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ABSTRACT 

 

 

 

An image coding algorithm, SLCCA Plus, is introduced in this dissertation. 

SLCCA Plus is a wavelet-based subband coding method. In wavelet-based 

subband coding, the input images will go through a wavelet transform and be 

decomposed into wavelet subband pyramids. Then the characteristics of the 

wavelet coefficients within and among subbands will be utilized to removing 

the redundancy. The rest information will be organized and go through 

entropy encoding. SLCCA Plus contains a series improvement method to the 

SLCCA. Before SLCCA, there are three top-ranked wavelet image coders. 

Namely, Embedded Zerotree Wavelet coder (EZW), Morphological 

Representation of Wavelet Date (MEWD), and Set Partitioning in 

Hierarchical Trees (SPIHT). They exploit either inter-subband relation 

among zero wavelet coefficients or within-subband clustering. SLCCA, on the 

other hand, outperforms these three coders by exploring both the inter-
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subband coefficients relations and within-subband clustering of significant 

wavelet coefficients.  

SLCCA Plus strengthens SLCCA in the following aspects: Intelligence 

quantization, enhanced cluster filter, potential-significant shared-zero, and 

improved context models. The purpose of the first three improvements is to 

remove redundancy information further while keeping the image error as low 

as possible. As a result, they achieve a better trade-off between bit cost and 

image quality. Moreover, the improved context lowers the entropy by refining 

the classification of symbols in cluster sequence and magnitude bit-planes. 

Lower entropy means the adaptive arithmetic coding can achieve a better 

coding gain.    

For performance evaluation, SLCCA Plus is compared to SLCCA and 

JPEG2000. On average, SLCCA Plus achieves 7% bit saving over JPEG 2000 

and 4% over SLCCA. The results comparison shows that SLCCA Plus shows 

more texture and edge details at a lower bitrate. 
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CHAPTER I: INTRODUCTION 

 

 

 

Image compression is always an active research area. Recently, it attracts 

many researcher’s attention, due to the widely used high-resolution images 

and videos. People have different preferences for visual effects, but one thing 

is not going to change:  the clearer, the better. This preference makes high-

resolution images highly demanded. With the rapid development of camera 

sensor and display technology, high-resolution video and images have been 

popularized, and this makes a lot challenge for storage and transmission 

technologies. More efficient image compression methods are needed.  

Digital images had been developed quickly since the 1960s and 1970s, thanks 

to the invention of CCD image sensor. Unlike a film image, a digit image is 

constituted from many pixels. The pixel is the smallest addressable element 

of an image. Moreover, the pixels are arranged in rows and columns. Thus, 

the digital images are also referred to as raster images. 
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Each pixel is corresponded to an integer number to represent the level of 

brightness. The integer value is stored in the drive in binary form. Most 

commonly, we use one byte to store a pixel, which means the pixel value has 

a range from 0 to 255 (Fig. 1.1 [30]). 

 

Figure 1.1 A digital image and the pixel value in it 

Apparently, a digital image is better with a higher density of the pixels, or 

high-resolution. However, high-resolution will lead to substantial storage 

space and slow transfer speed. Fortunately, the digital image usually 

contains a significant amount of redundancy information, especially after we 

transfer the image to the frequency domain. Due to the limitation of human 

eye’s sensitivity, a considerable amount of frequency information will not 
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affect image’s quality (sometimes it is only the noise from the camera sensor). 

Thus, we can eliminate the redundancy. On the other hand, thanks to 

Shannon’s entropy theory, we can encode the needed information in the 

image into a much smaller size.  

The image compression is the art and science aim at taking advantage of this 

redundancy to efficient encoding the images with reduced size. The image 

compression process usually contains three main steps: 1) preprocess the 

image to expose as much redundancy as possible, 2) organize the information 

to eliminate the redundancy, and 3) encode the needed information. 

Based on how we prepare the image to expose and explore its redundancy 

information, image compression has two essential categories: 1) Wavelet-

based subband coding [7, 23-25], and 2) Hybrid coding of block prediction [7, 

21, 22] and discrete cosine transform (DCT).   

Wavelet-based image coder has delivered a much higher coding gain over the 

classical DCT-based coder such as JPEG.  More recently, through using a 

delicate yet innovative block prediction scheme before DCT, HEVC Intra [26] 

coding has delivered an impressive coding gain. 

In wavelet-based subband coding, the input images will go through a wavelet 

transform and be decomposed into wavelet subband pyramids. Then the 
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characteristics of the wavelet coefficients within and among subbands will be 

utilized for removing the redundancy and encoding. There are several 

renowned wavelet codecs: Embedded Zerotree Wavelet Coder (EZW) [1], Set 

Partitioning in Hierarchical Trees (SPIHT) [2], Morphological Representation 

of Wavelet Date (MEWD) [3], Significance-Linked Connected Component 

Analysis (SLCCA) [4] and JPEG 2000 [5]. Both EZW and SPIHT exploit the 

cross-subband insignificant coefficient correlation with conventional tree 

structures while SPIHT enhances EZW by partitioning the cross-subband 

tree structure. MRWD uses within-subband clustering of significant wavelet 

coefficients. SLCCA outperforms EZW and SPIHT and strengthens MRWD 

by using irregularly shaped structures (clusters) to map the significant 

coefficients and linking the clusters across subbands. The relatively 

widespread coder JPEG 2000 represents the wavelet coefficient values 

(include signs and magnitudes) in bit-planes and performs entropy coding 

directly to the bit-planes. By contrast, SLCCA embeds the coefficients’ signs 

in clusters and only codes significant coefficients’ magnitudes bit-plane wise. 

Comparatively, SLCCA shows better performance among these four codecs. 

This dissertation is the continuing and enhancing work of SLCCA. 

The core of SLCCA is a unique data organization and representation (DOR) 

strategy for DWT images [6]. It is developed at University of Missouri by 

Bing-Bing Chai, Jozsef Vass and Xinhua Zhuang in 1996. Two characters of 
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the SLCCA’s strategy are 1) within-subband clustering of significant wavelet 

coefficients and 2) Cross-subband significance linkage between a parent 

cluster and a child cluster. The advantage of SLCCA embodied in it can 

achieve high performance even at the meager bit rate. The detailed 

introduction of SLCCA is in Chapter III.  

The work of SLCCA Plus in this dissertation is an upgrading based on 

SLCCA. The upgrades include intelligent quantization with an adaptive 

threshold, enhanced cluster filter, potential significant shared-zero, and 

improved context models. A detailed introduction is in Chapter IV. Chapter II 

introduces the background knowledge and main steps of Wavelet-based 

subband coding. Chapter V is the conclusion. 
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CHAPTER II: BACKGROUND KNOWLEDGE OF 

DIGITAL IMAGES AND IMAGE COMPRESSION 

 

 

 

As aforementioned, image compression process usually contains three main 

steps: 1) preprocess the image to expose as much redundancy as possible, 2) 

organize the information to eliminate the redundancy, and 3) encode the 

needed information using entropy coding. In wavelet-based subband coding, 

these three steps can be instanced as the following process in Fig. 2.1: 

 

Figure 2.1. Wavelet-based subband coding main steps 

Digital Image
Color Space 

Transfer
Wavelet 
Transfer

Data Organize
Arithmetic 

Coding
Output 

Codeword
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Most wavelet codecs use color space transform and wavelet transform to 

preprocess the images and arithmetic coding for the entropy coding part, 

while their data organize methods are varied. This chapter introduces color 

space transform, wavelet transform, and arithmetic coding as the background 

of the wavelet-based subband coding. 

2.1 Image Redundancy 

In image and video coding, there are three types of image 

redundancy(Rabbani)[7]: 

• Spectral Redundancy, which is due to the correlation between different 

color planes or spectral bands. 

• Spatial Redundancy, which is due to correlation or dependence 

between neighboring pixels. 

• Temporal Redundancy, which is due to the typically small changes 

between successive image frames. 

The image and video compression algorithms always prepare an image or 

video taking advantage of these three kinds of redundancy to rearrange the 

original image/video information into a much compact form. Spectral and 

spatial redundancy is mostly used in wavelet-based subband coding and block 

prediction DCT coding, respectively. Temporal redundancy is used in videos. 
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2.2 Color Space — RGB and YCbCr 

A raw color image captured from camera usually using RGB color space, 

which uses a combination of red, green and blue values to describe the color. 

That means each color pixel is constituted from three color pixels (red, green, 

and blue). In this form, we can treat every color digital image as three equal 

sized grey-scale images. For an 8-bit color depth, each color pixel uses a value 

ranging from 0 to 255 to represent the different intensity of red, green, or 

blue. That’s 16,777,216 different colors. This precision is not only enough for 

human eyes but also significantly beyond the capabilities of existing displays.  

Besides RGB, the most common color space used in image compression is 

YCbCr. It represents color space in three terms: one luminance 

component/luma (Y) and two chrominance components/chroma (Cb and Cr). 

The YCbCr image is converted from the corresponding RGB image (Fig. 2.2 

[31]). The conversion has several standards. Below is the ITU-R BT.601 

standard which also used in the famous JPEG [8] standard: 

• From 8-bit RGB to 8-bit YCbCr: 

𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (2.1) 

𝐶𝑏 = 128 − 0.168736𝑅 − 0.331264𝐺 + 0.5𝐵 (2.2) 

𝐶𝑟 = 128 + 0.5𝑅 − 0.418688𝐺 − 0.081312𝐵 (2.3) 
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• From 8-bit YCbCr to 8-bit RGB: 

𝑅 =  𝑌 +  1.402 (𝐶𝑟 –  128) (2.4) 

𝐺 =  𝑌 –  0.34414 (𝐶𝑏 –  128)–  0.71414(𝐶𝑟 –  128) (2.5) 

𝐵 =  𝑌 +  1.772 (𝐶𝑏 –  128) (2.6) 

This conversion changes the color space from three colors to luma and chroma 

values. However, only this conversion will not eliminate any redundancy 

information since the image size is not changed and the precision is still 8 

bits. The redundancy savings come from a process called chroma 

subsampling. 

 

 

Figure 2.2. Examples of RGB and YCbCr color space 
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Chroma subsampling takes a YCbCr image and down-sampling its two 

chroma components, Cb and Cr. This process is based on a fact that human 

eyes are more sensitive to brightness than to chrominance, which means for 

human, most of the image detail lies in the luma component. 

There are four popular chroma subsampling mode: 4:4:4, 4:2:2, 4:4:0, and 

4:2:0. Table 2.1 compares these four modes [31].  

Table 2.1. Four chroma subsampling mode details 

Subsampling 

mode 

Horizontal 

downscale 

Vertical 

downscale 

Bits per pixel 

for the image 

4:4:4 1x 1x 24 

4:2:2 2x 1x 16 

4:4:0 1x 2x 16 

4:2:0 2x 2x 12 

 

 

Figure 2.3. YCbCr 4:4:4 vs 4:2:0. The left image is 4:4:4. Right image is 4:2:0 

We can see that YCbCr 4:2:0 has only half size compared to the original 

image. Thanks to the brightness information are fully preserved, we will not 
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feel the clarity downgrade. The only difference is the color seems less 

saturated (Fig. 2.3 [32]).  

2.3 Discrete Wavelet Transform (DWT) 

DWT is widely used in image compression. It uses finite length yet mutually 

compensated low/high-pass filters to decompose a signal into low/high-

frequency subbands in the temporal domain [6, 9, 10]. With frequency 

contents cut in half, each subband in temporal domain can be characterized 

using a resolution that matches its scale. Wavelet theory provides a 

fundamental insight into the structure of subband decomposition and thus a 

more efficient approach to filters design [1, 6]. 

The advantage of applying 2D wavelet transform is that the image after 

transformed usually exhibits lower entropy and is thus more compressible.  

2D DWT could be employed as a model for several levels. After the first level 

of 2D DWT, the input image is decomposed into four subbands shown in Fig. 

2.4. 

From Fig. 2.4 we can see that there are four subbands: LL1, HL1, LH1, HH1. 

The LL1 subband can be decomposed by DWT again. Moreover, after the 

second level 2D DWT, the image is like Fig. 2.5. 
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From Fig. 2.5 we can see that there are four new subbands: LL2, HL2, LH2, 

HH2 instead of the LL1 in Fig. 2.4.  

Fig. 2.6 shows a three-level 2D DWT output of the “Lenna” image. 

 

Figure 2.4. An image’s structure after one level of 2D DWT 

 

Figure 2.5. An image’s structure after two scales of 2D DWT 
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Figure 2.6. The subband pyramid of three-level 2D DWT 

2.3.1 Implementation of 2D DWT in Image Coding 

 

Figure 2.7. DWT inherit structure 

An input sequence x(n) is passed through a low-pass filter g(n) and a high-

pass filter h(n). Then the output samples are down-sampling by factor 2. The 

low-pass output is the next level’s input (shown in Fig. 2.7 [33]). These two 

filter steps can be defined as 
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𝑦𝑙𝑜𝑤(𝑛) = ∑ 𝑔(𝑘)𝑥(2𝑛 − 𝑘)

∞

𝑘=−∞

(2.7) 

𝑦ℎ𝑖𝑔ℎ(𝑛) = ∑ ℎ(𝑘)𝑥(2𝑛 − 𝑘)

∞

𝑘=−∞

(2.8) 

Alternatively, written in convolutions: 

𝑦𝑙𝑜𝑤 = (𝑔 ∗ 𝑥) ↓ 2 (2.9) 

𝑦ℎ𝑖𝑔ℎ = (ℎ ∗ 𝑥) ↓ 2 (2.10) 

Implementation: 

a. Analysis Part 

Input: image x (size m by n), 9/7 wavelet filters (low-pass analysis filter g 

with size 9, and high-pass analysis filter h with size 7) [20]. 

g = 

{-3.782845550699535e-02, 

-2.384946501937986e-02, 

1.106244044184226e-01, 

3.774028556126536e-01, 

-8.526986790094022e-01, 

3.774028556126537e-01, 

1.106244044184226e-01, 

-2.384946501937986e-02, 

-3.782845550699535e-02} 

 

h= 

{-6.453888262893856e-02, 

4.068941760955867e-02, 

4.180922732222124e-01, 

-7.884856164056651e-01, 

4.180922732222124e-01, 

4.068941760955867e-02, 

-6.453888262893856e-02} 

Output: 2D Wavelet decomposed image y2 (size m by n) 

Algorithm: 

For i = 0 … m-1, do: 
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 For j = 0 … n/2-1, do:   

  For k = 0 … 8, do:  

   y1[i][j] = y1[i][j] + x[i][2*j+(k-4)]*g[k] 

(where x[i][a-j]=x[i][a+j] for j = 1, …, 4 when a = 0, n-1) 

  For k = 0 … 6, do:  

   y1[i][j+n/2] = y1[i][j+n/2] + x[i][2*j+1+(k-3)]*h[k] 

For j = 0 … n-1, do:   

 For i = 0 … m/2-1, do 

  For k = 0 … 8, do 

   y2[i][j] = y2[i][j] + y1[2*i+(k-4)][j]*g[k] 

  For k = 0 … 6, do 

   y2[i+m/2][j] = y2[i+m/2][j] + y1[2*i+1+(k-3)][j]*h[k] 

 

b. Synthesis Part: 

Input: DWT image y (size m by n), low-pass synthesis filter g (size 7), high-

pass synthesis filter h (size 9). 

g = 

{-6.453888262893856e-02, 

-4.068941760955867e-02, 

4.180922732222124e-01, 

7.884856164056651e-01, 

4.180922732222124e-01, 

-4.068941760955867e-02, 

-6.453888262893856e-02} 

 

h = 

{3.782845550699535e-02, 

-2.384946501937986e-02, 

-1.106244044184226e-01, 

3.774028556126536e-01, 

8.526986790094022e-01, 
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3.774028556126537e-01, 

-1.106244044184226e-01, 

-2.384946501937986e-02, 

3.782845550699535e-02} 

 

Output: reconstructed image x2 (size m by n) 

Algorithm: 

For j = 0 … n-1, do:   

 For i = ⌊−3/2⌋… (m-1+3)/2, do:   

  If 0 ≤ i ≤ m/2-1:  

yl[i][j] = y[i][j] 

  Else if i < 0 

   yl[i][j] = y[-i][j] 

  Else: i >m/2-1 

   yl[i][j] = y[-i+2m-1][j] 

For i = ⌊−3/2⌋… (m-1+3)/2, do:   

For k = 0 … 6, do: 

  x1[2*i+(k-3)][j] = x1[2*i+(k-3)][j] + yl[i][j]*g[k] 

 For i = ⌊−5/2⌋… (m-1+3)/2, do:   

If 0 ≤ i ≤ m/2-1:  

yh[i][j] = y[i][j] 

  Else if i < 0 

   yh[i][j] = y[-i-1][j] 

  Else: i >m/2-1 

   yh[i][j] = y[-i+2m-2][j] 

For i = ⌊−5/2⌋… (m-1+3)/2, do:   

For k = 0 … 8, do: 

   x1[2*i+1+(k-4)][j] = x1[2*i+1+(k-4)][j] + yh[i+m/2][j]*h[k] 
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For i = 0 … m-1, do:   

 For j = ⌊−3/2⌋… (n-1+3)/2, do:   

  If 0 ≤ j≤ n/2-1:  

yl[i][j] = x1[i][j] 

  Else if j < 0 

   yl[i][j] = x1[i][-j] 

  Else: j >n/2-1 

   yl[i][j] = x1[i][-j+2n-1] 

For j = ⌊−3/2⌋… (n-1+3)/2, do: 

For k = 0 … 6, do:  

   x2[i][2*j+(k-3)] = x2[i][2*j+(k-3)] + yl[i][j]*g[k] 

 For j = ⌊−5/2⌋… (n-1+3)/2, do:   

If 0 ≤ i ≤ n/2-1:  

yh[i][j] = x1[i][j] 

  Else if i < 0 

   yh[i][j] = x1[i][-j-1] 

  Else: i >n/2-1 

   yh[i][j] = x1[i][-j+2n-2] 

For j = ⌊−5/2⌋… (n-1+3)/2, do:   

For k = 0 … 8, do:  

   x2[i][2*j+1+(k-4)] = x2[i][2*j+1+(k-4)] + yh[i][j+n/2]*h[k] 

 

2.3.2 The Characteristic of Wavelet-Transformed Images 

A. Spatial-Frequency Localization 
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Subband coding decomposes an input image into several frequency bands. 

Each subband contains coefficients localized within a particular frequency 

range [17]. Moreover, each wavelet coefficient is calculated from a local piece 

of the input image. So they are also spatial localized. 

B. Energy Compaction 

Most natural images contain a relatively significant portion of smooth 

gradient content and textured content. Moreover, the images comprise a 

relatively small part of sharp edges and object boundaries. The flat areas 

have less variation than the textures and edges. They mostly consist of the 

low-frequency component. In contrast, the edges include primarily of the 

high-frequency component. The textured areas contain a mixture of the low 

and high-frequency component. Wavelet transform splits the input image 

into four equal-sized subbands by frequency. Moreover, the most energy in 

smooth and textured content is compacted into one of the four subbands, the 

LL subband [17]. By applying 2D DWT repeatedly to the LL subband at a 

coarser level, the energy will be compacted into few wavelet coefficients. 

C. Within-Subband Clustering of Significant Coefficients 

The coefficients in highpass subbands (HL, LH, HH) lack low-frequency 

energy in smooth and textured content while retaining high-frequency energy 
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found in edges and boundaries, which tend to be continuously and clustered 

[17]. 

D. Symmetry of HL and LH Subband 

2-D Wavelet Transform is done by applying 1-D Wavelet Transform twice 

from two directions, horizontally and vertically, to the input image. HL 

subband is the first highpass filtered horizontally, and then lowpass filtered 

vertically. While LH subband is firstly lowpass filtered horizontally and then 

highpass filtered vertically. These two symmetric processes lead to 

asymmetric coefficients distribution in HL and LH subband.  

E. Cross-Subband Similarity 

As mentioned before, the highpass subbands retain the high-frequency 

energy of edges and textured content. Moreover, the coefficients are spatial 

localized. There is a dependency between the magnitudes of parent and 

children to a certain extent. 

F. Decaying of Coefficients Magnitudes Across Subbands 

The coefficient magnitudes in a coarser subband are smaller than the 

coefficient magnitudes in a finer subband [17].  
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2.4 The Adaptive Arithmetic Coding 

An adaptive model represents the changing symbol frequencies (probabilities) 

seen so far in a source string [7, 11, 18]. Such a model matches the local 

statistics in the source string. In practice, it outperforms the fixed model 

version regarding compression efficiency. 

The adaptive algorithm to encode the source string 𝒔𝒊𝟏,
𝒔𝒊𝟐,

𝒔𝒊𝟑,
… , 𝒔𝒊𝒎,

of m  

Step 1 Initialize the source model. 

Given the source symbol set 𝑆 = {𝑠1, … , 𝑠𝑛}, initialize the frequency of 

each symbol to a constant. 𝑓𝑖 = 𝑓0, 𝑖 = 1, … , 𝑛. 

Step 2 𝑘 = 1, 𝑥 = 0. 

Step 3 Compute the probability of each source symbol: 

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑛
𝑗=1

(2.11) 

Step 4 Apply an affine transform to 𝑥: 

𝑦 = 𝑤𝑖𝑘
(𝑥) (2.12) 

Step 5 Update source model: 𝑓𝑖𝑘
= 𝑓𝑖𝑘

+ 1. 

If ∑ 𝑓𝑗
𝑛
𝑗=1 == 𝑀𝐴𝑋𝐹𝑅𝐸𝑄𝑈𝐸𝑁𝐶𝑌 

𝑓𝑗 =
𝑓𝑗

2
. 𝑗 = 1, … , 𝑛 (2.13) 

Step 6 𝑘 = 𝑘 + 1 

If 𝑘 ≤ 𝑚 

Then 

𝑥 = 𝑦 (2.14) 

Go to Step 3. 
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The adaptive arithmetic [11] coding works well for a stationary Markov 

source compare to an arithmetic coding with the fixed model. The adaptive 

arithmetic coding updates the corresponding conditional probability 

estimation each time when the coder visits a particular context. 

The probability distributions may vary from one portion to another in an 

image that is non-stationary. The adaptive arithmetic coding is more robust 

and follows the local probability distribution variation very well. So it can 

achieve higher compression. 

2.5 Binary Implementation of Arithmetic Coding 

The conventional arithmetic coding (CAC) has two problems: 

• In CAC, every time encoding an incoming symbol, we scale down the 

coding interval [L, L+R) (L: lower bound; R: range) to a new (smaller) 

subinterval, corresponding to the binary subsequence so far the 

encoder receives including the new symbol.  To find a unique number 

(i.e., code) within to represent the subinterval (i.e., L and R), it needs 

to infinitely increase decimal digits or have an arbitrary precision 

floating point machine in principle, that turns out to be impractical.  

• Encoding cannot start before the whole symbol sequence is received.  

Decoding will not be able to start before all the code bits are received. 
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Binary Implementation of Arithmetic Coding (BIAC) [12] was introduced to 

fix these two problems. Along with the way in encoding the symbol sequence, 

BIAC will generate binary code word bit by bit and send them to the decoder.  

So the floating-point machine is no longer needed. 

2.5.1 The Binary Prefix  

Prefix: the start digits of a number. For example, 1297 has prefix “1”, “12”, 

“129” and “1297”. 

Common prefix: if multiple numbers have the same prefix, we call the same 

prefix common prefix. For example, 120, 129 and 1297 have common prefix 

“1” and “12”. 

 

Figure 2.8: left is decimal present, and right is binary present 
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In BIAC, we only deal with the values less than 1. So “0.” will always be the 

prefix. In the following part, “0.” is omitted from the prefix. As Fig. 2.8: 

• All the decimal values in interval [0, 0.5) has a common binary prefix 0 

• All the decimal values in interval [0.5, 1) have a common binary prefix 1 

• All the decimal values in interval [0, 0.25) have a common binary prefix 

00 

• All the decimal values in interval [0.25, 0.5) have a common binary 

prefix 01 

• All the decimal values in interval [0.5, 0.75) have a common binary 

prefix 10 

• All the decimal values in interval [0.75, 1) have a common binary prefix 

11 

If all the values in an interval have a common prefix P, then we say that P is 

this interval’s prefix. If an interval has a prefix, its subinterval will also have 

that prefix.  

In the following, [x, y)2 refers to a binary representation of [x,y). 

2.5.2 Binary Implementation of Arithmetic Coding 

BIAC is very similar to CAC. However, during the coding process, it directly 

uses binary numbers to represent L and R. The basic idea of BIAC is: 
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whenever the interval [L, L+R) has a prefix, output the prefix into a 

codeword.  

Main_Process 

Starts with initial interval [0.0, 1.0)2 

For (each incoming symbol) do: 

1. If there are n symbols, like the CAC, the interval will be divided into n 

subintervals in proportion to the symbols’ probabilities; 

2. choose the one corresponding to the incoming symbol; 

3. decide_the_output.  

 

decide_the_output 

bits_to_follow = 0; 

Step 1: 

if (interval [L, L+R) lies in the lower half [0.0, 0.1)2) 

  { output “0”; 

  output bits_to_follow number of “1”s; 

  bits_to_follow = 0; 

  L = 2×L, R = 2×R; 

  go to Step 1. } 

 else       go to Step 2. 

Step 2: 

if (interval [L, L+R) lies in the upper half [0.1, 1.0)2) 

  { output “1”; 

  output bits_to_follow number of “0”s; 

  bits_to_follow = 0; 

  L = 2× (L-0.5), R = 2×R; 

  go to Step 1. } 
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 else go to Step 3. 

Step 3: 

if (interval [L, L+R) lies in [0.01, 0.11)2) 

  { bits_to_follow = bits_to_follow + 1; 

  L = 2× (L-0.25), R = 2×R; 

  go to Step 1. } 

 else End. 

 

Note:  

1. The interval [L, L+R) lies in the lower half [0.0, 0.1)2. In this case, all 

the numbers in the interval will have a common prefix “0”. The 

following encoding process will only choose the subinterval, so this 

prefix “0” will be in the final code word. So now we can output “0” into 

the code word even the encoding is not finished yet. However, there 

may exist more than one-bit prefix (i.e., [0.00, 0.01)2 has prefix “00”). 

So we expand the lower half to be the full interval [0.0, 1.0)2 and adjust 

L = 2×L, R = 2×R (Fig. 2.9). This process will shift all the digits after 

the decimal point to the left by 1 bit (i.e., [0.010, 0.011)2 becomes [0.10, 

0.11)2) and eliminate the coded prefix “0”. At this point, we can 

continue to check if there exists “fresh” prefix.  
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Figure 2.9 Interval [L, L+R) lies in the lower half 

2. The interval [L, L+R) lies in the upper half [0.1, 1.0)2. This case is very 

similar to the first one. We put “1” into the code word. Then expand 

this upper half to be the full interval [0.0, 1.0)2 and adjust L = 2×(L-

0.5), R = 2×R (Fig. 2.10). 

 

Figure 2.10 Interval [L, L+R) lies in the upper half 

3. When the interval [L, L+R) straddles middle point and lies in [0.01, 

0.11)2 (i.e., in second and third quarters). There exists no common 

prefix as defined above. However, notice that in [0.01, 0.11)2, the first 

bit is always opposite to the second bit in two bits prefix (either 01 or 
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10). By expanding the [0.01, 0.11)2 to be the full interval [0.0, 1.0)2 

(accordingly adjusting L = 2× (L-0.25), R = 2×R), the [0.01, 0.10)2 and 

[0.10, 0.11)2 become [0.00, 0.10)2 or [0.10, 1.00)2   respectively.  Then, 

for example, if next incoming symbol’s subinterval lies in lower half 

[0.00, 0.10)2 (i.e., the next output is “0”), this subinterval should lie in 

[0.01, 0.10)2 (prefix for this interval is “01” ) before expansion (Fig. 

2.11). Therefore, the interval can safely be expanded as described 

above, if only we remember that whatever bit comes next, its opposite 

must be transmitted afterward as well.  

 

Figure 2.11. Red part is the subinterval for the next incoming symbol 

Sometimes after this expand, the interval still straddles the middle 

point and lies in [0.01, 0.11)2. Then we need to do another expand. Fig. 

2.12 is an example where the current interval has been expanded three 

times. Suppose the next subinterval is in the lower half (i.e., output 

“0”). Then the next three output bits will be “1”s since the subinterval 

is not only in the [0.01, 0.10)2 of the last interval, but in the [0.011, 

0.10)2, and moreover the [0.0111, 0.10)2. We use a variable 



28 
 
 

bits_to_follow to remember the number of expansion. Moreover, the bit 

that is output next must be followed by that number of opposite bits. 

Now it is clear why in Step 1 and 2 there is “output bits_to_follow 

‘0’/’1’s”. 

 

Figure 2.12 Three times of expansion (bits_to_follow = 3) and then the 

subinterval (red) lies in [0.0, 0.1)2. The output is 0111 

2.5.3 Termination 

When all the symbols are encoded, we get a final interval. In BIAC, we 

choose a subinterval of the final interval and output that subinterval’s 

prefix. To use the shortest prefix, we need the subinterval as big as 

possible. As described above, BIAC can guarantee that, after 

decide_the_output, either 

𝐿 < 0.01 < 0.10 ≤ (𝐿 + 𝑅) (2.15) 

or 
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𝐿 < 0.10 < 0.11 ≤ (𝐿 + 𝑅) (2.16) 

Eq. (2.15) can make sure [0.01, 0.10) is the subinterval of [L, L+R). Eq. 

(2.16) can make sure [0.10, 0.11) is the subinterval of [L, L+R). So we 

can output “01” in the first case and “10” in the second. 

A BIAC example is included in Appendix A. 

2.6 Peak Signal-to-Noise Ratio 

We evaluate the image compression performance mainly using peak signal-

to-noise ratio (PSNR). Given an m x n input image I and an output image K, 

the Mean Squared Error (MSE) is defined as: 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

(2.17) 

The PSNR is defined as: 

𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (2.18) 

Where MAXI  = 255. It is the maximum possible pixel value of the image.  

2.7 Chapter Summary 

This chapter introduced image redundancy and main steps of wavelet-based 

subband coding. Among them, the wavelet transform and arithmetic coding 

are the crucial steps. Wavelet transform puts an image into the spectral 

domain and exposes the spectral relation and redundancy in the image. 

Arithmetic coding compresses the information additionally after the data 

organization. 
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CHAPTER III: SIGNIFICANCE-LINKED CONNECTED 

COMPONENT ANALYSIS 

 

 

 

Chapter II introduces the background of the wavelet-based subband coding. 

In this section, a unique data organization and representation strategy for 

DWT images will be presented. It is called the Significance-Linked Connected 

Component Analysis (SLCCA). SLCCA follows the primary process in Fig. 2.1 

and has a remarkable data organize technic. 

3.1 SLCCA Core Procedures 

SLCCA processes an input image through the steps in Fig. 3.1. Since the 

color space transform method is usually considered as a separated technic to 

image compression, it is not shown in this process. The input image is an 
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image with pixel value ranging from 0 to 255. It can be one of the Red, Green, 

and Blue images. It can also be either luma or chroma image. 

 

Figure 3.1. SLCCA Core Procedures 

3.2 Wavelet Transform 

The first step is a 2-D discrete wavelet transform (DWT). DWT uses finite 

length yet mutually compensated low/high-pass filters to decompose a signal 

into low/high-frequency subbands in the temporal domain [6, 9, 10]. The 

detailed process is introduced in Chapter II. 2-D DWT is employed in the 

input image for several inherited levels and decomposed the image into a 

multi-resolution wavelet pyramid. 

Input Image Wavelet Transform

QuantizationCluster Searching

Magnitude Coding Compressed Image
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3.3 Quantization 

After the multi-level wavelet transform, the image has the same size as the 

input image. Each “pixel” in it is now the wavelet coefficient. All the wavelet 

coefficients are going through a uniform quantization [13].  

Since SLCCA is a lossy compression, the wavelet coefficients are going 

through the quantization process by using a uniform scalar quantizer based 

on some bit rate or picture quality constraint. Quantization reduces the bit-

depth of wavelet coefficients at the expenses of precision. Scalar quantization 

consists of a simple truncation of less significant bits, often obtained by right 

shifting wavelet coefficients’ magnitude. Coefficients differing only in the 

digits being cut off will be indistinguishable after inverse-quantization. 

The quantization step, Stepsize, is set based on the target compression ratio. 

During quantization, SLCCA assigns Symbol and Magnitude to each pixel 

based on corresponding coefficient value. The quantization procedure is as 

follows [13]: 

Uniform quantization in SLCCA 

For each pixel x 

     If |c(x)| < Stepsize 

          Magnitude(x) = 0 

          Symbol(x) = Z 

     Else 
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          Magnitude(x) = ⌊(|𝑐(𝑥)| –  𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒) / 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒 ⌋ 

          If c(x) > 0 

               Symbol(x) = P 

          Else 

               Symbol(x) = N 

Where c(x) is pixel x’s wavelet coefficient value.  

Pixels with symbol P/N are significant while those with symbol Z are 

insignificant. A significance map thus emerges from the pixel’s symbols. 

Quantization produces a large number of insignificant pixels.  

Given a quantization level, a quantized image produces a binary significance 

map by [14]: 

𝐴[𝑥, 𝑦] = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒𝑙𝑒𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑐 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 [𝑥, 𝑦]𝑖𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.1) 

The binary significance map is shown in Fig. 3.2. We could easily see from 

Figure 3.2 that the significant coefficients in each subband other than Low-

Low (LL) subband usually indicate the occurrences of either edges or textures 

of high energy. It means that these significant coefficients represent the 

frequency “changes” in the image and there are connections between coarse 

and finer scales. 
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The wavelet image coding problem can thus be translated into the coding of 

significance map and sign/magnitude of significant coefficients. 

 

Figure 3.2. The subband pyramid after binary significant map convert 

3.4 Cluster Searching 

After quantization, SLCCA scans each subband from highest level to the 

lowest level and uses irregularly shaped clusters to organize the adjacent 

significant pixels within a subband [4, 14]. A cluster starts from a seed 

coordinates, following by a sequence of symbols representing the pixels 

orderly in the cluster. The seed coordinates can either be coded directly or 

implied by cross-subband linkage from a cluster in parent subband [14].  
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3.4.1 Significance Clustering 

Within-subband the SLCCA has a map coding method called significance 

clustering [14]. After quantization, a rather big portion of significant 

coefficients within each subband tend to form a few (3 × 3 or 2 × 2) connected 

components or clusters, shown in Fig. 3.3 [14]. It will be very inefficient if we 

encode too many insignificant coefficients. Hence, organizing and 

representing each subband as irregular-shape connected components or 

clusters is an efficient way for coding. This way can reduce the number of 

insignificant coefficients that barely contains the image’s information.  

Clusters can be progressively constructed using conditional morphological 

dilation [16], resulting in an effective segmentation of the within-subband 

significance map. 

 

Figure 3.3. Illustration of connected components or clusters 
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The conditional morphological dilation utilizes a structuring element (2 × 2 to 

5 × 5, most common) to control the shape and size of the cluster as well as the 

boundary formation. Fig. 3.4 [14] is four examples of the typical structuring 

element. 

However, the significant coefficients in the significant map are loosely 

clustered, especially in the high-frequency subband. If we use a small 

structuring element, i.e., 2 × 2 or 3 × 3, the cluster may contain a minimal 

amount of significant coefficients. Because some significant coefficients 

nearby will not be scanned. However, if we use a too large structuring 

element, the cluster will contain too many insignificant coefficients.  

 

Figure 3.4. Four possible structuring elements. (a) 2 × 2 dilation (b) 3 × 3 dilation (c) 

4 × 4 dilation (d) 5 × 5 dilation 
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The cluster detection operation [16] used by conventional SLCCA is 

illustrated in Fig. 3.5 [14]. In the figure, White pixels denote insignificant 

coefficients that are not to be coded; Black and gray pixels denote significant 

(S) and boundary insignificant (I) coefficients to be coded respectively. 

 

Figure 3.5. (a) A binary image produced after quantization. (b) Seed position (3,2). (c) 

Use 2x2 structuring element for conditional dilation. (d)-(i) Successive conditional 

dilation. (i) Cluster [11] 

As illustrated in Table 3.1, beginning from the seed, a connected component 

or cluster is delineated by recursive conditional dilation.  There are two ways 
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to perform conditional dilation, i.e., depth-first or breadth-first, which 

produce “S, I” strings of the same length with the same number of “S” and 

the same number of “I.” And They both delineate the same geometric shape.  

Table 3.1. Coded positions in each image in Fig. 3.5. 

 

The final cluster is organized and represented by seed position and the 

following symbol string: 

S I S I I I S I S I I S I S I I I I 

In SLCCA, the depth-first approach is used. The cluster is organized and 

represented within a subband by the seed coordinate and a string of symbols 

P, N, and Z. Instead of the significant symbol “S” used above, the P and N 

represent the positive magnitude significant coefficient and negative 

magnitude significant coefficient, respectively. Moreover, instead of the 

insignificant symbol “I” used above, Z represents the insignificant boundary. 
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3.4.2 Significant Cluster Group 

The conventional Significance Clustering method shows efficiency when the 

significant coefficients are “close enough” to each other. However, there is a 

situation which two clusters are neighbors. In fact, they may be adjacent so 

that they share some of the insignificant boundaries, i.e., Fig. 3.6. 

 

Figure 3.6. Two clusters close together 

In this circumstance, if we could group these two clusters we can save one of 

the clusters’ seeds. The seed could be a significant linkage or a coordinate 

seed. So this cluster-group method could decrease the probability of the 

occurrence of the coordinate seed. As a result, the coding cost is reduced since 

the seed coordinates are bit-costly when coding. 

To form a cluster group, we need do the conventional cluster scan first. After 

the cluster is found, scan all the boundary zeros’ neighbors using the same 
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structuring element. If there exists a significant coefficient in the neighbors, 

we call this boundary zero a shared zero and use it as a seed to find the new 

cluster, as shown in Fig. 3.7. We call these two clusters that connected 

through a shared zero a cluster group.  

 

Figure 3.7. Two clusters are connected as a group through a shared-zero (5, 3) 

Two clusters are shown in figure (a), the top one is the same one as shown in 

the figure. Although there are two shared zeros (5,3) and (5,2), only one of 

them (5,3) is used as a seed to produce the second cluster and eventually 

coded as SHARED-ZERO (S-Z). 
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The final cluster-group is organized as in Table 3.2 and represented by seed 

position (3,2) and the following symbol string: 

[S I S I I I S I S I I S (S-Z) S I I I I] [S I I S I I I] 

Table 3.2. Coded position of a new cluster that uses a shared-zero as the seed 

 

In this cluster grouping method, a new symbol “SHARED-ZERO” is used. So 

there are four symbols (P, N, Z, and SZ) to indicate the significant and 

insignificant coefficients. One more symbol makes it less efficient when using 

arithmetic coding. However, the experiment shows that the gain from less 

coordinate seeds is more significant than the loss from one more symbol. 

3.4.3 Significance Linkage 

In zero-tree based image compression scheme such as EZW and SPIHT, the 

intention is to use the statistical properties of the trees to code the locations 

of the significant coefficients efficiently.[1] 
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In SLCCA, we also try to build a spatial connection between the coefficients 

crossing subband. However, unlike EZW and SPIHT, SLCCA exploiting the 

similarity among significant coefficients cross subband. 

 

Figure 3.8. the relation between parent children and descendants in a 3-level 

subband pyramid 

Relative to a given wavelet coefficient (ancestor), all coefficients at finer 

scales of similar orientation, which associate with the same spatial location, 

are called its descendants [14]. 

Notably, the coefficient at the higher level is called the parent, and all four 

coefficients (due to down-sampling by 2) associated with the same spatial 

location at the next lower level of similar orientation are called its children. 

The relation between them is shown in Fig. 3.8 [14]. 
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The correlation between parent coefficient and child coefficient could lead to a 

very efficient method of map coding. We can see that magnitudes of wavelet 

coefficients statistically decay from a parent to its four children. Moreover, a 

significant coefficient at a lower subband likely has a significant parent at its 

corresponding higher subband [15]. Experiments showed that the correlation 

between the squared magnitude of a child coefficient and the squared 

magnitude of its parent tends to be between 0.2 and 0.6 with a high 

concentration around 0.35. [15] If there is a significant parent, which belongs 

to one subband, and at least one of its four children is significant and lies in 

another subband, these two clusters across subbands are called significance-

linked. Fig. 3.9 [14] shows the significance-linkage between a parent and its 

four children. 

The seed position (x,y) is derived from its parent position through significance 

linkage whenever possible. In this case, two more symbols L (LINK) and NL 

(NO-LINK) are used. L denotes the significant linkage, and NL indicates the 

significant linkage does not exist. 

Since there are many significant coefficients in a connected component, the 

likelihood of finding significance linkage between two connected components 

is relatively high. If the significance linkage exists, we can use the linkage to 

mark the position of the children. Apparently, marking the significance 
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linkage costs much less than directly coding the seed coordinate position [14] 

since directly coded coordinates are very bit-consuming. 

 

Figure 3.9. The values are the magnitudes of quantized coefficients. Nonzero values 

denote significant coefficients 

3.4.4 Significance Map Scanning in SLCCA 

From above descriptions, we see that to get a significance map of the image 

there are two things we need to know. One is the cluster groups within the 

subband, and the other one is the significance-linkage information cross 

subband. 
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Therefore, when we are scanning significance map, there are two symbol 

sequences. The first one contains two symbols, L (LINK) and NL (NO-LINK). 

The second one includes four symbols, P, N, Z, and SZ. 

The order to scan the subband in SLCCA is shown in Fig. 3.10. Starting from 

the coarsest scale to the finest scale, SLCCA scans all the subband in each 

scale in the order of LH, HL, HH. 

 

Figure 3.10. The scanning order of SLCCA 

For each subband (LH, HL, and HH) in the coarsest scale, scan from left to 

right and top to bottom orderly to find a significant coefficient as the 

coordinate seed. Use a pre-specified conditional dilation to construct a cluster 

within the subband and leave the scanned symbol to the end of the symbol 

sequence (LIST1). After the cluster delineated, scan the symbols in the 

LIST1 to find a possible boundary Z, which happens to have an un-coded 
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significant neighbor. Use this Z as a seed to find a new cluster. If the new 

cluster is not deleted by the elimination process, keep the symbol sequence to 

the end of the previous sequence (LIST1) and change this seed symbol Z to 

SZ. This cluster group scanning uses a breadth-first recursive process until a 

cluster-group delineated. Then rescan the symbol P and N in the sequence 

(LIST1) to check if there is a significant linkage exists in the child subband. 

If there is an un-visited yet significant child, code all its un-coded children, 

leave them to the end of child subband symbol sequence (LIST2) and use the 

first significant child as a seed to expend a new cluster and append the new 

cluster to the end of LIST2. In the meantime, put L symbol at the end of the 

link sequence (LIST3). If there is not an un-visited yet significant child, put 

NL symbol to the end of the link sequence (LIST3). After all, cluster-groups 

and linkages scanning finished, scan the un-visited pixel in the subband to 

find a seed, then do the cluster-group and linkage scan as the same as shown 

above. 

For subband LH, HL, HH that not in the coarsest scale, first move the child 

subband symbol sequence (LIST2) of its parent subband to the LIST1 of the 

current subband. Then rescan LIST1 and do the cluster-group delineated and 

linkage search. After all cluster-groups and linkages found, scan the un-

visited pixel in the subband to look for a seed, then do the cluster-group and 

linkage scan as the same as shown above. 
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3.5 Magnitude coding 

The last step is magnitude coding. It represents the magnitudes of P/N 

pixels by their binary values. The binary bits compose a 0/1 symbol sequence 

following the pixel’s order bit-plane wise. The side information, clusters, and 

magnitudes symbol sequences are finally coded using context-based adaptive 

arithmetic coding. The output bit stream is the final compressed file. 

3.5.1 Bit Plane 

 

Figure 3.11. A pixel can be expanded into eight bit-planes 

A bit plane of a discrete digital signal (such as image or sound) is a set of bits 

having the same position in the respective binary numbers (Fig. 3.11). The 

highest bit-plane is called the Most Significant Bit-plane (MSB). The lower 

bit-planes contribute less to the pixel.  



48 
 
 

 

Figure 3.12. An example of bit-plane expand 

Fig. 3.12 is an example of bit-plane expanding. Coefficients are in a sign-

magnitude format with sign information being absorbed in significance map. 

Bit-plane entropy coding starts from the MSB. The number of bit-planes in a 

subband is determined by the maximum magnitude in the subband.  

To produce more coding gain, SLCCA examines the context and defines the 

conditional probability of a significant coefficient in each bit-plane. In 

SLCCA, the context of a significant coefficient at a pixel in each bit-plane is 

defined by the significance status of its parent coefficient and eight 

neighboring pixels in the bit-plane. The details are in the next section. 

3.6 Context Model of Arithmetic Coding 

In arithmetic coding, the coding bit rate is related to the entropy of the 

symbol sequence. In an ideal situation, the bit rate is nearly equal to the 

entropy. Otherwise, the bit rate is larger than the entropy. So we need to 
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reduce the entropy of the arithmetic coding. The entropy in the arithmetic 

coding depends on the probability distribution of the symbols. The entropy 

will be lower if the probabilities of each symbol are diverse. To make the 

probabilities of each symbol as diverse as possible, we use a context model to 

classify each symbol in the input sequence to several classes. So that in each 

class a lower entropy could be obtained. 

 

neighbor neighbor neighbor 

neighbor Pixel neighbor 

neighbor neighbor neighbor 

Figure 3.13. The neighbors and parent in SLCCA context model 

In SLCCA there are total 18 different context models to divide the map 

symbols into 18 different classes. 

We use two labels to classify the symbols, shown in Fig. 3.13. One is the total 

number of the significant coefficient within eight neighbors surround the 

symbol pixel. So there are nine possibilities. The other label is the 

Parent 

(significant or 

insignificant) 
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significance of the symbol pixel’s parent pixel. This label has two possibilities. 

With these two labels, we can divide the symbols into 18 different classes. 

3.6.1 Improved Context Model of SLCCA 

In later improvement to SLCCA, the context model of the map symbol coding 

is upgraded. We discovered two more labels besides the two labels mentioned 

above. One is the shared-zero of the visited neighbors surrounding the symbol 

pixel. The other is the ratio of significant yet visited neighbors’ number to 

total visited neighbors’ number. Then we add the weight concept to the 

neighbors. 

The label of shared-zero in the visited neighbors surrounding the symbol 

pixel has two possibilities. One is shared-zero exists, and the other is shared-

zero does not exist. In practice, the criteria of shared-zero don't have 

noticeable improvement in the result. So we often pass over this label. 

Table 3.3. Number of neighbors actually scanned in context calculation 

# of scanned 

neighbors 
0 1 2 3 4 5 6 7 8 

Occurrence 

times 
418 930 2779 16536 13620 3340 878 291 99 

The ratio label is proposed because in the experiment we found that for most 

symbol pixels, the calculation of the total number of the significant coefficient 
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within eight neighbors is only scanned 2 to 5 neighbors (Table 3.3). Therefore, 

if we define a ratio α: 

𝛼 =
#(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑛 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

#(𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
(3.2) 

In these cases, the ratio of significant yet visited neighbors’ number to total 

visited neighbors’ number shows more efficiency than only consider the 

significant coefficient within eight neighbors surrounds the symbol pixel. For 

example, a pixel with two significant neighbors out of three scanned 

neighbors has more possibility as a significant pixel than a pixel with two 

significant neighbors out of eight scanned neighbors. Thus, we employ this 

ratio as a label in the context model. 

Moreover, we also noticed that for most pixels the number of significant 

coefficients in the scanned neighborhood is most likely 0, 1 or 2 (Table 3.4). 

For the number larger than 3, the probability is quite small. As a result, we 

can combine the number that bigger than two into one context model to 

reduce the context model number.  

Table 3.4. Number of significant coefficients in scanned neighbor pixels 

# of scanned 

significant 

neighbors 

0 1 2 3 >=4 

Occurrence times 15233 13998 6762 2682 216 
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Use this method, the total possibilities in the decide label and the overall 

context model number will be reduced. 

0.7 1 0.7 

1 

 

1 

0.7 1 0.7 

Figure 3.14. neighbors’ weight in SLCCA 

In SLCCA’s context model, we consider the eight neighbors’ significance of a 

pixel has the same weight to affect the significance of the central pixel. 

However, in the experiment, we found that there is some difference between 

the neighbors’ influence on the central pixel’s significance. The neighbor’s 

influence on the central pixel’s significance mostly depends on the distance 

between the neighbor and the central pixel. So, we give each of the neighbors 

a weight factor. The neighbor with a small distance to the central pixel has a 

larger weight than the neighbor with a large distance to the central pixel 

(Fig. 3.14). After the experiment, we choose 0.7 as the weight since it can lead 

to the best results. 

For magnitude coding, we only add the weight to the neighbors. The ratio and 

shared zero are not used to classify the context models. 
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We can see an example of the new context models: 

Four symbols’ (P, N, Z, SZ) sequence context model criteria (total 32 

contexts): 

1. Parent’s significance ---- 2 (significance, insignificance) 

2. Weighted significant yet visited neighbors number ---- 4 (0, 1, 2, ≥ 3) 

3. Ratio (Weighted significant yet visited neighbors #/ total visited 

neighbors #) ---- 2(< 0.8, ≥ 0.8) 

4. Shared zero in the visited neighbors ---- 2(exist, not exist) 

Total context models=2×4×2×2=32 

Magnitude context model criteria (total 14 contexts): 

1. Parent’s significance---- 2 (significance, insignificance) 

2. Weighted significant yet visited neighbors number ---- 7(0, 1, 2, 3, 4, 5, 

≥ 6) 

Total context models=2×7=14 

3.7 Chapter Summary 

This chapter introduced the SLCCA core procedure. Include wavelet 

transform, quantization, cluster searching, magnitude coding, and the 

context models for arithmetic coding. The unique cluster searching and 

magnitude coding methods achieve remarkable efficiency in data 
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organization for SLCCA. Moreover, the customized context model setup leads 

to a lower entropy thus the arithmetic coding can achieve more compress 

ratio. 
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CHAPTER IV: SLCCA PLUS 

 

 

 

In the last chapter, a wavelet image coder SLCCA is introduced. This chapter 

will introduce four improvements to enhance the already high-performance 

SLCCA. Including intelligent quantization with an adaptive threshold, enhanced 

cluster filter, potential significant shared-zero, and improved context models. The 

improved algorithm is called SLCCA Plus.  

At the end of this chapter, we will compare the performance among 

JPEG2000, SLCCA, and SLCCA Plus. 

4.1 Intelligent Quantization with Adaptive Threshold 

Quantization is a crucial step, where the image quality loss occurs. As 

introduced in the last chapter, SLCCA uses a uniform quantization [6] 

scheme. 
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We would emphasize that the minimum magnitude at P/N-pixels is zero 

rather than one after quantization. Interval (-Stepsize, Stepsize) is called the 

dead zone. All the wavelet coefficients that fall within the dead zone are 

thought of insignificant and labeled by symbol Z. Quantization produces a 

large number of Z-pixels typically.  

The corresponding inverse quantization procedure is as follows: 

Inverse Quantization Procedure in SLCCA 

For each pixel x 

if Symbol(x) == Z 

 c’(x) = 0 

Else 

 c’(x) = (Magnitude(x)+0.5) × Stepsize + Stepsize 

 If Symbol(x) == N 

  c’(x) = -c’(x) 

Where c’(x) is pixel x’s reconstructed wavelet coefficient value. All the wavelet 

coefficients that fall within the dead zone have reconstructed coefficient value 

equal to 0. The wavelet pyramid has a salient characteristic: the coefficient 

energy decays from higher wavelet levels to lower ones. In a 5-level wavelet 

decomposition of Lenna (512 × 512, Grayscale), the coefficient values may as 

Table 4.1. 

Coefficient absolute values at a higher level are much larger than those at 

lower levels. Meanwhile, it is worth noting that the number of the coefficient 
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in the lower level is far greater than higher levels. As a result, appropriately 

choosing a Stepsize may produce plenty of insignificant pixels in lower 

wavelet levels thus reduce bit cost. Since SLCCA reconstructs insignificant 

pixels as coefficient with value 0, their maximum inverse quantization error 

equals to Stepsize. In contrast, the significant pixels’ maximum error equals 

to 0.5 × Stepsize. The vast amount insignificant pixels lower the image 

quality. An adaptive threshold is introduced to solve this issue. The 

significance threshold now equals to r × Stepsize, where 0 < r ≤ 1. We can see 

an example in Fig. 4.1.  

Table 4.1. The coefficients range in a 5-level wavelet decomposition of Lenna 

 LL Subband Level 5 Level 4 Level 3 Level 2 Level 1 

Max Value 6686 1199 684 367 238 63 

Min Value 1486 -1337 -799 -342 -299 -74 

 

 

Figure 4.1. Intelligent Quantization Example. Stepsize = 20, r = 0.5. The pixels with 

coefficient values fall within the orange color interval used to be insignificant. Now 

they are marked as significant pixels. 
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By adequately shortening the dead zone, we can transform some Z-pixels, 

whose absolute coefficient values are below but near to Stepsize, into P/N-

pixels. In doing so, we may increase the decoded image quality at the cost of 

enlargement of some clusters.  A non-uniform quantization scheme and its 

inverse are proposed below for SLCCA Plus. 

Non-uniform quantization in SLCCA Plus, with r = 0.95 by default 

For each pixel x 

     If |c(x)| < r  Stepsize 

          Magnitude(x) = 0 

          Symbol(x) = Z 

     Else 

          Magnitude(x) = ⌊||𝑐(𝑥)| –  𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒|/𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒⌋ 

          If c(x) > 0 

               Symbol(x) = P 

          Else 

               Symbol(x) = N 

Inverse non-uniform quantization in SLCCA Plus, with r = 0.95 by 

default 

For each pixel x 

     If Symbol(x) == Z 

          c’(x) = 0 

     Else 

          If Magnitude(x) == 0 

               c’(x) = (1.5 – 0.5  (1 – r))  Stepsize 

          Else 

               c’(x) = (Magnitude(x) + 0.5)  Stepsize + Stepsize 
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          If Symbol(x) == N 

               c’(x) = –c’(x) 

We can see that this improvement is only for the zero magnitude pixels. The 

purpose of the adaptive threshold is to save the insignificant pixels which are 

close to the threshold. These insignificant pixels produce higher reconstruct 

error. Coding them as significant pixel achieves a better trade-off between bit 

cost and image quality. The threshold adjuster r can be calculated for each 

image or at each wavelet level for the best result. By default, it is set to 0.95 

to reduce computational complexity. 

4.2 Enhanced Cluster Filtering 

A minuscule cluster usually does not contribute much quality to visual effects 

[14]. A small cluster with high #(insignificant pixel)/#(significant pixel) ratio 

contains a more bit proportion of side information. Therefore, in SLCCA they 

are eliminated to save coding cost. The elimination depends on cluster’ 

significant area, i.e., the number of significant pixels in the cluster. 

Experiments demonstrate that the removal of one-significant-pixel clusters 

leads to better coding gain. Moreover, filter out the clusters with more than 

one significant pixel will reduce performance. We look into the filtered-out 

clusters and find a statistical pattern of their magnitudes in Table 4.2. We 

can see that only a few clusters contain significant pixel with magnitude 
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equals to 1 or 2. The P/N pixels in most one-significant-pixel clusters have 

zero magnitudes. 

Table 4.2. Significant pixel’s magnitude pattern in filtered clusters 

Subband 
# (filter-out 

cluster) 

# (P/N 

magnitude =0) 

# (P/N 

magnitude 

=1) 

# (P/N 

magnitude 

=2) 

0 0 0 0 0 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 2 2 0 0 

5 2 2 0 0 

6 5 4 1 0 

7 9 8 1 0 

8 16 15 1 0 

9 15 14 1 0 

10 50 49 1 0 

11 54 51 3 0 

12 49 46 2 1 

13 149 149 0 0 

14 17 17 0 0 

15 94 94 0 0 

Total 462 451 10 1 

 

Based on this observation, we put forward an idea: the magnitude volume, 

besides significant area, represents the importance of a cluster. Thus, 

enhanced cluster filter adds magnitude volume into account and eliminates a 

cluster if it satisfies one of the following two conditions: 

• It contains only one significant pixel. 
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• It contains two significant pixels, and both of their magnitudes are 

zero. 

 

4.3 Potential Significant Shared-Zero 

After quantization, a large portion of significant pixels tends to cluster. 

Organizing and representing significant pixels as irregular-shape connected 

components (clusters) is an efficient way to omit insignificant pixels’ bit 

consuming. Clusters can be progressively constructed using morphological 

dilation [16]. Beginning with a known significant pixel (Seed), SLCCA uses 

breadth-first search (BFS) to explore the connected significant pixels. All the 

pixels (including significant and insignificant) covered by BFS process are 

recorded in a sequence orderly by their Symbols (P, N, or Z). With the 

coordinates of the Seed, this P/N/Z sequence is sufficient for a 

reconstruction of the cluster.  

An empirical fact is that the clusters sometimes tend to be fragmented, i.e., 

there are a large number of small-sized clusters adjacent to each other, as 

illustrated in Fig. 4.2. The bit cost of their seed coordinates is relatively high. 

We can see an example from Table 4.3 that in level 1 to 3, the seed size is 

even larger than the cluster’s P/N/Z sequence’s size.  
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Figure 4.2. The BFS covers a significant pixel’s eight neighbors and adds neighbor 

pixels into the cluster. 

Table 4.3 SLCCA Subband information. The unit in the table is Byte. 

Level Subband 

Link-

cluster 

(P/N/Z) 

size 

Link(L/NL

) size 

Seed-cluster 

(P/N/Z) size 

Seed 

size 

Magnitude 

size 

5 

LL 0 0 2 1 271 

HL 0 0 43 1 173 

LH 0 0 48 1 109 

HH 0 0 47 3 110 

4 

HL 183 1 0 0 361 

LH 163 3 0 0 188 

HH 151 0 0 0 182 

3 

HL 518 7 3 6 542 

LH 348 7 9 10 251 

HH 336 11 2 5 248 

2 

HL 900 34 8 30 520 

LH 531 26 8 8 200 

HH 469 33 7 15 135 

1 

HL 730 88 21 36 108 

LH 112 38 6 8 7 

HH 12 8 0 0 0 
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SLCCA Plus introduces a Shared-Zero exploring algorithm to solve this 

problem. Before preceding this algorithm, we need to introduce a potential-

significant concept.   

A potential-significant pixel is an insignificant pixel, but its absolute 

coefficient value is very close to the quantization threshold. We use the 

following procedure to determine an insignificant pixel’s potential-

significance. 

Potential-Significance (pixel x) 

If c(x) ≥ t  Stepsize 

     Return P 

If c(x) ≤ –t  Stepsize 

     Return N 

Return Z 

Where 0< t ≤ r (t is set to 0.85 by default), c(x) is pixel x’s wavelet coefficient 

value. If an insignificant pixel’s potential-significance equals to P/N, it is 

called potential-significant P/N pixel.  

We can see from Fig. 4.3 that with a suitable t, the values of potential-

significant coefficients are very close to those of minimum significant 

coefficients. 
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Figure. 4.3 An example of potential-significant. Stepsize = 20, r = 0.5, and t = 0.3. 

The pixels with coefficient values fall within the green color intervals are potential-

significant. 

The shared-zero exploring algorithm’s central idea is finding the potential-

significant pixels which are the boundaries of multiple clusters and changing 

them to significant pixels to merge the clusters. So that only one coordinate 

seed is needed. It works as follows. In a found cluster C1, SLCCA Plus 

examines each of the Z pixels. If a Z pixel is potential-significant and has a 

neighboring undiscovered cluster C2, it is called shared-zero pixel. We change 

it to P/N pixel corresponding to its potential-significance, and its magnitude 

remains 0. As a result, C1 connects C2. We continue doing this shared-zero 

exploring procedure until no more unchecked Z pixels (including those in 

newly added clusters). At this stage, C1 combines all the adjacent clusters. 

Then we redo the cluster dilation from C1’s seed and get the cluster symbol 

sequence with the right order. Fig. 4.4 shows the potential-significant shared-

zero exploring procedure. 
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Changing the potential-significant pixel to significant pixel produces some 

error inevitably. However, with the appropriately chosen t value, we can 

minify this error. Also, taking into account the bit saving from less coded 

coordinates, the shared-zero exploring algorithm achieves a better trade-off. 

 

Figure. 4.4 Potential-significant exploring procedure. (a) A found cluster with two 

neighboring significant pixels. (b) A potential-significant Z is found. (c) The 

potential-significant leads to the new cluster. (d) Mark the potential-significant as 

significant. 

4.4 Improved Context Models for Arithmetic Coding 
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SLCCA uses adaptive arithmetic coding [7, 11, 18] to encode P/N/Z sequence 

of clusters, magnitudes sitting on P/N-pixels, and other side information. 

Arithmetic coding has been effective in approximating the entropy of the 

source stream [11]. An adequate context model can provide a good prediction 

of the next source symbol to reduce the uncertainty or entropy [19]. In a 

wavelet transformed image, the significance status of a coefficient may have 

some correlation with the significance status of its (8, for instance) 

neighboring coefficients and the significance status of its parent coefficient as 

well [14]. 

The same context model is used in SLCCA to predict a P/N/Z-pixel or 0/1-

bit in magnitude bit-planes. The model is based on a combination of the 

significance odds of its eight neighboring pixels and the significance status of 

its parent. It has some limitations. First, when applied to P/N/Z sequence 

coding, the context model does not distinguish between P- and N-pixel. 

Second, the significance odds are not suitable for predicting 0/1-bit in 

magnitude bit-planes. Improvements are made in SLCCA Plus as follows. 

4.4.1 Direction Sensitive Context Model for Cluster 

In significance map, the presence of P- or N-pixels reveals directional 

continuity and directivity, as illustrated in Fig. 4.5. The direction varies with 
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different subbands. In HL (LH) subbands, the direction is horizontal 

(vertical).  

 

Figure 4.5. An example of P/N pixel’s continuity and directivity in LH subband. 

The new context model for a P/N/Z-pixel is direction sensitive. It utilizes 

three descriptive numbers 𝑆𝑝(𝑥), 𝑆𝑛(𝑥), 𝑇(𝑥), which are defined as the 

significance status for the parent pixel, the significance status for neighbors 

as a whole or neighbors’ vote for pixel x to be P or N, respectively:  

• The significance status of parent pixel 

𝑆𝑝(𝑥) = {
0, 𝑖𝑓 𝑝𝑎𝑟𝑒𝑛𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑖𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 
1,                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.1) 

• The neighbor’ significance status 

 𝑆𝑛(𝑥) = {
0, 𝑖𝑓 #(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) <  3 
1,                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.2) 
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• The neighbor’ tendency toward P or N. 

𝑇(𝑥) = {

0, 𝑖𝑓 #(𝑃 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) = #(𝑁 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

1, 𝑖𝑓 #(𝑃 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) < #(𝑁 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

2, 𝑖𝑓 #(𝑃 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) > #(𝑁 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

(4.3) 

In calculating these numbers, we count only pixels, which are previously 

coded.  In Eq. (4.3), we only check two horizontal (vertical) neighbors for HL 

(LH) subbands. For HH subbands, we check two horizontal and two vertical 

neighbors. Since coefficients in LL subband are non-negative, we simply code 

each magnitude bit-plane-wisely. That is, there is no P/N/Z sequence sought 

in LL subband. At last, a total of 12 context models are defined for P/N/Z 

sequence coding as follows: 

𝐾(𝑥) = 𝑆𝑝(𝑥) + 2𝑆𝑛(𝑥) + 4𝑇(𝑥) (4.4) 

4.4.2 Improved Context Model for Magnitude 

Significant pixels’ magnitudes are coded by their binary values bit-plane 

wise. In each subband, the maximum magnitude offers the fix-length of the 

binary values. Pixels with smaller magnitudes are more than those with 

larger magnitudes. As a result, for most of the pixels, there are a lot “0” bits 

in the higher bit-planes, e.g., Fig. 4.6.  



69 
 
 

In JPEG2000, which also uses bit-plane coding, the context model depends on 

the significance status of the pixel’s eight neighbors and whether the pixel is 

a yet coded significant. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 

0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 

0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 

Figure 4.6. An example of bit-planes. Dark blue stands for “1” bits and light blue 

stands for “0” bits. 

In SLCCA Plus, the context selection for a binary bit of a pixel is related to 

the following conditions. First, the “1” distribution in the bit’s eight bit-plane 

neighbors. Second, the significance status of the pixel’s eight neighbors. 

Third, the bit’s position compares to the most significant bit (MSB) in the bit-

planes. Fourth, the pixel’s subband. 

Explicitly, for a bit b of pixel x, first we calculate three quantities: 

𝑁ℎ(𝑏) = 𝑐𝑜𝑢𝑛𝑡("1" in horizontal bit-plane neighbors of b) (4.5) 

𝑁𝑣(𝑏) = 𝑐𝑜𝑢𝑛𝑡("1" in vertical bit-plane neighbors of b) (4.6) 

𝑁𝑑(𝑏) = 𝑐𝑜𝑢𝑛𝑡("1" in diagonal bit-plane neighbors of b) (4.7) 

The quantity 𝑁∗(𝑏), representing the influence of the bit’s neighboring “1”s, 

integrates these three quantities: 
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𝑁∗(𝑏) = ⌈𝑤ℎ𝑁ℎ(𝑏) + 𝑤𝑣𝑁𝑣(𝑏) + 𝑤𝑑𝑁𝑑(𝑏)⌉ (4.8) 

Where 𝑤ℎ, 𝑤𝑣 and 𝑤𝑑 are weights for different directions. Their values are set 

depend on the subband. For LH subbands, 𝑤ℎ = 1.6, 𝑤𝑣 = 0.28, 𝑤𝑑 = 0.06. For 

HL subbands, 𝑤ℎ = 0.28, 𝑤𝑣 = 1.6, 𝑤𝑑 = 0.06. For the other subbands, 𝑤ℎ =

1.6, 𝑤𝑣 = 1.26, 𝑤𝑑 = 0.54. 

Then we check the significance status of the pixel’s eight neighbors. 

𝑁(𝑏) = 𝑐𝑜𝑢𝑛𝑡(𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑜𝑓𝑥) (4.9) 

At last the context model K(b) is calculated by: 

𝐾(𝑏) = ⌊𝛼𝑁(𝑏) + 𝛽𝑁∗(𝑏)⌋ (4.10) 

Where 𝛼 = 0.7, 𝛽 = 0.3 if b is beneath the MSB of x. Otherwise, 𝛼 = 035, 𝛽 =

0.65. 

These improved context models provide more detailed classification to the 

magnitude bits. The context considers not only the pixel neighbors’ 

significance but also the correlation among neighboring bits in the bit-planes.  

4.5 Performance Evaluation 

In this section, we evaluate the coding efficiency of SLCCA Plus. We compare 

SLCCA Plus with SLCCA and JPEG2000. We use 5-level wavelet 
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decomposition with 9/7 filter [20] (introduced in Chapter II) for both SLCCA 

Plus and SLCCA. In SLCCA Plus, r and t are set to default values. For JPEG 

2000 coding, the Kakadu software tools provided by [27] is used. Fig. 4.7 

shows the image set. All images are 512×512 grayscale natural images.  

     

     

Figure 4.7 Experiment image set. Top left: Lenna. Top right: Barbara. Bottom left: 

Peppers. Bottom right: Mandrill 
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We evaluate their performance by PSNR, which is introduced in Chapter II. 

Table 4.4 presents the PSNR based bit-distortion performance. On average, 

SLCCA Plus achieves 7% bit saving over JPEG 2000 and 4% over SLCCA. 

Table 4.4. PSNR based bit-distortion performance 

Image 
Bitrate 

(bit/pixel) 

PSNR (dB) 

JPEG2000 SLCCA SLCCA Plus 

Lenna 

0.1 29.94 30.29 30.50 

0.3 34.90 35.02 35.25 

0.5 37.28 37.33 37.51 

0.7 38.71 38.73 38.94 

0.9 39.75 39.77 40.00 

Barbara 

0.1 25.00 24.84 25.09 

0.3 29.80 29.67 29.82 

0.5 32.87 32.48 32.92 

0.7 35.24 35.03 35.32 

0.9 37.35 36.97 37.35 

Peppers 

0.1 29.73 29.87 30.02 

0.3 34.15 34.16 34.36 

0.5 35.92 35.84 35.98 

0.7 36.97 36.86 37.07 

0.9 37.94 37.82 37.99 

Mandrill 

0.1 21.31 21.28 21.44 

0.3 23.66 23.75 23.94 

0.5 25.58 25.64 25.81 

0.7 27.08 27.19 27.37 

0.9 28.34 28.57 29.44 

 

Fig. 4.8 is the detailed comparison for a zoomed in area in Lenna image. This 

area contains edges, textures, and flat part. We compare JPEG2000, SLCCA, 
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and SLCCA Plus at 0.3 bpp to the original image. JPEG2000 shows the worst 

result in the delicate texture of the hat. The texture is almost gone. While 

SLCCA shows some texture on the hat, but the texture is more like grids, not 

strips on the top of the hat. SLCCA Plus shows the best result among these 

three. It preserves more fine texture than SLCCA. The top of the hat shows 

some strip texture and the hat’s band also has more clear wrinkles on it. In 

the flat, coarse texture area, such as the feather on the hat, the three codecs 

do not show much difference in this image at this bitrate. 

Fig. 4.9 shows the detailed comparison of stem area in Peppers image. This 

area contains edges and flat part. We compare JPEG2000, SLCCA, and 

SLCCA Plus at 0.3 bpp to the original image. In JPEG2000, the stem’s edge 

is blurry. Moreover, the texture of the stem does not preserve very well. 

SLCCA and SLCCA Plus have more explicit stem edge, while SLCCA Plus 

shows more evident texture on the stem. 

Fig. 4.10 show the comparison of Barbara image under different bitrate by 

SLCCA Plus. The four images are at bitrate 0.1, 0.3, 0.5, and 0.7. Their 

corresponding PSNR are 25.09, 29.82, 32.92, and 35.32, respectively. SLCCA 

Plus can lead to an acceptable result at a very low PSNR (29.82 PSNR, 0.3 

bpp), even with so many fine textures in the image. 
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Figure 4.8 Detail comparison for a zoomed in area in Lenna image at 0.3 bpp. Top 

left: original image. Top right: JPEG2000. Bottom left: SLCCA. Bottom right: 

SLCCA Plus 
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Figure 4.9 Detail comparison for a zoomed in area in Peppers image at 0.3 bpp. Top 

left: original image. Top right: JPEG2000. Bottom left: SLCCA. Bottom right: 

SLCCA Plus 
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Figure 4.10 Comparison of Barbara image under different bitrate by SLCCA Plus. 

Top left: 0.1 bpp, 25.09 PSNR. Top right: 0.3 bpp, 29.82 PSNR. Bottom left: 0.5 bpp, 

32.92 PSNR. Bottom right: 0.7 bpp, 35.32 PSNR.  

4.6 Chapter Summary 
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In this chapter, we introduced SLCCA Plus. The improvement includes 

intelligent quantization with an adaptive threshold, enhanced cluster filter, 

potential significant shared-zero, and improved context models. These four 

improvements lead to an impressive result that SLCCA Plus shows better 

performance than the popular wavelet-based codec JPEG2000 and SLCCA, 

especially in the textured and edge area.  
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CHAPTER V:  CONCLUSIONS 

 

 

 

An image coding algorithm, SLCCA Plus, is introduced in this dissertation. 

SLCCA Plus is a wavelet-based subband coding method. In wavelet-based 

subband coding, the input images will go through a wavelet transform and be 

decomposed into wavelet subband pyramids. Then the characteristics of the 

wavelet coefficients within and among subbands will be utilized to removing 

the redundancy. The rest information will be organized and go through 

entropy encoding. SLCCA Plus contains a series improvement method to the 

SLCCA. Before SLCCA, there are three top-ranked wavelet image coders. 

Namely, Embedded Zerotree Wavelet coder (EZW), Morphological 

Representation of Wavelet Date (MEWD), and Set Partitioning in 

Hierarchical Trees (SPIHT). They exploit either inter-subband relation 

among zero wavelet coefficients or within-subband clustering. SLCCA, on the 

other hand, outperforms these three coders by exploring both the inter-
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subband coefficients relations and within-subband clustering of significant 

wavelet coefficients. The critical processes of SLCCA are multiresolution 

discrete wavelet decomposition, cluster searching within a subband, 

significance-link registration across subband, and bit-plane encoding of 

significant magnitudes by adaptive arithmetic coding. 

SLCCA Plus strengthens SLCCA in the following aspects: Intelligence 

quantization, enhanced cluster filter, potential-significant shared-zero, and 

improved context models. The purpose of the first three improvements is to 

remove redundancy information further while keeping the image error as low 

as possible. As a result, they achieve a better trade-off between bit cost and 

image quality. Moreover, the improved context lowers the entropy by refining 

the classification of symbols in cluster sequence and magnitude bit-planes. 

Lower entropy means the adaptive arithmetic coding can achieve a better 

coding gain.    

For performance evaluation, SLCCA Plus is compared to SLCCA and 

JPEG2000. On average, SLCCA Plus achieves 7% bit saving over JPEG 2000 

and 4% over SLCCA. The results comparison shows that SLCCA Plus shows 

more texture and edge details in a lower bitrate.  

More recently, in block prediction and discrete cosine transform (DCT) coding 

category, HEVC Intra coding has delivered an impressive coding gain 
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through using a delicate yet innovative block prediction scheme before DCT. 

HEVC outperforms SLCCA and SLCCA Plus. However, it is hard to integrate 

a block prediction scheme with wavelet transform. A block prediction error 

image could be statistically entirely different from an ordinary image.  

Future research direction includes the combination of convolutional neural 

networks used in Super-Resolutions [28, 29] and wavelet subband coding to 

fully utilize the deep convolutional neural networks’ significant advantages 

in extracting spectral and spatial features.  
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APPENDIX  

 

 

 

Example of Binary Implementation of Arithmetic Coding 

Symbol sequence to be code: 11010 

At this time, we use non-adaptive model. The probability of 1 is 0.6, and the 

probability of 0 is 0.4. 

We use five binary bits to represent the initial range [00000, 11111]: 

 

Figure 6.1: Example of Binary Implementation of Arithmetic Coding 

The lower half is [00000, 01111] and the upper half is [10000, 11111]. 

Furthermore, the first quarter is [00000, 00111]; the second quarter is 
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[01000, 01111]; the third quarter is [10000, 10111]; the fourth quarter is 

[11000, 11111]. 

Encoding 

Code “1”: choose the corresponding subinterval (in red): 

 

Figure 6.2: Example of Binary Implementation of Arithmetic Coding 

Now there is no expansion of the interval or output. Code the second “1”: 

choose the corresponding subinterval: 

 

Figure 6.3: Example of Binary Implementation of Arithmetic Coding 

Now the interval is in the upper half. We expand the upper half, output “1” 

and get: 

 

Figure 6.4: Example of Binary Implementation of Arithmetic Coding 

Code the “0” and get the corresponding interval: 

 

Figure 6.5: Example of Binary Implementation of Arithmetic Coding 
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Now the subinterval falls into the middle half and straddles the middle point. 

We expand the middle half and get: 

 

Figure 6.6: Example of Binary Implementation of Arithmetic Coding 

Then code the next symbol “1” and get: 

 

Figure 6.7: Example of Binary Implementation of Arithmetic Coding 

There is still no need to expand and output. Next symbol is “0”. We get: 

 

Figure 6.8: Example of Binary Implementation of Arithmetic Coding 

The subinterval is in the lower half, so we should expand the lower half and 

output “0”. Then output a “1” immediately because we expanded the middle 

half once. Then we get: 

 

Figure 6.9: Example of Binary Implementation of Arithmetic Coding 

The subinterval is in the middle half and straddles the middle point. So we 

expand the middle half: 
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Figure 6.10: Example of Binary Implementation of Arithmetic Coding 

Now the interval satisfies termination condition Eq. (2.16). So we output “10” 

and immediately a “0” for last middle half expansion. 

At last, the output is “101100”. 

Decoding 

Input: 101100. 

First, set the initial interval: 

 

Figure 6.11: Example of Binary Implementation of Arithmetic Coding 

We use 5 bits precision to represent the interval. Correspondingly, we choose 

a 5-bit slide window to read the input. After each expansion, the window will 

slide to the right by one bit: 

 

 

Figure 6.12: Example of Binary Implementation of Arithmetic Coding 
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To make sure the window can keep sliding to the right, we will add 0s or 1s to 

the end of input sequence: 

 

 

Figure 6.13: Example of Binary Implementation of Arithmetic Coding 

The added bits will not affect the decoding precision. 

 At first, the input is “10110”. “10110” falls into symbol 1’s corresponding 

subinterval.  

 

Figure 6.14: Example of Binary Implementation of Arithmetic Coding 

So output symbol “1”. Then divide symbol 1’s interval by the probability of 0 

and 1. We find that “10110” is still in symbol 1’s subinterval: 

 

Figure 6.15: Example of Binary Implementation of Arithmetic Coding 

The second symbol is “1”. Now the subinterval falls into the upper half of the 

whole interval. So we expand the upper half. Then slide the input window 

and get: 
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Figure 6.16: Example of Binary Implementation of Arithmetic Coding 

The input “10110” becomes “01100” after expansion and falls into symbol 0’s 

subinterval: 

 

Figure 6.17: Example of Binary Implementation of Arithmetic Coding 

The third symbol is 0. Now the subinterval falls into middle half and 

straddles middle points. So we need to expand the middle half and slide the 

input window: 

 

Figure 6.18: Example of Binary Implementation of Arithmetic Coding 

“01000” falls into symbol 1’s subinterval, so the next symbol is 1: 

 

Figure 6.19: Example of Binary Implementation of Arithmetic Coding 

Then ”01000” falls into symbol 0’s subinterval: 
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Figure 6.20: Example of Binary Implementation of Arithmetic Coding 

We get the last symbol 0.  

The symbol sequence we get is 11010. It is correct after the codec process. 
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