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Abstract

The inherent massive parallelism of cellular neural networks makes them

an ideal computational platform for kernel-based algorithms and image pro-

cessing. General-purpose GPUs provide similar massive parallelism, but it can

be di�cult to design algorithms to make optimal use of the hardware. The

presented research includes a GPU abstraction based on cellular computation

using cellular neural networks. The abstraction o�ers a simpli�ed view of mas-

sively parallel computation which remains universal and reasonably e�cient.

An image processing library with visualization software has been developed us-

ing the abstraction to showcase the �exibility and power of cellular computation

on GPUs. A simple virtual machine and language is presented to manipulate

images using the library for single-core, multi-core, and GPU backends.

viii
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INTRODUCTION
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1 Introduction to Research Topic

Cellular neural networks (CNNs) are an attractive platform for parallel image pro-

cessing due to their ability to perform per-pixel operations in parallel. The research

presented here aims to target commodity graphics processing units (GPUs) for e�-

cient simulation and visualization of CNNs. GPUs are readily available and provide

a massively parallel platform ideally suited to the simulation of CNNs. Simulating

CNNs on commodity GPU hardware allows for the straightforward application of

existing CNN image processing algorithms without special CNN hardware. Addition-

ally, CNN visualization software provides a convenient platform for further research

on CNNs [26, 15] and similar networks, including arti�cial neural networks and con-

tinuous cellular automata.

It is di�cult to structure algorithms to take advantage of massively parallel pro-

cessors and GPUs. Cellular automata, neural networks, and CNNs are abstract com-

puting machines which make use of networks of processing elements following simple

rules. Some of these systems can be implemented e�ciently in hardware, but it can

be di�cult to translate their parallelism into an e�cient software implementation for

simulation on commodity hardware.

CNNs have been shown to be especially adept at image processing tasks [6, 14, 21,

16, 31]. The increasing popularity of dedicated GPU hardware prompts the following

questions: Can we make use of commodity GPU hardware to simulate CNNs for

image processing? Can a GPU-based cellular image processing library outperform

CPU-based image processing implementations like OpenCV? Can CNN simulation

and visualization tools make it easier to design image processing algorithms in terms

of CNNs compared to more traditional programming paradigms?

Simple GPU-based CNN simulations have been demonstrated that run much faster

than CPU-based CNN simulations [13, 11]. The thesis supported here is that this

improvement can translate to faster and easier image processing algorithms compared
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to traditional CPU-based algorithms.

1.1 Research Goals and Intended Contributions

This research addresses the di�culty of developing software for GPUs and other mas-

sively parallel architectures by abstracting the hardware as arrays of con�gurable

CNN cells. The software described here enables programmers to implement e�cient

visual and cellular computations using the CNN paradigm, while leveraging the par-

allelism of GPU hardware. Introducing an e�cient CNN-based abstraction of GPU

computation should encourage the study of massively parallel computation using tools

and methods of dynamic systems theory and abstract automata theory which have

shown great utility in CNN research [6, 8]. This abstraction makes GPU programming

approachable from a mathematical perspective such that engineers and scientists can

utilize GPU parallelism without understanding the underlying hardware.

A key advantage of designing algorithms in terms of CNNs is that changes in the

underlying hardware do not a�ect the high-level CNN algorithm. In other words,

once a CNN-based algorithm is designed, the same algorithm can be simulated on

GPUs, distributed over a computer cluster, implemented directly in specialized digital

or analog hardware (�vision chips�), or implemented in any other combined solution

of hardware and software [10, 14, 15, 26, 29].

Many image processing algorithms are natural to implement in terms of spatially

invariant local rules. Thus, CNNs are a convenient platform for image processing.

However, specialized CNN processors can be cost-prohibitive and cumbersome re-

search platforms, and CPU-based CNN simulation is very slow in comparison. To

make CNN-based image processing applications practical, an alternative platform is

needed. This research supports the idea that GPUs are a viable option for both CNN

research and applciation.

A software CNN simulator is required for developing and exploring CNN algo-
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rithms and applications [16]. In particular, a fast CNN simulator is required for CNN

algorithm discovery using evolutionay computation [12]. This CNN simulation and

visualization software will facilitate the design and evaluation of new CNN applica-

tions, especially those related to image processing.

In summary, the goals of this research are:

• to demonstrate the CNN as a universal abstraction of parallel computation on

various platforms,

• to exploit commodity GPUs to improve image processing performance, and

• to provide CNN simulation and visualization tools for CNN research and appli-

cation.
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CNNs ANNs

topology uniform 2D grid usually feed-forward
processing element dynamic equations nonlinear weighted sum

common uses image processing classi�cation, control

Table 1: CNNs, ANNs compared

2 Cellular Neural Networks

Cellular neural networks (CNNs) are similar to arti�cial neural networks (ANNs)

in that they are composed of many distributed processing elements, called �cells�,

which are connected in a network; however, there are several important di�erences

between CNNs and ANNs (see Table 1). Instead of the usual feed-forward, multi-

layered architecture seen in many types of neural networks, CNNs were designed to

operate in a two-dimensional grid, where each processing element (cell) is connected

to neighboring cells in the grid. The cells comprising a CNN communicate by sending

signals to neighboring cells in a manner similar to ANNs, but the signals are processed

by each cell in a unique way. Speci�cally, CNN cells maintain a state which evolves

through time due to di�erential (or di�erence) equations dependent on the cell's

inputs and feedback.

2.1 CNN Topology

CNNs are composed of many cells arranged in a grid, M . To simplify discussion,

we will assume these grids are always square with dimensions m × m for m2 cells.

Each cell in the grid is denoted vij for i, j ∈ [1..m]. Thus each cell is labeled from v11

to vmm. We de�ne two types of cell depending on their location in the grid: inner

cells and boundary cells. Boundary cells occur near the edges of the grid; inner cells

occur everywhere else. As we will see, boundary cells must have di�erent properties

compared to inner cells because they are connected to fewer neighboring cells.

Considering only inner cells for now, each cell is the center of a neighborhood Nij
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Figure 1: CNN neighborhood

of n×n cells. By this de�nition, n must be odd and is usually n = 3. By convention,

each cell in a given neighborhood is assigned an index k from 1..n2, with k = 1

denoting the center cell, as shown in Figure 1. Thus any given center cell vij , v1

belongs to the neighborhood Nij , N = {v1, v2, ..vn2}, where we have dropped the

i, j indexes for cleaner notation.

2.2 The CNN Cell

Each cell vk is composed of the following elements:

input uk: a constant scalar parameter, independent of the cell dynamics

state xk(t): scalar variable which evolves over time with initial condition given by

xk(0)

output yk(xk(t)): scalar function of xk(t)

Additionally, each cell in the network is in�uenced by a scalar bias parameter z, which

is uniform throughout the network. The input, bias, and initial condition xk(0) are

all independent of the cell dynamics and are speci�ed a priori.
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Using this convention, the state equation for center cell v1 can be described as

follows:

ẋ1 = −x1 +
∑
k∈N

akyk +
∑
k∈N

bkuk + z (1)

with coe�cients ak and bk as described in Section 2.3. The output equation for

vk is de�ned as:

yk(xk) =
1

2
(|xk + 1| − |xk − 1|) (2)

These equations alone are su�cient for determining the time evolution of xk(t) and

yk(xk(t)) for each cell in the grid, given initial conditions xk(0) and parameters uk

and z.

Boundary cells must be treated separately, in a manner usually called the boundary

condition of a given CNN. Several types of boundary conditions exist, and the choice

of boundary condition may a�ect the behavior of the network as a whole [8]; however,

for the remainder of our discussion we will assume a static boundary condition in

which each boundary cell performs no processing and maintains a constant state.

Speci�cally, for boundary cells vb, we will de�ne xb ≡ 0, yb ≡ 0 everywhere.

2.3 CNN Templates

The coe�cients ak and bk from (1) form vectors ~a and ~b of length n2. Each coe�cient

corresponds to a neighboring cell vk. By arranging the coe�cients according to the

shape of the neighborhood N (which is square), we get matrices A and B, called

CNN templates. For example, if n = 3 the neighborhood is a 3 × 3 square, yielding
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templates as follows:

A =


a3 a4 a5

a2 a1 a6

a9 a8 a7

 (3)

B =


b3 b4 b5

b2 b1 b6

b9 b8 b7

 (4)

The template A is called the feedback template because it gates the feedback

from the neighborhood's previous states. Similarly, B is called the feedforward

template because it gates the constant input uk, which in known initially. See

Figure 2 to understand this designation.

The templates A and B are similar to weights in the nomenclature of ANNs in

that they gate the signals sent between connected cells. A larger ak or bk signi�es a

�stronger� connection between cells v1 and vk. Unlike ANNs though, the templates

A and B associated with any inner cell are uniform across all cells in the network.

In other words, all inner cells use the same templates A and B regardless of their

location in the network. This can be contrasted with ANNs, in which a weight vector

must be found for each neuron in the network.

2.4 CNN Genes

The template matrices A and B, together with the bias term z, are uniform for

every inner cell in a CNN. These parameters alone (ignoring the choice of boundary

condition) specify the behavior of the CNN for a given set of initial conditions and

inputs. We can organize these parameters into a single vector as follows:

G = 〈z, a1, a2, .., ak, b1, b2, .., bk〉 (5)
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Feedforward 
Template

Feedback 
Template

y(·)+

-d/dt

input

outputx

[
a3 a4 a5
a2 a1 a6
a9 a8 a7

]

[
b3 b4 b5
b2 b1 b6
b9 b8 b7

]

Figure 2: CNN cell system diagram
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This vector is usually called a CNN gene, owing to the fact that evolutionary algo-

rithms can be employed to �nd these parameters [8, 18, 22, 32, 12].
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3 CNN Algorithms

CNNs can be viewed as a type of generalized cellular automata, and as such they have

intrinsic computing power not too dissimilar from Turing complete cellular automata

like Conway's Game of Life [8]. This section discusses the use of CNNs for cellular

computation.

The CNN was designed as a feasible architecture for single-chip, massively-parallel

supercomputers, and their cellular, locally-connected topology re�ects this e�ort. Sev-

eral attempts have been made to fabricate physical CNNs on microchips, many of

which have proven very useful for image processing tasks (see Section 3.3).

Computing with these CNN �vision chips� is very di�erent from using traditional

processors [10, 14]. Instead of specifying sequences of instructions and loops, CNN

algorithms are speci�ed by a CNN gene�that is, by the parameters A, B, and z.

More complex algorithms can be constructed using multiple CNNs with di�erent

genes, operating in turn like instructions of a processor [25]. For now, though, we will

consider algorithms designed for one vision chip using only one gene.

To compute with a CNN, the input data must be cast in the form of two large

matrices U and X(0), corresponding to the inputs uij and initial conditions xij(0)

(respectively) for each cell vij. These two matrices are called the input image and

initial state image for reasons addressed in Section 3.3. A vision chip operates by

loading these images as initial conditions and evolving each cell's state according to

(1) and (2). After a set time interval (or after the states converge to steady-state),

the �nal states of each cell are returned as an output image. Depending on the gene

specifying the behavior of the CNN, the output image will be some transform of the

input and initial state images.

A useful CNN algorithm will in this way produce a meaningful output image which

re�ects some computation of the input and initial state images. For example, consider

the task of adding two large matrices. If these two matrices are taken as the input

12



image and initial state image, respectively, a proper CNN algorithm would produce

an output image corresponding to the sum of the original two matrices. Admittedly,

it is less than straightforward to design a CNN gene for such a task, but evolutionary

computation can be used to discover the appropriate CNN genes.

Oftentimes a computation does not require both the input image and initial state

image, so one is taken as all zeros. In this case, the CNN algorithm has only one input

image and one output image, and the computation can be considered a complicated

nonlinear transformation of the input image. The local connections and nonlinear

feedback in CNNs make it possible to perform many types of computations with

them.

3.1 Universality

When several CNN algorithms are used in succession or in parallel to manipulate a

set of images, each CNN algorithm can be considered a unique instruction of a CNN-

based supercomputer. One such model, the CNN Universal Machine (CNN-UM), has

been proven to be Turing-complete [25, 8, 7]. The proof is fairly simple: a set of CNN

�instructions� working together has been used to simulate Conway's Game of Life,

which is well-known to be Turing-complete [27]. Thus it is theoretically possible to

implement any computation or algorithm in terms of a �nite set of CNNs working

together to manipulate a common pool of data (images).

The CNN Universal Machine makes use of extra memory for image storage and

retrieval, and requires a high-level control unit to supervise the loading, initializing,

etc of the CNN instructions in sequence. Each instruction is encoded as a gene plus

the input and output operands.
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3.2 Software Simulations

It is obviously possible to simulate a CNN (or indeed an entire CNN Universal Ma-

chine) in software on traditional processors. However, the analog and massively paral-

lel nature of CNNs makes them a less-than-perfect �t for typical processors, which are

strictly digital, serial devices. Therefore, CNN simulators typically operate in small

time increments, updating all cells in succession at time t and then again at t+ 1. To

approximate the continuous evolution of the state variables using these discrete time

steps, a numerical integration method such as the Euler method is required when

simulating CNNs on any discrete system, including GPUs and CPUs. This results

in a mere approximation of the analog CNN behavior, though with a small enough

time-step, such an approximation should be su�cient for most CNN computations.

3.3 CNN-Based Image Processing

Image processing (see Section 4) with CNNs is possible when the state and input of

each cell is interpreted as a pixel in an image. It is easy to imagine the input and

initial state images to have visual information (as is usually the case with images)

such as colors and shapes. The output image might then be some di�erent form of

visual information, such as an edge map or distance transform. In this case, we can

consider a CNN as an image processor. The hardware �vision chips� mentioned earlier

were designed for this purpose.

The ability to transform images in complex, nonlinear ways makes CNNs ideal for

many image processing and computer vision tasks. In particular, spatially invariant

image �lters are well-suited to CNN implementations because of the CNN's ability

to apply a nonlinear function to every pixel in an image simultaneously. However,

spatially sensitive image processing with CNNs is also possible due to the ability of

signals to propagate throughout the CNN. In other words, CNNs are able to perform

both local and global image operations. Some of the image processing algorithms
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that have been implemented for CNNs include contrast enhancement, edge detection,

text extraction, skeletonization, and smoothing [21, 31]. Global image operations per-

formed by CNNs include compression, quantization, and adaptation to illumination

conditions [9, 19].

3.4 Generalized Cellular Automata

A single-layer CNN is useful for many image processing tasks but is not universal

unless the output function is made more complex. Replacing eq. (2) with a more

complex or more speci�c output function can make a single-layer CNN universal or

at least more useful. The universal binary neuron (UBN) and multi-valued neuron

(MVN), for example, were designed to make single-layer CNNs universal in the binary

domain [2, 1]. Generalizing CNNs to arbitrary output functions yields the generalized

cellular automata (GCAs), which is a superset of both CNNs and cellular automata.

Since some cellular automata (such as Conway's Game of Life) are universal, by

extension GCAs are also universal. In fact, the added power and generality of GCAs

compared to CNNs means that some image processing tasks which would otherwise

require several layers of CNNs can be done with a single-layer GCA.

Of course, the added generality of GCAs makes them more complicated to under-

stand, implement, and study; therefore, it typically makes sense to restrict ourselves

to CNNs only, unless confronted with a particular problem that warrants a more

complicated output function.

3.5 The CNN Universal Machine

The CNN Universal Machine (CNN-UM) as introduced in [25] is a processor archi-

tecture that makes use of an analog, programmable vision chip (hardware CNN) and

a store of user-de�ned instructions which specify the genes for CNNs. Instead of

registers, RAM, or a stack, the processor has an image store. Assembly-like programs

15



can be written that transform images from the store using CNN operations or built-in

logic operations.

CNN-UM programs consist of a collection of user-de�ned instructions (CNN genes)

and a sequence of statements of the following form:

output_img = instruction (input_img, init_img)

If 'instruction' is a user-de�ned CNN, the system will simulate the CNN until it has

settled. (Logic operations are handled with a separate arithmetic logic unit.) The

respective images in the image store are used for the input image, initial state image,

and output image.

The CNN-UM has been suggested as a supercomputer architecture due to its

massively parallel computational power. Multi-stage CNN algorithms can be imple-

mented using appropriate sequences of CNN-UM instructions.
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4 Image Processing

Image processing is a form of signal processing with two-dimensional arrays (images)

of picture elements (pixels) as input. Usually, image processing involves performing

one of the following operations on images:

1. feature extraction: �nding features such as edges, corners, color ranges, textures,

etc within an image

2. image enhancement: improving the perceived quality of an image

3. image segmentation: separating regions of an image based on di�erences in

color, texture, or other features

4.1 Edge Detection and Linear Filters

In image processing, a linear �lter is a mapping from an input image to an output

image where the output image contains only some of the information contained in

the input image (thus ��lter�), and the mapping at each pixel involves only a linear

combination of neighboring pixels (thus �linear�). Linear �lters are described with an

operator matrix such as: 
−1 −2 −1

0 0 0

1 2 1


which means that each output pixel outi,j is a linear combination of the corresponding

input pixel ini,j and its neighbors:

outi,j = (−1)ini−1,j−1 + (−2)ini−1,j + (−1)ini−1,j+1 + ... + (1)ini+1,j+1

Linear �lters apply an operator to each pixel in an image, making them spatially

invariant. In other words, the operation is the same regardless of the pixels position
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Figure 3: Sobel edge detector output (left: original input; right: output)

(i, j).

One application of linear �lters in image processing is edge detection��nding pixels

which lie on a boundary between regions of an image. Edge detection usually involves

�nding sharp color gradients since these typically correspond with transitions between

regions, and linear �lters are well-suited to this task. For example, the Sobel edge

detector (see Figure 3) uses a combination of the following Sobel operators, both

linear �lters: 
−1 −2 −1

0 0 0

1 2 1



−1 0 1

2 0 2

−1 0 1


As stated in Section 3.3, CNNs are often applied to image processing, especially

linear �lters and other spatially invariant operations. Indeed, CNNs are nonlinear

transformations of an input image and include linear �lters as a subset. One straight-

forward application of CNNs, therefore, is edge detection.
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4.2 OpenCV Library

One of the most popular programming libraries for image processing (as well as com-

puter vision, etc) is the Open Computer Vision Library (OpenCV), originally devel-

oped by Intel [4, 3]. OpenCV is popular for C, C++, and Python applications because

of its highly optimized C implementation. OpenCV is specially optimized for Intel

x86 processors, but is very fast on any architecture. As such, OpenCV is often used

as the de facto standard for image processing benchmarks. In this work, OpenCV

is used as the basis for comparison with CPU-based image processing algorithms for

these reasons.
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5 Graphics Hardware and Multiprocessors

GPUs have been readily available to consumers since the 90's, and practically ev-

ery notebook and desktop computer has some form of graphics acceleration today.

With the rapidly increasing demands of video games and other graphics-intensive

applications, GPUs have evolved from highly specialized auxiliary components to

general-purpose computing platforms.

5.1 CUDA GPUs

NVIDIA's CUDA-capable GPUs are signi�cantly di�erent from previous graphics

cards because of their ability to execute general-purpose (though not arbitrary) C

code. They provide more than a programmable graphics pipeline; many general-

purpose multiprocessors with a fast hierarchical shared memory model make them a

truly �exible computing platform.

CUDA GPUs are not stand-alone processors, but complex co-processors controlled

by the CPU. The CPU sends data and bytecode instructions (called PTX) to the GPU

for processing (see Figure 4). The bytecode and data are stored in the GPU's internal

memory, called the device memory. During processing, the GPU has access only to

the internal GPU device memory�it cannot access RAM or any other devices. When

a job is complete, the CPU must copy the resulting (modi�ed) device memory back

to RAM. Alternatively, the device memory can be displayed directly on a monitor1

when the GPU is used for graphics rendering.

Once code and data are loaded onto the GPU, the hardware processes without

intervention from the CPU; the CPU process blocks until the GPU is �nished. Several

GPUs can be controlled in this way using several CPU threads, one to monitor each

GPU. Onboard the GPU, many multiprocessors execute the bytecode simultaneously

1Some GPUs (such as the NVIDIA Tesla series) are designed strictly for general-purpose com-
puting and do not interface to monitors.
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Figure 4: GPU and CPU relationship

using device memory as input and output. In most cases, the code and data is

exactly identical for each multiprocessor's lightweight threads, except for the thread

index which is unique to each thread. Each lightweight thread can decide to behave

di�erently based on its thread index.

Most CUDA GPUs on the market have around 64 multiprocessors, each of which

can switch between about four register banks, allowing for cost-free context switches.

In this way, the number of lightweight threads optimally executed by a GPU is many

times more than the number of multiprocessors. For example, a typical NVIDIA

Tesla series GPU has 128 multiprocessors and can sometimes run about 3000 threads

optimally, depending on the code and data organization.

The multiprocessors are arranged in a two-dimensional grid (see Figure 5). Typ-

ical grids contain a 4x4 array of multiprocessors, with each block comprising a 2x2

arrangement of processor cores. Each multiprocessor shares a high-speed parallel data

cache (PDC) designed to support simultaneous reads and writes. Each multiproces-

sor also shares code and a single entry point (i.e. a function) called a kernel function.

A GPU with 16 multiprocessor can support 16 di�erent kernel functions simultane-

ously, and a multiprocessor with 4 processor cores can support around 16 lightweight

threads of the same kernel. A hardware thread execution manager onboard the GPU

provides scheduling and queuing services to the entire GPU. In this way, a GPU can

support hundreds or thousands of threads simultaneously without help from the CPU
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or operating system.

CUDA GPUs can be found alongside graphics-only GPUs at major computer

retailers at around $100, making them an a�ordable platform for high-performance

computing. Additionally, NVIDIA currently (as of 2009) sells multi-GPU systems

with 960 multiprocessors for around $8000. These systems provide 4 tera�ops of

potential computing power in a relatively a�ordable package.

5.2 CUDA API

To program a CUDA GPU, the CUDA programming platform provides a specialized C

compiler which includes a few extensions to ANSI C. The NVIDIA CUDA C Compiler

(NVCC) is actually a front-end to the GNU C Compiler (GCC) or a comparable C

compiler. NVCC initially separates a CUDA C source �le (*.cu) into two parts: host

(CPU) code and device (GPU) code. The host code is compiled using GCC, and the
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// element-wise addition of two matrices

__global__ void AddKernel (float *A, float *B, float *C) {

int i = blockDim.y * blockIdx.y + threadIdx.y;

int j = blockDim.x * blockIdx.x + threadIdx.x;

C [i * cols + j] = A [i * cols + j] + B [i * cols + j];

}

Figure 6: example kernel function

GPU code is compiled by NVCC into PTX bytecode. The bytecode is stored within

the host executable after linking such that a standard �a.out� executable is produced.

When run, the host code sends the PTX bytecode to the GPU as necessary.

From a programming perspective, CUDA programs are written in C using three

types of functions. Host functions are run on the GPU and include the usual �int

main� entry point. Global functions are called from a host function but are executed

on the GPU. Device functions are called from global functions, and are basically

inlined into global functions before execution on the GPU.

To distinguish between threads running the same kernel, each thread has a unique

block-thread index pair. These indexes are accessed via special registers named block-

Idx and threadIdx within the kernel function de�nition. Additionally, a blockDim

register is provided, which stores the size of each block. These variables have x and

y components corresponding to the GPU's grid layout. Together, these variables

can be used to calculate o�sets within a data set such that each thread operates on

non-overlapping regions of memory in a SIMD2 fashion, as in Figure 6.

5.2.1 Limitations of the API

Host functions are written in ANSI C or C++, but global and device functions are re-

stricted to a subset of C due to the limitations of the GPU hardware. The restrictions

include:

2Single Instruction, Multiple Data
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1. no recursion; global/device functions cannot call themselves

2. no function pointer dereferences will work within global/device functions

3. global and device functions can only call device functions, which are simply

inlined

Restriction 3 means that global/device functions cannot use the C Standard Library,

for example; however, GPU-optimized device functions are provided with the platform

to replace the standard math routines.

5.2.2 Launching Global Functions

Host code initiates execution of global functions on the GPU via a kernel launch. A

launch con�guration includes the number of blocks to use on the GPU, the number

of threads per block, and the parameters available to the lightweight threads. All

threads created with a kernel launch use the same kernel function and are given the

same parameters. The syntax for a kernel launch is as follows:

kernel_function_name <�<�< grid_size, block_size >�>�> (param_list, ...);

5.2.3 Address Space Separation

As mentioned in Section 5.1, GPUs with dedicated memory (including all CUDA

GPUs) maintain their own memory and address space which is separate and distinct

from the CPU's main memory (RAM). CUDA GPUs in particular have no access

to RAM, and the host CPU has no direct access to the GPU's internal memory.

This means that global/device functions cannot read or write to variables or memory

stored in RAM, for example. Instead, host code must explicitly initiate transfers of

data to and from the device using the built-in cudaMemcpy function. Memory space
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// allocate memory on the device

cudaMalloc ((void **) &deviceArrayPtr, numBytes);

// copy data from host to device

cudaMemcpy (deviceArrayPtr, hostArrayPtr, numBytes,

cudaMemcpyHostToDevice);

// launch kernel

kernelFunction <�<�<gsz, bsz>�>�> (deviceArrayPtr);

// copy data from device back to host

cudaMemcpy (hostArrayPtr, deviceArrayPtr, numBytes,

cudaMemcpyDeviceToHost);

// free device memory

cudaFree (deviceArrayPtr);

Figure 7: example kernel con�guration and launch

is reserved on the device using cudaMalloc and freed using cudaFree. This entire

process is illustrated in Figure 7.
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Part III

A CNN SIMULATOR
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6 Baseline Single Processor Implementation

CNNs were designed to be implemented with custom hardware (vision chips); how-

ever, in order to experiment with CNN-based algorithms, an easier way to test them

is obviously required. Hardware CNN implementations can be prohibitive in cost and

availability. Usually, a software simulator is used to prototype and discover new CNN

algorithms.

CNNs have been implemented on many platforms, including the PC [26, 15],

cluster architectures [29], custom hardware [10, 14], and GPU [13]. The current

research aims to provide a common software interface to some of these platforms,

allowing the same CNN algorithms to run with the same code on single-core, multi-

core, and graphics processors.

Largely as a basis for comparison, a new serial CNN simulator was developed

(by the author) for execution on a single processor. This baseline implementation is

derived directly from eqs. (1) and (2) using the Euler method of numerical integration

as described in Section 3.2. At each time-step, all cells are updated in succession

according to Figure 8. The algorithm is run for a speci�ed number of iterations,

allowing the cell states to settle to steady-state values.

Notice that an obvious optimization has been made in the algorithm: all feedfor-

ward terms are calculated once at the start of the algorithm as an extra initialization

step. This signi�cantly reduces the runtime of the computation, since it eliminates

nearly half of the number of multiplications. The optimization is possible because

the input image and z are both constant for the duration of the simulation. This fact

allows us to rewrite eq. (1) as follows:

ẋ1 = x1 +
∑
k∈N

akyk + c1 (6)
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-- initialize cell states

for each cell v[i,j] in M do

X[i,j] = X0[i,j]

end

-- calculate feedforward image BUz

for each cell v[i,j] in M do

BUz[i,j] = z

for each neighbor v[k] in N[i,j] do

BUz[i,j] = BUz[i,j] + B[k] * U[k]

end

end

-- perform numerical integration

for t = 0 to T by DeltaT do

-- calculate cell outputs

for each cell v[i,j] in M do

Y[i,j] = 0.5 * (abs(X[i,j] + 1) - abs(X[i,j] - 1))

end

-- calculate cell state deltas

for each cell v[i,j] in M do

Dx[i,j] = -X[i,j] + BUz[i,j]

for each neighbor v[k] in N[i,j] do

Dx[i,j] += A[k] * Y[k]

end

end

-- update cell states (Euler method)

for each cell v[i,j] in M do

X[i,j] += DeltaT * Dx[i,j]

end

end

Figure 8: serial CNN simulator pseudocode
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with

c1 =
∑
k∈N

bkuk + z (7)

The c1 term for each cell is calculated at the start of the algorithm, generating a

feedforward image.

The codeis implemented in C using the core data structures provided by OpenCV.

The code is written as an extension to the OpenCV library, since it requires no other

dependencies and forms the basis of an OpenCV-like CNN image processing library

introduced in Section 14. From OpenCV, the CNN simulator has inherited the ability

to operate on integer, �oating point, and double precision values with the same small

codebase. Additionally, the simulator can operate on four color channels in a single

pass, allowing for manipulation of color images. Processing a four-channel image with

the library is equivalent to processing four separate images with four identical CNNs.

The CNN simulator provides parameters for template size n, time step ∆T , and

end-time (settling time) T , accommodating a large number of standard CNN al-

gorithms. It should be noted that the CNN simulator has been designed strictly for

continuous-time CNNs; however, discrete-time CNNs can be approximated by setting

∆T = 1.

6.1 Veri�cation and Output

A few simple CNN algorithms were run using the baseline CNN simulator code to

verify that the implementation is correct and working. The �rst algorithm was taken

from [31] and performs edge detection on the input image.

The output of the CNN is compared with the cvLaplace routine from OpenCV

in Figure 9. The cvLaplace routine was chosen for comparison because of its fast

implemenetation and because the algorithm's output is very similar in appearance to

the CNN output, especially compared to the Sobel edge detector (cvSobel) or Canny
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a)

b) c)

Figure 9: edge detector output
a) input image; b) steady-state output of CNN inner edge detector described in [31];
c) output of OpenCV's Laplace transform for comparison

edge detector (cvCanny). Both the CNN and cvLaplace edge detectors approximate

gradients in all color channels (red, green, blue) and output white pixels where the

combined gradient is large in magnitude. The test image has subtle blocking arti-

facts from the JPEG image compression algorithm [28]. Notice that both algorithms

mistake these artifacts as edges, although the CNN edge detector seems to be more

robust to this noise.
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7 Multi-Core Implementation

A second implementation was made, based on the �rst, to parallelize the simulation

on symmetric multiple processors, speci�cally multi-core processors. The number of

threads used by the code can be con�gured at compile-time and should correspond

to the number of cores available on the system. The implementation relies on shared

memory and the POSIX standard thread model (pthreads). Interestingly, no mutual

exclusions (mutexes), semaphores, or other synchronization methods were required,

making for a very simple and fast implementation.

The multi-core implementation relies on the concept of a kernel function, a simple

function executed in many parallel instances, each with di�erent inputs. For example,

kernel functions might be used to increment every integer in a list, saturate each pixel

in an image (applying the sat function), or update each cell in a CNN.

The implementation uses four kernel functions:

• the feedforward kernel, which computes the feedforward image from U , B, and

z according to (7),

• the feedback kernel, which computes ẋ1 from y1(t), A, and the feedforward

image,

• the feedback integration kernel, which uses Euler integration to compute x1(t)

from x1(0) and ẋ1,

• and the output kernel, which computes y1(t) from x1(t).

Each instance of a kernel operates on one cell at a time. Conceptually, there is one

kernel instance for each cell, and when a kernel function is �launched�, each kernel

instance executes in parallel on its respective cell. In this way all cells are updated

simultaneously using the same kernel function. The kernels are launched by a generic

�kernel launch function� listed in Figure 10.
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function launch_kernel (kernel_function, inputs)

local threads = {} -- array to store thread handles

local outputs = {} -- array to store results

-- launch threads

for i = 1, N_CORES do

threads [i] = pthread_create (kernel_function, inputs [i])

end

-- wait for all threads to terminate

for i = 1, N_CORES do

outputs [i] = pthread_join (threads [i])

end

return outputs

end

Figure 10: kernel launch function

In practice, multi-core processors have too few cores to execute all kernel instances

in parallel, so instead of spawning one thread per kernel instance, the implementation

spawns one thread per core and divides kernel instances among these threads. Each

thread is responsible for executing its set of kernel instances in series. Since each

core has its own thread, the processor is saturated without introducing unnecessary

context switches.
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8 CUDA Implementation

Lastly, a GPU-based CNN simulator was implemented using the CUDA platform

from NVIDIA. CUDA's cellular architecture and data-parallel programming model is

perfectly suited to simulation of CNNs, since each cell can be processed by a dedi-

cated thread. CUDA can process thousands of threads e�ciently, and therefore can

processes many of the cells in a large CNN simultaneously [5]. Additionally, the fast

shared memory available on CUDA GPUs enables neighboring cells to communicate

as required.

CNNs have been implemented using GPUs in the recent past using shaders to

modify the GPU's rendering pipeline [13]. This is a signi�cantly less convenient

approach, requiring the programmer to formulate the algorithm in terms of pixels,

textures, vertexes, and other graphics primitives. CUDA o�ers a much more �exible

platform, which allows for a CNN implementation which follows directly from the

multi-core version discussed above.

Currently, CUDA GPUs only support single-precision �oating point operations.

This limitation severely restricts the CUDA implementation of the simulator com-

pared to the single- and multi-core implementations, which operate on several di�er-

ent data types. This discrepancy has necessitated that the CUDA implementation be

developed separately from the single- and multi-core versions, and in fact very little

code is shared between the CPU and CUDA implementations, unfortunately. Also,

the CUDA implementation does not use OpenCV's data structures since they are not

supported by the hardware. The CUDA implementation can still be used alongside

OpenCV, but only single-precision �oating point arrays can be passed to the GPU;

therefore, any OpenCV data structures must be converted accordingly. As a side ef-

fect of this departure from OpenCV, the CUDA implementation only operates on one

channel at a time. Color images must be sliced and processed one channel at a time.

It is hoped that the improved runtime of the CUDA implementation compensates for
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these shortcomings.

The GPU implementation uses kernels that are functionally equivalent to the

multi-core kernels described in the previous section. The CUDA library includes

kernel launching functions that replace the custom implementation from Figure 10.

Otherwise, the multi-core and GPU implementations are very similar in structure.

This is a testament to how easy it can be to move from a multi-core program to a

GPU-based program, especially compared to the prior use of shaders.

To prevent the need for synchronization and to eliminate blocking between itera-

tions of the simulation, a double-bu�er is used by the GPU implementation. All data

is read from one bu�er (image) and written to a second. The order is switched in the

next iteration without moving the bu�ers. This allows the output of one iteration to

become the input of the next iteration without redundant moves.
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void hook (CvCNN *cnn, CvCNNState *cur) {

cvShowImage ("state", cur->X);

cvShowImage ("output", cur->Y);

cvWaitKey (2);

}

Figure 11: CNN visualization hook with highgui

9 Visualization

To support visualization of the CNN simulation, all backends support registering a

callback function or event hook which is called between each iteration of the simu-

lation. The hook is passed data structures containing the CNN gene, input image,

current output image, and current state. The user can provide hooks which display

or export this information as needed.

The OpenCV library includes routines for implementing simple graphical user

interfaces. Together these routines are called �highgui�. Highgui contains simple

functions which are well-suited to displaying the input, output, and state images, etc.

Figure 11 shows an example hook function which uses highgui for visualization, and

Figure 12 shows a screen capture during simulation with a similar visualization hook.
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Figure 12: visualization screen capture

multi-core CPU CUDA GPU

1000x800px 7,500 cells/sec 170,000 cells/sec
500x400px 12,500 cells/sec 1,600,000 cells/sec

Table 2: GPU throughput

10 Comparative Analysis

None of the three implementations describe above are particularly optimized; in most

cases, simplicity and readability of the code were emphasized rather than speed of

execution. In this regard, it is somewhat super�cial to compare the run-times of these

implementations with other CNN simulators; however, it is instructive to compare

between the three implementations, since we hope to see that GPUs have helped

signi�cantly without changing the CNN algorithm.

cvLaplace3 CPU CNN dual-core CNN CUDA GPU

0.10 s 3 mins 2 mins 0.11 s

Table 3: run-time comparison of 5x5 kernel edge detection algorithms
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Table 2 shows that the GPU implementation can achieve approximately 100X

speed-up compared to the multi-core implementation for some image sizes. Images

approximately 195x195 in size were used to compare the three implementations in

Table 3. While relatively modest in size, these images illuminate the shortcomings of

CPU-based CNN simulation and image processing. The results in Table 3 illustrate

two signi�cant points: �rst, that CNN simulation on CPUs is indeed problematic,

even at modest image sizes; and second, that GPUs enable CNN simulation at a

pace comparable to even the simplest image processing algorithms. Thus, the library

presented here gives CNN-based image processing research a chance to catch up with

traditional CPU-based research. Since the CUDA implementation has a run-time

on the same order of magnitude as the equivalent CPU-based algorithm, we can

rightly assume that a more optimized CUDA implementation (and a faster GPU)

could potentially outpace the CPU algorithm. Indeed, current research suggests that

GPUs will get faster in the coming years while CPUs have largely reached their

maximum speed potential, so a tie between CPU and GPU for a particular algorithm

today might very well mean a win for the GPU in a year or so [17, 5, 20].

The implementations demonstrated here focused on simplicity and strove for a

similar structure on all three platforms. Despite this, the GPU-based implementa-

tion is surprisingly fast. Further optimization of the GPU-based CNN simulator is

required, but GPU optimization is rarely straightforward with the current technology.

Incidentally, the implementation presented here exhibits similar run-times as another

GPU-based CNN simulator which claims to be optimized for the hardware [11]. This

is likely due to the fact that global memory is never written to by more than one

GPU thread; each cell is computed in a separate thread and each thread writes to

one global memory location. Additionally, the double-bu�er approach insures that

threads do not need to block or wait for neighboring computations. These two sim-

ple optimizations have a profound e�ect on the performance of the GPU without
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requiring manual manipulation of the parallel data caches within each block (as used

in [11]). Instead, no memory con�icts are possible, and the parallel data caches are

much less useful.
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Part IV

VIRTUAL CNN-UM AND

LANGUAGE
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11 Overview

The CNN-UM architecture described in Section 3.5 assumes an analog hardware

implementation. This is a less-than-desirable programming environment for the fol-

lowing reasons:

1. CNN-UM hardware is di�cult to acquire, especially compared to CPUs and

GPUs.

2. Analog circuitry is subject to noise and interference problems that limit the

performance potential, especially compared to state-of-the-art CPUs and GPUs.

3. CNN-UM software is potentially di�cult to develop, as no development tools,

compilers, debuggers etc are believed to exist

For these reasons, a CNN-UM �virtual machine� has been implemented. While this

virtual CNN-UM is only loosely based on the CNN-UM proposed in [25], we show in

Section 13 that the virtual CNN-UM is universal and loses no generality.

Our virtual CNN-UM is programmed with assembly-like programs which operate

on a dynamic memory of named images. Each instruction takes four parameters: the

input image, the initial state image, the output image, and the simulation time (a

unit-less parameter).

To program the CNN-UM, we can simplify the language introduced in [25]. An

example program in our language is given in Figure 13. The zero (0) notation on

line 12 is used to specify that an all-zero image is to be loaded for the initial state or

input, allowing for single-input-single-output transformations.

To simulate a CNN-UM, the CNN simulator described in Part III is used in place

of analog circuitry. This allows for CPU, multi-core, and GPU backends. A CNN-UM

interpreter is provided which compiles and executes the assembly-like language.
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-- define instructions:

def inst1 { } < 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 >

def inst2 { } < 0 0 1 1 1 1 1 0 0 0 0.5 0 0 0 0 0 0 0 0 >

-- load input images

INPUT file1.jpg R1

INPUT file2.jpg R2

-- perform computations

inst1 R1 R2 R3 10 -- R3 = inst1(R1, R2) with T = 10

inst2 R3 R3 R4 10 -- R4 = inst2(R3, R3)

inst2 R2 0 R2 10 -- R2 = inst2(R2, 0)

-- save output images

OUTPUT file3.jpg R2

OUTPUT file4.jpg R3

Figure 13: CNN-UM example program

11.1 CNN-UM Language Speci�cation

Our language is very simplistic, as implied above. A simple JUMP instruction is added

to allow looping, and INPUT/OUTPUT instructions are provided to read/write im-

ages to/from �le:

<statement> := <definition> | <instruction> | <jump>

| <input-file> | <output-file> | <include-file>

<definition> := def <inst-name> <gene>

<instruction> := <inst-name> <opt-reg> <opt-reg> <reg-name> <float>

<jump> := 'jump' <integer> <integer>

<input-file> := 'INPUT' <reg-name> <file-name>

<output-file> := 'OUTPUT' <reg-name> <file-name>

<include-file> := 'include' <file-path>

<opt-reg> := <reg-name> | '0' | '1' | '-1'

<output-fxn> := '{' <minivm-expr> '}'

<gene> := '<' <gene-list> '>'

<gene-list> := <float> | <float> <gene-list>

<file-name> := <file-path> | '$'<integer>
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Figure 14: CNN-UM image processing output

A small expression language called MiniVM (see Section 12) is embedded within the

CNN-UM language to allow for arbitrary output functions. MiniVM expressions are

placed within curly brackets '{}' within an instruction de�nition.

11.2 CNN-UM Interpreter

A program cnnum has been written to parser the above language and emulate a CNN-

UM accordingly. The program takes arguments as follows:

cnnum [options]

options:

--backend=<target> <target> one of 'cpu', 'mc', or 'cuda'

-b <target>

--noviz don't show real-time visualization

The backend can thus be speci�ed to use the single-core, multi-core, or CUDA CNN

simulator. The program reads the program from standard input (stdin) and displays

the input, initial state, feedforward, state, and output images of the current instruc-

tion in real-time (unless �noviz is speci�ed). In this way a user can see the evolution

of the state as a given instruction is simulated. The INPUT and OUTPUT instruc-

tions are used to read and write images to/from registers. Several �le formats are

supported (inherited from OpenCV), including PNG, JPEG, and BMP.

Programs written for the CNN-UM are interpreted and thus are considered scripts.

By convention we take the extension *.cdo (CNN do-�le) to indicate a script for this
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Figure 15: visualization screen capture

purpose and call them CDO scripts.

43



12 MiniVM Expression Language for Output Func-

tions

In order to provide support for arbitrary output functions within the CNN-UM simu-

lator, a simple stack-oriented, post-�x expression language is embedded in the inter-

preter. The language resembles a subset of the FALSE programming language [30].

Dubbed MiniVM by the author, both the language and embedded interpreter were

designed to be as simple as possible so that the interpreter could be implemented on

CUDA GPUs.

MiniVM evaluates an expression in post-�x notation using a small stack and con-

stant global variables indicated as $0, $1, $2, etc. Number literals are terminated by

a semi-colon. MiniVM expressions look like the following:

$01;+|$01;-|-0.5;*

When used as a CNN output function, the above MiniVM expression is the standard

�Chua� output function (2). The vertical bar operator applies the absolute value

function to the top of the stack.

The CNN-UM runtime provides the MiniVM embedded interpreter with constant

global variables corresponding to the state of a cell's neighbors. For example, $1 refers

to x1 and $a refers to x10. The variable $0 is initialized with the usual parameter

to the CNN output function, x0, so that the MiniVM expression can implement the

output function y(x0).

12.1 MiniVM on CUDA

The MiniVM language is admittedly cryptic, but readability was not the �rst design

goal. Instead, the language was designed such that the interpreter could be embedded
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for (; *inst != '\0'; ++inst) {

switch (*inst) {

case '+' : *(pos - 1) += *pos; --pos; break;

case '-' : *(pos - 1) -= *pos; --pos; break;

...

}

}

Figure 16: MiniVM interpreter implementation

within a CUDA kernel function. To this end, the interpreter takes up very little code

memory and does not require function pointers or recursion.

To use MiniVM on a GPU, �rst the minivm_compile host function compiles

a MiniVM expression into a compact bytecode representation. The bytecode is

then passed as a parameter to a kernel launch. Within the kernel function, the

minivm_eval device function evaluates the expression and returns the result. The

minivm_eval device function is designed to run on the GPU despite the device's limi-

tations (see Section 5.2.1). The main structure of the minivm_eval function is shown

in Figure 16.
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13 Computational Power of the CNN-UM Virtual

Machine and Language

After generalizing the CNN to arbitrary output functions, the generalized cellular

automaton contains the well-known cellular automata as a special case. Since some

cellular automata (such as the Game of Life) are Turing-complete, we expect that

CNNs with arbitrary output functions are also Turing-complete. Additionally, it

is possible to prove that multi-stage CNNs (speci�cally, the CNN-UM implemented

here) are universal in the Turing sense, with or without arbitrary output functions.

This proof is outlined in Section 13.2.

Notice that in proving that the CNN-UM is Turing-complete, we establish the

CNN-UM as a universal model of cellular computation and image processing. This

means that any computable image processing task (indeed, any computation at all)

can be performed by a CNN-UM algorithm.

13.1 Universality of CNN-UM

An intuitive proof of the universality of the CNN-UM is put forth in [7], in which the

Game of Life is simulated with a multi-stage CNN. The Game of Life is often used as

a basis for proving universality of models of cellular computations for the following

reasons:

1. the proof of universality for the Game of Life is very complicated, and it is

assumed that similar proofs for other models of computation will be at least as

di�cult,

2. the simplicity of the Game of Life makes it an easy target for equivalence proofs,

and

3. many models of cellular computation include the Game of Life as a special case.
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The elegance of the Game of Life lies in it simple de�nition and universality; however,

this same elegance is what makes its proof of universality extremely complicated.

13.2 CNN-UM Playing the Game of Life

The Game of Life is de�ned in terms of four local rules acting on a grid of binary

cells. Each cell can be �alive� or �dead�. The rules to play the Game of Life for one

generation are as follows:

1. if a cell has less than 2 living neighbors, it is dead in the next generation,

2. if a cell has more than three living neighbors, it is dead in the next generation,

3. if a living cell has two or three neighbors, it survives to the next generation,

and

4. if a dead cell has exactly three living neighbors, it becomes alive in the next

generation.

As implied earlier, a grid of cells following these rules can be used to compute any

computable function given enough generations and the appropriate initial conditions.

In other words, the Game of Life is Turing-complete and is equivalent in power to

a Turing machine (assuming an in�nite grid of cells). However, �nding appropriate

initial conditions and interpreting the resulting output is a very di�cult task.

This simple game forms the basis of the proof in [7], which assumes that uni-

versality of multi-stage CNNs and multi-layer CNNs implies the universality of the

CNN-UM. This is a reasonable assumption, since the motivation behind the CNN-UM

is a programmable multi-stage CNN. However, the multi-stage CNN is not equivalent

to the CNN-UM:

1. multi-layer CNNs allow recurrent connections between layers; this is not sup-

ported by the CNN-UM,
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2. each layer in a multi-layer CNN is updated simultaneously, whereas the CNN-

UM and multi-stage CNN allow one instruction/stage to settle before starting

the next,

3. multi-stage and multi-layer CNNs do not rely on storage devices to remember

previous cell states; the CNN-UM has a an image store for saving and retrieving

CNN states, and

4. CNN-UM includes logic operations which are not equivalent to CNN instruc-

tions.

For these reasons, we should look to prove that the CNN-UM presented here is univer-

sal in its own right, rather than relying on its similarity to multi-stage or muli-layer

CNNs. It is believed that this is the �rst time a CNN-UM has been considered

universal without this assumption.

Here we outline an informal proof which is similar to [7] and borrows heavily

from that work; however, here we show an actual CNN-UM implementation of the

Game of Life (see Figure 17). The CNN-UM implementation relies on three CNNs

based on those presented in [7] for multi-stage CNN Game of Life. When interpreted

by the CNN-UM program, the CDO script in Figure 17 performs one update step

(�generation�) of the Game of Life (see Figure 18). Successive applications of this

algorithm (with the inclusion of a JUMP instruction, for example) produce further

generations.

Since the Game of Life involves binary states in a 3x3 neighborhood, there is a

�nite, manageable number of possible neighborhoods for a given cell. We can enu-

merate all possible neighborhoods and show the correct state in the next generation

according to the Game of Life. Doing a similar exhaustive analysis of the CNN-UM

program shows that it produces identical generations as the Game of Life.
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def atleast3total { } < 1

0 0 0 0 1 0 0 0 0

.2 .2 .2 .2 .2 .2 .2 .2 .2 >

def atmost3neighbors { } < 1

0 0 0 0 1 0 0 0 0

.2 .2 .2 .2 0 .2 .2 .2 .2 >

def b { } < 0 0 -1 >

INPUT $1 in

atleast3total in in A 15

atmost3neighbors in in B 15

b B B B 15

MULT A B out 10

OUTPUT out.png out

Figure 17: Game of Life CNN-UM algorithm

Figure 18: CNN-UM Game of Life output (one step)
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Other implementations of the Game of Life are also possible with the software; for

example, a MiniVM expression could be constructed to implement the Game of Life

in one CNN instruction rather than three; however, the implementation presented

above is su�cient proof that the CNN-UM interpreter is Turing complete. Consult

[7] for a presentation of several Game of Life CNNs that rely on specialized output

functions.
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Part V

CNN IMAGE PROCESSING

LIBRARY
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-- snip --

-- remove small isolated objects from a binary image

-- reported in [21]

def removeSmallObjects { } < 0

1 1 1 1 2 1 1 1 1

0 0 0 0 0 0 0 0 0

>

-- soft edge detection for improved contrast of grayscale images

-- reported in [32]

def softEdgeContrast { } < -0.365

0.01 -0.075 0.01 -0.075 1.28 -0.075 0.01 -0.075 0.01

-0.01 -0.13 0.04 -0.12 0.71 -0.13 -0.04 -0.13 -0.04

>

-- snip --

Figure 19: image processing library as a CDO script

14 Implementation

A lightweight image processing library based on the CNN simulator was developed

during this research. While not an extensive library by any means, the beginnings of

a full-featured image processing library are evident. The library is broken into two

parts:

1. a C API to the three CNN simulator backends (CPU, multi-core, and GPU); it

is implemented as an extension to OpenCV

2. a CDO script which can be imported into other CDO scripts for use with the

CNN-UM interpreter (something like a CDO header �le)

An excerpt from the CDO script is given in Figure 19, and an example of its usage is

shown in Figure 21.

The C API provides a set of functions to con�gure the data structures used by

the CNN simulator. For example, the cvCNNSpot function initializes a CvCNN

52



include ip.cdo -- include IP CNNs

INPUT $1 in -- filename from command-line args

-- perform computations

checkerboard in in out1 10

ripple in in out2 0.5

spot in in out3 10

edge in in out4 2

-- save output images

OUTPUT out1.jpg out1

OUTPUT out2.jpg out2

OUTPUT out3.jpg out3

OUTPUT out4.jpg out4

Figure 20: example usage of ip.cdo

data structure so that cvCNNProcessMC will perform the SPOT image processing

algorithm reported in [21].
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// new functions are in italics

IplImage *in = cvLoadIamge (filepath, CV_LOAD_IMAGE_COLOR);

U = cvCreateMat (in->height, in->width, CV_32FC3);

cvConvert (in, U);

cvBipolarThreshold (U, U, 0.0);

CvCNN *cnn = cvCreateCNN (5, CV_32FC3);

cnn->T = 10.0;

cnn->DeltaT = 0.02;

CvCNNState *cur = cvCreateCNNState (in->height, in->width, CV_32FC3);

cvCopy (U, cur->X, NULL);

cvCNNSpot (cnn); // CNN SPOT algorithm reported in [21]

// simulate using Multi-Core backend

cvCNNProcessMC (cnn, U, cur, NULL);

CvMat *output = cvCreateMat (in->height, in->width, CV_32FC3);

cvCopy (cur->Y, output, NULL);

Figure 21: example usage of CNN-IP C API
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Part VI

FUTURE WORK AND

CONCLUSION
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15 Distributed CNN Universal Machine

The CUDA platforms provides no novel approach to clustering or distributed com-

puting. Even single computers with multiple CUDA GPUs (using SLI4, for example)

provide no automatic scaling of computing power beyond one GPU. To take advan-

tage of multiple CUDA GPUs (whether on the same computer or distributed in a

cluster), the programmer must rely on existing technologies such as network socket

communication, MPI, PVM, shared memory, etc. This is often surprising to new

CUDA programmers, who mistakenly view CUDA as an escape from these existing

technologies.

CNN simulations have been performed on clusters utilizing single-processor com-

puters, with some success [29]. CNN simulations using GPUs (such as the one pre-

sented here and [13]) show more promise at a much lower monetary cost, however.

The logical extension of this technology would be to employ multiple GPUs on multi-

ple computers to build a �CUDA cluster� such as the one once operated by NVIDIA5.

CNNs can be used to take advantage of a cluster of CUDA devices in at least two

ways. Firstly, higher-level software can be used to distribute a single, large CNN over

multiple GPUs on the same computer or on multiple computers. This would allow

for e�cient processing of larger images (more cells) by allowing more threads to run

simultaneously. Considering that consumer digital cameras can produce images with

several millions of pixels, there is de�nitely an immediate use for larger CNNs (more

cells) in the domain of image processing. Secondly, it is possible to imagine a �dis-

tributed universal machine� that uses each GPU as a separate CNN but uses several

CNN �instructions� simultaneously (see Figure 22 on page 57). This is reminiscent

of stream processing architectures such as the Cell processor [24], except each syn-

4�Scalable Link Interface� allows multiple NVIDIA GPUs to render di�erent parts of the same
scene. CUDA uses SLI to share a PCI bus between two cards, but does not allow two cards to
behave as one.

5NVIDIA at one point gave outside researchers access to their �CUDA cluster� for free. The
cluster is no longer operational, according to email correspondences.
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CPUVision 
Chips or 
GPUs

High-
Speed 
Buses

Figure 22: CNN stream processor architecture

ergistic processing element is replaced with a simulated CNN. By extension, several

CNN �vision chips� could be used in concert as high-throughput stream processors.

Such CNN stream processors would likely excel at the same tasks as existing stream

processors, such as video processing and encoding [23].

57



16 Conclusion

The CNN-UM presented here provides a universal abstraction of massively parallel

computation which �ts nicely within the limitations of CUDA GPUs. A single CNN-

UM algorithm can be simulated on various platforms (CPU, multi-core CPU, GPU)

without modifying the algorithm and source code. A simple CNN-UM language can

leverage the computational power of GPUs and multi-core CPUs without requiring

the user to understand the underlying hardware. The abstraction hides many of the

di�culties involved with GPU programming, and GPU-based CNN-UM CDO scripts

and CNN simulations demonstrate impressive performance comparable to highly op-

timized CPU routines in OpenCV.

The GPU-based CNN simulation library we have introduced o�ers a signi�cant

performance gain over CPU-based simulators�in some cases we see a 100x run-time

improvement when using GPUs instead of CPUs to simulate CNNs. More impor-

tantly, the foregoing discussion indicates that GPU-based CNN simulation has im-

mense potential for image processing, especially as GPU throughput increases in the

months and years to come. Further optimizations need to be made for this CNN im-

age processing library to be an attractive alternative to highly optimized CPU-based

image processing libraries like OpenCV; however, the results presented here are en-

couraging. As more complex incarnations of massively parallel processors and GPUs

are developed, the CNN and CNN-UM may prove increasingly useful as a universal

model of cellular computation and image processing.
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