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ABSTRACT 

 

The objective of this thesis is to model a hydraulic servo system using force 

control and then improve upon the performance of the model/system through feedback 

control design.  The hydraulic system is first constructed and tested.  Experimental data 

based linear models of the system are found through input-output measurements.  The 

models contain a right-half-plane zero; therefore, a bandwidth limitation is placed on the 

control design (i.e. the bandwidth frequency of the control system is limited).  Three 

types of controllers (P, PID, and H∞) are designed specifically for the linear models.  The 

closed-loop time domain and frequency domain performance of each control system is 

found and compared for the models and system.  Uncertainties and performance weights 

are finally used in finding the nominal/robust stability and performance.
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Chapter 1. 

INTRODUCTION 

 

1.1 Force Feedback Control Systems 

Hydraulic control valves (such as a servo-valve) are used within hydraulic control 

systems to accurately regulate the output of the entire system.  The valve provides the 

interface between the hydraulic power unit and the output device, in this case a linear 

actuator.  The control valve has the ability to receive a signal from a control system in 

order for the output of the system to track a desired input [1].  Using force feedback to 

control a hydraulic system allows the user to control the force output from a linear 

actuator by supplying the control system with a desired force reference signal.  

Controllers are designed specifically for the closed-loop (CL) system to improve 

performance (i.e. improve the ability of the system to track a given input signal) and 

stability (i.e. the ability of the system to adjust to uncertainties).   

There are many types of controllers that can be implemented into a CL control 

system, each of which adds different performance characteristics.  The process used in 

this paper for obtaining CL control is as follows.  A linear model (linear transfer 

function) representing the open-loop (OL) frequency domain performance of the servo 

system is found through analyzing input-output measurements at given operating points 

over a range of frequencies.  A controller is designed specifically for the linear model and 

then tested on the servo system to find the CL time domain and frequency domain 

performance of the system.  This process is repeated for different linear models and 

controllers. 



 

 2 

Once a control system is designed and tested, the nominal/robust stability and 

performance of that control system can be found.  The nominal stability and performance 

are found in relation to the nominal plant (i.e. the linear model found from the input-

output measurements).  The uncertainties within the OL system (both dynamic and 

parametric) are used in finding a perturbed plant (i.e. the nominal plant plus all 

perturbations).  The perturbed plant is used in evaluating the robust stability and 

performance of the CL system (a performance weight transfer function is also required in 

finding robust performance).                

 

1.2 Background Information and Previous Work 

Hydraulic actuators have several non-lineararities due mainly to servo-valve flow 

and pressure characteristics [2].  The method used in this thesis is based on the 

linearization of the non-linear dynamics of a hydraulic system about given operating 

points.  The stability and performance of a linear control system is, therefore, only 

achievable at or near the operating points which the controller is designed around.  Linear 

models are commonly used given their relative simplicity and accuracy at a given 

operating point (point of interest).  In order to model a full range of operating points, a 

different method must be considered.  One such method considers non-linear Quantitative 

Feedback Theory (QFT) where the non-linear plant is replaced with a “family of linear 

time invariant transfer functions” [2].  The linear transfer functions are based on 

experimental input-output measurements (the plant models in the this thesis are found 

through a similar input-output measurement approach).  Non-linear QFT robust control 

methodology can then be used to design a force controller that is of “low-order” and that 
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can “maintain satisfactory performance against uncertainties” [2].  A second method for 

modeling an entire system (not just specific operating points) uses Input-Output 

Feedback Linearization, which requires full state feedback (an observer can be used to 

estimate states that can not be measured) [3].  In this approach, no particular operating 

point is used in obtaining a linear model of the system.  Therefore, the performance of a 

given control system is not influenced by its proximity to the set of operating points, 

which results in better performance over the entire operating range of the system [3].  

Either of the control design methods discussed here can be implemented if the linear 

method does not result in satisfactory performance due to the uncertainties of the system 

and/or if a wide range of operating points are needed. 

Force control on various hydraulic servo systems has been documented.  The 

system given by [4] is used to simulate modern fly-by-wire flight control systems for 

testing primary fight actuators.  In this application, a “high-bandwidth force response” is 

needed to simulate the aerodynamic loads that are applied to the control surfaces during 

flight [4].  Uncertainties in structural stiffness and hydraulic plant parameters require a 

“robust approach to the design of the force control” [4].  Higher bandwidth frequencies 

correlate to faster response/rise times and improved robustness is associated with 

increased stability.  Therefore, the control system must have a balance between stability 

and speed of response.  By knowing the performance requirements of the desired system, 

a specific controller can be chosen based on its performance characteristics.   

The modeling and control design process outlined by [4] is similar to the process 

used in this thesis; however, the experimental setup is different.  The movement of the 

main loading actuator is restricted in this thesis.  In contrast, [4] allows movement by 
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connecting the main loading actuator to a secondary actuator via a lever arm.  The 

experimental setup given by [2] also allows actuator movement by connecting the 

actuator rod to a spring.  Obtaining a control system for the case with actuator movement 

requires slight adjustments to the control design process outlined in this thesis (i.e. a 

correction to the force demand must be made based on the displacement and/or velocity 

of the loading actuator).  The experimental setup in this thesis also incorporates a needle 

valve to regulate hydraulic fluid flow between the high and low-pressure side of the 

actuator.  The experimental setups given by [2] and [4] do not have such a capability.  

Finally, this thesis gives extensive uncertainty analysis on the control systems, while [2] 

and [4] only focus on control design.  

 

1.3 Goals/Overview 

 The goals of this thesis are as follows: construct the hydraulic servo system for 

lab testing, perform lab tests to create a dynamic model of the servo system, quantify 

performance limitations to find the highest possible theoretical performance (limitations 

include saturation and pole/zero locations of the model), increase the performance of the 

system through control design, analyze the time and frequency domain performance of 

the control systems, and test for nominal/robust stability and performance.  Chapter 2 

outlines the experimental setup for the mechanical system and data acquisition process 

along with a description of the input-output characteristics of the system.  The dynamic 

modeling process is given in Chapter 3, and the performance limitations and control 

design are discussed in Chapter 4.  The time and frequency domain performance of each 

control system are found in Chapter 5, and the nominal/robust stability and performance 
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are determined in Chapter 6.  Chapter 7 is an overview of the findings and also contains 

suggestions for future work.    
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Chapter 2. 

EXPERIMENTAL SETUP 

 

2.1 Mechanical Setup 

A picture and schematic of the hydraulic servo system are shown in Fig. 1 and 

Fig. 2, respectively.  A double-rod actuator (front and rear piston areas are equal) is used 

as the force output devise.  The rear, B, actuator rod is enclosed within a protective 

casing.  The front, A, actuator rod is connected to a load cell, which in turn is attached to 

a stiff steel link.  The link is bolted to a bracket that is secured to the same I-beam as the 

actuator, impeding any movement of the actuator rod during loading.  Two pressure 

sensors are placed on either side of the piston to record fluid pressures within the actuator 

(i.e. PA and PB in Fig. 2).  A third pressure sensor records the supply pressure, Psu, from 

the hydraulic power unit.  The power unit (shown in Fig. 3) uses an electric motor and 

hydraulic pump to supply the system with a constant Psu.  A hydraulic line connects side 

A and B of the actuator allowing hydraulic fluid to leak from the high to low-pressure 

side.  A needle valve is placed on the leakage line to control the amount of fluid that can 

be passed from one side of the actuator to the other. 
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Fig. 1. Hydraulic servo system. 

 
 

 
Fig. 2. Schematic of the servo system. 

 
 

 
Fig. 3. Hydraulic power unit. 
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2.2 Data Acquisition Setup  

A block diagram of the hydraulic servo system is shown in Fig. 4, and a photo of 

the electrical equipment is given in Fig. 5.  The hydraulic pump supplies the servo-

valve/actuator with a constant Psu.  The PC sends an input voltage signal through an 

analog output port on the data acquisition (DAC) board where it is converted from a 

digital-to-analog signal, to the servo amplifier.  The input signal is then sent from the 

amplifier to the servo-valve.  A power supply provides the load cell and pressure sensors 

with a required 20 V.  The output voltage from each sensor is sent to the PC through 

analog input ports on the DAC board where it is converted from an analog-to-digital 

signal (the output signal from the load cell is passed through an amplifier before it is sent 

to the DAC board).  The load cell signal, along with some type of control system, can 

then be used to create closed-loop (CL) force control for the system.  Simulink® and 

Matlab® are used as the user interface to generate and analyze all data to and from the 

PC.   

 
Fig. 4. Block diagram of the hydraulic servo system (dotted and bold arrows represent 

electric and hydraulic connections, respectively). 
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Fig. 5.  Electrical equipment. 

 

2.3 Input/Output Characteristics of the System  

Increasing the input voltage to the servo-valve amplifier causes an enlarged 

displacement of the electric actuator within the valve, which results in further movement 

of the internal spool.  The direction the spool moves depends on the sign and/or 

magnitude of the voltage signal.  As the spool displacement increases, the pressure 

difference between side A and B of the piston rises.  The amount of flow through the 

needle valve, which is regulated by the open area within the valve, allows a percentage of 

the pressure between side A and B to equalize (i.e. the needle valve works to reduce the 

pressure difference within the actuator).  Dividing the pressure difference by the piston 

area results in the output force magnitude of the actuator (i.e. Force = Pressure/Area).  

Therefore, with a constant needle valve opening, a given input voltage to the servo-valve 

corresponds to a specific output force from the actuator.  
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The open area (cross-sectional area) inside the needle valve has a direct 

correlation to the volumetric flow rate, Q, through the valve.  The needle valve behaves 

as an orifice.  The flow rate through an orifice is given as  

� 

Q = AoCd
2
ρ
Δp ,       (1) 

where Ao is the cross-sectional area within the needle valve, Cd is the discharge 

coefficient (constant), ρ is the fluid density (assumed to remain constant), and Δp is the 

pressure difference across the orifice (i.e. the pressure difference between side A and B of 

the actuator).  Increasing Ao or Δp will increase the flow rate through the valve.  As fluid 

flows from the high to low pressure side of the actuator, the pressure difference is 

reduced, which reduces the magnitude of the output force.  Therefore, the relationship 

between input voltage and output force is dependent on Ao.  As Ao increases, a larger 

pressure can be equalized within the actuator, which results in a smaller force.  Therefore, 

in order for the output force to remain constant, the input voltage to the servo-valve 

amplifier must be increased as Ao is increased. 

The hydraulic power unit, shown in Fig. 3, supplies the servo system with a 

constant Psu of 1000 psi.  The double-rod actuator has a piston area of 5.23 in2 on both 

side A and B.  Therefore, the maximum/minimum output force from the actuator is 

approximately ±5200 lbf.  With no leakage (i.e. the needle valve is completely closed), 

the system achieves the maximum/minimum output force at an input voltage to the 

amplifier of ±0.25 V, which is small given the servo amplifier has an operational range of 

±5 V (as specified by the manufacturer).  As stated above, increasing Q changes the 

relationship between input voltage and output force.  Therefore, to increase the voltage 
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range for experimentation, the needle valve is opened to increase the volumetric flow 

through the needle valve.  The valve is adjusted until an input of ±2 V results in a 

maximum/minimum output force of ±4800 lbf.  When leakage across the actuator is 

allowed, the pressure difference between side A and B of the piston is reduced.  Thus, the 

maximum/minimum output force with leakage (±4800 lbf) is less than the 

maximum/minimum output force without leakage (±5200 lbf). 
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Chapter 3. 

MODELING THE SYSTEM 

 

3.1 Open-Loop Linear Modeling  

An OL linear model of the hydraulic system at a given operating point can be 

found through experimental input-output measurements.  The experimental process for 

attaining a linear model is as follows. 

1. Choose an appropriate input voltage signal.  

2. Run experiment and record input voltage data to the servo-valve amplifier and 

output force data from the load cell. 

3. Analyze the input-output data using a fast Fourier transformation (FFT) to find a 

Bode magnitude and phase plot of the system. 

4. Once data is collected over a range of frequencies, a transfer function (TF) best 

representing the OL response of the system can be found. 

The simplest way in finding a linear OL model is to choose an input signal that contains a 

desired range of frequencies.  Since an entire frequency range is represented in the input 

signal, only one experimental test is needed to find a complete OL model of the system.  

One signal with such a characteristic is called a chirp signal.  A chirp signal is a sine 

wave whose frequency increases with time and whose amplitude remains constant.  The 

user defines the frequency range and run-time of the signal.         

A chirp signal with amplitude of 0.5 V and a frequency range from 0 to 150 Hz is 

sent to the servo-valve amplifier for a period of 200 seconds.  Varying the offset of the 

chirp signal allows the valve to be tested at different operating points.  The purpose of 



 13 

testing at separate operating points is to find a linear model that best represents the 

system over a range of inputs.  Three separate chirp signals with offsets at 0.25, 0, and -

0.25 V are used for testing the servo system.  Once the experiments are complete, the 

input and output data are analyzed using a FFT to obtain the Bode magnitude and phase 

plots shown in Fig. 6 and Fig. 7, respectively (refer to “Chirp Data”).  The Matlab® 

command fft is used in calculating the FFT of the experimental voltage and force data.  

The results for the chirp signals with input offsets at 0.25, 0, and -0.25 V are represented 

by trial (a), (b), and (c), respectively.  The response of the system is negligible at 

frequencies > 100 Hz; therefore, only data ≤ 100 Hz is considered.  As the frequency 

increases, the range of the experimental data increases (i.e. there is a larger variance or 

uncertainty associated with data at higher frequencies).  Averaging data values at a given 

frequency with values near that frequency can filter out the variation in the magnitude 

and phase data, which results in a set of closely packed data points representing the mean 

of the experimental results (see “Filtered Chirp Data” in Fig. 6 and Fig. 7).   

The OL frequency domain performance of the servo system can also be found 

using standard sine waves.  A sine wave with a frequency ≤ 100 Hz and magnitude of 0.5 

V is first sent to the servo-valve amplifier.  The magnitude and phase lag of the system 

can then be found by directly comparing the input and output signals.  The main 

drawback of performing such a test is that several experiments are required to obtain the 

OL response over the desired frequency range.  In contrast, the sine test is useful in 

verifying the data acquisition process used with the chirp signal.  A sine test is performed 

at 8 separate frequencies for each offset defined by trials (a-c).  The magnitude and phase 

results for the sine test are shown as “*” in Fig. 6 and Fig. 7, respectively.  The sine test 
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data is very similar to the filtered chirp signal data in trials (a-c); therefore, the data 

acquisition process used in obtaining the OL chirp response is considered accurate. 

The experimental data can now be used in finding a linear TF that best matches 

the system characteristics.  Selected magnitude, phase, and frequency values from the 

filtered chirp data are inputted into the Matlab® command fitsys to find a TF that best 

represents the experimental OL frequency domain data (fitsys fits frequency response 

data with a TF of order n using frequency dependent weights).  It is desired to have a 

single TF that approximates the frequency domain performance of the system at each 

operating point (each chirp signal offset).  Trial (b) corresponds to the input signal with 

an offset of 0 V, which is bounded by trails (a) and (c) with offsets of 0.25 and -0.25 V, 

respectively.  Given the nonlinearities that exist in the servo system, models designed at 

two separate operating points will tend to differ more from one another as the distance 

between the operating points (offsets) increase.  Therefore, a TF designed with data from 

trail (b), appose to trial (b) or (c), is expected to more closely model the response of the 

system at all three offsets. 

 

3.2 Transfer Function Models  

A 3rd-order, G3, and 4th-order, G4, model of the servo system found using data 

from trial (b) are given as 

� 

G3 =
1.705e4(s− 445)

(s2 + 365s +1.705e4)(s + 445)
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ DC     (2) 

and 

� 

G4 =
(3.283s2 +1352s + 2.624e6)(s− 2000)

(s3 + 363s2 + 6.894e4s + 2.624e6)(s + 2000)
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ DC ,

  
(3) 
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where DC is the DC-gain of the system (the DC-gain is discussed in length in section 

3.3).  Both models closely match the experimental phase data for each trial over the full 

range of frequencies (see Fig. 7).  Conversely, only G4 matches the experimental 

magnitude data over all frequencies (see Fig. 6).  At approximately 20 Hz G3 begins to 

diverge away from the experimental magnitude results, which suggests that the system 

behaves as a higher order model (i.e. n > 3) at higher frequencies.  Nevertheless, G3 is not 

discarded given that it is a good representation of the system at lower frequencies.   

 

 
Fig. 6. Bode magnitude of the experimental and analytical results. 
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Fig. 7. Bode phase of the experimental and analytical results. 
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approximation of the real time delay of the servo system.  A system with a time delay 

(i.e. RHP zero) has CL control performance limitations (bandwidth limitations) discussed 

in Chapter 4.1. 

 

3.3 DC-gain of the Servo System  

The DC-gain of the system (represented by DC in Eqs. (2) and (3)) corresponds to 

the change in output force given a change in input voltage (i.e. the slope of output vs. 

input curve).  There are several ways in finding the relationship between the in the input 

and output of the servo system.  The most straightforward procedure is to give the system 

a constant/static input voltage and record the corresponding output force.  This procedure 

must be repeated over a range of input voltages to acquire an input-output correlation.  

Depending on the initial voltage of the system, the output force at a given input voltage is 

found to vary.  In other words, the output force at 0 V is different when the system is 

stepped from -2 to 0 V than when stepped from 2 to 0 V.  This inconsistency in the output 

of a system is referred to as hysteresis.  The main cause of hysteresis in the case of a 

servo-valve is static friction or “stiction” between the moving parts of the valve [1].  One 

way to reduce stiction is to keep the valve in constant movement by superimposing a 

dither signal (i.e. a sine wave with given magnitude and frequency) onto the input signal.  

The magnitude and frequency of the chirp signal must be chosen to keep the stiction 

within the valve at a minimum without influencing the output force signal. 

A second testing procedure for finding an input-output relationship is to give the 

system a “slow” moving triangular wave over a given range of input voltages (the signal 

is considered “slow” in that the slope of voltage/time is small).  The purpose of using a 
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slow triangular wave is to define the static relationship between a given input voltage and 

the resulting output force as the input is increased and decreased.  Again, the system has 

hysteresis resulting from the inconsistencies in the way the system responds as the input 

voltage is increased (positive slope of the triangular wave) and decreased (negative slope 

of the triangular wave).  Therefore, a dither signal is also applied to the triangular input 

wave.  A dither signal of amplitude 0.4 V and frequency 175 Hz is found to best reduce 

the valve hysteresis for both the static and triangular tests without affecting the output 

signal.     

The input voltage vs. output force plot for the static and triangular tests are shown 

in Fig. 8.  The static input-output test is performed over an input range from -1 to 1 V at 

increments of 0.1 V.  To limit the number of testing points, the full range of the system is 

not represented with the static test.  For each test voltage, the system is stepped from an 

initial voltage of ±2 V, which denotes the outer operational bounds of the system.  Even 

with the dither signal superimposed onto the input voltage, the hysteresis of the system is 

still evident (especially at voltages < -0.5 V).  The triangular input-output test is 

performed over an input range from -2 to 2 V to show the behavior of the DC-gain as the 

input voltage reaches the outer bounds of the system.  The hysteresis magnitude from the 

triangular test data is significantly lager than from the static test (the output force follows 

the lower and upper paths as the voltage is increasing and decreasing, respectively).  

There are also sharp jumps in the force data at input voltages around 1.2 V.  These jumps 

may be a result of the valve sticking and then releasing as the input voltage continues to 

change.  
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Fig. 8. Output force (left) and DC-gain (right) as a function of input voltage. 
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and B of the actuator increases.  The increased pressure difference causes more fluid to be 

leaked past the needle valve.  This increased flow allows the needle valve to equalize a 

larger pressure between each side of the actuator, which correlates to a reduction in 

output force.  Therefore, it is expected that the DC-gain of the system (i.e. the slope of 

the input vs. output curve shown in Fig. 8) will steadily decrease as the input voltage 

reaches the outer operational bounds.  At voltages beyond ±2 V, the system response is 

insignificant and can be neglected (i.e the DC-gain of the system is near 0). 

The average DC-gain values of the system for trials (a-c) are found from the Bode 

magnitude plots in Fig. 6 (i.e. the magnitude at low frequencies is equivalent to the 

average DC-gain of the system for each input voltage signal).  The average DC-gain can 

also be found through the use of the DC-gain polynomials, dPs and dPt.  The y-

component of a sine wave with the same magnitude and offset as the chirp signals in 

trials (a-c) is used to evaluate each polynomial.  The mean DC-gain output from each 

polynomial is considered the average DC-gain for the corresponding sine/chirp signal 

(the frequency of the sine wave has no affect on finding the average DC-gain).  Table 1 

shows the average DC-gain values of the system and polynomials dPs and dPt.  As would 

be expected from the DC-gain plot in Fig. 8, the gain of the system decreases as the input 

signal offset decreases.  Polynomial dPt is able to reasonably estimate the actual DC-gain 

of the system.  In contrast, polynomial dPs underestimates the average system gains 

found in trials (a-c).   

 
Table 1. Average DC-gain values (all values in lbf/V). 

 Trial (a) 
Chirp Offset = 0.25 V 

Trial (b) 
Chirp Offset = 0 V 

Trial (c) 
Chirp Offset = -0.25 V 

System 3900 3700 3200 
Static Test (dPs) 3700 3300 3090 

Triangular Test (dPt) 3960 3720 3360 
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Polynomial dPt seems to be an accurate representation of the DC-gain of the 

system.  However, it is found that the DC-gain changes slightly depending on the type, 

frequency, and magnitude of input voltage signal.  For example, if the system is given a 

sinusoidal input signal, the DC-gain change as the frequency or magnitude of the sine 

wave is increased of decreased.  In addition, the DC-gain behaves in an unpredictable 

manor when the input signal dynamics increase suddenly (such is the case with a step 

input).  Since the DC-gain polynomials in Fig. 8 are found using input signals with very 

little dynamics, it is expected that dPt is more accurate in modeling the DC-gain of the 

system when the input signal dynamics remain small.  Consequently, an accurate 

representation of the DC-gain is difficult to acquire for a variety of input signals.  The 

uncertainty in the DC-gain is taken into consideration when determining the robust 

stability/performance of the servo system (see Chapter 6). 
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Chapter 4. 

CONTROLLER DESIGN 

 

4.1 Bandwidth Limitation 

The OL models found in Chapter 3.2 contain a RHP zero on the real axis due to 

the 1st-order time delay approximation; therefore, a bandwidth limitation is placed on the 

control system.  In other words, the performance of a given controller can only be 

“turned-up” so much before the entire system becomes unstable.  For a system with a real 

RHP zero, z, the achievable bandwidth frequency, 

� 

ωB
* , is given as   

� 

ωB
* < z

1−1/M
1− A

,       (5) 

where M and A are the high and low frequency performance requirements, respectively 

[5].  Models G4 and G3 have respective RHP zeros at 318 and 71 Hz.  Setting M = 3 

(allow 300% error at high frequencies) and A = 0.1 (allow 10% error at low frequencies), 

the maximum achievable bandwidth is found to be 235 Hz for G4 and 52 Hz for G3.  

Since model G4 better represents the OL response of the servo system (see Fig. 6 and Fig. 

7), the approximate time delay corresponding to the RHP zero in G4 is a more accurate 

representation of the actual time delay of the system.  To achieve the performance 

requirements given above (i.e. A = 0.1 and M = 3), a CL bandwidth frequency, ωB, less 

than 235 Hz is required.  A linear control system with ωB > 235 Hz will have inadequate 

performance, and as the bandwidth approaches 318 Hz (i.e. the location of the RHP zero 

in G4) the linear system will become unstable.  This theoretic bandwidth limitation 

assumes an entirely linear system, which is not the case when considering the real servo 
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system.  The effects of the nonlinear DC-gain and input saturation on the achievable 

bandwidth are discussed in Chapter 7.1. 

     

 4.2 Controller Overview/Selection   

 A block diagram of the CL control system is shown in Fig. 9.  The control system 

has the desired force, Fd, as the input and the actual force, Fa, as the output.  The output 

force from the plant, G, is sent as negative feedback (i.e. Fa is subtracted from Fd) 

resulting in an error signal, e.  The error signal is sent thru the controller, K, where it is 

converted into an appropriate input voltage for G.  With no control (i.e. K = 1), models 

G3 and G4 are CL instable.  In other words, the output of the CL form of each plant 

exponentially approaches infinity when given an input.  This is demonstrated in Fig. 10 

with a unit step input.  

 
Fig. 9. Block diagram of the closed-loop control system. 

 
 
 

 
Fig. 10. CL unit step response with no control (i.e. K =1 in Fig. 9). 
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Four different controllers will be considered to improve the performance of the CL 

system.  The controllers include a Proportional (P) controller, a Proportional-Integral-

Derivative (PID) controller, and two separate H∞ controllers.  A P controller, KP, is the 

simplest type of controller that can be used for adjusting the input signal to a dynamic 

system.  It works by modifying the error signal, e, in Fig. 9 by a factor (i.e. KP is a 

constant).  For simplicity, consider the classic 2nd order system with a natural frequency, 

ωn, and damping ratio, ζ.  The error signal for a P controlled 2nd-order system is 

represented by 

� 

e =
ωn
2Fd

ωn
2 + KP

.        (6) 

From this equation, the steady-state (SS) error of the system is found to be non-zero, 

which is an undesirable characteristic in control design.  Increasing KP will reduce the SS 

error; however, doing so will affect other system dynamics including the un-damped 

natural frequency and damping ratio [1]. 

The PID controller is expressed in the form  

� 

KPID = KP 1+
1
KI s

+ KDs
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ,      (7) 

where KI and KD are the integral and derivative controller gains, respectively.  The 

dynamics of the error signal for a PID controlled 2nd-order system are defined as 

  

� 

˙ ̇ e +
ωn

2 + KP

2ζωn + KD

˙ e +
KI

2ζωn + KD

e = 0 .     (8) 

For a system at SS, the derivatives of the error,

� 

˙ ̇ e  and

� 

˙ e , go to zero.  As a result, the error, 

e, also goes to zero for a PID control system.  Tuning a PID controller can be difficult 

given that gains KP, KI, and KD have competing effects on the response of the system.  
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When defining time domain performance, the proportional gain KP is used to reduce the 

percent overshoot, the integral gain KI is used to reduce rise time, and the derivative gain 

KD is used to increase stability of the system [1].  A balance between each gain is needed 

to achieve the desired performance requirements.  Controller gains of KP = 1.2e-3, KI = 

3.0e-3, and KD = 2.5e-2 are found to provide models G3 and G4 with the best overall CL 

performance (both the P and PID control systems use these gain values).   

To increase the robustness of a control system (i.e. increase the ability of the 

control system to adjust to uncertainties), H∞ loop-shaping design is performed to find a 

controller that optimally robustifies a shaped plant.  A shaped plant is a linear model 

multiplied by some type of controller.  For example, a model G and controller K can be 

combined into the shaped plant KG.  The controller within the shaped plant “determines 

such overall characteristics as response speed, damping characteristics, and steady-state 

error” of the CL system, while the H∞ controller is used to compensate for uncertainties 

[6].  Through the loop shaping procedure, the H∞ controller, KH, is defined as 

� 

KH =
A + BF + γ 2(LT )−1ZCT (C + DF)

BT X
γ 2(LT )−1ZCT

−DT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   (9) 

� 

F = −S−1(DTC + BT X)       (10) 

� 

L = (1− γ 2)I + XZ ,       (11) 

where A, B, C, D is the state-space representation of the shaped plant, Z and X are unique 

positive definite solutions to the Riccati equations 

  

� 

(A − BS−1DTC)Z + Z(A − BS−1DTC)T − ZCTR−1CZ + BS−1BT = 0 (12)  

� 

(A − BS−1DTC)T X + X(A − BS−1DTC) − XBTS−1BT X + CTR−1C = 0 (13) 

and 
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� 

γ > γ min = (1+ ρs(XZ))
1/ 2,      (14) 

where ρs is the spectral radius (maximum singular value) of the shaped plant [5].  The 

Matlab® M-file coprimeunc given by [5] uses the robust control toolbox along with Eqs. 

(9-14) in obtaining an optimal H∞ controller for a given shaped plant.  Controller KPID 

and the linear models G3 and G4 are used in finding two separate H∞ controllers (i.e. 

KPIDG3 and KPIDG4 are the shaped plants from which the H∞ controllers are designed).  

The controllers are given as 

� 

KH 3 =
229.7s2 +1.334e5s + 6.305e6

s3 + 972.4s2 + 3.579e5s +1.49e7     
(15) 

and 

� 

KH 4 =
231.9s2 + 7.484e4s + 9.687e6

s3 + 601.7s2 +1.993e5s + 2.068e7
,    (16) 

where KH3 is the H∞ controller found from the shaped plant KPIDG3 (shaped plant 

containing the 3rd order model) and KH4 is the H∞ controller found from the shaped plant 

KPIDG4 (shaped plant containing the 4th order model).   

The robustifying characteristics of the H∞ controllers can be observed by 

comparing the OL frequency response of the shaped plants, KPIDG3 and KPIDG4, with the 

OL response of the shaped plants with H∞ control, KH3KPIDG3 and KH4KPIDG4 (see Fig. 

11).  The crossover frequency (i.e. the frequency at which the magnitude of the OL 

response crosses 0 dB) and the phase lag at the crossover frequency for each OL response 

is given in Table 2.  A large OL crossover frequency is representative of a system with a 

large CL bandwidth frequency, and vice-versa.  A system with a large bandwidth has 

better performance, while a system with a small bandwidth has increased 

robustness/stability [5].  The OL phase lag at the crossover frequency also gives insight 
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into the CL stability of the control system.  The closer the phase lag is to 180 degrees, the 

closer the system is to instability [5].  Given these definitions along with the data in Table 

2, the PID controller is expected to provide better CL performance, and the H∞ 

controllers are expected to increase the robustness of the system.  The CL performance 

and stability of each control system is discussed in detail in Chapters 5 and 6. 

Table 2. Crossover frequencies and corresponding phase lags for the  shaped plants and 
shaped plants with H∞ control. 

 Crossover Freq. (Hz) Phase at Crossover Freq. (deg) 
KPIDG3 28.1 128.8 
KH3KPIDG3 11.9 109.8 
KPIDG4 25.6 125.5 
KH4KPIDG4 11.3 107.4 

 

 
Fig. 11. OL frequency response of the shaped plants and shaped plants with H∞ control.
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Chapter 5. 

CLOSED-LOOP PERFORMANCE 

 

5.1 Time Domain Performance  

The time domain performance is found by analyzing the response of the CL 

control system to a step input.  Definitions of the time domain performance 

characteristics are given below for a unit step input.     

• Rise time (tr): the time it takes the output to reach 90% of its final value. 

• Settling time (ts): time after which the output remains within ±2% of its final value. 

• Overshoot: the peak value divided by the final value. 

• Steady-state error:  the difference in the input and output as time goes to infinity. 

For comparing the time domain performance of the system and models with each 

control system, a step signal with magnitude of 2000 lbf will be used.  The desired force 

signal (Fd in Fig. 9) steps from -1000 to 1000 lbf and then back down to -1000 lbf.  The 

result is a step response for both an increasing and decreasing force.  The step response of 

the system and models with P, PID, and H∞ control are given in Fig. 12, Fig. 13, and Fig. 

14, respectively.  The step response of the system with each control system is shown in 

Fig. 15 (this figure is used for comparing of the response of each control system).  As 

stated in Chapter 3.1, the DC-gain as a function of input voltage is difficult to predict for 

input signals with fast changing dynamics, such as a step input, and is therefore assumed 

to be constant (i.e. DC in Eqs. (2) and (3) is constant).  The input voltage is bounded 

between ±2 V. At any voltage beyond ±2 V, the response/gain of the system is 
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considered insignificant (see Chapter 3.3).  It is found that a DC-gain of 3100 lbf is a 

reasonable approximation for the step input given above.          

 

 
Fig. 12. CL response of the P control systems with a reference step input from -1000 to 

1000 lbf (top) and 1000 to -1000 lbf (bottom). 
 
 

 
Fig. 13. CL response of the PID control system with a reference step input from -1000 to 

1000 lbf (top) and 1000 to -1000 lbf (bottom). 
 

0 0.05 0.1 0.15
500

600

700

800

900

1000

1100

1200

Time (s)

F
o
rc

e
 (

lb
f)

 

 

System Responce
G

3
 (DC = 3100)

G
4
 (DC = 3100)

0 0.05 0.1 0.15

!1200

!1100

!1000

!900

!800

!700

!600

!500

Time (s)

F
o
rc

e
 (

lb
f)

Student Version of MATLAB

0 0.05 0.1 0.15
500

1000

1500

Time (s)

F
o
rc

e
 (

lb
f)

 

 

System Responce
G

3
 (DC = 3100)

G
4
 (DC = 3100)

0 0.05 0.1 0.15
!1500

!1000

!500

Time (s)

F
o
rc

e
 (

lb
f)

Student Version of MATLAB



 

 30 

 
Fig. 14. CL response of the H∞ control systems with a reference step input from -1000 to 

1000 lbf (top) and 1000 to -1000 lbf (bottom). 
 
 

 
Fig. 15. CL response of the system with a reference step input from -1000 to 1000 lbf 

(top) and 1000 to -1000 lbf (bottom). 
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G4 also differ slightly from one another.  Model G4 has less of an overshoot, while G3 has 

a faster rise time.  Both models have similar settling times.  The response of the system 

and models with controller KPID is also under-damped with an increase in overshoot; 

however, there is little-to-no oscillation and zero SS error (see Fig. 13).  Both the rise 

time and overshoot of the system are smaller than either model, yet the settling times are 

very similar for all cases.  Models G3 and G4 differ in similar ways as they did for the P 

controlled step response.  When the H∞ controllers, KH3 and KH4, are used (see Fig. 14), 

the response of the system and models has zero SS error and very little 

overshoot/oscillation (i.e. the damping ratio is close to 1).  The system is found to have a 

much larger settling time and slightly larger overshoot than either model.  The system 

and model G4 are slightly under-damped (small overshoot), while model G3 is over-

damped (zero overshoot).  Given that the H∞ controllers are designed specifically for G3 

and G4 (i.e. KH3 is designed for G3 and KH4 is designed for G4), KH3 is not be used to 

control G4 nor is KH4 used to control G3. 

The variations between the time domain response of the system and models 

described above are mainly due to the assumption of a constant DC-gain.  In reality, the 

gain of the system is continually changing as the input voltage to the servo-valve 

amplifier changes, which will change the response of the system (this is a non-linear trait 

of the system).  The time domain performance characteristics for all step response data 

are given in Table 3.  The system has a small rise time, settling time, and overshoot with 

KP as the control system; however, the SS error associated with P control is a major 

drawback.  Using KPID reduces the rise time and eliminates the SS error, but the settling 

time and overshoot are increased significantly.  The H∞ controllers also eliminate SS error 
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and have much smaller overshoots than the other control systems.  Then again, they also 

have the largest rise time and settling time.  The frequency domain performance can now 

be found to more fully understand the performance characteristics of each control system.       

Table 3. Time domain performance for system and models. 
  Rise Time 

(ms) 
Settling Time 

(ms) 
Overshoot 

(%) 
SS error 

(%) 
System 17.1 56.4 6.1 10.6 

G3 16.6 71.3 9.8 10.6 P Control 
(KP) G4 16.5 89.0 13.1 10.6 

System 15.8 89.1 19.7 0 
G3 18.4 80.8 22.8 0 PID Control 

(KPID) G4 18.7 82.1 21.6 0 
System w/ KH3 18.6 96.1 1.9 0 
System w/ KH4 17.8 91.7 2.2 0 

G3 w/ KH3 26.6 44.8 0 0 
H∞ Control 

(KH3 and KH4) 
G4 w/ KH4 24.4 34.2 0.8 0 

 
 
 

5.2 Frequency Domain Performance  

The frequency domain performance is characterized via the CL bandwidth 

frequency, ωB, of the system.  The bandwidth of a system is the frequency range over 

which control is effective, and the maximum frequency in this range is called ωB.  The 

bandwidth frequency is very important for understanding the “benefits and trade-offs” for 

a given feedback control system [5].  Large bandwidths usually correspond to a faster 

response (i.e. faster rise times and settling times) since high-frequency input signals are 

more easily passed on to the outputs of the system.  Consequently, systems with large 

bandwidths are also more susceptible to noise or uncertainties in the system.  Small 

bandwidths correspond to a slower response with an increased ability to adjust to 

uncertainty (i.e. an increased robustness).  The CL ωB is defined as the frequency at 

which the Bode magnitude plot of the system decreases by 3 dB (the magnitude at low 
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frequencies is considered the reference frequency).  As the magnitude decreases by more 

than 3 dB, feedback is no longer effective in improving the performance of the system 

[5].   

The control systems found in Chapter 4.2 are designed using the linear TF’s found 

from the OL chirp signal data in Chapter 3.2, more precisely trial (b), which corresponds 

to an input chirp signal of magnitude 0.5 V and offset of 0 V.  The OL response to this 

chirp signal is shown in Fig. 16 (a time interval of 10 seconds and frequency range of 50 

Hz is used).  At low frequencies, the OL chirp signal results in a force output magnitude 

of approximately 1850 lbf at an offset of -400 lbf.  To have an accurate comparison of the 

OL and CL systems, the desired force signal (chirp signal) for each CL control system 

will have a magnitude and offset equal to the low frequency OL output (i.e. Fd in Fig. 9 is 

set as a chirp signal with magnitude of 1850 lbf and offset of -400 lbf).  Bode magnitude 

and phase plots for each CL control system can be found through the same process 

outlined in Chapter 3.1 for the OL system.  For easy comparison to the CL control cases, 

the OL Bode magnitude response is normalized (i.e. the magnitude response is divided by 

the low frequency gain found from Fig. 6).  The full input range of the system (-2 to 2 V) 

is used in analyzing the CL frequency domain performance to give an overall increase in 

system performance.  The magnitude and phase lag of the normalized OL and CL control 

cases over a frequency range of 50 Hz are given in Fig. 17 and Fig. 18, respectively. The 

resulting bandwidth frequencies of the system and models are given in Table 4. 
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Fig. 16. Open-loop response to a chirp signal with magnitude of 0.5 V, offset of 0 V, and 

frequency range from 0 to 50 Hz. 
 
 

 
Fig. 17. Bode magnitude plot of the normalized OL and CL P control (top), PID control 

(middle), and H∞ control (bottom) cases. 
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Fig. 18. Bode phase plot of the normalized OL and CL P control (top), PID control 

(middle), and H∞ control (bottom) cases. 
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control.  The CL magnitude response of model G3 has a smaller slope at higher 

frequencies due to the inaccuracy of the 3rd-order model in the OL magnitude response 

(see Fig. 6).  The phase plots of the system and models (shown in Fig. 18) all have 

similar slopes at higher frequencies due to the OL phase accuracy of both models (see 

Fig. 7).  The main differences between the frequency domain response of the system and 

models are the resonant frequencies for the magnitude (i.e. the frequency at which the 
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system oscillates at a maximum amplitude) and the drop-off frequencies for the phase 

(i.e. the frequency at which the phase begins to decrease at an accelerated rate).  Both the 

resonance and drop-off frequencies are smaller for the models than they are for the 

system.  These differences can once again be attributed to the assumption of a constant 

DC-gain.  In fact, the gain of the system is continually changing as the frequency and 

magnitude of the input voltage to the servo-valve amplifier changes (the gain changes 

with magnitude due to the gain nonlinearities). 

As shown in Table 4, the servo system has bandwidths from largest to smallest 

with controllers KP, KPID, KH4, and KH4, respectively.  Therefore, controller KP and KPID 

provide the system with a faster response (better performance), which corresponds to 

faster rise times in the time domain (see Table 3).  In contrast, controllers KH4 and KH4 

increase the stability of the system (better robustness), which corresponds to small 

overshoots in the time domain.  The saturation frequency of the system and models (i.e. 

the frequency at which the input voltage reaches ±2 V) is also noted in Table 4 for each 

CL control system.  Decreasing the magnitude of the CL chirp signal (desired force 

signal) will decrease the amount of saturation the system experiences.  However, for sake 

of comparing the OL and CL responses, reducing the CL chirp magnitude requires an OL 

response with a smaller output force magnitude (i.e. the OL chirp input voltage 

magnitude must be reduced).   

The only controller that does not cause the system to saturate is KH3, which is also 

the controller that results in the smallest CL bandwidth.  Control systems with small 

bandwidths do not have the tendency to amplify the error signal as much as higher 

bandwidth systems (i.e. they are less likely to saturate as the error signal increases in 
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magnitude).  The input voltage to the servo-valve amplifier for CL control with KH3 and 

KH4 is shown in Fig. 19.  Controller KH3 keeps the input voltage to the servo-valve 

amplifier within ±1.7 V over the entire frequency range; however, controller KH3 

saturates at approximately 6.2 seconds (33.3 Hz) and remains saturated as the frequency 

of the chirp signal continues to increase.  Nevertheless, limiting the system between ±2 V 

does not affect the performance of the system as much as one might think.  As discussed 

in Chapter 3.3, the DC-gain of the system gets very small as the input voltage reaches ±2 

V.  This means that the system does not produce a significant response beyond ±2 V.  In 

other words, the response of the system when given an input of 2 V is nearly the same as 

the response when given an input of 5 V (5 V is the maximum operating voltage of the 

servo-valve amplifier as specified by the manufacture).  Limiting the input voltage by any 

more that ±2 V will, however, begin to have an effect on the performance of the system.  

 
Table 4.  Bandwidth frequencies for the OL and CL frequency response and 

corresponding saturation frequencies. 
  OL CL w/ KP CL w/ KPID CL w/ KH3 CL w/ KH4 

System 6.9 46.4 40.5 28.2 38.1 
G3 8.5 46.8 41.1 26.6 - Bandwidth Freq. (Hz) 
G4 7.8 38.1 34.4 - 25.9 

System - 32.5 15.1 >50 33.3 
G3 - 21.3 21.2 >50 - Saturation Freq. (Hz) 
G4 - 20.8 21.3 - 34.1 
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Fig. 19. Input voltage to the servo-valve amplifier for CL control with KH# (top) and KH# 

(bottom). 
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Chapter 6 

NOMINAL/ROBUST STABILITY AND PERFORMANCE 

 

6.1 Dynamic and Parametric Uncertainties  

The basic requirement of CL control systems is to achieve a certain level of 

performance along with the ability to tolerate uncertainties within the system.  The 

performance levels involve such things as “command following, disturbance rejection, 

[and] sensitivity,” while the uncertainty tolerances deal with the “inevitable differences 

which exist between the physical plant and its mathematical […] model” [7].  Therefore, 

in order to fully understand a CL control system, it is important to analyze the robustness 

of the stability and performance characteristics with respect to all plant perturbations [8].     

To characterize the stability and performance of each control system, the 

uncertainties in the system must first be defined.  There are two main uncertainties that 

exist in the servo system: a dynamic (frequency-dependent) uncertainty in the 

experimental chirp data and a parametric (real) uncertainty in the DC-gain.  The dynamic 

uncertainty is represented as a multiplicative uncertainty (MU) of the form 

   

� 

Gp,d = Gn (1+ wIΔI ) , 

� 

ΔI ( jω) ≤ 1 

� 

∀ω     (17) 

where Gp,d is the dynamically perturbed plant (i.e. the experimental chirp data), Gn is the 

nominal plant (i.e. the TF model of the system), wI is a TF used in modeling the dynamic 

uncertainty, ΔI is any stable TF such that 

� 

ΔI ∞
≤ 1, and ω is the frequency.  The dynamic 

uncertainty TF, wI, is found from the relationships 

� 

lI (ω) = max
G∈Π

Gp,d ( jω) −Gn ( jω)
Gn ( jω)      

(18) 
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and 

  

� 

wI ( jω) ≥ lI (ω) , 

� 

∀ω ,       (19) 

where lI is the maximum MU from the chirp data.  Since the 4th order model G4 matches 

the experimental OL chirp data over the entire frequency range (0 to 100 Hz) it will 

represent the nominal plant.  The MU uncertainty from each chirp signal (trial (a-c)) is 

shown in Fig. 20.  As defined in Eq. (19), the magnitude of wI must be greater than or 

equal to lI over all frequencies (i.e. wI represents the least upper bound of dynamic 

uncertainty over the entire frequency range).  The fitmag command in Matlab®, which fits 

a stable TF with minimum phase to a set of magnitude data points, is used in finding a 

3rd-order TF, wI, that bounds all dynamic uncertainties associated with the experimental 

chirp data (see Fig. 20).  The TF form of wI is defined as 

� 

wI =
8.892s3 + 7825s2 + 6.49e6s +1.304e9
s3 + 5254s2 +1.553e6s + 2.231e9

.    (20) 

 

 
Fig. 20. Dynamic MU for trials (a-c) and resulting uncertainty TF. 

 

 

10
!1

10
0

10
1

10
2

10
!2

10
!1

10
0

Frequency (Hz)

M
a

g
n

it
u

d
e

 

 

MU for trial (c)

MU for trial (b)

MU for trial (a)
Dynamic Uncertainty TF (w

I
)

Student Version of MATLAB



 41 

The parametric gain uncertainty in MU form is written as 

� 

Gp,p = Gn (1+ rkΔ) , 

� 

Δ ≤ 1,      (21) 

where Gp,p is the parametrically perturbed plant, Δ is a real scalar, and rk is the relative 

magnitude of the gain uncertainty defined by 

  

� 

rk =
(kmax − kmin )
(kmax + kmin )

,       (22) 

where kmax and kmin are the maximum and minimum gain values, respectively.  As shown 

in Chapter 3.3, the input voltage range affects the minimum and maximum DC-gain of 

the system.  Three separate input voltage ranges (±2, ±1, and ±0.5 V) are used to show 

how changing the input range influences the robust stability/performance of the control 

systems.  Referring to polynomial dPt in Fig. 8, input ranges of ±2, ±1, and ±0.5 V result 

in minimum/maximum gains of 0/4250, 1930/4250, and 3420/4135 lbf/V, respectively.  

Therefore, the relative gain uncertainty magnitude, rk, for the respective input ranges is 1 

(100%), 0.379 (37.9%), and 0.095 (9.5%).  Reducing the input range reduces the amount 

of parametric uncertainty; however, doing so will limit the performance of the system.    

 

6.2 Performance Weight 

A block diagram of the servo system with both dynamic and parametric 

uncertainties is shown in Fig. 21 (Gp is the plant perturbed by both dynamic and 

parametric uncertainties).  To analyze the performance of the system, a performance 

weight TF, wP, is also needed.  The performance weight is written as 

 

� 

wP =
s /M + ωBR

s + ωBRA
,       (23)  
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where M is the allowable error at high frequencies, A is the allowable error at low 

frequencies, and ωBR is the approximate bandwidth requirement.  The inverse of wP 

(shown in Fig. 22 for A = 0.1, M = 3, and ωBR = 5 Hz) represents the upper bound of the 

sensitivity, |S|.  The sensitivity function, S, is the TF between the reference input and 

error in Fig. 21 given as 

  

� 

S =
1

1+ GpK
. 

 
      (24)  

In order for the system to meet the performance requirements defined by wP, the 

H∞ norm of the weighted sensitivity function, wPS, must be less than 1 (alternatively, |S| 

must be less than 

� 

1/wP ( jω)
 
to maintain performance) [5].  Referring to Fig. 22, it is 

shown that 

� 

1/wP ( jω)  is equal to A (0.1) at low frequencies and M (3) at high 

frequencies.  If A and M are left constant, increasing or decreasing ωBR will affect how 

much error is allowed at lower frequencies.  Since wP is a 1st-order TF, the slope of 

� 

1/wP ( jω)  will not change.  As a result, changing the value of ωBR will simply slide the 

graph in Fig. 22 to the left for smaller ωBR values and to the right for larger ωBR values.  

Therefore, small and large values of ωBR will increase and decrease the allowable error at 

lower frequencies, respectively.  A CL system that is capable of maintaining performance 

at the largest possible value of ωBR, which correlates to a system that is able to accurately 

track higher frequency input signals, is desired.  In regards to the servo system, locating 

wP on the error signal (see block diagram in Fig. 21) allows the performance of the 

system to be gauged by the difference between desired force input and actual force 

output.  The error signal is fed through the wP block and a fictitious uncertainty block, ΔP, 
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before it is sent back to the input of the system (see Fig. 21).  If the magnitude of the 

error signal is larger than 

� 

1/wP ( jω)  at a given ω, the servo system does not maintain the 

specified performance requirements.   

 

 
Fig. 21. CL system with multiplicative uncertainties and performance measured at the 

error. 
 
 

 
Fig. 22. Inverse of the performance weight (i.e. 1/| wP(jω)|) 
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Fig. 21, plant P has uΔ, uΔI, uΔP, and v as inputs and yΔ, yΔI, yΔP, and u as outputs.  The 

matrix form of P is defined by 

� 

uΔ
uΔI
uΔP
v

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

= P[ ]

yΔ
yΔI
yΔP
u

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

       (25) 

� 

P =

0 0 0 rk
wI 0 0 wI

−wPGn −wPGn wP −wPGn

−Gn −Gn 1 −Gn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

,    (26)  

 

 
Fig. 23. P and N matrixes.   

 

As shown in Fig. 23, the P-matrix is partitioned into 4 elements (P11, P12, P21, and 

P22).  The column partition corresponds to the number of exogenous inputs from the 

uncertainty Δ-matrix and the row partition corresponds to the number of endogenous 

outputs to the uncertainty Δ-matrix.  That is to say, P11 has dimensions a×b, where a and 

b are the number of outputs and inputs of the Δ-matrix, respectively.  The partitioned 

elements of P are 
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� 

P11 =
0 0 0
wI 0 0

−wPGn −wPGn wP

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥   

� 

P12 =
rk
wI

−wPGn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
   (27)

 

� 

P21 = −Gn −Gn 1[ ]
   

� 

P22 = −Gn[ ].     (28) 

The controller K can be absorbed into the interconnection structure to obtain the 

system N.  In other words, N is found by using K to close the lower feedback loop around 

P (see Fig. 23).  The equation used in finding the N-matrix from the partitioned P-matrix 

and controller K is presented below (this is referred to as the lower linear fractional 

transformation).   

� 

N = P11 + P12K(I − P22K)
−1P21       (29) 

The N-matrix has the same dimension as P11 (i.e. 3×3).  Similar to the P-matrix, the N-

matrix is partitioned into 4 elements (N11, N12, N21, and N22).  Element N11 has dimensions 

i×j, where i and j are the respective number of outputs and inputs of the parametric, Δ, 

and dynamic, ΔI, uncertainty blocks in the Δ-matrix (N11 is 2×2).  In contrast, element N22 

has dimension k×w, where k and w are the respective number of performance outputs and 

inputs of the performance uncertainty block, ΔP, in the Δ-matrix (N22 is 1x1).  Therefore, 

element N11 contains information regarding the uncertainties of the system (i.e. rk and wI), 

while element N22 contains the performance requirements of the system (i.e. wP).  The off 

diagonal elements N12 and N21 may contain uncertainty and/or performance information.  

The N matrix can now be used in determining the stability and performance of the 

system.   
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6.4 Defining Stability/Performance and the Structured Singular Value 

The definitions of nominal/robust stability and performance are given below.   

• Nominal stability (NS): The system (i.e. nominal model) is stable with no 

uncertainty.  NS ⇔ N is internally stable (i.e. all eigenvalues of N are in the left half 

plane (LHP)) [5]. 

• Robust stability (RS): The system is stable for all perturbed plants about the nominal 

model up to a worst-case model uncertainty.  RS ⇔ NS and 

� 

µΔ (N11(ω)) < 1 ∀ω, 

where µ is the structured singular value (SSV) and subscript 

� 

Δ  is the structured 2×2 

uncertainty matrix that includes Δ and Δ1 (

� 

Δ  is diagonal is structure) [5]. 

• Nominal performance (NP): The system (i.e. nominal model) satisfies the 

performance specification with no uncertainty.  NP ⇔ NS and 

� 

σ (N22(ω)) < 1 ∀ω [5], 

where 

� 

σ  is the maximum singular value of the TF. 

• Robust performance (RP): The system satisfies the performance specifications for 

all perturbed plants about the nominal plant up to the worst-case model uncertainty.  

RP ⇔ NS and 

� 

µ ˆ Δ 
(N(ω)) < 1 ∀ω , where subscript 

� 

ˆ Δ  is the structured 3×3 uncertainty 

matrix that includes Δ, Δ1, and ΔP (

� 

ˆ Δ  is diagonal in structure) [5]. 

The SSV, µ, is a generalization of 

� 

σ  and ρs [5].  In this structure, parametric 

uncertainties are handled by replacing them with complex parameters when the singular 

value is used [8].  Doyle [9] first introduced the SSV in 1982 as a way of “dealing with 

problems of robust stability with respect to […] uncertainty in situations where it is 

necessary to exploit the structure of the problem to get less conservative conditions” [10].  

In other words, the SSV of a complex system is less than or equal to the maximum 
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singular value of that system.  Therefore, defining stability and performance using 

� 

σ  

instead of µ results in a more conservative result.  The conservative nature of using 

� 

σ  in 

performing robust analysis on a hydraulic servo system is discussed in detail by [11].  

The structured singular value of a complex matrix L is defined by [9] as 

� 

µ(L) = (min{σ (Δ) | det(I + LΔ) = 0})−1       (30) 

where Δ denotes a set of complex matrices with 

� 

σ (Δ) ≤ 1.  If no structure Δ exists, µ(L) = 

0 [10].  If the structure Δ is 1×1 (i.e. L is a single TF), 

� 

µ(L) = σ (L)  (this relationship is 

used in defining NP since N22 is a 1×1 TF matrix).  A value of µ = 1 signifies that there 

exists a perturbation just large enough to make I + LΔ singular (feedback is no longer 

considered effective when µ > 1).  A larger value of µ (say 0.99) requires only a smaller 

perturbation to make I + LΔ singular; therefore, smaller values of µ are desired [5].  An 

algorithm by [12] dating back to 1986 uses “several smooth optimization problems” to 

solve for µ.  For simplicity, the Matlab® command ssv is used for all SSV calculations. 

 

6.5 Nominal and Robust Stability 

The stability of the servo system is tested for input voltage ranges of ±2 V (rk = 

1), ±1 V (rk = 0.379), and ±0.5 V (rk = 0.095).  The N-matrix for each control system has 

eigenvalues in the LHP when rk equals 0.095, 0.379, and 1.  Therefore, each controller 

provides NS to the CL system for input voltage ranges up to ±2 V.  The RS of the control 

systems at each value of rk is determined through the structured singular values of N11 

over a frequency range from 0 to 100 Hz (see Fig. 24).  All controllers are found to 

provide RS (i.e. 

� 

µΔ (N11(ω)) < 1 ∀ω) when rk = 0.095 and rk = 0.379.  However, when rk 
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= 1, controllers KP and KPID are unable to maintain stability for all perturbed plants (i.e. 

� 

µΔ (N11(ω)) > 1 for certain ω values).  Small values of 

� 

µΔ (N11(ω))  correlate to system 

with better RS (i.e. a larger “additional” perturbation is needed to cause 

� 

µΔ (N11(ω)) = 1).  

As shown in Fig. 24, 

� 

µΔ (N11(ω))  is the smallest for controller KP at small ω values.  Yet, 

the H∞ controllers, KH3 and KH3, have better RS for any ω > 10 Hz, which is a result of the 

robustifying characteristics of H∞ control (i.e. the H∞ controllers allow the system to 

adjust better to uncertainties, especially at higher frequencies).  Both KP and KPID have 

resonance peaks near 30 Hz that cause the control systems to fail the RS criteria when rk 

= 1 (see Fig. 24).  These resonance peaks also show up in the CL frequency domain 

performance plot in Fig. 17.  Table 5 gives the NS and RS for each control system.  

 
Table 5. Stability and performance of each control system. 

 Controller NS RS NP RP 
KP Yes Yes Yes (ωBR ≤ 5.2 Hz) No 

KPID Yes Yes Yes (ωBR ≤18.1 Hz) No 
KH3 Yes Yes Yes (ωBR ≤10.6 Hz) Yes (ωBR ≤ 6.6 Hz) 

Input range ±0.5 V 
rk = 0.095 

KH4 Yes Yes Yes (ωBR ≤11.9 Hz) Yes (ωBR ≤ 7.4 Hz) 
KP Yes Yes Yes (ωBR ≤ 5.2 Hz) No 

KPID Yes Yes Yes (ωBR ≤18.1 Hz) No 
KH3 Yes Yes Yes (ωBR ≤10.6 Hz) Yes (ωBR ≤ 3.5 Hz) 

Input range ±1 V 
rk = 0.379 

KH4 Yes Yes Yes (ωBR ≤11.9 Hz) Yes (ωBR ≤ 2.5 Hz) 
KP Yes No Yes (ωBR ≤ 5.2 Hz) No 

KPID Yes No Yes (ωBR ≤18.1 Hz) No 
KH3 Yes Yes Yes (ωBR ≤10.6 Hz) No 

Input range ±2 V 
rk = 1 

KH4 Yes Yes Yes (ωBR ≤11.9 Hz) No 
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Fig. 24.  Robust stability (i.e. 

� 

µΔ (N11 (ω )) < 1) for rk = 0.095 (top), rk = 0.379 (middle) 
and rk = 1 (bottom). 

 

6.6 Nominal and Robust Performance     

The performance is also tested for rk = 1, rk = 0.379, and rk = 0.095.  To find the 

performance of each control system, the performance weight TF, wP, shown in Eq. (23), 

must first be defined.  Referring to Fig. 21, the performance weight is placed on the error 

signal; therefore, the magnitude of the error will determine if the system meets the given 

performance requirements.  The allowable errors are set at 10% (A = 0.1) for low 

frequencies and 300% (M = 3) for high frequencies (the same values of A and M are used 

in defining the bandwidth limitation of the system in Chapter 4.1).  The performance of 

each control system is tested at different values of the ωBR (bandwidth requirement) to 

find at what bandwidth the system is considered to have NP and RP.  
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A control system with NP up to a given bandwidth is able to provide the nominal 

plant, Gn, adequate performance (as defined by wP) up to that bandwidth.  For example, a 

control system that provides Gn with NP up to ωBR = x Hz is able to effectively track a 

sine wave at a frequency up to x Hz.  The NP (i.e. 

� 

σ (N22(ω))  ∀ω) for each control 

system is illustrated in Fig. 25 for ωBR = 10 Hz.  The PID controller is shown to have the 

best NP for any ω < 30 Hz, while the H∞ controllers have the best NP for any ω > 30 Hz 

(the NP of the H∞ controllers increases as ω increases beyond 5 Hz).  The P controller 

does not have NP at ωBR = 10 Hz.  Once again, KP and KPID have resonance peaks near 30 

Hz that have a negative affect on the NP of the system.  Table 5 shows the bandwidths 

over which each control system maintains NP.  Since N22 does not contain any 

uncertainty information, each controller has the same NP for the different values of rk.  

Controller KPID is able to provide the system with NP over the largest bandwidth (18.1 

Hz).  Controller KP has the smallest NP range (5.2 Hz) given that the SS error associated 

with P control causes the system to exceed the performance requirements at low 

frequencies (see Fig. 25).  The H∞ controllers have similar NP bandwidths (10 to 11 Hz); 

however, controller KH4 is able to maintain NP for a slightly higher value of ωBR.  

To qualify as having RP, the structured singular values of the entire N-matrix 

must be less than one over all frequencies.  A control system with RP up to a given ωBR is 

able to provide the perturbed plant, Gp, with adequate performance up to that bandwidth.  

Since the N-matrix contains uncertainty and performance information, a system must 

have a balance between robustness (good RS) and fast response time (good NP) to 

qualify for RP.  For this reason, if a given CL control system does not have RS (i.e. 
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� 

µΔ (N11(ω)) > 1) or NP (i.e. 

� 

σ (N22(ω)) > 1), the system will not have RP.  Therefore, 

when the parametric uncertainty for the DC-gain is 100 % (rk = 1), controllers KP and 

KPID are automatically disqualified from providing RP.  In fact, no control system is able 

to provide RP when rk = 1.  However, both H∞ controllers do offer RP when rk = 0.379 

and rk = 0.095 (see Table 5).  

 

 
Fig. 25.  Nominal performance (i.e. µ (N22)) with A = 0.1, M = 3, and ωBR = 10 Hz. 

 

As shown in Table 5, controller KPID has the best NP frequency range, yet KPID is 

unable to offer RP given that it has RS issues near 30 Hz caused by the resonance of the 

PID controller (see Fig. 24).  Controller KP does not provide RP given that is has poor NP 

due to the low frequency SS error of the P controller (see Table 5 and Fig. 25).  The H∞ 

controllers are able to provide RP given that they have excellent RS and decent NP (see 

Table 5, Fig. 24, and Fig. 25).  Limiting the input voltage range of the servo system, 

which reduces the significance of the parametric uncertainty by limiting the gain of the 

system, increases the bandwidth range over which the H∞ controllers maintain RP (see 
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Table 5).  However, by limiting the input voltage, the response of the system will be 

restricted causing a reduction in the overall performance of the servo system.  
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Chapter 7. 

CONCLUSION 

 

7.1 Experimental Results     

 The OL response of the hydraulic servo system is best represented as the 4th-order 

linear TF model, G4, containing a 1st-order time delay approximation (the 3rd-order TF is 

unable to model the system at higher frequencies).  The RHP zero associated with the 

time delay places a bandwidth limitation, 

� 

ωB
* , of 235 Hz on any feedback control system.  

In other words, the CL bandwidth, ωB, of a control system must be less than 235 Hz to 

meet the performance requirements of A = 0.1 (10% error at low frequencies) and M = 3 

(300% error at high frequencies) (see Eq. (5)).  Therefore, there theoretically exists a 

controller capable of providing G4 with ωB = 225 Hz (a high order controller is most 

likely required to achieve such a bandwidth).   

The bandwidth limitation analysis is based on the linear model G4; therefore, it 

does not take into account any non-linear behaviors of the real system such as the 

deterioration of the DC-gain as the input voltage increases or the saturation of the system.  

Furthermore, the OL magnitude response of the system is found to be insignificant at any 

frequency greater than 100 Hz (the same cannot be said for the linear model).  The actual 

� 

ωB
*

 
of the non-linear servo system is, therefore, expected to be at some frequency less 

than 235 Hz.  Of the four controllers designed, the P controller, KP, results in the largest 

CL bandwidth of 46.4 Hz, which is much smaller than the linear 

� 

ωB
* .  Modifying each 

controller (i.e. adjusting controller gains) can further increase the CL bandwidth of the 

system; however, doing so may have an adverse affect on the performance and/or 
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robustness of the system.  As the overall gain of a controller is increased, the amount of 

saturation the system experiences will also increase.  When the system saturates, the 

effectiveness (i.e. the performance) of the control system is diminished.  As a result, the 

non-linear characteristics of the servo system cause the actual 

� 

ωB
*

 
to be significantly less 

than what is predicted from the linear model.   

When considering time domain performance, KP and KPID provide the system 

with the fastest rise times, while KH3 and KH4 result in the least amount of overshoot.  The 

frequency domain performance results show that controllers KP and KPID provide the 

fastest response (i.e. better performance) and controllers KH3 and KH4 as providing the 

best stability (i.e. better robustness).  Controller KH3 is the only controller that does not 

cause saturation when tracking a chirp signal with magnitude of 1850 lbf, offset of -400 

lbf, and frequency range of 50 Hz.  The ability of a control system to stay within the 

active input range of the system (especially at high magnitudes and frequencies) is very 

desirable.   

Controller KH3 provides the lowest CL bandwidth frequency (28.2 Hz) of any 

control system, meaning it is better able to adjust to uncertainties within the system.  As a 

result of this low bandwidth, the RS (i.e. 

� 

µΔ (N11(ω)) ) of the KH3 control system has the 

smallest magnitude over the majority of the frequency range (see Fig. 24).  Controller KP 

has the best RS at low frequencies (ω < 10 Hz), but its large resonance peak rear 30 Hz 

causes its overall RS to be poor. 

Controller KPID offers NP up to a bandwidth of 18.1 Hz, while KH3 and KH4 have 

NP up to 10.6 and 11.9 Hz, respectively (the performance weight allows 10% error at low 

frequencies and 300% error at high frequencies).  These NP results correlate to the 
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frequency domain performance results (i.e. the faster the system can respond, the better 

performance it will have).  Generally, a higher CL ωB will result in a control system with 

better NP.  Yet, KP results in the highest CL ωB and poorest NP of all the control systems.  

This is due to the SS error associated with P control (i.e. the SS error causes the system to 

exceed the low frequency performance criteria at a very small value of ωBR).   

In order for the servo system to have RP, the control system must have a balance 

between performance and stability.  The only controllers capable of providing RP are KH3 

and KH4 (see Table 5 for RP data for KH3 and KH4).  Controller KH3 provides better RP for 

the ±1 V input range (rk = 0.379), while KH4 provides better RP for the ±0.5 V input 

range (rk = 0.095).  Since decreasing the input range has significant affects on CL 

performance, it is desired to have a control system with the best possible performance at 

the largest possible input range.  Therefore, it is concluded that the best overall control 

(i.e. the best balance of CL performance and stability) is attained with KH3. 

 

7.2 Future Work     

The force analysis of the system can be investigated further by allowing rod 

movement during testing.  As shown in Fig. 1, the hydraulic actuator rod (rod A) is 

connected to a bracket to eliminate any movement of the actuator rod during loading.  To 

allow for rod movement, a secondary hydraulic actuator can be used to replace the 

bracket.  By adding a leakage line and needle valve to the secondary actuator (similar to 

what is shown in Fig. 1 for the main loading actuator), the speed at which the actuators 

move can be regulated by increasing or decreasing the flow through the secondary 

actuator.  Increasing the flow rate between the high and low-pressure side of the 
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secondary actuator will cause the actuator to be compressed at a faster rate when 

subjected to a load.  To overcome the problems of force control caused by actuator 

movement, the CL control system (see in Fig. 9) can be modified by adding a correction 

to the force demand based on the displacement and/or velocity of the main actuator [4].  

Allowing movement in the main actuator rod is beneficial in developing a platform for 

testing other actuators.  Such a system is outlined by [4] where primary flight actuators 

for aircraft are tested by connecting a main loading actuator to a lever arm, which is in 

turn connected to a secondary flight actuator.  By using a similar setup as outlined by [4], 

along with the control design process outlined in this thesis, a control system with the 

required performance and robustness can be created for testing a variety of other 

hydraulic, pneumatic, or electronic actuators.            

Further work can also be conducted to improve the bandwidth/performance of the 

control system.  Non-linear QFT robust control methodology given by [2], Input-Output 

Feedback Linearization given by [3], or a different non-linear approach can be used to 

improve the robustness of the servo system by compensating for the non-linear gain 

curve shown in Fig. 8.  Non-linear procedures are more involved than the linear process 

outlined in this thesis, but they should result in a control system that is better able to 

compensate for the non-linearities in the servo system and improve upon the overall 

performance.    
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