 

2.2 Monitoring Seniors 

 The smart home concept has been around for a long time.  For the senior, a 

smart home system gives them an opportunity to age in place without the fear that any 

trouble they have will go unnoticed.  There are several systems that are in production, 

and the technologies garner a lot of attention from the research community as well. 

 Gaddam summarizes the current state of wireless sensor network technologies, 

and how these can transform our homes in his recent paper [17].  He classifies the 

technology into four branches: adaptive technology, assistive technology, inclusive 

designs, and medical technologies.  Gaddam also lays out a checklist of considerations 

and concerns for the design of the wireless sensor network.  Like Gaddam, our research 

group is particularly concerned by any intrusiveness of the sensors.  We feel that a natural 

environment where the elder is able to ignore or forget the network gives us a better look 

at how they actually live.  Gaddam lists other concerns like: interference from other 

sensors (see Section 3.3.5), data acquisition, data management, data security, reliability, 

and energy sources.   

 Glascock and Kutzik have developed a monitoring system that checks for 

specific tasks performed by the senior [18].  For instance, their system determines if and 

when the senior prepared their lunch or took their medicines.  The interface is web based, 
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so a care giver can check on them at any time.  The system is self limiting, though.  It 

will only summarize a predesigned list of basic activities. 

 A much more invasive system has been developed by Wu and others [19].  Their 

system still uses some passive environmental sensors such as smoke detectors, but also 

requires that the senior wear an accelerometer.  The data collected from the accelerometer 

is used to infer health problems and nervousness among other things.  An interesting 

caveat of this product is that the hardware connected to the accelerometer communicates 

with a distributed data logging system located in all of the apartments.   

 Hudson and Cohen discuss a rural version of telecare [20].  Their focus is on 

seniors in rural areas that are not able to actively seek medical care.  The proposed 

solution begins by inserting health monitoring equipment into the home.  The health care 

provider calls the patient at home, and is able to access data from the monitoring 

equipment.  A video conferencing system simulates a visit with the doctor without the 

need for a commute to the office.  Alerts are generated for family members and rescue 

teams that may need to take action to secure the safety of the senior.  

Le and others track activity levels in an interesting non-invasive way [21].  Rather 

than attaching devices to the senior, they set up a fuzzy system that assigns mobile and 

immobile states to them.  The subject is assigned the mobile state until there is no 

recorded activity for 10 seconds.  Similarly, they remain in the immobile state until there 

are five sensor hits that are consecutively less than 10 seconds apart.  From the mobile 

and immobile assignments, Le infers the senior’s ability to perform tasks contextual to 

the senior’s location. 
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An advanced health monitoring solution has been developed by Intel, and is 

discussed in a paper by Dishman [22].  The Intel system detects signs of disease and 

treatment compliance (Are they taking their medicine?).  But where Dishman’s research 

is really different from other research is in instructional assistance.  The system monitors 

the progress of an activity such as making tea.  During cognitive decline, a senior may 

have difficulty remembering how to perform simple tasks.  When the system detects that 

the senior is performing steps out of order, or is taking a long time to finish a step, an 

audio/video monitor asks if the senior needs help.  Upon confirmation, the monitor can 

play audio and video directions for the senior to follow.  This technology will be 

particularly beneficial for those suffering from Alzheimer’s disease. 

 The Eldertech group has also collaborated to construct a smart home monitoring 

system.  Volunteer participants at Tigerplace have environmental sensors installed in 

their apartments.  A network of motion sensors provides data for visitor detection, as well 

as a host of other uses [1], [23].  Also, bed sensors collect restlessness, breathing, and 

pulse rates that have been correlated to health events [23], [24].   

Other technologies are also being developed for use in the apartments.  Video data 

shows a lot of promise, but the cameras are perceived as intrusive, and cannot be placed 

in all rooms of the apartment.  However, there is no real threat to privacy, because the 

video is not stored or viewed.  The data collected from the cameras are processed into 

silhouettes from multiple angles.  The silhouettes are then reconstructed into a voxel 

image, which can be interpreted as a rough 3D representation of the senior [25].  

Calculations on the 3D reconstruction are used for several measurements and metrics.  
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 The features and data collection for visitor detection in this paper are most 

similar to those presented in Martin’s paper [26].  Martin uses a similar network structure 

to the one at Tigerplace, but with many more nodes (motion sensors).  His algorithm is 

based on five features.  The first is activity level change, which is similar to the motion 

density used in my algorithm.  Another feature is the number of room changes recorded.  

The layout of the Tigerplace apartments does not facilitate this metric very well.  There 

are overlapping regions that artificially inflate this value.  The last three features Martin 

uses are delay time, hallway time, and door time.  We do not have hallway motion 

sensors in Tigerplace, and the motion sensors we are using have a resolution of about 

seven seconds, making the door time feature unreliable.  The delay feature assists the 

algorithm by inferring quick changes in activity associated with visitors entering and 

leaving compared to general activity changes by the senior. 

As stated before, the visitor detection design is most closely related to Martin’s 

paper.  The benefit of my algorithm is that it better handles sparse data, and displays a 

single confidence over regions where a visitor could not have entered or left the 

residence.  In other words, the confidence does not change until there is an event that 

potentially signals a change in state between visitors and no visitors.  I have also 

developed a way to infer the approximate walking speed of the senior, which is very 

useful for detecting visitors.  In larger homes, or homes with long hallways, walking 

speed could be an excellent way to predict the identity of a visitor. 
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Chapter 3 

BACKGROUND 

 

 The visitor detection algorithm is the culmination of research from three main 

areas.  I begin Chapter 3 with the motivation for visitor detection as a measure of social 

health.  Next, I present a brief background of fuzzy logic, including Type-1 and Type-2 

systems.  Lastly, I cover passive infrared technology and a series of tests on the motion 

sensors installed at Tigerplace that I conducted last summer.  All three parts combine 

together to form the basis for visitor detection. 

 

3.1 Senior Social Interaction as it Relates to Overall Health 

 Friedrich Nietzsche once said, “To forget one’s purpose is the commonest form 

of stupidity.”  Since I am striving to avoid stupidity, I will begin the background section 

with the purpose of the visitor detection algorithm. 

 I am interested in monitoring visitors for a couple of reasons.  One reason is that 

social interaction is a key component for a high quality of life.  This is especially true of 

seniors, where a support structure helps deal with problems from mundane to tragic [27].  

Conversely, diminishing social interaction puts the senior in a state of isolation that can 

lead to a host of other problems. 

 Tracking visitation times are also important for parameterizing other algorithms 

that measure the health of the resident.  For instance, the ability to differentiate times 

when visitors are not present is essential for producing an accurate model of the 
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resident’s activity levels.  The motion densities tend to increase with the presence of 

visitors, so it is desirable to discard these times from the data. 

A seniors’ quality of life has been classified into three areas: physical health, 

mental health, and social health.  Each one is somewhat dependant on the others.  A 

socially isolated senior will tend to be less active, and exhibit signs of depression.  Lower 

activity levels can lead to a host of physical ailments including blood clots and obesity.  

The NSSP, National Strategy for Suicide Prevention, has found that suicide rates are 

highest in the 65 and older population [28].  Isolated seniors without a consistent group of 

people to interact with often have the signs of depression go unnoticed. 

Seniors are the most likely group to be experiencing losses from their support 

structures.  As they get older, friends and relatives move away or pass on.  The loss of 

friends and loved ones adds to the stress from diminished independence and a feeling of 

lessened purpose.  Seniors need a strong support group to cope with the problems 

associated with age.   

A study of online communities for seniors has shown a range of social groups.  

Some of the social groups simply tell jokes and give well wishes, while others are 

committed to community building and self-disclosure [27].  These communities can not 

only provide a place for support, but also foster a sense of self-worth from being able to 

help others.  The online communities are not, however, a replacement for traditional 

social support structures. 

Visitors are a good indicator that a senior has a strong traditional social network.  

Having guests into the home suggests that the two parties are friends, and the social 

interaction is bidirectional.  Using the number of visitors, and the lengths of their stays, 
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the social well being of a senior can be better understood.  Additionally, detecting the 

resident’s normal activity level sans visitors gives us an idea if there are any activity 

reductions that might otherwise go unnoticed.  It is our goal to use the visitor information 

as a tool to identify ways to improve the resident’s quality of life. 

 

3.2 What is Fuzzy Logic? 

 Uncertainty can take many forms.  Most people think of uncertainty as a 

probability, which is a way of expressing the belief that an event will occur.  However, 

the form of uncertainty pertaining to visitor detection is of the form, “does this belong?”  

Jim Bezdek clarifies the difference in a series of editorials published in 1994 [29].   

I feel it is important here to specify that fuzzy logic does not imply imprecise 

logic.  Fuzzy set theory and fuzzy logic are well defined and robust.  Fuzzy is only fuzzy 

in that where N-ary logic maps },...,1{: NxF → , fuzzy logic maps ]1,0[: →xF .  In other 

works, N-ary logic supports N truth values, while fuzzy logic supports an infinite number 

of truth values (up to whatever can be represented). 

 Binary logic has been around since Aristotle.  The consequent of a binary 

statement has two possible truth values: true or false.  This is what it means to be crisp.  

Binary logic, also known as Boolean logic, has a complete algebraic system that was 

defined by George Boole in the 20th century.  There is a certain comfort in a black and 

white world.  An object is either in the set or not in the set. 

 However, what if it is unknown whether an object belongs in the set?  One 

common extension in literature is Lukasiewicz’s three valued logic. Three valued logic is 

a generalization of binary logic.  The set of values still contains true and false, but adds a 
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third value “unknown.”  In the three valued algebra, all binary values behave the same as 

before. 

 

3.2.1 Type-1 Systems 

A simple extension of multivalued logic leads us to infinite valued logic.  Fuzzy 

set theory is introduced in Zadeh’s 1965 paper, “Fuzzy Sets” [2].  The main benefit of 

using a Type-1 system for visitor detection is that there are no all purpose features 

available that allow us to say with total confidence whether a visitor was in the 

apartment.  Fuzzy logic is able to distinguish likely scenarios where visitors may have 

been in the apartment and assign a value between 0 and 1.   For instance, there is no clear 

distinction between the number of motion sensor hits when visitors are in the apartment 

versus when the resident is simply being active.  A membership function is created to 

represent the relative confidence that a visitor was present based on the motion density. 

  
Fig. 3.1: Type-1 fuzzy membership function for motion density 

 

Fuzzification is the task of converting world knowledge into a fuzzy membership.  

Figure 3.1 is an example of this.  As discussed in Section 3.3, the motion sensors fire 

about every seven seconds.  Sensor logs have shown that during peak activity times, such 

as getting ready in the morning, seniors will produce between 100 and 200 hits per hour.  
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When the sensor firing rates drop below 50, then the resident is sedentary or out of the 

apartment.  Conversely, when sensor firings are much greater than 200, the likelihood 

that a visitor is in the apartment is increased. 

After creating membership functions for each feature to be considered, a rule base 

must be created.  The rule base performs operations on the membership functions.  Input 

membership functions constitute the antecedent, or “If” part of a rule.  In a Mamdani 

system, the outputs are also made of membership functions.  The output members are the 

consequents, or the “Then” part of a rule.  For instance: If motion is high and speed is 

high, then visitor is likely. 

The standard logic operations are extended to fuzzy logic.  There are many 

implementations, but all of them must produce equivalent results when used in traditional 

binary logic.  This means that true and true can’t equal anything aside from true, and 

similarly with other combinations and operators.  The new operators are still associative, 

commutative, and distributive.  Some of the common examples are defined in table 3.1.  

These operators are used to construct the rules. 

Table 3.1: Common fuzzy logic operators 

Operator Standard Product Yager Sugeno 

a AND b Min(a,b) a*b 
1-Min(1,((1-a) p +(1-b) p ) p

1

) 
Max(0,a-b) 

a OR b Max(a,b) a+b–a*b 
1-Min(1,(a p +b p ) p

1

) 
Min(1,a+b-1) 

NOT a 1-a  
(1-a p ) p

1
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The completed rule base takes the input and applies the fuzzy operators.  There 

are two ways to represent the results.  Shown in figure 3.2, Sugeno type fuzzy inference 

creates an output and firing strength.  To defuzzify the result, the average of the output is 

multiplied by the firing strength.  Alternatively, Mamdani type fuzzy inference may be 

used.  The only difference between Mamdani and Sugeno inference is the way 

defuzzification is performed.  In Mamdani inference, the firing strength is determined by 

an output membership function.  The process takes the output values from the system 

 
Fig. 3.2: Sugeno type rule application & defuzzification (image from Matlab) 

 

and levels the output members at the point of contact.  Figure 3.3 shows an example of 

Mamdani inference.  The resulting functions are recombined, using a maximum operator.  

The Mamdani inference system solution is the centroid of the area under the curve. 
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Fig. 3.3: An example of Type-1 Mamdani inference 

 

3.2.2 Type-2 Systems 

Ten years after Zadeh’s paper on fuzzy sets [2], he produced a series of three 

papers that further extended fuzzy logic to Type-2 systems [3], [4], [5].  The conceptual 

difference between Type-1 and Type-2 systems hinges on the creation of the membership 

functions.  One source of classification uncertainty is where the edges of the membership 

functions ought to be.  The term for this area is the “Footprint of Uncertainty,” or FOU.  

If the domain of interest is not well understood, it is difficult to model the data.  By 

fuzzifying the edges of the membership functions, the FOU can be modeled. 

Type-2 fuzzy logic appears as two main cases: interval Type-2 and generalized 

Type-2.  The simpler of the two is interval Type-2 (IT2).  IT2 allows the creation of 

membership functions with an interval edge (as opposed to a crisp value).  The interval 

range can be set to model the uncertainty the designer has about the proper location of the 
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left and right endpoints or the mean.  Defuzzification of an IT2 is a little more 

complicated than a Type-1 system when finding the centroid.  The Karnik-Mendel (KM) 

or Enhanced Karnik-Mendel (EKM) algorithm is used during type reduction to find 

switch points [10].  A pair of switch points is needed to compute two separate values, lc  

and rc .  The value lc  represents the minimum centroid for all embedded Type-1 sets 

from the left switch point L, while rc  represents the maximum centroid for all embedded 

Type-1 sets with the right switch point R.  IT2 will approach a Type-1 set as the interval 

approaches 0. 

 

 
Fig. 3.4: An example of Type-2 Mamdani inference 

 

Generalized Type-2 sets (GT2) also fuzzify the boundaries of the memberships.  

GT2 makes the assumption that we have a reasonable grasp of the data when drawing the 

memberships.  Therefore instead of an interval edge, GT2 implements a nonlinear edge 
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such as a Gaussian.  The confidence is higher near the mean (the equivalent Type-1 

edge), and decreases as distance from the mean increases.  As the standard deviation of 

the Gaussian approaches zero, the GT2 approaches a Type-1 system. The biggest 

problem with GT2 is the computational complexity associated with the fuzzy operators.  

There is ongoing work to reduce the complexity of this problem [6]. 

 

3.3 Non-invasive Monitoring Using Passive Infrared Sensors 

This section is a summary of the PIR sensors used and the experiments conducted 

to characterize the sensor output.  An in depth look at motion sensor technology as well 

as the full study of the Hawkeye II sensor can be found on the SharePoint site under 

weekly reports.  It is a Word document under the file name 

“MotionSensorSpecsAndProcs.doc”.   

In an effort to reduce costs of our sensor network, we chose to use off the shelf 

Hawkeye II PIR motion sensors that operate using the wireless X10 protocol.  The X10 

protocol is a common protocol for wireless PIR sensors, and it is open source, which 

make the technology very affordable.  PIR motion sensors are not only affordable and 

wireless; they are designed to be noninvasive.  We have found several uses for the data 

collected by these simple, easy to use sensors.  For those interested, they are an Active 

Home product model number RMS18.     

 

3.3.1 Motion Sensor History and Technology Overview 
 
 The use of infrared technology for monitoring activity is not a new concept.  In 

the late 1960’s, security installations began looking for alternatives to microwave and 
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ultrasonic motion detection [29] and found the PIR sensors to be promising.  Passive 

infrared was not an immediate success, often plagued by false alarms and construction 

problems. 

 In 1979, a major breakthrough in commercial technology occurred when dual 

pyroelectric sensors were used in the motion detector.  By this time, new hardware 

materials had been created that were less sensitive to noise and sensory spikes.  Adding 

the second pyroelectric sensor made it possible for the motion detector to ignore ambient 

infrared changes like wind. 

 The 1980’s brought another technological breakthrough when Fresnel lenses 

replaced a series of mirrors (see figure 3.5).  The mirrors, and later lenses, produced a 

signal change when motion was detected on the pyroelectric material.  The Fresnel lenses 

are easier to produce, and can easily be replaced if damaged.  They suffer fewer 

environmental problems such as dust and humidity. 

 The last major innovation of the 1980’s affected all electronics; improved 

components.  Purer materials produce less noise and are less prone to defects.  Continued 

improvements in transistor and processing components have led to smaller 

implementations.   The motion sensors we use are less than four inches square, pictured 

in figure 3.6. 
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Fig. 3.5: A Fresnel lens from Active Home’s Hawkeye II 

 
 
 

 
Fig. 3.6: The Hawkeye II is a nonintrusive size for use as a motion detector. 

 
 
 
 



22 

3.3.2 How PIR Motion Sensors Work 
 
 PIR sensors detect what is known as black body radiation.  All objects emit 

infrared light, which is not visible to the human eye.  The PIR sensor absorbs and is 

heated by the black body radiation and temporarily produces electric potential.   

 The ability to detect motion comes from the focusing power of a Fresnel lens.  

The Fresnel lens gathers the infrared light and focuses it across the sensor.  Motion 

causes the focus to shift, which alters the electric output from the sensor.  Two or Four 

receptors are typically used to reduce false alarm rates from environmental temperature 

changes.   

 A feedback loop is used to control false alarms from slow environmental 

changes, like daytime to nighttime temperatures.  The resulting voltage is sent to an 

amplifier, and then on to a processing unit.  The processor determines if the magnitude of 

the signal has surpassed a specified threshold.  The processor must also determine if 

enough time has passed to transmit again. 

 The Hawkeye II sensor transmits using the X10 wireless protocol.  This protocol 

does not implement hand-shaking, and so attempts to send 5 pulses of identical data per 

packet.  More information on packet loss is discussed in section 3.3.5. 
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Fig. 3.7: Movement across the view of the motion sensor causes output differences  

(Image from www.glolab.com) 
 

 

3.3.3 Test: View Angles 

 Even with a good understanding of how a PIR motion detector works, there are 

still many variables.  The view angle of the lens is largely based on the Fresnel lens 

design and focusing distance.  This series of tests are designed to help define a fuzzy 

model of the sensors. 

 The best way to deal with this uncertainty is to perform lab tests.  I began with 

10 sensors and tested their maximum viewing angle using a short range setup with a 

cardboard heat shield, shown in figure 3.8.  I began the tests by mounting a protractor 

underneath the center of the PIR sensor, which was being held in a jig.  I then measured 

the view angle by blocking most of the sensor’s field of view with the heat shield.  I 
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could then move a heat source (heating blanket) from behind the heat shield and test for 

firings.  If the sensor did fire, I would then move the heat shield to cover more of the 

view area.  Otherwise, I would reduce the coverage.  Tables and graphs of the motion 

sensor results may be found in Appendix A.  Apartment layouts and the sensor distances 

are in Appendix B.  

 
Fig. 3.8: The view angle jig 

 
 

 

 
Fig. 3.9: The view angle jig, heat shield, and heat source 
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 I conducted tests that measured four view angles: Left, Right, Up, and Down.  

These tests were conducted while controlling the heat source temperature and the baffle.  

The first test acted as a control group.  There was no baffle, and the heat source was set to 

the typical temperature of human skin, 93° F.  The second round measured an elevated 

temperature reading, 97° F. 

 We found that a baffle system would be desirable so that we could achieve more 

focused view angles.  The baffled system was tested in two parts.  The first was a used as 

a materials search.  Five materials were tested; each material was placed such that it 

occluded the sensor.  The materials tested include scotch tape, copy paper, card stock (an 

index card), wax paper, and aluminum foil.  The foil tests were conducted with both the 

shiny side inward, and the dull side inward.  I found that copy paper was the most 

effective at limiting the view angle. Table 3.2 below shows the results of this rudimentary 

test. 

 

Table 3.2: Multiple materials were tested to determine those best suited to create a baffle.  A refrigerator 
thermometer was used to detect the temperature of the heating pad and the room.  The temperature in the 

lab was 76º F during the test. 

  Body heat (93) 
low heat 
(92-94) 

med 
heat (96-
98) 

high heat 
(106-108) 

control hit hit hit hit 
tape hit hit hit hit 
copy paper no hit no hit no hit no hit 
index card no hit no hit no hit no hit 
wax paper hit hit hit hit 
Aluminum foil, shiny in hit no hit hit no hit 
Aluminum foil, dull in hit no hit hit no hit 
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 The motion sensors proved to be more consistent than I had previously believed.  

The standard deviation for both low (93° F) and medium (97° F) heat sources were at or 

near 2°.  The average view angle for low heat was 147° by 52°.  Medium heat had an 

average view angle of 152° by 56°.  That is a 3% average increase in horizontal view by 

7% average increase in vertical view. 

 

3.3.4 Firing Rates 

 The oscilloscope images used to determine the length, quantity, and timing of 

the sensor firings can be found in Appendix A.  Measurements can be taken on the 

images to determine timing sequences. 

 The first test is designed to find the length of a pulse, which contains all of the 

data necessary to interpret the command associated with the signal.  The X10 protocol 

transmits 2 bytes (16 bits) by default.  However this number can expand based on the 

system.  The Hawkeye II sensors use an extended protocol that transmits 3 bytes.  The 

transmission pulse (1 of 5 pulses in a packet) contains the command codes used to 

identify the sensor.  The length of a single pulse is 70 milliseconds.   
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Table 3.3:  The length of a single pulse is 70 ms, with a mere 0.69 

ms standard deviation. One hundred pixels is equivalent to 0.01 

seconds. 

 

 

 

 

 

 

 

 The second test determines the number 

of pulses in a transmission and measures the time 

to transmit (aka fire).  Each transmission contains 5 

pulses, with a pause between each pulse.  Each 

transmission averages 505 ms. 

 

 

The final test measures the sensor’s cycle time.  The cycle time is the time it takes 

for the motion sensor to transmit and pause before transmitting again.  This may also be 

referred to as a sensor’s refire rate.  These times have a greater variance than the previous 

two tests, and so I have taken the long and short times of 5 trials.  These two are averaged 

together, and then averaged over all 10 sensors.  The average firing cycle is 7.06 seconds.  

The longest refire was 7.65 seconds and the shortest is 6.64 seconds. 

 

Sensor# 
Length of single 

pulse 
B1 691 px 0.07s 
B2 696 px 0.07s 
B3 681 px 0.07s 
B4 682 px 0.07s 
B5 680 px 0.07s 
B6 677 px 0.07s 
B7 682 px 0.07s 
B8 684 px 0.07s 
B9 669 px 0.07s 
B10 684 px 0.07s 
Avg 683 px 0.07s 
Std 7 px 0.07s Table 3.4: The average transmission 

length is 0.51 seconds, with a 4.8 ms 
standard deviation.  A transmission 
contains 5 pulses, with short pauses 
in between.  One hundred pixels is 
equivalent to .1 seconds. 

Sensor# 
Length of five 

pulses 
B1 512 px 0.51s 
B2 506 px 0.51s 
B3 506 px 0.51s 
B4 505 px 0.51s 
B5 505 px 0.51s 
B6 497 px 0.50s 
B7 510 px 0.51s 
B8 507 px 0.51s 
B9 496 px 0.50s 
B10 507 px 0.51s 
Avg 505 px 0.51s 
Std 5 px 0.51s 
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Table 3.5: The average short, average long, sensor average, and overall average firing cycle times.  One 
second is represented by 100 pixels. 

Sensor# Short Long Avg  Totals Pixels Seconds 
B1 664 px 6.64s 765 px 7.65s 715 px 7.15s  Avg 706 px 7.06s 
B2 692 px 6.92s 747 px 7.47s 720 px 7.20s  Std 30 px 0.30s 
B3 691 px 6.91s 737 px 7.37s 714 px 7.14s     
B4 673 px 6.73s 731 px 7.31s 702 px 7.02s  100 px = 1 seconds  
B5 688 px 6.88s 718 px 7.18s 703 px 7.03s     
B6 695 px 6.95s 695 px 6.95s 695 px 6.95s     
B7 671 px 6.71s 716 px 7.16s 694 px 6.94s     
B8 655 px 6.55s 716 px 7.16s 686 px 6.86s     
B9 684 px 6.84s 741 px 7.41s 713 px 7.13s     
B10 700 px 7.00s 746 px 7.46s 723 px 7.23s     
Avg 681 px 6.81s 731 px 7.31s         
Std 13 px 0.13s 18 px 0.18s         

 

 

3.3.5 Transmission Collision Potential 

 Determining the potential for transmission collision is used as part of the 

footprint of uncertainty.   

 To achieve a successful data transmission, only one of the five pulses has to 

avoid a collision.  These pulses require 0.07 seconds, with an average firing cycle taking 

7.06 seconds.  Total transmission time, including all 5 pulses, is 0.51 seconds.  The 

transmission range is between 50 and 100 feet.  In Tigerplace, that range would include 

the sensor networks from about four apartments. 

  A quick empirical study showed that transmission collisions were not only 

possible, but probable.  Predicting the number of collisions can be approached by 

building the collision rate, or subtracting the probability of no collision from 1.  I have 

approached the problem as a best worst case scenario.  For the sake of simplicity, I am 

only considering cases where only one sensor is being fired per apartment.  There are 

many assumptions that could affect the probability of a collision: 
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• The sensors are independent of each other; 

• The sensor firings are distributed over time; 

• The sensor firings started at random; 

• All of the apartments have active motion; 

• Only one sensor per apartment is being active; 

• The sensors have a constant and consistent refire rate of 7.06 seconds. 

The first way to find the probability for collisions is to find the probability that no 

other sensors will fire during the first 0.07 seconds of the first.  The probability of two 

sensors firing at the same time is 0099.0
06.7
07.0

= .  These numbers will the basis for many 

of the following equations.  1-0.0099 = 0.99, so there would be a 99% chance that in a 

two sensor scenario there will not be a collision.  The probability that no other sensors 

will fire in the 4 apartment scenario is around 399.0 = 0.97.  On the low end, there is a 3% 

chance that there will be a collision.  This only considers complete collisions, so cases 

where more sensors fire within the 0.51 seconds will add to the collision rate. 

The second way to find the probability for collisions is to build the collision rate.  

This requires a case structure, or tree, to determine the final probability.  A sensor firing 

does not simply consume the 70 milliseconds; it will transmit during the entire 0.51 

seconds.  The following equation begins the probability calculation.  It describes a 

situation where none of the other sensors will fire in the next half second. 

80.0
06.7

51.006.7 3

=





 − .  So the probability of at least one collision within the 0.51 

seconds is 20%.  This is where a tree becomes necessary.    From that 20%, the 

probability of a single collision during 0.51 seconds can be found using the 
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formula 185.0
06.7

51.006.7*
06.7
51.0*3

2

=





 −







 .  The probability of two collisions 

is 014.0
06.7

51.006.7*
06.7
51.0*3

2

=





 −







 .  The probability of three collisions 

is 001.0
06.7
51.0*3

3

=





 . 

It is now necessary to break down the cases.  For the single case, initially 18.5% 

collision, so long as one sensor starts 70 milliseconds later then there will not be a 

collision.  86.0
51.0

07.051.0
=






 − .  86% of 0.185 is 0.16, so 16% of the sensor firings will 

make it through with a 2.5% loss.  In the three sensor collision case, there is a guaranteed 

loss.  Three sensors fire within 0.51 seconds, so the middle sensor’s data will collide with 

the end of the first sensor and the beginning of the last sensor.  This is true for all of the 

following sensors as well.  Totaling the losses, a final collision calculation is as follows: 

0.025 + 0.014 + 0.001 = 0.04, or 4%.  A tree representation is represented in Fig 3.10. 
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Fig. 3.10: Calculating the collision probability in a 4 sensor case 

 
 

Again, these numbers are approximate.  They require many assumptions, and are 

based around the conditions at Tigerplace.  Apartments that have visitors, or have sensors 

overlapping more than three other apartments, will have a higher collision rate.  The first 

technique is good for estimating the results, since the second method takes a little more 

computation. 

 

3.3.6 Test: Approximating Velocity 

 The process of approximating velocity using motion sensors returns mixed 

results.  The biggest source of errors comes from the data logger, which only records in 

whole seconds.  Using a constant distance, as the velocity increases the accuracy 
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decreases.  Conversely, when either distance increases or velocity decreases the accuracy 

improves. 

This is a good point to mention a separate sensor study.  Other students have been 

working with a gate monitoring sensor.  This sensor can detect a multitude of attributes 

including walking speed.  Data collected by this group found that residents average 

between 65 cm/sec and 75 cm/sec.  That translates to 2.13 ft/sec and 2.46 ft/sec 

respectively.  A 92 inch distance, equivalent to 234 cm, begins to deteriorate in accuracy 

around the average resident velocity 65 to 75 cm/sec. 

I performed 10 trials that compared velocity calculated using a stopwatch to 

velocity calculated using timestamps from the database.  I simulated a hallway using 

strips of painter’s tape.  Using sensors that exhibited similar view angles, the motion 

sensors were spread equidistantly along the ceiling.  I calculated the distance between the 

cones on the floor.  The distance between the sensor’s viewable areas was about 3 feet 10 

inches.  The results of these trials are shown in table 3.6.  Figure 3.10 is a picture of the 

setup. 

 

Table 3.6: Approximating velocity with a stopwatch compared to motion sensors B3, B4, and B7. 1 ft/sec = 

30.48 cm/sec 

Trial# 
Watch 
Time ft/sec B3 B4 B7 

B3 to 
B4 

B4 to 
B7 

B3 to 
B7 ft/sec 1 ft/sec 2 ft/sec 3 

1 4.53s 3.53 0s 2s 3s 2s 1s 3s 1.92 3.83 2.56 
2 5.91s 2.71 0s 2s 3s 2s 1s 3s 1.92 3.83 2.56 
3 8.84s 1.81 0s 3s 4s 3s 1s 4s 1.28 3.83 1.92 
4 9.81s 1.63 0s 3s 5s 3s 2s 5s 1.28 1.92 1.53 
5 13.81s 1.16 0s 3s 7s 3s 4s 7s 1.28 0.96 1.10 
6 16.93s 0.95 0s 4s 7s 4s 3s 7s 0.96 1.28 1.10 
7 20.41s 0.78 0s 9s 11s 9s 2s 11s 0.43 1.92 0.70 
8 23.41s 0.68 0s 4s 15s 4s 11s 15s 0.96 0.35 0.51 
9 42.88s 0.37 0s 6s 20s 6s 14s 20s 0.64 0.27 0.38 

10 51.09s 0.31 0s 9s 25s 9s 16s 25s 0.43 0.24 0.31 
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Fig. 3.11: The velocity approximation setup 
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Chapter 4 

ALGORITHMS FOR DETECTING VISITORS 

 

4.1 Data Extraction and Preprocessing 

 Motion sensor data is collected by a data logger and then transmitted in chunks 

to the storage server at Tigerplace.  The data is then backed up on a university server 

every night.  I am then able to download the dump file and load it into MySQL.  I have 

written a query in Microsoft Access that accesses MySQL and processes the data log.   

 The database only contains three tables of interest for this algorithm.  The first 

table contains location information.  The second table maps the sensor location and type 

data to the log, which is the third table.   

 The user’s id and the sensor’s location information are drawn directly from the 

database, but six other fields are produced from the log table’s time stamp.  Microsoft 

Access has some great built in functions for handling date types.  I begin by extracting 

the Year, Month, Day, Hour, and Minute information using built in functions.  The last 

field converts the logger’s time stamp to UNIX time. 

 Processing in UNIX time makes sense with the current system.  UNIX time is 

defined to be the number of seconds since January 1, 1970, not including leap seconds.  

A simple conversion from Microsoft’s DateDiff function to UNIX time is as follows: 

1. Read a valid date from a database table (or write in a valid date) 

2. Call DateDiff with three parameters 

a. ‘s’ stands for seconds 
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b. #1/1/1970# is the date January 1, 1970.  The hash marks are delimiters so 

the program knows that there is a date value inside. 

c. [Date] is a reference call to the date from the table.  This may be replaced 

with a constant date following the syntax described above. 

3. DateDiff will calculate the difference in time from January 1, 1970 to the date 

pulled from the database, and return a value in seconds. 

The function will look like this: 

UNIX Time: DateDiff (‘s’,#1/1/1970#,[Date]) 

 The information is then exported to a comma separated file (CSV), which is 

easier for Matlab to read.  Matlab reads each field into a vector.  The fields are combined 

into a cell matrix and sorted.  The data is now ready to be processed into events. 

 

4.2 Segmenting Time 

 Originally, I had created 15 minute blocks of time that would each be measured 

for visitor likelihood.  This model looked similar to Wang’s work on motion density 

maps [1].  I quickly found that this was not a great way to approach the problem.  The 

time stamp in the data log is specified to the second.  That means the algorithm was 

quantizing 900 seconds of diverse action to one event.  The 15 minute block 

implementation had also broken up any data that could help determine if a visitor 

remained in the apartment after the block. 
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Fig. 4.1: Visitor confidence for every 15 minutes 

 
 

 
4.2.1 Defining Events 

 If the visitor did not exit by the door, did the visitor actually leave?  It sounds a 

little like the philosophical riddle “Tree in a forest.”  Chances are that if the visitor is 

going to leave, they will not exit through a window.  Based on this assumption, a second 

version of the algorithm was designed to create events.  I am using the term “event” as a 

period of time bounded by door sensors.  The door sensors act as potential switch points, 

where a visitor may enter or leave the apartment. 

 Each event contains seven items: 

1) startDoor: This is the UNIX timestamp of the door sensor firing that begins 

the event. 

2) endDoor: This is the UNIX timestamp of the door sensor firing that ends the 

event. 
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3) duration: This is the number of seconds contained in the event. 

duration = endDoor – startDoor 

4) occupantType:  Each sensor location is assigned a privacy value from a finite 

set in the range [-1 1].  The occupantType value is an average of the event’s 

privacy values. 

5) hitRatePerHour: 3600*
__

__
eventofduration

eventinhits .  The calculation is the number 

of hits in the event, divided by the duration of the event in seconds, and then 

multiplied by 3600 seconds per hour.  The maximum value is set to be 515 

hits per hour (3600seconds/7seconds per firing cycle). 

6) maxVelocity:  Maximum velocity is calculated by first referencing a table of 

distances between the current sensor, and the last two sensors.  The time 

differences between the current sensor and the last two sensors are then used 

to calculate the velocity.  
onds

cmcedis
sec

)(tan .  Next, take the maximum of the two 

calculated velocities.  The maximum velocity is not allowed to be greater than 

200cm/sec. 

7) confidence: The confidence is calculated using one of the eight classifiers: 

Function, Type-1 SISO, Type-1 MISO, Type-2 SISO No FOU, Type-2 MISO 

No FOU 2 Agents, Type-2 MISO No FOU 1 Agent, Type-2 MISO FOU 2 

Agents, Type-2 MISO FOU 1 Agent.   

 All door sensor firings are potential switch points.  However, when testing this 

version of the algorithm, I found that the motion sensor for the front door can view a 



38 

large area.  Some of the motion in the kitchen and dining area could be detected by the 

door sensor.  In an effort to combat this, I introduced a smoothing algorithm. 

 

4.2.2 Reducing Algorithmic Noise Near Event Boundaries 

 This algorithm was applied after the initial time segmentation and event 

creation.  In a second (and again until convergence) look at the events, fragmented 

periods of time were looked at as likely sources of noise.  Two parameters control the 

noise reduction. 

 The first parameter is the minimum event length.  Minimum event length 

operates in two ways.  Either two short events are combined to form a longer event, or a 

short event is combined with a long event.  Both reduce, and eventually eliminate, events 

that contain fewer seconds than the minimum event length. 

 The second parameter is the confidence tolerance.  The best way to describe the 

motivation for this parameter is to give an example.  Suppose it is the middle of the night, 

and the senior gets out of bed for a drink of water from the kitchen.  As the senior passes 

the front door to get to the kitchen, the door sensor is triggered.  Now there is an event 

marker in the middle of the night. 

 If the door sensor were to be fired twice, the minimum event length parameter 

will likely combine the short event with one of the two longer events (bed time to drink, 

drink to bed time).  However, that still leaves an event break in the middle of the night.  

In the algorithm, two adjacent events are compared.  If the difference in confidence is 

less than the tolerance, they will be combined. 
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4.2.3 Combining the Contents of Multiple Events 

 Each event contains seven pieces of information: 

1. Event Start Time in Unix time 

2. Event End Time in Unix time 

3. Duration of the Event in seconds 

4. Occupant Type 

5. Motion Density per hour 

6. Maximum Velocity recorded 

7. Confidence a visitor has been detected 

 

Start and end times are pretty self explanatory.  They are used primarily in the 

graphing algorithm, discussed in Section 4.9.2.  When events are combined, the new 

event takes its start and end times from the appropriate parent events.  The duration of the 

event, used as a feature for the confidence measure, is the sum of the time from both 

events. 

The occupant type, clarified in Section 4.5, is combined as a weighted average.  

21
2*21*1

hitshits
hitsOhitsO

+
+ , where  

1. O1 is the occupant type from the first event 

2. O2 is the occupant type from the second event 

3. hits1 is the number of hits from the first event 

4. hits2 is the number of hits from the second event 
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The first step in finding the motion hits per hour of the new event is to find the 

number of hits associated with each of the parent events.  To denormalize this field, the 

parent event’s hits per hour (hph) are multiplied by the duration of the event and divided 

by 3600.   

Number of event hits = 
3600
* durationhph  

After calculating this value for both parent events, the hits can be added together 

and divided by the new event duration. 

New hph = 
durationtotal

hitshits
_

21+  

While the maximum velocity is simply the max of the two parents, the new 

confidence is unlike the rest of the calculations.  Now that all of the features have been 

combined, the confidence can be recalculated. 

 

4.3 Motion Detection 

  Motion detectors are the only sensors required for this algorithm to operate.  

While this supports the project goals for an inexpensive noninvasive monitoring network, 

it also means that some assumptions must be made.  The feature space has been built 

upon these assumptions: 

 

1. All data are being logged 

2. The sensors are operating correctly 

3. The sensors have not been occluded  

4. The sensors are in reasonable locations 
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4.3.1 Relating Motion Density to Visitors 

 Motion density shows the activity level for a given period of time.  As more 

people enter the apartment, the density level is expected to rise.  While motion density is 

a good indication of visitors, it does not tell the whole story.  The motion density can also 

be used to detect some of the resident’s routines, like the process of getting ready in the 

morning.. 

The morning and bedtime routines are both associated with a sleeping period 

overnight.  Since there is very little motion activity during sleep periods, the overall 

motion density is very low.  This reduces the false alarm rate that would otherwise occur 

when the resident is most active.  Figure 4.2 is a typical motion density map.  It is easy to 

see when the morning routine takes place from 6:00 AM to 8:00 AM. 

 
Fig. 4.2: A sample density map, produced by Wang’s algorithm [1] 
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4.3.2 The Importance of Motion Sensor Location 

 There are two important points to consider when planning the locations for the 

motion sensors.  The first is how well the sensors will be able to cover the space.  That 

means reducing the area not covered, as well as reducing the areas in which sensor 

overlap occurs.   

Adequate and independent coverage is not a trivial problem.  For instance, as 

mentioned before, the door sensor overlaps some of the same area that the kitchen sensor 

covers.  Baffles can assist in correcting this problem.  Conversely, there is a limit on the 

number of motion sensors that can be used to cover the space.  Transmission collisions 

can quickly become a problem, and the X10 sensors can only address up to 256 sensors 

inside the data logger’s receiving range.  So a reasonable placement solution is essential 

to any algorithm that uses motion. 

 The second important consideration relates to the velocity feature.  As discussed 

in Section 3.3.6, the velocity measure improves with distance between sensors.  The 

Tigerplace apartment layouts are relatively small, and well connected.  There are no 

hallways that can be exploited for velocity calculations, so motion sensors must be set up 

in such a way that the coverage areas are separated by a reasonable distance.  A sample 

layout is shown in Figure 4.3. 
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Fig. 4.3: Example motion sensor layout.  Sensor coverage is in blue. 
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4.4 Approximating Velocity 

 The velocity feature handles two potential situations with respect to visitor 

detection: velocity, and multiple room occupation.  The first step is to gather 

measurements from the apartment.  Combinations that have near adjacent, adjacent, or 

overlapping motion sensors receive a distance of zero.  By setting the distances to zero, 

the algorithm can filter out sensor sequences that have a high error potential.  An example 

of a distance table can be found in table 4.1, which correlates to the floor plan in figure 

4.3. 

When there is only one person moving in the apartment, then the motion sensors 

should fire in order.  Since there isn’t any information that can be gathered by moving 

between adjacent sensors, the algorithm compares a sensor firing to both the previous 

firing and the one before that. 

There are two reasons for checking consecutive motion sensor firing locations.  

The first is that there is a possibility a sensor malfunctions or has a transmission collision, 

discussed in Section 3.3.5.  If the occupant moves to a nonadjacent room and back, and 

the data from the intermediate room is lost, then the time and distance of the nonadjacent 

room would be ignored.  There is also the possibility that there are two occupants in the 

apartment.  As I found in Section 3.3.4, the sensors fire every seven seconds on average.  

Two occupants may be in nonadjacent rooms, but their sensors may not be firing on the 

same second.  Then the velocity becomes a measure of the likelihood of the two events 

relating to the same occupant.  Larger distances indicate a higher likelihood that the 

sensors are detecting two entities.  The maximum allowable velocity is 175 cm per 
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second, unless sensors in two nonadjacent areas fire at the same time.  If two nonadjacent 

sensors fire in the same second, a velocity value of 200 is assigned. 

Table 4.1: Distances for the floor plan in figure 4.3 

  
Living 
Room Kitchen Bathroom Bedroom 

Front 
Door Shower Closet 

Living 
Room 0 cm 0 cm 366 cm 183 cm 0 cm 488 cm 732 cm 

Kitchen 
 

0 cm 0 cm 732 cm 549 cm 0 cm 853 cm 914 cm 

Bathroom 
 

366 cm 732 cm 0 cm 0 cm 792 cm 0 cm 0 cm 

Bedroom 
 

183 cm 549 cm 0 cm 0 cm 610 cm 183 cm 366 cm 
Front 
Door 0 cm 0 cm 792 cm 610 cm 0 cm 914 cm 975 cm 

Shower 
 

488 cm 853 cm 0 cm 183 cm 914 cm 0 cm 0 cm 

Closet 
 

732 cm 914 cm 0 cm 366 cm 975 cm 0 cm 0 cm 
 

 

4.5 Inferring Additional Information 

 There is a small bit of information of interest that is not covered by visitor 

confidence.  What types of activities are being performed in the apartment? I created a 

multivalued set that can be applied to the motion sensor hit from each location.  The 

motion sensor locations are assigned a privacy value from a discrete set in the range [-1 

1].  The percentage of time in various public or private areas of the home can help 

classify the occupant.  For instance, the cleaning person spends a fairly equal amount of 

time in each room.  Table 4.2 shows the values I used, which were determined 

empirically based on the floor plans at Tigerplace. 
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Table 4.2: Privacy values for potential rooms in a Tigerplace apartment 
Room Privacy Value 

Living Room 1 
Kitchen 1 

Bathroom -0.7 
Bedroom -1 

Office 0 
Laundry -1 

Front Door 1 
Shower -1 

Bed -0.7 
Medicine Cabinet -0.5 

Dining Room 1 
Den -0.1 

Closet -0.5 
Bathroom2 -0.7 
Bedroom2 -1 

Closet2 -0.5 
Patio 0 
Bed2 -0.7 

 
This concept could also be extended to the percentage of time spent in individual 

rooms for each event. 

 

4.6 Type-1 and Type-2 Membership Functions (Features) 

 There are two ways to look at a fuzzy classification problem.  The first is to use 

a SISO, or single input single output, system that calculates the confidence for each 

feature individually.  Each feature then receives a weight associated with that feature’s 

ability to detect visitors.  The final solution is the sum of the weighted feature 

confidences. 

 The second way to look at the problem is to have multiple membership inputs 

that combine to form the confidence.  This solution only allows one output membership 

function, but the ability to introduce meaningful rules is a plus. 



47 

 In order to objectively compare Type-1 and Type-2 implementations, the same 

membership functions were used.  The only difference is that the Type-2 input and output 

memberships were fuzzified.  I also tested a MISO style implementation using a function. 

 

4.6.1 Duration of Event 

 The first membership function measures the duration of the event.  This function 

is a type of measure that weights the relative value of motion density to the maximum 

velocity.  A longer duration encourages a higher confidence in the averaged hit rate per 

hour.   

An example of this would be when the resident is up in the middle of the night 

getting a drink of water.  The door sensor would fire, starting an event, and then the 

resident would be detected by the kitchen and living room sensors.  On the way back to 

bed, the resident triggers the door sensor again.  Within a 30 second time frame, there 

have been 4 sensor hits.  This would cause the motion density to indicate that there was a 

time of 480 hits per hour, a much higher value than the actual activity level merited.  A 

lot of this problem will be eliminated with the minimum event length parameter, but 

using a threshold value does not completely solve the problem.   

 The duration membership function contains five Gaussian members.  They 

approximate the following regions: 

1. Very Short: from 0 to about 14 seconds.  These are the most unreliable times 

for the motion density.  Expect 2 or fewer hits. 

2. Sparse: about 14 to about 100 seconds.  Events in this region are still unlikely 

to contain visitors.  Expect 14 or fewer hits. 
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3. Reasonable: about 100 seconds to 7 or 8 minutes.  By 5 minutes the motion 

density is a reasonable estimation.  However, there still are not going to be a 

lot of visitors that pop in for such a short time.  Expect 70 or fewer hits. 

4. Good: from about 7 to 8 minutes to around 15 minutes.  This area constitutes 

short visits from friends and nurses.  By this point, the hit rate average is 

going to be pretty reliable.  It would be difficult to produce a large number of 

hits for 15 minutes from a resident’s standpoint. 

5. Excellent: Greater than about 15 minutes.  This is going to be the most 

accurate average of the activity levels inside the event.  General activity rates 

should be able to distinguish visitors from the resident. 

 

 
Fig. 4.4: The Type-1 duration membership, based on time in seconds 

 

 
Fig. 4.5: The Type-1 duration output membership for the SISO system 
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4.6.2 Motion Density 

 As described in Section 4.3, a higher motion density represents more activity.  

Based on the calculation that a sensor fires every 7 seconds, the maximum number of 

times that a sensor could fire in one hour is 515.  By studying the motion density plots 

produced by Wang [1], it can be seen that a resident typically will not produce more than 

150 hits in one hour.  Densities above 150 hits per hour are out of the ordinary, and so 

indicate an increased possibility that there are visitors present in the apartment. 

 The motion membership function contains five Gaussian members.  They 

approximate the following regions: 

1. Low: from 0 to about 50 hits per hour.  Sedentary activities produce fewer 

than 50 hits. 

2. Normal: from about 50 to about 225 hits.  These correlate to the active times 

of a resident.  There are generally not a lot of room changes, and the resident 

typically stays in the apartment for longer periods of time. 

3. Increased: from about 225 hits to about 375 hits.  This is an unusually large 

number of sensor hits.  This corresponds with the kind of activity levels 

observed in the motion density plots when the cleaning person is in the 

apartment.  Some of the density increase may be attributed to room changes 

(no seven second cycle time). 

4. High: from about 375 hits to about 475 hits.  This is a large number of hits, 

and is approaching the maximum number of sensor hits that could be 

produced by a single sensor.  This is indicative of several room changes and 

likely a second occupant. 
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5. Very High: more than about 475 hits.  This represents a very high activity 

level.  There are likely multiple occupants in separate rooms. 

 

 

  
Fig. 4.6: The Type-1 motion membership, based on time in seconds 

 

 
Fig. 4.7: The Type-1 motion output membership for the SISO system 
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4.6.3 Approximate Velocity and Multiple Occupants 

 Section 3.4 describes two purposes for the velocity measure.  Readings on the 

gate monitoring sensor showed that residents average between 65 and 75 cm per second.  

Those numbers are used to calculate the mean of the normal member of the velocity 

function.  Slower velocities are expected, since there are very few places in the apartment 

that allow for a purposeful forward walking motion. 

 The velocity membership function contains five Gaussian members.  They 

approximate the following regions: 

1. Slow: 0 to about 50 cm per second.  50 cm per second is a little over one mile 

per hour.  This represents typical unhurried activities. 

2. Normal: about 50 to about 90 cm per second.  The normal region describes a 

velocity between 1 and 2 miles per hour.  This is a normal speed for the active 

times of the resident’s morning routine. 

3. Increased: about 90 to about 130 cm per second.  This is an above average 

level of speed for the resident.  It is approximately 2 to 3 miles per hour. 

4. Fast: about 130 to 175 cm per second.  Approximately 3 to 4 miles per hour. 

5. Super Fast: about 175 to 200 cm per second.  Approximately 4 to 4.5 miles 

per hour.  If no time has elapsed and two sensors fire in nonadjacent rooms, a 

value of 200 cm per second is assigned.  Otherwise, the limit is 175 cm per 

second. 
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Fig. 4.8: The Type-1 velocity membership, based on time in seconds 

 

 

 
Fig. 4.9: The Type-1 velocity output membership for the SISO system 
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4.7 The Rule Base 

 The SISO output membership functions are displayed above in figures 4.5, 4.7, 

and 4.9.  They relate to Duration, Motion, and Velocity respectively and appear in blue.  

Their rules are all very simple, and are shown in Table 4.3. 

Table 4.3: 15 rules for SISO type visitor confidence 
Velocity Motion (hph) Duration Consequent 

(output) 
Confidence/Weight 

Slow   Very Low 
Normal   Low 
Increased   Medium 
Fast   High 
Super Fast   Very High 
 Low  Very Low 
 Normal  Low 
 Increased  Medium 
 High  High 
 Very High  Very High 
  Very Short Very Low 
  Sparse Low 
  Reasonable Medium 
  Good High 
  Excellent Very High 
 

 To complete the confidence measure of the SISO systems, the output from the 

duration value is applied to the motion and velocity outputs. 

( ) tvelocityOuweightOutmotionOutweightOutconfidence *1* −+=  

 In the three input case, the fuzzy systems handles the duration internally as part 

of the rule base.  There are 30 rules.  Five of the rules build a base confidence from the 

velocity measure.  The other 25 represent values derived by applying the five duration 

steps to the five motion densities.  While the velocity and motion features are directly 

related to the visitor confidence, the duration feature acts as a weight.  The duration 



54 

feature determines the confidence of the system in the motion density feature (hph).  The 

rules can be found in table 4.4. 

 

Table 4.4: 30 rules for MISO visitor confidence 
Velocity Motion (hph) Duration Consequent 

(output) 
Confidence/Weight 

Slow   Very Low 
Normal   Low 
Increased   Medium 
Fast   High 
Super Fast   Very High 
 Low Very Short Very Low 
 Low Sparse Very Low 
 Low Reasonable Very Low 
 Low Good Very Low 
 Low Excellent Low 
 Normal Very Short Very Low 
 Normal Sparse Very Low 
 Normal Reasonable Low 
 Normal Good Low 
 Normal Excellent Low 
 Increased Very Short Low 
 Increased Sparse Low 
 Increased Reasonable Medium 
 Increased Good Medium 
 Increased Excellent High 
 High Very Short Low 
 High Sparse Low 
 High Reasonable Medium 
 High Good High 
 High Excellent Very High 
 Very High Very Short Low 
 Very High Sparse Medium 
 Very High Reasonable High 
 Very High Good Very High 
 Very High Excellent Very High 
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4.8 Defining the Footprint of Uncertainty 

 The Footprint of Uncertainty (FOU) is the parameter that fuzzifies the endpoints 

of Type-2 membership functions.  The characterization tests on the motion sensors 

(sections 3.3.x) are used to model the FOU.  I was not able to find an example of this in 

the literature, and so is a novel way to approach the calculation of the FOU.   There are 4 

membership functions that need to be converted to Type-2 membership functions.   

The first is the HitsPerHour feature (hph).  I began by calculating the largest and 

smallest number of maximum possible hits per hour.  The largest maximum hits per hour 

disregards the collision potential (section 3.3.5), and uses the average minimum firing 

cycle rate (section 3.3.4). 

hph
cycle

529
sec/81.6

sec60min*60
=








.   

To calculate the smallest maximum hits per hour uses the collision potential as well as 

the average maximum firing cycle rate.  First, calculate the rate without collisions. 

hph
cycle

48.492
sec/31.7

sec60min*60
= . 

Next, apply the collision potential. 

  hph47204.*476.49248.492 =− . 

To finish the FOU calculation, find the difference. 

hphhphhph 56472529 =−  is the FOU associated with the motion density. 

 The second FOU to be calculated is the velocity.  The velocity FOU is 

generalized on the empirical data associated with the velocity tests in Table 3.6, section 

3.3.6.  In addition to the average error, the view angle differences vary by a few degrees.  

The view angle standard deviation represents an uncertainty in the distance between the 
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sensors viewable areas.    The FOU is calculated by using the final uncertainty, 15%, 

multiplied by the maximum velocity. 

sec/30sec/200*15.0 cmcm = is the FOU associated with the velocity feature. 

 

 

 

Table 4.5: Average velocity error over 350 cm distance 

Trial# 
Stopwatch 
ft/sec 

Sensor 
ft/sec 

Error  

1 3.53 2.56 27% 
2 2.71 2.56 7% 
3 1.81 1.92 6% 
4 1.63 1.53 6% 
5 1.16 1.10 5% 
6 0.95 1.10 16% 
7 0.78 0.70 10% 
8 0.68 0.51 25% 
9 0.37 0.38 3% 

10 0.31 0.31 0% 
Avg   10.5% 

 

 The FOU for the duration is a simple selection.  I use a 28 second FOU, based 

on the 7 second cycle time.  I chose this number because the minimum event length 

parameter makes the input membership value at least a “Good Length” at 10 minutes.  

Twenty-eight seconds is around a 5% uncertainty (4.7%). 

 The last FOU is for the output membership functions.  There is no great way to 

calculate this FOU, but the final range of values will be in the range [0 1].  I selected a 

5% uncertainty, 0.05. 
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4.9 Implementation 

 This algorithm is run in Matlab 7.6.0.  For the Type-1 system, I modified the 

fuzzy toolbox to use a higher resolution when performing calculations on the 

memberships.  This can be accomplished by searching the text in the fuzzy toolbox for 

the number 171, which is the hard coded resolution value, and updating it to 1000 (the 

resolution you want).   

 The Type-2 systems are implemented using a set of Matlab files available on 

Mendel’s website [30].  The same means (peaks of the memberships) and standard 

deviations are used for the Type-1 and Type-2 systems.  The FOU’s are input as 

parameters, with a value chosen above and below to make sure that there is not any 

obvious gradient information that produces better solutions.  This is especially significant 

for the duration and output membership functions, which are not strongly modeled in the 

lab tests. 

 One difference is made between the Type-1 MISO and Type-2 MISO systems, 

in that Mendel’s Matlab files do not allow the user to input a rule base that does not use 

all of the rules.  Consequently, one solution is to approximate by averaging the velocity 

rule outputs with the motion density and duration rule outputs (two agents).  Since neither 

the velocities nor the density/duration pairs are dependant on each other, this appears to 

be a reasonable solution. 

 On account of the defuzzification being a little different, I have run the Type-2 

MISO 2 Agents system with and without an FOU.  By setting the FOU to zero for each of 

the membership functions, it is effectively a Type-1 system.  I refer to this 

implementation as the Type-2 MISO No FOU 2 Agents system because the interval 
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Type-2 software was used to produce the results.  The corresponding system with FOU is 

called the Type-2 MISO FOU 2 Agents system. 

 A more traditional approach to this problem is to replace unused memberships 

with flat functions.  In this case, the Gaussian membership functions have a standard 

deviation of infinity.  The flat function is reduced out of the equation when minimized 

with a non-flat membership function.  This approach is also broken into FOU and No 

FOU cases: Type-2 MISO FOU, and Type-2 MISO No FOU. 

The remaining fuzzy classifiers are Type-1 SISO, Type-2 SISO (No FOU), and 

the functions.  The Type-1 SISO system is a product of the fuzzy toolbox, and the Type-2 

SISO system is implemented in Mendel’s Matlab files. 

 

4.10 Function Approximation 

 As a sixth option, I made a simple function that approximated the concepts 

employed in the SISO fuzzy systems.  Multiple inputs are combined together to form a 

final confidence.  Each of the functions is a normalized quadratic. 

Motion = 2

2

515
)515,( rhitsPerHouMin  

Velocity = 2

2

200
)200,(velocityMin  

Weight = 
1800

)1800,( 2durationMin  

Confidence = ( ) VelocityWeightMotionWeight *1* −+  
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4.11 Understanding the Results 

 It is not enough to simply produce a confidence value, without knowing how it 

performs.  There are a couple of ways I looked at the data.  The first is by implementing a 

ROC curve.  The second is a display output, similar to the motion density maps.  The 

display can be visually inspected for known visitor times, and as a product, is used to 

show visitor interaction. 

 

4.11.1 ROC Curves 

 ROC stands for Receiver (or Relative) Operating Characteristic.  While the 

name is somewhat cryptic, it represents the percentage of true positives to false positives.  

The information can be used two ways.  By plotting the true positives to false positives, a 

measurement of the area under the curve can be taken.  If the true positive rate is known, 

or if an acceptable false positive rate can be established, two implementations can be 

compared equally.  Otherwise, a larger area represents a better classifier. 

 

4.11.2 Displaying the Data in a Meaningful Way 

 I took inspiration from the motion density maps when designing the data view.  

The graph is laid out in a grid.  The rows contain the data from each day, while the 

columns contain the times of day.   

 The visitor confidence information I calculate is quantized to the second.  Not 

wanting to throw out the additional information, I display the confidences in seconds 

rather than hours.  Another difference with my implementation is that the confidence 

display blocks are higher or lower, dependant on if the visitor type was public or private 
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(see Section 4.5).  A line runs across the center of each day to make the visitor type easier 

to read.  Fig. 4.10 shows an example of the display data. 

 
Fig. 4.10: An example of the visitor confidence display output
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Chapter 5 
 

THE TEST APARTMENT 

 

5.1 Purpose of the Test Apartment 

 To measure the effectiveness of a system, it must be tested in a controlled 

environment.  To this end, a test apartment was set aside at Tigerplace for students to 

work on their algorithms.   

 Nine motion sensors were installed along with a data logger.  The sensors were 

placed in each area of the home, in a typical configuration shown in Fig. 5.1. 

 

 
Fig. 5.1: The test apartment layout 
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5.2 Organization of the Tests Performed 

 A series of tests were performed in the test apartment at Tigerplace.  The test 

apartment was a new model, containing two bedrooms.  In the case of a visitor and a 

resident, Ian Kable was recruited to act as the resident.  All tests began with the visitor, 

me, out of the apartment. 

1. Series 1: An active visitor comes to the apartment without the resident.  The 

visitor opens the door. 

a. Housekeeper: 15 minutes of high activity, while working in all rooms of 

the apartment.  

b. Tech Person: 15 minutes of working on the data logger and the sensor 

network.  Generally in the public areas of the home. 

2. Series 2: An active visitor comes to the apartment, which is occupied by the 

resident.  The visitor opens the door. 

a. Housekeeper: 15 minutes of high activity, while working in all rooms of 

the apartment.  The resident converses with the visitor and reads the paper. 

b. Paid Helper: 15 minutes of medium activity in the public areas of the 

home.  The resident converses with the visitor and is generally inactive. 

c. Tech Person: 15 minutes of working on the data logger and the sensor 

network.  Generally in the public areas of the home. 

d. Other Resident: 15 minutes of conversation.  The residents move some 

about the public areas of the apartment.  The residents stay in the same 

room together. 
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e. Family: 15 minutes of conversation interspersed with other activities, such 

as going into the bathroom alone. 

3. Series 3: An active visitor comes to the apartment, which is occupied by the 

resident.  The resident opens the door.  All other factors from the test are the same 

as those from Series 2. 

4. Series 4: A sedentary visitor comes to the apartment, which is occupied by the 

resident.  The visitor opens the door. 

a. Other resident: A slow entry into the apartment, followed by 15 minutes of 

conversation in the living room.  The other resident then exits at a slow 

pace. 

b. Family: A quick entry into the apartment, followed by 15 minutes of 

conversation in the living room.  The family member moves quickly 

(relatively) when leaving the apartment. 

5. Series 5: A sedentary visitor comes to the apartment, which is occupied by the 

resident.  The resident opens the door.  All other factors from the test are the same 

as Series 4. 

6. Series 6: Neither a visitor nor the resident is in the apartment. 

7. Series 7: The resident is alone, but active. 

a. The resident cleans up around the kitchen area. 

b. The resident cleans up around the living room. 

c. The resident performs their morning routine in the bathroom. 

d. The resident performs their morning routine in the closet. 

e. The resident performs their morning routine in the living room. 
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f. The resident prepares to leave the apartment. 

g. The resident exercises in the room or dances.  This particular test is from a 

story told by a member of the research group.  The resident had asked him 

if we could see that she danced for exercise every morning. 

h. The resident prepares for bed. 

i. The resident wakes up in the night to use the restroom. 

8. Series 8: The resident is alone and sedentary. 

a. The resident is reading the paper. 

b. The resident is watching television. 

c. The resident is taking a nap in the chair. 

d. The resident is using the computer. 

 

Each series of tests was designed to answer a specific question, or to try to 

classify border cases.  Series 1 contains a single occupant other than the resident.  I 

consider this visitor ground truth because the algorithm is designed to detect activity 

levels and velocities that do not match the resident.  Series 2 tests the presence of the 

resident with an active visitor, which is the ideal visitor ground truth.  Series 3 is the 

same as Series 2, except that the resident opens the door.  Series 4 and 5 are borderline 

cases where both the resident and their visitor are sedentary for visitor ground truth.  

Series 6 is simply to verify that the algorithm has no visitor confidence during times 

when there is no one in the apartment.  Series 7 is a borderline case where the resident is 

particularly active, and is a no visitor ground truth.  Series 8 is no visitor ground truth for 

times when the resident is sedentary. 
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Chapter 6 

TEST APARTMENT RESULTS AND KNOWN USER DATA 

 

6.1 Test Apartment Results and Analysis 

 Each test series from section 5.2 is performed once to generate the ground truth 

data.  While at first they appear to represent a small sample size, the algorithm operates 

on a second by second basis.  There are 22,775 seconds in the ground truth data.  The 

visitor ground truth has 14,060 seconds (61.7%), and the no visitor ground truth has the 

remaining 8,715 seconds (38.3%). 

 The first set of tests compares the minimum event lengths.  The function 

implementation is used in this test, because it has a shorter computation time.  The area 

underneath the ROC curve is measured without noise reduction (second by second), as 

well as for 1 thru 20 minute minimum event lengths, shown in figure 6.1.  A second test 

measures the maximum accuracy for the same sets, shown in figure 6.2.  These tests help 

qualify the various minimum event lengths, so that an informed decision can be made on 

which minimum length value to use.   

 Since the first tests did not provide any conclusive data, three minimum event 

length samples are chosen for the test apartment data: 5 minutes, 10 minutes, and 15 

minutes.  The relative performances are shown for ROC curve area in figures 6.3, 6.6, 

and 6.9.  The corresponding maximum accuracy data can be found in figures 6.4, 6.7, and 

6.10.  The ROC curves themselves are in figures 6.5, 6.8, and 6.11.  The point that 

corresponds with the maximum accuracy (the confidence level) is marked by a red dot.  

The test apartment tests were all around 15 minutes long, which biases the 15 minute 
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minimum event length results.  In the residents’ apartment data, the 10 minute minimum 

event length is found to be preferential, because visitor activity shorter than the minimum 

event length is at risk for going undetected.  The 15 minute event length seems to be too 

long, based on empirical evidence. 

 The ROC curves appear blocky for a couple of reasons.  The major reason for 

the blocky appearance is that the minimum event length often creates a constant 

confidence across the individual tests (bounded by red and blue boxes in figures 6.12 thru 

6.27).  The other reason for the blocky ROC curves is the limited number of trials.  

Repeating each of the test series would provide smoother ROC curves for the data.  

 For reference, I have also included the confusion matrices for each of the 

classifiers and minimum event lengths.  The confusion matrices are based on the 

confidence level associated with the best classification accuracy.  Each set of confusion 

matrices are on the page following the ROC curves. 
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Fig. 6.1: ROC curve area by minimum event length for the function classifier 

 
 

Maximum Accuracy for the function implementation, by minimum event length
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Fig. 6.2: Accuracy by minimum event length for the function classifier 
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Fig. 6.3: ROC areas of the 8 classifiers for 5 minute minimum event length 
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Fig. 6.4: Maximum accuracy of the 8 classifiers for 5 minute minimum event length 

 
 
 
 



69 

 
 
 
 
 
 
 

 
Fig. 6.5: ROC curves for the 5 minute minimum event length implementations.   

The red dots mark the places where the confidence maximizes accuracy. 
a) Function, b) Type-1 SISO, c) Type-1 MISO, d) Type-2 SISO No FOU,  
e) Type-2 MISO No FOU 2 Agents, f) Type-2 MISO No FOU 1 Agent,  

g) Type-2 MISO FOU 2 Agents, h) Type-2 MISO FOU 1 Agent 
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Fig. 6.5: ROC curves for the 5 minute minimum event length implementations.   

The red dots mark the places where the confidence maximizes accuracy. 
a) Function, b) Type-1 SISO, c) Type-1 MISO, d) Type-2 SISO No FOU,  
e) Type-2 MISO No FOU 2 Agents, f) Type-2 MISO No FOU 1 Agent,  

g) Type-2 MISO FOU 2 Agents, h) Type-2 MISO FOU 1 Agent 
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Table 6.1: Confusion matrices for the 5 minute minimum event length classifiers 

T1S = Type-1 SISO, T1M = Type-1 MISO, T2S = Type-2 SISO No FOU,  
T2M 2A = Type-2 MISO No FOU 2 Agent, T2M 1A = Type-2 MISO No FOU 1 Agent 

T2MF 2A = Type-2 MISO FOU 2 Agent, T2MF 1A = Type-2 MISO FOU 1 Agent 
 
 

Function Visitor No 
Visitor  T1S Visitor No 

Visitor 

TRUE 100.0% 31.7%  TRUE 88.0% 31.7% 

FALSE 0.0% 68.3% 
 

FALSE 12.0% 68.3% 

   
    

T1M Visitor No 
Visitor  T2S Visitor No 

Visitor 

TRUE 61.9% 11.7%  TRUE 75.6% 31.7% 

FALSE 38.1% 88.3% 
 

FALSE 24.4% 68.3% 

       

T2M 2A Visitor No 
Visitor  

T2M 1A Visitor No 
Visitor 

TRUE 60.0% 24.5% 
 

TRUE 60.0% 5.6% 

FALSE 40.0% 75.5% 
 

FALSE 40.0% 94.4% 

       
T2MF 

2A Visitor No 
Visitor  

T2MF 
1A Visitor No 

Visitor 

TRUE 96.0% 57.0% 
 

TRUE 57.7% 24.5% 

FALSE 4.0% 43.0% 
 

FALSE 42.3% 75.5% 
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Fig. 6.6: ROC areas of the 8 classifiers for 10 minute minimum event length 
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Fig. 6.7: Maximum accuracy of the 8 classifiers for 10 minute minimum event length 
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Fig. 6.8: ROC curves for the 10 minute minimum event length implementations.   

The red dots mark the places where the confidence maximizes accuracy. 
a) Function, b) Type-1 SISO, c) Type-1 MISO, d) Type-2 SISO No FOU,  
e) Type-2 MISO No FOU 2 Agents, f) Type-2 MISO No FOU 1 Agent,  

g) Type-2 MISO FOU 2 Agents, h) Type-2 MISO FOU 1 Agent 
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Fig. 6.8: ROC curves for the 10 minute minimum event length implementations.   

The red dots mark the places where the confidence maximizes accuracy. 
a) Function, b) Type-1 SISO, c) Type-1 MISO, d) Type-2 SISO No FOU,  
e) Type-2 MISO No FOU 2 Agents, f) Type-2 MISO No FOU 1 Agent,  

g) Type-2 MISO FOU 2 Agents, h) Type-2 MISO FOU 1 Agent 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



75 

 
 

Table 6.2: Confusion matrices for the 10 minute minimum event length classifiers 
T1S = Type-1 SISO, T1M = Type-1 MISO, T2S = Type-2 SISO No FOU,  

T2M 2A = Type-2 MISO No FOU 2 Agent, T2M 1A = Type-2 MISO No FOU 1 Agent 
T2MF 2A = Type-2 MISO FOU 2 Agent, T2MF 1A = Type-2 MISO FOU 1 Agent 

 

Function Visitor No 
Visitor  

T1S Visitor No 
Visitor 

TRUE 100.0% 31.7% 
 

TRUE 100.0% 31.7% 

FALSE 0.0% 68.3% 
 

FALSE 0.0% 68.3% 

       

T1M Visitor No 
Visitor  

T2S Visitor No 
Visitor 

TRUE 75.6% 5.4% 
 

TRUE 75.6% 11.7% 

FALSE 24.4% 94.6% 
 

FALSE 24.4% 88.3% 

       

T2M 2A Visitor No 
Visitor  

T2M 1A Visitor No 
Visitor 

TRUE 100.0% 31.7% 
 

TRUE 75.6% 5.4% 

FALSE 0.0% 68.3% 
 

FALSE 24.4% 94.6% 

       
T2MF 

2A Visitor No 
Visitor  

T2MF 
1A Visitor No 

Visitor 

TRUE 75.5% 0.0% 
 

TRUE 75.6% 19.1% 

FALSE 24.5% 100.0% 
 

FALSE 24.4% 80.9% 
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Fig. 6.9: ROC areas of the 8 classifiers for 15 minute minimum length 
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Fig. 6.10:  Maximum accuracy of the 8 classifiers for 15 minute minimum length 
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Fig. 6.11: ROC curves for the 15 minute minimum event length implementations. 

The red dots mark the places where the confidence maximizes accuracy. 
a) Function, b) Type-1 SISO, c) Type-1 MISO, d) Type-2 SISO No FOU,  
e) Type-2 MISO No FOU 2 Agents, f) Type-2 MISO No FOU 1 Agent,  

g) Type-2 MISO FOU 2 Agents, h) Type-2 MISO FOU 1 Agent 
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Fig. 6.11: ROC curves for the 15 minute minimum event length implementations. 

The red dots mark the places where the confidence maximizes accuracy. 
a) Function, b) Type-1 SISO, c) Type-1 MISO, d) Type-2 SISO No FOU,  
e) Type-2 MISO No FOU 2 Agents, f) Type-2 MISO No FOU 1 Agent,  

g) Type-2 MISO FOU 2 Agents, h) Type-2 MISO FOU 1 Agent 
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Table 6.3: Confusion matrices for the 15 minute minimum event length classifiers 

T1S = Type-1 SISO, T1M = Type-1 MISO, T2S = Type-2 SISO No FOU,  
T2M 2A = Type-2 MISO No FOU 2 Agent, T2M 1A = Type-2 MISO No FOU 1 Agent 

T2MF 2A = Type-2 MISO FOU 2 Agent, T2MF 1A = Type-2 MISO FOU 1 Agent 
 
 

Function Visitor No 
Visitor  

T1S Visitor No 
Visitor 

TRUE 100.0% 31.7% 
 

TRUE 100.0% 31.7% 

FALSE 0.0% 68.3% 
 

FALSE 0.0% 68.3% 

       

T1M Visitor No 
Visitor  

T2S Visitor No 
Visitor 

TRUE 100.0% 31.7% 
 

TRUE 100.0% 31.7% 

FALSE 0.0% 68.3% 
 

FALSE 0.0% 68.3% 

       

T2M 2A Visitor No 
Visitor  

T2M 1A Visitor No 
Visitor 

TRUE 100.0% 31.7% 
 

TRUE 100.0% 31.7% 

FALSE 0.0% 68.3% 
 

FALSE 0.0% 68.3% 

       
T2MF 

2A Visitor No 
Visitor  

T2MF 
1A Visitor No 

Visitor 

TRUE 100.0% 31.7% 
 

TRUE 100.0% 31.7% 

FALSE 0.0% 68.3% 
 

FALSE 0.0% 68.3% 
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 The following figures are used for visual inspection of the algorithm results 

(figures 6.12 to 6.27).  They are based on the 10 minute minimum event length.  Ground 

truth data is bounded in red and blue boxes for easier viewing.  The red boxes surround 

test times that contain visitor ground truth.  Blue boxes surround times that contain no 

visitor ground truth, meaning times when the algorithm should return a low confidence in 

visitors.  I use no(n) visitor ground truth in the figures to clarify the intended purpose. 

 Times that are not bounded by red or blue boxes are not from this series of tests.  

Other students were using the apartment during those times, and they should be 

disregarded for the purposes of verification. 

 
Fig. 6.12: Display from function implementation on the test apartment data.  The red bounds indicate 

visitor ground truth. 
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Fig. 6.13: Display from Type-1 SISO implementation on the test apartment data.  The red bounds indicate 

visitor ground truth. 

 
Fig. 6.14: Display from Type-1 MISO implementation on the test apartment data.  The red bounds indicate 

visitor ground truth. 
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Fig. 6.15: Display from Type-2 SISO No FOU implementation on the test apartment data.  Red bounds 

indicate visitor ground truth. 

 
Fig. 6.16: Display from Type-2 MISO No FOU 2 Agents implementation on the test apartment data.  Red 

bounds indicate visitor ground truth. 
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Fig. 6.17: Display from Type-2 MISO No FOU 1 Agent implementation on the test apartment data.  The 

red bounds indicate visitor ground truth. 

 
Fig. 6.18: Display from Type-2 MISO FOU 2 Agents implementation on the test apartment data.  The red 

bounds indicate visitor ground truth. 
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Fig. 6.19: Display from Type-2 MISO FOU 1 Agent implementation on the test apartment data.  The red 

bounds indicate visitor ground truth. 

 
Fig. 6.20: Display from function implementation on the test apartment data.  The blue bounds indicate 

no(n) visitor ground truth. 



85 

 
Fig. 6.21: Display from Type-1 SISO implementation on the test apartment data.  The blue bounds indicate 

no(n) visitor ground truth. 

 
Fig. 6.22: Display from Type-1 MISO implementation on the test apartment data.  The blue bounds indicate 

no(n) visitor ground truth. 



86 

 
Fig. 6.23: Display from Type-2 SISO implementation on the test apartment data.  The blue bounds indicate 

no(n) visitor ground truth. 

 
Fig. 6.24: Display from Type-2 MISO No FOU 2 Agents implementation on the test apartment data.  The 

blue bounds indicate no(n) visitor ground truth. 
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Fig. 6.25: Display from Type-2 MISO No FOU 1 Agent implementation on the test apartment data.  The 

blue bounds indicate no(n) visitor ground truth. 

 
Fig. 6.26: Display from Type-2 MISO FOU 2 Agents implementation on the test apartment data.  The blue 

bounds indicate no(n) visitor ground truth. 
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Fig. 6.27: Display from Type-2 MISO FOU 1 Agent implementation on the test apartment data.  The blue 

bounds indicate no(n) visitor ground truth. 
 

 
6.2 Tigerplace User Results and Analysis 
 
 While the apartment tests returned good results, the confidence levels used are 

concerning (.0088 confidence level is good?).  This carries over to the resident data, 

which will naturally require a different set of confidences if the same membership 

functions are used. For the resident tests, I used the same set of confidences for all three 

tests (Users 3004, 3007, and 3010).  However, each implementation of the classifier uses 

a different confidence threshold (Table 6.4). 
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Table 6.4: Confidence thresholds used when graphing the resident apartment displays 
 

Classifier Confidence Threshold 

Function 0.40 

Type-1 SISO (T1S) 0.50 

Type-1 MISO (T1M) 0.75 

Type-2 SISO No FOU (T2S) 0.40 

Type-2 MISO No FOU  
2 Agents (T2M 2A) 

0.40 

Type-2 MISO No FOU 
1 Agent (T2M 1A) 

0.75 

Type-2 MISO FOU  
2 Agents (T2MF 2A) 

0.75 

Type-2 MISO FOU 
1 Agent (T2MF 1A) 

0.75 

 

 Since there is no real ground truth data for the resident apartments, there are no 

ROC curves or confusion matrices.  However, the cleaning schedule times are bounded 

by red boxes so that a sense of performance can be ascertained.  The motion density map 

is included first (figures 6.28, 6.37, and 6.46) as a comparison.  Visitor confidence graphs 

follow their respective motion density maps.  User 3004 is shown in figures 6.29 thru 

6.36.  User 3007 is shown in figures 6.38 thru 6.45.  User 3010 is shown in figures 6.47 

thru 6.54. 
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6.2.1 User 3004 
 
 User 3004 led a highly regimented life.  Based on the motion density map, there 

exist clear times when this resident would wake, eat meals, and go to bed.  This resident 

gets up every morning at 7:00 AM, and leaves for breakfast at 8:00 AM.  Dinner is at 

6:00 PM, and bedtime is between 10:00 and 11:00 PM.  The activity levels are high in the 

mornings, and otherwise are pretty moderate.   

 The function classifier found several short intervals that it classified as visitor 

times.  From event inspection, these are mostly from times where the resident is in the 

kitchen.  The door sensor area overlaps some of the kitchen, and the motion density 

becomes inflated.  The Type-1 SISO system found several times when visitors are likely.  

The MISO system was able to greatly reduce the noise from the motion densities, but 

may have not included all of the visitor times.  The Type-2 2 Agent systems behaved 

almost identically to each other (and the Type-2 SISO), where the FOU system granted 

an increase in the confidence of the visitor times detected.  The single agent cases made 

the visitation stays appear much longer.  The Type-2 MISO No FOU 2 Agent system, 

while returning lower confidences, returns values that best match the confidences I would 

have assigned the times in question.  However, without additional ground truth data the 

Type-2 MISO FOU 2 Agent system may have performed better (it definitely was more 

sure of the solution). 

 Figures 6.29 thru 6.36 display the visitor confidences for the month of January 

2006.  The housekeeping times are bounded by a red rectangle.  The displays are based 

on the 10 minute minimum event length, and the confidences from Table 6.4.  For 

comparison, I also included the motion density plot in figure 6.28. 
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Fig. 6.28: Motion density plot for User 3004 

 

 
Fig. 6.29: User 3004 function implementation display 
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Fig. 6.30: User 3004 Type-1 SISO implementation display 

 

 
Fig. 6.31: User 3004 Type-1 MISO implementation display 
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Fig. 6.32: User 3004 Type-2 SISO No FOU implementation display 

 

 
Fig. 6.33: User 3004 Type-2 MISO No FOU 2 Agents implementation display 
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Fig. 6.34: User 3004 Type-2 MISO No FOU 1 Agent implementation display 

 

 
Fig. 6.35: User 3004 Type-2 MISO FOU 2 Agents implementation display 

 



95 

 
Fig. 6.36: User 3004 Type-2 MISO FOU 1 Agent implementation display 

 
 
6.2.2 User 3007 
 
 User 3007 only had one regular period of the day, which was leaving the 

apartment for dinner.  The motion density map displays a very restless life, and mostly 

sedentary activities.  It is difficult to tell if there were many visitors from the map, and 

the lack of time out of the apartment leads me to believe this resident was socially 

isolated. 

 The unpredictable, sedentary activity levels make this a tough visitor detection 

case.  During this display month, September 2007, it appears as though the resident had 

an aid to help get ready in the mornings (confirmed).  The function classifier collected 

broken visitor information during the morning visitor detections, but all four 

housekeeping visits were correctly classified.  The Type-1 SISO system caught all four of 

the housekeeping visit, but like the function classifier broke the morning into separate 



96 

visitor cases. The Type-1 MISO system again seems to have thrown out possible visitor 

times, including two housekeeping visits.  The Type-1 MISO system was, however, able 

to combine the detected information into logical blocks.  The Type-2 SISO No FOU 

system performed similarly to the Type-1 MISO and function classifiers.  The Type-2 

MISO No FOU 2 Agent system did not display great confidence in any of the anticipated 

times.  It also dropped a housekeeping visit, and likely several other visitors (based on the 

other algorithm results).  The Type-2 MISO FOU 2 Agent system either cleaned up a 

little bit of extra noise, or dropped some valid detections compared to the other systems 

(it is unclear).   The Type-2 MISO FOU 2 Agent system also dropped the last 

housekeeping visit, but, had a high confidence in the detections it made.  The single agent 

Type-2 systems again had a high confidence in the times it detected visitors, but 

classified elongated periods of time as high visitor confidence. 

 Figures 6.38 thru 6.45 display the visitor confidences for the month of 

September 2007.  The housekeeping times are bounded by a red rectangle.  The displays 

are based on the 10 minute minimum event length, and the confidences from Table 6.4.  

For comparison, I also included the motion density plot in figure 6.37. 
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Fig. 6.37: Motion density plot for User 3007 

 

 
Fig. 6.38: User 3007 function implementation display 
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Fig. 6.39: User 3007 Type-1 SISO implementation display 

 

 
Fig. 6.40: User 3007 Type-1 MISO implementation display 
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Fig. 6.41: User 3007 Type-2 SISO No FOU implementation display 

 

 
Fig. 6.42: User 3007 Type-2 MISO No FOU 2 Agents implementation display 
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Fig. 6.43: User 3007 Type-2 MISO No FOU 1 Agent implementation display 

 

 
Fig. 6.44: User 3007 Type-2 MISO FOU 2 Agents implementation display 
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Fig. 6.45: User 3007 Type-2 MISO FOU 1 Agent implementation display 

 
 
6.2.3 User 3010 
 
 User 3010 regulated their day only slightly more than User 3007.  The biggest 

challenge with this user is the high activity levels.  There very easily could have been 

visitors in the apartment much of the time, but it is certain that the Type-2 MISO No 

FOU 2 Agent system suppressed the most noise while detecting all of the housekeeping 

visits.  The data from the Type-2 MISO No FOU 2 Agent system also displays some 

regularity.  Typically, there are visitor detections within a day of the cleaning staff, in the 

early afternoon.  

 While it is clear that this resident has a lot more activity in their room than User 

3007, the addition activity makes it difficult to distinguish visitors.  The function 

classifier is a good example of this, because it includes a significant number of potential 

visitor times.  While the function classifier has confidence in a lot of smaller regions, the 
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Type-1 MISO No FOU 2 Agent system has a high confidence in very few visitor times.  

However, the Type-1 MISO No FOU 2 Agent system does not detect the last 

housekeeping visit.  The Type-1 and Type-2 SISO systems produced the noisiest 

displays, which appear to correlate to the morning routine of the resident.  It is possible 

that this resident had help in the morning as well.  The Type-2 MISO FOU 2 Agent 

classifier detected a few more cases where visitors were likely in the apartment compared 

to the Type-1 MISO system, but still missed the last housekeeping visit.  As before, the 

single agent implementations classified long stretches of time as visitor times, but 

otherwise were similar to their 2 Agent counterparts.  My favored implementation for this 

user is the Type-2 MISO No FOU 2 Agent system.  It is able to clean up the visitor 

confidence throughout the month, while still giving a reasonable confidence to known 

visitor regions. 

 Figures 6.47 thru 6.54 show one month taken from the display data.  The 

housekeeping times are bounded by a red rectangle.  These are based on the 10 minute 

minimum event length.  For comparison, I also included the motion density plot in figure 

6.46. 
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Fig. 6.46: Motion density plot for User 3010 

 

 
Fig. 6.47: User 3010 function implementation display 
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Fig. 6.48: User 3010 Type-1 SISO implementation display 

 

 
Fig. 6.49: User 3010 Type-1 MISO implementation display 
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Fig. 6.50: User 3010 Type-2 SISO No FOU implementation display 

 

 
Fig. 6.51: User 3010 Type-2 MISO No FOU 2 Agents implementation display 
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Fig. 6.52: User 3010 Type-2 MISO No FOU 1 Agent implementation display 

 

 
Fig. 6.53: User 3010 Type-2 MISO FOU 2 Agents implementation display 
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Fig. 6.54: User 3010 Type-2 MISO FOU 1 Agent implementation display 

 
 
6.3 Discussion of the Results 

 The goal of this research was to build an algorithm that could accurately identify 

times when visitors were in the apartment.  Two methods were explored for the 

evaluation of the effectiveness of the algorithm.  The more objective method is the ROC 

curve.  However, there is very little reliable ground truth data from the resident 

apartments.  The only recorded visitor information is from the cleaning staff. 

 There are two cases in which this algorithm is most likely to fail, assuming the 

sensor layout and measurements are implemented correctly.  The first case is when two 

sedentary individuals enter the apartment and stay in the same room.  There is no 

significant increase in the motion density, and no velocity data.  This failure is more of a 

problem for the social health measurement concern than the activity level (the activity 

displayed is normal for the resident alone).  The second potential area of failure is if 
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either the sensors malfunction (fire without motion) and peak the maximum velocity, or if 

the resident is frequently changing rooms (running up the motion density).  The empirical 

results display robustness for this problem. 

Using a 5 minute minimum event length turned out to be a too short for the 

resident data.  The noise reduction was greatly improved by increasing to a 10 minute 

minimum event length.  Though the test apartment data worked well with a 15 minute 

minimum event length, many of the visitor times were being lost or combined over an 

unrealistic amount of time (Ex. 8:00 PM to 7:00 AM).  Ten minutes turned out to be a 

good parameter choice.  Noisy information near the doorway is reduced, but documented 

visits still show up well.   

 I found that the minimum event length has a far reaching impact on the 

preferential classification system.  When using a 5 minute minimum event length, the 

systems produced erratic results.  But when the minimum event length is increased to 10 

minutes, the fuzzy systems significantly improve (particularly the MISO systems).  The 

improved results approach the function classifier at 87.9% classification accuracy.  A test 

of 15 minute minimum event lengths improves all of the classifiers to 87.9%, but as was 

previously stated, this number is biased to the length of the test series. 

 It is clear from all of the resident data that the confidence threshold will be much 

different from individual to individual.  The test apartment data was able to achieve a 

high degree of accuracy at unreasonable confidence levels.  It is also interesting that the 

Type-2 MISO systems performed better without attempting to create an FOU.  The 2 

Agent implementation was only slightly different from the Type-1 MISO system, based 

on a limitation of Mendel’s software [30], which is explained in Section 4.9.  A final pair 
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of single Agent implementations did not improve the results.  The Type-2 MISO FOU 

systems greatly increased the confidence levels, but likely reduced the number of 

detected visitor times. 
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Chapter 7 

CONCLUSIONS AND FURTHER STUDY 

 

7.1 Conclusions 

 This project turned out to be much more difficult than I had originally 

anticipated.  The most difficult part is defining helpful features from the data.  Motion 

sensors are obviously going to be good at detecting motion, but the data has a very low 

dimensionality.  It is a good challenge to create a high level detection scheme from low 

level data. 

The fuzzy Type-2 system has a lot of upsides.  The ability to fuzzify the 

memberships improves the algorithm in two areas.  The first is that I do not have to be an 

expert on each resident’s motion data profile to create a reliable classifier.  The second 

improvement is that the classifier generalizes pretty well over a variety of activity 

profiles. 

 The major problem with Type-2 systems is that they take an inordinate amount 

of time to produce data.  Compared to the Type-1 system, the Type-2 system works 

almost 7.5 times as long.  As the number of events rises, the difference quickly becomes 

overwhelming.  For instance, the fuzzy Type-2 MISO system took almost 3 hours to run 

the combine events algorithm.  It is important to keep in mind that User 3004 has 

recorded data for two and a half years, and in practice the algorithm will likely only be 

processing data for one month at a time. 

 The Type-2 MISO FOU 2 Agents and No FOU 2 Agents systems produce 

results too similar to make a decision based on resident data.  The data from the test 
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apartment suggests that the No FOU system performs slightly better.  I would consider 

this too close to call, but personally favor the No FOU system.  It may just be a matter of 

trusting results that have such a high confidence where I am uncertain at best.  There is 

also the case where the Type-2 MISO FOU system did not detect the housekeeping for 

User 3010, albeit a short visit. 

 While it is surprising that the function performs so well on the test data, it ended 

up recording a lot of artifacts, causing the resulting display to be noisy.  This is a good 

method for quick tests, possibly real time tracking.  I think with more work, a better 

function could be derived to model the interaction of the features. 

 The fuzzy Type-1 system is a fair compromise between the function and the 

Type-2 systems.  While not as fast as the function approximation, it is better at removing 

a lot of the noise.  I am basing this opinion primarily on the empirical data collected for 

the users, but the Type-1 system performed pretty well on the test apartment data as well. 

 There are mixed results when comparing SISO to MISO fuzzy systems.  The 

SISO system boosts the Type-1 classification accuracy by 5%, but causes a drop of 7.5% 

with the Type-2 system. There is a definite advantage to the SISO system in run time.  By 

simplifying the fuzzy inference (removing complex rules), the run time for the Type-2 

system is cut in half.  In spite of the processing complexity problem, there are two 

reasons I recommend the MISO system over the SISO system: 

1. MISO system empirically performs much better in the Type-2 case on resident 

data. 
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2. By choosing classification performance over processing performance when 

selecting to go with a Type-2 system, the additional processing time is less of 

a problem. 

 

I find it fascinating that the 2 Agent implementations appear to have performed 

better in the residential displays than their 1 Agent counterparts.  Much of this has to do 

with the Minimum Event Length Algorithm, which combines similar confidences.  

Regardless, I would have figured the traditional approach to the Type-2 implementation 

would return, by far, the best results.  I did not find that in this work. 

Overlapping sensor areas that are not documented will artificially increase the 

velocity.  It is impossible to get reasonable measurements of the distance traveled 

between motion sensors otherwise.  If it is known that the sensors overlap, the distance in 

the algorithm can be set to zero.  Once the distance is zero, no velocity information will 

be calculated between the two points. 

Depending on the specific requirements for the algorithm, another potential 

problem occurs when multiple occupants stay in the same room or in adjacent areas.  

Without the benefit of velocity data, the motion sensors would need to be very active to 

increase the confidence in the visitor.   

The last area of concern is dependant on how the user wants to define the social 

levels of the resident.  I would classify the resident as engaged in social activity while 

outside of the apartment.  It is difficult to specifically identify times when there are 

multiple occupants in the apartment.  Additionally, there is no guarantee that one of the 

multiple occupants is the resident.   
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I feel this is algorithm meets the need, and performs admirably on the data 

available.  There are many steps that can be taken to improve the environment that would 

positively impact the effectiveness of this algorithm.    

 

7.2 Future Study 

 It may be possible to take better advantage of the matrix functionality in Matlab 

to reduce processing costs.  It would be particularly valuable when calculating the Type-2 

system.  There are a lot of intensive calculations, such as the EKM (Enhanced Karnik-

Mendel) algorithm, that take a considerable amount of the processing time per pass.  

Currently the problem with pursuing this tactic is that events are being combined on the 

fly, some of which is based on confidence.   

 While this algorithm is designed in part to help determine the activity level of 

the resident alone, the results from the activity level algorithm could be used to further 

refine the memberships and confidences of this algorithm.  The cyclic nature of the 

process would allow both algorithms to learn, so long as the cycle does not enter an 

unstable state. 

Another means for training the system is to use a neural network or genetic 

algorithm to create an expert system from ground truth data.  Training a neural network is 

black boxing the algorithm, but a system that can be trained on the individual is ideal.  

The system may initially learn from training data produced by through the fuzzy visitor 

detection algorithm.   

The final task will be integrating the information produced by this algorithm into 

the system being created by the Eldertech team.  Most of the project that is associated 
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with the motion sensors is written in Matlab, so the integration should be smooth after the 

timestamps are associated. 
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APPENDIX 
 

Appendix A 
 

TABLES AND GRAPHS OF MOTION SENSOR TEST RESULTS 

 

Motion sensing with infrared sensor through various materials 
Lab temperature: 76º F       

  Body heat (93) 
low heat 
(92-94) 

med 
heat (96-
98) 

high heat 
(106-108) 

control hit hit hit hit 
tape hit hit hit hit 
copy paper no hit no hit no hit no hit 
index card no hit no hit no hit no hit 
wax paper hit hit hit hit 
Al shiny in hit no hit hit no hit 
Al dull in hit no hit hit no hit 

I used a refrigerator thermometer to detect the temperature of the heating pad and room 
 

 

 

Standard configuration, no baffle, low heat 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 18° 162° 144° 65° 117° 52° 
B2 15° 162° 147° 64° 117° 53° 
B3 18° 162° 144° 67° 119° 52° 
B4 13° 160° 147° 67° 115° 48° 
B5 14° 161° 147° 65° 119° 54° 
B6 14° 160° 146° 62° 118° 56° 
B7 13° 159° 146° 65° 117° 52° 
B8 14° 160° 146° 68° 120° 52° 
B9 14° 167° 153° 67° 115° 48° 
B10 11° 164° 153° 67° 121° 54° 
Avg 14° 162° 147° 66° 118° 52° 
StDev 2° 2° 3° 2° 2° 2° 
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Standard configuration, no baffle, med heat 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 15° 166° 151° 66° 117° 51° 
B2 15° 167° 152° 63° 118° 55° 
B3 12° 163° 151° 68° 122° 54° 
B4 13° 167° 154° 65° 121° 56° 
B5 14° 162° 148° 65° 118° 53° 
B6       
B7 12° 163° 151° 61° 117° 56° 
B8 13° 164° 151° 62° 121° 59° 
B9 14° 167° 153° 62° 121° 59° 
B10 11° 165° 154° 62° 121° 59° 
Avg 13° 165° 152° 64° 120° 56° 
StDev 1° 2° 2° 2° 2° 3° 

 

 

 

 

 

Standard configuration - with Fresnel lenses, no baffle, heat difference 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 3° 4° 7° -1° 0° -1° 
B2 0° 5° 5° 1° 1° 2° 
B3 6° 1° 7° -1° 3° 2° 
B4 0° 7° 7° 2° 6° 8° 
B5 0° 1° 1° 0° -1° -1° 
B6       
B7 1° 4° 5° 4° 0° 4° 
B8 1° 4° 5° 6° 1° 7° 
B9 0° 0° 0° 5° 6° 11° 
B10 0° 1° 1° 5° 0° 5° 
Avg 1° 3° 4° 2° 2° 4° 
StDev 2° 2° 3° 3° 2° 4° 
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First Alternate, 14mm copy paper baffle, low heat 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 63° 117° 54° 67° 112° 45° 
B2 66° 115° 49° 65° 113° 48° 
B3 66° 120° 54° 66° 111° 45° 
B4 65° 113° 48° 66° 114° 48° 
B5 66° 114° 48° 68° 105° 37° 
B6       
B7 64° 117° 53° 68° 106° 38° 
B8 60° 120° 60° 68° 115° 47° 
B9 66° 114° 48° 65° 107° 42° 
B10 65° 114° 49° 67° 110° 43° 
Avg 65° 116° 51° 67° 110° 44° 
StDev 2° 2° 4° 1° 3° 4° 

 

 

 

 

 

First Alternate, 14mm copy paper baffle, med heat 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 60° 120° 60° 66° 115° 49° 
B2 63° 121° 58° 66° 114° 48° 
B3 64° 121° 57° 65° 113° 48° 
B4 60° 118° 58° 64° 115° 51° 
B5 63° 117° 54° 66° 113° 47° 
B6       
B7 66° 119° 53° 66° 112° 46° 
B8 59° 121° 62° 68° 119° 51° 
B9 63° 119° 56° 65° 112° 47° 
B10 62° 117° 55° 64° 113° 49° 
Avg 62° 119° 57° 66° 114° 48° 
StDev 2° 2° 3° 1° 2° 2° 
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First Alternate, 14mm copy paper baffle, heat difference 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 3° 3° 6° 1° 3° 4° 
B2 3° 6° 9° -1° 1° 0° 
B3 2° 1° 3° 1° 2° 3° 
B4 5° 5° 10° 2° 1° 3° 
B5 3° 3° 6° 2° 8° 10° 
B6      0° 
B7 -2° 2° 0° 2° 6° 8° 
B8 1° 1° 2° 0° 4° 4° 
B9 3° 5° 8° 0° 5° 5° 
B10 3° 3° 6° 3° 3° 6° 
Avg 2° 3° 6° 1° 4° 4° 
StDev 2° 2° 3° 1° 2° 3° 

 

 

 

 

 

Second Alternate, 17mm copy paper baffle, low heat 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 65° 111° 46° 76° 103° 27° 
B2 65° 112° 47° 77° 110° 33° 
B3 67° 110° 43° 80° 100° 20° 
B4 66° 112° 46° 77° 103° 26° 
B5 70° 112° 42° 83° 99° 16° 
B6       
B7 69° 111° 42° 84° 98° 14° 
B8 68° 115° 47° 78° 101° 23° 
B9 69° 111° 42° 78° 98° 20° 
B10 68° 112° 44° 80° 102° 22° 
Avg 67° 112° 44° 79° 102° 22° 
StDev 2° 1° 2° 3° 3° 5° 
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Second Alternate, 17mm copy paper baffle, med heat 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 60° 114° 54° 68° 108° 40° 
B2 61° 113° 52° 76° 111° 35° 
B3 60° 112° 52° 70° 105° 35° 
B4 64° 113° 49° 71° 108° 37° 
B5 64° 113° 49° 72° 109° 37° 
B6       
B7 66° 113° 47° 74° 105° 31° 
B8 62° 120° 58° 69° 107° 38° 
B9 62° 113° 51° 72° 103° 31° 
B10 66° 112° 46° 77° 106° 29° 
Avg 63° 114° 51° 72° 107° 35° 
StDev 2° 2° 3° 3° 2° 3° 

 

 

 

 

 

Second Alternate, 17mm copy paper baffle, heat difference 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 5° 3° 8° 8° 5° 13° 
B2 4° 1° 5° 1° 1° 2° 
B3 7° 2° 9° 10° 5° 15° 
B4 2° 1° 3° 6° 5° 11° 
B5 6° 1° 7° 11° 10° 21° 
B6      0° 
B7 3° 2° 5° 10° 7° 17° 
B8 6° 5° 11° 9° 6° 15° 
B9 7° 2° 9° 6° 5° 11° 
B10 2° 0° 2° 3° 4° 7° 
Avg 5° 2° 7° 7° 5° 11° 
StDev 2° 1° 3° 3° 2° 6° 
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Fifth Alternate, 14mm copy paper 3mm pinhole baffle, low heat 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 78° 102° 24° 87° 91° 4° 
B2 77° 99° 22° 86° 92° 6° 
B3 82° 107° 25° 85° 91° 6° 
B4 79° 98° 19° 87° 92° 5° 
B5 85° 100° 15° 86° 91° 5° 
B6       
B7 85° 98° 13° 90° 91° 1° 
B8 84° 106° 22° 90° 97° 7° 
B9 85° 98° 13° 89° 91° 2° 
B10 85° 106° 21° 91° 93° 2° 
Avg 82° 102° 19° 88° 92° 4° 
StDev 3° 4° 4° 2° 2° 2° 

 

 

 
 

 

  

Fifth Alternate, 14mm copy paper 3mm pinhole baffle, med heat 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 71° 109° 38° 84° 94° 10° 
B2 74° 103° 29° 85° 92° 7° 
B3 82° 107° 25° 84° 91° 7° 
B4 72° 106° 34° 86° 93° 7° 
B5 78° 103° 25° 85° 91° 6° 
B6       
B7 84° 109° 25° 87° 92° 5° 
B8 76° 112° 36° 82° 92° 10° 
B9 83° 103° 20° 86° 92° 6° 
B10 83° 107° 24° 85° 92° 7° 
Avg 78° 107° 28° 85° 92° 7° 
StDev 5° 3° 6° 1° 1° 2° 
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Fifth Alternate, 14mm copy paper 3mm pinhole baffle, heat difference 

Sensor# 
left 
angle 

right 
angle horizontal 

up 
angle 

down 
angle vertical 

B1 7° 7° 14° 3° 3° 0° 
B2 3° 4° 7° 1° 0° -1° 
B3 0° 0° 0° 1° 0° -1° 
B4 7° 8° 15° 1° 1° 0° 
B5 7° 3° 10° 1° 0° -1° 
B6      0° 
B7 1° 11° 12° 3° 1° -2° 
B8 8° 6° 14° 8° -5° -13° 
B9 2° 5° 7° 3° 1° -2° 
B10 2° 1° 3° 6° -1° -7° 
Avg 4° 5° 9° 3° 0° -3° 
StDev 3° 3° 5° 2° 2° 4° 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Per transmission (5 
consecutive pulses) 

Sensor# 
Length of five 

pulses 
B1 512 px 0.51s 
B2 506 px 0.51s 
B3 506 px 0.51s 
B4 505 px 0.51s 
B5 505 px 0.51s 
B6 497 px 0.50s 
B7 510 px 0.51s 
B8 507 px 0.51s 
B9 496 px 0.50s 
B10 507 px 0.51s 
Avg 505 px 0.51s 
Std 5 px 0.00s 

Per 
pulse   

Sensor# 
Length of single 

pulse 
B1 691 px 0.07s 
B2 696 px 0.07s 
B3 681 px 0.07s 
B4 682 px 0.07s 
B5 680 px 0.07s 
B6 677 px 0.07s 
B7 682 px 0.07s 
B8 684 px 0.07s 
B9 669 px 0.07s 
B10 684 px 0.07s 
Avg 683 px 0.07s 
Std 7 px 0.00s 
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Time between sensor firings in seconds (100px = 1 sec)  
Sensor# Short Long Avg 
B1 664 px 6.64s 765 px 7.65s 715 px 7.15s 
B2 692 px 6.92s 747 px 7.47s 720 px 7.20s 
B3 691 px 6.91s 737 px 7.37s 714 px 7.14s 
B4 673 px 6.73s 731 px 7.31s 702 px 7.02s 
B5 688 px 6.88s 718 px 7.18s 703 px 7.03s 
B6 695 px 6.95s 695 px 6.95s 695 px 6.95s 
B7 671 px 6.71s 716 px 7.16s 694 px 6.94s 
B8 655 px 6.55s 716 px 7.16s 686 px 6.86s 
B9 684 px 6.84s 741 px 7.41s 713 px 7.13s 
B10 700 px 7.00s 746 px 7.46s 723 px 7.23s 
Avg 681 px 6.81s 731 px 7.31s     
Std 13 px 0.13s 18 px 0.18s     
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Appendix B 

USER APARTMENT LAYOUTS 

Table of User 3004 location distances 
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Table of User 3007 location distances 
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Table of User 3010 location distances 
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Table of User 3022 location distances (Test Apartment) 
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User 3022 (Test Apartment) 

 

 

 

 

 

 

 

 

 

 

 

 



136 

Appendix C 
 

MEMBERSHIP FUNCTIONS 

Feature Member Mean Std Dev 

Velocity Slow 0 25 

Velocity Normal 70 11 

Velocity Increased 115 14 

Velocity Fast 155 15 

Velocity Super Fast 200 16 

Velocity Out Very Low 0 0.04 

Velocity Out Low 0.12 0.04 

Velocity Out Medium 0.4 0.11 

Velocity Out High 0.683 0.1 

Velocity Out Very High 1 0.04 

Motion Low 0 25 

Motion Normal 150 45 

Motion Increased 300 53 

Motion High 425 30 

Motion Very High 515 15 

Motion Out Very Low 0 0.04 

Motion Out Low 0.2 0.08 

Motion Out Medium 0.5 0.1 

Motion Out High 0.8 0.08 

Motion Out Very High 1 0.04 
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Feature Member Mean Std Dev 

Duration Very Short 0 5 

Duration Sparse 60 20 

Duration Reasonable 335 108 

Duration Good 600 191 

Duration Excellent 1800 450 

Duration Out Very Low 0 0.08 

Duration Out Low 0.25 0.11 

Duration Out Medium 0.5 0.07 

Duration Out High 0.75 0.11 

Duration Out Very High 1 0.08 

MISO Output Very Low 0 0.1062 

MISO Output Low 0.25 0.1062 

MISO Output Medium 0.5 0.1062 

MISO Output High 0.75 0.1062 

MISO Output Very High 1 0.1062 

 


