
 

 

ADAPTIVE TEMPORAL DIFFERENCE LEARING OF SPATIAL 

MEMORY IN THE WATER MAZE TASK 

_______________________________________ 

A Thesis presented to 

the Faculty of the Graduate School 

at the University of Missouri-Columbia 

_______________________________________________________ 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

_____________________________________________________ 

by 

ERIK E. STONE 

Dr. Marjorie Skubic, Thesis Supervisor 

MAY 2009 

 

 

 



The undersigned, appointed by the dean of the Graduate School, have examined the thesis 

entitled: 

ADAPTIVE TEMPORAL DIFFERENCE LEARNING OF SPATIAL 

MEMORY IN THE WATER MAZE TASK 

presented by Erik E. Stone, 

a candidate for the degree of Master of Science, 

and hereby certify that, in their opinion, it is worthy of acceptance. 

 

Dr. Marjorie Skubic, Ph.D. 

Dr. James Keller, Ph.D. 

Dr. Yi Shang, Ph.D. 



 

ACKNOWLEDGEMENTS 

 

 First, I would like to thank my advisor Dr. Marjorie Skubic for her knowledge and 

guidance in completing this work.  I would also like to thank Dr. James Keller for his 

help in completing this work. Finally, I would like to thank Dr. Yi Shang for being on my 

thesis committee and reviewing this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii 



 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ....................................................................................... ii 

LIST OF TABLES ..................................................................................................... v 

LIST OF FIGURES ................................................................................................... vi 

Chapter 

1 Introduction ....................................................................................................... 1 

 1.1 Problem Statement ................................................................................ 1 

 1.2 Overview ............................................................................................... 2 

2 Background and Related Work ......................................................................... 5 

 2.1 Morris Water Maze ............................................................................... 5 

 2.2 Temporal Difference Learning ............................................................. 8 

 2.3 Working Memory Toolkit (WMtk) ....................................................... 13 

3 Design ............................................................................................................... 16 

 3.1 Simulation ............................................................................................. 16 

 3.2 Physical Implementation ....................................................................... 19 

  3.2.1 Environment ........................................................................... 19 

  3.2.2 Robot ...................................................................................... 22 

   3.2.2.1 Motion .................................................................. 23 

   3.2.2.2 Cameras................................................................ 24 

   3.2.2.3 Ultrasonic Sensors ............................................... 25 

   3.2.2.4 Infrared Sensor ..................................................... 25 

 3.3 Position Fix ........................................................................................... 26 

 3.4 Panel Segmentation ............................................................................... 28 

 3.5 Self-Organizing Map ............................................................................ 30 

 3.6 Working Memory Toolkit Usage .......................................................... 31 

  3.6.1 State Mapping Function ......................................................... 31 

  3.6.2 Chunk Mapping Function ...................................................... 32 

  3.6.3 Aggregate Feature Vector (AFV) Formation ......................... 33 

  3.6.4 Reward Function .................................................................... 34 

 3.7 Modification of WMtk for “Forgetting” ............................................... 35 

iii 



 

 3.8 TD(λ)  Multi Layer Perceptron Implementation ................................... 37 

 3.9 General Experimental Procedure .......................................................... 38 

4 Experimental Results and Analysis .................................................................. 39 

 4.1 Physical Environment ........................................................................... 39 

  4.1.1 Single Corner ......................................................................... 39 

  4.2.2 Four Corner ............................................................................ 43 

 4.2 Simulation ............................................................................................. 47 

  4.2.1 Stationary Environments ........................................................ 48 

   4.2.1.1 SOM Size and WMtk Parameter Evaluation ....... 48 

   4.2.1.2 Starting Position Variability Evaluation .............. 52 

   4.2.1.3 Constant Reward Function Evaluation ................ 53 

   4.2.1.4 Simulated Place Cell Evaluation .......................... 55 

   4.2.1.5 TD(λ) Multi Layer Perceptron Evaluation ........... 58 

  4.2.2 Non-stationary Environments ................................................ 60 

   4.2.2.1 Original System Evaluation ................................. 60 

   4.2.2.2 Adaptive Learning and Exploration Rates ........... 68 

   4.2.2.3 Forgetting Evaluation ........................................... 70 

5 Discussion ......................................................................................................... 74 

6 Summary and Conclusion ................................................................................. 78 

 

Bibliography 79  

 

Appendix  

A Additional Single Corner Training Results from Physical Environment ......... 81 

 A.1 Additional Single Corner Task - Sequence 1 ........................................ 81 

 A.2 Additional Single Corner Task - Sequence 2 ........................................ 83 

 A.3 Additional Single Corner Task - Sequence 3 ........................................ 85 

B Additional Four Corner Training Results from Physical Environment ............ 87 

 B.1 Additional Four Corner Task - Sequence 1 .......................................... 87 

 B.2 Additional Four Corner Task - Sequence 2 .......................................... 89 

 

iv 



 

LIST OF TABLES 

Table Page 

 3.1 Simulated and Real World Environment Statistics ............................... 20 

 4.1 Single Corner Evaluation Results ......................................................... 42 

 4.2 Four Corner Evaluation Results ............................................................ 46 

 4.3 WMtk Parameter Evaluation Results - 20 x 20 SOM ........................... 50 

 4.4 WMtk Parameter Evaluation Results – 8 x 8 SOM .............................. 51 

 4.5 Starting Position Variability Evaluation Results .................................. 53  

 4.6 Constant Reward Function Evaluation Results ..................................... 55 

 4.7 Simulated Place Cell Evaluation Results .............................................. 58  

  

  

v 



 

LIST OF FIGURES 

Figure Page  

 3.1 Simulated Player/Stage Environment ................................................... 16 

 3.2 Physical Environment Diagram ............................................................ 21 

 3.3 Pictures from Physical Environment .................................................... 22 

 3.4 Picture of Physical Robot...................................................................... 23 

 3.5 Illustration of Position Fixing ............................................................... 27 

 3.6 Illustration of Panel Segmentation ........................................................ 30 

 4.1 Diagram of Single Corner Task ............................................................ 40 

 4.2 Results of Single Corner Task .............................................................. 41 

 4.3 Diagram of Four Corner Task ............................................................... 43 

 4.4 Results of Four Corner Task ................................................................. 45 

 4.5 Diagram of Starting Positions and Platform Locations ........................ 47  

 4.6 Diagram of Hippocampal Place Cell Layout ........................................ 57  

 4.7 Diagram of Starting Positions and Platform Locations ........................ 61 

 4.8 Graph of Training Results – Original System ....................................... 62 

 4.9 Graph of Training Results – Original System ....................................... 62 

 4.10 Graph of Training Results – Original System ....................................... 63 

 4.11 Graph of Training Results – Original System ....................................... 63 

 4.12 Graph of Training Results – Original System ....................................... 65 

 4.13 Graph of Training Results – Original System ....................................... 66 

 4.14 Graph of Training Results – Original System ....................................... 67 

 4.15 Graph of Training Results – Adaptive Learning and Exploration ........ 69 

 4.16 Graph of Training Results – Forgetting ................................................ 71 

 4.17 Graph of Training Results – Forgetting ................................................ 72 

 A.1 Results of Single Corner Task – Sequence 1 ........................................ 81 

 A.2 Example Paths from Single Corner Task – Sequence 1 ....................... 82 

 A.3 Results of Single Corner Task – Sequence 2 ........................................ 83 

 A.4 Example Paths from Single Corner Task – Sequence 2 ....................... 84 

vi 



 

vii 

 A.5 Results from Single Corner Task – Sequence 3 .................................... 85  

 A.6 Example Paths from Single Corner Task – Sequence 3 ....................... 86 

 B.1 Results from Four Corner Task – Sequence 1 ...................................... 87 

 B.2 Example Paths from Four Corner Task – Sequence 1 .......................... 88 

 B.3 Results from Four Corner Task – Sequence 2 ...................................... 89 

 B.4 Example Paths from Four Corner Task – Sequence 2 .......................... 90  

 

 

 

 



 

Chapter 1 

Introduction 

 

1.1 Problem Statement 

 The goal of this work was to evaluate the performance of a Temporal Difference 

(TD) approach to the learning of spatial memory for a robot in a dry version of the Morris 

water maze task. The Morris water maze task is a spatial memory task in which an 

association between cues from the environment and position must be learned in order to 

locate a hidden platform. To that end, earlier work performed by Busch et al. [1] was 

extended from a simulated dry water maze environment into a physical environment on a 

real robot.  This effort presented a number of challenges, but resulted in a system that was 

capable of learning the necessary action preferences to successfully, and efficiently, 

navigate to a hidden platform.  

Additionally, the TD learning approach was extended to improve its performance 

in non-stationary environments where the hidden platform location was not fixed.  The 

original TD learning approach was not adaptable in these non-stationary environments, as 

previously learned action preferences hindered the learning of new action preferences 

necessary to successfully navigate to a new hidden platform location.  Specifically, the 

TD learning approach was extended by adding the ability to explicitly forget current 

action preferences based on previous rewards received.  This extended version was then 

evaluated in simulation. 
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1.2 Overview 

Given the ability of animals to navigate and interact with the complex world 

around them, biological systems have been a source of much inspiration in the field of 

robotics.  The inspiration for this work comes from a behavioral procedure designed by 

Richard Morris called the Morris water maze task. The Morris water maze task is a 

spatial memory task in which an association between cues from the environment and 

position must be learned in order to locate a hidden platform.  The task provides an 

interesting domain in which to study and evaluate the learning of spatial memory. 

 This work essentially begins where the work conducted by Busch et al. [1] left 

off.  Specifically, Busch et al. developed and tested, in simulation, a Temporal Difference 

(TD) learning approach to spatial memory for a robot in a dry version of the Morris water 

maze task.  The setup used for these experiments consisted of a simulated 2D world 

modeled after a dry water maze environment from earlier work by Krichmar et al. [2].  

The 2D world was simply a rectangular room with various colored blobs around the 

edges.  Additionally, a hidden platform was placed in the environment that could only be 

detected by the robot when it was directly over the top of the platform. 

A simulated differential drive robot equipped with three cameras capable of 

detecting the colored blobs was used for the experiments.  The goal was for the robot, 

equipped with the TD learning system, to be able learn the action preferences (mappings 

from states to actions) necessary for it to successfully locate the hidden platform.  The 

only information available to the robot to achieve this task was the perceptual 

information about the colored panels obtained from the cameras. 
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In order to limit the perceptual space, a self organizing map (SOM) was used.  

The SOM discretized the perceptual space into a useable number of possible states, which 

made the task of learning the action preferences associated with each state possible for 

the TD learning system.  The SOM was trained by first collecting a large number of 

perceptual vectors from the simulated environment. 

Testing of the system consisted of letting the robot complete “runs” through the 

environment, then observing changes in its performance. Each run consisted of a 

maximum of 50 steps.  At each step, the robot would observe its current perceptual state, 

determine which of the possible SOM nodes it was closest to, and then execute the move 

that was currently favored by the TD learning system for that SOM node.  During and 

after each run the TD learning system would receive scalar rewards based on its 

performance.  As noted in [1], this approach yielded good results that not only allowed 

the robot to learn the correct action preferences to locate the hidden platform, but allowed 

the TD system to outperform, given enough training episodes, a probabilistic graph 

search method. 

Given these encouraging results, the work presented here was focused on 

extending what was achieved in this simulated environment to a physical environment, 

with a real robot, and on evaluating and possibly improving the performance of the TD 

system in environments where the hidden platform was not stationary, as was case in the 

experiments conducted by Busch et al. [1]. 

In a first step towards those goals, a physical environment modeled after both the 

simulated environment used by Busch et al. [1], and the environment used by Krichmar et 
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al. [2], was constructed.  Additionally, a Pioneer 3-DX robot was equipped with the 

necessary hardware for the task. 

A number of challenges not present in the simulated world were also addressed in 

order get the physical implementation of the dry water maze environment working.  

Specifically, problems with obtaining the correct perceptual state from the environment 

using the cameras mounted on the robot had to be overcome.  Additionally, the problems 

of limited battery life and imperfect odometry information necessary for resetting the 

robot after each training episode had to be addressed. Ultimately, the physical 

implementation and testing of the TD system for learning spatial memory were 

successful, and a number of experimental trails were conducted.  These results are 

presented later in this work. 

With the physical implementation of the TD learning system successful, work 

then began on evaluating the performance of the system in environments with non-

stationary platform locations.  In order to speed the evaluation, these tests were 

conducted in the simulated environment used by Busch et al. [1].  Based on initial testing, 

it was soon apparent that the TD learning system, as implemented, performed 

unsatisfactorily in non-stationary environments.   

Work was then conducted with the goal of improving the performance of the 

system in such non-stationary environments.  Ultimately, a framework which allowed the 

TD learning system to actively forget its current action preferences based on past rewards 

received was implemented which allowed for much improved performance of the system 

in non-stationary environments. 
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Chapter 2 

Background and Related Work 

 

2.1 Morris Water Maze 

The Morris water maze [3] is a novel behavioral procedure originally designed by 

Richard Morris for studying spatial localization in the rat.  In the typical Morris water 

maze experiment, a rat is placed into a circular pool of water from which the only escape 

is a raised platform. The raised platform is positioned just below the water’s surface, and 

the water is made opaque to hide the platform from view of the rat, thus ensuring no local 

cues from the platform are available to aid escape behavior.  Although no local cues from 

the platform are available, only a few trials are required before a normal rat learns to 

swim directly toward the platform, given that it remains in a fixed location, even with a 

unique starting location in the environment.  However, if the platform location is varied 

randomly for each trial, the rat cannot learn to find it.  This provides evidence that rats 

escape by learning the spatial position of the platform relative to distal cues [4]. 

 Studies have shown that single cells in the hippocampus respond during spatial 

learning, and that certain cells only fire when animals are in a specific area of a familiar 

environment [4].  In [4], Morris et al. used the water maze procedure described above to 

study the effect of hippocampal lesions on the navigational ability, and spatial learning, 

of rats.  Through various experiments, they found that lesions to the hippocampus result 

in deficits in spatial learning and memory, and that total hippocampal lesions cause a 

lasting place-navigational impairment. 
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Specifically, Morris et al. [4] compared the performance of normal and brain-

lesioned rats using both the normal conditions of the Morris water maze task and with a 

fixed but visible platform. For one study, both lesioned and unlesioned rats were trained, 

using the water maze task, with the platform hidden.  It was found that rats with 

hippocampal lesions showed significantly decreased performance as compared to 

unlesioned rats.  Next, the platform was left in the same location, however it was made 

visible. Soon, the performance difference between the two groups, lesioned and 

unlesioned, effectively disappeared.  However, when the platform was then re-hidden the 

performance difference reappeared, even though the platform remained in the same 

location. These results provided evidence for the fact that lesions of the hippocampus 

result in deficits in spatial learning and memory. Other researchers have used the water 

maze procedure to evaluate the effect of drugs and cerebral neurotoxins on the spatial 

learning of rats [3]. 

The Morris water maze task has also been used by a number of researchers to 

study computational models of the hippocampus and spatial learning. Redish and 

Touretsky [5] used a simulated version of the water maze task to evaluate a 

computational model of the hippocampus. In addition, Brown and Sharp [6] used a 

simulated water maze environment to investigate how spatial behavior could be guided 

by spatial information in the hippocampal formation. Their model learned mappings 

between the firings of simulated hippocampal place and head direction cells and 

particular movements of a simulated rat to find the hidden platform location.  

Foster et al. [7] used Temporal Difference (TD) learning to model how 

hippocampal place cells might be used for spatial navigation by rats. First, they simulated 
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a reward based navigational approach based solely on input from place cells. Second, 

they simulated a combined approach using input from place cells and information about 

the rats’ self motion to acquire a goal independent coordinate system. Like Brown and 

Sharp [6], they used simulated place cells to provide a representation of the current 

position of the rat, as opposed to direct visual perceptual cues from the environment.  

Krichmar et al. [2] constructed a dry version of the water maze task to assess the 

spatial memory of a brain-based device called Darwin X, whose behavior was guided by 

a simulated nervous system modeled on the anatomy and physiology of the vertebrate 

nervous system. A 16 by 14 foot rectangular room was used as the water area, with a 

hidden circular platform made of reflective paper. Darwin X was equipped with a color 

camera for vision, odometry for self-movement information, an IR sensor for platform 

detection, and IR sensors for obstacle avoidance. 

Based on Krichmar’s work, Busch et al. [1] used a simulated water maze 

environment to compare an attributed probabilistic graph search navigational approach 

and a TD learning navigational approach based solely on visual cues from the 

environment. The simulated robot was equipped with three cameras to gather perceptual 

information from the environment and used a Self-Organizing Map (SOM) [8] to 

discretize the perceptual space.  This work showed that given sufficient training the TD 

learning navigational approach was actually able to outperform the probabilistic graph 

search method. 
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2.2 Temporal Difference Learning  

In this work, Temporal Difference (TD) learning [9] is used to learn the action 

preferences necessary to successfully locate the hidden platform in the water maze 

environment.  TD learning is a reinforcement learning procedure which is driven by the 

difference between temporally successive predictions.  In general, reinforcement learning 

is the process of learning how to map states to actions to maximize a reward signal. 

Reinforcement learning generally differs from other forms of computational intelligence 

or machine learning in that this reward signal is delayed.  Furthermore, a given action 

may impact not only the immediate reward, but all subsequent rewards [10].   

Fundamentally, TD learning is a bootstrapping method for estimating a state value 

function using experience gathered following a given policy, π. The simplest TD method, 

TD(0), can be formalized as [10]: 

 

)]()([)()( 11 ttttt sVsVrsVsV −++= ++α  

 

where V is the state value function being learned, α is a learning rate parameter, and r is 

the reward signal.  Ultimately, the estimated value of a given state, st is updated based on 

the reward, rt+1, received after taking whatever action is specified by policy π for state st, 

along with the difference between the estimated value of the state st, and the estimated 

value of the following state, st+1. 

For most of the experiments conducted in this work (those making use of the 

Working Memory Toolkit), however, an off policy TD control algorithm known as Q-

learning was used [11].  At its heart, Q-learning attempts to learn a state-action pair value 
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function independent of the policy used to select actions.  In its simplest form, one step 

Q-learning can be formalized as [10]: 

 

)],(),(max[),(),( 11 tttattttt asQasQrasQasQ −++= ++ γα  

 

where Q is the state-action pair value function that is to be learned, st is the state at time t, 

at is the selected action at time t, α is a learning rate, r is the reward signal, and γ is a 

discount rate.  Similar to  TD(0) described above, Q-learning updates the estimated value 

of a given state-action pair based on the reward, rt+1, received after taking whatever 

action is specified, by whatever policy is currently being followed, for state st; however, 

whereas in TD(0) the estimated state value was also updated based on the difference 

between the estimated value of the state st, and the estimated value of the following state, 

st+1, it can be been seen that with Q-learning, the state-action pair value is updated not by 

the difference between Q(st+1,at+1) and Q(st,at), but by the difference between  

   and Q(st,at).  That is, following a given action, at, the value of the 

previous state-action pair is updated based on the reward received after taking the action 

at, along with the difference between the estimated value of the previous state-action pair 

and the maximum estimated value of all the state-action pairs for state st+1.  Simply 

stated, Q-learning attempts to estimate the state-action pair value function for the greedy 

policy, although this policy is not necessarily the policy being used to select actions. 

),(max 1 asQ ta +

 Although the two formalizations laid out above give a basic overview of TD 

methods, they are both single step methods.  Specifically, an error signal for a given time 

step, called the TD error, denoted by tδ  and (for TD learning) characterized as: 
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)()( 11 tttt sVsVr −+= ++δ  

 

affects only the value estimate of state st. In many situations, however, a number of 

previous states, or in the case of Q-learning, state-action pairs, could be “responsible” for 

the TD error at time t.  Thus, in order to better assign the TD error seen at a given time 

step, eligibility traces are used 

Eligibility traces act as a method to identify which state, or state-action pair, 

values should be updated when a TD error signal is received.  Furthermore, eligibility 

traces do not simply identify which values should be updated; they determine the degree 

to which a value should be affected by a given TD error signal.  Specifically, in the TD 

case, in addition to storing the estimated value of each state, an additional eligibility trace 

parameter, e(s), is stored for each state. At the start of an episode, all of the eligibility 

trace values are set to zero. Throughout an episode, the eligibility trace values are 

updated, at each time step, as follows [10]: 
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where λ is the temporal credit assignment parameter, such that 10 ≤≤ λ . As can be seen, 

at a given time step t, all of the eligibility trace values are decayed by λ, and the eligibility 

trace value for the state st is incremented by one. Thus, the temporal credit assignment 

parameter, λ, determines how quickly the eligibility of a state for updating decays 
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following its activation. Setting λ to zero effectively nullifies the use of the eligibility 

traces, and yields the TD(0) formulation detailed earlier.  Thus, the use of eligibility 

traces, and the temporal credit assignment parameter λ, gives rise to the TD(λ) notation.  

 Similar to the TD case, eligibility traces can also be applied to the Q-learning 

algorithm, giving rise to Q(λ).  In Q(λ), an eligibility trace value, e(s,a), is stored along 

with each state-action pair, and the eligibility trace values are updated just as in the TD 

case described above.  Implementation of Q(λ) can thus be formalized with the following 

equations, for a given time step t: 

 

ASasaseasQasQ tt ,,),(),(),( ∈∀+= αδ  
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where S is the set of all possible states, and A is the set of all possible actions. 

 Although Q-learning attempts to estimate the state-action pair value function for 

the greedy policy, the policy being followed may involve exploratory actions; that is, 

actions not deemed optimal by the policy being followed, but taken for the purpose of 

exploring the entire state-action space. These exploratory actions cause the use of 

eligibility traces to be less then straightforward. This can be illustrated with the decision 

of whether a large negative value, received after executing an exploratory action, should 

be passed back to the state-action pair values that unadjusted eligibility traces would 

suggest are responsible for the outcome. It is certainly unclear how, following an 
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exploratory action, previous state-action pair values should be impacted by future TD 

error signals.   

 Different methods have been proposed about how to handle eligibility traces 

intelligently for this situation, specifically Watkins's Q(λ) [12] and Peng's Q(λ) [13]. 

However, the simplest method for dealing with this problem is, essentially, to ignore it.  

Specifically, just update the eligibility traces as would be done assuming there were never 

any exploratory actions.  This method is dubbed naïve Q-learning [10], and is used for all 

of the experiments presented in this work. 

 Lastly, the formulations given above seem to indicate that TD learning and Q-

learning essentially learn value functions mapping states, or state-action pairs, to scalar 

values. Thus, a straightforward implementation of the TD(λ) or Q(λ) algorithm is in the 

form of a single perceptron, where the number of inputs is equal to the number of states, 

or state-action pairs, and where the weight connecting each input to the perceptron is 

effectively the value measurement for the given state, or state-action pair (in addition, an 

eligibility trace value is stored along with each weight).  However, it is possible to extend 

the TD(λ), or Q(λ), algorithm to map states, or state-action pairs, to vectors, and/or to 

extend the representation to a multi-layer perceptron (MLP). For the general case of 

TD(λ), or Q(λ), backpropagation in conjunction with eligibility traces can be used to 

correctly distribute the TD error signals throughout the network.  Detailed equations for 

training a MLP using TD learning are presented in [14]. 
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2.3 Working Memory Toolkit (WMtk) 

For most of the experiments conducted in this work, an implementation of 

Temporal Difference (TD) learning in the form of a single linear perceptron, called the 

Working Memory Toolkit (WMtk) [15], was used.  The WMtk was developed at 

Vanderbilt University, and is based on the biology of the prefrontal cortex and the 

midbrain dopamine system.  The system has been used in various contexts [16], [17], 

[18], with a primary goal being adaptive robot control. 

 At its heart, the WMtk implements a naive Q-learning, Q(λ), system in the form 

of an optimistic critic whose representation is a single perceptron with a linear activation 

function. The system is capable of learning preferences, or weights, for different 

combinations of state-item groupings. The basic input elements of the WMtk are chunks, 

and the current state. A chunk is simply an abstract data structure that can hold any 

information desired by the user. Similarly, the state is an abstract data structure that holds 

whatever information is necessary to describe the current state.  Ultimately, neither the 

chunks nor the state are given directly to the perceptron as input.  Two user defined 

functions, the chunk mapping function and the state mapping function, perform the task 

of translating a given chunk or state data structure, respectively, into a real valued feature 

vector.  

 The objective of the working memory system is to learn the correct valuation for 

each state-item grouping. At each time step, the system evaluates all the possible 

combinations of state-item groupings presented to it, and selects the grouping with the 

highest valuation from the perceptron as the winner.  The items from this winning state-

item combination are then placed into the “working memory store.” The size of the 
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working memory store is defined before the system is initialized (typically less then 5 to 

7 items). Additionally, at each time step, the current items, or chunks, held in the working 

memory store are automatically included in the list of items to evaluate for the current 

time step. 

 A given chunk feature vector, or multiple chunk feature vectors depending on the 

size of the working memory store, and the current state feature vector are combined using 

one of four methods to form what is termed an aggregate feature vector (AFV), which is 

then presented to the perceptron.  The four methods for combining chunk feature 

vector(s) and the state feature vector are: concatenation, state conjunctive, chunk 

conjunctive, and complete conjunctive.  In the first case, concatenation, the state feature 

vector and the chunk feature vector(s) are simply concatenated. In the second case, state 

conjunctive, the chunk feature vectors(s) are first concatenated, and the state feature 

vector is then conjunctively coded with concatenated chunk vector.  In the third case, 

chunk conjunctive, the chunk feature vector(s) are conjunctively coded, and the state 

feature vector is then concatenated with the resultant vector.  In the fourth case, complete 

conjunctive, all of the chunk feature vector(s) are conjunctively coded, and the resultant 

vector is then conjunctively coded with the state feature vector.  The selection of the 

method for forming the AFV thus dictates what can be learned by the working memory 

system.  Specifically, for example, if the concatenation method is used for the formation 

of the AFV, then it will be impossible for the system to learning anything that depends on 

the combination of a state and a chunk; as the system will only be able to learn a 

preference for a given state, or a given chunk, not a combination of the two. 
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 At each time step, chunks are added to a candidate chunk list which is then used 

by the system to form all the possible state-item groupings.  The user can add chunks to 

the candidate chunk list, additionally all the chunks currently in the working memory 

store are automatically added. The working memory system then evaluates all the 

possible permutations of the chunks in the given candidate chunk list, selected at the 

number of chunks that can be held in the working memory store at a time. Like any Q-

learning system, the WMtk learns to output the expected final reward that will be 

received for each state-item grouping.   

 A number of parameters control the behavior of the system, namely: the learning 

rate, the exploration percentage, the temporal credit assignment value, the mean of the 

initial weights, and the reward function. The learning rate, of course, impacts the 

magnitude of updates to the weights. The exploration percentage controls the chance that 

the working memory system will ignore the best valued state-item grouping and instead 

will chose one of the groupings at random.  The temporal credit assignment value affects 

the number of time steps that a reward is propagated back. The mean of the initial weight 

controls the initialization point of the system. Finally, the reward function determines the 

behavior of the system, and ultimately describes the state-item valuations that the system 

learns to predict. 
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Chapter 3 

Design 

 

3.1 Simulation 

The typical Morris water maze environment consists of a one to two meter 

circular pool of opaque water from which the only escape is a raised platform positioned 

slightly below the water’s surface, ensuring no local cues from the platform are used to 

guide behavior. The essential elements from this typical Morris water maze setup, 

combined with information about the setup used by Krichmar et al. [2] to assess the 

spatial memory of a brain-based device called Darwin X, form the basis for the simulated 

Player/Stage [19] environment developed by Busch et al. [1]. The simulated environment 

is shown in Fig. 3.1. 

 

 

Figure 3.1: Simulated Player/Stage dry water maze 
environment used by Busch et al. [1]. Gridlines spaced at 
one meter increments. 
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The environment is an 8x10 meter rectangle. There are 18 colored panels of 

varying widths located along the walls. Specifically, there are six blue panels on one 

wall, five green panels on the wall opposite the wall with the blue panels, four yellow 

panels on the wall to the right of the blue panels, and three red panels on the wall 

opposite the yellow panels.  These colored panels are used to form the perceptual cues 

observed by robot. 

In addition to the colored panels, a hidden circular platform of radius 0.8 meters is 

positioned in the simulated environment. This hidden platform represents the only 

“escape,” or goal location, from the simulated environment and is only detectable by the 

robot when it is directly over the top of the platform. 

The robot used in the experiments is a simulated version of a Pioneer P3-DX; a 

commercially available differential drive robot. The simulated robot is equipped with 

three cameras, blob finders in Player/Stage, each with a 60 degree field of view. The 

purpose of the cameras is to detect the colored panels in the simulated environment. In 

addition, the robot is equipped with a laser range finder that is used for obstacle 

avoidance. Lastly, the robot is equipped with an infrared sensor which allows it to detect 

the hidden circular platform. In practice, this is implemented by simply testing if the 

robot’s position is within the platform radius of the goal location. Nevertheless, the robot 

cannot detect the hidden platform unless it is directly over it. 

Using its differential drive system, there are five possible actions, motions, the 

robot can execute at a given time step: hard left, left, forward, right, and hard right. 

During these possible actions, the translational speed of the robot is set to 0.3 meters per 

second, and the rotational speed of the robot is set to 0.4, 0.2, 0.0, -0.2, and -0.4 radians 
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per second during the hard left, left, forward, right, and hard right actions respectively. 

Each action is executed for a time period of one second, at which time the motion of the 

robot is stopped.  

The three cameras, blob finders, with which the robot is equipped, allow the robot 

to detect the colored panels along the edges of the simulated environment.  The blob 

finders are defined to have a maximum range of 14 meters, allowing them to detect the 

colored panels, if positioned in the camera’s field of view, no matter where in the 

environment the robot may be located. The simulated cameras are specified to have a 

resolution of 160 pixels by 120 pixels. Blobs found by the blob finders contain 

information specifying the bounding box, in pixels, of the blob in the simulated camera 

image space. This information about the bounding box of the blob is used in the 

formation of the current perceptual feature vector. The formation of this feature vector is 

described in detail in section 3.5.  

The robot uses a simulated laser range finder for obstacle avoidance behavior. 

This obstacle avoidance behavior is activated if the robot comes within 0.4 meters of a 

wall in the environment. When this behavior occurs, the robot rotates in place until its 

directional axis is 30 degrees beyond parallel with the wall. After executing this 

avoidance behavior, the motion of the robot is stopped, ending the current time step. 

Given that the maximum number of allowed actions has not been reached, the robot then 

goes through the sequence of once again acquiring a perceptual vector and selecting 

another action. 

Finally, the hidden platform, as shown in Figure 3.1, is implemented by simply 

observing the position of the robot using odometry information available in Player/Stage.  
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If after executing an action, the position of the robot is found to be within the platform 

radius distance of the specified location of the hidden platform, it is assumed that the 

robot has found the platform.  It should be noted that the odometry information is not 

used by the Temporal Difference (TD) learning system for locating the hidden platform; 

it is simply used to implement the infrared sensor functionality in the simulated 

environment. 

 

3.2 Physical Implementation 

In order to implement a physical version of the dry water maze environment used 

in simulation, a number of features of the environment needed to be adapted.  

Additionally, a number of challenges had to be overcome to obtain the same functionality 

of many of the components available in the simulated environment in the physical world. 

This section details those adaptations, and the solutions to those challenges. 

 

3.2.1 Environment 

The simulated dry water maze environment needed to be adapted slightly for 

implementation in the physical world. Firstly, the environment had to be modified to fit 

the available space in the lab.  Whereas the simulated environment was an 8 by 10 meter 

rectangle, the physical environment had to be created within the space confines of the lab.  

Specifically, the physical environment ended up being a 5.26 by 6.06 meter rectangle. 

Consequently, due to the change in the environment size, the size of the hidden platform 

was also changed.  In simulation the hidden platform had a radius of 0.8 meters and 

covered 2.5% of the total space. In the physical environment, the hidden platform was 
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given a radius of 0.41 meters and thus covered 1.6% of the total space.  The selection of 

the smaller platform size relative to the total percentage of the environment space was 

due to two factors: firstly, less of the total environment space would available to the robot 

in the physical environment then in the simulation due to the need for a larger obstacle 

avoidance distance; and, secondly, to more closely match the size of the hidden platform 

used by Krichmar et al. [2]. These environmental specification differences are laid out in 

Table 3.1. 

 

 TABLE 3.1 

SIMULATION AND REAL WORLD ENVIRONMENT STATS 

 Simulation Real World 

Dimensions (m) 8x10 5.26x6.06 

Total Area (m2) 80 31.88 

Goal Area (m2) 2.01 0.52 

Goal Area /Total Area (%) 2.5 1.63 

Avoidance Distance (m) 0.4 0.8 

 

 

 

 

 

 

 

 

 

In addition to the size of the environment, the size and positioning of the colored 

panels along the edge of the environment were also adapted slightly from the simulation.  

Due to the materials used to construct the colored panels, all of the panels were made to 

have essentially the same width. Specifically, the blue and red panels have widths of 

approximately 28 cm, and the green and yellow panels have widths of approximately 25 
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cm. A diagram of the physical environment with the layout of the colored panels is 

shown in Figure 3.2. Additionally, pictures taken from the physical environment are 

shown in Figure 3.3.  

Lastly, as can be seen in Figure 3.3, black strips were placed above the green and 

yellow colored panels in the physical setup. These strips perform no function other then 

to help with the panel segmentation procedure, as described in section 3.4. Ultimately, 

besides the size difference of the environment, goal, and colored panels, the physical 

environment closely matches the simulated environment with respect to the general 

layout.   

 

 

 

Figure 3.2: Diagram of physical environment and layout of 
colored panels. 
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Figure 3.3: Pictures taken from the physical environment, 
showing the colored panels and hidden platform. Pictures 
(a) through (d) were taken from left to right around the 
enclosure.  

 

 

3.2.2 Robot 

As in the simulation, a Pioneer P3-DX was used in the physical setup. However, a 

number of details about the specific pieces of equipment attached to the robot needed to 

be adapted from the simulation for implementation on the physical robot. Firstly, whereas 

in the simulation the robot was equipped with three simulated cameras, the physical robot 

was equipped with two FireWire web cams with wide angle lenses. Secondly, whereas 

the simulated robot was equipped with a laser range finder for obstacle avoidance, the 

physical robot simply used sonar sensors already integrated into the frame for obstacle 

avoidance. Finally, the robot was equipped with an assembly of four infrared sensors 
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attached to a Handy Board for detection of the hidden platform. A picture of the Pioneer 

P3-DX used in the experiments, with the attached equipment described above, is shown 

in Figure 3.4. 

 

 

 

Figure 3.4: Picture of the Pioneer P3-DX robot used in the 
physical experiments. Two FireWire web cameras are 
mounted to a wooden base on the front of the robot. An 
infrared sensor assembly can be seen beneath the front of 
the robot. 

 

 

3.2.2.1 Motion 

As a result of using a P3-DX robot in the simulated environment, the possible 

motions of the robot did not need to be altered for implementation in the physical 

environment. As in the simulated environment, the physical robot can execute one of five 

possible actions at a given time step: hard left, left, forward, right, and hard right. In the 

simulation, during these possible actions, the translational speed of the robot was set to 
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0.3 meters per second, and the rotational speed of the robot was set to 0.4, 0.2, 0.0, -0.2, 

and -0.4 radians per second during the hard left, left, forward, right, and hard right actions 

respectively. These same specifications were used to define the five possible actions the 

physical robot could take at a given time step.  

In the simulated environment, each action was executed for one second, at which 

time the motion of the robot was stopped while the robot acquired a new perceptual 

vector and determined what new action to execute.  However, whereas this perceptual 

acquisition and processing took only milliseconds in the simulated environment; this 

same process required slightly less then one second in the physical environment. Thus, 

due to approximately one second of processing time being needed to acquire and act on a 

new perceptual vector, in the physical environment each action was executed for 50 

milliseconds (during which time obstacles could be detected) plus this approximately one 

second needed for the perceptual acquisition and processing.  Furthermore, the motion of 

the robot was not stopped between actions. These changes resulted in a much smoother 

motion from the physical robot, and, ultimately, approximately the same time required 

per action, or step, as in the simulated environment. 

 

3.2.2.2 Cameras 

The cameras used on the physical robot were Unibrain Fire-I FireWire digital 

color cameras. The cameras capture 640 by 480 color images in uncompressed RGB 

format. Wide angle lenses were used on the cameras which gave an approximate 

horizontal field of view of 90 degrees for each camera.  The cameras, mounted on the P3-

DX robot, are shown in Figure 3.4. 
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3.2.2.3 Ultrasonic Sensors 

 The Pioneer P3-DX robot comes equipped with a ring of 16 sonar sensors. Given 

that space on top of the robot was needed for cameras, and that the laser range finder 

requires a large amount of power, it was decided that the sonar sensors on the robot 

would be used for obstacle avoidance. Specifically, the front eight sonar sensors are used 

for basic obstacle avoidance. Due to the latency of the readings from the sonar sensors, 

the obstacle avoidance behavior of the robot is triggered by a reading of 0.8 meters or 

less from any of the front eight sonar sensors. 

 As accurate position and orientation information is not available to the physical 

robot, the obstacle avoidance behavior from the simulation, detailed in section 3.1, is 

approximated using readings from the sonar sensors.  Specifically, the robot rotates away 

from a detected obstacle (known to be a wall in the environment) until readings from its 

sonar sensors indicate it is angled at least 30 degrees away from the obstacle. 

 

3.2.2.4 Infrared Sensor 

 To detect the hidden platform in the physical environment, an infrared sensor 

assembly attached to a Handy Board was used. The infrared assembly consists of four 

individual infrared emitter-detector sensors, all of which need to be activated to constitute 

a detection of the hidden platform. The Handy Board was connected to the laptop 

computer used to control the robot through a serial connection, and simply transmits a 

notification signal to the laptop whenever all four infrared sensors are simultaneous 

activated.  The infrared assembly is visible in Figure 3.4. 
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3.3 Position Fix 

 In the simulated environment, where perfect odometry information is readily 

available, resetting the robot after each episode is as simple as telling the robot to move 

to a given position.  In the physical environment, however, the robot’s odometry suffers 

from considerable error.  Although the odometry is accurate enough to keep a rough path 

for display purposes of the robot’s movements during an episode, it is not accurate 

enough for use in repositioning the robot. Furthermore, as the sonar sensors used for 

obstacle avoidance are not suitable for localization, another solution to repositioning the 

robot after each episode had to be developed.   

The solution relies on the fact that the robot’s odometry is accurate enough that 

the estimated orientation after a single episode is within plus or minus approximately 10-

15 degrees. Given this level of accuracy, following the end of an episode, the robot is 

instructed to turn toward an absolute heading of 135 degrees, and is then instructed to go 

forward until a wall is encountered. Depending on readings from the robot’s sonar 

sensors, the robot then follows the detected wall towards the right or left. This causes the 

robot to “funnel” itself into the corner of the environment. This process is illustrated in 

Figure 3.5.  Once the robot has successfully navigated into the corner, the sonar sensors 

are used to obtain an accurate position fix to within a few inches on the x and y axis, and 

to within 5-7 degrees on the orientation. This level of localization precision is accurate 

enough for the robot, in general, to successfully reset its position after every run. 
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Figure 3.5: Diagram of the position fix procedure. 
 

 

 Although the solution is straightforward, there are two main drawbacks. First, a 

sizable amount of time is wasted between episodes while the robot fixes it position.  

Second, although the robot gets a reasonably good position estimate, the error is still 

large enough to cause a noticeable amount of variability in the positioning of the robot 

for a given starting location. As compared to the simulated environment, this is an 

additional source of error. 

 Simulations, detailed in section 4.2.1.2, were conducted to evaluate the possible 

impact of this inaccuracy in starting location positioning. Specifically, simulations were 

performed which added randomly distributed errors of plus or minus 0.5 meters and plus 

or minus 5 degrees to the x/y position and orientation of the robot’s starting positions 

respectively. Results of these simulations showed that the inclusion of such error in the 

robot’s starting positions significantly increased the average number of moves needed to 
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find the hidden platform given 100 training episodes. Analysis of the results seemed to 

indicate that this decrease in performance was a result of the fact that even small changes 

to a starting position cause the robot to observe different SOM nodes during the initial 

step of the episode. Thus, variability in the starting locations requires the robot to learn 

correct action preferences for a larger number of SOM nodes from which it might start; 

whereas in the simulated environment the robot always begins each episode from the 

same SOM node for a giving starting position.   

 

3.4 Panel Segmentation 

In the simulated environment, reliable detection of the colored panels is not an 

issue.  The simulated cameras do not suffer from the problems encountered using real 

cameras in a physical environment. These problems include limited resolution, lens 

distortion, changing lighting conditions, and the task of ultimately segmenting the panels 

in the images. Due to these problems, developing a reliable panel extraction process itself 

proved to be a challenging task. 

 On the physical robot, the panel detection process consists of first removing lens 

distortion from the captured images, discarding the bottom halves of the images, 

performing median filtering on the images, and using a combination of rules in multiple 

color spaces for segmentation.  Finally, the knowledge that the panels are vertical in the 

images is used to identify and extract the number of panels.  A number of functions from 

the Open Source Computer Vision Library [20] are used for the image processing steps. 

 A large amount of distortion is present in the captured images due to the use of 

wide angles lenses.  Therefore, in order to obtain accurate information about the height of 
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the colored panels (necessary for the creation of the perceptual feature vectors as 

described in section 3.5), the first step of the panel extraction process involves adjusting 

the captured images for lens distortion.  To achieve this, a rough estimate of the lens 

distortion parameters, as modeled in OpenCV, was obtained by adjusting the parameters 

until lines in a handful of test images were no longer distorted.  

After adjusting the captured images for distortion, the bottom halves of the 

images are discarded, and only the top halves are used for panel detection. The discarding 

of the bottom halves of the images helps to eliminate panel detection problems due to 

reflections from the floor, or the color of the hidden platform.  In addition, the bottom 

edges of the panels are always located in the bottom half of the images, meaning they 

always extend past the bottom of the top half. This information is later exploited in the 

panel segmentation process. 

Repeated median filtering is then performed to smooth the images while 

preserving edges. After this preprocessing step, the images are transformed into the Hue 

Saturation Value (HSV) color space, and a set of RGB and HSV rules are used to 

segment the images. Next, using the fact that the panels, if present, extend to the bottom 

of the images (now only the top half of the original images), and that they are vertical in 

the images, the sides of any panels in the images are identified. Given the location of the 

sides of each panel, and the color, the top edges of the panels are identified by moving up 

from the bottom of the image towards the top until the average color no longer satisfies 

the RGB and HSV rules defining the color of the panel.   

An illustration of the panel segmentation process is shown in Figure 3.6. 
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Figure 3.6: Illustration of the panel detection process from 
the two FireWire webcams on the P3-DX robot. Images (a) 
and (b) are the top halves of raw images captured from the 
left and right cameras respectively.  Images (c) and (d) are 
the corrected and filtered images from the left and right 
cameras respectively.  Finally, images (e) and (f) show the 
resulting panel segmentation. 

 

 

3.5 Self-Organizing Map 

In [1], Busch et al. used a Self-Organizing Map (SOM) to discretize the 

perceptual space.  The SOM allowed the large number of possible perceptual states to be 

reduced to a useable number for the tested spatial memory systems. 

Initially, panel segmentation information collected from each of the cameras is 

used to generate a feature vector.  As each camera has the possibility to encounter any of 

the 18 colored panels in the environment, the vector formed for each camera consists of 

18 bins.  If a panel of a certain color is detected, the height of that panel in pixels is stored 

in the first empty bin corresponding to the color of the panel, as the robot has no way to 

determine which of the panels of the given color it is observing. Panels are processed 
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from left to right across an image. Thus, in the simulated environment, the robot is 

equipped with three cameras, resulting in a 54 dimensional feature vector. In the physical 

environment, the robot is equipped with two cameras, resulting in a 36 dimensional 

feature vector. 

The SOM(s) used in the simulated experiments were trained from 10,000 

perceptual vectors collected from random points in the environment.  The SOFM(s) used 

in the real world experiments were trained from approximately 7,400 perceptual vectors 

collected by letting the robot randomly roam throughout the environment with an 

obstacle avoidance behavior for approximately two hours. For the experiments conducted 

in the simulation and physical environments presented in this work, unless otherwise 

stated, an 8x8 SOFM was used, resulting in 64 possible perceptual states. 

 

3.6 Working Memory Toolkit Usage 

 As previously stated, for the majority of the experiments conducted in this work, 

the Temporal Difference (TD) learning implementation found in the Working Memory 

Toolkit (WMtk), detailed in section 2.3, was used. This section details the usage of the 

WMtk in the context of the dry water maze environment. 

 Firstly, it should be stated that in the case of the dry water maze environment, a 

spatial memory task, the learning of spatial memory, and not working memory, was being 

investigated. Thus, although the WMtk was used, it was used purely from the TD 

implementation aspect, and not as a general working memory system. Due to this fact, 

the WMtk was used with a working memory store of size one.   
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 Finally, it should be noted that the use of the WMtk for the dry water maze 

environment, as documented in this section, was used by Busch et al. [1]. 

 

3.6.1 State Mapping Function 

 One of the steps necessary in the use of the WMtk is the creation of a state 

mapping function which maps an abstract state data structure to a real valued feature 

vector. Given the discretized perceptual space resulting from the use of a Self Organizing 

Map (SOM), see section 3.5, the creation of this state mapping function is relatively 

straightforward.   

 Firstly, the abstract state data structure simply holds the number of the SOM node 

to which the current perceptual feature vector maps. Secondly, the state mapping function 

simply generates a real valued state feature vector with a dimensionality equal to the 

number of possible states, such that the current state, as indicated by the state data 

structure, is set to 1, while all the other values are set to zero.  Thus, if, for example, a 64 

node SOM is used, then the state mapping function generates a state feature vector with 

dimensionality 64, where the dimension corresponding to the current state, as indicated 

by the abstract state data structure, is set to 1, while all the other values are set to zero.   

 

3.6.2 Chunk Mapping Function 

 In addition to the state mapping function, it is also necessary, for the use of the 

WMtk, to create a chunk mapping function which maps an abstract chunk data structure 

to a real valued feature vector.  In the case of a control task, these chunks generally take 

the form of actions. In the case of the dry water maze environment, there are five possible 
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actions that the robot can take at a given time step, thus yielding five possible chunk 

values.   

 Firstly, in the dry water maze environment, an abstract chunk data structure 

simply holds the number (1-5) of the action it represents.  Secondly, the chunk mapping 

function simply generates a real valued feature vector of dimension five, such that the 

dimension corresponding to the action held in the chunk data structure is set to 1, while 

the other dimensions are set to zero.   

 

3.6.3 Aggregate Feature Vector (AFV) Formation 

 Given that the state and chunk mapping functions have been defined, it is also 

necessary to define how the real valued state and chunk feature vectors output by the two 

functions are combined before being presented to the perceptron that is the TD system.  

In the case of the dry water maze environment, where the working memory store size was 

set to one, state conjunctive coding was used for the formation of an AFV.  Specifically, 

to generate an AFV, a given chunk feature vector and the current state feature vector are 

conjunctive coded together to yield an AFV. Thus, if, for example, the chunk feature 

vector length is five, and the state feature vector length is 64, the resulting AFV that is 

presented to the TD system will be of length 320; where 320 corresponds to the total 

number of possible state-action pairs, and for any given AFV only one of those 320 

dimensions will be non zero. The use of this method for the formation of AFVs 

effectively allows the system to learn valuations of all possible state-action pairs.   
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3.6.4 Reward Function 

When the Working Memory system is first initialized, the preferences, or weights, 

of the system are set randomly. During training, a reward signal is given to the system, 

both during and at the end of training episodes, which the system attempts to maximize 

by adjusting its state-action preferences (as described in sections 2.2 and 2.3). This signal 

is represented by a reward function that is called at the end of each time step, and, for 

most of the experiments described in this work, is defined as: 
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where c is the current number of chunks in the Working Memory system’s store, m is the 

maximum number of moves allowed per episode, and n is the number of the current 

move in the current episode. 

Thus, the robot is rewarded at the end of each training episode depending on 

whether it has or has not found the hidden platform.  If the platform has been found, a 

positive reward inversely proportional to the number of moves required to find the 

platform is given. If the hidden platform has not been found, then a fixed negative reward 

is given.  In addition to the delayed rewards, the robot is given an immediate negative 

reward when the obstacle avoidance behavior is initiated, and when the learning system 

selects none of the five possible actions (c = 0).  (When this occurs, one of the five 
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possible actions is chosen at random.) These sparse measures of performance are the only 

feedback the robot receives in learning a mapping between SOM nodes and actions. 

In a handful of experiments detailed in later sections, variations of this reward 

function are used. When this is the case, the specific reward function used will be 

described. 

 

3.7 Modification of WMtk for “Forgetting” 

 As detailed later in section 4.2.2, the original implementation of Temporal 

Difference (TD) learning, as encapsulated by the WMtk, was found to be severely 

lacking in its ability to adapt in non-stationary environments. For this reason, the learning 

algorithm of the WMtk was modified to achieve better performance in non-stationary 

environments. This modification came in the form of active “forgetting” based on past 

rewards received. 

 Specifically, a “short term” reward and a “long term” reward, calculated based on 

rewards received at the end of episodes during the current trail, are used to control a 

“forgetting” process. This process can be formalized into the equations below.  

Essentially, whereas the original learning equation, in terms of weight updates, 

implemented in the WMtk is: 

 

)()()1( tetwtw ijtijij αδ+=+  

 

where α is the learning rate, tδ is the TD error at time t, and  eij(t) is the eligibility trace for  

wij at time t; with “forgetting” the weight update equation becomes: 
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where μ is the initial mean of the weights for the system, and fp is defined as follows: 
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where rl and rs are the long term and short term rewards respectively, ε is a small positive 

constant, and ηf is the forgetting rate. 

 Essentially, under normal circumstances, where rs ≥ rl – ε, the weight update is 

unchanged from that originally implemented in the WMtk. However, if rs < rl – ε then the 

system actively “forgets” by moving all weights closer to the initial mean value μ.  

Furthermore, the degree to which this forgetting takes place is controlled by both the 

difference between rl and rs, and the forgetting rate ηf. 

 The long term and short term rewards, rl and rs, are calculated based on rewards 

received at the end of each episode during a trial. Specifically, the long and short term 

rewards are calculated by taking an average of sliding medians over some number of past 

rewards received: 

 

∑
−

=
++−+−+−

=
slsl

slslsl

MN

k
MkNtkNt

slsl
sl RRmedian

MN
r

//

///
0//

/ ),...,(
1

1  

 

36 



 

where N is the number of episodes over which past rewards will be used to calculate the 

reward, M is the size of the window over which medians will be calculated, R is the 

reward signal consisting of rewards received at the end of previous episodes, and t is the 

current episode.   

 For experiments conducted in section 4.2.2.2, N was set to 100 and 30 for the long 

and short term rewards respectively, M was set to 20 for both rewards, ε was set to 0.5, 

and ηf was set to 0.09. 

 

3.8 TD(λ)  Multi Layer Perceptron Implementation 

 In addition to the Working Memory Toolkit (WMtk), a Multi Layer Perceptron 

(MLP) implementation of the TD(λ) algorithm, suitable for use with Q(λ) algorithm as 

well, was developed and tested for the dry water maze environment.  The implementation 

is as described in [14], and could be instantiated for any number of hidden layers, with 

any number of nodes (including any number of output nodes).   

 The main purpose of implementing a MLP version of the TD(λ) algorithm was to 

evaluate the ability of such a system to learn to find the hidden platform in the dry water 

maze environment, without the need for a SOM discretization of the perceptual space.  

Specifically, the MLP was implemented to test the idea of using the raw perceptual 

vectors obtained from the cameras on the robot as input of the current state. 

 Results from various experiments making use of this MLP implementation are 

presented in section 4.2.1.5. 
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3.9 General Experimental Procedure 

For the experiments presented in this work, in general, simulation episodes 

proceeded as follows: at each time step, the robot determines its current perceptual state, 

as represented by a 54 dimensional feature vector, using information about the colored 

blobs visible to its blob finders. (This process in described in detail in section 3.1.) This 

perceptual feature vector is then compared to the SOM nodes to determine the closest 

node.  The temporal difference learning system then uses the closest SOM node as the 

current state of the robot. Based on this state, the TD system then selects one of the five 

possible actions, which are described in section 3.1. This process is then repeated for a 

maximum of 50 moves or until the robot detects the hidden platform, at which time the 

current episode is ended, and the robot’s position is reset. During each such episode, the 

system receives rewards as defined in section 3.6.4. The general procedure for 

experiments conducted in the physical environment is effectively the same as described 

above for experiments conducted in the simulated environment. 

Performance of the system is evaluated by either observing the performance of the 

system during training trails, specifically the number of moves per episode, or by 

performing some number of evaluation episodes, that is episodes during which learning 

and exploration are inhibited, both before and after training in order to measure 

improvement. 
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Chapter 4 

Experimental Results and Analysis 

 

4.1 Physical Environment 

 Two experiments were developed to evaluate the ability of the physical robot to 

learn the necessary associations between SOM nodes and actions to locate the hidden 

platform in the dry water maze environment. These two experiments were a single corner 

experiment and a four corner experiment. For both of these experiments, each training 

episode consists of a maximum of 51 moves.  For each move the robot determines which 

SOFM node it is currently in, and then selects one of five possible actions, or a random 

action if it selects none of the five, to take.  If the robot finds the goal before 51 moves 

have been made, the run is ended.   

In addition to tracking the performance of the robot during training, in a handful 

of experiments evaluation episodes were also used to observe the performance of the 

system. For these evaluation episodes, the exploration and learning of the system were 

inhibited.   

 

4.1.1 Single Corner 

 For this experiment, each training episode consists of starting the robot at a single 

fixed starting location, as illustrated in Figure 4.1. During each episode, the robot is 

allowed a maximum of 51 moves to locate the hidden platform. Once 51 moves have 

been executed, or the hidden platform has been found, the episode is ended. The robot is 

then repositioned to the single starting location for the next episode.  
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Figure 4.1: Diagram of the single corner water maze 
task showing the starting location and positioning of the 
robot, along with the location of the hidden platform. 
Coordinates are in meters. 

 

 

 The results of one single corner water maze experiment are shown in Figure 4.2 

and Table 4.1, and are typical of those obtained during other tests. Figure 4.2 (a) shows 

the number of moves per episode during a training sequence of 100 episodes. As can be 

seen, the robot fails to find the platform during most of the early training episodes. Figure 

4.2 (b) shows an example path of the robot during one of these early training episodes. 

Within approximately 20 training episodes, however, the robot appears to learn a path to 

the platform. Figure 4.2 (c) shows the path of the robot during episode 22. As the training 

sequence continues the robot does fail to locate the platform during certain episodes. 

Figure 4.2 (d) shows the path of the robot during episode 64, an episode in which it fails 

to find the platform. The path in Figure 4.2 (d) is typical of many failed runs later in the 
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training process. The robot generally follows a successful path to the platform but just 

misses it. More information is needed to identify the exact reason. However, these 

failures could be due to the exploration of the TD system, or could be caused by some 

combination of parameters such as goal size, SOM size, sensory uncertainties, etc. 

Clearly, though, the frequency of episodes during which the platform is not found 

appears to decrease as the training process progresses. 

 

 

 

Figure 4.2: (a) Plot of moves per episode during 100 
training episodes for the typical single corner water maze 
task presented here. The maximum number of moves 
allowed per episode is 51. (b) Path of robot during episode 
2. (c) Path of robot during episode 22. (d) Path of robot 
during episode 64. The displayed paths are highlighted in 
red in (a). The inner box in (b), (c), and (d) shows the 
distance at which obstacle avoidance should be activated. 
The robot’s path is logged using odometry during training 
and evaluation episodes. This information is not used by 
the learning system.  
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 To better characterize the improvement of the system, the robot was evaluated 

both before and after the training episodes. During the evaluation episodes the 

exploration and learning of the TD system are inhibited. Table 4.1 shows the results of 

these evaluations. Noticeable improvement can be seen after the 100 training episodes as 

compared with the results obtained before training, indicating the robot has indeed 

learned at least some set of state-action associations necessary for navigating to the 

platform.  

 

TABLE 4.1 
SINGLE CORNER EVALUATION RESULTS 

 
Before 

Training 
After 100 Training 

Episodes 

Evaluation Episodes 40 40 

Average Moves 
per Episode 48.5 23.6 

Episodes Platform not 
Found 32 8 

 

 

 Results from additional single corner training sequences can be found in 

Appendix A. 
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4.1.2 Four Corner 

 For this experiment, each training episode consists of starting the robot at one of 

four starting locations, as illustrated in Figure 4.3. The four starting locations are visited 

in the following sequence: (1.3, 1.3), (4.76, 1.3), (4.76, 3.96), and (1.3, 3.96). During 

each episode the robot is allowed up to 51 moves to locate the hidden platform. Once 51 

moves have been executed, or the hidden platform is found, the episode is ended. At the 

end of each episode the robot is repositioned to the next starting location in the sequence 

as described above.  

 

 

 

Figure 4.3: Diagram of the four corner water maze task 
showing the starting locations and positions of the 
robot, along with the location of the hidden platform. 
Coordinates are in meters. 
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 The results of one four corner water maze experiment are shown in Figure 4.4 and 

Table 4.2, and are typical of those obtained during other tests. Figure 4.4 (a) shows a 

moving average of the number of moves per episode during a trial of 100 episodes. The 

moving average is taken over the current episode and the previous three. A moving 

average of four episodes is used to display the change in the number of moves per 

episode over all four starting locations.  

 As in the single corner task, the robot fails to find the platform during many of the 

early training episodes. Figure 4.4 (b) shows the paths of the robot from each starting 

location for episodes 2-5. After approximately 70 training episodes, the robot appears to 

learn a path to the platform from each of the starting locations. Figure 4.4 (c) shows the 

paths of the robot from each starting location for episodes 69-72. Here again, however, as 

the training sequence continues the robot does fail to locate the platform during certain 

episodes. Figure 4.4 (d) shows the paths of the robot from each starting location for 

episodes 91-94, in which the robot fails to locate the platform from the lower right 

starting location during episode 94. As before, these failures could be due to the 

exploration of the system, or could be caused by some combination of parameters such as 

goal size, SOM size, sensory uncertainties, etc.  
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Figure 4.4: (a) Plot of the four episode moving average of 
moves per episode during 100 training episodes for the 
typical four corner water maze task presented here. The 
moving average is of the current episode and three previous 
episodes, and is used to show the change in the number of 
moves from the four combined starting locations. The 
maximum number of moves allowed per episode is 51. (b) 
Paths of robot during episodes 2-5. (c) Paths of robot 
during episodes 69-72. (d) Paths of robot during episodes 
91-94. The average of the displayed paths is highlighted in 
red in (a). The inner box in (b), (c), and (d) shows the 
distance at which obstacle avoidance should be activated. 
The robot’s path is logged using odometry during training 
and evaluation episodes. This information is not used by 
the system.  

 
 
 
 
 As in the single corner task, the robot was evaluated before and after the training 

episodes to monitor improvement. During the evaluations episodes the exploration and 

learning of the TD system are inhibited. For the four corner task, the evaluation episodes 

are carried out from all four starting locations in the same sequence as during training. 

The evaluation consists of 40 total episodes, thus 10 evaluation episodes are conducted 

from each corner. Table 4.2 shows the results of these evaluations. Here again, noticeable 

improvement can be seen after the 100 training episodes as compared with the results 
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obtained before training, indicating the robot has correctly learned at least some set of 

node/action associations necessary for navigating to the platform.  

 
 
 

TABLE 4.2 
FOUR CORNER EVALUATION RESULTS 

 
Before 

Training 
After 100 Training 

Episodes 

Evaluation Episodes 40 40 

Average Moves 
per Episode 46.0 20.1 

Episodes Platform not 
Found 30 3 

 

 

 Results from additional four corner training sequences can be found in Appendix 

B. 
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4.2 Simulation 

 The simulated environment used by Busch et al. [1], described in section 3.1, was 

used to conduct a number of experiments for the purpose of evaluating and testing 

various parameters and ideas related to the TD implementation. Generally, the 

experiments can be broken down into two groups: those conducted in a stationary 

environment, i.e. an environment in which the hidden platform location is fixed, and 

those conducted in a non-stationary environment, sections 4.2.1 and 4.2.2 respectively. 

 During the experiments, unless otherwise noted, the robot was positioned at one 

of four starting locations at the beginning of each episode, as illustrated in Figure 4.5. 

During each episode the robot was allowed a maximum of 50 moves to locate the hidden 

platform. Once 50 moves have been executed, or the hidden platform is found, the 

episode is ended.  

 

 

Figure 4.5: Diagram of starting positions and goal 
location for experiments conducted in section 4.2. 
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4.2.1 Stationary Environments 

 Initially, a large number of experiments were conducted in the simulated 

environment with the goal of determining the optimum values for the parameters 

affecting the performance of the Working Memory Toolkit (WMtk) and the optimum size 

of Self Organizing Map (SOM) used to discretize the perceptual space. Significant testing 

of these parameters was not conducted as part of the work in [1]. The results from these 

experiments are detailed in section 4.2.1.1. 

 Section 4.2.1.2 details the results of experiments done to evaluate the effect of 

imprecise starting positions, as experienced in the physical environment, on the 

performance of the temporal difference (TD) system. 

 Finally, sections 4.2.1.3 - 4.2.1.5 describe the results of experiments done to 

evaluate the performance of the system given the following modifications: a constant 

reward function, incorporation of simulated hippocampal place cells into the formation of 

the state feature vector, and the use of a multi layer perceptron (MLP) implementation of 

the TD(λ) algorithm to eliminate the need for a SOM. 

 

4.2.1.1 SOM Size and WMtk Parameter Evaluation 

 A large number of experiments were conducted to evaluate the affect of various 

parameters on the performance of the TD system in the simulated dry water maze 

environment. The parameters tested included: SOM size, temporal credit assignment 

value, learning rate, and exploration percentage.  

 The size of the SOM used to discretize the perceptual space determines the 

number of states in the water maze environment. For the experiments conducted in [1], a 
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20 by 20 SOM was used which resulted in 400 perceptual states. As the number of 

weights in the TD system, and thus the complexity, is directly proportional to the number 

of states, a smaller SOM, size 8 by 8, was tested to determine whether it yielded better 

performance in the water maze environment.  

 The temporal credit assignment value, described in section 2.2, determines how 

rewards given to the system are propagated back to weights activated during a training 

episode.  Specifically, the eligibility trace value of an activated weight is decayed by the 

temporal credit assignment value at each time step.  For the experiments conducted in [1], 

the default WMtk value of 0.7 was used. For this work, six temporal credit assignment 

values from 0.7 to 0.95 were tested to evaluate their affect on the performance of the TD 

system in the water maze environment. 

 The learning rate, described in section 2.2, determines the magnitude of the 

updates to the weights of the TD system. Specifically, the eligible TD error calculated at 

a time step for a given weight is multiplied by the learning rate before being applied to 

the weight.  For the experiments conducted in [1], a learning rate of 0.01 was used.  For 

this work, three learning rate values, 0.001, 0.01, and 0.1, were tested to evaluate their 

affect on the performance of the TD system in the water maze environment. 

 The exploration percentage, described in section 2.3, determines how often the 

TD system will ignore its current action preference and instead choose a different action. 

In [1], the default WMtk exploration percentage of 0.05 was used. For this work, two 

exploration percentages, 0.05 and 0.10, were tested to evaluate their affect on the 

performance of the TD system in the water maze environment. 
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 In order to evaluate the impact of these four variables on the performance of the 

TD system, 25 trials, each consisting of 100 training and 100 evaluation episodes, were 

conducted for all 72 possible combinations of values of the variables described above. 

For these experiments, during both the training and evaluation phases, the robot was 

randomly positioned at one of the four starting locations shown in Figure 4.5 at the 

beginning of each episode.  Although the sequence of starting locations was random, it 

was controlled such that during every 100 episodes the robot started from each location 

25 times. Results of these experiments are shown in Tables 4.3 and 4.4. Each entry 

represents the number of moves per episode, during evaluation, averaged over 25 trials. 

 

 
TABLE 4.3 

PARAMETER EVALUATION RESULTS - 20 X 20 SOM 

(RESULTS ARE AVERAGE MOVES PER EVALUATION EPISODE) 

Exploration Percentage = 0.05 

  Temporal Credit Assignment Value 

  0.70 0.75 0.80 0.85 0.90 0.95 

L
ea

rn
in

g 
R

at
e 

0.001 21.5 18.3 16.8 14.3 13.7 14.8 

0.010 16.0 16.8 13.8 13.6 15.0 15.5 

0.100 20.2 20.8 21.6 20.1 18.4 32.9 

Exploration Percentage = 0.10 

  Temporal Credit Assignment Value 

  0.70 0.75 0.80 0.85 0.90 0.95 

L
ea

rn
in

g 
R

at
e 

0.001 20.8 22.2 17.3 18.0 13.1 15.6 

0.010 16.4 15.7 16.2 15.0 17.4 16.9 

0.100 18.5 22.4 20.6 18.7 19.2 33.7 
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TABLE 4.4 

PARAMETER EVALUATION RESULTS – 8 X 8 SOM 

(RESULTS ARE AVERAGE MOVES PER EVALUATION EPISODE) 

Exploration Percentage = 0.05 

  Temporal Credit Assignment Value 

  0.70 0.75 0.80 0.85 0.90 0.95 

L
ea

rn
in

g 
R

at
e 

0.001 18.0 16.9 15.1 12.7 11.5 11.6 

0.010 17.1 15.5 13.9 14.7 13.0 14.8 

0.100 15.2 16.4 17.4 15.9 15.3 33.4 

Exploration Percentage = 0.10 

  Temporal Credit Assignment Value 

  0.70 0.75 0.80 0.85 0.90 0.95 

L
ea

rn
in

g 
R

at
e 

0.001 22.5 18.9 13.9 15.1 12.7 11.9 

0.010 15.1 14.1 12.9 13.6 14.4 14.1 

0.100 17.5 14.4 15.6 17.0 16.3 33.7 

 

  

 From the results shown in Tables 4.3 and 4.4, perhaps the most noticeable result 

is the performance of the system given the largest learning rate and the largest temporal 

credit assignment value.  In all four cases of this combination, the resulting performance 

of the system, an average of approximately 33 moves per episode during evaluation, was 

essentially equal to results obtained before training, with random weights; which seems 

to indicate that this combination of values makes the system unstable. Furthermore, it 

appears that the combination of the smallest learning rate and the smallest temporal credit 

assignment value, though not yielding unstable performance such as the previous 

combination, also yields poor results in all four cases. Ultimately, besides these to 

noticeable effects, the performance of the system seems rather invariant, for the most 

part, to the changes in parameter values. That said, it does appear that overall, the 8 by 8 

SOM tended to yield better results then the 20 by 20 SOM.   
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 As a result of the lack of conclusive evidence demonstrating a clear and obvious 

favorite for the best combination of parameter values, the following values for the tested 

parameters were used in all subsequent experiments: a SOM size of 8 by 8, an 

exploration percentage of 0.10, a learning rate of 0.01, and a temporal credit assignment 

value of 0.83. 

 

 

4.2.1.2 Starting Position Variability Evaluation 

 As described in section 3.3, the lack of error free odometry in the physical 

environment leads to imprecise positioning of the robot at the beginning of each episode, 

a source of error not found in the simulated environment. In order to determine the 

impact of this imprecise positioning on the performance of the TD system, experiments 

were conducted in the simulated environment during which uniform random errors of 

plus or minus 0.5 meters and plus or minus 5 degrees were added to the robot’s starting 

position at the beginning of each episode. Specifically, 25 trials, each consisting of 100 

training and 100 evaluation episodes, were conducted during which the error described 

above was added to the robot’s starting positions. During these experiments, for both the 

training and evaluation phases, the robot was positioned, before the addition of error, at 

one of the four starting locations shown in Figure 4.5 in the following order: (-2,4), 

(3.0,3.0), (2,-4), (-3.0,-3.0). Results of the experiments are shown in Table 4.5, along 

with typical results obtained without the starting position error for comparison purposes. 

Each entry represents the number of moves per episode, during evaluation, averaged over 

25 trials. 
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TABLE 4.5 
STARTING POSITION VARIABILITY RESULTS 

 
With Variability No Variability 

Average Number of  
Moves per Evaluation 

Episode 
17.12 13.4 

 

 

 As can be seen from the results in Table 4.5, the introduction of error into the 

positioning of the robot at the beginning of each episode seems to have a significant 

negative impact on the performance of the system after 100 training episodes.  As one 

might expect, this result seems to indicate that the physical robot starts out with a 

noticeable handicap in its ability to quickly learn the necessary action preferences 

necessary to locate the hidden platform as compared to the error free simulation. 

 

4.2.1.3 Constant Reward Function Evaluation 

 The reward function, used by the TD system to generate the reward signal, is 

largely responsible for the ultimate performance of the system. In [1], the reward function 

described in section 3.6.4 was used and seemed to perform quite well. That reward 

function, though a superposition of multiple simple rewards, essentially yields an end of 

episode reward, assuming the robot locates the hidden platform, inversely proportional to 

the number of moves required to find the hidden platform. 

 For this work, a reward function that simply yields a constant scalar value in the 

case of the hidden platform being found was implemented and tested.  This constant 

reward function can be formalized as: 
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 The use of the constant reward function is based on the theory that the eligibility 

traces built into the TD system should be capable of determining which state-action pairs 

are responsible, and to what degree, for the outcome of an episode, and that the reward 

function need not explicitly favor shorter paths. Specifically, the eligibility traces 

inherent to the system should effectively handle the responsibility of distributing rewards 

received with the goal of maximizing the reward signal, and, thus, the system must 

consequently end up learning short paths to the platform location. 

 In order to evaluate the impact of this constant reward function on the 

performance of the TD system, experiments were conducted in the simulated 

environment.  Specifically, 25 trials, each consisting of 100 training and 100 evaluation 

episodes, were conducted using the constant reward function specified above. During 

these experiments, for both the training and evaluation phases, the robot was positioned 

at one of the four starting locations shown in Figure 4.5 in the following order: (-2,4), 

(3.0,3.0), (2,-4), (-3.0,-3.0). Results of the experiments are shown in Table 4.6, along 

with results obtained using the original reward function for comparison purposes. Each 

entry represents the number of moves per episode, during evaluation, averaged over 25 

trials. 
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TABLE 4.6 
CONSTANT REWARD FUNCTION RESULTS 

 
Constant 
Reward 

Original 
Reward 

Average Number of  
Moves per Evaluation 

Episode 
11.9 13.4 

 

 

 As can be seen from the results in Table 4.6, although the performance is slightly 

better given the constant reward as compared to that obtained using the original reward, 

the difference in performance does not appear to be all that significant. However, what is 

significant is the fact that the performance of the system seems to be on par, if perhaps a 

bit improved, given a reward function that does not favor shorter paths. This result seems 

to provide evidence for the theory, described above, that the reward function need not 

explicitly favor shorter paths in order for the system to learn to favor them. It should be 

noted, however, that due to the relatively insignificant difference in performance the 

constant reward function was not adopted for future experiments. 

 

4.2.1.4 Simulated Place Cell Evaluation 

 In much of the previous work done using a simulated or physical version of the 

Morris water maze task to evaluate computation models for the learning of spatial 

memory [5-7], simulated firings of hippocampal place cells were used to represent the 

state space. These hippocampal place cells are generally simulated by distributing a pre-

determined number of such cells in a grid fashion over the entire environment, and 
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having the ‘firing’ of each of the place cells be modeled as some function of the distance 

of the robot to the location of the place cell. Thus, the firing of each place cell is based on 

the robot’s spatial positioning in the environment. 

 For this work, the idea of hippocampal place cells that fire when the robot is in 

certain spatial locations was incorporated into the existing design to evaluate the 

performance of the system given not only the state information gained from the 

perception to SOM node mapping, but from a combination of perceptual localization and 

direct spatial localization. This combination was realized in the form of the perception 

based SOM nodes and a grid of place cells whose firings are directly tied to the robot’s 

spatial location in the environment. 

 In order to evaluate the impact of incorporating this place cell grid into the TD 

system, experiments were conducted in the simulated environment. Eight trials, each 

consisting of 1,000 training and 1,000 evaluation episodes, were conducted in which the 

current state of the robot was a function not only of the current SOM node, but also of the 

firing of a simulated grid of hippocampal place cells.  Specifically, 20 hippocampal place 

cells were evenly distributed over the simulated environment as shown in Figure 4.6. As 

the TD system can only handle a discrete number of possible states, the firing of the 

hippocampal place cells was taken to be ‘1’ if the place cell was the closest place cell to 

the robot, and ‘0’ otherwise. Thus, the total number of possible states is equal to the 

number of place cells times the number of SOM nodes. For the experiments conducted 

here, a 4 by 4 SOM, with 16 total nodes, was used in conjunction with the grid of 20 

place cells, yielding a total of 320 states; roughly equal to the number of possible states 

given only an 8 by 8 SOM. Furthermore, for these experiments, two sets of 1,000 
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uniform random starting positions in the simulated environment were used; one set was 

used for the training episodes, and one set was used for the evaluation episodes. The large 

number of uniform random starting positions was used, as opposed to the four starting 

positions shown in Figure 4.5, to evaluate whether the spatial information gained from 

the grid of hippocampal place cells yielded better localization, and thus better 

performance, over the entire environment space then a SOM alone. Results of the 

experiments are shown in Table 4.7, along with results obtained using the original system 

with an 8 by 8 SOM. Each entry represents the number of moves per episode, during 

evaluation, averaged over 8 trials. 

 

 

 

Figure 4.6: Diagram of hippocampal place cell 
layout in the simulated environment, used for 
experiments conducted in section 4.2.1.4. 
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TABLE 4.7 
SIMULATED PLACE CELL RESULTS 

 
With Place 

Cells 
Without Place 

Cells 

Average Number of  
Moves per Evaluation 

Episode 
16.6 19.1 

 

  

 As can be seen from the results, the performance of the system does seem to be 

better given the SOM and place cell combination, as compared to the SOM alone, 

perhaps providing evidence for the theory that inclusion of self motion information, i.e. 

odometry, could yield improved performance. However, both setups seem to perform 

well. It would certainly be interesting, given more time, to further investigate the 

performance of the system given different combinations of place cells and SOMs. 

 

4.2.1.5 TD(λ) Multi Layer Perceptron Evaluation 

 In all the experiments presented in this work, the Self Organizing Map (SOM) 

used to discretize the perceptual space is an integral part of the setup.  However, the SOM 

requires that a large number of perceptual vectors be collected from the environment 

before experiments are conducted; an advantage not given to rats in the typical Morris 

water maze environment. Therefore, the use of Multi Layer Perceptron (MLP) 

implementation of the TD(λ) algorithm, described in section 2.2, was explored for the 

purpose of eliminating the need for the SOM. Specifically, the idea of directly using the 

18 bin perceptual vectors obtained from the robot’s cameras for the current state 

information was tested. 
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 Two different MLP structures were evaluated for this purpose: the first structure 

consisted of 54 inputs (three cameras each with an 18 dimensional feature vector) each 

directly tied to five output nodes (one for each possible move); the second structure 

consisted of 270 inputs (three cameras each with an 18 dimensional feature vector, 

multiplied by the number of possible moves) connected to a hidden layer of five nodes, 

which were then connected to a single output node. In the case of the first structure, the 

current perceptual state of the robot was observed, and the output node with the highest 

value determined the move that was executed.  In the case of the second structure, each 

possible state-action pair was applied to the network, and the pair that resulted in the 

highest value from the single output node was taken as the winner. Finally, a small 

percentage chance for exploration was allowed in both cases, and naïve eligibility traces 

were used in the implementation. 

 In order to evaluate the performance of these two MLP structures trained with 

temporal difference learning, experiments were conducted in the simulated environment.  

Specifically, 25 trials, each consisting of 100 training episodes, were conducted using the 

basic reward function described in section 3.4. During these experiments, the robot was 

positioned at one of the four starting locations shown in Figure 4.5 in the following order: 

(-2,4), (3.0,3.0), (2,-4), (-3.0,-3.0). Simply stated, the second MLP structure never yielded 

results that seemed to indicate it had learned. Similarly, the first MLP structure, although 

it did occasionally seem to yield results indicating it had at least adjusted its performance 

to the environment, never ultimately gave any results indicative of actual convergence. 

Based on this, the use of a MLP implementation of the TD(λ) algorithm was abandoned.  
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However, given more time, it would be interesting to further investigate the use of a MLP 

approach and its ability to possibly eliminate the need for a SOM. 

 

4.2.2 Non-stationary Environments 

One of the main motivations for using the temporal difference (TD) learning 

approach for the water maze task is the ability for online learning and the supposed 

adaptability of the system in dynamic, non-stationary, environments. In order to test the 

adaptability of the TD approach in such environments, experiments were conducted in 

simulation. Specifically, the adaptability of the TD approach was tested by first letting 

the system train for a number of episodes given a fixed platform location in the dry water 

maze environment. After this training period, the platform location was moved, and the 

system was again allowed to train for a number of episodes given the new goal location. 

By plotting the average number of moves per episode during the entire training sequence, 

the ability of the system to adapt to new goal locations could be observed.   

 

4.2.2.1 Original System 

 Initially, a set of experiments were conducted to evaluate the adaptability of the 

original TD learning approach, as implemented in the WMtk, in non-stationary 

environments. The results of these experiments are presented here.  

 These experiments consisted of changing the goal location during training trials.  

Firstly, the goal location was moved from (-1.0, -1.5) to (0.0, 2.5) after 50, 100, and 400 

training episodes, at which point the robot was then given 400 more training episodes 

with the new goal location. At the beginning of each training episode, the robot was 
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positioned at one of four starting locations. A diagram of the goal locations and starting 

positions can be seen in Fig. 4.7. The starting locations were visited in the following 

order: (-2,4), (3.0,3.0), (2,-4), (-3.0,-3.0). The robot was allowed a maximum of 50 moves 

per episode to find the hidden platform. 

 

 

Figure 4.7: Diagram of goal locations and starting 
positions for experiments conducted in section 
4.2.2.1. 

 

 

 Figure 4.8 shows the results of simply setting the goal location to (0.0, 2.5) and 

letting the robot train for 400 episodes. This is shown for comparison purposes versus the 

experiments in which the goal is moved to (0.0, 2.5) only after some number of training 

episodes with a prior goal location. Figure 4.9, Figure 4.10, and Figure 4.11 show the 

results of experiments in which the goal was moved to (0.0, 2.5) from (-1.0, -1.5) after 

50, 100, and 400 training episodes respectively. Each graph is a plot of the four episode 
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moving average of the number of moves per episode, as averaged over multiple training 

trials.  

 

 
Figure 4.8: Graph of the four episode moving average of the number of moves per 
episode, as averaged over six trials. The goal location was set to (0.0, 2.5) for the entirety 
of each trial. The maximum allowed number of moves per episode is 50. 
 
 
 
 

 
Figure 4.9: Graph of the four episode moving average of the number of moves per 
episode, as averaged over six trails. At the beginning of each trial, the goal location was 
set to (-1.0, -1.5). After 50 training episodes the goal location was moved to (0.0, 2.5) and 
the robot was allowed to complete 400 more training episodes. The maximum allowed 
number of moves per episode is 50. 
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Figure 4.10: Graph of the four episode moving average of the number of moves per 
episode, as averaged over six trials. At the beginning of each trial, the goal location was 
set to (-1.0, -1.5). After 100 training episodes the goal location was moved to (0.0, 2.5) 
and the robot was allowed to complete 400 more training episodes. The maximum 
allowed number of moves per episode is 50. 
 

 
 
 

 
Figure 4.11: Graph of the four episode moving average of the number of moves per 
episode, as averaged over six trials. At the beginning of each trial, the goal location was 
set to (-1.0, -1.5). After 400 training episodes the goal location was moved to (0.0, 2.5) 
and the robot was allowed to complete 400 more training episodes. The maximum 
allowed number of moves per episode is 50. 
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 As can be seen from the results, after training for even as few as 50 episodes 

before moving the goal location, the robot fails to learn paths to the new goal location 

that are as efficient as those learned if the system is only trained using the new goal 

location. In addition, the length of initial training does not seem to have a significant 

impact on the ability of the system to adapt to the second goal location. In the 50, 100, 

and 400 episode cases, after 400 training episodes with the new goal location the robot 

seems to find a set of paths that average in the 20-30 move range, as opposed to the set of 

paths that average in the 10-20 move range when the system is only trained on the second 

goal location for 400 episodes. 

 Next, a second batch of experiments, which consisted of letting the robot train for 

a larger number of episodes after the repositioning of the goal location, were conducted 

to determine if the performance of the TD system would eventual reach the same level as 

when it was only trained on the second goal location. Specifically, the robot was allowed 

to train for 4,000 episodes after the repositioning of the goal location from (-1.0, -1.5) to 

(0.0, 2.5). The results are shown in Figure 4.12. Here again, the plot is the four episode 

moving average of the number of moves per episode, as averaged over multiple training 

trials. 
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Figure 4.12: Graph of the four episode moving average of the number of moves per 
episode, as averaged over five trials. At the beginning of each trial, the goal location was 
set to (-1.0, -1.5). After 400 training episodes the goal location was moved to (0.0, 2.5) 
and the robot was allowed to complete 4,000 more training episodes. The maximum 
allowed number of moves per episode is 50. 
 

 
 
As can be seen from Figure 4.12, the system does appear to keep improving over 

the entire sequence of training episodes, albeit slowly. After 4,000 training episodes the 

system’s performance does reach approximately the same level as when it is trained only 

on the second goal location for 400 episodes. This seems to imply that the learning which 

takes place during the initial 400 episodes is not “forgotten” until after a large number of 

training episodes with the new goal location. Furthermore, this initial learning seems to 

hinder the convergence of the system toward the best paths for the new goal location. 

 Finally, a set of experiments was conducted which consisted of moving the goal 

location twice. In the first experiment, the robot was allowed to train for 400 episodes 

with the platform at (0.0, -2.0). The goal location was then moved to (0.0, 2.0) and the 

robot was allowed to train for 400 episodes given the new location. Lastly, the goal 

location was moved to (0.0, 0.0), and the robot was allowed to complete 400 more 

training episodes. The results of this experiment are shown in Figure 4.13. Once again, 
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the plot is the four episode moving average of the number of moves per episode, as 

averaged over multiple training trials. 

 

 

Figure 4.13: Graph of the four episode moving average of the number of 
moves  per episode, as averaged over ten trials. At the beginning of each 
trial, the goal  location was set to (0.0, -2.0). After 400 training episodes 
the goal location was  moved to (0.0, 2.0) and the robot was allowed to 
complete 400 more training  episodes. Finally, the goal was moved to 
(0.0, 0.0) and the robot was allowed to complete another 400 training 
episodes. The maximum allowed number of moves per episode is 50. 

 

 

 Additionally, a second experiment was conducted during which the goal location 

was moved twice. For this experiment, the robot was first allowed to train for 400 

episodes with the platform at (-1.0, -1.5).  The goal location was then moved to (0.0, 2.5) 

and the robot was allowed to train for 400 episodes with the new location.  Finally, the 

goal location was moved back to where it originally started at (-1.0, -1.5), and the robot 

was allowed to complete 400 more training episodes. The results are shown in Figure 

4.14. Once again, the plot is the four episode moving average of the number of moves per 

episode, as averaged over multiple training trials. 
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Figure 4.14: Graph of the four episode moving average of the number of 
moves per episode, as averaged over ten trials. At the beginning of each 
trial, the goal location was set to (-1.0, -1.5). After 400 training episodes 
the goal location was moved to (0.0, 2.5) and the robot was allowed to 
complete 400 more training episodes. Finally, the goal was moved back to 
(-1.0, -1.5) and the robot was allowed to complete another 400 training 
episodes. The maximum allowed number of moves per episode is 50. 

 
 
 
 
 As can be seen from the graph in Figure 4.14, there is no spike in the number of 

moves per episode when the platform is moved back to where it original started after 

episode 800. This seems to imply that a significant amount of what was learned during 

the initial 400 training episodes has been retained, and not “forgotten”, even after 400 

training episodes with the new goal location. However, what is learned during the 400 

training episodes after the initial movement of the goal does seem to slow the rate of 

convergence of the system after the goal is moved back to where it originally started. 

Lastly, the graph from Figure 4.13 seems to indicate that the performance of the system 

seems to further degrade when the platform is moved to a third unique location. These 

results clearly seem to demonstrate an inability on the part of the TD system to 

adequately adapt in non-stationary environments.  
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4.2.2.2 Adaptive Learning and Exploration Rates 

 With the goal of obtaining better adaptability in non-stationary environments, the 

use of adaptive learning and exploration rates was explored. Specifically, the process of 

adjusting the learning and exploration rates of the TD system, based on measures of past 

performance in the form of a “short term” and “long term” reward as described in section 

3.7, was explored. The following equations illustrate how the learning rate, α, and 

exploration rate, γ, were adapted based on the short term and long term rewards rs and rl: 
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where kα, qα, kγ, qγ, and d are constants. Effectively, if the short term reward is less then 

the long term reward minus ε, as would be the case following a change in hidden 

platform location, then the learning and exploration rates are set to their maximum 

allowed values to encourage the TD system to explore and learn. For the experiment 

shown in Figure 4.15, maxα  was set to 0.03 and maxγ  was set to 0.25; values significantly 

greater then those used when the parameters were fixed. 

 However, if the short term reward is greater then or equal to the long term reward 

minus ε, as would be the case during the process of learning a new goal location (after 

some initial exploration) or retaining information about a current goal location, then the 

learning and exploration rates are adjusted to be exponentially proportional to an estimate 
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of the absolute value of the derivative of the short term reward; where the parameters k 

and q control the relationship. This relationship has the effect of forcing the learning and 

exploration rates to zero as the performance of the system plateaus.  For the experiment 

shown in Figure 4.15, kα was set to 0.05, kγ was set to 0.25, qα was set to 1.6, qγ was set to 

1.6, and d was set to 15. 

 In order to evaluate the performance of the TD system with the addition of 

adaptable learning and exploration rates, experiments were conducted during which the 

robot was first allowed to train for 400 episodes with the platform at (-1.0, -1.5).  The 

goal location was then moved to (0.0, 2.5) and the robot was allowed to train for 400 

episodes with the new location. The results of a typical set of these experiments are 

shown in Figure 4.15. Once again, the plot is the four episode moving average of the 

number of moves per episode, as averaged over multiple training trials. 

 

 

Figure 4.15: Graph of the four episode moving average of the number of moves per 
episode, as averaged over six trials, with adaptive exploration and learning rates. At the 
beginning of each trial, the goal location was set to (-1.0, -1.5). After 400 training 
episodes the goal location was moved to (0.0, 2.5) and the robot was allowed to complete 
400 more training episodes. The maximum allowed number of moves per episode is 50. 
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 As the results in Figure 4.15 illustrate, the use of adaptive exploration and 

learning rates proves to be an unsatisfactory method for achieving better adaptability in 

non-stationary environments.  Adjustments to these parameters based on the short and 

long term performance measures tend to have little impact on the performance of the 

system, giving results similar to those shown in Figure 4.11 obtained by the original 

system. Ultimately, the use of adaptive learning and exploration rates does not effectively 

deal with the problem of prior learning hindering the performance of the TD system to 

adapt to new hidden platform locations. 

 

4.2.2.3 Forgetting 

 In order to obtain better adaptability in non-stationary environments by reducing 

the hindrance of prior learning, the effect of adding “forgetting” to the TD system was 

explored. As detailed in section 3.7, the “forgetting” modification is based on keeping 

track of past performance, namely rewards received, in the form of a “short term” reward 

and a “long term” reward. These two rewards are then used to control when, and to what 

extent, “forgetting” takes place. 

 Figure 4.16 shows the results of the same experiment as conducted in Figure 4.13, 

but with the addition of “forgetting” incorporated into the TD system. Recall that in this 

experiment, the robot was allowed to train for 400 episodes with the hidden platform at 

(0.0, -2.0). The goal location was then moved to (0.0, 2.0) and the robot was allowed to 

train for 400 episodes given the new location. Lastly, the platform location was moved to 

(0.0, 0.0), and the robot was allowed to complete 400 more training episodes.  
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Figure 4.16: Graph of the four episode moving average of the number of 
moves  per episode, as averaged over ten trials, on the same experiment 
conducted in Figure XX, but with the addition of “forgetting” incorporated 
into the TD system.  

 

 

 As can be seen from the comparison of the results shown in Figures 4.16 and 

4.13, with “forgetting” incorporated into the TD system, it is effectively able to adapt to 

the new platform locations as though it had not undergone any previous learning, thus 

making it much more adaptable in non-stationary environments. 

 Additionally, Figure 4.17 shows the results of the same experiment as conducted 

in Figure 4.14, but, once again, with the addition of “forgetting” incorporated into the TD 

system. Recall that for this experiment, the robot was first allowed to train for 400 

episodes with the platform at (-1.0, -1.5).  The goal location was then moved to (0.0, 2.5) 

and the robot was allowed to train for 400 episodes with the new location.  Finally, the 

goal location was moved back to where it originally started at (-1.0, -1.5), and the robot 

was allowed to complete 400 more training episodes. 
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Figure 4.17: Graph of the four episode moving average of the number of 
moves  per episode, as averaged over ten trials, on the same experiment 
conducted in Figure XX, but with the addition of “forgetting” incorporated 
into the TD system.  

 

  

 Here again, from the comparison of the results shown in Figures 4.17 and 4.14, it 

appears that with “forgetting” incorporated into the TD system, it is effectively able to 

adapt to the new platform location, and re-adapt to the original platform location, as 

though it had not undergone any previous learning, thus making it much more adaptable 

in non-stationary environments. 

 The essential benefit inherent to the method of incorporating a controlled process 

of “forgetting” into the TD system, as oppose to simply using the “short term” and “long 

term” rewards to decide when to reset the system, is that at the moment the forgetting 

process starts, all of the information contained in the TD system representation is not lost, 

as would be the case if the system were to simply be reset.  Thus, the system with 

“forgetting” should, theoretically, be less susceptible to noise in the reward signal then a 

method based solely on resetting the entire system. However, no specific experiments 

were conducted to evaluate the benefit of the “forgetting” method over a complete system 

reset. It would be interesting to investigate the impact of not simply throwing away 

everything that has been learned, as the “forgetting” method allows, perhaps using an 
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experiment where the change in goal location is minimal, or done in such a way that 

some of the information already learned by the system could be applied to the new 

context. 
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Chapter 5 

Discussion 

 The objective of this work was to evaluate the performance of a biologically 

inspired Temporal Difference (TD) approach to the learning of spatial memory for a 

robot in a dry version of the Morris water maze task. In order to achieve this objective, a 

number of experiments were conducted in both a simulated environment, and in a 

physical environment, as detailed in Chapter 4.  The results of these experiments yielded 

a significant amount of information about both the capabilities and limitations of the 

proposed TD approach, and its ability to learn the state-action preferences necessary to 

successfully navigate to the hidden platform in the Morris water maze task.   

 From the results obtained by Busch et al. in [1], it is clear that the TD learning 

approach, as implemented in the Working Memory Toolkit (WMtk), is capable of 

learning the necessary action preferences to locate the hidden platform in a simulated 

version of the Morris water maze task. However, the TD learning approach was never 

extended from the simulated environment to a real world environment with a physical 

robot. Furthermore, a detailed set of experiments was never conducted to observe the 

effect of various parameters on the performance of the system, or the performance of the 

system given a more complex, non-stationary environment.  This work achieved those 

objectives. 

 In extending the TD approach to a physical robot, a number of issues not present 

in the simulated environment needed to be addressed, as discussed in section 3.2, such as 

segmentation of colored panels from images captured from the cameras mounted on the 

robot, and repositioning of the robot at the start of each episode. Although these issues 
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introduced new sources of error not present in the simulated environment, experiments, 

as detailed in section 4.1, showed the TD approach was still capable of learning the 

necessary action preferences to successfully navigate to the hidden platform. 

Additionally, the results of these experiments provide evidence that the system is quite 

robust in its ability to deal with occasional erroneous sensor readings which result in 

incorrect state feature vectors. Ultimately, the results obtained by extending the TD 

approach to a physical robot were quite similar to those obtained in the simulated 

environment, and demonstrate that the TD approach is capable of dealing with the 

additional uncertainties that a physical environment introduces. 

 In addition to extending the TD approach to a physical robot, a large number of 

experiments were conducted in the simulated environment to observe the impact of 

various parameters on the performance of the system, as detailed in section 4.2.1.  The 

list of parameters tested included the size of the Self-Organizing Map (SOM) used to 

discretize the perceptual space; the learning rate, exploration percentage, and temporal 

credit assignment value of the TD system; and a constant reward function, as opposed to 

the path length dependent reward function described in section 3.6.4.  The results of these 

experiments seemed to indicate that, in general, the performance of the TD approach was 

rather invariant to changes in these parameters; once again illustrating the robustness of 

the TD approach.  

 Finally, a large amount of work was done to both evaluate, and ultimately 

improve, the performance of the TD approach in more complex, non-stationary 

environments.  Specifically, the simulated Morris water maze environment was adapted 

such that the location of the hidden platform could be changed during learning trials.  
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This change allowed for the performance of the TD approach to be observed for 

environments where the hidden platform location was not stationary. Results from an 

initial set of experiments, as detailed in the section 4.2.2.1, clearly showed the inability of 

the TD approach, as implemented in the WMtk, to adapt in non-stationary environments, 

thus significantly hindering its performance on subsequent goal locations, as compared to 

the performance obtained on those goal locations in the absence of prior learning. 

 In order to address the inability of the TD approach to adapt in non-stationary 

environments, experiments were conducted to evaluate the affect of adaptive learning and 

exploration rates based on short and long term measures of performance, as described in 

section 4.2.2.2. Ultimately, the results from these experiments indicated that the 

performance of the system in non-stationary environments was not significantly impacted 

by making these parameters of the TD system adaptive; as the prior learning of the 

system was still a major hindrance to the learning of efficient paths to new goal locations. 

 Experiments were then conducted to evaluate the impact of integrating active 

“forgetting,” once again based on short and long term measures of performance, into the 

TD system, as described in section 3.7, on its ability to adapt in non-stationary 

environments.  The results of these experiments, detailed in section 4.2.2.3, clearly show 

the improved adaptability of the TD approach in such environments. Whereas the ability 

of the TD system, as originally implemented in the WMtk, to learn efficient paths to new 

hidden platform locations was significantly hindered in the presence of prior learning, 

with the integration of active “forgetting” the TD system is able to achieve performance 

on new hidden platform locations effectively equivalent to that obtained by the original 

implementation in the absence of prior learning. Additionally, the gradual impact of 
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active “forgetting” completely eliminates the possibility of accidentally destroying all 

prior knowledge due to noise in the short and long term performance measures, as oppose 

to an actual change in hidden platform location, as would be a distinct possibility if “hard 

resets” were used to address the problem of adaptability of the TD approach in non-

stationary environments. 

 Although not investigated in this work, and thus a possible avenue for additional 

investigation, it would be interesting to observe the performance of the TD approach, 

both with and without active “forgetting,” in non-stationary environments that introduced 

a less severe change in hidden platform location. The changes in hidden platform location 

used for the experiments conducted in this work effectively required the complete 

elimination, or “forgetting,” of knowledge related to previous hidden platform locations 

in order to achieve good performance on subsequent locations.  However, it seems likely 

that in non-stationary environment scenarios consisting of a small change to the hidden 

platform location, that the retention of some amount of prior knowledge may be 

beneficial in reducing the time required to learn efficient paths to new hidden platform 

locations.  

 In conclusion, the experiments conducted in this work showed both the ability of 

the TD approach to learn the necessary state-action preferences to efficiently navigate to 

the hidden platform in a dry version of the Morris water maze task. Additionally, these 

experiments helped identify both the robustness of the original TD approach to noise in 

the perceived state, as well as the limitations of that approach in non-stationary 

environments. Finally, these experiments clearly illustrated the benefit of integrating 

active “forgetting” into the TD approach to improve the adaptability of the TD system. 
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Chapter 6 

Summary and Conclusion 

 

 This work presented the results of extending a biologically inspired temporal 

difference (TD) approach to the learning of spatial memory from a simulated 

environment to a physical robot, and also presented the results of testing the adaptability 

of that approach in non-stationary environments. Experiments showed that the robot is 

able, using the TD approach, to successfully learn the necessary associations between 

perceptual states and actions to successfully locate the hidden platform. In addition, as 

seen from the results of the experiments conducted in simulation, with the addition of 

“forgetting” the system is able to achieve good performance in non-stationary 

environments.    
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Appendix A 

Additional Single Corner Task Results from Physical Environment 

 

A.1 Additional Single Corner Task - Sequence 1 

 This single corner task training sequence consisted of 126 episodes and was 

conducted with the following parameters: 20x20 SOM size, exploration rate of 0.05, 

learning rate of 0.01, temporal credit assignment value of 0.7, initial mean weight of 2.0, 

and reward function as described in section 3.6.4. Figure A.1 shows a plot of moves per 

episode during the training sequence. Figure A.2 shows example paths of the robot from 

the training sequence. 

 

 

 
51 

 

 

 
 
   0 
     1                                                                     60                                                                  120 
                                                             Training Episode 
 
 
Figure A.1: Plot of moves per episode during training for the single corner water maze 
task described in this section. The maximum number of moves allowed per episode is 51. 
The paths followed by the robot for the episodes highlighted in red are shown in Figure 
A.2. 
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 Episode 3 Episode 5 Episode 25 
 
 

   
 Episode 50 Episode 121 Episode 123 
 
 
Figure A.2: Paths of robot during training episodes highlighted in red in Figure A.1. The 
inner box shows the approximate distance at which obstacle avoidance should be 
activated. The robot’s path is logged using odometry during training episodes. This 
information is not used by the system.  
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A.2 Additional Single Corner Task - Sequence 2 

 This single corner task training sequence consisted of 135 episodes and was 

conducted with the following parameters: 20x20 SOM size, exploration rate of 0.05, 

learning rate of 0.01, temporal credit assignment value of 0.7, initial mean weight of 2.0, 

and reward function as described in section 3.6.4. Figure A.3 shows a plot of moves per 

episode during the training sequence. Figure A.4 shows example paths of the robot from 

the training sequence. 
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Figure A.3: Plot of moves per episode during training for the single corner water maze 
task described in this section. The maximum number of moves allowed per episode is 51. 
The paths followed by the robot for the episodes highlighted in red are shown in Figure 
A.4. 
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Figure A.4: Paths of robot during training episodes highlighted in red in Figure A.3. The 
inner box shows the approximate distance at which obstacle avoidance should be 
activated. The robot’s path is logged using odometry during training episodes. This 
information is not used by the system.  
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A.3 Additional Single Corner Task - Sequence 3 

 This single corner task training sequence consisted of 169 episodes and was 

conducted with the following parameters: 8x8 SOM size, exploration rate of 0.05, 

learning rate of 0.01, temporal credit assignment value of 0.7, initial mean weight of 2.0, 

and reward function as described in section 3.6.4. Figure A.5 shows a plot of moves per 

episode during the training sequence. Figure A.6 shows example paths of the robot from 

the training sequence. 
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Figure A.5: Plot of moves per episode during training for the single corner water maze 
task described in this section. The maximum number of moves allowed per episode is 51. 
The paths followed by the robot for the episodes highlighted in red are shown in Figure 
A.6. 
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Figure A.6: Paths of robot during training episodes highlighted in red in Figure A.5. The 
inner box shows the approximate distance at which obstacle avoidance should be 
activated. The robot’s path is logged using odometry during training episodes. This 
information is not used by the system.  
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Appendix B 

Additional Four Corner Task Results from Physical Environment 

 

B.1 Additional Four Corner Task - Sequence 1 

 This four corner task training sequence consisted of 100 episodes and was 

conducted with the following parameters: 8x8 SOM size, exploration rate of 0.1, learning 

rate of 0.01, temporal credit assignment value of 0.83, initial mean weight of 2.5, and 

reward function as described in section 3.6.4. Figure B.1 shows a plot of the four episode 

moving average of moves per episode during the training sequence. Figure B.2 shows 

example paths of the robot from the training sequence. 
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Figure B.1: Plot of the four episode moving average of moves per episode during 
training for the four corner water maze task described in this section. The 
moving average is of the current episode and three previous episodes, and is used 
to show the change in the number of moves from the four combined starting 
locations. The maximum number of moves allowed per episode is 51. The paths 
followed by the robot for the episodes highlighted in red are shown in Figure 
B.2. 
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Figure B.2: Paths of robot during training episodes highlighted in red in Figure B.1. The 
inner box shows the approximate distance at which obstacle avoidance should be 
activated. The robot’s path is logged using odometry during training episodes. This 
information is not used by the system.  
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B.2 Additional Four Corner Task - Sequence 2 

 This four corner task training sequence consisted of 100 episodes and was 

conducted with the following parameters: 8x8 SOM size, exploration rate of 0.1, learning 

rate of 0.01, temporal credit assignment value of 0.83, initial mean weight of 2.5, and 

reward function as described in section 3.6.4. Figure B.3 shows a plot of the four episode 

moving average of moves per episode during the training sequence. Figure B.4 shows 

example paths of the robot from the training sequence. 
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Figure B.3: Plot of the four episode moving average of moves per episode during 
training for the four corner water maze task described in this section. The moving 
average is of the current episode and three previous episodes, and is used to show 
the change in the number of moves from the four combined starting locations. The 
maximum number of moves allowed per episode is 51. The paths followed by the 
robot for the episodes highlighted in red are shown in Figure B.4. 
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Figure B.4: Paths of robot during training episodes highlighted in red in Figure B.3. The 
inner box shows the approximate distance at which obstacle avoidance should be 
activated. The robot’s path is logged using odometry during training episodes. This 
information is not used by the system. 


