

ADAPTIVE TEMPORAL DIFFERENCE LEARING OF SPATIAL

MEMORY IN THE WATER MAZE TASK

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

ERIK E. STONE

Dr. Marjorie Skubic, Thesis Supervisor

MAY 2009

The undersigned, appointed by the dean of the Graduate School, have examined the thesis

entitled:

ADAPTIVE TEMPORAL DIFFERENCE LEARNING OF SPATIAL

MEMORY IN THE WATER MAZE TASK

presented by Erik E. Stone,

a candidate for the degree of Master of Science,

and hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Marjorie Skubic, Ph.D.

Dr. James Keller, Ph.D.

Dr. Yi Shang, Ph.D.

ACKNOWLEDGEMENTS

 First, I would like to thank my advisor Dr. Marjorie Skubic for her knowledge and

guidance in completing this work. I would also like to thank Dr. James Keller for his

help in completing this work. Finally, I would like to thank Dr. Yi Shang for being on my

thesis committee and reviewing this work.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

LIST OF TABLES ... v

LIST OF FIGURES ... vi

Chapter

1 Introduction ... 1

 1.1 Problem Statement .. 1

 1.2 Overview ... 2

2 Background and Related Work ... 5

 2.1 Morris Water Maze ... 5

 2.2 Temporal Difference Learning ... 8

 2.3 Working Memory Toolkit (WMtk) ... 13

3 Design ... 16

 3.1 Simulation ... 16

 3.2 Physical Implementation ... 19

 3.2.1 Environment ... 19

 3.2.2 Robot .. 22

 3.2.2.1 Motion .. 23

 3.2.2.2 Cameras.. 24

 3.2.2.3 Ultrasonic Sensors ... 25

 3.2.2.4 Infrared Sensor ... 25

 3.3 Position Fix ... 26

 3.4 Panel Segmentation ... 28

 3.5 Self-Organizing Map .. 30

 3.6 Working Memory Toolkit Usage .. 31

 3.6.1 State Mapping Function ... 31

 3.6.2 Chunk Mapping Function .. 32

 3.6.3 Aggregate Feature Vector (AFV) Formation 33

 3.6.4 Reward Function .. 34

 3.7 Modification of WMtk for “Forgetting” ... 35

iii

 3.8 TD(λ) Multi Layer Perceptron Implementation 37

 3.9 General Experimental Procedure .. 38

4 Experimental Results and Analysis .. 39

 4.1 Physical Environment ... 39

 4.1.1 Single Corner ... 39

 4.2.2 Four Corner .. 43

 4.2 Simulation ... 47

 4.2.1 Stationary Environments .. 48

 4.2.1.1 SOM Size and WMtk Parameter Evaluation 48

 4.2.1.2 Starting Position Variability Evaluation 52

 4.2.1.3 Constant Reward Function Evaluation 53

 4.2.1.4 Simulated Place Cell Evaluation 55

 4.2.1.5 TD(λ) Multi Layer Perceptron Evaluation 58

 4.2.2 Non-stationary Environments .. 60

 4.2.2.1 Original System Evaluation 60

 4.2.2.2 Adaptive Learning and Exploration Rates 68

 4.2.2.3 Forgetting Evaluation ... 70

5 Discussion ... 74

6 Summary and Conclusion ... 78

Bibliography 79

Appendix

A Additional Single Corner Training Results from Physical Environment 81

 A.1 Additional Single Corner Task - Sequence 1 .. 81

 A.2 Additional Single Corner Task - Sequence 2 .. 83

 A.3 Additional Single Corner Task - Sequence 3 .. 85

B Additional Four Corner Training Results from Physical Environment 87

 B.1 Additional Four Corner Task - Sequence 1 .. 87

 B.2 Additional Four Corner Task - Sequence 2 .. 89

iv

LIST OF TABLES

Table Page

 3.1 Simulated and Real World Environment Statistics 20

 4.1 Single Corner Evaluation Results ... 42

 4.2 Four Corner Evaluation Results .. 46

 4.3 WMtk Parameter Evaluation Results - 20 x 20 SOM 50

 4.4 WMtk Parameter Evaluation Results – 8 x 8 SOM 51

 4.5 Starting Position Variability Evaluation Results 53

 4.6 Constant Reward Function Evaluation Results 55

 4.7 Simulated Place Cell Evaluation Results .. 58

v

LIST OF FIGURES

Figure Page

 3.1 Simulated Player/Stage Environment ... 16

 3.2 Physical Environment Diagram .. 21

 3.3 Pictures from Physical Environment .. 22

 3.4 Picture of Physical Robot.. 23

 3.5 Illustration of Position Fixing ... 27

 3.6 Illustration of Panel Segmentation .. 30

 4.1 Diagram of Single Corner Task .. 40

 4.2 Results of Single Corner Task .. 41

 4.3 Diagram of Four Corner Task ... 43

 4.4 Results of Four Corner Task ... 45

 4.5 Diagram of Starting Positions and Platform Locations 47

 4.6 Diagram of Hippocampal Place Cell Layout .. 57

 4.7 Diagram of Starting Positions and Platform Locations 61

 4.8 Graph of Training Results – Original System 62

 4.9 Graph of Training Results – Original System 62

 4.10 Graph of Training Results – Original System 63

 4.11 Graph of Training Results – Original System 63

 4.12 Graph of Training Results – Original System 65

 4.13 Graph of Training Results – Original System 66

 4.14 Graph of Training Results – Original System 67

 4.15 Graph of Training Results – Adaptive Learning and Exploration 69

 4.16 Graph of Training Results – Forgetting .. 71

 4.17 Graph of Training Results – Forgetting .. 72

 A.1 Results of Single Corner Task – Sequence 1 .. 81

 A.2 Example Paths from Single Corner Task – Sequence 1 82

 A.3 Results of Single Corner Task – Sequence 2 .. 83

 A.4 Example Paths from Single Corner Task – Sequence 2 84

vi

vii

 A.5 Results from Single Corner Task – Sequence 3 85

 A.6 Example Paths from Single Corner Task – Sequence 3 86

 B.1 Results from Four Corner Task – Sequence 1 87

 B.2 Example Paths from Four Corner Task – Sequence 1 88

 B.3 Results from Four Corner Task – Sequence 2 89

 B.4 Example Paths from Four Corner Task – Sequence 2 90

Chapter 1

Introduction

1.1 Problem Statement

 The goal of this work was to evaluate the performance of a Temporal Difference

(TD) approach to the learning of spatial memory for a robot in a dry version of the Morris

water maze task. The Morris water maze task is a spatial memory task in which an

association between cues from the environment and position must be learned in order to

locate a hidden platform. To that end, earlier work performed by Busch et al. [1] was

extended from a simulated dry water maze environment into a physical environment on a

real robot. This effort presented a number of challenges, but resulted in a system that was

capable of learning the necessary action preferences to successfully, and efficiently,

navigate to a hidden platform.

Additionally, the TD learning approach was extended to improve its performance

in non-stationary environments where the hidden platform location was not fixed. The

original TD learning approach was not adaptable in these non-stationary environments, as

previously learned action preferences hindered the learning of new action preferences

necessary to successfully navigate to a new hidden platform location. Specifically, the

TD learning approach was extended by adding the ability to explicitly forget current

action preferences based on previous rewards received. This extended version was then

evaluated in simulation.

1

1.2 Overview

Given the ability of animals to navigate and interact with the complex world

around them, biological systems have been a source of much inspiration in the field of

robotics. The inspiration for this work comes from a behavioral procedure designed by

Richard Morris called the Morris water maze task. The Morris water maze task is a

spatial memory task in which an association between cues from the environment and

position must be learned in order to locate a hidden platform. The task provides an

interesting domain in which to study and evaluate the learning of spatial memory.

 This work essentially begins where the work conducted by Busch et al. [1] left

off. Specifically, Busch et al. developed and tested, in simulation, a Temporal Difference

(TD) learning approach to spatial memory for a robot in a dry version of the Morris water

maze task. The setup used for these experiments consisted of a simulated 2D world

modeled after a dry water maze environment from earlier work by Krichmar et al. [2].

The 2D world was simply a rectangular room with various colored blobs around the

edges. Additionally, a hidden platform was placed in the environment that could only be

detected by the robot when it was directly over the top of the platform.

A simulated differential drive robot equipped with three cameras capable of

detecting the colored blobs was used for the experiments. The goal was for the robot,

equipped with the TD learning system, to be able learn the action preferences (mappings

from states to actions) necessary for it to successfully locate the hidden platform. The

only information available to the robot to achieve this task was the perceptual

information about the colored panels obtained from the cameras.

2

In order to limit the perceptual space, a self organizing map (SOM) was used.

The SOM discretized the perceptual space into a useable number of possible states, which

made the task of learning the action preferences associated with each state possible for

the TD learning system. The SOM was trained by first collecting a large number of

perceptual vectors from the simulated environment.

Testing of the system consisted of letting the robot complete “runs” through the

environment, then observing changes in its performance. Each run consisted of a

maximum of 50 steps. At each step, the robot would observe its current perceptual state,

determine which of the possible SOM nodes it was closest to, and then execute the move

that was currently favored by the TD learning system for that SOM node. During and

after each run the TD learning system would receive scalar rewards based on its

performance. As noted in [1], this approach yielded good results that not only allowed

the robot to learn the correct action preferences to locate the hidden platform, but allowed

the TD system to outperform, given enough training episodes, a probabilistic graph

search method.

Given these encouraging results, the work presented here was focused on

extending what was achieved in this simulated environment to a physical environment,

with a real robot, and on evaluating and possibly improving the performance of the TD

system in environments where the hidden platform was not stationary, as was case in the

experiments conducted by Busch et al. [1].

In a first step towards those goals, a physical environment modeled after both the

simulated environment used by Busch et al. [1], and the environment used by Krichmar et

3

al. [2], was constructed. Additionally, a Pioneer 3-DX robot was equipped with the

necessary hardware for the task.

A number of challenges not present in the simulated world were also addressed in

order get the physical implementation of the dry water maze environment working.

Specifically, problems with obtaining the correct perceptual state from the environment

using the cameras mounted on the robot had to be overcome. Additionally, the problems

of limited battery life and imperfect odometry information necessary for resetting the

robot after each training episode had to be addressed. Ultimately, the physical

implementation and testing of the TD system for learning spatial memory were

successful, and a number of experimental trails were conducted. These results are

presented later in this work.

With the physical implementation of the TD learning system successful, work

then began on evaluating the performance of the system in environments with non-

stationary platform locations. In order to speed the evaluation, these tests were

conducted in the simulated environment used by Busch et al. [1]. Based on initial testing,

it was soon apparent that the TD learning system, as implemented, performed

unsatisfactorily in non-stationary environments.

Work was then conducted with the goal of improving the performance of the

system in such non-stationary environments. Ultimately, a framework which allowed the

TD learning system to actively forget its current action preferences based on past rewards

received was implemented which allowed for much improved performance of the system

in non-stationary environments.

4

Chapter 2

Background and Related Work

2.1 Morris Water Maze

The Morris water maze [3] is a novel behavioral procedure originally designed by

Richard Morris for studying spatial localization in the rat. In the typical Morris water

maze experiment, a rat is placed into a circular pool of water from which the only escape

is a raised platform. The raised platform is positioned just below the water’s surface, and

the water is made opaque to hide the platform from view of the rat, thus ensuring no local

cues from the platform are available to aid escape behavior. Although no local cues from

the platform are available, only a few trials are required before a normal rat learns to

swim directly toward the platform, given that it remains in a fixed location, even with a

unique starting location in the environment. However, if the platform location is varied

randomly for each trial, the rat cannot learn to find it. This provides evidence that rats

escape by learning the spatial position of the platform relative to distal cues [4].

 Studies have shown that single cells in the hippocampus respond during spatial

learning, and that certain cells only fire when animals are in a specific area of a familiar

environment [4]. In [4], Morris et al. used the water maze procedure described above to

study the effect of hippocampal lesions on the navigational ability, and spatial learning,

of rats. Through various experiments, they found that lesions to the hippocampus result

in deficits in spatial learning and memory, and that total hippocampal lesions cause a

lasting place-navigational impairment.

5

Specifically, Morris et al. [4] compared the performance of normal and brain-

lesioned rats using both the normal conditions of the Morris water maze task and with a

fixed but visible platform. For one study, both lesioned and unlesioned rats were trained,

using the water maze task, with the platform hidden. It was found that rats with

hippocampal lesions showed significantly decreased performance as compared to

unlesioned rats. Next, the platform was left in the same location, however it was made

visible. Soon, the performance difference between the two groups, lesioned and

unlesioned, effectively disappeared. However, when the platform was then re-hidden the

performance difference reappeared, even though the platform remained in the same

location. These results provided evidence for the fact that lesions of the hippocampus

result in deficits in spatial learning and memory. Other researchers have used the water

maze procedure to evaluate the effect of drugs and cerebral neurotoxins on the spatial

learning of rats [3].

The Morris water maze task has also been used by a number of researchers to

study computational models of the hippocampus and spatial learning. Redish and

Touretsky [5] used a simulated version of the water maze task to evaluate a

computational model of the hippocampus. In addition, Brown and Sharp [6] used a

simulated water maze environment to investigate how spatial behavior could be guided

by spatial information in the hippocampal formation. Their model learned mappings

between the firings of simulated hippocampal place and head direction cells and

particular movements of a simulated rat to find the hidden platform location.

Foster et al. [7] used Temporal Difference (TD) learning to model how

hippocampal place cells might be used for spatial navigation by rats. First, they simulated

6

a reward based navigational approach based solely on input from place cells. Second,

they simulated a combined approach using input from place cells and information about

the rats’ self motion to acquire a goal independent coordinate system. Like Brown and

Sharp [6], they used simulated place cells to provide a representation of the current

position of the rat, as opposed to direct visual perceptual cues from the environment.

Krichmar et al. [2] constructed a dry version of the water maze task to assess the

spatial memory of a brain-based device called Darwin X, whose behavior was guided by

a simulated nervous system modeled on the anatomy and physiology of the vertebrate

nervous system. A 16 by 14 foot rectangular room was used as the water area, with a

hidden circular platform made of reflective paper. Darwin X was equipped with a color

camera for vision, odometry for self-movement information, an IR sensor for platform

detection, and IR sensors for obstacle avoidance.

Based on Krichmar’s work, Busch et al. [1] used a simulated water maze

environment to compare an attributed probabilistic graph search navigational approach

and a TD learning navigational approach based solely on visual cues from the

environment. The simulated robot was equipped with three cameras to gather perceptual

information from the environment and used a Self-Organizing Map (SOM) [8] to

discretize the perceptual space. This work showed that given sufficient training the TD

learning navigational approach was actually able to outperform the probabilistic graph

search method.

7

2.2 Temporal Difference Learning

In this work, Temporal Difference (TD) learning [9] is used to learn the action

preferences necessary to successfully locate the hidden platform in the water maze

environment. TD learning is a reinforcement learning procedure which is driven by the

difference between temporally successive predictions. In general, reinforcement learning

is the process of learning how to map states to actions to maximize a reward signal.

Reinforcement learning generally differs from other forms of computational intelligence

or machine learning in that this reward signal is delayed. Furthermore, a given action

may impact not only the immediate reward, but all subsequent rewards [10].

Fundamentally, TD learning is a bootstrapping method for estimating a state value

function using experience gathered following a given policy, π. The simplest TD method,

TD(0), can be formalized as [10]:

)]()([)()(11 ttttt sVsVrsVsV −++= ++α

where V is the state value function being learned, α is a learning rate parameter, and r is

the reward signal. Ultimately, the estimated value of a given state, st is updated based on

the reward, rt+1, received after taking whatever action is specified by policy π for state st,

along with the difference between the estimated value of the state st, and the estimated

value of the following state, st+1.

For most of the experiments conducted in this work (those making use of the

Working Memory Toolkit), however, an off policy TD control algorithm known as Q-

learning was used [11]. At its heart, Q-learning attempts to learn a state-action pair value

8

function independent of the policy used to select actions. In its simplest form, one step

Q-learning can be formalized as [10]:

)],(),(max[),(),(11 tttattttt asQasQrasQasQ −++= ++ γα

where Q is the state-action pair value function that is to be learned, st is the state at time t,

at is the selected action at time t, α is a learning rate, r is the reward signal, and γ is a

discount rate. Similar to TD(0) described above, Q-learning updates the estimated value

of a given state-action pair based on the reward, rt+1, received after taking whatever

action is specified, by whatever policy is currently being followed, for state st; however,

whereas in TD(0) the estimated state value was also updated based on the difference

between the estimated value of the state st, and the estimated value of the following state,

st+1, it can be been seen that with Q-learning, the state-action pair value is updated not by

the difference between Q(st+1,at+1) and Q(st,at), but by the difference between

 and Q(st,at). That is, following a given action, at, the value of the

previous state-action pair is updated based on the reward received after taking the action

at, along with the difference between the estimated value of the previous state-action pair

and the maximum estimated value of all the state-action pairs for state st+1. Simply

stated, Q-learning attempts to estimate the state-action pair value function for the greedy

policy, although this policy is not necessarily the policy being used to select actions.

),(max 1 asQ ta +

 Although the two formalizations laid out above give a basic overview of TD

methods, they are both single step methods. Specifically, an error signal for a given time

step, called the TD error, denoted by tδ and (for TD learning) characterized as:

9

)()(11 tttt sVsVr −+= ++δ

affects only the value estimate of state st. In many situations, however, a number of

previous states, or in the case of Q-learning, state-action pairs, could be “responsible” for

the TD error at time t. Thus, in order to better assign the TD error seen at a given time

step, eligibility traces are used

Eligibility traces act as a method to identify which state, or state-action pair,

values should be updated when a TD error signal is received. Furthermore, eligibility

traces do not simply identify which values should be updated; they determine the degree

to which a value should be affected by a given TD error signal. Specifically, in the TD

case, in addition to storing the estimated value of each state, an additional eligibility trace

parameter, e(s), is stored for each state. At the start of an episode, all of the eligibility

trace values are set to zero. Throughout an episode, the eligibility trace values are

updated, at each time step, as follows [10]:

⎩
⎨
⎧

=+
≠

=
−

−

tt

tt
t ssifse

ssifse
se

1)(
)(

)(
1

1

λ
λ

where λ is the temporal credit assignment parameter, such that 10 ≤≤ λ . As can be seen,

at a given time step t, all of the eligibility trace values are decayed by λ, and the eligibility

trace value for the state st is incremented by one. Thus, the temporal credit assignment

parameter, λ, determines how quickly the eligibility of a state for updating decays

10

following its activation. Setting λ to zero effectively nullifies the use of the eligibility

traces, and yields the TD(0) formulation detailed earlier. Thus, the use of eligibility

traces, and the temporal credit assignment parameter λ, gives rise to the TD(λ) notation.

 Similar to the TD case, eligibility traces can also be applied to the Q-learning

algorithm, giving rise to Q(λ). In Q(λ), an eligibility trace value, e(s,a), is stored along

with each state-action pair, and the eligibility trace values are updated just as in the TD

case described above. Implementation of Q(λ) can thus be formalized with the following

equations, for a given time step t:

ASasaseasQasQ tt ,,),(),(),(∈∀+= αδ

)],(),(max[11 −−−+= tttatt asQasQr γδ

⎩
⎨
⎧

=+
≠

=
−−−

−−−

111

111

,,1),(
,,),(

),(
ttt

ttt
t asasifase

asasifase
ase

λ
λ

where S is the set of all possible states, and A is the set of all possible actions.

 Although Q-learning attempts to estimate the state-action pair value function for

the greedy policy, the policy being followed may involve exploratory actions; that is,

actions not deemed optimal by the policy being followed, but taken for the purpose of

exploring the entire state-action space. These exploratory actions cause the use of

eligibility traces to be less then straightforward. This can be illustrated with the decision

of whether a large negative value, received after executing an exploratory action, should

be passed back to the state-action pair values that unadjusted eligibility traces would

suggest are responsible for the outcome. It is certainly unclear how, following an

11

exploratory action, previous state-action pair values should be impacted by future TD

error signals.

 Different methods have been proposed about how to handle eligibility traces

intelligently for this situation, specifically Watkins's Q(λ) [12] and Peng's Q(λ) [13].

However, the simplest method for dealing with this problem is, essentially, to ignore it.

Specifically, just update the eligibility traces as would be done assuming there were never

any exploratory actions. This method is dubbed naïve Q-learning [10], and is used for all

of the experiments presented in this work.

 Lastly, the formulations given above seem to indicate that TD learning and Q-

learning essentially learn value functions mapping states, or state-action pairs, to scalar

values. Thus, a straightforward implementation of the TD(λ) or Q(λ) algorithm is in the

form of a single perceptron, where the number of inputs is equal to the number of states,

or state-action pairs, and where the weight connecting each input to the perceptron is

effectively the value measurement for the given state, or state-action pair (in addition, an

eligibility trace value is stored along with each weight). However, it is possible to extend

the TD(λ), or Q(λ), algorithm to map states, or state-action pairs, to vectors, and/or to

extend the representation to a multi-layer perceptron (MLP). For the general case of

TD(λ), or Q(λ), backpropagation in conjunction with eligibility traces can be used to

correctly distribute the TD error signals throughout the network. Detailed equations for

training a MLP using TD learning are presented in [14].

12

2.3 Working Memory Toolkit (WMtk)

For most of the experiments conducted in this work, an implementation of

Temporal Difference (TD) learning in the form of a single linear perceptron, called the

Working Memory Toolkit (WMtk) [15], was used. The WMtk was developed at

Vanderbilt University, and is based on the biology of the prefrontal cortex and the

midbrain dopamine system. The system has been used in various contexts [16], [17],

[18], with a primary goal being adaptive robot control.

 At its heart, the WMtk implements a naive Q-learning, Q(λ), system in the form

of an optimistic critic whose representation is a single perceptron with a linear activation

function. The system is capable of learning preferences, or weights, for different

combinations of state-item groupings. The basic input elements of the WMtk are chunks,

and the current state. A chunk is simply an abstract data structure that can hold any

information desired by the user. Similarly, the state is an abstract data structure that holds

whatever information is necessary to describe the current state. Ultimately, neither the

chunks nor the state are given directly to the perceptron as input. Two user defined

functions, the chunk mapping function and the state mapping function, perform the task

of translating a given chunk or state data structure, respectively, into a real valued feature

vector.

 The objective of the working memory system is to learn the correct valuation for

each state-item grouping. At each time step, the system evaluates all the possible

combinations of state-item groupings presented to it, and selects the grouping with the

highest valuation from the perceptron as the winner. The items from this winning state-

item combination are then placed into the “working memory store.” The size of the

13

working memory store is defined before the system is initialized (typically less then 5 to

7 items). Additionally, at each time step, the current items, or chunks, held in the working

memory store are automatically included in the list of items to evaluate for the current

time step.

 A given chunk feature vector, or multiple chunk feature vectors depending on the

size of the working memory store, and the current state feature vector are combined using

one of four methods to form what is termed an aggregate feature vector (AFV), which is

then presented to the perceptron. The four methods for combining chunk feature

vector(s) and the state feature vector are: concatenation, state conjunctive, chunk

conjunctive, and complete conjunctive. In the first case, concatenation, the state feature

vector and the chunk feature vector(s) are simply concatenated. In the second case, state

conjunctive, the chunk feature vectors(s) are first concatenated, and the state feature

vector is then conjunctively coded with concatenated chunk vector. In the third case,

chunk conjunctive, the chunk feature vector(s) are conjunctively coded, and the state

feature vector is then concatenated with the resultant vector. In the fourth case, complete

conjunctive, all of the chunk feature vector(s) are conjunctively coded, and the resultant

vector is then conjunctively coded with the state feature vector. The selection of the

method for forming the AFV thus dictates what can be learned by the working memory

system. Specifically, for example, if the concatenation method is used for the formation

of the AFV, then it will be impossible for the system to learning anything that depends on

the combination of a state and a chunk; as the system will only be able to learn a

preference for a given state, or a given chunk, not a combination of the two.

14

 At each time step, chunks are added to a candidate chunk list which is then used

by the system to form all the possible state-item groupings. The user can add chunks to

the candidate chunk list, additionally all the chunks currently in the working memory

store are automatically added. The working memory system then evaluates all the

possible permutations of the chunks in the given candidate chunk list, selected at the

number of chunks that can be held in the working memory store at a time. Like any Q-

learning system, the WMtk learns to output the expected final reward that will be

received for each state-item grouping.

 A number of parameters control the behavior of the system, namely: the learning

rate, the exploration percentage, the temporal credit assignment value, the mean of the

initial weights, and the reward function. The learning rate, of course, impacts the

magnitude of updates to the weights. The exploration percentage controls the chance that

the working memory system will ignore the best valued state-item grouping and instead

will chose one of the groupings at random. The temporal credit assignment value affects

the number of time steps that a reward is propagated back. The mean of the initial weight

controls the initialization point of the system. Finally, the reward function determines the

behavior of the system, and ultimately describes the state-item valuations that the system

learns to predict.

15

Chapter 3

Design

3.1 Simulation

The typical Morris water maze environment consists of a one to two meter

circular pool of opaque water from which the only escape is a raised platform positioned

slightly below the water’s surface, ensuring no local cues from the platform are used to

guide behavior. The essential elements from this typical Morris water maze setup,

combined with information about the setup used by Krichmar et al. [2] to assess the

spatial memory of a brain-based device called Darwin X, form the basis for the simulated

Player/Stage [19] environment developed by Busch et al. [1]. The simulated environment

is shown in Fig. 3.1.

Figure 3.1: Simulated Player/Stage dry water maze
environment used by Busch et al. [1]. Gridlines spaced at
one meter increments.

16

The environment is an 8x10 meter rectangle. There are 18 colored panels of

varying widths located along the walls. Specifically, there are six blue panels on one

wall, five green panels on the wall opposite the wall with the blue panels, four yellow

panels on the wall to the right of the blue panels, and three red panels on the wall

opposite the yellow panels. These colored panels are used to form the perceptual cues

observed by robot.

In addition to the colored panels, a hidden circular platform of radius 0.8 meters is

positioned in the simulated environment. This hidden platform represents the only

“escape,” or goal location, from the simulated environment and is only detectable by the

robot when it is directly over the top of the platform.

The robot used in the experiments is a simulated version of a Pioneer P3-DX; a

commercially available differential drive robot. The simulated robot is equipped with

three cameras, blob finders in Player/Stage, each with a 60 degree field of view. The

purpose of the cameras is to detect the colored panels in the simulated environment. In

addition, the robot is equipped with a laser range finder that is used for obstacle

avoidance. Lastly, the robot is equipped with an infrared sensor which allows it to detect

the hidden circular platform. In practice, this is implemented by simply testing if the

robot’s position is within the platform radius of the goal location. Nevertheless, the robot

cannot detect the hidden platform unless it is directly over it.

Using its differential drive system, there are five possible actions, motions, the

robot can execute at a given time step: hard left, left, forward, right, and hard right.

During these possible actions, the translational speed of the robot is set to 0.3 meters per

second, and the rotational speed of the robot is set to 0.4, 0.2, 0.0, -0.2, and -0.4 radians

17

per second during the hard left, left, forward, right, and hard right actions respectively.

Each action is executed for a time period of one second, at which time the motion of the

robot is stopped.

The three cameras, blob finders, with which the robot is equipped, allow the robot

to detect the colored panels along the edges of the simulated environment. The blob

finders are defined to have a maximum range of 14 meters, allowing them to detect the

colored panels, if positioned in the camera’s field of view, no matter where in the

environment the robot may be located. The simulated cameras are specified to have a

resolution of 160 pixels by 120 pixels. Blobs found by the blob finders contain

information specifying the bounding box, in pixels, of the blob in the simulated camera

image space. This information about the bounding box of the blob is used in the

formation of the current perceptual feature vector. The formation of this feature vector is

described in detail in section 3.5.

The robot uses a simulated laser range finder for obstacle avoidance behavior.

This obstacle avoidance behavior is activated if the robot comes within 0.4 meters of a

wall in the environment. When this behavior occurs, the robot rotates in place until its

directional axis is 30 degrees beyond parallel with the wall. After executing this

avoidance behavior, the motion of the robot is stopped, ending the current time step.

Given that the maximum number of allowed actions has not been reached, the robot then

goes through the sequence of once again acquiring a perceptual vector and selecting

another action.

Finally, the hidden platform, as shown in Figure 3.1, is implemented by simply

observing the position of the robot using odometry information available in Player/Stage.

18

If after executing an action, the position of the robot is found to be within the platform

radius distance of the specified location of the hidden platform, it is assumed that the

robot has found the platform. It should be noted that the odometry information is not

used by the Temporal Difference (TD) learning system for locating the hidden platform;

it is simply used to implement the infrared sensor functionality in the simulated

environment.

3.2 Physical Implementation

In order to implement a physical version of the dry water maze environment used

in simulation, a number of features of the environment needed to be adapted.

Additionally, a number of challenges had to be overcome to obtain the same functionality

of many of the components available in the simulated environment in the physical world.

This section details those adaptations, and the solutions to those challenges.

3.2.1 Environment

The simulated dry water maze environment needed to be adapted slightly for

implementation in the physical world. Firstly, the environment had to be modified to fit

the available space in the lab. Whereas the simulated environment was an 8 by 10 meter

rectangle, the physical environment had to be created within the space confines of the lab.

Specifically, the physical environment ended up being a 5.26 by 6.06 meter rectangle.

Consequently, due to the change in the environment size, the size of the hidden platform

was also changed. In simulation the hidden platform had a radius of 0.8 meters and

covered 2.5% of the total space. In the physical environment, the hidden platform was

19

given a radius of 0.41 meters and thus covered 1.6% of the total space. The selection of

the smaller platform size relative to the total percentage of the environment space was

due to two factors: firstly, less of the total environment space would available to the robot

in the physical environment then in the simulation due to the need for a larger obstacle

avoidance distance; and, secondly, to more closely match the size of the hidden platform

used by Krichmar et al. [2]. These environmental specification differences are laid out in

Table 3.1.

 TABLE 3.1

SIMULATION AND REAL WORLD ENVIRONMENT STATS

 Simulation Real World

Dimensions (m) 8x10 5.26x6.06

Total Area (m2) 80 31.88

Goal Area (m2) 2.01 0.52

Goal Area /Total Area (%) 2.5 1.63

Avoidance Distance (m) 0.4 0.8

In addition to the size of the environment, the size and positioning of the colored

panels along the edge of the environment were also adapted slightly from the simulation.

Due to the materials used to construct the colored panels, all of the panels were made to

have essentially the same width. Specifically, the blue and red panels have widths of

approximately 28 cm, and the green and yellow panels have widths of approximately 25

20

cm. A diagram of the physical environment with the layout of the colored panels is

shown in Figure 3.2. Additionally, pictures taken from the physical environment are

shown in Figure 3.3.

Lastly, as can be seen in Figure 3.3, black strips were placed above the green and

yellow colored panels in the physical setup. These strips perform no function other then

to help with the panel segmentation procedure, as described in section 3.4. Ultimately,

besides the size difference of the environment, goal, and colored panels, the physical

environment closely matches the simulated environment with respect to the general

layout.

Figure 3.2: Diagram of physical environment and layout of
colored panels.

21

Figure 3.3: Pictures taken from the physical environment,
showing the colored panels and hidden platform. Pictures
(a) through (d) were taken from left to right around the
enclosure.

3.2.2 Robot

As in the simulation, a Pioneer P3-DX was used in the physical setup. However, a

number of details about the specific pieces of equipment attached to the robot needed to

be adapted from the simulation for implementation on the physical robot. Firstly, whereas

in the simulation the robot was equipped with three simulated cameras, the physical robot

was equipped with two FireWire web cams with wide angle lenses. Secondly, whereas

the simulated robot was equipped with a laser range finder for obstacle avoidance, the

physical robot simply used sonar sensors already integrated into the frame for obstacle

avoidance. Finally, the robot was equipped with an assembly of four infrared sensors

22

attached to a Handy Board for detection of the hidden platform. A picture of the Pioneer

P3-DX used in the experiments, with the attached equipment described above, is shown

in Figure 3.4.

Figure 3.4: Picture of the Pioneer P3-DX robot used in the
physical experiments. Two FireWire web cameras are
mounted to a wooden base on the front of the robot. An
infrared sensor assembly can be seen beneath the front of
the robot.

3.2.2.1 Motion

As a result of using a P3-DX robot in the simulated environment, the possible

motions of the robot did not need to be altered for implementation in the physical

environment. As in the simulated environment, the physical robot can execute one of five

possible actions at a given time step: hard left, left, forward, right, and hard right. In the

simulation, during these possible actions, the translational speed of the robot was set to

23

0.3 meters per second, and the rotational speed of the robot was set to 0.4, 0.2, 0.0, -0.2,

and -0.4 radians per second during the hard left, left, forward, right, and hard right actions

respectively. These same specifications were used to define the five possible actions the

physical robot could take at a given time step.

In the simulated environment, each action was executed for one second, at which

time the motion of the robot was stopped while the robot acquired a new perceptual

vector and determined what new action to execute. However, whereas this perceptual

acquisition and processing took only milliseconds in the simulated environment; this

same process required slightly less then one second in the physical environment. Thus,

due to approximately one second of processing time being needed to acquire and act on a

new perceptual vector, in the physical environment each action was executed for 50

milliseconds (during which time obstacles could be detected) plus this approximately one

second needed for the perceptual acquisition and processing. Furthermore, the motion of

the robot was not stopped between actions. These changes resulted in a much smoother

motion from the physical robot, and, ultimately, approximately the same time required

per action, or step, as in the simulated environment.

3.2.2.2 Cameras

The cameras used on the physical robot were Unibrain Fire-I FireWire digital

color cameras. The cameras capture 640 by 480 color images in uncompressed RGB

format. Wide angle lenses were used on the cameras which gave an approximate

horizontal field of view of 90 degrees for each camera. The cameras, mounted on the P3-

DX robot, are shown in Figure 3.4.

24

3.2.2.3 Ultrasonic Sensors

 The Pioneer P3-DX robot comes equipped with a ring of 16 sonar sensors. Given

that space on top of the robot was needed for cameras, and that the laser range finder

requires a large amount of power, it was decided that the sonar sensors on the robot

would be used for obstacle avoidance. Specifically, the front eight sonar sensors are used

for basic obstacle avoidance. Due to the latency of the readings from the sonar sensors,

the obstacle avoidance behavior of the robot is triggered by a reading of 0.8 meters or

less from any of the front eight sonar sensors.

 As accurate position and orientation information is not available to the physical

robot, the obstacle avoidance behavior from the simulation, detailed in section 3.1, is

approximated using readings from the sonar sensors. Specifically, the robot rotates away

from a detected obstacle (known to be a wall in the environment) until readings from its

sonar sensors indicate it is angled at least 30 degrees away from the obstacle.

3.2.2.4 Infrared Sensor

 To detect the hidden platform in the physical environment, an infrared sensor

assembly attached to a Handy Board was used. The infrared assembly consists of four

individual infrared emitter-detector sensors, all of which need to be activated to constitute

a detection of the hidden platform. The Handy Board was connected to the laptop

computer used to control the robot through a serial connection, and simply transmits a

notification signal to the laptop whenever all four infrared sensors are simultaneous

activated. The infrared assembly is visible in Figure 3.4.

25

3.3 Position Fix

 In the simulated environment, where perfect odometry information is readily

available, resetting the robot after each episode is as simple as telling the robot to move

to a given position. In the physical environment, however, the robot’s odometry suffers

from considerable error. Although the odometry is accurate enough to keep a rough path

for display purposes of the robot’s movements during an episode, it is not accurate

enough for use in repositioning the robot. Furthermore, as the sonar sensors used for

obstacle avoidance are not suitable for localization, another solution to repositioning the

robot after each episode had to be developed.

The solution relies on the fact that the robot’s odometry is accurate enough that

the estimated orientation after a single episode is within plus or minus approximately 10-

15 degrees. Given this level of accuracy, following the end of an episode, the robot is

instructed to turn toward an absolute heading of 135 degrees, and is then instructed to go

forward until a wall is encountered. Depending on readings from the robot’s sonar

sensors, the robot then follows the detected wall towards the right or left. This causes the

robot to “funnel” itself into the corner of the environment. This process is illustrated in

Figure 3.5. Once the robot has successfully navigated into the corner, the sonar sensors

are used to obtain an accurate position fix to within a few inches on the x and y axis, and

to within 5-7 degrees on the orientation. This level of localization precision is accurate

enough for the robot, in general, to successfully reset its position after every run.

26

Figure 3.5: Diagram of the position fix procedure.

 Although the solution is straightforward, there are two main drawbacks. First, a

sizable amount of time is wasted between episodes while the robot fixes it position.

Second, although the robot gets a reasonably good position estimate, the error is still

large enough to cause a noticeable amount of variability in the positioning of the robot

for a given starting location. As compared to the simulated environment, this is an

additional source of error.

 Simulations, detailed in section 4.2.1.2, were conducted to evaluate the possible

impact of this inaccuracy in starting location positioning. Specifically, simulations were

performed which added randomly distributed errors of plus or minus 0.5 meters and plus

or minus 5 degrees to the x/y position and orientation of the robot’s starting positions

respectively. Results of these simulations showed that the inclusion of such error in the

robot’s starting positions significantly increased the average number of moves needed to

27

find the hidden platform given 100 training episodes. Analysis of the results seemed to

indicate that this decrease in performance was a result of the fact that even small changes

to a starting position cause the robot to observe different SOM nodes during the initial

step of the episode. Thus, variability in the starting locations requires the robot to learn

correct action preferences for a larger number of SOM nodes from which it might start;

whereas in the simulated environment the robot always begins each episode from the

same SOM node for a giving starting position.

3.4 Panel Segmentation

In the simulated environment, reliable detection of the colored panels is not an

issue. The simulated cameras do not suffer from the problems encountered using real

cameras in a physical environment. These problems include limited resolution, lens

distortion, changing lighting conditions, and the task of ultimately segmenting the panels

in the images. Due to these problems, developing a reliable panel extraction process itself

proved to be a challenging task.

 On the physical robot, the panel detection process consists of first removing lens

distortion from the captured images, discarding the bottom halves of the images,

performing median filtering on the images, and using a combination of rules in multiple

color spaces for segmentation. Finally, the knowledge that the panels are vertical in the

images is used to identify and extract the number of panels. A number of functions from

the Open Source Computer Vision Library [20] are used for the image processing steps.

 A large amount of distortion is present in the captured images due to the use of

wide angles lenses. Therefore, in order to obtain accurate information about the height of

28

the colored panels (necessary for the creation of the perceptual feature vectors as

described in section 3.5), the first step of the panel extraction process involves adjusting

the captured images for lens distortion. To achieve this, a rough estimate of the lens

distortion parameters, as modeled in OpenCV, was obtained by adjusting the parameters

until lines in a handful of test images were no longer distorted.

After adjusting the captured images for distortion, the bottom halves of the

images are discarded, and only the top halves are used for panel detection. The discarding

of the bottom halves of the images helps to eliminate panel detection problems due to

reflections from the floor, or the color of the hidden platform. In addition, the bottom

edges of the panels are always located in the bottom half of the images, meaning they

always extend past the bottom of the top half. This information is later exploited in the

panel segmentation process.

Repeated median filtering is then performed to smooth the images while

preserving edges. After this preprocessing step, the images are transformed into the Hue

Saturation Value (HSV) color space, and a set of RGB and HSV rules are used to

segment the images. Next, using the fact that the panels, if present, extend to the bottom

of the images (now only the top half of the original images), and that they are vertical in

the images, the sides of any panels in the images are identified. Given the location of the

sides of each panel, and the color, the top edges of the panels are identified by moving up

from the bottom of the image towards the top until the average color no longer satisfies

the RGB and HSV rules defining the color of the panel.

An illustration of the panel segmentation process is shown in Figure 3.6.

29

Figure 3.6: Illustration of the panel detection process from
the two FireWire webcams on the P3-DX robot. Images (a)
and (b) are the top halves of raw images captured from the
left and right cameras respectively. Images (c) and (d) are
the corrected and filtered images from the left and right
cameras respectively. Finally, images (e) and (f) show the
resulting panel segmentation.

3.5 Self-Organizing Map

In [1], Busch et al. used a Self-Organizing Map (SOM) to discretize the

perceptual space. The SOM allowed the large number of possible perceptual states to be

reduced to a useable number for the tested spatial memory systems.

Initially, panel segmentation information collected from each of the cameras is

used to generate a feature vector. As each camera has the possibility to encounter any of

the 18 colored panels in the environment, the vector formed for each camera consists of

18 bins. If a panel of a certain color is detected, the height of that panel in pixels is stored

in the first empty bin corresponding to the color of the panel, as the robot has no way to

determine which of the panels of the given color it is observing. Panels are processed

30

from left to right across an image. Thus, in the simulated environment, the robot is

equipped with three cameras, resulting in a 54 dimensional feature vector. In the physical

environment, the robot is equipped with two cameras, resulting in a 36 dimensional

feature vector.

The SOM(s) used in the simulated experiments were trained from 10,000

perceptual vectors collected from random points in the environment. The SOFM(s) used

in the real world experiments were trained from approximately 7,400 perceptual vectors

collected by letting the robot randomly roam throughout the environment with an

obstacle avoidance behavior for approximately two hours. For the experiments conducted

in the simulation and physical environments presented in this work, unless otherwise

stated, an 8x8 SOFM was used, resulting in 64 possible perceptual states.

3.6 Working Memory Toolkit Usage

 As previously stated, for the majority of the experiments conducted in this work,

the Temporal Difference (TD) learning implementation found in the Working Memory

Toolkit (WMtk), detailed in section 2.3, was used. This section details the usage of the

WMtk in the context of the dry water maze environment.

 Firstly, it should be stated that in the case of the dry water maze environment, a

spatial memory task, the learning of spatial memory, and not working memory, was being

investigated. Thus, although the WMtk was used, it was used purely from the TD

implementation aspect, and not as a general working memory system. Due to this fact,

the WMtk was used with a working memory store of size one.

31

 Finally, it should be noted that the use of the WMtk for the dry water maze

environment, as documented in this section, was used by Busch et al. [1].

3.6.1 State Mapping Function

 One of the steps necessary in the use of the WMtk is the creation of a state

mapping function which maps an abstract state data structure to a real valued feature

vector. Given the discretized perceptual space resulting from the use of a Self Organizing

Map (SOM), see section 3.5, the creation of this state mapping function is relatively

straightforward.

 Firstly, the abstract state data structure simply holds the number of the SOM node

to which the current perceptual feature vector maps. Secondly, the state mapping function

simply generates a real valued state feature vector with a dimensionality equal to the

number of possible states, such that the current state, as indicated by the state data

structure, is set to 1, while all the other values are set to zero. Thus, if, for example, a 64

node SOM is used, then the state mapping function generates a state feature vector with

dimensionality 64, where the dimension corresponding to the current state, as indicated

by the abstract state data structure, is set to 1, while all the other values are set to zero.

3.6.2 Chunk Mapping Function

 In addition to the state mapping function, it is also necessary, for the use of the

WMtk, to create a chunk mapping function which maps an abstract chunk data structure

to a real valued feature vector. In the case of a control task, these chunks generally take

the form of actions. In the case of the dry water maze environment, there are five possible

32

actions that the robot can take at a given time step, thus yielding five possible chunk

values.

 Firstly, in the dry water maze environment, an abstract chunk data structure

simply holds the number (1-5) of the action it represents. Secondly, the chunk mapping

function simply generates a real valued feature vector of dimension five, such that the

dimension corresponding to the action held in the chunk data structure is set to 1, while

the other dimensions are set to zero.

3.6.3 Aggregate Feature Vector (AFV) Formation

 Given that the state and chunk mapping functions have been defined, it is also

necessary to define how the real valued state and chunk feature vectors output by the two

functions are combined before being presented to the perceptron that is the TD system.

In the case of the dry water maze environment, where the working memory store size was

set to one, state conjunctive coding was used for the formation of an AFV. Specifically,

to generate an AFV, a given chunk feature vector and the current state feature vector are

conjunctive coded together to yield an AFV. Thus, if, for example, the chunk feature

vector length is five, and the state feature vector length is 64, the resulting AFV that is

presented to the TD system will be of length 320; where 320 corresponds to the total

number of possible state-action pairs, and for any given AFV only one of those 320

dimensions will be non zero. The use of this method for the formation of AFVs

effectively allows the system to learn valuations of all possible state-action pairs.

33

3.6.4 Reward Function

When the Working Memory system is first initialized, the preferences, or weights,

of the system are set randomly. During training, a reward signal is given to the system,

both during and at the end of training episodes, which the system attempts to maximize

by adjusting its state-action preferences (as described in sections 2.2 and 2.3). This signal

is represented by a reward function that is called at the end of each time step, and, for

most of the experiments described in this work, is defined as:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥−

−
+

−

=−

=

otherwise 0.0

 if 0.5

detected goal if
10

(
0.1

detected obstacle if 0.5

0 if 0.5

reward

mn

n)m

c

where c is the current number of chunks in the Working Memory system’s store, m is the

maximum number of moves allowed per episode, and n is the number of the current

move in the current episode.

Thus, the robot is rewarded at the end of each training episode depending on

whether it has or has not found the hidden platform. If the platform has been found, a

positive reward inversely proportional to the number of moves required to find the

platform is given. If the hidden platform has not been found, then a fixed negative reward

is given. In addition to the delayed rewards, the robot is given an immediate negative

reward when the obstacle avoidance behavior is initiated, and when the learning system

selects none of the five possible actions (c = 0). (When this occurs, one of the five

34

possible actions is chosen at random.) These sparse measures of performance are the only

feedback the robot receives in learning a mapping between SOM nodes and actions.

In a handful of experiments detailed in later sections, variations of this reward

function are used. When this is the case, the specific reward function used will be

described.

3.7 Modification of WMtk for “Forgetting”

 As detailed later in section 4.2.2, the original implementation of Temporal

Difference (TD) learning, as encapsulated by the WMtk, was found to be severely

lacking in its ability to adapt in non-stationary environments. For this reason, the learning

algorithm of the WMtk was modified to achieve better performance in non-stationary

environments. This modification came in the form of active “forgetting” based on past

rewards received.

 Specifically, a “short term” reward and a “long term” reward, calculated based on

rewards received at the end of episodes during the current trail, are used to control a

“forgetting” process. This process can be formalized into the equations below.

Essentially, whereas the original learning equation, in terms of weight updates,

implemented in the WMtk is:

)()()1(tetwtw ijtijij αδ+=+

where α is the learning rate, tδ is the TD error at time t, and eij(t) is the eligibility trace for

wij at time t; with “forgetting” the weight update equation becomes:

35

[]() μμαδ +−−+=+ pijtijij ftetwtw 1)()()1(

where μ is the initial mean of the weights for the system, and fp is defined as follows:

⎩
⎨
⎧

−
−≥

=
otherwiserr

rrif
f

fsl

ls
p η

ε
)(

0

where rl and rs are the long term and short term rewards respectively, ε is a small positive

constant, and ηf is the forgetting rate.

 Essentially, under normal circumstances, where rs ≥ rl – ε, the weight update is

unchanged from that originally implemented in the WMtk. However, if rs < rl – ε then the

system actively “forgets” by moving all weights closer to the initial mean value μ.

Furthermore, the degree to which this forgetting takes place is controlled by both the

difference between rl and rs, and the forgetting rate ηf.

 The long term and short term rewards, rl and rs, are calculated based on rewards

received at the end of each episode during a trial. Specifically, the long and short term

rewards are calculated by taking an average of sliding medians over some number of past

rewards received:

∑
−

=
++−+−+−

=
slsl

slslsl

MN

k
MkNtkNt

slsl
sl RRmedian

MN
r

//

///
0//

/),...,(
1

1

36

where N is the number of episodes over which past rewards will be used to calculate the

reward, M is the size of the window over which medians will be calculated, R is the

reward signal consisting of rewards received at the end of previous episodes, and t is the

current episode.

 For experiments conducted in section 4.2.2.2, N was set to 100 and 30 for the long

and short term rewards respectively, M was set to 20 for both rewards, ε was set to 0.5,

and ηf was set to 0.09.

3.8 TD(λ) Multi Layer Perceptron Implementation

 In addition to the Working Memory Toolkit (WMtk), a Multi Layer Perceptron

(MLP) implementation of the TD(λ) algorithm, suitable for use with Q(λ) algorithm as

well, was developed and tested for the dry water maze environment. The implementation

is as described in [14], and could be instantiated for any number of hidden layers, with

any number of nodes (including any number of output nodes).

 The main purpose of implementing a MLP version of the TD(λ) algorithm was to

evaluate the ability of such a system to learn to find the hidden platform in the dry water

maze environment, without the need for a SOM discretization of the perceptual space.

Specifically, the MLP was implemented to test the idea of using the raw perceptual

vectors obtained from the cameras on the robot as input of the current state.

 Results from various experiments making use of this MLP implementation are

presented in section 4.2.1.5.

37

3.9 General Experimental Procedure

For the experiments presented in this work, in general, simulation episodes

proceeded as follows: at each time step, the robot determines its current perceptual state,

as represented by a 54 dimensional feature vector, using information about the colored

blobs visible to its blob finders. (This process in described in detail in section 3.1.) This

perceptual feature vector is then compared to the SOM nodes to determine the closest

node. The temporal difference learning system then uses the closest SOM node as the

current state of the robot. Based on this state, the TD system then selects one of the five

possible actions, which are described in section 3.1. This process is then repeated for a

maximum of 50 moves or until the robot detects the hidden platform, at which time the

current episode is ended, and the robot’s position is reset. During each such episode, the

system receives rewards as defined in section 3.6.4. The general procedure for

experiments conducted in the physical environment is effectively the same as described

above for experiments conducted in the simulated environment.

Performance of the system is evaluated by either observing the performance of the

system during training trails, specifically the number of moves per episode, or by

performing some number of evaluation episodes, that is episodes during which learning

and exploration are inhibited, both before and after training in order to measure

improvement.

38

Chapter 4

Experimental Results and Analysis

4.1 Physical Environment

 Two experiments were developed to evaluate the ability of the physical robot to

learn the necessary associations between SOM nodes and actions to locate the hidden

platform in the dry water maze environment. These two experiments were a single corner

experiment and a four corner experiment. For both of these experiments, each training

episode consists of a maximum of 51 moves. For each move the robot determines which

SOFM node it is currently in, and then selects one of five possible actions, or a random

action if it selects none of the five, to take. If the robot finds the goal before 51 moves

have been made, the run is ended.

In addition to tracking the performance of the robot during training, in a handful

of experiments evaluation episodes were also used to observe the performance of the

system. For these evaluation episodes, the exploration and learning of the system were

inhibited.

4.1.1 Single Corner

 For this experiment, each training episode consists of starting the robot at a single

fixed starting location, as illustrated in Figure 4.1. During each episode, the robot is

allowed a maximum of 51 moves to locate the hidden platform. Once 51 moves have

been executed, or the hidden platform has been found, the episode is ended. The robot is

then repositioned to the single starting location for the next episode.

39

Figure 4.1: Diagram of the single corner water maze
task showing the starting location and positioning of the
robot, along with the location of the hidden platform.
Coordinates are in meters.

 The results of one single corner water maze experiment are shown in Figure 4.2

and Table 4.1, and are typical of those obtained during other tests. Figure 4.2 (a) shows

the number of moves per episode during a training sequence of 100 episodes. As can be

seen, the robot fails to find the platform during most of the early training episodes. Figure

4.2 (b) shows an example path of the robot during one of these early training episodes.

Within approximately 20 training episodes, however, the robot appears to learn a path to

the platform. Figure 4.2 (c) shows the path of the robot during episode 22. As the training

sequence continues the robot does fail to locate the platform during certain episodes.

Figure 4.2 (d) shows the path of the robot during episode 64, an episode in which it fails

to find the platform. The path in Figure 4.2 (d) is typical of many failed runs later in the

40

training process. The robot generally follows a successful path to the platform but just

misses it. More information is needed to identify the exact reason. However, these

failures could be due to the exploration of the TD system, or could be caused by some

combination of parameters such as goal size, SOM size, sensory uncertainties, etc.

Clearly, though, the frequency of episodes during which the platform is not found

appears to decrease as the training process progresses.

Figure 4.2: (a) Plot of moves per episode during 100
training episodes for the typical single corner water maze
task presented here. The maximum number of moves
allowed per episode is 51. (b) Path of robot during episode
2. (c) Path of robot during episode 22. (d) Path of robot
during episode 64. The displayed paths are highlighted in
red in (a). The inner box in (b), (c), and (d) shows the
distance at which obstacle avoidance should be activated.
The robot’s path is logged using odometry during training
and evaluation episodes. This information is not used by
the learning system.

41

 To better characterize the improvement of the system, the robot was evaluated

both before and after the training episodes. During the evaluation episodes the

exploration and learning of the TD system are inhibited. Table 4.1 shows the results of

these evaluations. Noticeable improvement can be seen after the 100 training episodes as

compared with the results obtained before training, indicating the robot has indeed

learned at least some set of state-action associations necessary for navigating to the

platform.

TABLE 4.1
SINGLE CORNER EVALUATION RESULTS

Before

Training
After 100 Training

Episodes

Evaluation Episodes 40 40

Average Moves
per Episode 48.5 23.6

Episodes Platform not
Found 32 8

 Results from additional single corner training sequences can be found in

Appendix A.

42

4.1.2 Four Corner

 For this experiment, each training episode consists of starting the robot at one of

four starting locations, as illustrated in Figure 4.3. The four starting locations are visited

in the following sequence: (1.3, 1.3), (4.76, 1.3), (4.76, 3.96), and (1.3, 3.96). During

each episode the robot is allowed up to 51 moves to locate the hidden platform. Once 51

moves have been executed, or the hidden platform is found, the episode is ended. At the

end of each episode the robot is repositioned to the next starting location in the sequence

as described above.

Figure 4.3: Diagram of the four corner water maze task
showing the starting locations and positions of the
robot, along with the location of the hidden platform.
Coordinates are in meters.

43

 The results of one four corner water maze experiment are shown in Figure 4.4 and

Table 4.2, and are typical of those obtained during other tests. Figure 4.4 (a) shows a

moving average of the number of moves per episode during a trial of 100 episodes. The

moving average is taken over the current episode and the previous three. A moving

average of four episodes is used to display the change in the number of moves per

episode over all four starting locations.

 As in the single corner task, the robot fails to find the platform during many of the

early training episodes. Figure 4.4 (b) shows the paths of the robot from each starting

location for episodes 2-5. After approximately 70 training episodes, the robot appears to

learn a path to the platform from each of the starting locations. Figure 4.4 (c) shows the

paths of the robot from each starting location for episodes 69-72. Here again, however, as

the training sequence continues the robot does fail to locate the platform during certain

episodes. Figure 4.4 (d) shows the paths of the robot from each starting location for

episodes 91-94, in which the robot fails to locate the platform from the lower right

starting location during episode 94. As before, these failures could be due to the

exploration of the system, or could be caused by some combination of parameters such as

goal size, SOM size, sensory uncertainties, etc.

44

Figure 4.4: (a) Plot of the four episode moving average of
moves per episode during 100 training episodes for the
typical four corner water maze task presented here. The
moving average is of the current episode and three previous
episodes, and is used to show the change in the number of
moves from the four combined starting locations. The
maximum number of moves allowed per episode is 51. (b)
Paths of robot during episodes 2-5. (c) Paths of robot
during episodes 69-72. (d) Paths of robot during episodes
91-94. The average of the displayed paths is highlighted in
red in (a). The inner box in (b), (c), and (d) shows the
distance at which obstacle avoidance should be activated.
The robot’s path is logged using odometry during training
and evaluation episodes. This information is not used by
the system.

 As in the single corner task, the robot was evaluated before and after the training

episodes to monitor improvement. During the evaluations episodes the exploration and

learning of the TD system are inhibited. For the four corner task, the evaluation episodes

are carried out from all four starting locations in the same sequence as during training.

The evaluation consists of 40 total episodes, thus 10 evaluation episodes are conducted

from each corner. Table 4.2 shows the results of these evaluations. Here again, noticeable

improvement can be seen after the 100 training episodes as compared with the results

45

obtained before training, indicating the robot has correctly learned at least some set of

node/action associations necessary for navigating to the platform.

TABLE 4.2
FOUR CORNER EVALUATION RESULTS

Before

Training
After 100 Training

Episodes

Evaluation Episodes 40 40

Average Moves
per Episode 46.0 20.1

Episodes Platform not
Found 30 3

 Results from additional four corner training sequences can be found in Appendix

B.

46

4.2 Simulation

 The simulated environment used by Busch et al. [1], described in section 3.1, was

used to conduct a number of experiments for the purpose of evaluating and testing

various parameters and ideas related to the TD implementation. Generally, the

experiments can be broken down into two groups: those conducted in a stationary

environment, i.e. an environment in which the hidden platform location is fixed, and

those conducted in a non-stationary environment, sections 4.2.1 and 4.2.2 respectively.

 During the experiments, unless otherwise noted, the robot was positioned at one

of four starting locations at the beginning of each episode, as illustrated in Figure 4.5.

During each episode the robot was allowed a maximum of 50 moves to locate the hidden

platform. Once 50 moves have been executed, or the hidden platform is found, the

episode is ended.

Figure 4.5: Diagram of starting positions and goal
location for experiments conducted in section 4.2.

47

4.2.1 Stationary Environments

 Initially, a large number of experiments were conducted in the simulated

environment with the goal of determining the optimum values for the parameters

affecting the performance of the Working Memory Toolkit (WMtk) and the optimum size

of Self Organizing Map (SOM) used to discretize the perceptual space. Significant testing

of these parameters was not conducted as part of the work in [1]. The results from these

experiments are detailed in section 4.2.1.1.

 Section 4.2.1.2 details the results of experiments done to evaluate the effect of

imprecise starting positions, as experienced in the physical environment, on the

performance of the temporal difference (TD) system.

 Finally, sections 4.2.1.3 - 4.2.1.5 describe the results of experiments done to

evaluate the performance of the system given the following modifications: a constant

reward function, incorporation of simulated hippocampal place cells into the formation of

the state feature vector, and the use of a multi layer perceptron (MLP) implementation of

the TD(λ) algorithm to eliminate the need for a SOM.

4.2.1.1 SOM Size and WMtk Parameter Evaluation

 A large number of experiments were conducted to evaluate the affect of various

parameters on the performance of the TD system in the simulated dry water maze

environment. The parameters tested included: SOM size, temporal credit assignment

value, learning rate, and exploration percentage.

 The size of the SOM used to discretize the perceptual space determines the

number of states in the water maze environment. For the experiments conducted in [1], a

48

20 by 20 SOM was used which resulted in 400 perceptual states. As the number of

weights in the TD system, and thus the complexity, is directly proportional to the number

of states, a smaller SOM, size 8 by 8, was tested to determine whether it yielded better

performance in the water maze environment.

 The temporal credit assignment value, described in section 2.2, determines how

rewards given to the system are propagated back to weights activated during a training

episode. Specifically, the eligibility trace value of an activated weight is decayed by the

temporal credit assignment value at each time step. For the experiments conducted in [1],

the default WMtk value of 0.7 was used. For this work, six temporal credit assignment

values from 0.7 to 0.95 were tested to evaluate their affect on the performance of the TD

system in the water maze environment.

 The learning rate, described in section 2.2, determines the magnitude of the

updates to the weights of the TD system. Specifically, the eligible TD error calculated at

a time step for a given weight is multiplied by the learning rate before being applied to

the weight. For the experiments conducted in [1], a learning rate of 0.01 was used. For

this work, three learning rate values, 0.001, 0.01, and 0.1, were tested to evaluate their

affect on the performance of the TD system in the water maze environment.

 The exploration percentage, described in section 2.3, determines how often the

TD system will ignore its current action preference and instead choose a different action.

In [1], the default WMtk exploration percentage of 0.05 was used. For this work, two

exploration percentages, 0.05 and 0.10, were tested to evaluate their affect on the

performance of the TD system in the water maze environment.

49

 In order to evaluate the impact of these four variables on the performance of the

TD system, 25 trials, each consisting of 100 training and 100 evaluation episodes, were

conducted for all 72 possible combinations of values of the variables described above.

For these experiments, during both the training and evaluation phases, the robot was

randomly positioned at one of the four starting locations shown in Figure 4.5 at the

beginning of each episode. Although the sequence of starting locations was random, it

was controlled such that during every 100 episodes the robot started from each location

25 times. Results of these experiments are shown in Tables 4.3 and 4.4. Each entry

represents the number of moves per episode, during evaluation, averaged over 25 trials.

TABLE 4.3

PARAMETER EVALUATION RESULTS - 20 X 20 SOM

(RESULTS ARE AVERAGE MOVES PER EVALUATION EPISODE)

Exploration Percentage = 0.05

 Temporal Credit Assignment Value

 0.70 0.75 0.80 0.85 0.90 0.95

L
ea

rn
in

g
R

at
e

0.001 21.5 18.3 16.8 14.3 13.7 14.8

0.010 16.0 16.8 13.8 13.6 15.0 15.5

0.100 20.2 20.8 21.6 20.1 18.4 32.9

Exploration Percentage = 0.10

 Temporal Credit Assignment Value

 0.70 0.75 0.80 0.85 0.90 0.95

L
ea

rn
in

g
R

at
e

0.001 20.8 22.2 17.3 18.0 13.1 15.6

0.010 16.4 15.7 16.2 15.0 17.4 16.9

0.100 18.5 22.4 20.6 18.7 19.2 33.7

50

TABLE 4.4

PARAMETER EVALUATION RESULTS – 8 X 8 SOM

(RESULTS ARE AVERAGE MOVES PER EVALUATION EPISODE)

Exploration Percentage = 0.05

 Temporal Credit Assignment Value

 0.70 0.75 0.80 0.85 0.90 0.95

L
ea

rn
in

g
R

at
e

0.001 18.0 16.9 15.1 12.7 11.5 11.6

0.010 17.1 15.5 13.9 14.7 13.0 14.8

0.100 15.2 16.4 17.4 15.9 15.3 33.4

Exploration Percentage = 0.10

 Temporal Credit Assignment Value

 0.70 0.75 0.80 0.85 0.90 0.95

L
ea

rn
in

g
R

at
e

0.001 22.5 18.9 13.9 15.1 12.7 11.9

0.010 15.1 14.1 12.9 13.6 14.4 14.1

0.100 17.5 14.4 15.6 17.0 16.3 33.7

 From the results shown in Tables 4.3 and 4.4, perhaps the most noticeable result

is the performance of the system given the largest learning rate and the largest temporal

credit assignment value. In all four cases of this combination, the resulting performance

of the system, an average of approximately 33 moves per episode during evaluation, was

essentially equal to results obtained before training, with random weights; which seems

to indicate that this combination of values makes the system unstable. Furthermore, it

appears that the combination of the smallest learning rate and the smallest temporal credit

assignment value, though not yielding unstable performance such as the previous

combination, also yields poor results in all four cases. Ultimately, besides these to

noticeable effects, the performance of the system seems rather invariant, for the most

part, to the changes in parameter values. That said, it does appear that overall, the 8 by 8

SOM tended to yield better results then the 20 by 20 SOM.

51

 As a result of the lack of conclusive evidence demonstrating a clear and obvious

favorite for the best combination of parameter values, the following values for the tested

parameters were used in all subsequent experiments: a SOM size of 8 by 8, an

exploration percentage of 0.10, a learning rate of 0.01, and a temporal credit assignment

value of 0.83.

4.2.1.2 Starting Position Variability Evaluation

 As described in section 3.3, the lack of error free odometry in the physical

environment leads to imprecise positioning of the robot at the beginning of each episode,

a source of error not found in the simulated environment. In order to determine the

impact of this imprecise positioning on the performance of the TD system, experiments

were conducted in the simulated environment during which uniform random errors of

plus or minus 0.5 meters and plus or minus 5 degrees were added to the robot’s starting

position at the beginning of each episode. Specifically, 25 trials, each consisting of 100

training and 100 evaluation episodes, were conducted during which the error described

above was added to the robot’s starting positions. During these experiments, for both the

training and evaluation phases, the robot was positioned, before the addition of error, at

one of the four starting locations shown in Figure 4.5 in the following order: (-2,4),

(3.0,3.0), (2,-4), (-3.0,-3.0). Results of the experiments are shown in Table 4.5, along

with typical results obtained without the starting position error for comparison purposes.

Each entry represents the number of moves per episode, during evaluation, averaged over

25 trials.

52

TABLE 4.5
STARTING POSITION VARIABILITY RESULTS

With Variability No Variability

Average Number of
Moves per Evaluation

Episode
17.12 13.4

 As can be seen from the results in Table 4.5, the introduction of error into the

positioning of the robot at the beginning of each episode seems to have a significant

negative impact on the performance of the system after 100 training episodes. As one

might expect, this result seems to indicate that the physical robot starts out with a

noticeable handicap in its ability to quickly learn the necessary action preferences

necessary to locate the hidden platform as compared to the error free simulation.

4.2.1.3 Constant Reward Function Evaluation

 The reward function, used by the TD system to generate the reward signal, is

largely responsible for the ultimate performance of the system. In [1], the reward function

described in section 3.6.4 was used and seemed to perform quite well. That reward

function, though a superposition of multiple simple rewards, essentially yields an end of

episode reward, assuming the robot locates the hidden platform, inversely proportional to

the number of moves required to find the hidden platform.

 For this work, a reward function that simply yields a constant scalar value in the

case of the hidden platform being found was implemented and tested. This constant

reward function can be formalized as:

53

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥−

−

=−

=

otherwise 0.0

 if 0.5

detected goal if .05

detected obstacle if 0.5

0 if 0.5

reward

mn

c

 The use of the constant reward function is based on the theory that the eligibility

traces built into the TD system should be capable of determining which state-action pairs

are responsible, and to what degree, for the outcome of an episode, and that the reward

function need not explicitly favor shorter paths. Specifically, the eligibility traces

inherent to the system should effectively handle the responsibility of distributing rewards

received with the goal of maximizing the reward signal, and, thus, the system must

consequently end up learning short paths to the platform location.

 In order to evaluate the impact of this constant reward function on the

performance of the TD system, experiments were conducted in the simulated

environment. Specifically, 25 trials, each consisting of 100 training and 100 evaluation

episodes, were conducted using the constant reward function specified above. During

these experiments, for both the training and evaluation phases, the robot was positioned

at one of the four starting locations shown in Figure 4.5 in the following order: (-2,4),

(3.0,3.0), (2,-4), (-3.0,-3.0). Results of the experiments are shown in Table 4.6, along

with results obtained using the original reward function for comparison purposes. Each

entry represents the number of moves per episode, during evaluation, averaged over 25

trials.

54

TABLE 4.6
CONSTANT REWARD FUNCTION RESULTS

Constant
Reward

Original
Reward

Average Number of
Moves per Evaluation

Episode
11.9 13.4

 As can be seen from the results in Table 4.6, although the performance is slightly

better given the constant reward as compared to that obtained using the original reward,

the difference in performance does not appear to be all that significant. However, what is

significant is the fact that the performance of the system seems to be on par, if perhaps a

bit improved, given a reward function that does not favor shorter paths. This result seems

to provide evidence for the theory, described above, that the reward function need not

explicitly favor shorter paths in order for the system to learn to favor them. It should be

noted, however, that due to the relatively insignificant difference in performance the

constant reward function was not adopted for future experiments.

4.2.1.4 Simulated Place Cell Evaluation

 In much of the previous work done using a simulated or physical version of the

Morris water maze task to evaluate computation models for the learning of spatial

memory [5-7], simulated firings of hippocampal place cells were used to represent the

state space. These hippocampal place cells are generally simulated by distributing a pre-

determined number of such cells in a grid fashion over the entire environment, and

55

having the ‘firing’ of each of the place cells be modeled as some function of the distance

of the robot to the location of the place cell. Thus, the firing of each place cell is based on

the robot’s spatial positioning in the environment.

 For this work, the idea of hippocampal place cells that fire when the robot is in

certain spatial locations was incorporated into the existing design to evaluate the

performance of the system given not only the state information gained from the

perception to SOM node mapping, but from a combination of perceptual localization and

direct spatial localization. This combination was realized in the form of the perception

based SOM nodes and a grid of place cells whose firings are directly tied to the robot’s

spatial location in the environment.

 In order to evaluate the impact of incorporating this place cell grid into the TD

system, experiments were conducted in the simulated environment. Eight trials, each

consisting of 1,000 training and 1,000 evaluation episodes, were conducted in which the

current state of the robot was a function not only of the current SOM node, but also of the

firing of a simulated grid of hippocampal place cells. Specifically, 20 hippocampal place

cells were evenly distributed over the simulated environment as shown in Figure 4.6. As

the TD system can only handle a discrete number of possible states, the firing of the

hippocampal place cells was taken to be ‘1’ if the place cell was the closest place cell to

the robot, and ‘0’ otherwise. Thus, the total number of possible states is equal to the

number of place cells times the number of SOM nodes. For the experiments conducted

here, a 4 by 4 SOM, with 16 total nodes, was used in conjunction with the grid of 20

place cells, yielding a total of 320 states; roughly equal to the number of possible states

given only an 8 by 8 SOM. Furthermore, for these experiments, two sets of 1,000

56

uniform random starting positions in the simulated environment were used; one set was

used for the training episodes, and one set was used for the evaluation episodes. The large

number of uniform random starting positions was used, as opposed to the four starting

positions shown in Figure 4.5, to evaluate whether the spatial information gained from

the grid of hippocampal place cells yielded better localization, and thus better

performance, over the entire environment space then a SOM alone. Results of the

experiments are shown in Table 4.7, along with results obtained using the original system

with an 8 by 8 SOM. Each entry represents the number of moves per episode, during

evaluation, averaged over 8 trials.

Figure 4.6: Diagram of hippocampal place cell
layout in the simulated environment, used for
experiments conducted in section 4.2.1.4.

57

TABLE 4.7
SIMULATED PLACE CELL RESULTS

With Place

Cells
Without Place

Cells

Average Number of
Moves per Evaluation

Episode
16.6 19.1

 As can be seen from the results, the performance of the system does seem to be

better given the SOM and place cell combination, as compared to the SOM alone,

perhaps providing evidence for the theory that inclusion of self motion information, i.e.

odometry, could yield improved performance. However, both setups seem to perform

well. It would certainly be interesting, given more time, to further investigate the

performance of the system given different combinations of place cells and SOMs.

4.2.1.5 TD(λ) Multi Layer Perceptron Evaluation

 In all the experiments presented in this work, the Self Organizing Map (SOM)

used to discretize the perceptual space is an integral part of the setup. However, the SOM

requires that a large number of perceptual vectors be collected from the environment

before experiments are conducted; an advantage not given to rats in the typical Morris

water maze environment. Therefore, the use of Multi Layer Perceptron (MLP)

implementation of the TD(λ) algorithm, described in section 2.2, was explored for the

purpose of eliminating the need for the SOM. Specifically, the idea of directly using the

18 bin perceptual vectors obtained from the robot’s cameras for the current state

information was tested.

58

 Two different MLP structures were evaluated for this purpose: the first structure

consisted of 54 inputs (three cameras each with an 18 dimensional feature vector) each

directly tied to five output nodes (one for each possible move); the second structure

consisted of 270 inputs (three cameras each with an 18 dimensional feature vector,

multiplied by the number of possible moves) connected to a hidden layer of five nodes,

which were then connected to a single output node. In the case of the first structure, the

current perceptual state of the robot was observed, and the output node with the highest

value determined the move that was executed. In the case of the second structure, each

possible state-action pair was applied to the network, and the pair that resulted in the

highest value from the single output node was taken as the winner. Finally, a small

percentage chance for exploration was allowed in both cases, and naïve eligibility traces

were used in the implementation.

 In order to evaluate the performance of these two MLP structures trained with

temporal difference learning, experiments were conducted in the simulated environment.

Specifically, 25 trials, each consisting of 100 training episodes, were conducted using the

basic reward function described in section 3.4. During these experiments, the robot was

positioned at one of the four starting locations shown in Figure 4.5 in the following order:

(-2,4), (3.0,3.0), (2,-4), (-3.0,-3.0). Simply stated, the second MLP structure never yielded

results that seemed to indicate it had learned. Similarly, the first MLP structure, although

it did occasionally seem to yield results indicating it had at least adjusted its performance

to the environment, never ultimately gave any results indicative of actual convergence.

Based on this, the use of a MLP implementation of the TD(λ) algorithm was abandoned.

59

However, given more time, it would be interesting to further investigate the use of a MLP

approach and its ability to possibly eliminate the need for a SOM.

4.2.2 Non-stationary Environments

One of the main motivations for using the temporal difference (TD) learning

approach for the water maze task is the ability for online learning and the supposed

adaptability of the system in dynamic, non-stationary, environments. In order to test the

adaptability of the TD approach in such environments, experiments were conducted in

simulation. Specifically, the adaptability of the TD approach was tested by first letting

the system train for a number of episodes given a fixed platform location in the dry water

maze environment. After this training period, the platform location was moved, and the

system was again allowed to train for a number of episodes given the new goal location.

By plotting the average number of moves per episode during the entire training sequence,

the ability of the system to adapt to new goal locations could be observed.

4.2.2.1 Original System

 Initially, a set of experiments were conducted to evaluate the adaptability of the

original TD learning approach, as implemented in the WMtk, in non-stationary

environments. The results of these experiments are presented here.

 These experiments consisted of changing the goal location during training trials.

Firstly, the goal location was moved from (-1.0, -1.5) to (0.0, 2.5) after 50, 100, and 400

training episodes, at which point the robot was then given 400 more training episodes

with the new goal location. At the beginning of each training episode, the robot was

60

positioned at one of four starting locations. A diagram of the goal locations and starting

positions can be seen in Fig. 4.7. The starting locations were visited in the following

order: (-2,4), (3.0,3.0), (2,-4), (-3.0,-3.0). The robot was allowed a maximum of 50 moves

per episode to find the hidden platform.

Figure 4.7: Diagram of goal locations and starting
positions for experiments conducted in section
4.2.2.1.

 Figure 4.8 shows the results of simply setting the goal location to (0.0, 2.5) and

letting the robot train for 400 episodes. This is shown for comparison purposes versus the

experiments in which the goal is moved to (0.0, 2.5) only after some number of training

episodes with a prior goal location. Figure 4.9, Figure 4.10, and Figure 4.11 show the

results of experiments in which the goal was moved to (0.0, 2.5) from (-1.0, -1.5) after

50, 100, and 400 training episodes respectively. Each graph is a plot of the four episode

61

moving average of the number of moves per episode, as averaged over multiple training

trials.

Figure 4.8: Graph of the four episode moving average of the number of moves per
episode, as averaged over six trials. The goal location was set to (0.0, 2.5) for the entirety
of each trial. The maximum allowed number of moves per episode is 50.

Figure 4.9: Graph of the four episode moving average of the number of moves per
episode, as averaged over six trails. At the beginning of each trial, the goal location was
set to (-1.0, -1.5). After 50 training episodes the goal location was moved to (0.0, 2.5) and
the robot was allowed to complete 400 more training episodes. The maximum allowed
number of moves per episode is 50.

62

Figure 4.10: Graph of the four episode moving average of the number of moves per
episode, as averaged over six trials. At the beginning of each trial, the goal location was
set to (-1.0, -1.5). After 100 training episodes the goal location was moved to (0.0, 2.5)
and the robot was allowed to complete 400 more training episodes. The maximum
allowed number of moves per episode is 50.

Figure 4.11: Graph of the four episode moving average of the number of moves per
episode, as averaged over six trials. At the beginning of each trial, the goal location was
set to (-1.0, -1.5). After 400 training episodes the goal location was moved to (0.0, 2.5)
and the robot was allowed to complete 400 more training episodes. The maximum
allowed number of moves per episode is 50.

63

 As can be seen from the results, after training for even as few as 50 episodes

before moving the goal location, the robot fails to learn paths to the new goal location

that are as efficient as those learned if the system is only trained using the new goal

location. In addition, the length of initial training does not seem to have a significant

impact on the ability of the system to adapt to the second goal location. In the 50, 100,

and 400 episode cases, after 400 training episodes with the new goal location the robot

seems to find a set of paths that average in the 20-30 move range, as opposed to the set of

paths that average in the 10-20 move range when the system is only trained on the second

goal location for 400 episodes.

 Next, a second batch of experiments, which consisted of letting the robot train for

a larger number of episodes after the repositioning of the goal location, were conducted

to determine if the performance of the TD system would eventual reach the same level as

when it was only trained on the second goal location. Specifically, the robot was allowed

to train for 4,000 episodes after the repositioning of the goal location from (-1.0, -1.5) to

(0.0, 2.5). The results are shown in Figure 4.12. Here again, the plot is the four episode

moving average of the number of moves per episode, as averaged over multiple training

trials.

64

Figure 4.12: Graph of the four episode moving average of the number of moves per
episode, as averaged over five trials. At the beginning of each trial, the goal location was
set to (-1.0, -1.5). After 400 training episodes the goal location was moved to (0.0, 2.5)
and the robot was allowed to complete 4,000 more training episodes. The maximum
allowed number of moves per episode is 50.

As can be seen from Figure 4.12, the system does appear to keep improving over

the entire sequence of training episodes, albeit slowly. After 4,000 training episodes the

system’s performance does reach approximately the same level as when it is trained only

on the second goal location for 400 episodes. This seems to imply that the learning which

takes place during the initial 400 episodes is not “forgotten” until after a large number of

training episodes with the new goal location. Furthermore, this initial learning seems to

hinder the convergence of the system toward the best paths for the new goal location.

 Finally, a set of experiments was conducted which consisted of moving the goal

location twice. In the first experiment, the robot was allowed to train for 400 episodes

with the platform at (0.0, -2.0). The goal location was then moved to (0.0, 2.0) and the

robot was allowed to train for 400 episodes given the new location. Lastly, the goal

location was moved to (0.0, 0.0), and the robot was allowed to complete 400 more

training episodes. The results of this experiment are shown in Figure 4.13. Once again,

65

the plot is the four episode moving average of the number of moves per episode, as

averaged over multiple training trials.

Figure 4.13: Graph of the four episode moving average of the number of
moves per episode, as averaged over ten trials. At the beginning of each
trial, the goal location was set to (0.0, -2.0). After 400 training episodes
the goal location was moved to (0.0, 2.0) and the robot was allowed to
complete 400 more training episodes. Finally, the goal was moved to
(0.0, 0.0) and the robot was allowed to complete another 400 training
episodes. The maximum allowed number of moves per episode is 50.

 Additionally, a second experiment was conducted during which the goal location

was moved twice. For this experiment, the robot was first allowed to train for 400

episodes with the platform at (-1.0, -1.5). The goal location was then moved to (0.0, 2.5)

and the robot was allowed to train for 400 episodes with the new location. Finally, the

goal location was moved back to where it originally started at (-1.0, -1.5), and the robot

was allowed to complete 400 more training episodes. The results are shown in Figure

4.14. Once again, the plot is the four episode moving average of the number of moves per

episode, as averaged over multiple training trials.

66

Figure 4.14: Graph of the four episode moving average of the number of
moves per episode, as averaged over ten trials. At the beginning of each
trial, the goal location was set to (-1.0, -1.5). After 400 training episodes
the goal location was moved to (0.0, 2.5) and the robot was allowed to
complete 400 more training episodes. Finally, the goal was moved back to
(-1.0, -1.5) and the robot was allowed to complete another 400 training
episodes. The maximum allowed number of moves per episode is 50.

 As can be seen from the graph in Figure 4.14, there is no spike in the number of

moves per episode when the platform is moved back to where it original started after

episode 800. This seems to imply that a significant amount of what was learned during

the initial 400 training episodes has been retained, and not “forgotten”, even after 400

training episodes with the new goal location. However, what is learned during the 400

training episodes after the initial movement of the goal does seem to slow the rate of

convergence of the system after the goal is moved back to where it originally started.

Lastly, the graph from Figure 4.13 seems to indicate that the performance of the system

seems to further degrade when the platform is moved to a third unique location. These

results clearly seem to demonstrate an inability on the part of the TD system to

adequately adapt in non-stationary environments.

67

4.2.2.2 Adaptive Learning and Exploration Rates

 With the goal of obtaining better adaptability in non-stationary environments, the

use of adaptive learning and exploration rates was explored. Specifically, the process of

adjusting the learning and exploration rates of the TD system, based on measures of past

performance in the form of a “short term” and “long term” reward as described in section

3.7, was explored. The following equations illustrate how the learning rate, α, and

exploration rate, γ, were adapted based on the short term and long term rewards rs and rl:

()
⎪⎩

⎪
⎨
⎧ −≥−−

=
otherwise

trtrifdtrtrk
t ls

q
ss

max

)()()()(
)(

α
ε

α
α

α

()
⎪⎩

⎪
⎨
⎧ −≥−−

=
otherwise

trtrifdtrtrk
t ls

q
ss

max

)()()()(
)(

γ

ε
γ

γ

γ

where kα, qα, kγ, qγ, and d are constants. Effectively, if the short term reward is less then

the long term reward minus ε, as would be the case following a change in hidden

platform location, then the learning and exploration rates are set to their maximum

allowed values to encourage the TD system to explore and learn. For the experiment

shown in Figure 4.15, maxα was set to 0.03 and maxγ was set to 0.25; values significantly

greater then those used when the parameters were fixed.

 However, if the short term reward is greater then or equal to the long term reward

minus ε, as would be the case during the process of learning a new goal location (after

some initial exploration) or retaining information about a current goal location, then the

learning and exploration rates are adjusted to be exponentially proportional to an estimate

68

of the absolute value of the derivative of the short term reward; where the parameters k

and q control the relationship. This relationship has the effect of forcing the learning and

exploration rates to zero as the performance of the system plateaus. For the experiment

shown in Figure 4.15, kα was set to 0.05, kγ was set to 0.25, qα was set to 1.6, qγ was set to

1.6, and d was set to 15.

 In order to evaluate the performance of the TD system with the addition of

adaptable learning and exploration rates, experiments were conducted during which the

robot was first allowed to train for 400 episodes with the platform at (-1.0, -1.5). The

goal location was then moved to (0.0, 2.5) and the robot was allowed to train for 400

episodes with the new location. The results of a typical set of these experiments are

shown in Figure 4.15. Once again, the plot is the four episode moving average of the

number of moves per episode, as averaged over multiple training trials.

Figure 4.15: Graph of the four episode moving average of the number of moves per
episode, as averaged over six trials, with adaptive exploration and learning rates. At the
beginning of each trial, the goal location was set to (-1.0, -1.5). After 400 training
episodes the goal location was moved to (0.0, 2.5) and the robot was allowed to complete
400 more training episodes. The maximum allowed number of moves per episode is 50.

69

 As the results in Figure 4.15 illustrate, the use of adaptive exploration and

learning rates proves to be an unsatisfactory method for achieving better adaptability in

non-stationary environments. Adjustments to these parameters based on the short and

long term performance measures tend to have little impact on the performance of the

system, giving results similar to those shown in Figure 4.11 obtained by the original

system. Ultimately, the use of adaptive learning and exploration rates does not effectively

deal with the problem of prior learning hindering the performance of the TD system to

adapt to new hidden platform locations.

4.2.2.3 Forgetting

 In order to obtain better adaptability in non-stationary environments by reducing

the hindrance of prior learning, the effect of adding “forgetting” to the TD system was

explored. As detailed in section 3.7, the “forgetting” modification is based on keeping

track of past performance, namely rewards received, in the form of a “short term” reward

and a “long term” reward. These two rewards are then used to control when, and to what

extent, “forgetting” takes place.

 Figure 4.16 shows the results of the same experiment as conducted in Figure 4.13,

but with the addition of “forgetting” incorporated into the TD system. Recall that in this

experiment, the robot was allowed to train for 400 episodes with the hidden platform at

(0.0, -2.0). The goal location was then moved to (0.0, 2.0) and the robot was allowed to

train for 400 episodes given the new location. Lastly, the platform location was moved to

(0.0, 0.0), and the robot was allowed to complete 400 more training episodes.

70

Figure 4.16: Graph of the four episode moving average of the number of
moves per episode, as averaged over ten trials, on the same experiment
conducted in Figure XX, but with the addition of “forgetting” incorporated
into the TD system.

 As can be seen from the comparison of the results shown in Figures 4.16 and

4.13, with “forgetting” incorporated into the TD system, it is effectively able to adapt to

the new platform locations as though it had not undergone any previous learning, thus

making it much more adaptable in non-stationary environments.

 Additionally, Figure 4.17 shows the results of the same experiment as conducted

in Figure 4.14, but, once again, with the addition of “forgetting” incorporated into the TD

system. Recall that for this experiment, the robot was first allowed to train for 400

episodes with the platform at (-1.0, -1.5). The goal location was then moved to (0.0, 2.5)

and the robot was allowed to train for 400 episodes with the new location. Finally, the

goal location was moved back to where it originally started at (-1.0, -1.5), and the robot

was allowed to complete 400 more training episodes.

71

Figure 4.17: Graph of the four episode moving average of the number of
moves per episode, as averaged over ten trials, on the same experiment
conducted in Figure XX, but with the addition of “forgetting” incorporated
into the TD system.

 Here again, from the comparison of the results shown in Figures 4.17 and 4.14, it

appears that with “forgetting” incorporated into the TD system, it is effectively able to

adapt to the new platform location, and re-adapt to the original platform location, as

though it had not undergone any previous learning, thus making it much more adaptable

in non-stationary environments.

 The essential benefit inherent to the method of incorporating a controlled process

of “forgetting” into the TD system, as oppose to simply using the “short term” and “long

term” rewards to decide when to reset the system, is that at the moment the forgetting

process starts, all of the information contained in the TD system representation is not lost,

as would be the case if the system were to simply be reset. Thus, the system with

“forgetting” should, theoretically, be less susceptible to noise in the reward signal then a

method based solely on resetting the entire system. However, no specific experiments

were conducted to evaluate the benefit of the “forgetting” method over a complete system

reset. It would be interesting to investigate the impact of not simply throwing away

everything that has been learned, as the “forgetting” method allows, perhaps using an

72

experiment where the change in goal location is minimal, or done in such a way that

some of the information already learned by the system could be applied to the new

context.

73

Chapter 5

Discussion

 The objective of this work was to evaluate the performance of a biologically

inspired Temporal Difference (TD) approach to the learning of spatial memory for a

robot in a dry version of the Morris water maze task. In order to achieve this objective, a

number of experiments were conducted in both a simulated environment, and in a

physical environment, as detailed in Chapter 4. The results of these experiments yielded

a significant amount of information about both the capabilities and limitations of the

proposed TD approach, and its ability to learn the state-action preferences necessary to

successfully navigate to the hidden platform in the Morris water maze task.

 From the results obtained by Busch et al. in [1], it is clear that the TD learning

approach, as implemented in the Working Memory Toolkit (WMtk), is capable of

learning the necessary action preferences to locate the hidden platform in a simulated

version of the Morris water maze task. However, the TD learning approach was never

extended from the simulated environment to a real world environment with a physical

robot. Furthermore, a detailed set of experiments was never conducted to observe the

effect of various parameters on the performance of the system, or the performance of the

system given a more complex, non-stationary environment. This work achieved those

objectives.

 In extending the TD approach to a physical robot, a number of issues not present

in the simulated environment needed to be addressed, as discussed in section 3.2, such as

segmentation of colored panels from images captured from the cameras mounted on the

robot, and repositioning of the robot at the start of each episode. Although these issues

74

introduced new sources of error not present in the simulated environment, experiments,

as detailed in section 4.1, showed the TD approach was still capable of learning the

necessary action preferences to successfully navigate to the hidden platform.

Additionally, the results of these experiments provide evidence that the system is quite

robust in its ability to deal with occasional erroneous sensor readings which result in

incorrect state feature vectors. Ultimately, the results obtained by extending the TD

approach to a physical robot were quite similar to those obtained in the simulated

environment, and demonstrate that the TD approach is capable of dealing with the

additional uncertainties that a physical environment introduces.

 In addition to extending the TD approach to a physical robot, a large number of

experiments were conducted in the simulated environment to observe the impact of

various parameters on the performance of the system, as detailed in section 4.2.1. The

list of parameters tested included the size of the Self-Organizing Map (SOM) used to

discretize the perceptual space; the learning rate, exploration percentage, and temporal

credit assignment value of the TD system; and a constant reward function, as opposed to

the path length dependent reward function described in section 3.6.4. The results of these

experiments seemed to indicate that, in general, the performance of the TD approach was

rather invariant to changes in these parameters; once again illustrating the robustness of

the TD approach.

 Finally, a large amount of work was done to both evaluate, and ultimately

improve, the performance of the TD approach in more complex, non-stationary

environments. Specifically, the simulated Morris water maze environment was adapted

such that the location of the hidden platform could be changed during learning trials.

75

This change allowed for the performance of the TD approach to be observed for

environments where the hidden platform location was not stationary. Results from an

initial set of experiments, as detailed in the section 4.2.2.1, clearly showed the inability of

the TD approach, as implemented in the WMtk, to adapt in non-stationary environments,

thus significantly hindering its performance on subsequent goal locations, as compared to

the performance obtained on those goal locations in the absence of prior learning.

 In order to address the inability of the TD approach to adapt in non-stationary

environments, experiments were conducted to evaluate the affect of adaptive learning and

exploration rates based on short and long term measures of performance, as described in

section 4.2.2.2. Ultimately, the results from these experiments indicated that the

performance of the system in non-stationary environments was not significantly impacted

by making these parameters of the TD system adaptive; as the prior learning of the

system was still a major hindrance to the learning of efficient paths to new goal locations.

 Experiments were then conducted to evaluate the impact of integrating active

“forgetting,” once again based on short and long term measures of performance, into the

TD system, as described in section 3.7, on its ability to adapt in non-stationary

environments. The results of these experiments, detailed in section 4.2.2.3, clearly show

the improved adaptability of the TD approach in such environments. Whereas the ability

of the TD system, as originally implemented in the WMtk, to learn efficient paths to new

hidden platform locations was significantly hindered in the presence of prior learning,

with the integration of active “forgetting” the TD system is able to achieve performance

on new hidden platform locations effectively equivalent to that obtained by the original

implementation in the absence of prior learning. Additionally, the gradual impact of

76

active “forgetting” completely eliminates the possibility of accidentally destroying all

prior knowledge due to noise in the short and long term performance measures, as oppose

to an actual change in hidden platform location, as would be a distinct possibility if “hard

resets” were used to address the problem of adaptability of the TD approach in non-

stationary environments.

 Although not investigated in this work, and thus a possible avenue for additional

investigation, it would be interesting to observe the performance of the TD approach,

both with and without active “forgetting,” in non-stationary environments that introduced

a less severe change in hidden platform location. The changes in hidden platform location

used for the experiments conducted in this work effectively required the complete

elimination, or “forgetting,” of knowledge related to previous hidden platform locations

in order to achieve good performance on subsequent locations. However, it seems likely

that in non-stationary environment scenarios consisting of a small change to the hidden

platform location, that the retention of some amount of prior knowledge may be

beneficial in reducing the time required to learn efficient paths to new hidden platform

locations.

 In conclusion, the experiments conducted in this work showed both the ability of

the TD approach to learn the necessary state-action preferences to efficiently navigate to

the hidden platform in a dry version of the Morris water maze task. Additionally, these

experiments helped identify both the robustness of the original TD approach to noise in

the perceived state, as well as the limitations of that approach in non-stationary

environments. Finally, these experiments clearly illustrated the benefit of integrating

active “forgetting” into the TD approach to improve the adaptability of the TD system.

77

Chapter 6

Summary and Conclusion

 This work presented the results of extending a biologically inspired temporal

difference (TD) approach to the learning of spatial memory from a simulated

environment to a physical robot, and also presented the results of testing the adaptability

of that approach in non-stationary environments. Experiments showed that the robot is

able, using the TD approach, to successfully learn the necessary associations between

perceptual states and actions to successfully locate the hidden platform. In addition, as

seen from the results of the experiments conducted in simulation, with the addition of

“forgetting” the system is able to achieve good performance in non-stationary

environments.

78

Bibliography

[1] M.A. Busch, M. Skubic, J.M. Keller, and K.E. Stone, “A Robot in a Water Maze:
Learning a Spatial Memory Task,” In 2007 IEEE International Conference on
Robotics and Automation, Rome, Italy, 10-14 April 2007, pp. 1727-1732.

[2] J.L. Krichmar, D. A. Nitz, J.A. Gally, and G. M. Edelman, “Characterizing

functional hippocampal pathways in a brain-based device as it solves a spatial
memory task,” In Proc National Academy of Science USA, 2005, vol. 102, pp.
2111-2116.

[3] Morris, R. “Development of a water-maze procedure for studying spatial learning

in the rat,” Journal of Neuroscience Methods, 1984, vol. 11, pp. 47-60.

[4] R. Morris, P. Garrud, J. Rawlins, and J. O’Keefe, “Place navigation impaired in

rats with hippocampal lesions,” Nature, 1982, vol. 297, pp. 681-683.

[5] A.D. Redish and D.S. Touretsky, “The role of the hippocampus in solving the

Morris water maze,” Neural Computation, 1998, vol. 10, no. 1, pp. 73-111.

[6] M.A. Brown, and P.E. Sharp, “Simulation of spatial learning in the Morris water

maze by a neural network model of the hippocampal formation and nucleus
accumbens,” Hippocampus, 1995, vol. 5, pp. 171-188.

[7] D.J. Foster, R.G.M. Morris, and Peter Dayan, “A Model of Hippocampally

Dependent Navigation, Using the Temporal Difference Learning Rule,”
Hippocampus, 2000, vol. 10, pp. 1-16.

[8] Kohonen, T. 1990. The self-organizing map. Proc. IEEE 78, 1464-1480.

[9] Sutton, R.S. “Learning to predict by the methods of temporal differences,”

Machine Learning, 1988, vol. 3, pp. 9-44.

[10] R.S. Sutton, and A.G. Barto, Reinforcement Learning: An Introduction, MIT

Press, Cambridge, Massachusetts, 1998.

[11] Watkins, C.J.C.H., Learning from Delayed Rewards, PhD thesis, Cambridge

University, Cambridge, England, 1989.

[12] Watkins, C.J.C.H., and Dayan, P., “Q-learning,” Machine Learning, 1992, vol. 8,

pp. 279-292.

[13] Peng, J. and Williams, R. J, “Incremental multi-step Q-learning,” Machine

Learning, 1996, vol. 22, issue 1-3, pp. 283-290.

79

[14] Sutton, R.S. “Implementation details of the TD(lambda) procedure for the case of
vector predictions and backpropagation,” GTE Laboratories Technical Report
TR87-509.1, as corrected August 1989. GTE Laboratories, 40 Sylvan Road,
Waltham, MA 02254.

[15] J.L. Phillips and D.C. Noelle, “A Biologically Inspired Working Memory

Framework for Robots,” In Proc. of the 27th Annual Meeting of the Cognitive
Science Society, Stresa, Italy, July 2005.

[16] M. Skubic, D. Noelle, M. Wilkes, K. Kawamura, J. Keller, “A Biologically

Inspired Adaptive Working Memory for Robots,” AAAI 2004 Fall Symposium,
Workshop on The Intersection of Cognitive Science and Robotics: From
Interfaces to Intelligence, Washington, D.C., Oct. 21-24, 2004.

[17] R.H. Luke, J.M. Keller, M. Skubic and S. Senger, “Acquiring and Maintaining

Abstract Landmark Chunks for Cognitive Robot Navigation,” in Proc. of the
IEEE Intl. Conf. on Robots and Intelligent Systems (IROS), Edmonton, Alberta,
Canada, Aug., 2005.

[18] K. Kawamura, W. Dodd, P. Ratanaswasd, and R.A. Gutierrez, "Development of a

Robot with a Sense of Self", Proc. of the 6th IEEE Intl. Symp. on Computational
Intelligence in Robotics and Automation (CIRA), Espoo, Finland, June, 2005.

[19] Gerkey, B.P., Vaughan, R.T. and Howard, A. 2003. The Player/Stage Project:

Tools for Multi-Robot and Distributed Sensor Systems. In Proc. IEEE Intl. Conf.
Advanced Robotics, Coimbra, Portugal.

[20] G. Bradski, et. al. Intel Open Source Computer Vision Library:

http://www.intel.com/technology/computing/opencv/

80

Appendix A

Additional Single Corner Task Results from Physical Environment

A.1 Additional Single Corner Task - Sequence 1

 This single corner task training sequence consisted of 126 episodes and was

conducted with the following parameters: 20x20 SOM size, exploration rate of 0.05,

learning rate of 0.01, temporal credit assignment value of 0.7, initial mean weight of 2.0,

and reward function as described in section 3.6.4. Figure A.1 shows a plot of moves per

episode during the training sequence. Figure A.2 shows example paths of the robot from

the training sequence.

51

 0
 1 60 120
 Training Episode

Figure A.1: Plot of moves per episode during training for the single corner water maze
task described in this section. The maximum number of moves allowed per episode is 51.
The paths followed by the robot for the episodes highlighted in red are shown in Figure
A.2.

81

 Episode 3 Episode 5 Episode 25

 Episode 50 Episode 121 Episode 123

Figure A.2: Paths of robot during training episodes highlighted in red in Figure A.1. The
inner box shows the approximate distance at which obstacle avoidance should be
activated. The robot’s path is logged using odometry during training episodes. This
information is not used by the system.

82

A.2 Additional Single Corner Task - Sequence 2

 This single corner task training sequence consisted of 135 episodes and was

conducted with the following parameters: 20x20 SOM size, exploration rate of 0.05,

learning rate of 0.01, temporal credit assignment value of 0.7, initial mean weight of 2.0,

and reward function as described in section 3.6.4. Figure A.3 shows a plot of moves per

episode during the training sequence. Figure A.4 shows example paths of the robot from

the training sequence.

 0

51

 1 60 120
 Training Episode

Figure A.3: Plot of moves per episode during training for the single corner water maze
task described in this section. The maximum number of moves allowed per episode is 51.
The paths followed by the robot for the episodes highlighted in red are shown in Figure
A.4.

83

 Episode 1 Episode 8 Episode 19

 Episode 58 Episode 102 Episode 130

Figure A.4: Paths of robot during training episodes highlighted in red in Figure A.3. The
inner box shows the approximate distance at which obstacle avoidance should be
activated. The robot’s path is logged using odometry during training episodes. This
information is not used by the system.

84

A.3 Additional Single Corner Task - Sequence 3

 This single corner task training sequence consisted of 169 episodes and was

conducted with the following parameters: 8x8 SOM size, exploration rate of 0.05,

learning rate of 0.01, temporal credit assignment value of 0.7, initial mean weight of 2.0,

and reward function as described in section 3.6.4. Figure A.5 shows a plot of moves per

episode during the training sequence. Figure A.6 shows example paths of the robot from

the training sequence.

 0

51

 1 80 160

 Training Episode

Figure A.5: Plot of moves per episode during training for the single corner water maze
task described in this section. The maximum number of moves allowed per episode is 51.
The paths followed by the robot for the episodes highlighted in red are shown in Figure
A.6.

85

 Episode 3 Episode 7 Episode 33

 Episode 123 Episode 152 Episode 166

Figure A.6: Paths of robot during training episodes highlighted in red in Figure A.5. The
inner box shows the approximate distance at which obstacle avoidance should be
activated. The robot’s path is logged using odometry during training episodes. This
information is not used by the system.

86

Appendix B

Additional Four Corner Task Results from Physical Environment

B.1 Additional Four Corner Task - Sequence 1

 This four corner task training sequence consisted of 100 episodes and was

conducted with the following parameters: 8x8 SOM size, exploration rate of 0.1, learning

rate of 0.01, temporal credit assignment value of 0.83, initial mean weight of 2.5, and

reward function as described in section 3.6.4. Figure B.1 shows a plot of the four episode

moving average of moves per episode during the training sequence. Figure B.2 shows

example paths of the robot from the training sequence.

 0

51

 1 50 100

 Training Episode

Figure B.1: Plot of the four episode moving average of moves per episode during
training for the four corner water maze task described in this section. The
moving average is of the current episode and three previous episodes, and is used
to show the change in the number of moves from the four combined starting
locations. The maximum number of moves allowed per episode is 51. The paths
followed by the robot for the episodes highlighted in red are shown in Figure
B.2.

87

 Episodes 1-4 Episodes 23-26 Episodes 51-54

 Episodes 69-72 Episodes 89-92 Episodes 95-98

Figure B.2: Paths of robot during training episodes highlighted in red in Figure B.1. The
inner box shows the approximate distance at which obstacle avoidance should be
activated. The robot’s path is logged using odometry during training episodes. This
information is not used by the system.

88

B.2 Additional Four Corner Task - Sequence 2

 This four corner task training sequence consisted of 100 episodes and was

conducted with the following parameters: 8x8 SOM size, exploration rate of 0.1, learning

rate of 0.01, temporal credit assignment value of 0.83, initial mean weight of 2.5, and

reward function as described in section 3.6.4. Figure B.3 shows a plot of the four episode

moving average of moves per episode during the training sequence. Figure B.4 shows

example paths of the robot from the training sequence.

 0

51

 1 50 100

 Training Episode

Figure B.3: Plot of the four episode moving average of moves per episode during
training for the four corner water maze task described in this section. The moving
average is of the current episode and three previous episodes, and is used to show
the change in the number of moves from the four combined starting locations. The
maximum number of moves allowed per episode is 51. The paths followed by the
robot for the episodes highlighted in red are shown in Figure B.4.

89

90

 Episodes 1-4 Episodes 23-26 Episodes 42-45

 Episodes 62-65 Episodes 84-87 Episodes 95-98

Figure B.4: Paths of robot during training episodes highlighted in red in Figure B.3. The
inner box shows the approximate distance at which obstacle avoidance should be
activated. The robot’s path is logged using odometry during training episodes. This
information is not used by the system.

