

SIGNIFICANCE-LINKED CONNECTED COMPONENT

ANALYSIS PLUS

A Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri - Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Xiaobo Jiang

Dr. Xinhua Zhuang, Dissertation Supervisor

MAY 2018

The undersigned, appointed by the dean of the graduate school,

have examined the thesis entitled

SIGNIFICANCE-LINKED CONNECTED COMPONENT

ANALYSIS PLUS

presented by Xiaobo Jiang

a candidate for the degree of

Doctor of Philosophy

and hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Zhuang, Xinhua

Dr. Zhao, Yunxin

Dr. Uhlmann, Jeffrey

Dr. He, Zhihai

ii

ACKNOWLEDGEMENTS

This dissertation could not have been finished without my advisor, Professor

Xinhua Zhuang, who continuously guides and encourages me throughout my

doctoral program. I am deeply influenced by his scientific methodology and

dedicated working attitude. My appreciation also goes to the member of

advisory committee, Dr. Yunxin Zhao, Dr. Jeffrey Uhlmann, and Dr. Zhihai He.

They guided me through the doctoral process, never accepting less than my

best efforts.

I am also grateful to my friends in the same lab, Bo Song and Cheng Zhang,

for their brilliant thoughts and friendship during the time.

This dissertation is dedicated to my family. Special gratitude is extended to

my wife, for being my solid backing and constant support in my life.

Particular thanks to my parents, for their upbringing and support. Last but

not the least, thank my daughter for the happiness she brings.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF FIGURES.. vi

LIST OF TABLES ... x

ABSTRACT ... xi

CHAPTER I: INTRODUCTION ... 1

CHAPTER II: BACKGROUND KNOWLEDGE OF DIGITAL IMAGES

AND IMAGE COMPRESSION .. 6

2.1 Image Redundancy .. 7

2.2 Color Space — RGB and YCbCr .. 8

2.3 Discrete Wavelet Transform (DWT) ... 11

2.3.1 Implementation of 2D DWT in Image Coding 13

2.3.2 The Characteristic of Wavelet-Transformed Images 17

2.4 The Adaptive Arithmetic Coding .. 20

2.5 Binary Implementation of Arithmetic Coding .. 21

2.5.1 The Binary Prefix .. 22

2.5.2 Binary Implementation of Arithmetic Coding 23

2.5.3 Termination ... 28

2.6 Peak Signal-to-Noise Ratio .. 29

iv

2.7 Chapter Summary ... 29

CHAPTER III: SIGNIFICANCE-LINKED CONNECTED COMPONENT

ANALYSIS .. 30

3.1 SLCCA Core Procedures .. 30

3.2 Wavelet Transform .. 31

3.3 Quantization .. 32

3.4 Cluster Searching .. 34

3.4.1 Significance Clustering ... 35

3.4.2 Significant Cluster Group ... 39

3.4.3 Significance Linkage ... 41

3.4.4 Significance Map Scanning in SLCCA ... 44

3.5 Magnitude coding... 47

3.5.1 Bit Plane .. 47

3.6 Context Model of Arithmetic Coding .. 48

3.6.1 Improved Context Model of SLCCA .. 50

3.7 Chapter Summary ... 53

CHAPTER IV: SLCCA PLUS .. 55

4.1 Intelligent Quantization with Adaptive Threshold 55

4.2 Enhanced Cluster Filtering ... 59

v

4.3 Potential Significant Shared-Zero ... 61

4.4 Improved Context Models for Arithmetic Coding 65

4.4.1 Direction Sensitive Context Model for Cluster 66

4.4.2 Improved Context Model for Magnitude .. 68

4.5 Performance Evaluation .. 70

4.6 Chapter Summary ... 76

CHAPTER V: CONCLUSIONS .. 78

APPENDIX ... 81

Example of Binary Implementation of Arithmetic Coding 81

REFERENCES .. 88

VITA …………………………………………………………………..……………… 93

vi

LIST OF FIGURES

Figure 1.1 A digital image and the pixel value in it ...2

Figure 2.1 Wavelet-based subband coding main steps ..6

Figure 2.2 Examples of RGB and YCbCr color space. ...9

Figure 2.3 YCbCr 4:4:4 vs 4:2:0. ... 10

Figure 2.4 An image’s structure after one level of 2D DWT 12

Figure 2.5 An image’s structure after two scales of 2D DWT 12

Figure 2.6 The subband pyramid of three-level 2D DWT 13

Figure 2.7 DWT inherit structure Error! Bookmark not defined.

Figure 2.8 Left is decimal present, and right is binary present . Error! Bookmark

not defined.

Figure 2.9 Interval [L, L+R) lies in the lower half ... 26

Figure 2.10 Interval [L, L+R) lies in the upper half Error! Bookmark not defined.

Figure 2.11 Red part is the subinterval for the next incoming symbol 27

Figure 2.12 Three times of expansion............................. Error! Bookmark not defined.

Figure 3.1 SLCCA Core Procedures ... 31

Figure 3.2 The subband pyramid after binary significant map convert ... Error!

Bookmark not defined.34

Figure 3.3 Illustration of connected components or clusters 35

vii

Figure 3.4 Four possible structuring elements Error! Bookmark not defined.

Figure 3.5 (a) A binary image produced after quantization. (b) Seed position

(3,2). (c) Use 2x2 structuring element for conditional dilation.

(d)-(i) Successive conditional dilation. (i) Cluster Error! Bookmark not

defined.

Figure 3.6 Two clusters close together Error! Bookmark not defined.

Figure 3.7 Two clusters are connected as a group through a shared-zero 40

Figure 3.8 The relation between parent children and descendants in a 3-

level subband pyramid ... 42

Figure 3.9 The values are the magnitudes of quantized coefficients. Nonzero

values denote significant coefficients Error! Bookmark not defined.

Figure 3.10 The scanning order of SLCCA .. 45

Figure 3.11 A pixel can be expanded into eight bit-planes Error! Bookmark not

defined.

Figure 3.12 An example of bit-plane expand Error! Bookmark not defined.

Figure 3.13 The neighbors and parent in SLCCA context model..................... 49

Figure 3.14 neighbors’ weight in SLCCA ... 52

Figure 4.1 Intelligent Quantization Example. Stepsize = 20, r = 0.5. The

pixels with coefficient values fall within the orange color

interval used to be insignificant. Now they are marked as

significant pixels .. 57

viii

Figure 4.2 The BFS covers a significant pixel’s eight neighbors and adds

neighbor pixels into the cluster Error! Bookmark not defined.

Figure. 4.3 An example of potential-significant. Stepsize = 20, r = 0.5, and t

= 0.3. The pixels with coefficient values fall within the green

color intervals are potential-significant ... 64

Figure. 4.4 Potential-significant exploring procedure. (a) A found cluster

with two neighboring significant pixels. (b) A potential-

significant Z is found. (c) The potential-significant leads to the

new cluster. (d) Mark the potential-significant as significant 65

Figure 4.5 An example of P/N pixel’s continuity and directivity in LH

subband .. Error! Bookmark not defined.

Figure 4.6 An example of bit-planes. Dark blue stands for “1” bits and light

blue stands for “0” bits .. 69

Figure 4.7 Experiment image set. Top left: Lenna. Top right: Barbara.

Bottom left: Peppers. Bottom right: Mandrill 71

Figure 4.8 Detail comparison for a zoomed in area in Lenna image at 0.3

bpp. Top left: original image. Top right: JPEG2000. Bottom left:

SLCCA. Bottom right: SLCCA Plus .. 74

Figure 4.9 Detail comparison for a zoomed in area in Peppers image at 0.3

bpp. Top left: original image. Top right: JPEG2000. Bottom left:

SLCCA. Bottom right: SLCCA Plus .. 75

ix

Figure 4.10 Comparison of Barbara image under different bitrate by SLCCA

Plus. Top left: 0.1 bpp, 25.09 PSNR. Top right: 0.3 bpp, 29.82

PSNR. Bottom left: 0.5 bpp, 32.92 PSNR. Bottom right: 0.7 bpp,

35.32 PSNR ... 76

Figure 6.1-20 Example of Binary Implementation of Arithmetic Coding 81

x

LIST OF TABLES

Table 2.1 Four chroma subsampling mode details. Error! Bookmark not defined.

Table 3.1 Coded positions in each image in Fig. 3.5 .. 38

Table 3.2 Coded position of a new cluster that uses a shared-zero as the seed

.. 41

Table 3.3 Number of neighbors actually scanned in context calculation.......... 50

Table 3.4 Number of significant coefficients in scanned neighbor pixels 51

Table 4.1 The coefficients range in a 5-level wavelet decomposition of Lenna

.. 57

Table 4.2 Significant pixel’s magnitude pattern in filtered clusters 60

Table 4.3 SLCCA Subband information.The unit in the table is Byte 62

Table 3.3. Number of neighbors actually scanned in context calculation 50

Table 3.4. Number of significant coefficients in scanned neighbor pixels ... 51

xi

ABSTRACT

An image coding algorithm, SLCCA Plus, is introduced in this dissertation.

SLCCA Plus is a wavelet-based subband coding method. In wavelet-based

subband coding, the input images will go through a wavelet transform and be

decomposed into wavelet subband pyramids. Then the characteristics of the

wavelet coefficients within and among subbands will be utilized to removing

the redundancy. The rest information will be organized and go through

entropy encoding. SLCCA Plus contains a series improvement method to the

SLCCA. Before SLCCA, there are three top-ranked wavelet image coders.

Namely, Embedded Zerotree Wavelet coder (EZW), Morphological

Representation of Wavelet Date (MEWD), and Set Partitioning in

Hierarchical Trees (SPIHT). They exploit either inter-subband relation

among zero wavelet coefficients or within-subband clustering. SLCCA, on the

other hand, outperforms these three coders by exploring both the inter-

xii

subband coefficients relations and within-subband clustering of significant

wavelet coefficients.

SLCCA Plus strengthens SLCCA in the following aspects: Intelligence

quantization, enhanced cluster filter, potential-significant shared-zero, and

improved context models. The purpose of the first three improvements is to

remove redundancy information further while keeping the image error as low

as possible. As a result, they achieve a better trade-off between bit cost and

image quality. Moreover, the improved context lowers the entropy by refining

the classification of symbols in cluster sequence and magnitude bit-planes.

Lower entropy means the adaptive arithmetic coding can achieve a better

coding gain.

For performance evaluation, SLCCA Plus is compared to SLCCA and

JPEG2000. On average, SLCCA Plus achieves 7% bit saving over JPEG 2000

and 4% over SLCCA. The results comparison shows that SLCCA Plus shows

more texture and edge details at a lower bitrate.

1

CHAPTER I: INTRODUCTION

Image compression is always an active research area. Recently, it attracts

many researcher’s attention, due to the widely used high-resolution images

and videos. People have different preferences for visual effects, but one thing

is not going to change: the clearer, the better. This preference makes high-

resolution images highly demanded. With the rapid development of camera

sensor and display technology, high-resolution video and images have been

popularized, and this makes a lot challenge for storage and transmission

technologies. More efficient image compression methods are needed.

Digital images had been developed quickly since the 1960s and 1970s, thanks

to the invention of CCD image sensor. Unlike a film image, a digit image is

constituted from many pixels. The pixel is the smallest addressable element

of an image. Moreover, the pixels are arranged in rows and columns. Thus,

the digital images are also referred to as raster images.

2

Each pixel is corresponded to an integer number to represent the level of

brightness. The integer value is stored in the drive in binary form. Most

commonly, we use one byte to store a pixel, which means the pixel value has

a range from 0 to 255 (Fig. 1.1 [30]).

Figure 1.1 A digital image and the pixel value in it

Apparently, a digital image is better with a higher density of the pixels, or

high-resolution. However, high-resolution will lead to substantial storage

space and slow transfer speed. Fortunately, the digital image usually

contains a significant amount of redundancy information, especially after we

transfer the image to the frequency domain. Due to the limitation of human

eye’s sensitivity, a considerable amount of frequency information will not

3

affect image’s quality (sometimes it is only the noise from the camera sensor).

Thus, we can eliminate the redundancy. On the other hand, thanks to

Shannon’s entropy theory, we can encode the needed information in the

image into a much smaller size.

The image compression is the art and science aim at taking advantage of this

redundancy to efficient encoding the images with reduced size. The image

compression process usually contains three main steps: 1) preprocess the

image to expose as much redundancy as possible, 2) organize the information

to eliminate the redundancy, and 3) encode the needed information.

Based on how we prepare the image to expose and explore its redundancy

information, image compression has two essential categories: 1) Wavelet-

based subband coding [7, 23-25], and 2) Hybrid coding of block prediction [7,

21, 22] and discrete cosine transform (DCT).

Wavelet-based image coder has delivered a much higher coding gain over the

classical DCT-based coder such as JPEG. More recently, through using a

delicate yet innovative block prediction scheme before DCT, HEVC Intra [26]

coding has delivered an impressive coding gain.

In wavelet-based subband coding, the input images will go through a wavelet

transform and be decomposed into wavelet subband pyramids. Then the

4

characteristics of the wavelet coefficients within and among subbands will be

utilized for removing the redundancy and encoding. There are several

renowned wavelet codecs: Embedded Zerotree Wavelet Coder (EZW) [1], Set

Partitioning in Hierarchical Trees (SPIHT) [2], Morphological Representation

of Wavelet Date (MEWD) [3], Significance-Linked Connected Component

Analysis (SLCCA) [4] and JPEG 2000 [5]. Both EZW and SPIHT exploit the

cross-subband insignificant coefficient correlation with conventional tree

structures while SPIHT enhances EZW by partitioning the cross-subband

tree structure. MRWD uses within-subband clustering of significant wavelet

coefficients. SLCCA outperforms EZW and SPIHT and strengthens MRWD

by using irregularly shaped structures (clusters) to map the significant

coefficients and linking the clusters across subbands. The relatively

widespread coder JPEG 2000 represents the wavelet coefficient values

(include signs and magnitudes) in bit-planes and performs entropy coding

directly to the bit-planes. By contrast, SLCCA embeds the coefficients’ signs

in clusters and only codes significant coefficients’ magnitudes bit-plane wise.

Comparatively, SLCCA shows better performance among these four codecs.

This dissertation is the continuing and enhancing work of SLCCA.

The core of SLCCA is a unique data organization and representation (DOR)

strategy for DWT images [6]. It is developed at University of Missouri by

Bing-Bing Chai, Jozsef Vass and Xinhua Zhuang in 1996. Two characters of

5

the SLCCA’s strategy are 1) within-subband clustering of significant wavelet

coefficients and 2) Cross-subband significance linkage between a parent

cluster and a child cluster. The advantage of SLCCA embodied in it can

achieve high performance even at the meager bit rate. The detailed

introduction of SLCCA is in Chapter III.

The work of SLCCA Plus in this dissertation is an upgrading based on

SLCCA. The upgrades include intelligent quantization with an adaptive

threshold, enhanced cluster filter, potential significant shared-zero, and

improved context models. A detailed introduction is in Chapter IV. Chapter II

introduces the background knowledge and main steps of Wavelet-based

subband coding. Chapter V is the conclusion.

6

CHAPTER II: BACKGROUND KNOWLEDGE OF

DIGITAL IMAGES AND IMAGE COMPRESSION

As aforementioned, image compression process usually contains three main

steps: 1) preprocess the image to expose as much redundancy as possible, 2)

organize the information to eliminate the redundancy, and 3) encode the

needed information using entropy coding. In wavelet-based subband coding,

these three steps can be instanced as the following process in Fig. 2.1:

Figure 2.1. Wavelet-based subband coding main steps

Digital Image
Color Space

Transfer
Wavelet
Transfer

Data Organize
Arithmetic

Coding
Output

Codeword

7

Most wavelet codecs use color space transform and wavelet transform to

preprocess the images and arithmetic coding for the entropy coding part,

while their data organize methods are varied. This chapter introduces color

space transform, wavelet transform, and arithmetic coding as the background

of the wavelet-based subband coding.

2.1 Image Redundancy

In image and video coding, there are three types of image

redundancy(Rabbani)[7]:

• Spectral Redundancy, which is due to the correlation between different

color planes or spectral bands.

• Spatial Redundancy, which is due to correlation or dependence

between neighboring pixels.

• Temporal Redundancy, which is due to the typically small changes

between successive image frames.

The image and video compression algorithms always prepare an image or

video taking advantage of these three kinds of redundancy to rearrange the

original image/video information into a much compact form. Spectral and

spatial redundancy is mostly used in wavelet-based subband coding and block

prediction DCT coding, respectively. Temporal redundancy is used in videos.

8

2.2 Color Space — RGB and YCbCr

A raw color image captured from camera usually using RGB color space,

which uses a combination of red, green and blue values to describe the color.

That means each color pixel is constituted from three color pixels (red, green,

and blue). In this form, we can treat every color digital image as three equal

sized grey-scale images. For an 8-bit color depth, each color pixel uses a value

ranging from 0 to 255 to represent the different intensity of red, green, or

blue. That’s 16,777,216 different colors. This precision is not only enough for

human eyes but also significantly beyond the capabilities of existing displays.

Besides RGB, the most common color space used in image compression is

YCbCr. It represents color space in three terms: one luminance

component/luma (Y) and two chrominance components/chroma (Cb and Cr).

The YCbCr image is converted from the corresponding RGB image (Fig. 2.2

[31]). The conversion has several standards. Below is the ITU-R BT.601

standard which also used in the famous JPEG [8] standard:

• From 8-bit RGB to 8-bit YCbCr:

𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (2.1)

𝐶𝑏 = 128 − 0.168736𝑅 − 0.331264𝐺 + 0.5𝐵 (2.2)

𝐶𝑟 = 128 + 0.5𝑅 − 0.418688𝐺 − 0.081312𝐵 (2.3)

9

• From 8-bit YCbCr to 8-bit RGB:

𝑅 = 𝑌 + 1.402 (𝐶𝑟 – 128) (2.4)

𝐺 = 𝑌 – 0.34414 (𝐶𝑏 – 128)– 0.71414(𝐶𝑟 – 128) (2.5)

𝐵 = 𝑌 + 1.772 (𝐶𝑏 – 128) (2.6)

This conversion changes the color space from three colors to luma and chroma

values. However, only this conversion will not eliminate any redundancy

information since the image size is not changed and the precision is still 8

bits. The redundancy savings come from a process called chroma

subsampling.

Figure 2.2. Examples of RGB and YCbCr color space

10

Chroma subsampling takes a YCbCr image and down-sampling its two

chroma components, Cb and Cr. This process is based on a fact that human

eyes are more sensitive to brightness than to chrominance, which means for

human, most of the image detail lies in the luma component.

There are four popular chroma subsampling mode: 4:4:4, 4:2:2, 4:4:0, and

4:2:0. Table 2.1 compares these four modes [31].

Table 2.1. Four chroma subsampling mode details

Subsampling

mode

Horizontal

downscale

Vertical

downscale

Bits per pixel

for the image

4:4:4 1x 1x 24

4:2:2 2x 1x 16

4:4:0 1x 2x 16

4:2:0 2x 2x 12

Figure 2.3. YCbCr 4:4:4 vs 4:2:0. The left image is 4:4:4. Right image is 4:2:0

We can see that YCbCr 4:2:0 has only half size compared to the original

image. Thanks to the brightness information are fully preserved, we will not

11

feel the clarity downgrade. The only difference is the color seems less

saturated (Fig. 2.3 [32]).

2.3 Discrete Wavelet Transform (DWT)

DWT is widely used in image compression. It uses finite length yet mutually

compensated low/high-pass filters to decompose a signal into low/high-

frequency subbands in the temporal domain [6, 9, 10]. With frequency

contents cut in half, each subband in temporal domain can be characterized

using a resolution that matches its scale. Wavelet theory provides a

fundamental insight into the structure of subband decomposition and thus a

more efficient approach to filters design [1, 6].

The advantage of applying 2D wavelet transform is that the image after

transformed usually exhibits lower entropy and is thus more compressible.

2D DWT could be employed as a model for several levels. After the first level

of 2D DWT, the input image is decomposed into four subbands shown in Fig.

2.4.

From Fig. 2.4 we can see that there are four subbands: LL1, HL1, LH1, HH1.

The LL1 subband can be decomposed by DWT again. Moreover, after the

second level 2D DWT, the image is like Fig. 2.5.

12

From Fig. 2.5 we can see that there are four new subbands: LL2, HL2, LH2,

HH2 instead of the LL1 in Fig. 2.4.

Fig. 2.6 shows a three-level 2D DWT output of the “Lenna” image.

Figure 2.4. An image’s structure after one level of 2D DWT

Figure 2.5. An image’s structure after two scales of 2D DWT

LL
1
 HL

1

LH
1
 HH

1

HL
1

LH
1
 HH

1

HH
2
 LH

2

HL
2
 LL

2

13

Figure 2.6. The subband pyramid of three-level 2D DWT

2.3.1 Implementation of 2D DWT in Image Coding

Figure 2.7. DWT inherit structure

An input sequence x(n) is passed through a low-pass filter g(n) and a high-

pass filter h(n). Then the output samples are down-sampling by factor 2. The

low-pass output is the next level’s input (shown in Fig. 2.7 [33]). These two

filter steps can be defined as

14

𝑦𝑙𝑜𝑤(𝑛) = ∑ 𝑔(𝑘)𝑥(2𝑛 − 𝑘)

∞

𝑘=−∞

(2.7)

𝑦ℎ𝑖𝑔ℎ(𝑛) = ∑ ℎ(𝑘)𝑥(2𝑛 − 𝑘)

∞

𝑘=−∞

(2.8)

Alternatively, written in convolutions:

𝑦𝑙𝑜𝑤 = (𝑔 ∗ 𝑥) ↓ 2 (2.9)

𝑦ℎ𝑖𝑔ℎ = (ℎ ∗ 𝑥) ↓ 2 (2.10)

Implementation:

a. Analysis Part

Input: image x (size m by n), 9/7 wavelet filters (low-pass analysis filter g

with size 9, and high-pass analysis filter h with size 7) [20].

g =

{-3.782845550699535e-02,

-2.384946501937986e-02,

1.106244044184226e-01,

3.774028556126536e-01,

-8.526986790094022e-01,

3.774028556126537e-01,

1.106244044184226e-01,

-2.384946501937986e-02,

-3.782845550699535e-02}

h=

{-6.453888262893856e-02,

4.068941760955867e-02,

4.180922732222124e-01,

-7.884856164056651e-01,

4.180922732222124e-01,

4.068941760955867e-02,

-6.453888262893856e-02}

Output: 2D Wavelet decomposed image y2 (size m by n)

Algorithm:

For i = 0 … m-1, do:

15

 For j = 0 … n/2-1, do:

 For k = 0 … 8, do:

 y1[i][j] = y1[i][j] + x[i][2*j+(k-4)]*g[k]

(where x[i][a-j]=x[i][a+j] for j = 1, …, 4 when a = 0, n-1)

 For k = 0 … 6, do:

 y1[i][j+n/2] = y1[i][j+n/2] + x[i][2*j+1+(k-3)]*h[k]

For j = 0 … n-1, do:

 For i = 0 … m/2-1, do

 For k = 0 … 8, do

 y2[i][j] = y2[i][j] + y1[2*i+(k-4)][j]*g[k]

 For k = 0 … 6, do

 y2[i+m/2][j] = y2[i+m/2][j] + y1[2*i+1+(k-3)][j]*h[k]

b. Synthesis Part:

Input: DWT image y (size m by n), low-pass synthesis filter g (size 7), high-

pass synthesis filter h (size 9).

g =

{-6.453888262893856e-02,

-4.068941760955867e-02,

4.180922732222124e-01,

7.884856164056651e-01,

4.180922732222124e-01,

-4.068941760955867e-02,

-6.453888262893856e-02}

h =

{3.782845550699535e-02,

-2.384946501937986e-02,

-1.106244044184226e-01,

3.774028556126536e-01,

8.526986790094022e-01,

16

3.774028556126537e-01,

-1.106244044184226e-01,

-2.384946501937986e-02,

3.782845550699535e-02}

Output: reconstructed image x2 (size m by n)

Algorithm:

For j = 0 … n-1, do:

 For i = ⌊−3/2⌋… (m-1+3)/2, do:

 If 0 ≤ i ≤ m/2-1:

yl[i][j] = y[i][j]

 Else if i < 0

 yl[i][j] = y[-i][j]

 Else: i >m/2-1

 yl[i][j] = y[-i+2m-1][j]

For i = ⌊−3/2⌋… (m-1+3)/2, do:

For k = 0 … 6, do:

 x1[2*i+(k-3)][j] = x1[2*i+(k-3)][j] + yl[i][j]*g[k]

 For i = ⌊−5/2⌋… (m-1+3)/2, do:

If 0 ≤ i ≤ m/2-1:

yh[i][j] = y[i][j]

 Else if i < 0

 yh[i][j] = y[-i-1][j]

 Else: i >m/2-1

 yh[i][j] = y[-i+2m-2][j]

For i = ⌊−5/2⌋… (m-1+3)/2, do:

For k = 0 … 8, do:

 x1[2*i+1+(k-4)][j] = x1[2*i+1+(k-4)][j] + yh[i+m/2][j]*h[k]

17

For i = 0 … m-1, do:

 For j = ⌊−3/2⌋… (n-1+3)/2, do:

 If 0 ≤ j≤ n/2-1:

yl[i][j] = x1[i][j]

 Else if j < 0

 yl[i][j] = x1[i][-j]

 Else: j >n/2-1

 yl[i][j] = x1[i][-j+2n-1]

For j = ⌊−3/2⌋… (n-1+3)/2, do:

For k = 0 … 6, do:

 x2[i][2*j+(k-3)] = x2[i][2*j+(k-3)] + yl[i][j]*g[k]

 For j = ⌊−5/2⌋… (n-1+3)/2, do:

If 0 ≤ i ≤ n/2-1:

yh[i][j] = x1[i][j]

 Else if i < 0

 yh[i][j] = x1[i][-j-1]

 Else: i >n/2-1

 yh[i][j] = x1[i][-j+2n-2]

For j = ⌊−5/2⌋… (n-1+3)/2, do:

For k = 0 … 8, do:

 x2[i][2*j+1+(k-4)] = x2[i][2*j+1+(k-4)] + yh[i][j+n/2]*h[k]

2.3.2 The Characteristic of Wavelet-Transformed Images

A. Spatial-Frequency Localization

18

Subband coding decomposes an input image into several frequency bands.

Each subband contains coefficients localized within a particular frequency

range [17]. Moreover, each wavelet coefficient is calculated from a local piece

of the input image. So they are also spatial localized.

B. Energy Compaction

Most natural images contain a relatively significant portion of smooth

gradient content and textured content. Moreover, the images comprise a

relatively small part of sharp edges and object boundaries. The flat areas

have less variation than the textures and edges. They mostly consist of the

low-frequency component. In contrast, the edges include primarily of the

high-frequency component. The textured areas contain a mixture of the low

and high-frequency component. Wavelet transform splits the input image

into four equal-sized subbands by frequency. Moreover, the most energy in

smooth and textured content is compacted into one of the four subbands, the

LL subband [17]. By applying 2D DWT repeatedly to the LL subband at a

coarser level, the energy will be compacted into few wavelet coefficients.

C. Within-Subband Clustering of Significant Coefficients

The coefficients in highpass subbands (HL, LH, HH) lack low-frequency

energy in smooth and textured content while retaining high-frequency energy

19

found in edges and boundaries, which tend to be continuously and clustered

[17].

D. Symmetry of HL and LH Subband

2-D Wavelet Transform is done by applying 1-D Wavelet Transform twice

from two directions, horizontally and vertically, to the input image. HL

subband is the first highpass filtered horizontally, and then lowpass filtered

vertically. While LH subband is firstly lowpass filtered horizontally and then

highpass filtered vertically. These two symmetric processes lead to

asymmetric coefficients distribution in HL and LH subband.

E. Cross-Subband Similarity

As mentioned before, the highpass subbands retain the high-frequency

energy of edges and textured content. Moreover, the coefficients are spatial

localized. There is a dependency between the magnitudes of parent and

children to a certain extent.

F. Decaying of Coefficients Magnitudes Across Subbands

The coefficient magnitudes in a coarser subband are smaller than the

coefficient magnitudes in a finer subband [17].

20

2.4 The Adaptive Arithmetic Coding

An adaptive model represents the changing symbol frequencies (probabilities)

seen so far in a source string [7, 11, 18]. Such a model matches the local

statistics in the source string. In practice, it outperforms the fixed model

version regarding compression efficiency.

The adaptive algorithm to encode the source string 𝒔𝒊𝟏,
𝒔𝒊𝟐,

𝒔𝒊𝟑,
… , 𝒔𝒊𝒎,

of m

Step 1 Initialize the source model.

Given the source symbol set 𝑆 = {𝑠1, … , 𝑠𝑛}, initialize the frequency of

each symbol to a constant. 𝑓𝑖 = 𝑓0, 𝑖 = 1, … , 𝑛.

Step 2 𝑘 = 1, 𝑥 = 0.

Step 3 Compute the probability of each source symbol:

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑛
𝑗=1

(2.11)

Step 4 Apply an affine transform to 𝑥:

𝑦 = 𝑤𝑖𝑘
(𝑥) (2.12)

Step 5 Update source model: 𝑓𝑖𝑘
= 𝑓𝑖𝑘

+ 1.

If ∑ 𝑓𝑗
𝑛
𝑗=1 == 𝑀𝐴𝑋𝐹𝑅𝐸𝑄𝑈𝐸𝑁𝐶𝑌

𝑓𝑗 =
𝑓𝑗

2
. 𝑗 = 1, … , 𝑛 (2.13)

Step 6 𝑘 = 𝑘 + 1

If 𝑘 ≤ 𝑚

Then

𝑥 = 𝑦 (2.14)

Go to Step 3.

21

The adaptive arithmetic [11] coding works well for a stationary Markov

source compare to an arithmetic coding with the fixed model. The adaptive

arithmetic coding updates the corresponding conditional probability

estimation each time when the coder visits a particular context.

The probability distributions may vary from one portion to another in an

image that is non-stationary. The adaptive arithmetic coding is more robust

and follows the local probability distribution variation very well. So it can

achieve higher compression.

2.5 Binary Implementation of Arithmetic Coding

The conventional arithmetic coding (CAC) has two problems:

• In CAC, every time encoding an incoming symbol, we scale down the

coding interval [L, L+R) (L: lower bound; R: range) to a new (smaller)

subinterval, corresponding to the binary subsequence so far the

encoder receives including the new symbol. To find a unique number

(i.e., code) within to represent the subinterval (i.e., L and R), it needs

to infinitely increase decimal digits or have an arbitrary precision

floating point machine in principle, that turns out to be impractical.

• Encoding cannot start before the whole symbol sequence is received.

Decoding will not be able to start before all the code bits are received.

22

Binary Implementation of Arithmetic Coding (BIAC) [12] was introduced to

fix these two problems. Along with the way in encoding the symbol sequence,

BIAC will generate binary code word bit by bit and send them to the decoder.

So the floating-point machine is no longer needed.

2.5.1 The Binary Prefix

Prefix: the start digits of a number. For example, 1297 has prefix “1”, “12”,

“129” and “1297”.

Common prefix: if multiple numbers have the same prefix, we call the same

prefix common prefix. For example, 120, 129 and 1297 have common prefix

“1” and “12”.

Figure 2.8: left is decimal present, and right is binary present

23

In BIAC, we only deal with the values less than 1. So “0.” will always be the

prefix. In the following part, “0.” is omitted from the prefix. As Fig. 2.8:

• All the decimal values in interval [0, 0.5) has a common binary prefix 0

• All the decimal values in interval [0.5, 1) have a common binary prefix 1

• All the decimal values in interval [0, 0.25) have a common binary prefix

00

• All the decimal values in interval [0.25, 0.5) have a common binary

prefix 01

• All the decimal values in interval [0.5, 0.75) have a common binary

prefix 10

• All the decimal values in interval [0.75, 1) have a common binary prefix

11

If all the values in an interval have a common prefix P, then we say that P is

this interval’s prefix. If an interval has a prefix, its subinterval will also have

that prefix.

In the following, [x, y)2 refers to a binary representation of [x,y).

2.5.2 Binary Implementation of Arithmetic Coding

BIAC is very similar to CAC. However, during the coding process, it directly

uses binary numbers to represent L and R. The basic idea of BIAC is:

24

whenever the interval [L, L+R) has a prefix, output the prefix into a

codeword.

Main_Process

Starts with initial interval [0.0, 1.0)2

For (each incoming symbol) do:

1. If there are n symbols, like the CAC, the interval will be divided into n

subintervals in proportion to the symbols’ probabilities;

2. choose the one corresponding to the incoming symbol;

3. decide_the_output.

decide_the_output

bits_to_follow = 0;

Step 1:

if (interval [L, L+R) lies in the lower half [0.0, 0.1)2)

 { output “0”;

 output bits_to_follow number of “1”s;

 bits_to_follow = 0;

 L = 2×L, R = 2×R;

 go to Step 1. }

 else go to Step 2.

Step 2:

if (interval [L, L+R) lies in the upper half [0.1, 1.0)2)

 { output “1”;

 output bits_to_follow number of “0”s;

 bits_to_follow = 0;

 L = 2× (L-0.5), R = 2×R;

 go to Step 1. }

25

 else go to Step 3.

Step 3:

if (interval [L, L+R) lies in [0.01, 0.11)2)

 { bits_to_follow = bits_to_follow + 1;

 L = 2× (L-0.25), R = 2×R;

 go to Step 1. }

 else End.

Note:

1. The interval [L, L+R) lies in the lower half [0.0, 0.1)2. In this case, all

the numbers in the interval will have a common prefix “0”. The

following encoding process will only choose the subinterval, so this

prefix “0” will be in the final code word. So now we can output “0” into

the code word even the encoding is not finished yet. However, there

may exist more than one-bit prefix (i.e., [0.00, 0.01)2 has prefix “00”).

So we expand the lower half to be the full interval [0.0, 1.0)2 and adjust

L = 2×L, R = 2×R (Fig. 2.9). This process will shift all the digits after

the decimal point to the left by 1 bit (i.e., [0.010, 0.011)2 becomes [0.10,

0.11)2) and eliminate the coded prefix “0”. At this point, we can

continue to check if there exists “fresh” prefix.

26

Figure 2.9 Interval [L, L+R) lies in the lower half

2. The interval [L, L+R) lies in the upper half [0.1, 1.0)2. This case is very

similar to the first one. We put “1” into the code word. Then expand

this upper half to be the full interval [0.0, 1.0)2 and adjust L = 2×(L-

0.5), R = 2×R (Fig. 2.10).

Figure 2.10 Interval [L, L+R) lies in the upper half

3. When the interval [L, L+R) straddles middle point and lies in [0.01,

0.11)2 (i.e., in second and third quarters). There exists no common

prefix as defined above. However, notice that in [0.01, 0.11)2, the first

bit is always opposite to the second bit in two bits prefix (either 01 or

27

10). By expanding the [0.01, 0.11)2 to be the full interval [0.0, 1.0)2

(accordingly adjusting L = 2× (L-0.25), R = 2×R), the [0.01, 0.10)2 and

[0.10, 0.11)2 become [0.00, 0.10)2 or [0.10, 1.00)2 respectively. Then,

for example, if next incoming symbol’s subinterval lies in lower half

[0.00, 0.10)2 (i.e., the next output is “0”), this subinterval should lie in

[0.01, 0.10)2 (prefix for this interval is “01”) before expansion (Fig.

2.11). Therefore, the interval can safely be expanded as described

above, if only we remember that whatever bit comes next, its opposite

must be transmitted afterward as well.

Figure 2.11. Red part is the subinterval for the next incoming symbol

Sometimes after this expand, the interval still straddles the middle

point and lies in [0.01, 0.11)2. Then we need to do another expand. Fig.

2.12 is an example where the current interval has been expanded three

times. Suppose the next subinterval is in the lower half (i.e., output

“0”). Then the next three output bits will be “1”s since the subinterval

is not only in the [0.01, 0.10)2 of the last interval, but in the [0.011,

0.10)2, and moreover the [0.0111, 0.10)2. We use a variable

28

bits_to_follow to remember the number of expansion. Moreover, the bit

that is output next must be followed by that number of opposite bits.

Now it is clear why in Step 1 and 2 there is “output bits_to_follow

‘0’/’1’s”.

Figure 2.12 Three times of expansion (bits_to_follow = 3) and then the

subinterval (red) lies in [0.0, 0.1)2. The output is 0111

2.5.3 Termination

When all the symbols are encoded, we get a final interval. In BIAC, we

choose a subinterval of the final interval and output that subinterval’s

prefix. To use the shortest prefix, we need the subinterval as big as

possible. As described above, BIAC can guarantee that, after

decide_the_output, either

𝐿 < 0.01 < 0.10 ≤ (𝐿 + 𝑅) (2.15)

or

29

𝐿 < 0.10 < 0.11 ≤ (𝐿 + 𝑅) (2.16)

Eq. (2.15) can make sure [0.01, 0.10) is the subinterval of [L, L+R). Eq.

(2.16) can make sure [0.10, 0.11) is the subinterval of [L, L+R). So we

can output “01” in the first case and “10” in the second.

A BIAC example is included in Appendix A.

2.6 Peak Signal-to-Noise Ratio

We evaluate the image compression performance mainly using peak signal-

to-noise ratio (PSNR). Given an m x n input image I and an output image K,

the Mean Squared Error (MSE) is defined as:

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

(2.17)

The PSNR is defined as:

𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (2.18)

Where MAXI = 255. It is the maximum possible pixel value of the image.

2.7 Chapter Summary

This chapter introduced image redundancy and main steps of wavelet-based

subband coding. Among them, the wavelet transform and arithmetic coding

are the crucial steps. Wavelet transform puts an image into the spectral

domain and exposes the spectral relation and redundancy in the image.

Arithmetic coding compresses the information additionally after the data

organization.

30

CHAPTER III: SIGNIFICANCE-LINKED CONNECTED

COMPONENT ANALYSIS

Chapter II introduces the background of the wavelet-based subband coding.

In this section, a unique data organization and representation strategy for

DWT images will be presented. It is called the Significance-Linked Connected

Component Analysis (SLCCA). SLCCA follows the primary process in Fig. 2.1

and has a remarkable data organize technic.

3.1 SLCCA Core Procedures

SLCCA processes an input image through the steps in Fig. 3.1. Since the

color space transform method is usually considered as a separated technic to

image compression, it is not shown in this process. The input image is an

31

image with pixel value ranging from 0 to 255. It can be one of the Red, Green,

and Blue images. It can also be either luma or chroma image.

Figure 3.1. SLCCA Core Procedures

3.2 Wavelet Transform

The first step is a 2-D discrete wavelet transform (DWT). DWT uses finite

length yet mutually compensated low/high-pass filters to decompose a signal

into low/high-frequency subbands in the temporal domain [6, 9, 10]. The

detailed process is introduced in Chapter II. 2-D DWT is employed in the

input image for several inherited levels and decomposed the image into a

multi-resolution wavelet pyramid.

Input Image Wavelet Transform

QuantizationCluster Searching

Magnitude Coding Compressed Image

32

3.3 Quantization

After the multi-level wavelet transform, the image has the same size as the

input image. Each “pixel” in it is now the wavelet coefficient. All the wavelet

coefficients are going through a uniform quantization [13].

Since SLCCA is a lossy compression, the wavelet coefficients are going

through the quantization process by using a uniform scalar quantizer based

on some bit rate or picture quality constraint. Quantization reduces the bit-

depth of wavelet coefficients at the expenses of precision. Scalar quantization

consists of a simple truncation of less significant bits, often obtained by right

shifting wavelet coefficients’ magnitude. Coefficients differing only in the

digits being cut off will be indistinguishable after inverse-quantization.

The quantization step, Stepsize, is set based on the target compression ratio.

During quantization, SLCCA assigns Symbol and Magnitude to each pixel

based on corresponding coefficient value. The quantization procedure is as

follows [13]:

Uniform quantization in SLCCA

For each pixel x

 If |c(x)| < Stepsize

 Magnitude(x) = 0

 Symbol(x) = Z

 Else

33

 Magnitude(x) = ⌊(|𝑐(𝑥)| – 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒) / 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒 ⌋

 If c(x) > 0

 Symbol(x) = P

 Else

 Symbol(x) = N

Where c(x) is pixel x’s wavelet coefficient value.

Pixels with symbol P/N are significant while those with symbol Z are

insignificant. A significance map thus emerges from the pixel’s symbols.

Quantization produces a large number of insignificant pixels.

Given a quantization level, a quantized image produces a binary significance

map by [14]:

𝐴[𝑥, 𝑦] = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒𝑙𝑒𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑐 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 [𝑥, 𝑦]𝑖𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.1)

The binary significance map is shown in Fig. 3.2. We could easily see from

Figure 3.2 that the significant coefficients in each subband other than Low-

Low (LL) subband usually indicate the occurrences of either edges or textures

of high energy. It means that these significant coefficients represent the

frequency “changes” in the image and there are connections between coarse

and finer scales.

34

The wavelet image coding problem can thus be translated into the coding of

significance map and sign/magnitude of significant coefficients.

Figure 3.2. The subband pyramid after binary significant map convert

3.4 Cluster Searching

After quantization, SLCCA scans each subband from highest level to the

lowest level and uses irregularly shaped clusters to organize the adjacent

significant pixels within a subband [4, 14]. A cluster starts from a seed

coordinates, following by a sequence of symbols representing the pixels

orderly in the cluster. The seed coordinates can either be coded directly or

implied by cross-subband linkage from a cluster in parent subband [14].

35

3.4.1 Significance Clustering

Within-subband the SLCCA has a map coding method called significance

clustering [14]. After quantization, a rather big portion of significant

coefficients within each subband tend to form a few (3 × 3 or 2 × 2) connected

components or clusters, shown in Fig. 3.3 [14]. It will be very inefficient if we

encode too many insignificant coefficients. Hence, organizing and

representing each subband as irregular-shape connected components or

clusters is an efficient way for coding. This way can reduce the number of

insignificant coefficients that barely contains the image’s information.

Clusters can be progressively constructed using conditional morphological

dilation [16], resulting in an effective segmentation of the within-subband

significance map.

Figure 3.3. Illustration of connected components or clusters

36

The conditional morphological dilation utilizes a structuring element (2 × 2 to

5 × 5, most common) to control the shape and size of the cluster as well as the

boundary formation. Fig. 3.4 [14] is four examples of the typical structuring

element.

However, the significant coefficients in the significant map are loosely

clustered, especially in the high-frequency subband. If we use a small

structuring element, i.e., 2 × 2 or 3 × 3, the cluster may contain a minimal

amount of significant coefficients. Because some significant coefficients

nearby will not be scanned. However, if we use a too large structuring

element, the cluster will contain too many insignificant coefficients.

Figure 3.4. Four possible structuring elements. (a) 2 × 2 dilation (b) 3 × 3 dilation (c)

4 × 4 dilation (d) 5 × 5 dilation

37

The cluster detection operation [16] used by conventional SLCCA is

illustrated in Fig. 3.5 [14]. In the figure, White pixels denote insignificant

coefficients that are not to be coded; Black and gray pixels denote significant

(S) and boundary insignificant (I) coefficients to be coded respectively.

Figure 3.5. (a) A binary image produced after quantization. (b) Seed position (3,2). (c)

Use 2x2 structuring element for conditional dilation. (d)-(i) Successive conditional

dilation. (i) Cluster [11]

As illustrated in Table 3.1, beginning from the seed, a connected component

or cluster is delineated by recursive conditional dilation. There are two ways

38

to perform conditional dilation, i.e., depth-first or breadth-first, which

produce “S, I” strings of the same length with the same number of “S” and

the same number of “I.” And They both delineate the same geometric shape.

Table 3.1. Coded positions in each image in Fig. 3.5.

The final cluster is organized and represented by seed position and the

following symbol string:

S I S I I I S I S I I S I S I I I I

In SLCCA, the depth-first approach is used. The cluster is organized and

represented within a subband by the seed coordinate and a string of symbols

P, N, and Z. Instead of the significant symbol “S” used above, the P and N

represent the positive magnitude significant coefficient and negative

magnitude significant coefficient, respectively. Moreover, instead of the

insignificant symbol “I” used above, Z represents the insignificant boundary.

39

3.4.2 Significant Cluster Group

The conventional Significance Clustering method shows efficiency when the

significant coefficients are “close enough” to each other. However, there is a

situation which two clusters are neighbors. In fact, they may be adjacent so

that they share some of the insignificant boundaries, i.e., Fig. 3.6.

Figure 3.6. Two clusters close together

In this circumstance, if we could group these two clusters we can save one of

the clusters’ seeds. The seed could be a significant linkage or a coordinate

seed. So this cluster-group method could decrease the probability of the

occurrence of the coordinate seed. As a result, the coding cost is reduced since

the seed coordinates are bit-costly when coding.

To form a cluster group, we need do the conventional cluster scan first. After

the cluster is found, scan all the boundary zeros’ neighbors using the same

40

structuring element. If there exists a significant coefficient in the neighbors,

we call this boundary zero a shared zero and use it as a seed to find the new

cluster, as shown in Fig. 3.7. We call these two clusters that connected

through a shared zero a cluster group.

Figure 3.7. Two clusters are connected as a group through a shared-zero (5, 3)

Two clusters are shown in figure (a), the top one is the same one as shown in

the figure. Although there are two shared zeros (5,3) and (5,2), only one of

them (5,3) is used as a seed to produce the second cluster and eventually

coded as SHARED-ZERO (S-Z).

41

The final cluster-group is organized as in Table 3.2 and represented by seed

position (3,2) and the following symbol string:

[S I S I I I S I S I I S (S-Z) S I I I I] [S I I S I I I]

Table 3.2. Coded position of a new cluster that uses a shared-zero as the seed

In this cluster grouping method, a new symbol “SHARED-ZERO” is used. So

there are four symbols (P, N, Z, and SZ) to indicate the significant and

insignificant coefficients. One more symbol makes it less efficient when using

arithmetic coding. However, the experiment shows that the gain from less

coordinate seeds is more significant than the loss from one more symbol.

3.4.3 Significance Linkage

In zero-tree based image compression scheme such as EZW and SPIHT, the

intention is to use the statistical properties of the trees to code the locations

of the significant coefficients efficiently.[1]

42

In SLCCA, we also try to build a spatial connection between the coefficients

crossing subband. However, unlike EZW and SPIHT, SLCCA exploiting the

similarity among significant coefficients cross subband.

Figure 3.8. the relation between parent children and descendants in a 3-level

subband pyramid

Relative to a given wavelet coefficient (ancestor), all coefficients at finer

scales of similar orientation, which associate with the same spatial location,

are called its descendants [14].

Notably, the coefficient at the higher level is called the parent, and all four

coefficients (due to down-sampling by 2) associated with the same spatial

location at the next lower level of similar orientation are called its children.

The relation between them is shown in Fig. 3.8 [14].

43

The correlation between parent coefficient and child coefficient could lead to a

very efficient method of map coding. We can see that magnitudes of wavelet

coefficients statistically decay from a parent to its four children. Moreover, a

significant coefficient at a lower subband likely has a significant parent at its

corresponding higher subband [15]. Experiments showed that the correlation

between the squared magnitude of a child coefficient and the squared

magnitude of its parent tends to be between 0.2 and 0.6 with a high

concentration around 0.35. [15] If there is a significant parent, which belongs

to one subband, and at least one of its four children is significant and lies in

another subband, these two clusters across subbands are called significance-

linked. Fig. 3.9 [14] shows the significance-linkage between a parent and its

four children.

The seed position (x,y) is derived from its parent position through significance

linkage whenever possible. In this case, two more symbols L (LINK) and NL

(NO-LINK) are used. L denotes the significant linkage, and NL indicates the

significant linkage does not exist.

Since there are many significant coefficients in a connected component, the

likelihood of finding significance linkage between two connected components

is relatively high. If the significance linkage exists, we can use the linkage to

mark the position of the children. Apparently, marking the significance

44

linkage costs much less than directly coding the seed coordinate position [14]

since directly coded coordinates are very bit-consuming.

Figure 3.9. The values are the magnitudes of quantized coefficients. Nonzero values

denote significant coefficients

3.4.4 Significance Map Scanning in SLCCA

From above descriptions, we see that to get a significance map of the image

there are two things we need to know. One is the cluster groups within the

subband, and the other one is the significance-linkage information cross

subband.

45

Therefore, when we are scanning significance map, there are two symbol

sequences. The first one contains two symbols, L (LINK) and NL (NO-LINK).

The second one includes four symbols, P, N, Z, and SZ.

The order to scan the subband in SLCCA is shown in Fig. 3.10. Starting from

the coarsest scale to the finest scale, SLCCA scans all the subband in each

scale in the order of LH, HL, HH.

Figure 3.10. The scanning order of SLCCA

For each subband (LH, HL, and HH) in the coarsest scale, scan from left to

right and top to bottom orderly to find a significant coefficient as the

coordinate seed. Use a pre-specified conditional dilation to construct a cluster

within the subband and leave the scanned symbol to the end of the symbol

sequence (LIST1). After the cluster delineated, scan the symbols in the

LIST1 to find a possible boundary Z, which happens to have an un-coded

46

significant neighbor. Use this Z as a seed to find a new cluster. If the new

cluster is not deleted by the elimination process, keep the symbol sequence to

the end of the previous sequence (LIST1) and change this seed symbol Z to

SZ. This cluster group scanning uses a breadth-first recursive process until a

cluster-group delineated. Then rescan the symbol P and N in the sequence

(LIST1) to check if there is a significant linkage exists in the child subband.

If there is an un-visited yet significant child, code all its un-coded children,

leave them to the end of child subband symbol sequence (LIST2) and use the

first significant child as a seed to expend a new cluster and append the new

cluster to the end of LIST2. In the meantime, put L symbol at the end of the

link sequence (LIST3). If there is not an un-visited yet significant child, put

NL symbol to the end of the link sequence (LIST3). After all, cluster-groups

and linkages scanning finished, scan the un-visited pixel in the subband to

find a seed, then do the cluster-group and linkage scan as the same as shown

above.

For subband LH, HL, HH that not in the coarsest scale, first move the child

subband symbol sequence (LIST2) of its parent subband to the LIST1 of the

current subband. Then rescan LIST1 and do the cluster-group delineated and

linkage search. After all cluster-groups and linkages found, scan the un-

visited pixel in the subband to look for a seed, then do the cluster-group and

linkage scan as the same as shown above.

47

3.5 Magnitude coding

The last step is magnitude coding. It represents the magnitudes of P/N

pixels by their binary values. The binary bits compose a 0/1 symbol sequence

following the pixel’s order bit-plane wise. The side information, clusters, and

magnitudes symbol sequences are finally coded using context-based adaptive

arithmetic coding. The output bit stream is the final compressed file.

3.5.1 Bit Plane

Figure 3.11. A pixel can be expanded into eight bit-planes

A bit plane of a discrete digital signal (such as image or sound) is a set of bits

having the same position in the respective binary numbers (Fig. 3.11). The

highest bit-plane is called the Most Significant Bit-plane (MSB). The lower

bit-planes contribute less to the pixel.

48

Figure 3.12. An example of bit-plane expand

Fig. 3.12 is an example of bit-plane expanding. Coefficients are in a sign-

magnitude format with sign information being absorbed in significance map.

Bit-plane entropy coding starts from the MSB. The number of bit-planes in a

subband is determined by the maximum magnitude in the subband.

To produce more coding gain, SLCCA examines the context and defines the

conditional probability of a significant coefficient in each bit-plane. In

SLCCA, the context of a significant coefficient at a pixel in each bit-plane is

defined by the significance status of its parent coefficient and eight

neighboring pixels in the bit-plane. The details are in the next section.

3.6 Context Model of Arithmetic Coding

In arithmetic coding, the coding bit rate is related to the entropy of the

symbol sequence. In an ideal situation, the bit rate is nearly equal to the

entropy. Otherwise, the bit rate is larger than the entropy. So we need to

49

reduce the entropy of the arithmetic coding. The entropy in the arithmetic

coding depends on the probability distribution of the symbols. The entropy

will be lower if the probabilities of each symbol are diverse. To make the

probabilities of each symbol as diverse as possible, we use a context model to

classify each symbol in the input sequence to several classes. So that in each

class a lower entropy could be obtained.

neighbor neighbor neighbor

neighbor Pixel neighbor

neighbor neighbor neighbor

Figure 3.13. The neighbors and parent in SLCCA context model

In SLCCA there are total 18 different context models to divide the map

symbols into 18 different classes.

We use two labels to classify the symbols, shown in Fig. 3.13. One is the total

number of the significant coefficient within eight neighbors surround the

symbol pixel. So there are nine possibilities. The other label is the

Parent

(significant or

insignificant)

50

significance of the symbol pixel’s parent pixel. This label has two possibilities.

With these two labels, we can divide the symbols into 18 different classes.

3.6.1 Improved Context Model of SLCCA

In later improvement to SLCCA, the context model of the map symbol coding

is upgraded. We discovered two more labels besides the two labels mentioned

above. One is the shared-zero of the visited neighbors surrounding the symbol

pixel. The other is the ratio of significant yet visited neighbors’ number to

total visited neighbors’ number. Then we add the weight concept to the

neighbors.

The label of shared-zero in the visited neighbors surrounding the symbol

pixel has two possibilities. One is shared-zero exists, and the other is shared-

zero does not exist. In practice, the criteria of shared-zero don't have

noticeable improvement in the result. So we often pass over this label.

Table 3.3. Number of neighbors actually scanned in context calculation

of scanned

neighbors
0 1 2 3 4 5 6 7 8

Occurrence

times
418 930 2779 16536 13620 3340 878 291 99

The ratio label is proposed because in the experiment we found that for most

symbol pixels, the calculation of the total number of the significant coefficient

51

within eight neighbors is only scanned 2 to 5 neighbors (Table 3.3). Therefore,

if we define a ratio α:

𝛼 =
#(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑛 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

#(𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
(3.2)

In these cases, the ratio of significant yet visited neighbors’ number to total

visited neighbors’ number shows more efficiency than only consider the

significant coefficient within eight neighbors surrounds the symbol pixel. For

example, a pixel with two significant neighbors out of three scanned

neighbors has more possibility as a significant pixel than a pixel with two

significant neighbors out of eight scanned neighbors. Thus, we employ this

ratio as a label in the context model.

Moreover, we also noticed that for most pixels the number of significant

coefficients in the scanned neighborhood is most likely 0, 1 or 2 (Table 3.4).

For the number larger than 3, the probability is quite small. As a result, we

can combine the number that bigger than two into one context model to

reduce the context model number.

Table 3.4. Number of significant coefficients in scanned neighbor pixels

of scanned

significant

neighbors

0 1 2 3 >=4

Occurrence times 15233 13998 6762 2682 216

52

Use this method, the total possibilities in the decide label and the overall

context model number will be reduced.

0.7 1 0.7

1

1

0.7 1 0.7

Figure 3.14. neighbors’ weight in SLCCA

In SLCCA’s context model, we consider the eight neighbors’ significance of a

pixel has the same weight to affect the significance of the central pixel.

However, in the experiment, we found that there is some difference between

the neighbors’ influence on the central pixel’s significance. The neighbor’s

influence on the central pixel’s significance mostly depends on the distance

between the neighbor and the central pixel. So, we give each of the neighbors

a weight factor. The neighbor with a small distance to the central pixel has a

larger weight than the neighbor with a large distance to the central pixel

(Fig. 3.14). After the experiment, we choose 0.7 as the weight since it can lead

to the best results.

For magnitude coding, we only add the weight to the neighbors. The ratio and

shared zero are not used to classify the context models.

53

We can see an example of the new context models:

Four symbols’ (P, N, Z, SZ) sequence context model criteria (total 32

contexts):

1. Parent’s significance ---- 2 (significance, insignificance)

2. Weighted significant yet visited neighbors number ---- 4 (0, 1, 2, ≥ 3)

3. Ratio (Weighted significant yet visited neighbors #/ total visited

neighbors #) ---- 2(< 0.8, ≥ 0.8)

4. Shared zero in the visited neighbors ---- 2(exist, not exist)

Total context models=2×4×2×2=32

Magnitude context model criteria (total 14 contexts):

1. Parent’s significance---- 2 (significance, insignificance)

2. Weighted significant yet visited neighbors number ---- 7(0, 1, 2, 3, 4, 5,

≥ 6)

Total context models=2×7=14

3.7 Chapter Summary

This chapter introduced the SLCCA core procedure. Include wavelet

transform, quantization, cluster searching, magnitude coding, and the

context models for arithmetic coding. The unique cluster searching and

magnitude coding methods achieve remarkable efficiency in data

54

organization for SLCCA. Moreover, the customized context model setup leads

to a lower entropy thus the arithmetic coding can achieve more compress

ratio.

55

CHAPTER IV: SLCCA PLUS

In the last chapter, a wavelet image coder SLCCA is introduced. This chapter

will introduce four improvements to enhance the already high-performance

SLCCA. Including intelligent quantization with an adaptive threshold, enhanced

cluster filter, potential significant shared-zero, and improved context models. The

improved algorithm is called SLCCA Plus.

At the end of this chapter, we will compare the performance among

JPEG2000, SLCCA, and SLCCA Plus.

4.1 Intelligent Quantization with Adaptive Threshold

Quantization is a crucial step, where the image quality loss occurs. As

introduced in the last chapter, SLCCA uses a uniform quantization [6]

scheme.

56

We would emphasize that the minimum magnitude at P/N-pixels is zero

rather than one after quantization. Interval (-Stepsize, Stepsize) is called the

dead zone. All the wavelet coefficients that fall within the dead zone are

thought of insignificant and labeled by symbol Z. Quantization produces a

large number of Z-pixels typically.

The corresponding inverse quantization procedure is as follows:

Inverse Quantization Procedure in SLCCA

For each pixel x

if Symbol(x) == Z

 c’(x) = 0

Else

 c’(x) = (Magnitude(x)+0.5) × Stepsize + Stepsize

 If Symbol(x) == N

 c’(x) = -c’(x)

Where c’(x) is pixel x’s reconstructed wavelet coefficient value. All the wavelet

coefficients that fall within the dead zone have reconstructed coefficient value

equal to 0. The wavelet pyramid has a salient characteristic: the coefficient

energy decays from higher wavelet levels to lower ones. In a 5-level wavelet

decomposition of Lenna (512 × 512, Grayscale), the coefficient values may as

Table 4.1.

Coefficient absolute values at a higher level are much larger than those at

lower levels. Meanwhile, it is worth noting that the number of the coefficient

57

in the lower level is far greater than higher levels. As a result, appropriately

choosing a Stepsize may produce plenty of insignificant pixels in lower

wavelet levels thus reduce bit cost. Since SLCCA reconstructs insignificant

pixels as coefficient with value 0, their maximum inverse quantization error

equals to Stepsize. In contrast, the significant pixels’ maximum error equals

to 0.5 × Stepsize. The vast amount insignificant pixels lower the image

quality. An adaptive threshold is introduced to solve this issue. The

significance threshold now equals to r × Stepsize, where 0 < r ≤ 1. We can see

an example in Fig. 4.1.

Table 4.1. The coefficients range in a 5-level wavelet decomposition of Lenna

 LL Subband Level 5 Level 4 Level 3 Level 2 Level 1

Max Value 6686 1199 684 367 238 63

Min Value 1486 -1337 -799 -342 -299 -74

Figure 4.1. Intelligent Quantization Example. Stepsize = 20, r = 0.5. The pixels with

coefficient values fall within the orange color interval used to be insignificant. Now

they are marked as significant pixels.

58

By adequately shortening the dead zone, we can transform some Z-pixels,

whose absolute coefficient values are below but near to Stepsize, into P/N-

pixels. In doing so, we may increase the decoded image quality at the cost of

enlargement of some clusters. A non-uniform quantization scheme and its

inverse are proposed below for SLCCA Plus.

Non-uniform quantization in SLCCA Plus, with r = 0.95 by default

For each pixel x

 If |c(x)| < r  Stepsize

 Magnitude(x) = 0

 Symbol(x) = Z

 Else

 Magnitude(x) = ⌊||𝑐(𝑥)| – 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒|/𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒⌋

 If c(x) > 0

 Symbol(x) = P

 Else

 Symbol(x) = N

Inverse non-uniform quantization in SLCCA Plus, with r = 0.95 by

default

For each pixel x

 If Symbol(x) == Z

 c’(x) = 0

 Else

 If Magnitude(x) == 0

 c’(x) = (1.5 – 0.5  (1 – r))  Stepsize

 Else

 c’(x) = (Magnitude(x) + 0.5)  Stepsize + Stepsize

59

 If Symbol(x) == N

 c’(x) = –c’(x)

We can see that this improvement is only for the zero magnitude pixels. The

purpose of the adaptive threshold is to save the insignificant pixels which are

close to the threshold. These insignificant pixels produce higher reconstruct

error. Coding them as significant pixel achieves a better trade-off between bit

cost and image quality. The threshold adjuster r can be calculated for each

image or at each wavelet level for the best result. By default, it is set to 0.95

to reduce computational complexity.

4.2 Enhanced Cluster Filtering

A minuscule cluster usually does not contribute much quality to visual effects

[14]. A small cluster with high #(insignificant pixel)/#(significant pixel) ratio

contains a more bit proportion of side information. Therefore, in SLCCA they

are eliminated to save coding cost. The elimination depends on cluster’

significant area, i.e., the number of significant pixels in the cluster.

Experiments demonstrate that the removal of one-significant-pixel clusters

leads to better coding gain. Moreover, filter out the clusters with more than

one significant pixel will reduce performance. We look into the filtered-out

clusters and find a statistical pattern of their magnitudes in Table 4.2. We

can see that only a few clusters contain significant pixel with magnitude

60

equals to 1 or 2. The P/N pixels in most one-significant-pixel clusters have

zero magnitudes.

Table 4.2. Significant pixel’s magnitude pattern in filtered clusters

Subband
(filter-out

cluster)

(P/N

magnitude =0)

(P/N

magnitude

=1)

(P/N

magnitude

=2)

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 2 2 0 0

5 2 2 0 0

6 5 4 1 0

7 9 8 1 0

8 16 15 1 0

9 15 14 1 0

10 50 49 1 0

11 54 51 3 0

12 49 46 2 1

13 149 149 0 0

14 17 17 0 0

15 94 94 0 0

Total 462 451 10 1

Based on this observation, we put forward an idea: the magnitude volume,

besides significant area, represents the importance of a cluster. Thus,

enhanced cluster filter adds magnitude volume into account and eliminates a

cluster if it satisfies one of the following two conditions:

• It contains only one significant pixel.

61

• It contains two significant pixels, and both of their magnitudes are

zero.

4.3 Potential Significant Shared-Zero

After quantization, a large portion of significant pixels tends to cluster.

Organizing and representing significant pixels as irregular-shape connected

components (clusters) is an efficient way to omit insignificant pixels’ bit

consuming. Clusters can be progressively constructed using morphological

dilation [16]. Beginning with a known significant pixel (Seed), SLCCA uses

breadth-first search (BFS) to explore the connected significant pixels. All the

pixels (including significant and insignificant) covered by BFS process are

recorded in a sequence orderly by their Symbols (P, N, or Z). With the

coordinates of the Seed, this P/N/Z sequence is sufficient for a

reconstruction of the cluster.

An empirical fact is that the clusters sometimes tend to be fragmented, i.e.,

there are a large number of small-sized clusters adjacent to each other, as

illustrated in Fig. 4.2. The bit cost of their seed coordinates is relatively high.

We can see an example from Table 4.3 that in level 1 to 3, the seed size is

even larger than the cluster’s P/N/Z sequence’s size.

62

Figure 4.2. The BFS covers a significant pixel’s eight neighbors and adds neighbor

pixels into the cluster.

Table 4.3 SLCCA Subband information. The unit in the table is Byte.

Level Subband

Link-

cluster

(P/N/Z)

size

Link(L/NL

) size

Seed-cluster

(P/N/Z) size

Seed

size

Magnitude

size

5

LL 0 0 2 1 271

HL 0 0 43 1 173

LH 0 0 48 1 109

HH 0 0 47 3 110

4

HL 183 1 0 0 361

LH 163 3 0 0 188

HH 151 0 0 0 182

3

HL 518 7 3 6 542

LH 348 7 9 10 251

HH 336 11 2 5 248

2

HL 900 34 8 30 520

LH 531 26 8 8 200

HH 469 33 7 15 135

1

HL 730 88 21 36 108

LH 112 38 6 8 7

HH 12 8 0 0 0

63

SLCCA Plus introduces a Shared-Zero exploring algorithm to solve this

problem. Before preceding this algorithm, we need to introduce a potential-

significant concept.

A potential-significant pixel is an insignificant pixel, but its absolute

coefficient value is very close to the quantization threshold. We use the

following procedure to determine an insignificant pixel’s potential-

significance.

Potential-Significance (pixel x)

If c(x) ≥ t  Stepsize

 Return P

If c(x) ≤ –t  Stepsize

 Return N

Return Z

Where 0< t ≤ r (t is set to 0.85 by default), c(x) is pixel x’s wavelet coefficient

value. If an insignificant pixel’s potential-significance equals to P/N, it is

called potential-significant P/N pixel.

We can see from Fig. 4.3 that with a suitable t, the values of potential-

significant coefficients are very close to those of minimum significant

coefficients.

64

Figure. 4.3 An example of potential-significant. Stepsize = 20, r = 0.5, and t = 0.3.

The pixels with coefficient values fall within the green color intervals are potential-

significant.

The shared-zero exploring algorithm’s central idea is finding the potential-

significant pixels which are the boundaries of multiple clusters and changing

them to significant pixels to merge the clusters. So that only one coordinate

seed is needed. It works as follows. In a found cluster C1, SLCCA Plus

examines each of the Z pixels. If a Z pixel is potential-significant and has a

neighboring undiscovered cluster C2, it is called shared-zero pixel. We change

it to P/N pixel corresponding to its potential-significance, and its magnitude

remains 0. As a result, C1 connects C2. We continue doing this shared-zero

exploring procedure until no more unchecked Z pixels (including those in

newly added clusters). At this stage, C1 combines all the adjacent clusters.

Then we redo the cluster dilation from C1’s seed and get the cluster symbol

sequence with the right order. Fig. 4.4 shows the potential-significant shared-

zero exploring procedure.

65

Changing the potential-significant pixel to significant pixel produces some

error inevitably. However, with the appropriately chosen t value, we can

minify this error. Also, taking into account the bit saving from less coded

coordinates, the shared-zero exploring algorithm achieves a better trade-off.

Figure. 4.4 Potential-significant exploring procedure. (a) A found cluster with two

neighboring significant pixels. (b) A potential-significant Z is found. (c) The

potential-significant leads to the new cluster. (d) Mark the potential-significant as

significant.

4.4 Improved Context Models for Arithmetic Coding

66

SLCCA uses adaptive arithmetic coding [7, 11, 18] to encode P/N/Z sequence

of clusters, magnitudes sitting on P/N-pixels, and other side information.

Arithmetic coding has been effective in approximating the entropy of the

source stream [11]. An adequate context model can provide a good prediction

of the next source symbol to reduce the uncertainty or entropy [19]. In a

wavelet transformed image, the significance status of a coefficient may have

some correlation with the significance status of its (8, for instance)

neighboring coefficients and the significance status of its parent coefficient as

well [14].

The same context model is used in SLCCA to predict a P/N/Z-pixel or 0/1-

bit in magnitude bit-planes. The model is based on a combination of the

significance odds of its eight neighboring pixels and the significance status of

its parent. It has some limitations. First, when applied to P/N/Z sequence

coding, the context model does not distinguish between P- and N-pixel.

Second, the significance odds are not suitable for predicting 0/1-bit in

magnitude bit-planes. Improvements are made in SLCCA Plus as follows.

4.4.1 Direction Sensitive Context Model for Cluster

In significance map, the presence of P- or N-pixels reveals directional

continuity and directivity, as illustrated in Fig. 4.5. The direction varies with

67

different subbands. In HL (LH) subbands, the direction is horizontal

(vertical).

Figure 4.5. An example of P/N pixel’s continuity and directivity in LH subband.

The new context model for a P/N/Z-pixel is direction sensitive. It utilizes

three descriptive numbers 𝑆𝑝(𝑥), 𝑆𝑛(𝑥), 𝑇(𝑥), which are defined as the

significance status for the parent pixel, the significance status for neighbors

as a whole or neighbors’ vote for pixel x to be P or N, respectively:

• The significance status of parent pixel

𝑆𝑝(𝑥) = {
0, 𝑖𝑓 𝑝𝑎𝑟𝑒𝑛𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑖𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.1)

• The neighbor’ significance status

 𝑆𝑛(𝑥) = {
0, 𝑖𝑓 #(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) < 3
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.2)

68

• The neighbor’ tendency toward P or N.

𝑇(𝑥) = {

0, 𝑖𝑓 #(𝑃 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = #(𝑁 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

1, 𝑖𝑓 #(𝑃 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) < #(𝑁 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

2, 𝑖𝑓 #(𝑃 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) > #(𝑁 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

(4.3)

In calculating these numbers, we count only pixels, which are previously

coded. In Eq. (4.3), we only check two horizontal (vertical) neighbors for HL

(LH) subbands. For HH subbands, we check two horizontal and two vertical

neighbors. Since coefficients in LL subband are non-negative, we simply code

each magnitude bit-plane-wisely. That is, there is no P/N/Z sequence sought

in LL subband. At last, a total of 12 context models are defined for P/N/Z

sequence coding as follows:

𝐾(𝑥) = 𝑆𝑝(𝑥) + 2𝑆𝑛(𝑥) + 4𝑇(𝑥) (4.4)

4.4.2 Improved Context Model for Magnitude

Significant pixels’ magnitudes are coded by their binary values bit-plane

wise. In each subband, the maximum magnitude offers the fix-length of the

binary values. Pixels with smaller magnitudes are more than those with

larger magnitudes. As a result, for most of the pixels, there are a lot “0” bits

in the higher bit-planes, e.g., Fig. 4.6.

69

In JPEG2000, which also uses bit-plane coding, the context model depends on

the significance status of the pixel’s eight neighbors and whether the pixel is

a yet coded significant.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1

0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0

Figure 4.6. An example of bit-planes. Dark blue stands for “1” bits and light blue

stands for “0” bits.

In SLCCA Plus, the context selection for a binary bit of a pixel is related to

the following conditions. First, the “1” distribution in the bit’s eight bit-plane

neighbors. Second, the significance status of the pixel’s eight neighbors.

Third, the bit’s position compares to the most significant bit (MSB) in the bit-

planes. Fourth, the pixel’s subband.

Explicitly, for a bit b of pixel x, first we calculate three quantities:

𝑁ℎ(𝑏) = 𝑐𝑜𝑢𝑛𝑡("1" in horizontal bit-plane neighbors of b) (4.5)

𝑁𝑣(𝑏) = 𝑐𝑜𝑢𝑛𝑡("1" in vertical bit-plane neighbors of b) (4.6)

𝑁𝑑(𝑏) = 𝑐𝑜𝑢𝑛𝑡("1" in diagonal bit-plane neighbors of b) (4.7)

The quantity 𝑁∗(𝑏), representing the influence of the bit’s neighboring “1”s,

integrates these three quantities:

70

𝑁∗(𝑏) = ⌈𝑤ℎ𝑁ℎ(𝑏) + 𝑤𝑣𝑁𝑣(𝑏) + 𝑤𝑑𝑁𝑑(𝑏)⌉ (4.8)

Where 𝑤ℎ, 𝑤𝑣 and 𝑤𝑑 are weights for different directions. Their values are set

depend on the subband. For LH subbands, 𝑤ℎ = 1.6, 𝑤𝑣 = 0.28, 𝑤𝑑 = 0.06. For

HL subbands, 𝑤ℎ = 0.28, 𝑤𝑣 = 1.6, 𝑤𝑑 = 0.06. For the other subbands, 𝑤ℎ =

1.6, 𝑤𝑣 = 1.26, 𝑤𝑑 = 0.54.

Then we check the significance status of the pixel’s eight neighbors.

𝑁(𝑏) = 𝑐𝑜𝑢𝑛𝑡(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑜𝑓𝑥) (4.9)

At last the context model K(b) is calculated by:

𝐾(𝑏) = ⌊𝛼𝑁(𝑏) + 𝛽𝑁∗(𝑏)⌋ (4.10)

Where 𝛼 = 0.7, 𝛽 = 0.3 if b is beneath the MSB of x. Otherwise, 𝛼 = 035, 𝛽 =

0.65.

These improved context models provide more detailed classification to the

magnitude bits. The context considers not only the pixel neighbors’

significance but also the correlation among neighboring bits in the bit-planes.

4.5 Performance Evaluation

In this section, we evaluate the coding efficiency of SLCCA Plus. We compare

SLCCA Plus with SLCCA and JPEG2000. We use 5-level wavelet

71

decomposition with 9/7 filter [20] (introduced in Chapter II) for both SLCCA

Plus and SLCCA. In SLCCA Plus, r and t are set to default values. For JPEG

2000 coding, the Kakadu software tools provided by [27] is used. Fig. 4.7

shows the image set. All images are 512×512 grayscale natural images.

Figure 4.7 Experiment image set. Top left: Lenna. Top right: Barbara. Bottom left:

Peppers. Bottom right: Mandrill

72

We evaluate their performance by PSNR, which is introduced in Chapter II.

Table 4.4 presents the PSNR based bit-distortion performance. On average,

SLCCA Plus achieves 7% bit saving over JPEG 2000 and 4% over SLCCA.

Table 4.4. PSNR based bit-distortion performance

Image
Bitrate

(bit/pixel)

PSNR (dB)

JPEG2000 SLCCA SLCCA Plus

Lenna

0.1 29.94 30.29 30.50

0.3 34.90 35.02 35.25

0.5 37.28 37.33 37.51

0.7 38.71 38.73 38.94

0.9 39.75 39.77 40.00

Barbara

0.1 25.00 24.84 25.09

0.3 29.80 29.67 29.82

0.5 32.87 32.48 32.92

0.7 35.24 35.03 35.32

0.9 37.35 36.97 37.35

Peppers

0.1 29.73 29.87 30.02

0.3 34.15 34.16 34.36

0.5 35.92 35.84 35.98

0.7 36.97 36.86 37.07

0.9 37.94 37.82 37.99

Mandrill

0.1 21.31 21.28 21.44

0.3 23.66 23.75 23.94

0.5 25.58 25.64 25.81

0.7 27.08 27.19 27.37

0.9 28.34 28.57 29.44

Fig. 4.8 is the detailed comparison for a zoomed in area in Lenna image. This

area contains edges, textures, and flat part. We compare JPEG2000, SLCCA,

73

and SLCCA Plus at 0.3 bpp to the original image. JPEG2000 shows the worst

result in the delicate texture of the hat. The texture is almost gone. While

SLCCA shows some texture on the hat, but the texture is more like grids, not

strips on the top of the hat. SLCCA Plus shows the best result among these

three. It preserves more fine texture than SLCCA. The top of the hat shows

some strip texture and the hat’s band also has more clear wrinkles on it. In

the flat, coarse texture area, such as the feather on the hat, the three codecs

do not show much difference in this image at this bitrate.

Fig. 4.9 shows the detailed comparison of stem area in Peppers image. This

area contains edges and flat part. We compare JPEG2000, SLCCA, and

SLCCA Plus at 0.3 bpp to the original image. In JPEG2000, the stem’s edge

is blurry. Moreover, the texture of the stem does not preserve very well.

SLCCA and SLCCA Plus have more explicit stem edge, while SLCCA Plus

shows more evident texture on the stem.

Fig. 4.10 show the comparison of Barbara image under different bitrate by

SLCCA Plus. The four images are at bitrate 0.1, 0.3, 0.5, and 0.7. Their

corresponding PSNR are 25.09, 29.82, 32.92, and 35.32, respectively. SLCCA

Plus can lead to an acceptable result at a very low PSNR (29.82 PSNR, 0.3

bpp), even with so many fine textures in the image.

74

Figure 4.8 Detail comparison for a zoomed in area in Lenna image at 0.3 bpp. Top

left: original image. Top right: JPEG2000. Bottom left: SLCCA. Bottom right:

SLCCA Plus

75

Figure 4.9 Detail comparison for a zoomed in area in Peppers image at 0.3 bpp. Top

left: original image. Top right: JPEG2000. Bottom left: SLCCA. Bottom right:

SLCCA Plus

76

Figure 4.10 Comparison of Barbara image under different bitrate by SLCCA Plus.

Top left: 0.1 bpp, 25.09 PSNR. Top right: 0.3 bpp, 29.82 PSNR. Bottom left: 0.5 bpp,

32.92 PSNR. Bottom right: 0.7 bpp, 35.32 PSNR.

4.6 Chapter Summary

77

In this chapter, we introduced SLCCA Plus. The improvement includes

intelligent quantization with an adaptive threshold, enhanced cluster filter,

potential significant shared-zero, and improved context models. These four

improvements lead to an impressive result that SLCCA Plus shows better

performance than the popular wavelet-based codec JPEG2000 and SLCCA,

especially in the textured and edge area.

78

CHAPTER V: CONCLUSIONS

An image coding algorithm, SLCCA Plus, is introduced in this dissertation.

SLCCA Plus is a wavelet-based subband coding method. In wavelet-based

subband coding, the input images will go through a wavelet transform and be

decomposed into wavelet subband pyramids. Then the characteristics of the

wavelet coefficients within and among subbands will be utilized to removing

the redundancy. The rest information will be organized and go through

entropy encoding. SLCCA Plus contains a series improvement method to the

SLCCA. Before SLCCA, there are three top-ranked wavelet image coders.

Namely, Embedded Zerotree Wavelet coder (EZW), Morphological

Representation of Wavelet Date (MEWD), and Set Partitioning in

Hierarchical Trees (SPIHT). They exploit either inter-subband relation

among zero wavelet coefficients or within-subband clustering. SLCCA, on the

other hand, outperforms these three coders by exploring both the inter-

79

subband coefficients relations and within-subband clustering of significant

wavelet coefficients. The critical processes of SLCCA are multiresolution

discrete wavelet decomposition, cluster searching within a subband,

significance-link registration across subband, and bit-plane encoding of

significant magnitudes by adaptive arithmetic coding.

SLCCA Plus strengthens SLCCA in the following aspects: Intelligence

quantization, enhanced cluster filter, potential-significant shared-zero, and

improved context models. The purpose of the first three improvements is to

remove redundancy information further while keeping the image error as low

as possible. As a result, they achieve a better trade-off between bit cost and

image quality. Moreover, the improved context lowers the entropy by refining

the classification of symbols in cluster sequence and magnitude bit-planes.

Lower entropy means the adaptive arithmetic coding can achieve a better

coding gain.

For performance evaluation, SLCCA Plus is compared to SLCCA and

JPEG2000. On average, SLCCA Plus achieves 7% bit saving over JPEG 2000

and 4% over SLCCA. The results comparison shows that SLCCA Plus shows

more texture and edge details in a lower bitrate.

More recently, in block prediction and discrete cosine transform (DCT) coding

category, HEVC Intra coding has delivered an impressive coding gain

80

through using a delicate yet innovative block prediction scheme before DCT.

HEVC outperforms SLCCA and SLCCA Plus. However, it is hard to integrate

a block prediction scheme with wavelet transform. A block prediction error

image could be statistically entirely different from an ordinary image.

Future research direction includes the combination of convolutional neural

networks used in Super-Resolutions [28, 29] and wavelet subband coding to

fully utilize the deep convolutional neural networks’ significant advantages

in extracting spectral and spatial features.

81

APPENDIX

Example of Binary Implementation of Arithmetic Coding

Symbol sequence to be code: 11010

At this time, we use non-adaptive model. The probability of 1 is 0.6, and the

probability of 0 is 0.4.

We use five binary bits to represent the initial range [00000, 11111]:

Figure 6.1: Example of Binary Implementation of Arithmetic Coding

The lower half is [00000, 01111] and the upper half is [10000, 11111].

Furthermore, the first quarter is [00000, 00111]; the second quarter is

82

[01000, 01111]; the third quarter is [10000, 10111]; the fourth quarter is

[11000, 11111].

Encoding

Code “1”: choose the corresponding subinterval (in red):

Figure 6.2: Example of Binary Implementation of Arithmetic Coding

Now there is no expansion of the interval or output. Code the second “1”:

choose the corresponding subinterval:

Figure 6.3: Example of Binary Implementation of Arithmetic Coding

Now the interval is in the upper half. We expand the upper half, output “1”

and get:

Figure 6.4: Example of Binary Implementation of Arithmetic Coding

Code the “0” and get the corresponding interval:

Figure 6.5: Example of Binary Implementation of Arithmetic Coding

83

Now the subinterval falls into the middle half and straddles the middle point.

We expand the middle half and get:

Figure 6.6: Example of Binary Implementation of Arithmetic Coding

Then code the next symbol “1” and get:

Figure 6.7: Example of Binary Implementation of Arithmetic Coding

There is still no need to expand and output. Next symbol is “0”. We get:

Figure 6.8: Example of Binary Implementation of Arithmetic Coding

The subinterval is in the lower half, so we should expand the lower half and

output “0”. Then output a “1” immediately because we expanded the middle

half once. Then we get:

Figure 6.9: Example of Binary Implementation of Arithmetic Coding

The subinterval is in the middle half and straddles the middle point. So we

expand the middle half:

84

Figure 6.10: Example of Binary Implementation of Arithmetic Coding

Now the interval satisfies termination condition Eq. (2.16). So we output “10”

and immediately a “0” for last middle half expansion.

At last, the output is “101100”.

Decoding

Input: 101100.

First, set the initial interval:

Figure 6.11: Example of Binary Implementation of Arithmetic Coding

We use 5 bits precision to represent the interval. Correspondingly, we choose

a 5-bit slide window to read the input. After each expansion, the window will

slide to the right by one bit:

Figure 6.12: Example of Binary Implementation of Arithmetic Coding

85

To make sure the window can keep sliding to the right, we will add 0s or 1s to

the end of input sequence:

Figure 6.13: Example of Binary Implementation of Arithmetic Coding

The added bits will not affect the decoding precision.

 At first, the input is “10110”. “10110” falls into symbol 1’s corresponding

subinterval.

Figure 6.14: Example of Binary Implementation of Arithmetic Coding

So output symbol “1”. Then divide symbol 1’s interval by the probability of 0

and 1. We find that “10110” is still in symbol 1’s subinterval:

Figure 6.15: Example of Binary Implementation of Arithmetic Coding

The second symbol is “1”. Now the subinterval falls into the upper half of the

whole interval. So we expand the upper half. Then slide the input window

and get:

86

Figure 6.16: Example of Binary Implementation of Arithmetic Coding

The input “10110” becomes “01100” after expansion and falls into symbol 0’s

subinterval:

Figure 6.17: Example of Binary Implementation of Arithmetic Coding

The third symbol is 0. Now the subinterval falls into middle half and

straddles middle points. So we need to expand the middle half and slide the

input window:

Figure 6.18: Example of Binary Implementation of Arithmetic Coding

“01000” falls into symbol 1’s subinterval, so the next symbol is 1:

Figure 6.19: Example of Binary Implementation of Arithmetic Coding

Then ”01000” falls into symbol 0’s subinterval:

87

Figure 6.20: Example of Binary Implementation of Arithmetic Coding

We get the last symbol 0.

The symbol sequence we get is 11010. It is correct after the codec process.

88

REFERENCES

[1] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet

coefficients,” IEEE Trans. Signal Processing, vol. 41, pp. 3445–3462,

Dec. 1993.

[2] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec

based on set partitioning in hierarchical trees,” IEEE Trans. Circuits

Syst. Video Technol., vol. 6, pp. 243–250, June 1996.

[3] S. Servetto, K. Ramchandran, and M. T. Orchard, “Wavelet based

image coding via morphological prediction of significance,” in Proc.

IEEE Int. Conf. Image Processing, Oct. 1995, pp. 530–533.

[4] B.-B. Chai, J. Vass, and X. Zhuang. 1997. Significance-linked connected

component analysis for low bit rate image coding. Multimedia Signal

Processing, IEEE First Workshop on 23-25, pp. 145-150

89

[5] A. Skodras. 2001. The JPEG 2000 still image compression standard.

Signal Processing Magazine, IEEE, vol. 18, issue. 5, pp. 36-58

[6] M. Vetterli and J. Kovacevic. 1995. Wavelets and Subband Coding,

Prentice Hall

[7] M. Rabbani and P. W. Jones, Digital Image Compression Techniques,

SPIE Optical Engineering Press, Bellingham, WA, 1991.

[8] W. Pennebaker, “JPEG technical specification, revision 8,” Aug. 1990,

Working Document No. JTC1/SC2/WG10/JPEG-8-R8.

[9] O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal

Processing Mag., vol. 8, pp. 14–38, Oct. 1991.

[10] S. G. Mallat, “A theory for multiresolution signal decomposition: The

wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell.,

vol. 11, pp. 674–693, July 1989.

[11] I. H. Witten, M. Neal, and J. G. Cleary, “Arithmetic coding for data

compression,” Commun. ACM, vol. 30, pp. 520–540, June 1987.

[12] I. H. Witten, R. Neal, J. G. Cleary, "Arithmetic coding for data

compression," Comm. ACM, vol. 30, pp. 520-540, June 1987.

[13] Junqiang Lan and Xinhua Zhuang. 2003. Embedded SLCCA for wavelet

image coding. Multimedia and Expo, ICME '03. International

Conference on vol. 2, pp. 357-369

90

[14] B. B. Chai, J. Vass and X. Zhuang, “Significance-Link Connected

Component Analysis for Wavelet Image Coding,” IEEE Trans. on Image

Processing, Vol. 8, No. 6, pp.774-784, 1999.

[15] X. Zhuang, “Digital Image Compression” Tech. Rep., Univ. Missouri,

Columbia, Dec. 2008.

[16] L. Vincent. 1993. Morphological grayscale reconstruction in image

analysis: Applications and effective algorithms. IEEE Trans. Image

Processing, vol. 2, pp. 176–201

[17] B. B. Chai, Significance-Linked Connected Component Analysis and

Morpho-Subband Decomposition for Multiresolution Image

Compression, Ph. D dissertation, Dec. 1997.

[18] M. Rabbani and P. W. Jones. 1992. Conditioning contexts for the

arithmetic coding of bit planes. IEEE Trans. Signal Processing, vol. 40,

no. 1, pp. 232-236

[19] T. Strutz. 2014. Entropy based merging of context models for efficient

arithmetic coding. IEEE International Conference on Acoustic, Speech

and Signal Processing,

[20] H. Y. Meng and Z. H. Wang. 2000. Fast spatial combinative lifting

algorithm of wavelet transform using the 9/7 filter for image block

compression. Electronics Letters, 36(21), pp. 1766-1767,

91

[21] H.G. Musmann, “Predictive image coding,” in Image Transmission

Techniques, W. K. Pratt, Ed., pp. 73-122. Academic Press, Orlando, FL,

1979.

[22] M. Rabbani, L. A. Ray, and J. R. Sullivan, “Adaptive predictive coding

with applications to radiographs,” Medical Instrumentation, vol. 20, pp.

182-191, 1986.

[23] W. H. Chen and W. K. Pratt, “Scene adaptive coder,” IEEE

Transactions on Communications, vol. COM-32, no. 3, pp. 224-232,

1984.

[24] R. J. Clarke, Transform Coding of Images, Academic Press, London,

1985.

[25] J. W. Woods and S. D. O’Neil, “Subband coding of images,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 5,

pp. 1278-1288, Oct. 1986.

[26] V. Sze, M. Budagavi, and G. J. Sullivan Editors. High Efficiency Video

Coding (HEVC) Algorithms and Architectures, Springer, ISSN: 1558-

9412

[27] D. S. Taubman and M. W. Marcellin. 2002. JPEG2000: Image

Compression Fundamentals, Standards, and Practice, Kluwer

Academic Publishers, pp. 354-360

92

[28] C. Dong, C. C. Loy, K. He, and X. Tang. 2014. Learning a deep

convolutional network for image super-resolution. in ECCV, pp. 184–

199. 2, 7, 20, 22

[29] C. Dong, C. C. Loy, K. He, and X. Tang. 2016. Image super-resolution

using deep convolutional networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence

[30] Topic 10 : Image Processing

http://hosting.soonet.ca/eliris/remotesensing/bl130lec10.html

[31] JPEG YCbCr Support https://msdn.microsoft.com/en-

us/library/windows/desktop/dn424131(v=vs.85).aspx

[32] http://www.avsforum.com/forum/139-display-calibration/1505166-do-

most-tvs-now-support-4-4-4-ones-original-thread-not-updated-4.html

[33] https://www.researchgate.net/figure/Third-level-filter-bank-block-

diagram-representation-of-a-DWT-and-b-UWT_fig6_264460565

93

VITA

Xiaobo Jiang was born in China and grew up in Shandong province. He

received a Bachelor’s degree in Electrical Engineering and Automation from

Beijing University of Aeronautics and Astronautics in 2008, a Master’s

degree in Electrical and Computer Engineering from University of Missouri –

Columbia in 2011, and a Doctorate in Computer Science from University of

Missouri – Columbia in 2018. He was a graduate assistant in College of

Engineering, University of Missouri – Columbia during his graduate studies

period.

