Origin of Gases and Odors

To understand how gases and odors are produced, first learn the basic chemical and biochemical transformations involved in the anaerobic (without oxygen) treatment process.

Gases and odors in a confinement facility result from bacterial action on biodegradable parts of swine waste. Gases produced in greatest volume are methane, carbon dioxide, ammonia, and hydrogen sulfide.

A complicated group of volatile organic substances also contribute to the odor complex in swine buildings. This group contains amines, mercaptans, alcohols, carbonyls and sulfides in trace amounts.

Methane, the gas produced in greatest volume during the anaerobic stabilization process, results from organic acids being degraded. This gas usually escapes to the atmosphere, and is a potential air pollutant.

Carbon dioxide, the second most abundant gas in the anaerobic process, is also produced as organic acids are degraded. Because it is odorless, the pollution potential of this gas is often overlooked.

Ammonia is released as amino acids in protein are broken down by bacteria. This gas is easily recognized because of its pungent odor.

Hydrogen sulfide is also a part of the odor. Anaerobic reduction of sulfur-containing compounds such as certain amino acids result in formation of hydrogen sulfide. This gas has a very offensive odor.

The volatile organic substances mentioned above are often responsible for offensive odors associated with swine facilities. Because the human nose is extremely sensitive to compounds such as amines and mercaptans, these gases are of primary concern, even though they are present in trace amounts.

Properties and Physiological Effects of Noxious Gases

Table 1 summarizes some pertinent properties and physiological effects of gases associated with hogs.

Methane is colorless, odorless, and lighter than air. It is given off in considerable quantity from anaerobic action. However, it is formed by a highly specialized group of bacteria, and conditions normally found in confinement facilities are not conducive to producing significant amounts of methane. The more important danger of methane is perhaps its explosive characteristic at concentrations of 5 to 15 percent. This gas is normally considered non-toxic, but has an asphyxiating effect.

Carbon dioxide is colorless, odorless, and heavier than air. It normally makes up 30 to 60 percent of the gas resulting from anaerobic stabilization of manure. Carbon dioxide is not highly toxic, however its greater danger is asphyxiation due to depletion of oxygen supply in the air. Concentrations of carbon dioxide greater than 4 percent are cause for concern, both from an operator and animal standpoint.

Ammonia, a colorless gas, usually makes up a very small percentage (less than 5%) of the gases produced during decomposition of animal manure. However it is easily recognized by its pungent odor. Ammonia concentrations greater than 0.01 percent in a confinement building are likely to cause considerable discomfort to both humans and animals. Ammonia is highly soluble in water, therefore its presence is usually less noticeable where liquid manure systems are used rather than solid floors.

Hydrogen sulfide is colorless, heavier than air, and has the characteristic “rotten egg smell.” Although given off in relatively small quantities during anaerobic decomposition, hydrogen sulfide is the most toxic of manure gases. Concentrations of this gas greater than 0.001 percent cause considerable discomfort to man and beast, and levels greater than 0.05 percent are likely to be lethal.

Many other gaseous compounds, some causing very strong odors, are released during anaerobic decomposition. However, they are produced only in trace amounts, and have not been thoroughly studied. Compounds such as sulfides, amines, and mercaptans are known to be an important part of the odor complex.

Potentially Lethal Situations

Under normal conditions in a well-designed confinement facility there is little likelihood of noxious gas levels rising to critical concentrations. However, there are circumstances in which gas levels can become critically high, even in a properly designed confinement facility.

Ventilation breakdown is most often the cause of critically high gas levels in confinement facilities. If fresh air in a confinement facility is not replenished due to power failure, carbon dioxide levels can reach lethal proportions in eight to ten hours. Death under these circumstances is usually hastened by rising temperature and humidity in the confinement facility.
Agitating manure that has been stored in a pit for several months can release dangerous quantities of noxious gases even if the ventilation system is operating properly. The dangers during agitation are release of the highly toxic gas hydrogen sulfide, and release of carbon dioxide in quantities sufficient to deplete the oxygen supply.

Entering a manure storage pit can be potentially lethal for humans. Carbon dioxide and hydrogen sulfide are heavier than air, and tend to collect at the manure surface. In pits equipped with a cover or manhole opening only, methane can accumulate, creating potentially explosive conditions. Persons should never enter a manure storage pit unless it has been ventilated to get rid of dangerous gases.

Controlling Gases and Odors

The following guidelines may aid in preventing excess gas and odor buildup in confinement buildings.

1. Remove manure from building regularly. If manure is removed from a building before it begins to decompose, only small amounts of gases and odors are released.
2. Buildings equipped with pits should have venting portals between the manure level in the pit, and the slats above the pit.

References

TABLE I Properties and Physiological Effects of Noxious Gases (Adapted from Taiganides and White, 1968)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Density $\times 10^6$ gr/l</th>
<th>Specic gravity $\times 10^3$</th>
<th>Odor</th>
<th>Explosive range $\times 10^3$ ppm</th>
<th>Odor threshold $\times 10^{-3}$ ppm</th>
<th>Maximum allowable concentrations $\times 10^3$ ppm</th>
<th>Concentrations $\times 10^3$ ppm</th>
<th>Exposure period</th>
<th>Physiological effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide (CO$_2$)</td>
<td>1.98</td>
<td>1.53</td>
<td>None</td>
<td>None</td>
<td>5,250</td>
<td>20,000</td>
<td>30,000</td>
<td>60 min.</td>
<td>Asphyxiant</td>
</tr>
<tr>
<td>Ammonia (NH$_3$)</td>
<td>.77</td>
<td>.58</td>
<td>Sharp, pungent</td>
<td>16-46</td>
<td>50</td>
<td>400</td>
<td>700</td>
<td>30 min.</td>
<td>Irritant</td>
</tr>
<tr>
<td>Hydrogen sulfide (H$_2$S)</td>
<td>1.54</td>
<td>1.19</td>
<td>Rotten egg smell, nauseating</td>
<td>4-40</td>
<td>10</td>
<td>200</td>
<td>700</td>
<td>60 min.</td>
<td>Poison</td>
</tr>
<tr>
<td>Methane (CH$_4$)</td>
<td>.72</td>
<td>.58</td>
<td>None</td>
<td>None</td>
<td>50</td>
<td>1,000</td>
<td>50,000</td>
<td>60+ min.</td>
<td>Asphyxiant</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>1.25</td>
<td>.97</td>
<td>None</td>
<td>None</td>
<td>50</td>
<td>500</td>
<td>1,000</td>
<td>60 min.</td>
<td>Poison</td>
</tr>
</tbody>
</table>

a Density: Density of the gases in grams per liter at 32°F. Density of air is 1.29 gm/l.

b Specific gravity: The ratio of the weight of pure gas to that of atmospheric air. If the number is less than 1, the gas is lighter than air; if greater than 1, it is heavier than air.

c Explosive range: The range within which a mixture of gas and atmospheric air can explode with a spark (% by volume).

d Odor threshold: The lowest concentration at which the odor is detected. This figure can only be approximate.

e Maximum allowable concentration: The concentration set by health agencies as the maximum allowed in an atmosphere where men work over an 8-to 10-hour period. Possibly the levels should be lower for animals since they must be in the environment continuously.

f Concentrations: In parts of pure gas per million parts of atmospheric air. To change to % by volume, divide by 10,000.

g Exposure period: The time during which the effects of the noxious gas are felt by an adult human or a 150-pound pig.

h Physiological effects: Those found to occur in adult humans. Similar effect would be felt by a 150-pound pig. Lighter pigs would be affected sooner at lower levels.