
 

 

CLEAR, AQUEOUS TOPICAL NANOMICELLE FORMULATION FOR 

DIABETIC MACULA EDEMA 

 

 

 

 

 

A DISSERTATION IN 

Pharmaceutical Sciences 

and 

Chemistry 

 

 

 

 

 

 

 

Presented to the Faculty of University 

of Missouri - Kansas City in partial fulfillment of 

the requirements for the degree 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

By 

 

HOANG MY TRINH 

 

 

B. Pharm. Ho Chi Minh City University of Medicine and Pharmacy, Vietnam, 2008 

Kansas City, Missouri 

2018 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018 

HOANG MY TRINH 

ALL RIGHTS RESERVED 

 

 

 

 

 

 

 



 

 

 

 

CLEAR, AQUEOUS TOPICAL NANOMICELLE FORMULATION FOR 

DIABETIC MACULA EDEMA 

Hoang M. Trinh, Candidate for the Doctor of Philosophy Degree 

University of Missouri-Kansas City, 2018. 

 

ABSTRACT 

The objective of this study was to develop a clear aqueous mixed nanomicellar 

formulation (NMF) of hydrophobic drugs for diabetic macula edema. The hydrophobic 

drugs include triamcinolone acetonide (TA), fluocinolonce acetonide (FA) and 

triamcinolone (T1) were encapsulated with a combination of nonionic surfactant 

hydrogenated castor oil (HCO) and octoxynol-40 (Oc-40).  

A design of experiment (DOE) with JMP software was performed to optimize 

the formulation to delineate the effects of drug-polymer interactions. In this study, the 

amount of polymers HCO and OC-40 as independent variables. All formulations were 

prepared following solvent evaporation and film rehydration method, characterized 

with size, polydispersity, shape, morphology, clarity/ appearance and cytotoxicity on 

human corneal and retinal cell lines.  

A specific blend of HCO and Oc-40 at a particular wt% ratio which produced 

highest desirability generated by JMP software. The optimized formulations were 

characterized with all standard and safe and potentially suitable for ocular eye drop for 

future study.   
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CHAPTER 1 

1. INTRODUCTION 

1.1 Overview 

The eyes are the most complex and specialized sensory organ that allow human 

connection to the environment. The external light or images enter the eye through the clear 

cornea, pass the pupil, and iris, is focused by the lens and collected on the retina. The retina, 

containing photoreceptor rods, cones and retinal ganglion cells, is responsible for capturing 

and processing all the light rays into light impulses. Those signals are transmitted to the 

brain through the optic nerve; the brain interprets and produces the image as we see. 

Therefore, the eyes are highly protected.  

The macula, a yellow spot near the center of retina where there is a maximum 

amount of rod cells and cone cells are present, provides the best sharp, central vision and 

fine details. Throughout the years and special disease conditions, the macula region is 

degenerated and leads to vision loss. Diabetic macular edema (DME), Age-related macular 

degeneration (AMD), glaucoma, proliferative vitreoretinopathy (PVR), and diabetic 

vitreoretinopathies are some of the common posterior eye diseases that may cause vision 

loss if not treated. There are different types of macular degeneration including dry AMD 

(approximately 85-90%), wet AMD (10-15%), also Stargardt disease, a form of macular 

degeneration found in young people.  

Diabetes is the metabolic disease where the patients have high blood glucose and 

have to control, if not can lead to other conditions. People with diabetes will develop 

diabetic eye diseases including diabetic retinopathy (DR), diabetic macular edema (DME), 

cataract, and glaucoma. DR is a disease that the blood vessels in the retina damage; DME 
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is the consequence of DR where the vessels leak and the fluid accumulated in the macula. 

There are two forms of DME: focal DME and diffuse DME. Focal DME is caused by 

abnormal of blood vessel in the eye while diffuse DME is caused by swelling/widening of 

retinal capillaries. DME leads to blurry vision, floaters, double vision, and eventually 

blindness if untreated. The current treatments of DME are anti- vascular endothelial growth 

factor (VEGF), Focal/grid macular laser surgery, and glucocorticoids or combination.  

Glucocorticoids have anti-inflammatory, anti-angiogenic and anti-permeability 

properties and have been shown to inhibit VEGF, growth factors and other cytokines. Even 

glucocorticoids have been used for many years for DME and many patients show the 

benefits from treatment with glucocorticoids, the US Food and Drug Administration (FDA) 

only approved fluocinolone acetonide intravitreal implant (ILUVIEN®) 0.19 mg for DME. 

Triamcinolone acetonide and Dexamethasone have been used as off-label.   

1.2 Statement of Problem and Hypothesis 

The current route of administration of corticoids in treatment of DME is intravitreal 

injection, which associates with retinal detachment, endophthalmitis, cataract and elevated 

intraocular pressure 1, 2  3 4.  

Topical administration is the most noninvasive, patient compliant route. However, 

less than 5% drug reaches the back of the eye following the topical eye drop. There are 

many ocular barriers for ocular drug delivery including anterior and posterior barriers, 

static and dynamic barriers. There is extremely challenging task for drug delivery to 

intermediate and posterior segment via topical drops5, 6. The topical administration has 

typical volume around 30-40 µL and wash out via nasolacrimal drainage and tear refluxing. 

In order to avoid the drug loss and achieve the drug therapeutic level, higher concentration 
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of drug in aqueous solution is required. However, steroids such as fluocinolone acetonide, 

triamcinolone acetonide, and triamcinolone are highly hydrophobic, poorly water-soluble 

and cannot dissolve in water at high concentration. Steroids also have sub-optimal physico-

chemical properties, and poor ocular membrane permeability. Topical drops of steroids are 

well tolerated but drug levels achieved in intermediate and posterior ocular segments are 

often subtherapeutic 7, 8. 

Nanomicelles and liposomes are nanocarriers which have been used to enhance the 

solubility of hydrophobic drugs in aqueous medium9-12. Nanomicelles have small size 

range from 10 – 100 nm. Nanomicelles can be prepared from the amphiphilic polymeric 

system and encapsulate the hydrophobic drugs. The hydrophobic core can solubilize the 

hydrophobic drugs – steroids while the hydrophilic corona aids in the development of clear, 

aqueous solution. This novel nanomicellar strategy may (i) improve drug solubility

ii) improve drug uptake and cell permeability, (iii) allow for non-invasive delivery of 

hydrophobic drugs to posterior ocular tissues and (iv) improve patient acceptability and 

compliance due to its noninvasive, nonirritating clear and aqueous system. Based on the 

particle size, the transportation across the dynamic and static barriers is different13. 

Recently, Inokuchi et al. have demonstrated that following topical administration the 

liposome size of ~110 nm has higher coumarin-6 accumulation in posterior segment14. 

Mixed micelle formulation of rapamycin and cyclosporine from our laboratory also 

resulted in significantly higher concentrations in the intraocular tissues 15, 16. Nanomicelles 

may primarily follow non-corneal pathway such as conjunctival-scleral rather than uveo-

sclera pathway after topical administration to reach the retina. It is theorized that the 

hydrophilic surface of nanomicelle will help it follow transcleral pathway and achieve the 
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higher concentration in the posterior segment. Therefore, nanomicelle has been become the 

promising drug delivery system for intraocular tissue following topical administration.  

Rationale for Using Statistical Design of Experiments (DOE)  

Design of Experiment (DOE) is a systematic method to determine the relationship 

between factors affecting a process and the output of that process. DOE helps the scientists 

learn the pattern of interactions among independent factors and their effects on dependent 

factors. This method can reduce a number of experiments for optimization. This process 

saves a lot of time and cost. Recently, design of experiment (DOE) has been widely utilized 

to optimize formulation. DOE is a structured powerful approach for conducting experiments 

to identify and explain the influence of individual factors and their interactions on response 

variables. In this project, DOE is used to identify the effect of two different polymers that 

may enhance the entrapment efficiency and loading efficiency, the interaction among 

factors (polymer-drug and polymer-polymer) may enhance or lower drug loading in 

nanomicelles. Based on information from the model, we will optimize and modify 

nanomicelle components to achieve higher aqueous solubility for steroids.  

Rationale for Using Fluocinolone Acetonide (FA), Triamcinolone Acetonide (TA) and 

Triamcinolone (T1) 

FA, TA and T1 are synthetic glucocorticoid, possessing anti-inflammatory and anti-

angiogenic properties 17, not only regulate the expression of VEGF but also inhibit pro-

inflammatory genes. Even only FA is a FDA approved drug for DME as intravitreal 

implant but TA and T1 have been used for many years and showed benefit effect on DME 

patients 18 19 20. FA and TA have same vitreous elimination half-life of the solubilize 

fraction, short ranging from 2 to 3h  21.  
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In the present study, two amphiphilic polymers namely; hydrogenated castor oil 

(HCO) and octoxynol-40 (Oc-40) are selected. Both HCO and Oc-40 are safe and approved 

by FDA for human use. Amphiphilic nature of HCO and Oc-40 consist of hydrophobic 

core and hydrophilic corona allowing spontaneous formation of spherical nanomicelles in 

aqueous solution. Hydrophobic FA, TA and T1 may partition into hydrophobic core of 

nanomicellar structure whereas the corona is comprised of hydrophilic groups which 

extend towards surrounding aqueous environment in a manner to stabilize the inner 

hydrophobic core.   

1.3 Objectives 

The objective of current study is: 

• To develop and optimize aqueous FA, TA and T1 loaded nanomicellar formulation 

(NMF) utilizing statistical design of experiment (DOE). The ratio of the 

combination HCO and Oc-40 was optimized with JMP 13.0 software. Standard 

least square fit analysis was carried out to identify the optimal NMF which 

generates the highest desirability  

• To prepare nanomicelle encapsulating FA, TA and T1 using film hydration method 

• To characterize the FA, TA and T1 loaded NMF for their size, polydispersity (PDI), 

shape, surface morphology, EE, LE, CMC, optical clarity, viscosity, dilution effect, 

osmolality, pH, proton NMR, powder XRD and in vitro drug release study.  

• To evaluate for in vitro cytotoxicity on human corneal epithelial cells (HCEC) and 

human retinal pigment epithelial cells (D407 cells).  
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CHAPTER 2 

2. OCULAR ANATOMY & DRUG DELIVER 

2.1 Ocular Anatomy 

The human eye is a complex sensory organ with multiple anatomic components; its 

sole purpose is to send external visual, photoreception, i.e. light signals, through the optic 

nerve to be interpreted by the occipital lobe of the cerebrum.  As many of the specialized 

organs of the body, the eyes have full external protection through housing of the bony 

components of the skull.  The orbital bones consist of a confluence of seven facial bones.  

These facial bones are arranged in superior, medial, lateral and inferior portions22. These 

portions are orbital surface of the frontal bone, orbital surface of the lesser wing of the 

sphenoid, orbital plate of the ethmoid bone, orbital process of the palatine bone, lacrimal 

bone, orbital surface of the greater wing of the sphenoid, orbital surface of the zygomatic 

bone and the orbital surface of the maxilla23.  

Moving internally from the facial bones of the orbit, surrounding the eye, one will 

find a multitude of muscles, glands, ligaments and fatty tissues.  The eye is connected to 

six muscles, which control the various movements; i.e., superior rectus muscle, inferior 

rectus muscle, medial rectus muscle, lateral rectus muscles, superior oblique muscle and 

inferior oblique muscle24.  One additional muscle, the levator palpebral superioris muscles, 

not in direct contact with the eye controls the movement of the upper eyelid.  The 

movements of the muscles of the eye are controlled by a combination of cranial nerves III, 

IV and VI. The eye, or Oculus Bulbi, can be anatomically subdivided into anterior and 

posterior segments (Figure 2-1). The anterior segment is compartmentalized into the 

cornea, conjunctiva, aqueous humor, iris, ciliary body, pupil (aperture space) and lens.  The 
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posterior segment is occupied with anatomic structures of the sclera, choroid, Brush’s 

membrane, retinal pigment epithelium (RPE), neural retina and vitreous humor. A brief 

description of these ocular tissues is provided in following section.  

 

2.1.1 Anterior Segment 

Cornea: The most superficial convex structure of the eye.  The cornea is a 

multilayered transparent membrane composed of five layers (Fig. 2-2).  The transparent 

nature of the cornea is imparted due to its arrangement of cells, collagen and absence of 

vasculature 25.  There are five layers which compose the cornea; (1) corneal epithelium, (2) 

Bowman’s membrane, (3) stroma, (4) Descement’s membrane and (5) endothelium (Figure 

Figure 2-1: Anatomy of the Eye.   
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2-2). Another novel pre-Descemet’s layer of cornea, called Dual’s layer, has just been 

discovered recently and under debated 26. These layers can be subdivided into three cellular 

(corneal epithelium, stroma and endothelium) and two interface layers (Bowman’s 

membrane and Descemet’s membrane)27.  One addition to the corneal layers would include 

the external surface tear film.  The tear film layer is produced by a combination of 

secretions from goblet cells, lacrimal gland, meibomian glands as well as Moll and Zeis 

glands that are found within the eyelids 25.   The cornea continues to increase in thickness 

as it moves peripherally, reaching a confluence with the sclera and conjunctiva. The 

junction of the cornea and sclera is referred to as the limbus.   

Figure 2-2: Corneal Layers of the Eye. (A) Histological Corneal Images; (1) 

Corneal Epithelium, (2) Bowman’s Layer, (3) Stroma, (4) Descemet’s Membrane 

and (5) Endothelium.   (B) And (C) Diagrammatic Expanded Corneal Layers. 

*Reproduced with the Permission 

 



 

9 

 

The corneal epithelium is approximately four to six cell layers thick of a non-

keratinized stratified squamous epithelium. Corneal epithelial cells have been noted to be 

replaced every seven to ten days.  As such, two locations can be focused on for 

replacement, one being the limbus region which has been noted to be a location of increased 

vascularity and pluripotent stem cells in the anterior segment of the eye 28.  The single 

columnar basal layer of the corneal epithelium has shown mitosis capability for 

replacement of the wing and superficial cells 29.  The superficial cells present surface 

microvilli, with the addition of the tear film smooth’s the surface irregularities and 

improves the optic properties of the cornea 27.  The corneal epithelial cells maintain the 

presence of tight junctional complexes preventing fluid movement within the intracellular 

spaces, as well as hemidesmosomal attachment to the basement membrane just coronal to 

Bowman’s layer.   Bowman’s layer is a false membrane devoid of cellular content. The 

layer is composed of type I collagen and is approximately 15 µm in thickness, and aids in 

the shape maintenance of the cornea  27.  The corneal stroma comprises the largest portion 

of the cornea, contributing approximately 80 – 85% of corneal thickness 27.  The unique 

extracellular matrix of the stroma, consisting of bundles of collagen fibrils, are arranged in 

larger paralleling bundles called lamellae.  The arrangement of the lamellae is key to 

reduction of anterior light scattering, while simultaneously aiding in the transparency and 

strength of the cornea 27.   Descemet’s membrane, the second and most posterior of the 

corneal interface layer develops from secretions of endothelial cells.  Electron microscopic 

views shows two distinct portion based on the time of formation, a banded and unbanded 

appearance, with the unbanded amorphous structure forming post birth, the total thickness 

approximate 10µm 27.   
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Corneal endothelium is the final posterior layer of the cornea. Viewed as a single 

cell layer thick, with tight cell adherence, maintaining direct contact with the aqueous 

humor. A high concentration of Na+, K+-ATPase pumps can be found in the lateral 

membranes of the corneal endothelial cells 30.  Additional function of endothelial cells is 

to help maintain the stroma at a relatively dehydrated state, approximately 78% water 

content, as they are in direct contact with the aqueous human 31.  This function is another 

aid in the maintenance of corneal transparency. 

Iris: The pigmented aperture, which controls the size of the pupil, and thus the 

amount of light entering the eye. It consists of pigmented epithelial cells, circular muscles 

and dilator muscles. These muscles help constriction or miosis of the pupil by the action 

of cholinergic nerves. The dilator muscles are responsible for dilation of the pupils upon 

sympathetic stimulation 32.  The iris can be divided into four layers.  (1) Anterior border 

layer, consisting of mainly fibroblast and pigmented melanocytes, large pits or holes 

termed crypts of Fuchs can be noted in this layer as well. (2) Stroma layer containing 

collagen fibers, blood vessels and nerve fibers.  Within the deep stroma layer, the sphincter 

pupillae muscle is arranged around the pupillary margin. (3) The anterior epithelium 

containing myoepithelial cells of the dilator pupillae muscle, with the muscle fibers 

arranging themselves in a radial pattern, opposite the sphincter muscle orientation.  (4) The 

fourth and final layer of the iris is the posterior pigmented epithelium, made up of highly 

pigmented columnar cells with the main physiologic function of light absorption within the 

iris.  

Ciliary Body: The ciliary body is designed to regulate three major functions within 

the eye; (1) aqueous humor secretion, (2) control the shape of the lens and (3) help maintain 
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intra-ocular pressure and equilibrium of aqueous humor volume of the anterior chamber 

through drainage. The ciliary body is composed of the ciliary process and the muscle 33. 

The ciliary muscle is attached to and controls suspensory ligaments known as zonules.  The 

zonules is also attached the lens of the eye. Ciliary muscles have fibrous bundles and are 

highly flexible. Contraction of the ciliary muscles controls the shape, or accommodation 

of the lens, allowing images of various distances to be brought into focus. 

Conjunctiva: A protective tissue of the eye that can be divided into three segments 

based on anatomical position, i.e., (1) fornical conjunctiva, (2) bulbar conjunctiva and (3) 

palpebral conjunctiva.  These tissues are found lining the inner portions of the upper and 

lower eyelids.  Conjunctiva tissues contain high vascularity, lymphoid tissue, mucous 

secreting cells and are highly innervated. It is made of non-keratinized stratified columnar 

epithelial cells that produce mucus and tears allowing the eyes stay lubricated.  

Aqueous Humor: A transparent fluid produced from plasma by the ciliary body 

cells in the posterior chamber behind the iris, the aqueous humor occupies both chambers 

of the anterior cavity, the space posterior to the cornea and anterior to the lens 34.  The 

formation of aqueous humor is a three-component mechanism; diffusion, ultrafiltration and 

active secretion, which simultaneously controls the composition of the fluid 34, 35.  

Production and drainage of aqueous humor are symbiotic to ensure equilibrium can be 

maintained 34.   The aqueous humor helps to provide needed nutrients, oxygen, and waste 

clearing to the avascular tissues of the cornea and lens 35.  Drainage of aqueous human 

assumes a posterior- anterior flow from the ciliary body anterior towards and drained into 

Schlemm’s canal. Reports of approximately 5-10% of aqueous human can follow the uveo-
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scleral pathway   36, 37.  The drained aqueous humor will collect and mix with the venous 

blood circulation 38. 

Lens: The posterior anatomic boundary for the anterior segment of the eye is the 

lens.  The lens, like cornea is an avascular tissue composed of multiple layers.  

Simplistically, the lens is a biconvex structure which can be divided into three layers, i.e., 

the capsule of the lens, the cortex and the nucleus of the lens. As the lens is the anatomic 

boundary for the anterior and posterior segments of the eye, aqueous humor is found on 

the anterior aspect of the lens, while vitreous humor is in contact with its posterior aspect39.  

The iris circumferentially overlaps the anterior portion of the lens forming the central open 

space into the lens referred to as the pupil.  Posterior to the iris is the ciliary process with 

its zonular fiber extension which attach to the capsule of the lens, at its mid-junction or 

equator.  With constriction or relaxation of the ciliary muscles lens accommodation can 

occur, allowing for object focusing.  It has been noted that the capsule of the lens can take 

part in passive exchange and simple diffuse of metabolic substrates and waste with relation 

to their specific charge and molecular size40-42.  The largest structural component of the 

lens is the cortex.  The cells within the cortex can be found to be tightly packed with cellular 

components and a nucleus, as these cells age the nucleus and cellular content are lost 

leading adding in the transparency of the lens43, 44.  As the cells age they continue their 

migration towards the center of the lens, which forms a thick and dense center known as 

the nucleus of the lens 45.   

2.1.2 Posterior Segment 

Sclera: The sclera is the largest portion of the globe, approximately 80%, and the 

cornea being the second largest component 46.  The sclera can be found to span from its 
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anterior junction of the cornea, the limbus, below the conjunctiva, to the posterior region 

known as the Lamina cribrosa of the sclera where the optic nerve exits. Sclera is composed 

of collagen fiber network with elastic fiber and dispersed melanocytes and the thickness 

increases from 0.5 to 1 mm moving toward the optic nerve 47. This network is arranged in 

a disordered fashion, along with higher water content, causes light scattering, giving the 

sclera its classic white or opaque appearance. Sclera is highly porous tissue allowing the 

transport of water and others. The permeability of hydrophilic molecules is higher than 

hydrophobic one. The smaller molecule weight has higher permeability48.  

Choroid: The choroid layer can be found in between two layers, medial to the 

sclera and lateral to the retinal pigment epithelium (RPE).  The choroid layer is highly 

vascularized.  The main function of the choroid layer is retinal supply of oxygen and 

nutrients 49.  Additional role of the choroid layer deals specifically with aqueous humor 

drainage through the uveoscleral pathway of the anterior chamber, which can account for 

up to 35% 49.  Choroid layer blood flow through vasomotor control can also alter the 

intraocular pressure (IOP) 49.    The choroid can be subdivided into three layers; i.e., (1) 

suprachoroid, (2) vascular layers and (3) Bruch’s membrane 49, 50 (Fig. 2-3).  The 

arrangement places suprachoroid layer being most lateral in close approximation with the 

sclera, with each following layer moving more medial towards the RPE.  It has been noted 

that the vascular layer can be separated into two layers, Haller’s and Sattler’s 49.   Haller’s, 

Sattler’s and choriocapillaries represent various vessel sizes, and positions within the 

vascular layer. (Figure 2-3).  Bruch’s membrane serves as the separating layer of choroid 
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from the RPE, with the basement membrane of the choriocapillaries endothelial cells 

forming its external layer of Bruch’s membrane49, 51, 52.  

Retina: It is a light sensitive tissue made of two major layers i.e. Retinal Pigment 

Epithelium (RPE) and neurosensory retina. Retinal Pigment Epithelium (RPE) is directly 

in contact with the light sensing neural cells rods and cones. These cells are further 

associated with bipolar and ganglionic cells. The optic nerve is linked with the ganglionic 

cells, which are further coupled to amacrine cells. RPE functions as a nutrient source to the 

retina via the choroid. It forms a tight junction flanked by the choroid and retina. RPE cells 

also aid in the elimination of damaged photoreceptors via phagocytosis. A single cuboidal 

cell layer providing maintenance and survival to the retinal photoreceptor cells above, 

while regulating the choroidal capillaries of the choroidal layer below 53.  RPE undertakes 

a multitude of tasks, i.e. it forms the blood-retinal barrier (BRB), which plays an import 

role as a static posterior barrier to ocular drug delivery, transportation and clearance of 

Figure 2-3: Histology of the Choroid. A. Schematic of the Layers of the Choroid. 

Reproduced with Permission from Remington, LA. Clinical Anatomy of the Visual System. 

B. Semithin Resin Section of the Outer Retina and Choroid in the Primate Eye. RPE: Retina 

Pigment Epithelium; CC, Choriocappilaries; SL, Sattler’s Layer; HL, Haller’s Layer. 

Reproduced with Permission from Forrester Et Al., 2002. The Eye: Basic Science in Practice 
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nutrients and waste products, production of growth factors, storage of retinoids and 

protection from free radicals 53. 

The neural retina is a multilayered structure, consisting of the neurosensory retina 

and the RPE.  Inner part of the neurosensory retina mainly obtains its blood supply from 

the retinal artery, whereas the outer portions fulfill their nutritional requirements by the 

choriocapillaries 51. The two main photoreceptor cells found within this area are the rod 

and cone cells. The neural retina is found spanning from the Ora serrate anterior, ending at 

the optic nerve posterior.  The multilayered neural retina forms the most internal layer of 

the eye.  It can be subdivided into the posterior pole, or anatomic macula, and the peripheral 

retina, which makes of the remaining surfaces.  Special anatomic areas have been of note, 

i.e. macula, fovea centralis and optic disk.  Within the posterior pole, the fovea centralis is 

found to house the highest concentration of cone photoreceptor cells, thus the macula/fovea 

centralis is an area of heightened visual light detection 54. The photoreceptor rod and cone 

cells can be found approximating the RPE cell layers, which are connected via inter-

neurons called bipolar and ganglion cells which transmit electrical signals transformed 

form light energy to the brain for visual interpretation of images 55.   

Vitreous Humor:  It is a transparent matrix of hydrophilic gel with an approximate water 

concentration of 98%, which occupies the posterior segment, equaling around two thirds 

of the intraocular volume of the eye 56.  The vitreous human can be found attach anterior 

to the ora serrate of the retina and posteriorly around the optic nerve, allowing for 

compartmentalization and stabilization of the vitreous human against the retina. The 

vitreous made of collagen fibrils and hyaluronic acid. However, cortical region contains 

dispersed hyalocytes. The pH is around 7.5 57.  
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2.2 Barriers To Ocular Drug Delivery (ODD)  

The eyes are the most highly protected organ which have many barriers for drug 

delivery. Ocular diseases and other acute or chronic conditions of the eye, like other parts 

of the body, may require treatment in the form of medications and or invasive surgeries.  

As with any drug delivery, the goal is always to deliver the drug in the lowest effective 

bioavailable dose to the specific intended target tissue, while reducing or eliminating local 

or systemic collateral damage. Focusing on conditions that require ophthalmic drugs 

treatment protocols, one must understand the various forms and routes of administration to 

appreciate the barriers which will be encountered during delivery.  The most common route 

of ophthalmic drug delivery is topical application, with various solutions, ointments and 

suspensions.  Additional routes of ocular drug delivery have been developed to help 

overcome these various drug barriers.  Although, more invasive in nature, and not without 

limitations, these routes include, i.e. intravenous administration, ocular injections to 

anatomic sites such as; intravitreal, subconjunctival, periocular, and even ocular implants.   

Ocular drug barriers can be classified based on anatomic location, and their static 

or dynamic nature (Fig. 2-4).  For those reasons two barrier segments exist; anterior and 

posterior segment barriers, with each segment containing both static and dynamic barrier 

forms.  Static barriers of the anterior segment consist of; the cornea, conjunctiva, blood 

aqueous barrier (BAB) and efflux pumps on the cell surface.  The dynamic barriers of the 

anterior segment include; tear drainage, conjunctival lymph and blood flow and aqueous 

humor.  The posterior static barriers are; the sclera, Bruch’s membrane, blood retinal 

barrier (BRB) and efflux pumps.  The dynamic barrier of the posterior segment is the 

choroidal blood and lymph circulation. 
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2.2.1 Anterior Segment Static Barriers  

Cornea: The cornea acts as a physical barrier to topically applied drugs, in part due 

its structural nature.  Consisting of five layers, the superficial epithelial layer presents with 

tight intracellular junctions, formed by cell adhesion proteins, occludins, which aid in 

preventing intracellular fluid and substance movement, along with hemidesmosomal 

attachment to the basement membrane, prevents deeper penetration into the ocular tissues. 

Additionally, the cornea is confluent with the sclera and conjunctiva.  Therefore, topically 

administered drugs can contact and interact with these tissues.  It should be noted that the 

conjunctiva has shown the highest permeability of these tissues, due to its large epithelial 

Figure 2- 4: Biological Ocular Barriers in The Eye (A) Tear Film Barrier; (B) 

Corneal Barrier; (C) Vitreous Barrier; (D) Blood–Retinal Barrier And (E) Blood–

Aqueous Barrier 
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pore size and increased paracellular space, of approximately 230 times more than the 

cornea 58.  Overall the conjunctiva can be two times as permeable as the sclera, which when 

compared with the cornea, the sclera shows a ten times higher permeability.  Drugs can 

cross cell membranes by various routes; i.e. paracellular (movement through the 

intracellular space), transcellular (movement through the cell membrane, both the apical 

and basolateral cell membrane), active (movement across the cell membrane from an area 

of lower to higher concentration, enzyme and energy required), carrier-mediated (cell 

membrane transport via a carrier protein, can be active or passive forms) and receptor-

mediated transport (endocytosis with specific vesicle and cell membrane receptors) 58.  The 

corneal epithelial occludins tight junctions prevent polar molecules from crossing by 

paracellular routes.  Where, transcellular movement of lipophilic drugs have proven more 

effective, due to the high lipophilic nature of the corneal epithelial membrane layer, which 

accounts for approximately 90% of the corneal cell volume 5.   Both Bowman’s and 

Descemet’s membranes play no virtual role in limiting drug moment through the cornea.  

Whereas the stroma layer, being hydrophilic in nature, serves to limit the movement of 

lipid-soluble drugs. The final barrier of the cornea before reaching the aqueous humor is 

the corneal endothelium.  It has shown the presence of leaky tight junctions that may allow 

movement of macromolecules through, and into the aqueous humor 59.  Of the noted 

mechanisms of drug movement through cell membranes, diffusion of drugs across corneal 

layers has proven to be the predominant role in reaching the aqueous humor. It has been 

noted that the two most important molecular properties effecting corneal epithelial 

permeability are ionization and pH of the drug molecules, with little impact imparted with 

regards to molecular size. 
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Conjunctiva: Although shown to exhibit a higher permeability than the cornea and 

sclera, it does not present without its own barriers.  Due to the conjunctival epithelial 

surface layer, with the presence of tight junctions, once again, paracellular absorption is 

highly restricted. As with the cornea, the conjunctiva must also compete with the tear film 

production and nasolacrimal duct drainage of topically administered drugs.  Mucin present 

in the tear film forms a hydrophilic layer coating the cornea and conjunctiva. With the tear 

films rapid rate of turnover and clearance, approximately every 2-3 minutes, most topically 

applied drugs can be cleared within 15-30 seconds 5.  Accounting for epithelial paracellular 

permeability issues and limited surface exposure time, topical drug administration can lead 

to as little as 5% of the administered drug reaching the intended intraocular tissues 60. 

Additional barriers that face the conjunctiva is the lymphatic and capillary blood flow 

which will be discussed in greater detail in the anterior dynamic barrier segment. 

Blood Aqueous Barrier: The blood aqueous barrier (BAB) in combination with 

the blood retinal barrier (BRB) make up the blood ocular barrier (BOB).  The BOB as a 

whole plays a vital role as a major barrier for the entry and elimination of systemically 

administered drugs.  The focus of this section will be the BAB.  Anatomically the BAB 

constitutes in the posterior chamber of the anterior segment of the eye. It is comprised of 

two structures; the iris/ciliary blood vessel endothelium and the nonpigmented ciliary 

epithelium 5.  Again, cellular tight junctions play a role in controlling drug moment into 

deeper or posterior portions of the eye.  Unlike the cellular tight junctions, the capillaries 

of the ciliary process may allow for passage of molecules.  It was noted that dextrans up to 

150kDa in size were able to cross the BAB 61. The cilary capillaries control plasma protein 

entry with the aqueous humor.  Although, drug molecules which may reach the aqueous 
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humor via ciliary capillaries are eliminated through the iris blood vessels, draining into the 

systemic circulation. 

Efflux Pumps: Resistance and decreased drug bioavailability may be due to so 

called efflux pumps.  Ocular drug efflux pumps belong to the superfamily known as 

adenosine triphosphate binding cassette (ABC) 58. Two efflux pumps, i.e. permeability 

glycoprotein (P-gp) and multidrug resistance protein (MRP) have been of note in ocular 

drug barriers 5.  Lipophilic molecules have been shown be effluxed by the P-gp with some 

affinity 5.  P-gp efflux pumps have been identified on the ocular tissues of the cornea, 

conjunctiva and RPE, while MRP efflux pumps have been noted on the cornea, specifically 

MRP2 and MRP5 62-65.  Active presence and function of efflux pumps will reduce the 

bioavailability by the reduction of the target cells intracellular drug concentrations. 

2.2.2 Anterior Segment Dynamic Barriers  

Tear Drainage: Drainage of precorneal fluid occurs through the nasolacrimal duct.  

The medial canthus of the eye contains the superior and inferior punctum which attach to 

the lacrimal canaliculi that converge into the nasolacrimal duct.  The nasolacrimal duct 

drains into the inferior meatus of the nasal cavity.  Most topically administered ocular drugs 

are absorbed into the corneal tissues by diffusion, although such factors as tear film drug 

dilution and drainage reduces the drug concentration gradient required for corneal 

diffusion.  Approximately 7-10 µL can be held within the precorneal pocket of the eye, 

with the topical drug application volume exceeding the precorneal pocket volume, loss can 

occur with application spillage 66. 

Conjunctival Lymph and Blood Flow: The conjunctiva is an anterior segment 

tissue comprised of high vascularity and lymphatic drainage.  These factors help in 
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protection of the eye from the external environment. The protective nature also lends itself 

to a dynamic barrier for ocular drug delivery.  The lymphatic and capillary blood flow 

expels a percentage of topically applied drugs which are transported from the surface of 

the eye to the lymphatic and systemic circulation.  What remains is a reduced concentration 

and bioavailability of the applied drug to act on the cornea, sclera and conjunctiva. 

Aqueous Humor: The aqueous humor itself does not activity seek out elimination 

of ocular drugs that may have diffused through the anterior segment tissues, but rather a 

physiological nature of the aqueous humor flow becomes the dynamic barrier.  As the 

aqueous human is secreted into the posterior chamber of the anterior segment by the ciliary 

body, the aqueous humor flow moves anteriorly, opposing the posterior movement of the 

ocular drugs 58.  The drugs are carried and drained with the aqueous humor trabecular 

meshwork and the canal of Schlemm into the venous circulation. 

2.2.3 Posterior Segment Static Barriers 

Sclera: It is composed of hydrated collagen fibers with various thicknesse. The 

sclera is a static protective barrier for the posterior ocular tissues.  Permeability of drugs 

across the sclera depends highly on lipophilicity and molecular size.  A drop in sclera 

permeability can be noted when the lipophilicity and molecular weight of a drug increases, 

and can possible become trapped within the scleral pores 58.  As stated, the thickness of the 

sclera changes, with the greatest thickness noted in the posterior segment approximating 

the optic nerve, for this anatomic reason alone permeability of molecules is greatly reduced. 

Bruch’s Membrane: Situated between the choriocapillaries of choroid and the 

retinal pigment epithelium. The main function in a healthy state is to provide nutrient and 

metabolic waste exchange between the RPE/retina and choroidal blood vasculature 67.  Age 
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and disease related changes can lead to increased thickness of Bruch’s membrane, this 

could cause a decrease in permeability from the outer sclera through and into the retinal 

tissues.  Drugs could be trapped within the choroidal vasculature and be removed into 

systemic circulation before reaching Bruch’s membrane and transported into the posterior 

retinal tissues. 

Blood Retinal Barrier: The blood retinal barrier is composed of two layers, inner 

and outer BRB, with the RPE cells tight junctions forming the outer BRB layer and the 

inner layer formed from the endothelial cells of the retinal capillaries. This is one of the 

main barriers for ocular delivery. Astrocytes and Muller cells support the tight junctions, 

which allow great control of passive drug diffusion.  Diffusion from choroid through the 

RPE outer layer of BRB allows lipophilic, CO2 and O2 molecules free movement into the 

retinal tissues, although do to these tight junctions transport of other molecules require 

energy mediated receptors. 

2.2.4 Posterior Segment Dynamic Barriers 

Choroidal Blood and Lymph Circulation: Highly vascularized and containing 

lymphatics makes this a significant dynamic barrier.  Drainage of lipophilic drugs into the 

choroidal and lymphatic circulation preventing entry into the inner ocular tissue as these 

drugs are moved eventually into systemic circulation8.  Hydrophilic drugs have shown the 

ability to have a lower potential to be eliminated or blocked by this barrier68, 69. 

2.3 Routes of Ocular Administration 

Medications delivered to the eye can be divided into three groups; topical (drops, 

emulsions, suspensions, ointment and gels), systemic (oral or intravenous) and intra-ocular 

injection/implants following periocular (subconjunctival, subtenon, retrobulbar, and 
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posterior juxtascleral), and intravitreal route (Fig. 2-5). The most frequently used and 

suggested pathways for treating diseases of the eye based on anterior & posterior chamber 

location are; topical drops and intra-ocular injections/devices (implants), respectively. In 

the following sections these pathways for medication delivery will be discussed.  Four 

routes of delivery can be used for medication distribution to the eye; topical, systemic, 

intraocular and periocular (including subconjunctival, Sub-Tenon’s, retrobulbar and 

peribulbar) 70. Fig. 2-5 depicts the multiple pathways of medication delivery to the eye.  

  

Figure 2-5: Schematic Representation of Local Routes for Ocular Drug Delivery 
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2.3.1 Topical Route 

Alternative forms of topical ocular drops are; solutions, emulsions and suspensions.  

These can contain; water, active pharmaceuticals, excipients and preservatives. Multiple 

positives can be obtained from topical ocular drop delivery, such as; easy to use by patient, 

less invasive, reduced cost and by its ability to avoid first pass metabolism, medications 

can be selectively delivered to the anterior tissues of the eye. With these noted advantages, 

topical ocular drop will be the first choice with regards to treatment of diseases of the 

anterior eye. However, there are many limitations or barriers such as precorneal and corneal 

barriers. Therefore, a low fraction of medication reaches into ocular structures by topical 

route.  Absorption of topically delivered medications to the eye is allowed by corneal and 

non-corneal, also referred to as trans-scleral pathway71. Although, corneal absorption is 

limited in part by its anatomic configuration, consisting of its main barrier, the corneal 

stroma, which is hydrophilic in nature, as well as tight junctions and lastly the epithelium 

of the cornea. Exceptions can be seen when active disease processes are occurring. During 

glaucoma and inflammatory events, back of eye tissues (choroid, iris and retina), can 

achieve a higher concentration of drug delivery72. 

Eye drops containers are designed to release a specific volume with each delivery 

for single or multiple deliveries. The medication solution is contained within glass or LDP 

plastic carriers. Topical drug carries have a solution volume range from 25.1 µL to 70 µL 

with an average drop size of 39 µL73, 74. The eye of a healthy adult can produce 7-9 µL of 

tear volume, at a generating rate of 0.5-2.2 µL/min. The ocular cul-de-sac, or lower 

conjunctival sac, marks the anatomic location for proper administration of topical eye 

medication solution 75. Two distinct physiologic events follow the administration of topical 
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eye medication solutions: (1). Increase in tear volume productions and (2). Rapid reflex 

blinking.  Following the proper unit dose delivery of topical medications only 

approximately 50% of the solution remains in the lower conjunctival sac, the remaining 

50% is lost by two routes; directly spillage out of the eye onto the cheek and drainage 

within the middle meatus by means of the naso-lacrimal duct. Of the approximate 50% that 

remains in the lower conjunctival sac, a small portion, only 1 to 7% of drug is capable of 

reaching the aqueous humor of the eye. The reduced percentage of ocular drug delivery is 

predicated by two main barriers; static and dynamic.  Static barriers are formed by anatomic 

building blocks of the eye, corneal and conjunctival tight junctions.  A further complication 

in the insufficiency of topical drug delivery can be seen as a a true physical loss of solution 

during the eye delivery process. It can be occurred primarily in the elderly or other 

populations with decreased manual dexterity. This is even more important when the third-

party payers can only provide a 30-day supply, and most of the solution is lost by drainage. 

To combat this issue and help reduce physical solution loss, topical application holders 

have been designed. The goal of the holders is to increase solution delivery into the lower 

conjunctival sac by; preventing eye lid closure and blinking, while directing the gaze of 

the eye to a proper position for the medication drop delivery.  

Due to its high local concentration of capillary beds and the ability of the capillary 

blood flow to remove and reduce the concentration of medications to intended targets, the 

corneal route remains major absorptive pathway in comparison to non-corneal route, 

constructed by the conjunctiva and sclera, which acts as a minor absorptive pathway 76. 

Anatomically compared, the epithelium of the conjunctiva offers less barrier activity than 

can be found in the epithelium of the cornea. Given the high permeability nature of the 
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sclera, compared to the cornea, by means of its poor vascularity and reduced penetration 

barriers to high molecular weight molecules, topically delivered medications reaching the 

sclera are afforded increased ocular access72, 76. Therefore, the sclera can be a main route 

of medication delivery to the eye, once absorbed by the conjunctival tissues. However, 

drainage loss through blood vessels of the conjunctiva can greatly affect the 

conjunctival/scleral pathway. Nevertheless, it should be noted that the conjunctival 

epithelium is the most viable route for ocular delivery of peptides oligonucleotides77. It is 

much harder to deliver drugs to the posterior segment because of membrane barriers. These 

barriers, in conjunction with nasolacrimal drainage of administered drops, drug 

metabolism, protein binding, lens barrier and long diffusional path lengths result in poor 

drug delivery to the retina following topical administration 78. Moreover, the passage of 

drugs from the anterior segment to the posterior segment does not appear to be an efficient 

strategy because of the continuous drainage of the aqueous humor (i.e. a turnover of 2-3 

mL/min). Thus, locally used ophthalmic therapies failed to provide an efficient 

pharmacological effect in the posterior segment (e.g. retina and vitreous) 76. Many efforts 

have been directed towards enhancing the corneal permeability of the drug following 

topical administration. The application of high concentrations of penetration enhancer to 

increase the bioavailability may cause mucosal irritation and corneal abrasion, leading to 

toxicological complications.  

The volume of the solution that can be instilled in the precorneal area is also limited. 

The eyelid and the conjunctival sac can take up a limited amount of the instilled solution. 

The volume that the precorneal area can accommodate is ~50 µL. When instilled volume 

is more than 50 µL, the excess solution is removed from the precorneal area via 
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nasolacrimal duct and the amount of drug in that volume of fluid is lost. Both in the 

nasolacrimal duct and in the nasopharynx, the drug can be absorbed systemically through 

the mucosa, avoiding pre-systemic hepatic first-pass metabolism79-81. Moreover, when the 

volume is more than the maximum volume, the reflux blinking and tearing remove the 

excess volume. The normal tear volume is restored within 2-3 min and the excess volume 

is lost within 20-30 sec by precorneal factors82, 83. The higher the volume of drop instilled, 

the more rapidly it will be lost via nasolacrimal duct system80, 81, 84. As the instilled volume 

is increased, more amount of drug is removed through nasolacrimal duct. When the 

instilled volume is very low, it may be diluted in the tear fluid, decreasing drug effect. 0.5% 

tropicamide, at drop volume of 5 µL produced less mydriasis than the one with 16 µL 85.  

In summary, pathways of absorption of drug into the eye following topical 

instillation include: (a) corneal pathway, drugs transport through the cornea via passive 

diffusion. molecule must possess a balanced lipophilicity and hydrophilicity to have higher 

permeability. The drug transported across the cornea enters the aqueous humor, which is 

eliminated due to high aqueous humor turnover. Moreover, less is known to be permeable 

to drugs; (b) trans-corneal pathway, the conjunctiva and sclera are more permeable tissues 

compared to the cornea. once the drug crosses the sclera and enters the intraocular tissues, 

it may distribute in the surrounding tissues by diffusion. Drug absorption is limited to 5% 

at best following topical application due to precorneal and corneal barriers. Nonetheless, it 

is most patient compliant route.  As ocular barriers and the physicochemical properties of 

drug molecules govern drug availability in the anterior and posterior segment. Studies 

should be directed to overcome these barriers by novel routes of administration and/or 

altering the properties of drug molecules 70.   
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2.3.2 Systemic Route 

Drugs administered systemically (e.g. through the oral or intravenous route) also 

have poor access to the aqueous humor and the vitreous 72. Ocular bioavailability of 

systemically administered drugs depends on the drug concentration gradient between 

serum and ocular tissues and as well as blood-ocular barrier (BOB) characteristics. The 

limitations of this route for drug delivery are poor ocular bioavailability due to BOB and 

systemic toxicity.   

2.3.3 Intraocular Injection 

Intraocular injections could be either intravitreal or intracameral. Injections that 

directs into the vitreous humor of the eye could be referred to as intravitreal injection, while 

injections into aqueous humor could be referred to as intracameral injection.  

Intracameral Injection:  

Intracameral delivery is intended to place the drug solution directly into the anterior 

segment of the eye. Although, intracameral injection has been extensively explored to 

improve delivery of biopharmaceuticals to both the anterior as well as posterior segments 

of the eye, it has not been possible to achieve therapeutic drug concentrations in the 

posterior segment of the eye following intracameral administration. Up to 100 µL volume 

in human can be injected in this route. However, repeated injections to maintain therapeutic 

concentrations over prolonged time period and low degradation of polymers may obstruct 

the aqueous flow, thereby elevating intraocular pressure and inducing risk of ocular 

infection71, 78. 

Intravitreal Injection:  
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During past two decades intravitreal injection is the main modality for delivering 

biopharmaceuticals to the posterior segment of the eye. It is an invasive procedure using a 

30-gauge needle that involves injection of a drug solution and/or suspension into the 

vitreous cavity in the center of the eye after penetrating through all layers of the ocular 

globe. The vitreous cavity can generally accommodate a volume of 20–100 µL drug 

solution/suspension without resentfully altering the visual axis. However, various common 

complications including endophthalmitis, intraocular inflammation, retinal detachment, 

intraocular pressure elevation or glaucoma, ocular hemorrhage, floaters and cataract after 

intravitreal injections may lead to permanent vision loss if untreated86. Currently most of 

the biopharmaceuticals including pegaptanib sodium, ranibizumab, aflibercept and 

bevacizumab indicated for neovascular or wet AMD are given as intravitreal injections. A 

comparative pharmacokinetic analysis revealed concentration (Cmax) of bevacizumab in 

retina/ choroid after an intravitreal injection (1.25 mg/0.05 mL) to be approximately 317-

fold higher than a subconjunctival injection at 1 week in rabbits 87. Intravitreal injection of 

Avastin® generated significant bevacizumab concentrations in the retina, the retinal 

pigment epithelium, the choroid and particularly the photoreceptor outer segments in 

cynomolgus monkey 88. Although, biopharmaceutical drugs due to their large molecular 

weight tend to prevent immediate elimination from the vitreous unlike small molecules, 

their vitreous half-lives of just few days to weeks may not be sufficient to achieve long-

term therapeutic effect. Therefore, novel delivery methods and/or long-term controlled 

release formulations for protein and peptide-based biopharmaceuticals are warranted in 

order to significantly reduce complications caused by repeated injections. 
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2.3.4 Periocular Injection  

The periocular region is the region surrounding the eye. Among existing routes, it 

is the most efficient and least painful route of drug delivery. Periocular injection is used 

when eye drops alone are not effective enough for treatment of eye inflammation and 

additional help is required. The drug is usually injected in close proximity to sclera in the 

posterior segment. Drugs delivered by this route can reach to the sclera, choroid, vitreous, 

retinal pigment epithelium, and neural retina. Peribulbar, retrobulbar, subconjunctival and 

Sub-Tenon’s injections are frequently used approaches offered by periocular route for drug 

delivery in to the eye. Time to reach drug virtual level depends on available drug 

concentration and the intermittent barrier layers between target site and site of drug 

administration70, 78. Lack of efficacy, convenience and safety are few drawbacks of 

periocular route due to which it is yet not considered as a first line treatment and still serve 

as an additive to topical drug therapy 89.  

Subconjunctival Injection:  

Periocular delivery is frequently achieved through an injection into the 

subconjunctival area, i.e. the space underneath the conjunctiva. An injection rooted into 

the bulbar conjunctiva and superficial to the sclera may provide a way to directly deliver 

therapeutics into the subconjunctival space. Subconjunctival routes can be used for 

sustained delivery since a depot can be formed in the space that can expand and 

accommodate up to 500 µL volume. However, drugs injected into the subconjunctival 

space are often rapidly cleared via conjunctival blood and lymphatic flow. In addition, pore 

diameter and intracellular spaces of scleral fiber matrix regulate drug permeation to a large 

extent. Subconjunctival injection of bevacizumab can provide longer in vivo t1/2 in the 
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iris/ciliary body and retina/ choroid relative to intravitreal injection. It may be attributed to 

binding with negatively charged scleral proteoglycans 87. In another in vivo study, high 

bevacizumab concentration was detected in the whole cornea post 24 h subcutaneous 

injection which remained almost unchanged in all layers of stroma over the next 14 days 

90. Various drug delivery technologies including microparticles/nanoparticles may be 

combined with physical techniques such as ultrasound and iontophoresis to achieve 

therapeutic concentrations of protein and peptide-based biopharmaceuticals following 

periocular administration91, 92 .  

Sub-Tenon’s Injection:  

The sub-tenon route is widely utilized for administering anesthetics during ocular 

surgery. It involves the injection of drug into a fibrous membrane, called tenon's capsule 

which along with the sclera binds the sub-tenon space. Although upto 4 ml of drug 

formulation could be injected through this route, administration complications including 

pain, chemosis, subconjunctival hemorrhage, retrobulbar and/or orbital hemorrhage, optic 

nerve damage, retinal ischemia, orbital swelling and rectus muscle dysfunction limit its use 

for the delivery of protein and peptide-based biopharmaceuticals 93. In patients with 

clinically significant macular edema, sub tenon’s injection of bevacizumab (2.5 mg in 0.1 

mm volume) resulted in significant short-term visual improvement in eyes 94. Thus, 

subtenon's injection may serve as an alternative to intravitreal injection for ocular delivery 

of biopharmaceuticals  

Retrobulbar Injection: 

Retrobulbar injections are used for administration of anesthetic agents or for 

corticosteroid therapy through the lower eyelid into muscles around the eye for the 
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treatment of posterior inflammation 71. Because this route provides higher local 

concentration, it’s utilized for anesthesia or akinesia and has little or no influence on 

intraocular pressure 78. Therefore, it’s selected if the drugs need to be in direct contact with 

posterior macular segment. The drugs are delivered into retrobulbar space within the 

muscle cone through a special 23-gauge sharp 1.5-inch needle with a rounded tip and a 100 

bend. The needle is administered in the region between the lateral rectus and the inferior 

muscles and it directed to the apex of orbit allow the penetration to posterior segment until 

the orbital septum resists or intermuscular septum resists. This routes can take up to 2-3 

mL of solution into the retrobulbar space 95. This routes may cause the penetration through 

sclera therefore increase the movement of drug into vitreous and retina 72.   

Peribulbar Injection:  

Peribulbar injection is directly injected to the inferior lateral region of the orbit with 

26-gauge half-inch disposable needle 96. This can be sub-divided based on the depth of 

needle including; peri-ocular (anterior, superficial), circum-ocular (sub-tenon’s, 

episcleral); peri-conal (posterior, deep) and epical (ultra deep) 97. This route has been used 

to lower the risk of injury to intraorbital compared to retrobulbar injection during cataract 

surgery 98. Considering both left and right sites, up to 8-10 mL of solution can be injected 

safely by this route 99. However, it has less effective in anesthetizing the globe than 

retrobulbar injection. Even though both retrobulbar and peribulbar are used in analgesia, 

control of IOP post-operator analgesia, complication of orbital hemorrhage, brainstem 

anesthesia, artery occlusion, optic nerve trauma and apoptosis 70.  
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CHAPTER 3 

3 DIABETIC MACULA EDEMA (DME) 

Diabetic macular edema (DME) is a chronic back-of-the-eye disease that may lead 

to vision loss. DME causes retina thickening due to accumulation of fluid in the center of 

macula (Fig. 3-1)100. Chronic diseases such as diabetes, non-proliferative and proliferative 

diabetic retinopathy are notorious factors in developing DME101. The exact mechanism by 

which diabetes leads to retinopathy (DR) is not well-delineated. However, several theories 

have been postulated in the literature. DR may develop due to excessive growth of leaky 

 

 

 

 

Figure 3-1: Diabetic Macular Edema (DME) at Disease State; (A) Structure of 

Human Eye; (B) Expanded Representation of Macula Region for Normal Eye; (C) 

Expanded Representation of Macula Region for DME; (D) Optical Coherence 

Tomography (OCT) Image for DME. *Reproduce with Permission. 
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vascularization in the retina. According to the National Eye Institute (NEI), DR progresses 

in four stages 102.  

In brief, mild non-proliferative retinopathy is the initial first stage where tiny 

abnormal blood vessels or micro aneurysms develop. Such blood vessels appear as balloon-

like swelling in the retina. With disease progress, in stage 2, moderate non-proliferative 

retinopathy develops with blood vessels supply nutrition to retina blocked. Severe non-

proliferative retinopathy is known as stage 3. It is diagnosed with blockage of capillary 

vessels depriving blood flow in the retina. Under such conditions retina is deprived of 

oxygen and nutrients. Moreover, several cellular signals (particularly HIF-α) are triggered 

that cause development of new vasculature to compensate oxygen and nutrient supply.  

Proliferative retinopathy is termed as the final stage or the advanced stage of DR.  The new 

abnormal blood vessels developed are fragile, and leaky. Such development is termed as 

neovascularization.  Several factors can add to severity of DME depending on degree of 

DR, length of time subject suffering with diabetes, type of diabetes, hypertension, fluid 

retention, hypoalbuminemia, in body fluids, and hyperlipidemia in the blood. Advent of 

microscopic techniques such as fundus contact lens bio-microscopy or funduscopic 

examination are proven to aid in DME diagnosis. DME can be diagnosed with ocular 

clinical conditions such as retinal thickening within 500 μm and/or hard exudates within 

500 μm or in one disk diameter in the center of macula 103.  

Pathogenesis of DME is not clearly delineated in the literature. However, DME is 

a complex multifactorial ocular disease 104. In the eye, blood retinal barrier (BRB) is an 

essential structure that regulates normal visual function. Such a physiologic barrier also 

regulates fluid movement in and out of retina 105. BRB is comprised of inner and outer 



 

35 

 

BRB 106. The inner BRB is composed of tight junctions between retinal capillary 

endothelial cells while the outer BRB tight junctions exist between retinal pigment 

epithelial cells 105. The breakdown of inner BRB results in vasogenic edema, neural tissue 

impairment and ultimately vision loss, if not treated 107. Disruption of BRB is a common 

factor for DME development108, 109. 

3.1 Physiology of DME 

Many macro and microvascular factors along with various pathways are involved 

in retinal thickening, disruption of BRB and loss of pericytes 110. 

3.1.2 Macro-vascular Factors  

Starling’s law and macular edema: According to the Starling’s law, hydrostatic 

blood and osmotic pressures of tissue fluid are responsible for vasogenic edema. It appears 

maintenance of the gradients between two forces involving fluid movement between inner 

and outer retinal layers is crucial to prevent DME 107. This law has explained that water 

accumulation is caused by decreasing osmotic pressure gradient between vessel and tissue. 

Current strategies for DME such as vitrectomy, laser, anti-VEGF or steroid administration 

have reversed osmotic pressure gradient and vascular permeability to prevent water 

accumulation.   

Oxygen tension: In diabetes patients, the level of oxygen is reduced in retina region. 

Consequently hypoxia induces VEGF expression 111, 112 resulting in enhanced vascular 

permeability. Increasing in oxygen tension causes compensatory vasoconstriction of the 

retinal vessels which reduces hydrostatic pressure, resulting in macula edema110, 113, 114. 

Stefansson et al has explained why vitrectomy and photocoagulation have effects on DME 
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and other neovascularization retinopathies based on ocular oxygen tension improvement 

115.  

Shear stress: The damage of endothelial cells and endothelial decoupling caused 

by shear stress over time can lead to alterative fluid flow in edema. Increase in shear stress 

also elevates nitric oxide production, which can result in vasodilatation and increase 

hydrostatic pressure 116.  

3.1.2 Micro-vascular Factors  

 Endothelial dysfunction and vascular damage due to hyperglycemia: Endothelial 

cells play very important role in maintaining the structure, vascular tone and prevention of 

platelet and leucocyte adhesion onto vessel wall. These cells are responsible for production 

of vasoconstriction and vasodilatation mediators and various inflammatory mediators such 

as intracellular adhesion molecule (ICAM), leucocyte adhesion molecule (LAM), and 

vascular cell adhesion molecule (VCAM)117-119. While endothelial progenitor cells play a 

role in repair of damaged vessels, number of these cells are reduced in hyperglycemic 

conditions120, 121.  

Blood–retinal barrier (BRB): Since endothelial cells play important roles in 

maintaining the integrity of BRB the damage to endothelial cells disrupts the integrity and 

enhances vascular permeability. This increased permeability leads to accumulation of 

extracellular fluids, and also it increases the oncotic pressure due to influx of protein from 

blood vessels to inner retina122, 123. 

Growth factors: Growth factors regulate angiogenesis by stimulating endothelial 

cell proliferation, migration, and survival. These factors have influence in many ocular 

diseases such as DME, DR and neo-vascular age-related macular degeneration124-126. 
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Growth factors including vascular endothelial growth factor (VEGF), placental growth 

factor (PlGF), and hepatocyte growth factor (HGF) are responsible for increased vascular 

permeability. VEGF is the most promoted factor for endothelial cell migration, 

proliferation and survival.  

Inflammation: Inflammation plays crucial role in DME pathogenesis. Leucocytes 

naturally adhere to vascular endothelium (leukostasis) and have ability to create poisonous 

superoxide radicals and enzymes127. Leukostasis initiates rapid vascular permeability and 

impair endothelial cells by producing enzymes, cytokine and free radicals128, 129. Also, 

inflammation stimulates the occludin phosphorylation which regulates tight junction and 

barrier function this resulting in the breakdown of BRB130-132.  

Oxidative stress: Diabetes can cause oxidative stress leading to elevated levels of 

nitric oxide (NO), superoxide, and peroxynitrite development and VEGF expression, 

which may alter vascular permeability and BRB breakdown133-135. 

Other factors include matrix metallo proteinases (MMP), protein kinase C, carbonic 

anhydrase, and angiotensin-II that have direct or indirect role in enhancing vascular 

permeability that results in DME 136-139. Moreover, several pivotal pathways have been 

implicated in DME such as angiogenesis, inflammatory and oxidative stress pathways110, 

140. Chronic hypertension and hyperglycemia cause blood vessels to become more porous 

allowing fluids, lipids and erythrocytes to escape. Such leakage and accumulation causes 

vascular basement membrane thickening, free radical formation, non-enzymatic 

glycosylation and pericyte death 141. Moreover, increased vascular permeability and 

capillary dropout causes inadequate blood flow to retina.  
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3.2 Existing Treatment for DME 

Fig. 3.2 shows the current treatment strategies for DME and the following section 

describes in detail.   

3.2.1 Laser Photocoagulation: 

Despite the fact that anti-VEGF (bevacizumab, ranibizumab and pegaptanib) and 

VEGF trap (aflibercept) have emerged as treatment options for back-of-the-eye diseases, 

laser (focal or/and grid) photocoagulation surfaced as another treatment option for diabetic 

macular edema (DME) 142. A recent study was conducted on non-center involved (CI) 

DME subjects treated with focal laser photocoagulation. In this study, twenty-nine eyes 

with non-CI received focal laser coagulation and twenty eyes received no treatment serving 

as control. Photocoagulation treated eyes demonstrated a five letter gain in visual acuity in 

21% subjects relative to 5% of control eyes 143. Interestingly, this study indicated a decrease 

in inner and outer zone, central subfield thickness and reduction in total macula volume 

relative to control group 143. 

Modern laser technologies and applications that have been used to treat DME. Such 

laser technologies include pattern scan laser photocoagulator (PASCAL) (OptiMedica 

Corp, Santa Clara, CA) and NAVILAS (OD-OS Teltow, Inc. Germany). The laser beam 

delivery systems have short pulse duration that reduces heat thereby minimizes thermal 

damage at the site of application leading to patient compliance144, 145. Other techniques 

such as subthreshold diode micro-pulse, navigated laser photocoagulation, pan retina 

photocoagulation and conventional single-spot laser techniques have been demonstrated to 

be more effective and safer relative to conventional laser photocoagulation 144. 
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Although laser photocoagulation has advantages, the associated drawbacks lessen 

enthusiasm, clinical application and patient compliance. Drawbacks include destruction of 

photoreceptors due to laser photocoagulation, retinal scar formation and impedance of 

visual prognosis146. However, laser photocoagulation may be beneficial in DME subjects 

who do not respond to drug treatments 147. Recently, a combination of intravitreal drug 

administration with laser photocoagulation has been investigated. Such treatment appears 

to be promising148, 149. However, several studies may be required to establish the clinical 

gain with a combination approach and  beneficial effects overweigh the side effects. 

3.2.2 Vitrectomy: 

Vitreous plays an important role in progression of DME. Studies demonstrated that 

improvement in vision for DME subjects may be achieved with induction of posterior 

vitreous detachment, pars plana vitrectomy (PPV), removal of internal limiting membrane 

(ILM) or taut posterior cortex150-154. However, the exact mechanism for vision restoration 

in DME subjects with vitrectomy is yet to be delineated. Recent studies suggest that 

exclusion of vitreous gel may reduce the concentration of DME-promoting factors, alter 

vascular permeability and enhance retinal oxygen supply155. Vitrectomy may also improve 

vasoconstriction by lowering tissue pressure and elevating hydrostatic pressure gradient 

between the vascular and tissue compartments 115. Moreover, vitrectomy improves vaso-

permeability of the retinal endothelial cells and restores visual acuity. In a cohort study of 

vitrectomy outcomes in DME subjects, 87 eyes were evaluated for visual acuity 20/63-

20/400 including 54% internal limiting membrane peeling, 61% epiretinal membrane 

peeling, and 40% panretinal photocoagulation155. Vitrectomy significantly reduced retinal 

thickness and improved visual acuity. However, vitrectomy is associated with side effects 
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such as elevated intraocular pressure (IOP), vitreal hemorrhage, endophthalmitis, retinal 

detachment, induction of iris neovascularization and cataract formation156. Several 

randomized, controlled trials were conducted to investigate the side effects of vitrectomy 

on DME157-161. Such studies compared vitrectomy with laser, intravitreal steroid injection, 

and combinations. Vitrectomy may be applicable in DME subjects demonstrating 

epiretinal membrane and/or vitreomacular traction162.   

 

3.2.3 Intravitreal Anti-VEGF Therapy  

Macromolecular Therapy: 

 
Figure 3-2: Treatment Strategies of Diabetic Macular Edema (DME). 

Reproduce with Permission 
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Vascular endothelial growth factor (VEGF) plays an important role in retinal 

vascular permeability, breakdown of BRB and formation of macular edema. The current 

gold standard therapy for DME treatment is administering anti-VEGF agents163-165. VEGF 

inhibitors have demonstrated beneficial effects in DME treatment166-169. Current VEGF 

inhibitors include aflibercept (Eylea®), ranibizumab (Lucentis®), pegaptanib 

(Macugen®), and bevacizumab (Avastin®). Ranibizumab and aflibercept are approved by 

FDA for DME. Other anti-VEGF agents are also being considered due to cost 

effectiveness170, 171. 

Ranizubimab (RBZ) is a monoclonal antibody, approved for DME 172. 

Ranibizumab has strong affinity binding to VEGF-A and blocks all isoforms of VEGF-A. 

Nguyen et al. demonstrated long term effects of ranizumab in diabetic patients with 

DME173. In this study, subjects were treated with RBZ, focal or grid laser or combination. 

The mean best-corrected visual acuity indicated that RBZ had significant effect to control 

edema in DME subjects.  Moreover, a combination treatment with RBZ and focal /grid 

laser treatment can reduce edema also. Similarly, a clinical study, RIDE/RISE 

(NCT00473382 /NCT00473330) of RBZ demonstrated significantly improve of macula 

edema, and slowed down the progress of vision loss in DME subjects174-176.    

Bevacizumab is full-length humanized monoclonal antibody that is approximately 

3 times bigger in size than ranibizumab. Bevacizumab was also approved by FDA for the 

treatment of glioblastoma and colorectal cancer. However, it is being used as an “off-label” 

drug for DME treatment due to low cost. Several studies have reported bevacizumab to 

significantly improve macula edema and vision in DME subjects177-183. Intravitreal 

injections of bevacizumab alone or in combinations with triamcinolone or 
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photocoagulation were investigated. Interestingly, combination of intravitreal 

bevacizumab and triamcinolone acetonide demonstrated marginal advantage over 

bevacizumab alone in DME 184.   

Aflibercept: (Eylea®), VEGF Trap for eye, is a soluble protein composed of 

binding domain for human VEGF receptor 1 (VEGFR1), 2 and Fc domain of human 

immunoglobulin G1185. Aflibercept has 100 times higher binding affinity to VEGF 

isoforms relative to bevacizumab or ranibizumab 186. Moreover, aflibercept binds to special 

P1GF and VEGF-B and inhibits the activation of VEGFR1186. Jean et al. conducted 

VISTADME and VIVIDDME phase 3 studies to compare the efficacy and safety of intravitreal 

aflibercept at 4 weeks, 8 weeks after initial monthly doses and laser treatment185. 

Aflibercept demonstrated significant effects over laser treatment. These results suggest that 

aflibercept is safe and well-tolerated. Best-corrected visual acuity (BCVA) can be achieved 

with aflibercept 187. Many other studies such as VIBRANT, COPERNICUS, and 

GALILEO have reported significant benefits for aflibercept with better visual acuity188-191. 

Aflibercept had no significant difference at mild level of initial visual acuity relative to 

bevacizumab and ranibizumab. In fact, aflibercept can improve vision more effectively at 

worse level of initial visual acuity (NCT01627249)170. 

Pegaptanib (Macugen®) is a ribonucleic acid aptamer which was the first anti-

VEGF approved be FDA for age-related macular degeneration (AMD). Pegaptanib is 

another “off-label” drug for DME and has selective target to VEGF 165192. Several studies   

demonstrated pegaptanib to be safe, well-tolerated and superior in efficacy in DME 

treatment193-196.  

Small molecule: 

http://clinicaltrials.gov/show/NCT01627249
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Rapamycin (or sirolimus) is an immunosuppressive drug with anti-inflammation, 

antiangiogenic, antifibrotic, and antifungal properties. Sirolimus blocks interleukin-2-

mediated signaling pathway and reduces VEGF production by inhibiting S6K1 

phosphorylation197-200. Recently subconjunctival and intravitreal injections of sirolimus 

were applied for the treatment of DME, AMD and non-infectious uveitis patients which 

appear well tolerated. (NCT01271270, NCT01033721)201-203. Efficacy studies with 

sirolimus in DME subjects have also been conducted. (NCT00711490, NCT00656643). 

Moreover, aqueous nanomicellar topical drop of sirolimus has been developed. These 

nanomicellar constructs have been demonstrated to deliver sirolimus in high concentrations 

to back-of-the-eye tissues (retina/choroid) with topical drop 197. 

Steroids and other treatments in DME: Inflammation plays a crucial role in DME 

pathogenesis. Though the exact mechanism of glucocorticoid action is unclear. Anti-

inflammatory agents are readily prescribed. Glucocorticoids lower VEGF activity with 

beneficial effects in DME103, 204-208. Steroids may inhibit inflammatory cytokine 

production, leukostasis, and phosphorylation of cell-junction proteins 209.   

Triamcinolone acetonide (TA), is a synthetic steroid, recommended for DME 

treatment. TA possess anti-inflammatory and anti-angiogenic properties 17, improves  tight-

junctional levels between endothelial cells and reduces the vascular leakage 210. The 

widespread biological effects and large therapeutic window of intravitreal TA (IVTA) in 

the treatment of various ocular disorder is well known. It is prescribed as an “off-label” 

drug for DME and DR211-214. Several studies have been conducted to compare the safety 

and efficacy between IVTA and other treatments163, 184, 215-218. In a meta-analysis of 

randomized controlled trials study, IVTA demonstrated better vision acuity relative to 
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standard care for ocular inflammation 217. Moreover, IVTA administrations demonstrated 

better short-term efficacy to treat retinal vein occlusion 219. However, after intravitreal 

administration of IVTA, it can also increase IOP, accelerate cataract formation and produce 

other associated side effects such as endophthalmitis and pseudo endophthalmitis 220-224. 

To overcome such side effects, aqueous nanomicellar topical drop of dexamethasone were 

reported by our laboratory 225, 226 to delivers therapeutic levels to both anterior and posterior 

ocular tissues. Other studies for DME with glucocorticoids include biodegradable 

dexamethasone implant (Ozurdex), surgically implantable reservoir of fluocinolone 

(Retisert), the dexamethasone intravitreal implant (Posidurex), and non-bioerodible 

injectable fluocinolone polymer (Iluvien) 227-233. 

3.3 Emerging Formulations for Treatment of Diabetic Macular Edema 

Ophthalmic complications associated with diabetes are the leading cause of 

blindness in adults. In recent years, several formulations emerged that have been applied 

for treating DME and other back-of-the-eye diseases. FDA approved drugs such as 

ranibizumab and bevacizumab have shown promising results for the treatment of DME in 

various trials173, 234, 235.  

Inhibition of vascular endothelial growth factor (VEGF) has been used for 

treatment of age related macular degeneration in recent years. Recent studies have shown 

that inhibition of VEGF can also be used in treatment and management of DME. 

Furthermore, when intravitreal injection of anti-VEGF therapeutic was compared with 

laser monotherapy for treatment of DME, anti VEGF therapeutic was pharmacologically 

superior to laser monotherapy. Nguyen et al conducted a phase III randomized trial on 377 

adult patients with vision loss due to DME. This study was conducted to evaluate efficacy 
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and safety of ranibizumab administered at different dosages.  Results indicated that after 

24 months of treatment 18.1% of sham patients gained more than 15 letters compared to 

44.8% of patients treated with 0.3mg of ranibizumab 175. In addition, ranibizumab showed 

fast and sustainable improved vision, lower risk for further vision loss and improved 

macular edema for DME patients175. 

Combination formulations are also emerging in treatment of some diseases 

associated with posterior segment of the eye. Combined regimens are utilized where the 

disease is not responding to one kind of therapy/treatment 236. Liegl et al conducted a study 

to evaluate a combined treatment of laser photocoagulation and ranibizumab in the 

treatment of DME for a one-year period. One group received combination therapy which 

involved three monthly ranibizumab injections followed by laser photocoagulation. The 

second group was treated with ranibizumab injections and best corrected visual acquit 

(BCVA) was measured in both groups after treatment. An improvement in BCVA letter 

sore from 6.31 to 8.41 on both groups is observed. However, patients in monotherapy group 

require repeated ranibizumab injections (84%) relative to subjects in combined therapy 

(35%) 149. These findings suggest that with combination therapy, the number of injections 

required was significantly reduced relative to monotherapy. This may be beneficial to 

subjects since frequent intravitreal injections may result local ocular complications 

including but not limited to: endophthalmitis, retinal hemorrhage retinal detachment and   

patient noncompliance237, 238. 

In addition to antibody therapeutics for treatment of DME, there are some 

promising non-antibody drug products that have been used in the treatment and 

management of DME. Fluocinolone Acetonide (ILUVIEN®) was approved in 2014 by the 
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FDA for treatment of DME.  A long term follow-up study was conducted on DME subjects 

after receiving fluocinolone acetonide intravitreal implant 239. In this study subjects not 

responding to laser photocoagulation or anti-VEGF were treated with fluocinolone 

acetonide implant (FAc) in one eye and were compared with contralateral eye that was 

treated with anti-VEGF therapy. Intravitreal FAc implant eye has demonstrated reduction 

of central macular thickness from 642 μm to 364 μm in the first month. In contrast, eye 

treated with anti-VEGF therapy was unresponsive 239. Similarly, another study was 

conducted with FAc to treat patients with chronic DME240. Results indicated an 

improvement of more than 15 letters on 34.0% patients treated with FAc compared to 

13.4% of control patients240. Such results provide option for physicians to treat subjects 

who do not respond to laser or anti-VEGF therapy. Moreover, FAc implant provided a long 

term sustained drug release of 0.2 μg/day for up to 3 years 239, 240 which may 

overcomesdrawbacks associated with intravitreal drug administration. 

Misra et al have developed an insulin therapy that can be delivered to the retina. 

This is a sub-conjuctivally implantable hydrogel with thermosensitive and biodegradable 

properties for sustained release of insulin to the retina. Hydrogels are synthesized with UV 

photo-polymerization of N-isopropylacrylamide monomer and dextran containing 

biodegradable oligolactate-(2-hydroxyetheyl methacrylate) units. Insulin loading 

efficiency was very high (98%) 241. In vitro studies demonstrated that hydrogels were 

nontoxic when subjected to R28 retinal cells and can release active insulin for seven days 

241. Such hydrogel implant may be utilized to load other macromolecular drugs intended to 

treat back-of-the-eye diseases. 
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Adelman et al conducted a non-randomized, multicenter study, with 2603 patients 

with macular edema and DME, to compare efficacy of anti-VEGF, triamcinolone 

monotherapy and laser treatments 242. Despite the fact that all treatments revealed some 

improvement in visual acquit, anti-VEGF treatment showed the most improvement. 

However, surgery with pars plana vitrectomy and inner limiting membrane (ILM) peeling 

can improve vision acuity more than observed with anti-VEGF alone 242. Consequently, 

this result indicates that treatment with ILM peeling and vitrectomy may be a better option 

to treat DME compared to other therapies. 

Similarly, some other studies have also been conducted to evaluate the efficacy of 

combined treatments on DME. Vitrectomy combined with triamcinolone acetonide 

injection (IVTA) and macular laser photocoagulation was studied by Kim et al for 

treatment of nontractional DME. This study was performed on 28 patients, who were 

sequentially subjected to vitrectomy, IVTA and macular laser photocoagulation. Best 

corrected visual acuity (BCVA) and central subfield thickness (CST) were observed before 

vitrectomy, 1, 3, and 6 months after the treatment. Results indicated substantial 

improvement in BCVA from 0.44 to 0.34 and from 433.3 to 310.1 for CST 236. These 

results suggest that vitrectomy, IVTA and laser photocoagulation may be combined for 

treatment of DME. 

Enzymatic vitrectomy for DME patients has recently been explored 243. Diaz-Llopis 

et al. investigated the role of enzymatic vitrectomy through intravitreal injection of 

autologous plasmin enzyme in management of DME and diabetic retinopathy. In a clinical 

study 63 eyes were treated with intravitreal injection of autologous plasmin enzyme and 

reexamined after one month for central macular thickness, BCVA and hyaloid. A second 
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injection of this enzyme was given to patients who did not develop posterior vitreous 

detachment (PVD)244. Results showed a massive improvement in central macular thickness 

by 100% and BCVA by 89%. However, PDV was observed to be 38% after first injection, 

which then increased to 51% after second injection 244. Enzymatic vitrectomy is still new 

in the world of ophthalmology and further studies are required to understand the 

mechanism of action, efficacy and safety of the formulation. Enzymatic vitrectomy may 

be considered as an alternative therapy for treatment of DME. 

In a study with nine patients who had persistent DME Zucchiati et al evaluated the 

effect of single injection of dexamethasone implant (0.7 mg) over 6 months period. Results 

indicated a significant improvement in BCVA and central retina thickness which was 

sustained for 4 months 245. A similar study was performed in DME patients with 

vitrectomized eyes for 26 weeks by Boyer et al to evaluate safety and efficacy of 

dexamethasone. A significant improvement in BCVA and central retina thickness was 

maintained throughout treatment period 231. In comparison, dexamethasone implant 

appeared to achieve superior outcomes in terms of BCVA, CMT and fewer injections 

compared to bevacizumab bevacizumab by (Gillies et al). Both treatments exhibited good 

progress on vision impairment score. However, 11% of patients treated with 

dexamethasone implant lost ten letters or more which was due to cataracts 246. FDA 

approved dexamethasone implant (Ozurdex®) for the treatment of DME in 2014. 

Dexamethasone implant was previously approved for treatment of non-infectious uveitis 

affecting posterior segment of the eye. Table 1 summarizes major clinical trials that have 

been performed to study macromolecules and implants in treatment of DME 

Nanotechnology formulations 
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As described earlier, DME is a back-of-the-eye disease. For local drug delivery, 

sub-conjunctival or intravitreal route of administration may be recommended. Frequent 

administrations are required in order to maintain therapeutic levels, and this may incur 

complications such as retinal detachment, endophthalmitis, pseudoendophthalmitis and 

retina hemorrhage. Nanoparticle-mediated sustained release formulations may lower 

injection frequency, and improve efficacy leading to reduced side effects and better patient 

compliance. Recently, several groups have developed topical nanomicelle formulations for 

delivery to the retina. Cholkar et al reported a topical administration of mixed nanomicelle 

formulation (MNF) loaded with dexamethasone, rapamycin (sirolimus) and cyclosporine 

for back-of-the-eye delivery 16. The MNF was found to be safe when tested on human 

retinal pigment epithelial cells (D407) and rabbit primary corneal epithelial cells (rPCEC) 

in vitro. The MNF comprised high drug loading and entrapment efficiency with average 

size of 10.84 ± 0.11 nm. Furthermore, in vivo studies exhibited higher rapamycin 

concentration of 362.35 ± 56.17 ng/g in retina-choroid area but no drug was found in the 

vitreous humor 16. Topical administration may provide patient compliance since no 

injections are involved. 

In addition, Fujisawa et al have explored a liposomal diclofenac eye drop 

formulation along with improving formulation stability with the aid of surface modification 

of liposomes for delivery to retina. Liposomal formulation was prepared by using calcium 

acetate gradient method which increased entrapment efficiency from 51.3% (obtained by 

using hydration method) to 97% 247. They utilized liposome surface modification with poly 

vinyl alcohol (PVA) or its derivatives PVA-R) and found that particle size of liposome 

with PVA modification to be 134.8 nm and with PVA-R was 176.7 nm.  In vivo studies 
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performed on Japanese albino rabbits indicated an enhancement in accumulation of 

diclofenac in the retina-choroid by 1.8 fold with surface modified liposome compared 

unmodified liposomes 247. Higher entrapment efficiency may result in a longer period of 

drug release. This delivery system may be suitable to deliver drug treatment of DME or 

any other diseases associated with posterior segment of the eye. 

RNA has been also indicated as a therapeutic agent for treatment of wide variety of 

diseases. This involves modification, engineering, and/or assembly of organized materials 

on the nanometer scale. The 117-nucleotide (nt) RNA, called the packaging RNA (pRNA) 

of bacteriophage and small interfering RNA (siRNA) have been widely applied in the 

treatment of cancer, viral infection, genetic diseases, and other human ailments. Recently, 

Feng et al have reported ocular delivery of pRNA (pRNA-3WJ and pRNA-X) 

nanoparticles and investigated distribution and clearance after subconjunctival injection. 

pRNA-3WJ and pRNA-X-nanoparticles labelled with Alexa647 and dsRNA were prepared 

and administered to mice by subconjunctival injection 248. It was observed that all 

nanoparticles (pRNA-3WJ, pRNA-X and dsRNA) were found in corneal, sclera, and 

conjunctiva cells, but pRNA-X was the only one found in retina cells. This study suggests 

that RNA therapy for ocular diseases including back of the eye delivery is possible. 

Similarly, gene therapy for treatment of inherited and acquired ocular diseases has rapidly 

been evolving. The main challenge for gene therapy is to overcome barriers associated with 

ocular gene delivery. This can be achieved by developing a suitable nanotechnology that 

can cross ocular barriers and deliver genes at target site. A polymer (natural or synthetic) 

or peptides have been employed to encapsulate DNA to make a polymer or peptide 

compacted DNA gene delivery nanoparticles 249. Safety of compacted DNA nanoparticles 
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for ocular delivery has also been investigated by Ding et al. Polyethylene glycol substituted 

lysine peptide (CK30PEG) compacted DNA nanoparticles encapsulating EGFP vector 

were subretinally injected in mice at different dosages 250. Retin were observed at 1, 2, 4, 

7 days post injection for any inflammatory signs or mediators. No inflammatory responses 

were observed in the retina 250.  In addition, chitosan DNA nanoparticles for retina gene 

delivery have been reported by Mitra et al251. Results indicates that compacted DNA 

nanoparticles may be exploited as gene therapies for treatment of posterior diseases and 

diseases associated with RPE. 

Carbon nanotubes are nanometer-scale tube-like cylindrical 33 nanostructures. 

These cylindrical carbon molecules have unusual properties, which are valuable for 

nanotechnology, particularly in drug delivery. Nanotubes have also been explored for 

therapeutic delivery at back of the eye. Panda et al studied self-assembly dipeptide 

phenylalanine-α, β-hydrophenylalanine nanotubes for sustained intravitreal delivery of 

targeted tyrosine kinase inhibitor (pazopanib). The nanotube has a diameter range of 15-

30 nm and 1500 nm in length and can be injected using 33G needle. Nanotubes were found 

to be nontoxic during in vitro studies with a 25% w/w pazopanib loading 252. In vivo 

investigation indicated the presence of nanotube for 15 days and pazopanib drug was 

observed in vitreous humor, retina and choroid RPE at 4.5, 5 and 2.5 folds higher 

respectively compared to pazopanib alone 252. These results suggest that nanotubes can be 

applied as a delivery system which may sustain higher concentration of drug in tissues. 

Biodegradable polymers have been extensively utilized for preparation of 

nanoparticles in drug delivery. Also, nanoparticle in gel formulation of steroids has been 

reported for treatment of macular edema by Boddu et al. In this formulation poly (lactic-

https://en.wikipedia.org/wiki/Cylindrical
https://en.wikipedia.org/wiki/Nanostructure
https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Nanotechnology
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co-glycolic acid) PLGA (50:50 and 65:35) nanoparticles loaded with dexamethasone, 

hydrocortisone acetate, and prednisolone acetate were prepared by water in oil emulsion 

and then suspended in thermosensitive gel. Results indicated that entrapment efficiency for 

dexamethasone, hydrocortisone acetate and prednisolone acetate was 77.3%, 91.3% and 

92.3 % respectively. Drug release studies indicated no burst release and followed zero order 

kinetics253. This nanoparticle suspended in thermosensitive gel may provide sustained 

release of drug at retina-choroid and may be exploited for DME and other eye diseases. 

A quench technology where nanoparticles in porous microparticles (NPinPMP) 

were prepared by superficial infusion and pressure for sustained delivery of bevacizumab. 

Bevacizumab coated Poly(lactic acid) (PLA) nanoparticles were prepared and then mixed 

with PLGA microparticles and allowed to pass through supercritical carbon dioxide gas 

254. This allows expansion of PLGA matrix but not PLA matrix.   Hence it created porous 

PLGA microparticles in which encapsulated bevacizumab PLA nanoparticles are 

incorporated to make NP in PMP. In vitro study indicated sustained release of bevacizumab 

for 4 months along with no change in conformation and activity 254. Therefore, this 

formulation may be utilized with other protein therapeutics for treatment of back of the eye 

diseases and reduce frequent injections to maintain therapeutic levels. However, the size 

of microparticles may cause some problem for intravitreal injections. 

In addition, tailor made pentablock copolymer-based formulation for sustained 

ocular delivery of protein therapeutics was extensively investigated by Patel et al. 

Biodegradable pentablock copolymers (FDA approved) were synthesized by ring opening 

polymerization method using different monomers 238, 255. In vitro studies confirmed that 

polymers and monomers are safe and biocompatible when tested in ocular cell lines 
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(APRE-19, SIRC, HCEC and RAW-264.7). Furthermore, pentablock nanoparticles loaded 

with FITC-BSA, IgG and bevacizumab were tested for particle size distribution which 

ranges from 320 to 355 nm in diameter. The entrapment efficiency, however, widely varied 

from 35% to 70%. In vitro studies indicate 40 days release of FITC-BSA and 60 days for 

IgG when nanoparticles are suspended in gel 255. This IgG has similar molecular weight as 

bevacizumab, which can be delivered at the back of the eye for treatment of posterior 

diseases. Therefore, this formulation may be adopted to prepare other anti-VEGF therapies 

and be delivered to the posterior segment of eye for DME and other diseases. 

Since DME is a disease associated with the posterior segment of the eye, it remains 

a challenge to deliver drugs. Most of the drugs do not reach the back of the eye due to 

associated barriers such as blood retina barrier, blood aqueous barrier, and vitreous barrier, 

consequently only a small amount of drug reaches the back of eye. In order to maintain 

therapeutic drug levels, frequent injections are generally required, thereby lowering patient 

compliance. Therefore, it is very important when designing a formulation or a delivery 

system to insure higher therapeutic levels at the target site, particularly when it is ocular 

delivery. In addition, delivery systems that can sustain drug release for a prolonged period 

of time should be adopted so that frequent injections can be minimized. Also, stable 

therapeutics with safety is mandatory to deliver drugs at back of the eye.  
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Table 3-1: Current Therapeutic Drugs for DME 

TRADE NAME GENERIC NAME STUDY MAIN CONCLUSION REF 

Lucentis® Ranibizumab RISE/RIDE Ranibizumab improved vision and macular edema in 

DME patients 

256 

Eylea® Aflibercept VISTA/VIVID Intravitreal injection of aflibercept was shown to be 

superior compared to laser therapy in treatment of 

DME  

185 

Ozurdex® Dexamethasone 

implant 

MEAD Dexamethasone implant were well tolerated and 

improved BCVA in DME patients 

257 

Iluvien® Fluocinolone 

Acetonide 

FAME Both low and high dose of Fluocinolone Acetonide 

exhibited improved BCVA in treatment of DME 

258 
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CHAPTER 4 

4 MICELLE APPLICATION FOR DRUG DELIVERY 

Micelles are colloidal constructs (5 to 100 nm) formed from amphiphilic monomers 

(surface active agents) that self-aggregate above certain concentration in solvent system. 

Such a concentration at which self-assembly of monomers is initiated and known as 

“critical micellar concentration (CMC)”.  In general, such monomer molecules have two 

distinct segments namely, hydrophobic head and hydrophilic tail. Depending on 

concentration (low to high) monomers exists in three different phases in the aqueous 

solvent; a) monomers b) an arranged monolayer of amphiphilic at the air-solvent interphase 

and c) micelles. Constructs formed from amphiphilic monomers offer unique advantages 

such as improved solubility of fairly insoluble compounds, stability, reproducibility and 

ease of manufacturing at pilot and bulk scale with ease of sterilization. Lipophilic 

molecules are embraced inside the hydrophobic core of micelles formed by van der Waals 

forces 259. On the other hand, the outer hydrophilic corona helps to (a) provide stearic 

stability by forming hydrogen bonding with the surrounding aqueous solution 259, 260; (b) 

protect the construct from being recognized and engulfed by reticuloendothelial system 

(RES) causing prolonged systemic circulation; (c) conjugate ligand for active targeting; (d) 

makes the encapsulated molecule non-detectable by analytical methods such as nuclear 

magnetic resonance and UV-visible spectroscopy and (e) develops clear solutions 15, 197, 

261. Also, micellar constructs may be comprised of pH and temperature sensitive polymers 

that release the cargo under surrounding conditions. However, micellar constructs suffer 

with limitations such as premature release of cargo, lack of controlled/sustained drug 

release and inability to encapsulate hydrophilic molecules. Micellar shape is largely 
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dependent on the size of head or tail of amphiphilic monomer. In case, if the monomer 

head i.e, hydrophobic part is sufficiently larger than hydrophilic portion then micelles may 

have structures such as rods and lamellae whereas, vice versa results in spherical construct 

262.   

4.1 Nanomicelle Preparations 

Nanomicelles may be prepared from surface active agents such as surfactants and 

synthetic block copolymers. Amphiphilic monomers exists as ionic, nonionic and 

zwitterionic forms. Ionic surfactants may carry a charge (anion or cation). Examples of 

anionic and cationic surfactants include sodium dodecyl sulfate and dodecyltrimethyl 

ammonium bromide, respectively 263. Nonionic surfactants such as n-dodecyl tetra 

(ethylene oxide) do not carry any charge. On the other hand, zwitterionic surfactant such 

as dioctanoyl phosphatydyl choline carry both positive and negative charges. Amphiphilic 

block copolymers are synthesized with U.S. FDA approved biocompatible and 

biodegradable polyester or polyamino acid derivatives.  Polymer blocks may be arranged 

as linear diblock, triblock and pentablock (A-B; A-B-A or A-A-B-A-A type) and branched 

type copolymer. In the block copolymers A and B may represent any of the polymers such 

as, but not limited to poly(lactic acid)-poly(ethylene glycol)-poly(L-lysine) [PLA, 

PEG,PLL], poly ethyelen oxide, poly(D,L-lactic acid), polypropylene oxide, poly glycolic 

acid, poly (aspartic acid), poly (glutamic acid), poly (L-lysine) and poly-(histidine). In most 

of the copolymer blocks polyethylene glycol (PEG) is commonly used as hydrophilic 

segment because of its advantages such as high water-solubility, low toxicity, escape 

reticuloendothelial recognition, biocompatibility and stearic stability264.   
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Nanomicelles may be prepared following different protocols depending upon the 

physicochemical properties of the copolymer. The method of preparation may be broadly 

divided into two processes, (a) direct dissolution and (b) solvent casting. Direct dissolution 

as known as simple equilibrium method has been employed with moderately hydrophobic 

block co-polymers. Examples include poloxamers and poly (butyl acrylate) block 

copolymers with hydrophilic end made from one anionic, one cationic, and four nonionic 

hydrophilic blocks 265. In this method, drug and co-polymer are simultaneously dissolved 

in aqueous solution. Nanomicelle formation is initiated by heating the aqueous solution. 

Application of heat allows dehydration of micellar core and ultimately develops micelles. 

An appropriate combination of drug-to-copolymer ratio and application of heat induces 

micelle formation in the aqueous solution.  

Solvent casting procedures may be further divided into four methods namely, (a) 

dialysis, (b) oil in water emulsion, (c) solution casting and (d) freeze drying. Dialysis 

method involves application of high boiling point, water soluble organic solvents such as 

dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), tetrahydrofuran (THF), 

dimethylacetamide and ethanol. Dialysis method is suitable to block copolymers that are 

not readily soluble in aqueous medium. In this method, copolymer and drug are separately 

dissolved in water soluble organic solvents. The organic solvent with copolymer and drug 

solution are loaded into a dialysis membrane bag and dialyzed against water for more than 

12 hours with subsequent replacement of water at predetermined time points. This process 

involves slow removal of water soluble organic solvent that triggers micelle formation and 

encapsulation of drug. However, such method is associated with limitation such as low 

encapsulation efficiency and loss of drug in the dialysis process. The second method, o/w 
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emulsion method involves physical entrapping of molecules. In this process, lipophilic 

organic solvents such as dichloromethane, ethyl acetate and acetone are used. 

Encapsulation process involves dissolving the copolymer and drug in organic solvent with 

small amount of water. Organic solvent is removed by continuous stirring the mixture. In 

this method, evaporation of organic solvent triggers micelle formation with simultaneous 

physical entrapment of hydrophobic drug in the core of micelle 266. The third method, 

solvent casting method involves use of organic solvent and aqueous solvent. In this method, 

both drug and polymer/s are dissolved in organic solvent such as ethanol to obtain clear 

solution. The organic solution is removed under high vacuum that results in a thin film. 

Evaporation of organic solvent favors polymer-drug interactions. Rehydration of this thin 

film with aqueous solvent spontaneously develops drug loaded micelles15, 225, 261. The final 

method of micelle preparation i.e., freeze drying is one step procedure. A mixture of water 

and tert-butanol are used to dissolved copolymer and drug. This mixture (drug and 

copolymer in water/tert-butanol) is subjected to freeze drying (lyophilization). During 

lyophilization, tert/butanol induces the formation of fine ice crystals that rapidly sublime 

leaving behind the freeze-thawed cake. Rehydration of this cake spontaneously develops 

drug loaded micelles. 

4.2 Application of Nanomicelles in Drug Delivery 

As discussed above, nanomicelles have several advantages in drug delivery 

carriers, including (a) small size (less than 100 nm), (b) structural stability, (c) low RES 

uptake, (d) enhance EPR effect, (e) less toxic, (f) entrap large amount of hydrophobic drugs 

and solubilize in water and (g) simple modification with target ligand. Several successful 

drug loaded micelle carriers have been studied in clinical trial which are summarized in 
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Table 1. This section will be divided into 3 main categories of nanomicelle applications in 

drug delivery.  

4.2.1 Solubilize Poor Water-Soluble Drugs 

Many current drugs possess poor water solubility. These compounds are classified 

as class II and IV according to the Biopharmaceutics Classification System (BCS) 267. It is 

a big challenge for scientists to deliver hydrophobic drugs/diagnostic agents at therapeutic 

levels.  Nanomicelles may assist in that respect. It can act a promising carrier to solubilize 

hydrophobic drugs268, 269. Since nanomicelles are made of amphiphilic polymers where the 

hydrophobic core can incorporate the hydrophobic drugs inside and the hydrophilic corona 

helps the construct with the aqueous phase. This approach has been studied over many 

decades and has demonstrated that nanomicelles have significantly increased the solubility 

lipophilic drugs many fold (10 to 8400 folds)15, 197, 225, 270, 271. For example, efavirenz, an 

antiretroviral, is poorly water soluble (about 4 μg/mL). Polymeric micelles of efavirenz 

increased its solubility up to 34 mg/mL (8400 fold) and its pharmacokinetic (PK) profile 

was evaluated in Wistar rats 271. The PK parameters such as Cmax all rise up to 3 times for 

all doses range between 20 and 80mg/kg. Kishore Cholkar et al. has developed clear, 

aqueous nanomicellar topical eye drop containing 0.1 % (1.0 mg/mL) cyclosporine (CsA) 

while cyclosporine has a solubility of only 12 ng/mL 15. CsA nanomicelles delivered drug 

to back-of-the-eye tissues such as retina/choroid with high level (53.7 ng/g tissue) 

following topical eye drop administration. 

4.2.2 Targeted Nanomicelles 

In order to maximize the drug delivery and minimize the side effects, the target 

moieties have been utilized to develop active targeting nanomicelles. Those nanomicelles 
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will target cells based on different approaches: (a) interaction with specific biological 

targets such as cell surface receptors, transporters and (b) use of locally applied signal 

protein (phage fusion proteins) 272. Wang et al. have developed the paclitaxel-loaded 

phosphatidyl ethanolamine (PEG- PE) micelles which was modified with MCF-7-specific 

phage fusion proteins targeting tumor273. The targeted phage micelles demonstrated higher 

tumor selectivity in cancer cells than normal cells. Therefore, such targeting enhanced the 

anticancer effect of paclitaxel in xenograft mice model. Several target ligands have been 

exploited including monoclonal antibody274, 275, peptides276-280, and aptamer281, 282. Ahn J 

et al have prepared the antibody fragment conjugated nanomicelles loaded platinum to 

target the pancreatic cancer and tested on tumor xenografts 275. Compared to the non-

targeted micelles, Fab’- nanomicelles showed 15-fold higher in vitro cellular uptake and 

significant anti-tumor effect for more than 40 days in pancreatic tumor xenografts.   

4.2.3 Stimuli Responsive Nanomicelles 

pH sensitive: The pH of tumor environment is acidic (6.5–7.2) compare to normal 

tissues (7.4). These differences in pH have been exploited to stimulate, cleavage the pH-

sensitive response ligands to release drugs from the micelle carriers. In brief, under 

physiological condition (pH 7.4) the drugs stay inside micelles while drugs are released 

selectively under acidic conditions such as tumor, endosomes or lysosomes.  Several 

conjugates of pH-sensitive nanomicelles have been developed and shown effective with 

low toxicity and higher selectivity283-287. There are some anionic groups (polyacrylic acid, 

polymethacrylic acid, polyglutamic acid) and cationic groups (dimethylamino ethyl 

methacrylate, poly histidine) are very common in pH-sensitive components. For example, 

Bae et al have prepared the pH-sensitive poly (ethylene glycol)-poly (aspartate hydrazone 
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adriamycin) loaded nanomicelle which released selectively in the low pH environment 

through acid-sensitive hydrazine linker288.  

Temperature sensitive micelles: Similarly, the temperature difference of the 

environment may have effect on the CMC which allows micelle forming. The most 

common temperature-sensitive polymers are poly (N-isopropylacrylamide) (PNIPAAm) 

which shifts to hydrophobic insoluble polymer around 32°C from hydrophilic polymer. 

Soga et al have developed different thermosensitive polymeric micelles289-292.  

Light sensitive: Few studies indicate that the hydrophobicity and hydrophilicity of 

micelles is shifted under light where micelles got disrupted or reversible by light. This 

aspect is another potential development of drug release and delivery293, 294. Andrew et al. 

have reported that micellar system was very sensitive to infrared light to release 

fluorescence probe as Nile red 295.  

Ultrasound-responsive: Ultrasound which has a frequency around 20 kHz or above 

has been utilized to increase drug uptake by tumor. Ultrasound has enhanced the drugs 

delivery by inducing (a) deeper tissue penetration, (b) perturbation of normal and tumor 

cell membrane, and (c) trigger drug release from micelle296-300.  Marin et al. have studied 

the release and intracellular uptake of doxorubicin (Dox) from pluronic micelles, the most 

common ultrasound micelles. Higher Dox release from pluronic micelles was observed 

under high-frequency ultrasound301.  

Others:  There are many other stimuli responsive micelles have been investigated including 

enzyme- responsive, redox-active. Enzymes present everywhere in body and over 

expresses in tumor. The oxidative and reductive enzymes are different between 
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intracellular and extracellular environment. Those differences are utilized in developing 

micelle carrier to deliver drugs to the target activation. 

4.2.4 Multifunctional Nanomicelle Carrier: Multifunctional nanomicelle is the 

combination with at least two of the ligands which were discussed above. Multifunctional 

micelle could enhance the hydrophobic drug delivery to specific target as well as imaging 

agents which enable the micelle tracking or trigger released by pH sensitive or ultrasound. 

The combination provides many benefits over the conventional delivery. However, it is 

also very challenging for pharmaceutical field. Li et al. have developed the acid sensitive 

nanomicelle for both targeted drug delivery and magnetic resonance imaging in liver 

cancer cells302. Doxorubicin and superparamagnetic iron oxide nanoparticles (SPIONs – 

imaging agents) were encapsulated inside poly (ethylene glycol)-b-poly[N-(N',N'-

diisopropylaminoethyl) glutamine (PEG-P(GA-DIP)) and surface modified with folate 

acid for targeting moiety. This multifunctional nanomicelles facilitated specific tumor 

targeted and enhance therapeutic effect as well as MRI diagnosis.  

4.3 Conclusion 

Over the decades micelles have become a hot topic in nanomedicine. Several 

nanomicelle formulations have now been developed and some are in clinical trials.  

Nanomicellar possess many advantages such as size, drug loading of both hydrophobic and 

hydrophilic agents, circulation time, safe, easily to conjugate target moiety for tumor 

uptake, imaging and triggered release. Those properties promise huge opportunity and 

challenges for pharmaceutical scientists explore to develop appropriate formulations which 

maximize the therapeutic efficacy and minimize the side effects. Fig. 4-1 shows different 

types of nanomicelle configurations. 
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Figure 4-1: Schematic drawing image of (a). Polymeric micelle (b). Micelle 

conjugated with a targeting ligands (c). Micelle incorporating with contrast agents or 

imaging moieties (d). Stimuli-sensitive polymeric micelles (thermo/pH/ 

light/ultrasound-sensitive) (e). Multifunctional micelles with targeting ligands, contrast 

agents or imaging moieties, therapeutic drugs, etc. *Reproduce with permission. 
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CHAPTER 5 

5 PREPARATION AND OPTIMIZATION OF TRIAMCINOLONE ACETONIDE-

LOADED NANOMICELLES 

5.1 Rationale 

Diabetic macular edema (DME) is a back-of-the-eye chronic disease caused by the 

accumulation of fluid in the center of macula which may lead to vision loss 303. DME 

originates from venous occlusions resulting in retina microvascular damage leading to 

leakage, capillary dropout, upregulation of angiogenic growth factors and 

neovascularization304. Diabetes causes degeneration of the inner lining of the blood vessels 

rendering them porous and leaky. Blood leakage through retinal vasculature causes the 

center of the retina to swell developing a condition known as DME. Such swelling leads to 

macular detachment and is responsible for the vision loss. Current treatment of DME 

includes laser photocoagulation, surgery, intravitreal anti-vascular endothelial growth 

factor (anti-VEGF) and steroid implant 303. Delivery of drugs at therapeutic concentrations 

to back of the eye tissues (retina/choroid) is a very challenging task. Corticosteroids are 

prescribed routinely for the treatment of DME. However, steroids have many limitations 

such as the low aqueous solubility, sub-optimal physic-chemical properties, and poor 

ocular membrane permeability. Steroids are available under implant or intravitreal 

injection and associate with side effects like inducing intraocular pressure (IOP) leading to 

glaucoma and cataract 305.    

Triamcinolone acetonide (TA) is a synthetic steroid, possessing anti-inflammatory 

and anti-angiogenic properties 17. It is highly lipophilic with poor oral bioavailability and 

systemic side effects. Alternative invasive route of drug administration i.e. intravitreal 
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injection (IVT) of TA produced promising results for the treatment of DME  18 19 20. 

However, IVT is an invasive procedure which is associated with adverse side effects such 

as retinal detachment, endophthalmitis, pseudoendophthalmitis, intraocular pressure (IOP) 

elevation and cataract formation 17, 18, 306.The current delivery strategies for steroids 

including TA are local administration such as implant and IVT, which are highly invasive 

and may cause low patient compliance. After IVT administration, TA particles may 

distribute homogenously in vitreous humor and interfere with vision. Such treatment can 

also accelerate cataract formation and elevate IOP220, 307. Therefore, there is an urgent need 

to develop a clear, aqueous topical eye drop formulation to deliver TA in therapeutic levels 

to back of the eye tissues (macula region). In such a scenario, aqueous nanomicellar 

formulation with amphiphilic polymers appear to be a promising approach. Hydrophobic-

TA will be encapsulated in the core of nanomicelles. Hydrophilic corona aids in the 

development of clear, aqueous solution. This novel nanomicellar strategy may (i) improve 

drug solubility, (ii) improve drug uptake and cell permeability, (iii) allow for non-invasive 

delivery of hydrophobic drugs to posterior ocular tissues and (iv) improve patient 

acceptability and compliance due to its noninvasive, nonirritating clear and aqueous 

system. Nanomicelle structure has been sketched as Fig.5-1. Nanomicelles may primarily 

follow non-corneal pathway such as conjunctival-scleral rather than uveo-sclera pathway 

after topical administration to reach the retina 197. 
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Figure 5-1: Schematic drawing image of TA-loaded NMF. Reproduce with 

Permission. 

In the present study, two amphiphilic polymers namely; hydrogenated castor oil 40, 

60, 80 and 100 (HCO-40, HCO-60, HCO-80 and HCO-100) and octoxynol-40 (Oc-40) are 

selected. Both HCOs and Oc-40 are safe and approved by FDA for human use. 

Amphiphilic nature of HCOs and Oc-40 consist of hydrophobic core and hydrophilic 

corona allowing spontaneous formation of spherical nanomicelles in aqueous solution. 

Hydrophobic TA may partition into hydrophobic core of nanomicellar structure whereas 

the corona is comprised of hydrophilic groups which extend towards surrounding aqueous 

environment in a manner to stabilize the inner hydrophobic core. Based on the experiment 

results, HCO-60 gave the highest entrapment efficiency and chosen as the The objective of 

current study is to develop and optimize nanomicellar aqueous TA-loaded formulation 

utilizing full-factorial statistical design of experiment (DOE). The ratio of the combination 

HCO-60 and Oc-40 was optimized with JMP 13.0 software and characterized for their size, 

polydispersity (PDI), shape, surface morphology, entrapment efficiency (EE), loading 

efficient (LE) and critical micellar concentration (CMC). Standard least square fit analysis 

was carried out to identify the optimal NMF which generates the highest desirability. 

Hydrophobic core of nanomicelle 

  

Hydrophobic drugs (Triamcinolone acetonide)  

Hydrogenated castor oil 60 (HCO-60)  

Octoxynol-40 (OC-40) with OH group  
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Moreover, this formulation was evaluated for in vitro cytotoxicity on human corneal 

epithelial cells (HCEC) and human retinal pigment epithelial cells (D407 cells).  

5.2 Materials 

TA was obtained from MP Biomedicals, LLC USA. Hydrogenated castor oil 40, 60, 

80 and 100 (HCO-40, HCO-60, HCO-80, HCO-100) was procured from Barnet Products 

Corp., NJ, USA. Octoxynol-40 (Oc-40) (Igepal CA-897) was purchased from Rhodio Inc., 

NJ, USA. HPLC grade methanol, ethanol and dichloromethane were purchased from Fisher 

Scientific, USA. Povidone K 90 (PVP-K-90, Kollidon® 90 F, Ph.Eur, USP) was purchased 

from Mutchler, Inc. Pharmaceutical Ingredients, NJ, USA. CellTiter 96® AQueous 

nonradioactive cell proliferation assay (MTS) kit and lactate dehydrogenase (LDH) assay 

kit were obtained from Promega Corp and Takara Bio Inc., respectively. D407 cells were 

procured from the American Type Culture Collection (ATCC). HCEC are SV-40 virus 

transfected human immortalized corneal cells; this cell line was a generous gift from Dr. 

Araki-Sasaki (Kinki Central Hospital, Japan) 

5.3 Methods 

5.3.1 Film-Hydration Method for Nanomicelle Preparation 

Triamcinolone acetonide-loaded nanomicelles, here on referred to as TA NMF 

were prepared following a previously described procedure reported from our laboratory 197, 

225, 308.  Briefly, HCO-60, Oc-40 and TA were accurately weighed and separately dissolved 

in ethanol. All three solutions were mixed together to obtain a homogenous solution. 

Organic solvent was removed under rotary evaporation followed by high vacuum 

(GeneVac) to generate a thin film. Subsequently, this film was hydrated and resuspended 

in phosphate buffer. This solution was filtered sterilized through 0.2 µm nylon filter to 
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separate unentrapped TA and other foreign particles. Similarly, the blank formulation was 

prepared without TA     

5.3.2 Drug Concentration Determination Using High Performance Liquid 

Chromatography (HPLC) 

Reverse phase HPLC method described earlier was used with necessary 

modifications 309. Reversed phase HPLC (RP-HPLC) method was applied to analyze 

samples with Shimadzu LC pump (Waters Corporation, Milford, MA), Alcott autosampler 

(model 718 AL), Shimadzu UV/Vis detector (SPD-20AV), and Phenomenex C8 column 

(spherisorb 250 x 4.60 mm, 5µm). The mobile phase was composed of methanol and water 

(52.5:47.5 %v/v) with the flow rate set at 0.5 mL/min and UV detector at 254 nm. 

Calibration curve (1 to 25 µg/mL) for TA was constructed by injecting 50 µL into the 

column.  

5.3.3 Exploratory Model (Design of Experiments (DOE)) 

In order to understand the factors and the effect of polymers on the formulation 

variables such as entrapment efficiency (EE), loading efficiency (LE), and critical micellar 

concentration (CMC), the design of experiments (DOE) was employed. A preliminary 

study was conducted to screen the effect of polymers on the formulation variables such as 

EE, LE and CMC.  To develop the experimental design and analyze the data, student 

version of JMP® 13.0 software (SAS institute, USA) was selected and “Screening design” 

was adopted. In this study, X1 (HCO-60) and X2 (Oc-40) serve as independent variables. 

On the other hands EE (Y1), LE (Y2) and CMC (Y3), respectively were selected as 

dependent variables. 

Statistical Analysis: 
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The experimental design and data analysis were performed by JMP 13.0 software 

student version. The effect of two factors - polymer (HCO-60 and Oc-40) amounts on 

dependent variables (EE, LE and CMC) was studied with statistical models. These models 

will denote interactive and polynomial influences on the dependent outcome in order to 

predict fit model (Eq.5-1)  

Y = b0 + b1 X1 + b2X2 + b3 X1X2 (Eq. 5-1) 

  Where Y is response outcome, b0 denotes intercept, b1, b2, b3 represent the 

regression coefficients for factors X1, X2 and interaction X1 and X2, respectively. X1 

denotes amount of HCO-60 and X2 represents amount of Oc-40. The t-test at α = 0.05 level 

was used to determine the significant relationship between independent and dependent 

variables. R2 and adjusted R2 were also calculated for the regression model. The model 

was validated by checking model assumptions and lack of fit test. Results from this design 

were analyzed with one-way analysis of variance (ANOVA). F-test was carried out at α = 

0.05 to determine significance of regression relationship between independent and 

dependent variables. The design runs (coded and uncoded) and corresponding variables are 

summarized in Table 5-1. 

  In vitro experiments were performed at least in quadruplicate (n = 4) and the results 

were expressed as mean ± standard deviation (SD). Student t-test was applied to compare 

mean values. And a p value of ≤0.05 is considered as statistically significant. 
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Table 5-1: Details Design of Experimental (DOE) Coded and Uncoded Runs 

Formulation 

Code 

Coded Design Uncoded Design 

X1 X2 HCO-60 (wt%) OC-40 (wt%) 

F1 + + 5 3 

F2 + - 5 1 

F3 0 0 3.5 2 

F4 - + 2 3 

F5 - - 2 1 

F6 + + 5 3 

F7 + - 5 1 

F8 0 0 3.5 2 

F9 - + 2 3 

F10 - _ 2 1 

  

5.3.4 Entrapment Efficiency (EE) and Loading Efficiency (LE) 

Following a published protocol 197, reversed micellization was achieved in organic 

solvent (dichloromethane) and TA was extracted from the core of nanomicelles. The 

amount of TA encapsulated within NMF was measured with HPLC. The percentage EE 

and LE of TA in NMF were calculated with equation 5-2 and 5-3.  

EE (%) = 
 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝐴 𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑁𝑀𝐹

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝐴 𝑎𝑑𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑁𝑀𝐹
∗ 100    (Eq. 5-2) 
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LE (%) = 
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝐴 𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑁𝑀𝐹

(𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝐴 𝑎𝑑𝑑𝑒𝑑+𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑠 𝑢𝑠𝑒𝑑) 
∗ 100    (Eq. 5-3) 

5.3.5 Determination of Critical Micellar Concentration (CMC) 

CMC of single polymer HCO-60, Oc-40 and a binary mixture of HCO-60 and Oc-

40 were determined with iodine as hydrophobic probe following a published method from 

our laboratory. The absorbance of hydrophobic iodine partitioned into nanomicellar core 

was measured with UV-Vis spectrometer DDX 880, Beckman Coulter. The absorption 

intensity was plotted against logarithm of polymer concentration to calculate CMC. 

5.3.6 Micelle Size, Polydispersity and Surface Potential Charge 

The nanomicellar size, PDI, and surface potential were determined by dynamic 

light scattering analyzer (DLS) (Brookhaven Zeta Plus instrument, Holsville, NY, USA). 

A sample volume of 500 µL without dilution was subjected to size measurement at a laser 

wavelength of 659 nm at room temperature. All measurements were performed in 

triplicate. 

5.3.7 Morphology Transmission Electron Microscopy (TEM) 

To determine shapes of TA-loaded NMF, a drop of nanomicelles formulation was 

placed on TEM grid with carbon film, excess of liquid was removed with filter paper and 

grid was air dried.  Specimens were negatively stained with 1% uranyl acetate and TA 

nanomicelles were witnessed with CM12 electron microscope (FEI, Hillsboro, OR) at 80 

kV accelerating voltage. Image acquisition was performed with Orius CCD camera 

(GATAN, Pleasanton, CA) 
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5.3.8 Light Transmittance 

The percentage transmittance of light through samples (N=4) was measured at 

different wavelength range from 400nm to 600 nm with a UV-Vis spectrometer (Model: 

Biomate-3, Thermo Spectronic, Waltham, MA). Percent light transmitted was recorded. 

Distilled deionized water served as blank. All measurements were performed in triplicate. 

5.3.9 Dilution Effect 

The dilution effect of NMF were studied by diluting the sample from 0 to 200 times 

with phosphate buffer. Diluted TA nanomicelles were measured for size characterization 

following an earlier described protocol.   Briefly, the TA loaded NMF were diluted with 

appropriate volume of phosphate buffer according to dilution factor and NMF size and PDI 

were recorded from DLS analyzer. 

5.3.10 Powder X-Ray Diffraction (XRD) 

XRD analysis was performed for TA, freeze-dried blank NMF, and freeze-dried 

TA -NMF formulation. A Rigaku MiniFlex powder automated X-ray diffractometer 

(Rigaku, The Woodland, Texas, USA) was utilized for the analysis at RT. Cu Kα radiation 

(λ=1.5418Å) at 30 kv and 15mA was utilized. The diffraction angle covered from 2ϴ 4.0° 

to 45.0°, and a step of 0.05° with 3 sec/step were applied. The diffraction patterns were 

processed using Jade 8 (Materials Data, Inc., Livermore, CA). 

5.3.11 1H-NMR Spectroscopy of Nanomicelles 

Proton nuclear magnetic resonance (1H NMR) was applied to identify any 

unentrapped (or) free TA in the NMF solution. 1H NMR studies were conducted for TA, 

blank NMF and TA-loaded NMF. 1H NMR spectra were recorded on Varian 400 MHz 
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spectrometer (Varian, USA) in deuterated water (D2O) or deuterated chloroform (CDCl3). 

NMR data was processed using VNMRJ or ACD labs software.   

5.3.12 Osmolality and pH 

Osmolality is an important attribute for the topical eye drop formulation. It was 

measured using the Wescor Vapor Pressure Osmometer Vapro 5520 follow the 

manufacture manual. Briefly, 10 µl of NMF was loaded in the center of the sample disc 

and immediately the instrument measure and show osmolality value. The pH of the NMF 

was adjusted similar to the tear pH ~ 6.8 with phosphate buffer.        

5.3.13 Viscosity 

The viscosity of all the formulations was measured with Ostwald-Cannon-Fenske 

viscometer following conventional method as previously described. Briefly, the travel time 

or efflux time of NMF and distilled deionized water freely go through ranged distance was 

measured and calculated with equation 5-4 (Eq. 5-4). All measurements were performed 

in triplicate. 

Viscosity (liq) = 
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑙𝑖𝑞) 𝑋 𝑡𝑖𝑚𝑒 (𝑙𝑖𝑞) 𝑋 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦(𝑤𝑎𝑡𝑒𝑟)

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑤𝑎𝑡𝑒𝑟) 𝑋 𝑡𝑖𝑚𝑒 (𝑤𝑎𝑡𝑒𝑟) 
    (Eq. 5-4) 

Where viscosity (water) = 0.89 centipoise (Cp), 25 ˚C and density (water) = 1 g/mL 

5.3.14 Cell Culture 

Human corneal epithelial cells (HCEC cells) were cultured following a previously 

published protocol310. Briefly, DMEM/F-12 medium comprising of 15% (v/v) heat 

inactivated fetal bovine serum (FBS), 22mM NaHCO3, 15mM HEPES and 5 mg/L insulin, 

10 µg/L human epidermal growth factor, 100 mg/L penicillin and 100 mg/L streptomycin 

was prepared. Cells with passage numbers between 15 and 25 were utilized for all studies. 

Human retinal pigment epithelial cells (D407 cells) were grown as described earlier in 
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DMEM medium supplemented with 10% (v/v) heat inactivated FBS, 15 mM HEPES, 29 

mM NaHCO3, 100 mg/L penicillin, 100 mg/L streptomycin, and 1% nonessential amino 

acid. Both cell lines were incubated at 37 ˚C, 5% CO2 and 90% humidity. Both media were 

changed every alternate day. 

5.3.15 In vitro Cytotoxicity 

In vitro cytotoxicity studies of NMF were carried out with Premix WST-1 cell 

proliferation assay kit (Takara Bio Inc.) and Lactate dehydrogenase (LDH) assays (Takara 

Bio Inc.) on HCEC and D407 cells respectively. Briefly, HCEC and D407 cells were 

cultured in flasks and harvested at 80–90% confluency with TrypLE™ Express 

(Invitrogen, Carlsbad, CA, USA). Cells were transferred to 96-well plates at a density of 

10,000 cells/well and cytotoxicity studies were initiated following manufacturing protocol. 

NMF solution (blank and TA loaded) were prepared and re-suspended in serum free media 

and filtered with 0.2 µm nylon membrane to obtain sterile formulations. 

Premix WST-1 cell proliferation assay: Experiments were performed following a 

published method 197. To each well 100µL of NMF was added and incubated for 1h at 

physiological conditions. Serum free media and Triton X-100 (10%) served as negative 

and positive controls, respectively. Following incubation, 10 µL of premixed WST-1 was 

added to each well, incubated for 30 mins and absorbance was measured for the formazan 

product at 440 nm. An increase in absorbance of formazan denotes the % viable cells.  

LDH assay: To evaluate cell membrane damage caused by NMF in each well, 

100µL of serum free media and 100µL NMFs were added and incubated for 1 h at 37 ˚C.  

Serum free media and Triton X-100 10% served as negative and positive samples. After 

incubation period, 96 wells plate was centrifuged at 250X G for 10 mins and 100 µL of 
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supernatant was collected into 96-well flat bottom plate. LDH released from damaged cells 

was measured with LDH assay kit and absorbance of samples was measured at 490 nm. 

The % membrane damage was calculated with equation 5-5 (Eq. 5-5). 

% Cytotoxicity=
𝑒𝑥𝑝.𝑣𝑎𝑙𝑢𝑒 − 𝑐𝑒𝑙𝑙 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑚𝑒𝑑𝑖𝑢𝑚 𝑣𝑎𝑙𝑢𝑒

𝑇𝑟𝑖𝑡𝑜𝑛 𝑋_100 − 𝑐𝑒𝑙𝑙 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑚𝑒𝑑𝑖𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 
∗ 100    (Eq. 5-5) 

5.3.16 In Vitro Drug Release Study 

TA release kinetics from NMF was studied following previously described 

protocol225. Briefly, TA NMF and TA ethanoic solution (control) were transferred to 

dialysis bag with a molecular weight cut-off of 1,000 Da. The bags were immediately 

transferred to 15ml centrifuge tubes, previously thermostated at 37 ˚C, containing 5 mL 

Dulbecco's Phosphate-Buffered Saline (DPBS) (pH = 7.4) buffer solution, tween-80 (0.5% 

w/v). All samples were placed in shaking water bath at 37 ̊ C and 60 rpm. At predetermined 

time points, drug release medium (5 mL) was collected and replaced with equal volume of 

fresh buffer to maintain sink conditions. Collected DPBS was immediately stored at – 80 

˚C until further analysis. Before analysis, samples were thawed, vortexed and extracted for 

TA (reverse micellization). Extracted samples were injected into RP-HPLC to determine 

TA concentrations.   Release study was performed in triplicates. The results were plotted 

as mean ± SD. The release data was fitted for zero order, first order, Higuchi and 

Korsmeyer-Peppas model to determine the kinetics of TA release. 

5.4 Results & Discussion:  

5.4.1 Exploratory Model (design of experiments (DOE)) 

In this study, a full-factorial DOE with one center point and one replicate was 

selected to screen the independent factors for dependent variables. All formulations were 

characterized for EE, LE, CMC, size, PDI, surface potential, light transmittance and 
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cytotoxicity. The design runs (coded and uncoded) and corresponding variables are 

summarized in Table 5-1. 

The nanomicellar size, PDI, surface potential and light transmittance did not show 

significant difference among formulations. The size and distribution of all NMFs were 

determined by the DLS method and presented in Table 5-2 ranged from 20- 26 nm. The 

PDI for all run were below 0.45 indication narrow size distribution. All light transmittance 

were above 90% indicating that the formulations allow the light pass through as close as 

water. The percent of cell viability of all NMFs were compared with medium and Triton 

X-100 10% which served as positive and negative controls, respectively (Fig 5-2).  Because 

DOE used one replicate, the cytotoxicity only performed from F1 to F5 for both blank 

NMF and TA loaded NMF. More than ∼ 80% cell viability was observed as compared to 

the control, where Triton X-100 generated less than 20% viability. However, a significant 

difference in EE, LE, and CMC were observed. Therefore, dependent variables such as EE, 

LE, and CMC were selected to identify the most essential influencing factor for each 

dependent variable. The standard least square fit analysis in JMP® 13.0 software was 

conducted and data analyzed to identify the most important variables. The parameters and 

pareto plot of estimates showed the significant effect with probability for each dependent 

factor on each outcome. Pareto plots were applied to identify the factors with significant 

effect on the outcome. The estimated coefficient with p < 0.05 were considered to be 

significant.   Results shown in Fig. 5-3a indicate that different weight percent of HCO-60 

and Oc-40 polymers had significant effect (p < 0.05) on EE. The pareto chart shows the 

significant of HCO-60 (p < 0.0001), OC-40 (p = 0.0003) and interaction HCO-60*OC-40 

(p = 0.0011) cumulative percentage effect of the polymer weight percentage (Fig 5-3b). 
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The parameter estimates indicate that HCO-60 percentage offer significant contribution on 

entrapment efficiency relative to Oc-40. The fit model represents the relationship between 

independent and dependent variables, which are shown in the following equations (Eq. 5-

6): 

Y1= 33.7 + 14.625 X1 + 4.625 X2 + 3.625 X1X2 R2 =0.99, p < 0.0001, (Eq. 5-6) 

X1 (HCO-60) and X2 (Oc-40).  

The correlation coefficient (R2) for the regression model was 0.99 and p value less 

than 0.05 suggest that the model was significant and could predict EE. The model was also 

validated by plotting the response surface of predictive model for EE as a function of HCO-

60 and OC-40 (Fig 5-3c). 

 

Figure 5-2: Cytotoxicity Studies Conducted on HCEC Cells.  Cells Treated 

with Blank and Loaded TA NMFs Solutions for 1h 
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Figure 5-3: Summary of Variable Effects on Entrapment Efficiency (EE) 
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Figure 5-4: Summary of Variable Effects on Loading Efficiency (LE) 

 

a 

c.  

 b. 
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Figure 5-5: Summary of Variable Effects on Critical Micellar Concentration 

(CMC) 

 Similarly, Fig.5-4a shows that both HCO-60 and Oc-40 generated significant 

effect on loading efficiency with probability of 0.0006 and 0.0391, respectively. The 

regression equation is represented by Eq. 5-7. 

Y2 = 0.5922 + 0.09625 X1 – 0.03875 X2+ 0.05925 X1X2 (Eq. 5-7) R2 = 0.92, p = 

0.0012 

 
a. 

b 
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The correlation coefficient (R2) for the regression model was 0.92 and p value less 

than 0.05 suggest that the model was significant and could predict LE. The model was also 

validated by plotting the response surface of predictive model for LE as a function of HCO-

60 and OC-40 (Fig 5-4b). 

On the other hand, there is no significant effect of HCO-60 polymer was observed 

on CMC (Fig. 5-5) while OC-40 had lightly effect on CMC with p value 0.0312. The 

regression equation is presented by Eq.5-8.  

Y3 = 0.02426 + 0.00125 X1+ 0.0091 X2 + 0.00695 X1X2 (Eq. 5-8) R2 = 0.68, p = 

0.0642 

The correlation coefficient (R2) for the regression model was 0.68 and p value 

greater than 0.05 suggests and that the model was not significant. 
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Figure 5-6: Prediction Profiler for Optimized TA NMF 

The prediction profiler was generated to determine the optimal point with highest 

desirability. It also predicts the combination effects of variables at different levels. 

Prediction profiler helps to predict the levels of independent variables which may be 

adjusted to achieve high EE, LE and low CMC. TA loaded NMF with such characteristics 

was assumed to be the better formulation. Prediction profiler indicated that the optimized 

formula (HCO-60 at 5.0 wt% and OC-40 at 1.5 wt%) may provide optimal EE, LE and low 

CMC of 44.0%, 0.676% and 0.0216, respectively (Fig. 5-6). This optimized formulation 

produces the most reasonable desirability between independent and dependent variables. 
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TA loaded NMF was prepared with HCO-60 and Oc-40 with weight percent predicted by 

the profiler. EE, LE and CMC were determined following described earlier procedure and 

results were summarized in Table 5-3. EE, LE and CMC for the new NMF were 46%, 

0.70% and 0.0210, respectively. Experimental results appear to be in agreement with the 

prediction profiler. The DOE was successfully applied to understand the interaction 

between the polymers and/or drugs and thus achieve the optimal formulation with high 

desirability. Further, the optimized NMF was subjected to characterization such as size, 

PDI, surface potential, light transmittance, viscosity, morphology, 1H NMR, dilution 

effects, cytotoxicity, and in vitro release.  

5.4.2 Entrapment Efficiency and Loading Efficiency  

TA entrapment and loading into NMFs was determined with RP-HPLC method as 

described previously. NMFs EE, LE are summarized in Table 5-2 and 5-3. TA is a highly 

lipophilic drug with poor aqueous solubility 25.4 µg/mL (US patent US 2006/0141049), 

and octanol/water partition coefficient is 2.53. Because of the hydrophobic interaction, 

hydrophobic drug get encapsulated inside hydrophobic core of nanomicelle. Results 

indicate that entrapment of TA in the core of nanomicelles improved TA solubility by 20 

times. Nanomicelle has improved the solubility of TA with increased EE.  
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Table 5-2: Summary of Uncoded Design and Corresponding EE, LE, CMC, Size, PDI, Zeta Potential and % Light 

Transmittance 

Formulation 

code 

HCO-60 

(wt%) 

OCO-40 

(wt%) 

EE (%) LE (%) CMC Size (nm) PDI Zeta potential 

(mV) 

T (%) 

F1 5 3 55 0.682 0.0380 24.05 0.394 -0.78 98.51 

F2 
5 1 39 0.645 0.0059 25.04 0.378 -0.469 94.76 

F3 3.5 2 35 0.632 0.0385 22.02 0.393 -0.254 93.76 

F4 
2 3 19 0.379 0.0216 23.08 0.392 +0.418 95.77 

F5 
2 1 17 0.563 0.0173 25.37 0.404 -0.084 93.05 

F6 5 3 57 0.707 0.0380 23.94 0.397 -0.81 98.56 

F7 
5 1 40 0.662 0.0059 25.13 0.379 -0.458 95 

F8 3.5 2 37 0.668 0.0385 22.04 0.393 -0.261 93.76 

F9 
2 3 20 0.398 0.0216 23.21 0.4 +0.418 95.89 

F10 2 1 18 0.596 0.0173 25.07 0.43 -0.089 93.25 
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HCO-60 = Hydrogenated castor oil-60; Oc-40=octoxynol-40; EE=Entrapment Efficiency; LE=Loading Efficiency;  

CMC=Critical Micellar Concentration; nm=nanometer; PDI=Polydispersity Index; mV=milli Volts;  

NMF=Nanomicellar Formulation; T=Transmittance 
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Table 5-3: Characterization of Optimized TA NMF 

Formulation 

code 

HCO-60 

(wt%) 

OC-40 

(wt%) 

Size 

(nm) 

PDI Zeta 

potential 

(mV) 

T 

(%) 

EE 

(%) 

LE 

(%) 

CMC Viscosity 

(cP) 

Osmolality 

(mmol/kg) 

pH 

Blank 

optimized 

NMF 
5 1.5 17.01±0.03 0.198 -0.745 96.69 - - 0.0210 

1.89 ± 

0.01 
300 ± 6 

6.81 

0.1% TA 

optimized 

NMF 
5 1.5 16.64± 0.02 0.200 -0.447 95.58 46 ± 1 

0.70± 

0.05 

- 1.95 ± 

0.01 

317 ± 5 6.85 
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5.4.3 Micellar Size, Polydispersity Index (PDI), Zeta Potential  

Nanomicellar size, polydispersity index (PDI), Zeta potential were determined by 

dynamic light scattering (DLS). The results are summarized in Tables 5-2 and 5-3. Both 

blank and TA-loaded NMF were in the size range between 20-30 nm with narrow 

distribution. Fig. 5-7a and 5-7b illustrated the distribution of blank and TA- loaded NMF. 

The significantly small size of NMF may sufficiently allow NMF to travel across ocular 

tissues such as scleral channels/pores, are in the size range between 20 and 80 nm311. The 

PDI of all runs bellow 0.4 zeta potential is negligible. Such property of nanomicelles may 

help to deliver TA to back of the eyes by the conjunctival/ sclera pathway.  

 

Figure 5-7: Size Distribution of NMF Formulations (A) Blank NMF (B) 

Optimized TA Loaded NMF 
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5.4.4 Morphology TEM   

The morphology of optimal nanomicelle was studied by TEM. Results show that 

NMFs are spherical in shape with smooth surface architecture without any signs of 

aggregation (Fig. 5-8A). Nanomicelles are clearly defined and distinguished as bright, 

discrete spherical globules on the TEM grid. TA loaded NMF displays a size of about 20 

nm which is in agreement with the size measurement with DLS.    

         

5.4.5  Optical Clarity/Appearance  

Optical appearance / clarity is defined as the ability of light to be transmitted 90% 

or more through a 1.0-cm path length at 400nm wavelength. The major reason for light 

Figure 5-8: (A) Real-Time Scanning Transmission Electron Microscope 

(STEM) Image of Triamcinolone Acetonide-Loaded Nanomicelles (X147,000). Scale 

Bar 100 nm. (B) Image Showing Visual Appearance of 0.1% Triamcinolone 

Acetonide Loaded Nanomicelles on the Left Side in Comparison to Water on the 

Right Side 
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scattering is due to interference produced by particles. However, particles of extremely 

small size i.e. nanometers will not produce enough hindrance or light scattering results in 

a clear and transparent solution. TA NMF is clear as water (Fig. 5-8B) or transparent and 

more than 90% of light has been transmitted (Table 5-2 and 5-3) compared with TA 

suspension.  All NMFs can be compared with distilled deionized water measured by 

transmittance. Percentage light transmittance of optimized formulations (blank and TA 

loaded NMF) at different wavelength range from 400nm to 600 nm ranged from 91 % to 

96 % (Fig. 5-9). It was observed that there is no particle interfering with light scattering. 

The nanomicelles help to develop a clear solution with no solid particles.  

 

Figure 5-99: Light Transmittance of Formulations (Blank, TA NMF) 
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5.4.6 Critical Micellar Concentration (CMC) 

Ocular static and dynamic barriers are the most challenging barriers for delivery of 

drugs to back-of-the-eye at therapeutic levels 312. CMC is the most critical factor which 

regulates drug release in tear film. Only 20% of applied topical drop may be available for 

absorption 312. Continuous tear production may dilute the NMF which may cause micelle 

disruption and premature TA release. In order to prevent such disruption, low CMC for 

nanomicelles are prepared since it imparts high stability to NMF after topical 

administration. In this study, CMC for blend of HCO-60 and OC-40 was determined and 

results are summarized in Tables 5-2 and 5-3. The optimized formulations display low 

CMC and are not in agreement with the prediction profiler. Since the correlation coefficient 

(R2) for the regression model was 0.68 and p value greater than 0.05 suggest that the model 

was not significant and not good model in predicting CMC.  

5.4.7 Viscosity 

High viscosity of formulation can have effect on its residence time in the cul-de-

sac enhancing therapeutic effect. The results summarized in Table 5-3 show that NMF 

produce viscosity less than 2.0 centipoise (cP), well below critical point of 4.4 cP, such 

that the drainage rate is not affected 313. Formulation viscosity may offer advantages due 

to longer residence in the cul-de-sac which may increase ocular absorption. 

5.4.8 Dilution Effect 

Human eyes have many different mechanism and barriers to protect and prevent 

any harm from external particles from body. Major ocular barriers are static (corneal 

epithelium, corneal stroma, and blood–aqueous barrier) and dynamic barriers (blood-

retinal barrier, conjunctival blood flow, lymph flow, and tear drainage). Tear drainage is 
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one of those barriers that clear out much of topical application. Therefore, the stability of 

the NMF was studied upon the effect of dilution. The results shown in Table 5-4 

demonstrated that there is no significant effect on nanomicelle size and PDI with dilution 

up to 200 times.  

Table 5- 4: Effect of Dilution on Nanomicellar Size and PDI of Optimized TA 

Loaded NMF. 

 

5.4.9 Osmolality and pH 

Osmolality is an important attribute for the topical eye drop formulation. The hyper-

osmolality is a main pathogenic factor in dry eye 314. The osmolality and pH of the NMF 

was adjusted similar to the tear pH ~ 6.8 with phosphate buffer as depicted in Table 5-3. 

Osmolality of TA NMF was 317 mmol/kg or mOsm/kg and pH was around 6.8.  

Dilution factor Average size (nm) PDI 

0 16.64 0.200 

10 17.02 0.193 

20 18.1 0.228 

40 17.09 0.233 

50 16.86 0.222 

100 16.01 0.323 

200 18.04 0.360 
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5.4.10  1H NMR Characterization 

The free drug molecules in solution was identified by 1H NMR analysis at parts per 

million (ppm) levels. In order to confirm TA entrapment into the mixed nanomicelles core 

qualitative 1H NMR spectral analysis was performed in CDCl3 and D2O. Blank and TA-

loaded NMFs were prepared in different solvent such as CDCl3 and D2O. 

Figure 5-10: Qualitative 1H NMR Studies (A) 1H NMR Spectrum for TA Pure 

Drug in CDCl3; (B) 1H NMR Spectrum For Placebo Polymer Micelles in CDCl3; (C) 
1H NMR Spectrum for TA Nanomicelles in D2O; (D) 1H NMR Spectrum For TA 

Micelles in CDCl3. 
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In Fig. 5-10A the resonance peaks were identified with pure triamcinolone 

acetonide standard in CDCl3. For the blank formulation (Fig. 5-10B) in chloroform CDCl3, 

there was no observable peak corresponding to triamcinolone acetonide except polymer 

peak. However, with the TA loaded formulation in CDCl3 (Fig. 5-10D) the resonance peaks 

similar to pure TA are evident. The spectra indicated that drug is present in organic solvent 

CDCl3 where reverse micelles are formed, and the drug is in the solvent. However, 

resonance signals for TA were absent when suspended in D2O (Fig. 5-10C). The results 

indicate that TA is inside nanomicellar vesicles in aqueous solution. All triamcinolone 

acetonide in solution was entrapped inside nanomicelles and there was no free/unentrapped 

TA in the D2O. Since amphiphilic polymers have encapsulated TA inside the core which 

muted the NMR signal during micelle formulation. This explains the absence of TA signal 

in D2O. 
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5.4.11 Powder XRD Analysis of Blank NMF and TA NMF  

TA, polymer HCO-60, OC-40, blank NMF and TA NMF were studied by XRD to 

find the further information about physical state of polymer and when inside micelles. Fig. 

5-11 presented the results. XRD pattern showed the characteristic peaks of the HCO-60 

widely at two-theta 20 degree and 32 degree while OC-40 showed at same 19 and 23 degree 

but higher intensity with smaller peak width. Peak width due to crystallite size, the peak 

gets broader as the crystallite size gets smaller. TA raw powder had characteristic peak at 

near 10, 14, and 18 degree. The characteristic peaks of HCO-60 and TA were disappeared 

for freeze-dried blank NMF and TA NMF. Because the polymers have interacted with each 

other and self-assemble in water to form nanomicelle, there were no more characteristic 

peaks for individual. Both blank nanomicelle and TA nanomicelle gave the same peaks at 

19, 23, and 27 degree indicating the drug TA was molecularly dispersed in naomicelle. As 

the X-rays interact with crystalline lattice, a diffraction pattern is formed which reveals 

spacing between planes of atoms. The nanomicelles thermo-dynamically arrange atoms 

close together and forming very stable bond. The spacing between planes of atoms are 

smaller where there were no peaks observed with high intensity or broadening width. Such 

rigid structure may resist sheer stress while transport across the scleral pores which allows 

transport through the membrane.  
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Figure 5-11: XRD Pattern of TA Raw, TA NMF and Polymers HCO-60, OC-

40 

5.4.12  In Vitro Cytotoxicity   

The formulations/solutions are rapidly washed (within 5 to 10 min) after topical 

ophthalmic drop instillation into pre-corneal pocket 312. Previous results from our 

laboratory showed drug molecules in nanomicelles reaching back of the eye tissues 

(retina/choroid) 315. Therefore, cytotoxicity studies were conducted on human corneal 

epithelial cells (HCEC cells) and human retinal pigment epithelial cells (D407 cells) for 1 

h incubation period. In order to evaluate the cytotoxicity of NMF, WST assay was 

performed on HCEC. The % cell viability of all NMFs were compared with medium and 



 

97 

 

Triton X-100 10% which served as positive and negative controls, respectively (Fig 2).  

Because DOE used one replicate, the cytotoxicity only performed from F1 to F5 for both 

blank NMF and TA loaded NMF. More than ∼ 80% cell viability was observed as 

compared to the control, where Triton X-100 generated less than 20% viability.  

In another study, only optimized formulation was evaluated for cytotoxicity with 

both WST and LDH (Fig. 5-12, 5-13). The amount of LDH released in the culture medium 

directly correlates with membrane damage and cytotoxicity. Triton-X 100 caused 

significant toxicity/ membrane damage and serves as positive control. LDH study NMF 

was found to be safe without any cytotoxic effects the results are compared with the blank 

culture medium. Results from these assays clearly suggest that NMF do not cause cell death 

or damage to plasma membrane, are safe and well-tolerated for further in-vivo studies with 

topical drop application to eye. Therefore, these formulations are safe, maybe potentially 

aqueous base formulation suitable to topical ocular application without much irritation.  
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Figure 5-12: Cytotoxicity Studies (LDH Assay) Conducted on D407 and HCEC 

Cells.  Cells Treated with NMF for 1h 

 

Figure 5-13: Cytotoxicity Studies (WST Assay) Conducted on D407 and 

HCEC Cells.  Cells Treated with NMF for 1h 
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5.4.13 In Vitro Drug Release Study  

To determine the release kinetic of TA from HCO-60 and OC-40 in optimized NMF 

(F6) was investigated under sink condition at a physiological pH of 7.4 at 37°C. The control 

represented an equal quantity of TA (1 mg) in 1 ml of absolute ethanol. TA release from 

NMF was slower than TA release from ethanolic solution. The release kinetic profiles of 

ethanolic and encapsulated TA from the nanomicelles are illustrated in Fig. 5-14. Almost 

100 % of TA was cumulative released in approximately 24 h from ethanolic TA solution. 

However, TA release from NMF was very slow (nearly one month) without any burst 

effect. Results suggest that, topical administration of TA NMF helps to sustain release of 

TA under physiological conditions. Consequently, this nanomicelle formulation may aid 

in reducing dosing frequency but still achieving therapeutic TA concentrations in ocular 

tissues.             
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Figure 5-14: In Vitro Releases Profile of TA from Nanomicelles and Ethanolic 

TA Solution under Sink Conditions At 37 ˚C                                                                                                                                                                                                                                                                                               

5.5 Conclusion 

In summary, a clear, stable, aqueous TA-loaded NMF have successfully been 

optimized and prepared with full-factorial statistical DOE. Results suggest that TA EE was 

dependent on the combination of polymer HCO-60 and OC-40. Predictive model was 

produced to determine the amount of independent factors to achieve the highest outcome. 

The specific blend of HCO-60 at 5.0 wt% and OC-40 at 1.5 wt% generated excellent EE, 

LE and low CMC. Optimal TA NMF was clear as water with no light scattering. 

Nanomicelles are spherical in shape and encapsulated TA in the core NMF display small 

size, narrow PDI, and are well-tolerated in human cell lines. The release profile showed 

controlled release under physiological conditions. The results indicate that TA NMF may 
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be suitable for human application as ocular drops for anterior and posterior ocular 

inflammations.  
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CHAPTER 6 

6 PREPARATION AND OPTIMIZATION DEVELOPMENT OF FLUOCINOLONE 

ACETONIDE-LOADED NANOMICELLES 

6.1 Rationale:  

Diabetic macular edema (DME) is a retinal disease, the sight threatening condition 

caused by buildup of fluid in the center of macula 303, 316. It is a painstaking back-of-the-

eye chronic disease that causes changes in vision and leads to vision loss. DME patients 

are estimated to be around 21 million 317. In type II diabetic patients, more than thirty 

percent suffer from diabetic retinopathy after five years, and up to 80% after 15 years 318, 

319. For type I diabetic patient, it was 17% after five years and 98% after 15 years 320, 321. 

DME formation is known as significant cause for visual impairment for type II patient 

while diabetic retinopathy is observed in type I diabetes 322. Due to the upregulation of 

angiogenic growth factors, neovascularization occurs as the result the microvascular 

becomes fragile and easily cause damage leading to leakage and breakdown of blood retinal 

barrier. 304, 323. Sustained hyper-glycemia can lead to the destruction of the interior blood 

vessels walls, resulting in porosities and micro-vascular leakage. The resultant retinal 

vascular hemorrhage accumulates in the medial aspect of the retina resulting in swelling, 

which is pathognomonic for DME (11). Several treatment options of DME are available 

such as  surgery, laser photocoagulation, intravitreal injection of anti-vascular endothelial 

growth factor (anti-VEGF), intravitreal injection of VEGF inhibitors (ranibizumab - 

Lucentis®, aflibercept – Eylea®, bevacizumab - Avastin®) and steroid implant 

(dexamethasone – Ozurdex®)  141, 303, 323, 324. Corticosteroids have generally been indicated 

not only to reduce the effect of VEGF overexpression but also attenuate the inflammation 

by suspending VEGF-A, ICAM-1, IL-6 pathway, decreasing AQP4, reducing paracellular 
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permeability, and raising up the tight junction integrity325. Delivery of drugs at therapeutic 

levels to posterior eye tissues (retina/choroid) is a very difficult clinical task. Because of 

the static and dynamic barriers, topically delivered medicaments that travel to posterior 

segments of the eye are measured to be less than 5% of the original administered dose 5. 

Since steroids possess many physicochemical chemical properties including low aqueous 

solubility, and poor ocular membrane permeability, intravitreal injection or implant are the 

treatment options. Complications associated with invasive administrations include 

increased intraocular pressure (IOP) resulting in glaucoma and cataracts 305, 326, 327.  

 

Figure 6- 1: Illuvien® Intravitreal Implant 

 

Fluocinolone acetonide (FA) is a synthetic glucocorticoid, similar to triamcinolone 

acetonide and dexamethasone. FA have both anti-angiogenic and anti-inflammatory 

properties 17. It is a hydrophobic compound with poor oral bioavailability. Currently most 

steroids including FA have been administered locally by intravitreal injections or implant. 

Those are highly invasive and costly procedures with low patient compliance. FA 

intravitreal implant (Iluvien® 0.19mg) is an injectable, non-bioerodible, corticosteroid 
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implant that is approved by FDA for DME (Fig. 6-1). It releases the drug at an initial rate 

0.25 µg/day and last for 36 months. FA intravitreal implant has been improved significantly 

to deliver the best-corrected visual acuity (BCVA). In comparison with the control without 

the implant, FA intravitreal implants cause more cataract and IOP elevation 220, 307. 

Common side effects include cataracts, acceleration of IOP, eye pain or irritation. Since 

topical administration is the most patient compliant route with fewer side effects, a topical 

eye drop of FA would be potentially a novel and self-delivery system. Consequently, 

aqueous nanomicellar formulation with amphiphilic polymers appear to be a promising 

approach. Therefore, hydrophobic-FA was encapsulated inside of nanomicelles. 

Hydrophilic groups on the surface of nanomicelles produced clear, aqueous solution. This 

novel nanomicellar delivery system may (i) enhance FA solubility (ii) expand cellular 

uptake and penetration, (iii) permit for non-invasive delivery of lipophilic drugs to back of 

the eye and (iv) improve patient compliance and economical since the formulation is non-

invasive, self-dosing. After topical administration, NMF may travel around sclera and 

conjunctiva and spread to retina region. This route is known as conjunctival-scleral 

pathway 197. 

In the current study, we selected amphiphilic polymers to optimize the formulation 

namely: hydrogenated castor oil (HCO) 40, 60, 80 and 100 and octoxynol-40 (OC-40). 

Amphiphilic nature of HCO and OC-40 contains both hydrophilic corona and hydrophobic 

core allowing spontaneous self-assembly and formation of circular nanomicelles in water 

solution. Due to hydrophobic effect, the hydrophobic part will come together and form 

hydrophobic core, which interacts hydrophobic drugs such as FA. Consequently, the 

hydrophobic FA can be encapsulated inside the hydrophobic core of nanomicelles and 
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hydrophilic part interacts with water surrounding environment and forms very stable 

nanomicellar structure. Based on the preliminary studies (Table 6-1), HCO-40 provided 

the most promising results. Therefore, further for formulation optimization was continued 

with HCO-40. FDA has approved both HCO-40 and OC-40 for human application. The 

aim of this work is to optimize and develop a clear aqueous NMF of FA utilizing central 

composite design (CCD) with mixture of two nonionic polymers OC-40 and HCO-40. JMP 

13.0 software applied in this investigation supported the determination of the appropriate 

ratio of blending HCO-40 and OC-40. Two design of experiments (DOE) are selected to 

maximize the solubility of FA. DOE 1 no heat was involved. However, DOE 2 film was 

heated at 65 ºC before rehydration. The size, polydispersity index (PDI), osmolality, 

viscosity, light transparency and pH of the optimized formulations have been produced and 

characterized. Based on these experiments, the data was inserted into the software JMP. It 

generates standard least square fit analysis to identify the optimal NMF. Furthermore, in 

vitro cytotoxicity studies were performed on human corneal and retinal cell lines to confirm 

the safety of NMF.  

Table 6-1: Preliminary Data for FA Nanomicellar Formulations 

FA 0.05 % 

OC-40 0.5% 

HCO-40 2% HCO-60 2% HCO-80 2% HCO-100 2% 

Clarity  ++++ +++ ++ (white 

particle) 

+ (turbid) 

Size (nm) 20.08 20.81 22.26 21.28 

PDI 0.127 0.206 0.221 0.291 

Zeta potential 0.508 1.76 2.16 1.48 

Solubility (mg/ml) 0.603 0.417 0.076 0.027 
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6.2 Materials 

FA was obtained from Sigma-Aldrich, USA. Hydrogenated castor oil 40 (HCO-40) 

was procured from Barnet Products Corp., NJ, USA. Octoxynol-40 (OC-40) (Igepal CA-

897) was purchased from Rhodio Inc., NJ, USA. HPLC grade methanol, ethanol and 

dichloromethane were purchased from Fisher Scientific, USA. CellTiter 96® AQueous 

nonradioactive cell proliferation assay (MTT) kit and lactate dehydrogenase (LDH) assay 

kit were obtained from Promega Corp and Takara Bio Inc., respectively. D407 cells were 

procured from the American Type Culture Collection (ATCC). HCEC are SV-40 virus 

transfected human immortalized corneal cells; this cell line was a generous gift from Dr. 

Araki-Sasaki (Kinki Central Hospital, Japan) 

6.3 Methods 

6.3.1 High performance liquid chromatography (HPLC) analysis 

Reversed phase HPLC (RP-HPLC) method was applied to analyze samples with 

Shimadzu LC pump (Waters Corporation, Milford, MA), Alcott autosampler (model 718 

AL), Shimadzu UV/Vis detector (SPD-20AV), and Phenomenex C8 column (spherisorb 

250 x 4.60 mm, 5 µm). The mobile phase was composed of methanol and water (65:35 

%v/v) with the flow rate set at 0.5 ml/min and UV detector was set at 235nm for quantifying 

FA. Calibration curve (1 to 75 µg/mL) for FA was constructed. 

6.3.2 Experimental Design 

To understand the factors and interactions between two factors on the effect of FA 

solubilization in nanomicelles, a response surface design with central composite design 

(CCD) with two continuous factors two degree was employed. The two factors under 

investigation here are the amount or percentage of HCO-40 and OC-40 for their effects on 
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FA solubility (Y) in nanomicelles.  In order to develop the experimental design and analyze 

the data, student version of JMP® 13.0 software (SAS institute, USA) was selected. In this 

study, X1 (HCO-40) and X2 (OC-40) serve as independent variables and solubility (Y) 

serves as dependent variables. The design had ten runs including 2 center points (Table 6-

2). HCO-40 was continuous factor and ranged from 0.5-2 % while OC-40 continuously 

ranged from 0.1-0.5%.  The response surface design has been utilized with the central 

composite design (CCD) which provide the value not only inside the box but outside of the 

box. The run a0, A0, 0a and 0A were the point outside of the range (< 0.5%, >2%, <0.1% 

and >0.5%).   
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Table 6-2: Design of Experimental (DOE) Coded, Uncoded Runs and 

Solubility of Fluocinolone Acetonide for DOE 1 (Micelle Preparation Method 1) 

 

Statistical Analysis: The experimental design and data analysis were performed by 

JMP 13.0 software student version. The effect of two factors - polymers (HCO-40 and OC-

40) amounts on dependent variables (solubility (mg/mL) was studied with statistical 

models. These models will denote interactive and polynomial influences on the dependent 

outcome in order to predict fit model (Eq. 6-1) and was used to evaluate their influence on 

the response variable (Y) 

Run No. Pattern HCO-40 (%) OC-40 (%) DOE 1 Solubility 

(mg/ml) 

1 -- 0.50 0.10 0.17 

2 -+ 0.50 0.50 0.12 

3 +- 2.0 0.10 0.62 

4 ++ 2.0 0.50 0.60 

5 a0 0.19 0.30 0.14 

6 A0 2.31 0.30 0.58 

7 0a 1.25 0.017 0.51 

8 0A 1.25 0.58 0.66 

9 00 1.25 0.30 0.49 

10 00 1.25 0.30 0.51 
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Y = b0 + b1 X1 + b2X2 + b3 X1X2 + b4 X1X1 + b5 X2X2 (Eq. 6-1) 

 Where Y is response outcome, b0 denotes intercept, b1, b2, b3, b4, b5 represent the 

regression coefficients for factors X1, X2, interaction X1 and X2, interaction X1 and X1, 

interaction X2 and X2, respectively. X1 denotes amount of HCO-40 and X2 represents 

amount of OC-40. X1X1 and X1X2, X2X2 are polynomial term of individual effects which 

represent the polymer 1- polymer 1, polymer 1 -polymer 2 and polymer 2 -polymer 2 

interactions.  

Results from design were analyzed with one-way analysis of variance (ANOVA). 

F-test was carried at α = 0.05 level was used to determine the significant relationship 

between independent and dependent variables. Significant factors and interactions were 

identified by the t-test at 95% significance level. R2 and adjusted R2 were also calculated 

for regression model and validated by checking model assumptions and summary of fit. 

Statistical analysis was done by the JMP 13.0 software student version.  

6.3.3 Nanomicelle Preparation 

Method 1 (Experiment of design 1 (DOE1)): Nanomicellar formulations (NMF) 

were prepared following a previously described procedure reported from our laboratory197, 

225, 308.  Briefly, HCO-40, OC-40 and FA were accurately weighed and separately dissolved 

in ethanol. All three solutions were mixed together to obtain a homogenous solution. 

Organic solvent was removed under rotary evaporation followed by high vacuum 

(GeneVac) to generate a thin film. Subsequently, this film was hydrated and resuspended 

in phosphate buffer. This solution was filtered sterilized through 0.2 µm nylon filter to 

separate unentrapped FA and other foreign particles. Similarly, the blank formulation was 

prepared without FA.  
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Method 2 (Experiment of design 2 (DOE2)): Based on the result of method 1, a 

small modification was made in method 1 to have higher drug solubility. Briefly, the drug 

and polymer film in method 1 was heated at 65 °C for 10-15 mins until the film was melted. 

The melted film was rehydrated and resuspended in phosphate buffer and follow the 

method 1. FA NMF was obtained and characterized as needed. Similarly, the blank 

formulation was prepared without FA. 

6.3.4 Solubility  

Following a previously described procedure reported from our laboratory197, 225, 308, 

reversed micellization was achieved in organic solvent (dichloromethane), and FA was 

extracted from the core of nanomicelles. The amount of FA encapsulated within NMF was 

measured with HPLC. The solubility of FA in NMF were calculated. 

6.3.5 Mixed Nanomicellar Size, Polydispersity Index (PDI), and Surface 

Potential 

Following a previously described procedure reported from our laboratory197, 225, 308. 

Briefly, the nanomicellar size, PDI, and surface potential were determined by dynamic 

light scattering analyzer (DLS) (Brookhaven Zeta Plus instrument, Holsville, NY, USA). 

A sample volume of 500 µL without dilution was subjected to size measurement at a laser 

wavelength of 659 nm at room temperature. All measurements were performed in 

triplicate. 

6.3.6 Light Transmittance   

Following a previously described procedure reported from our laboratory197, 225, 308. 

Briefly, the percentage transmittance of light through samples (N=4) was measured at 
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different wavelength range from 400nm to 600 nm with a UV-Vis spectrometer (Model: 

Biomate-3, Thermo Spectronic, Waltham, MA). Percent light transmitted was recorded. 

Distilled deionized water served as blank. All measurements were performed in triplicate. 

6.3.7 Viscosity 

Viscosity of all the formulations was measured with Ostwald-Cannon-Fenske 

viscometer following conventional method as previously described. Briefly, the travel time 

or efflux time of NMF and distilled deionized water freely go through ranged distance was 

measured and calculated with equation 1 (Eq. 6-2). All measurements were performed in 

triplicate. 

Viscosity (liq) = 
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑙𝑖𝑞) 𝑋 𝑡𝑖𝑚𝑒 (𝑙𝑖𝑞) 𝑋 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦(𝑤𝑎𝑡𝑒𝑟)

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑤𝑎𝑡𝑒𝑟) 𝑋 𝑡𝑖𝑚𝑒 (𝑤𝑎𝑡𝑒𝑟) 
    (Eq. 6-2) 

Viscosity (water) = 0.89 centipoise (Cp), 25 ˚C and density (water) = 1 g/mL 

6.3.8 Dilution Effect 

Stability of NMF was examined by diluting the sample 0 to 400 times with 

phosphate buffer. Diluted FA nanomicelles were characterized for size and PDI following 

an earlier established protocol using DLS instrument 197, 225, 308. Diluted FA nanomicelles 

were measured for size characterization following an earlier described protocol 15. FA 

loaded NMF were diluted with appropriate volume of phosphate buffer according to 

dilution factor and NMF size and PDI were recorded from DLS analyzer.  

6.3.9  1H NMR Characterization 

Proton nuclear magnetic resonance (1H NMR) was applied to identify any 

unentrapped (or) free FA in the NMF solution following a previously procedure reported 

from our laboratory197, 225, 308. 1H NMR studies were conducted for FA, blank NMF and 
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FA-loaded NMF. 1H NMR spectra were recorded on Varian 400 MHz spectrometer 

(Varian, USA) in deuterated water (D2O) or deuterated chloroform (CDCl3). 

6.3.10 In vitro Drug Release Study 

FA release kinetics from NMF was studied following previously described protocol 

225. Briefly, FA NMF and FA ethanoic solution (control) were transferred to dialysis bag 

with a molecular weight cut-off of 1,000 Da. The bags were immediately transferred to 

15ml centrifuge tubes, previously thermostated at 37 ˚C, containing 5 mL Dulbecco's 

Phosphate-Buffered Saline (DPBS) (pH = 7.4) buffer solution. All samples were placed in 

shaking water bath at 37 ˚C and 60 rpm. At predetermined time points, drug release 

medium (5 mL) was collected and replaced with equal volume of fresh buffer to maintain 

sink conditions. Collected DPBS was immediately stored at – 80 ˚C until further analysis. 

Before analysis, samples were thawed, vortexed and extracted for FA (reverse 

micellelization). Extracted samples were injected into RP-HPLC to determine FA 

concentrations.    

6.3.11 Osmolality and pH 

Osmolality is an important attribute for the topical eye drop formulation.  It was 

measured using the Wescor Vapor Pressure Osmometer (Vapro 5520). The experiment was 

done following the manual procedure  previously reported from our laboratory197, 225, 308. 

Briefly, 10 µL of NMF was loaded in the center of the sample disc and immediately the 

instrument measure and show osmolality value. The pH of the NMF was adjusted similar 

to the tear pH ~ 6.8 with phosphate buffer.        
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6.3.12 Powder X-ray Diffraction (XRD) 

Following a previously described procedure reported from our laboratory 197, 225, 308. 

XRD analyses were performed for freeze-dried FA, polymer HCO-40, OC-40, blank FA 

NMF and FA NMF. The diffractograms were collected on Rigaku MiniFlex using Cu Kα 

radiation, 30kV-15mA, at 1 degree 2-theta/minute.        

6.3.13 Cell Culture 

Briefly, Human corneal epithelial cells (HCEC cells) were cultured following a 

previously published protocol 308, 328. Briefly, DMEM/F-12 medium comprising of 15% 

(v/v) heat inactivated fetal bovine serum (FBS), 22 mM NaHCO-603, 15 mM HEPES and 

5 mg/L insulin, 10 µg/L human epidermal growth factor, 100 mg/L penicillin and 100 mg/L 

streptomycin was prepared. Cells with passage numbers between 15 and 25 were utilized 

for all studies. Human retinal pigment epithelial cells (D407 cells) were grown as described 

earlier 197 in DMEM medium supplemented with 10% (v/v) heat inactivated FBS, 15mM 

HEPES, 29mM NaHCO-603, 100 mg/L penicillin, 100 mg/L streptomycin, and 1% 

nonessential amino acid. Both cell lines were incubated at 37 ˚C, 5% CO2 and 90% 

humidity. Both media were changed every alternate day.  

6.3.14 In vitro Cytotoxicity 

Briefly, in vitro cytotoxicity studies of NMF were carried out with Premix WST-1 

cell proliferation assay kit (Takara Bio Inc.) and Lactate dehydrogenase (LDH) assays 

(Takara Bio Inc.) on HCEC and D407 cells respectively. Briefly, HCEC and D407 cells 

were cultured in flasks and harvested at 80–90% confluency with TrypLE™ Express 

(Invitrogen, Carlsbad, CA, USA). Cells were transferred to 96-well plates at a density of 

10,000 cells/well and cytotoxicity studies were initiated following manufacturing protocol. 
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NMF solution (blank and FA loaded) were prepared and re-suspended in serum free media 

and filtered with 0.2 µm nylon membrane to obtain sterile formulations. 

Premix WST-1 cell proliferation assay: Experiments were performed following a 

published method 197. To each well 100µL of NMF was added and incubated for 1h at 

physiological conditions. Serum free media and Triton X-100 (10%) served as negative 

and positive controls, respectively. Following incubation, 10 µL of premixed WST-1 was 

added to each well, incubated for 30 mins and absorbance was measured for the formazan 

product at 440 nm. An increase in absorbance of formazan denotes the % viable cells.  

LDH assay: To evaluate cell membrane damage caused by NMF in each well, 

100µL of serum free media and 100µL NMFs were added and incubated for 1 h at 37 ˚C.  

Serum free media and Triton X-100 10% served as negative and positive samples. After 

incubation period, 96 well plate was centrifuged at 250X g for 10 mins and 100 µL of 

supernatant was collected into 96-well flat bottom plate. LDH released from damaged cells 

was measured with LDH assay kit and absorbance of samples was measured at 490 nm. 

The % membrane damage was calculated with equation 6-3 (Eq. 6-3). 

% Cytotoxicity= 
𝑒𝑥𝑝.𝑣𝑎𝑙𝑢𝑒 − 𝑐𝑒𝑙𝑙 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑚𝑒𝑑𝑖𝑢𝑚 𝑣𝑎𝑙𝑢𝑒

𝑇𝑟𝑖𝑡𝑜𝑛 𝑋_100 − 𝑐𝑒𝑙𝑙 𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑚𝑒𝑑𝑖𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 
∗ 100    (Eq. 6-3) 

6.3.15 Statistical Analysis 

All experiments were performed at least in quadruplicate (n=4) and the results were 

expressed as mean ± standard deviation (SD). Student t-test was applied to compare mean 

values. And a p value of ≤0.05 is considered as statistically significant. 
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6.4 Results and Discussion 

6.4.1 HPLC to Quantity the Amount of FA in Solution: 

The amount of FA was determined using HPLC, the mobile phase was composed 

of methanol and water (65:35 %v/v) with the flow rate set at 0.5 ml/min and UV detector 

was set at 235nm. Calibration standard curve (1 to 75 µg/mL) for FA was constructed. As 

Fig. 6-2 showed the linear equation relationship between the amount of FA (ug/ml) and 

area under curve. (Eq. 6-4) 

y = 152216 x – 58049, R2 = 0.9999 (Eq. 6-4) 

The R2 is a statistical measure of how close the data are able to the fitted regression line 

given. It shows a percentage of the response variable variation that is explained by a linear 

model. In this case the standard curve is linear with an excellent R2 (>0.99).  

 

Figure 6- 2: FA HPLC Standard Curve  
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6.4.2 Experiment Design and FA Solubility  

Design of experiment 1 (DOE1): nanomicelle preparation method 1 

In this study, a central composite design with two level of two continuous factor, two center 

points along with axial value for rotatable 1.414 was selected to screen the independent 

factors for dependent variables. The FA solubility was determined using HPLC with the 

above method. All formulations were characterized for size, PDI, surface potential, light 

transmittance and cytotoxicity. The design runs (coded and uncoded) and corresponding 

variables are summarized in Table 6-2. The design had ten runs including 2 center points. 

HCO-40 was continuous factor and ranged from 0.5-2 % while OC-40 continuously ranged 

from 0.1-0.5%.  The response surface design has been utilized with the central composite 

design (CCD) which provides the value not only inside the box but outside of the box. The 

run a0, A0, 0a and 0A were the point outside of the range (< 0.5%, >2%, <0.1% and 

>0.5%). FA solubility ranged from 0.12 to 0.66 mg/mL. Among all the run, the highest 

solubility of FA was 0.66 mg/mL, run no. 8 (coded 0A) where HCO-40 1.25% and OC-40 

0.5828%. The FA solubility improved a lot where the HCO-40 were at medium or high 

level than low level. This appears that the amount of HCO-40 has more effect on FA 

solubility than OC-40. Statistical analysis was applied to analyze the data. And the software 

analyzed and gave the similar results. The fit model is given by Eq. 6-5. 

Y= 0.5025 + 0.1937817 X1 + 0.0175165 X2 + 0.007 X1X2 -0.095125 X1X1 + 

0.017375 X2X2 (Eq. 6-5)  
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Figure 6- 3: Statistical Summary of DOE1: Parameter Estimates, Summary of 

Fit, ANOVA, Effect Summary, Effect Tests  

Statistical parameters for the fit model including Parameter Estimates, ANOVA for 

the fit model, summary of fit, lack of fit, effect tests and effect summary are summarized 

in Fig. 6-3. The fit model was found to be significant based on the p-value (p = 0.0392), 

R2 = 0.90 and adjusted R2= 0.77582. R2 is the correlation coefficient for regression model. 

It shows 90% model can explain the variation in FA solubility. Also, the lack of fit 

suggested that the model was significant and could predict FA solubility. The model was 

validated based on the actual by predicted plot (Fig. 6-4).   According to effect summary 

and parameter estimates, the only statistical significant factor was the amount of HCO-40 

(X1, p= 0.0054). Another estimated coefficient for each factor and interaction between 

factors associated p value are presented in effect test and effect summary (Fig. 6-3). From 

the model, the amount of OC-40 (X2, p=0.64706), HCO-40 and OC-40 interaction (X1X2, 

p=0.89568), HCO-40 and HCO-40 (X1X1, p= 0.11236), OC-40 and OC-40 (X2X2, 
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p=0.72974) were presented. Only the estimated coefficients with p < 0.05 were considered 

to be significant. X2(OC-40), X1X2 (HCO-40 OC-40), X1X1 (HCO-40 HCO-40) and 

X2X2 (OC-40 OC-40) had negative effects on FA solubility while X1 (HCO-40) had a 

positive effect on FA solubility. As mentioned previously, solubility of FA improved with 

higher level of HCO-40.  

 

Figure 6- 4: Actual by Predicted Plot DOE1 FA NMF 
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Figure 6- 5: DOE1 Response Surface Curve of FA Solubility 

 

Figure 6- 6: DOE1 Prediction Profiler FA NMF 
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The response surface curve provides a diagrammatical representation of FA 

solubility as a function of the amount of HCO-40 and OC-40 in the prediction profiler (Fig. 

6-5). The prediction profiler was generated to determine the optimal point with highest 

desirability (Fig. 6-6). It also predicts the combination effects of variables at different 

levels. As anticipated, increase the amount of HCO-40 the FA solubility will increase since 

the amount of HCO-40 had positive effect on the FA solubility. There was no change in 

solubility with various amount of OC-40. Based on the prediction profiler, HCO-40 2% 

and OC-40 0.5% gave the highest FA solubility with the highest desirability. The predicted 

solubility would be 0.643048 mg/mL. This value was very close to the actual value which 

was run no. 4, and it’s lower than the run no. 8 (FA solubility 0.66 mg/mL). This 

discrepancy may be easy explained and understood since the prediction profiler just 

cooperate and predict inside the box, where HCO-40 had two level 0.5- 2% and OC-40 had 

two level 0.1 – 0.5%. And run no.8 (0A) was the augmented pointed with axial rotatable 

1.414. This optimized nanomicelle formulation (HCO-40 2% and OC-40 0.5%) was used 

for the nanomicelle formulation characterizations and performed all the later studies.   
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Design of experiment 2 (DOE2): nanomicelle preparation method 2 

Table 6-3: Design of Experimental (DOE) Coded, Uncoded Runs and 

Solubility of Fluocinolone Acetonide for DOE2 (Micelles Preparation Method 2) 

 

As mentioned above, DOE2 has been modified from DOE1 with the heating film 

at 65 ºC to allow the film melting before rehydration in order to improve the solubility. In 

this study, a central composite design with two level of two continuous factor, two center 

points along with axial value for rotatable 1.414 was selected to screen the independent 

factors for dependent variables. All formulations were characterized for solubility, size, 

PDI, surface potential, light transmittance and cytotoxicity. The design runs (coded and 

uncoded) and corresponding variables are summarized in Table 6-3. 

The design also had ten runs including 2 center points. HCO-40 was a continuous 

factor and ranged from 0.5-2 % while OC-40 continuously ranged from 0.1-0.5%.  The 

Run No. Pattern HCO-40 (%) OC-40 (%) DOE 2 Solubility 

(mg/ml) 

1 -- 0.50 0.10 0.32 

2 -+ 0.50 0.50 0.46 

3 +- 2.0 0.10 0.52 

4 ++ 2.0 0.50 0.46 

5 a0 0.19 0.30 0.22 

6 A0 2.31 0.30 0.52 

7 0a 1.25 0.017 0.44 

8 0A 1.25 0.58 0.64 

9 00 1.25 0.30 0.59 

10 00 1.25 0.30 0.51 
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response surface design has been utilized with the central composite design (CCD) which 

provided the value not only inside the box but outside of the box. The run a0, A0, 0a and 

0A were the point outside of the range (< 0.5%, >2%, <0.1% and >0.5%). FA solubility 

ranged from 0.22 to 0.64 mg/mL. Among all runs, the highest solubility of FA was 0.64 

mg/mL, run no. 8 (coded 0A) where 1.25% HCO-40 is added which is similar with DOE1. 

The FA solubility improved where the HCO-40 was added at medium or high level. 

Apparently, the amount of HCO-40 accelerated more effect on FA solubility than OC-40. 

Statistical analysis was applied to analyze the data. And the software analyzed and gave 

the similar results. The fit model is given by Eq. 6-6. 

Y= 0.55 + 0.078033 X1 + 0.0453553 X2 – 0.05 X1X2 - 0.09375 X1X1 - 0.00875 

X2X2 (Eq.6-6)  

Statistical parameters for the fit model including Parameter Estimates, ANOVA for 

the fit model, summary of fit, lack of fit, effect tests and effect summary are summarized 

in Fig. 6-7. The fit model was found to be significant based on the p-value (p = 0.0480), 

R2 = 0.88905 and adjusted R2= 0.750442. R2 is the correlation coefficient for regression 

model. It shows 88% model can explain the variation in FA solubility. Also, the lack of fit 

suggested that the model was significant and could predict FA solubility. The model was 

validated based on the actual by predicted plot (Fig. 6-8).   According to effect summary 

and parameter estimates, the statistical significant factors were the amount of HCO-40 (X1, 

p= 0.0229) and interaction between HCO-40 and HCO-40 (X1X1, p= 0.0309). Another 

estimated coefficient for each factor and interaction between factors associated p value are 

presented in effect test and effect summary. From the model, the amount of OC-40 (X2, 

p= 0.1049), HCO-40 and OC-40 interaction (X1X2, p= 0.1787), and OC-40 and OC-40 
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(X2X2, p= 0.7758). Only the estimated coefficients with p < 0.05 were considered to be 

significant. X2(OC-40), X1X2 (HCO-40 OC-40), and X2X2 (OC-40 OC-40) had negative 

effect on FA solubility while X1 (HCO-40) and X1X1 (HCO-40 HCO-40) had positive 

effect on FA solubility. As mentioned above, solubility of FA increase at higher level of 

amount of HCO-40. Unlike DOE1, in DOE2 the heat was involved, and which may cause 

the interaction between polymers to change. The heat may have effect on the formation of 

the hydrogen bond between polymers and drugs. Also, the heating up and cooling down 

polymers could affect the recrystallization of polymer. However, this heating did not have 

any effect on FA solubility or the heating did not improve the FA solubility compare with 

DOE1. 

 

Figure 6- 7: Statistical Summary of DOE2 FA NMF 
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The response surface curve provides a diagrammatical representation of FA 

solubility as a function of the amount of HCO-40 and OC-40 in the prediction profiler (Fig. 

6-9 and 6-10). The prediction profiler was generated to determine the optimal point with 

highest desirability. It also predicts the combination effects of variables at different levels. 

As anticipated, with increased amount of HCO-40 FA solubility will increase since the 

amount of HCO-40 had positive effect on the FA solubility, yet there is not much difference 

FA solubility when changing the amount of OC-40. Heating may have an effect on the 

formation of bonds which may explain the difference between DOE1 and DOE2. Based on 

the prediction profiler, HCO-40 1.5% and OC-40 0.5% gave the highest FA solubility with 

highest desirability. Unlike DOE1, the predicted solubility would be 0.585533 mg/mL 

which is lower than DOE1 and the curve was nonlinear. The OC-40 has negative effect on 

solubility. This optimized nanomicelle formulation (HCO-40 1.5% and OC-40 0.5%) was 

carried for the nanomicelle formulation characterization and all the later studies.  

 

Figure 6- 8: DOE2 Actual By Predicted Plot 
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Figure 6- 9: DOE2 Response Surface of FA Solubility 

 

Figure 6- 10: DOE2 Prediction Profiler  
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6.4.3 Micellar Size, Polydispersity Index (PDI) and Surface Potential 

Nanomicellar size, polydispersity index (PDI), Zeta potential and size distribution 

were determined by dynamic light scattering (DLS) method. The results are summarized 

in Tables 6-4 and 6-5. All FA-loaded NMFs were in the size range between 12-20 nm with 

unimodel distribution irrespective of the FA solubility and the DOE1 or DOE2. Heat does 

not have effect on the size of NMFs. The blank NMFs also were prepared with method 1 

and measured the size, PDI and summarized in Table 6-. The blank NMFs are ranged from 

19 -25 nm and PDIs were also small and negligible, ranged from 0.152 to 0.247. Since the 

blank NMFs do not contain the drugs, there were no change of drug and polymers 

interaction. It’s increasing the distance between atoms thereby elevating the size of blank 

NMFs are bigger than FA-loaded NMFs. Fig. 6-11 illustrated the distribution of blank and 

FA- loaded NMF. The significantly small size of NMF may sufficiently allow NMF to 

travel across ocular tissues such as scleral channels/pores, are in the size range between 20 

and 80 nm311. The PDI of all runs bellow 0.5 surface charge is negligible. Such property of 

nanomicelles may help to deliver FA to back of the eyes by the conjunctival/ sclera 

pathway. The surface potential of all blank and FA-loaded NMFs did not have any charge 

on it (Table 6-4 and 6-5) 0.141 for FA NMF DOE1 and -0.124 for FA NMF DOE2 was 

considered no charge or negligible. This charge may not cause any effect when 

nanomicelles across tissue membrane.  
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Figure 6- 11: Size of Blank NMF and FA NMF 
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Table 6-4: Summary of Size, PDI for DOE1 and DOE2 FA-Loaded 

Nanomicelle Formulations  

Run 

No. 

Pattern HCO-

40 (%) 

OC-40 

(%) 

DOE1 

Size (nm) 

DOE1 PDI DOE2 Size 

(nm) 

DOE2 PDI 

1 -- 0.50 0.10 19.07 0.149 19.55 0.135 

2 -+ 0.50 0.50 17.75 0.166 18.12 0.156 

3 +- 2.0 0.10 19.08 0.157 19.46 0.149 

4 ++ 2.0 0.50 18.86 0.168 20.01 0.186 

5 a0 0.19 0.30 18.98 0.153 19.62 0.162 

6 A0 2.31 0.30 19.89 0.159 18.98 0.162 

7 0a 1.25 0.02 16.89 0.142 18.15 0.156 

8 0A 1.25 0.58 17.58 0.137 17.98 0.142 

9 00 1.25 0.30 14.32 0.516 16.56 0.235 

10 00 1.25 0.30 12.43 0.721 17.56 0.142 
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Table 6-5: Summary of Size, PDI for DOE1 Blank Nanomicellar Formulations 

Formulations HCO-40 (%) OC-40 (%) Size (nm) PDI 

Blank F1 2.0 0.50 21.95 0.174 

Blank F2 2.0 0.10 19.70 0.152 

Blank F3 1.25 0.30 21.44 0.188 

Blank F4 1.25 0.30 21.25 0.205 

Blank F5 0.50 0.50 25.19 0.247 

Blank F6 0.50 0.10 24.55 0.222 

 

6.4.4 Optical Clarity/Appearance  

Optical appearance / clarity is defined as the ability of light to be transmitted 90% 

or more through a 1.0-cm path length at 400nm wavelength and compared with water. Due 

to the interference of particles, the light was scattered and give different angles. However, 

particles of extremely small size (i.e. nanometers) will not produce enough hindrance or 

light scattering resulting in a clear and transparent solution. FA NMF is clear as water (Fig. 

6-12) or transparent and more than 97% of light has been transmitted (Table 6-6).  All 

NMFs can be compared with distilled deionized water when measured by transmittance. 

Percentage light transmittance of optimized formulations (blank and FA loaded NMF 

DOE1 and DOE2) at wavelength 400nm ranged from 97 % to 99 %. It was observed that 

there was no particle interfering with light scattering, the FA-loaded NMF appeared as 

clear as water. The nanomicelles helped improve the FA solubility and formed clear, 

aqueous solution. 
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Figure 6-12: Visual Appearance of FA-Loaded NMF on the Right in 

Comparison to Water on the Left
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Table 6-6: Characterizations of Optimal DOE1 and DOE2 FA NMFs 

Formulation 

code 

HCO-

40 

(wt%) 

OCO-

40 

(wt%) 

Size 

(nm) 

PDI Surface 

potential 

(mV) 

T 

(%) 

Osmolality 

(mmol/kg) 

pH Viscosity 

(Cp) 

Solubility 

(mg/ml) 

Blank FA 

NMF DOE 1 

2.0 0.50 19.55 0.131 0.135 98 301 6.8 1.094 - 

FA NMF  

DOE1 

2.0 0.50 18.85 0.126 0.148 97.68 292 6.8 1.111 0.683 

Blank FA 

NMF DOE 2 
1.50 0.50 21.51 0.136 -0.082 98.5 299 6.8 1.052 - 

FA NMF  

DOE 2 
1.50 0.50 19.83 0.112 -0.124 97.69 289 6.8 1.069 

0.596 
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6.4.5 Powder XRD Analysis of Blank Micelle and FA NMF  

FA, polymer HCO-40, OC-40, blank NMF and FA NMF were studied by XRD 

to find the further information about physical state of polymer and when inside micelles. 

Fig. 6-13 presented the results. XRD pattern showed the characteristic peaks of the HCO-

40 widely at two-theta 19 degree and 23 degree while OC-40 showed at same 19 and 23 

degree but higher intensity with smaller peak width. Peak width due to crystallite size, 

the peak gets broader as the crystallite size gets smaller. FA raw powder had 

characteristic peak at near 10, 14, 17 and 24 degree. The characteristic peaks of HCO-

40, OC-40 and FA were disappeared for freeze-dried blank NMF and FA NMF. Because 

the polymers have interacted with each other and self-assemble in water to form 

nanomicelle, there were no more characteristic peaks for individual components. Both 

blank nanomicelle and FA nanomicelle gave the same peaks at 22, 23, 32 and 33 degree 

indicating the drug FA was molecularly dispersed in naomicelles. As the X-rays interact 

with crystalline lattice, a diffraction pattern is formed which reveals spacing between 

planes of atoms. The nanomicelles have the intense to arrange the atoms close together 

and form very stable bond so spacing between planes of atoms are smaller where there 

were no peaks observed with high intensity or broaden width. And such rigid structure 

resists against sheer stress while travel across the scleral pores and will be beneficial for 

formulation during transport through the membrane.  
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Figure 6-13: Power X-Ray Diffraction (XRD) Pattern for Freeze Dried FA 

NMF, Blank NMF, FA Raw, OC-40 Raw and HCO-40 Raw 

6.4.6 Viscosity 

The viscosity of all NMFs is summarized in Table 6-6. The viscosity of all 

formulations was ranged from 1.052 and 1.094 centipoise (Cp) for blank NMFs, 1.069 

and 1.111 Cp for FA NMFs which are very close to water (0.89 Cp).  This clear and 

aqueous formulation almost has water characteristic, which may help reducing the 

irritation for the eyes. NMFs produce viscosity well below critical point of 4.4 cP, such 

that the drainage rate is not affected 313. However, the high viscosity of formulation may 

have effect on its residence time in the cul-de-sac enhancing therapeutic effect. The 
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viscosity of formulation may offer advantages due to longer residence in the cul-de-sac 

which may increase ocular absorption but again eye irritation should be considered 

carefully.  

6.4.7 Dilution Effect 

The dilution effect on NMF was investigated following the size and PDI and is 

summarized in Table 6-7. Since human eyes have many different mechanism and barriers 

to protect and prevent any harm from external particles. Major ocular barriers are static 

(corneal epithelium, corneal stroma, and blood–aqueous barrier) and dynamic barriers 

(blood-retinal barrier, conjunctival blood flow, lymph flow, and tear drainage). Tear 

drainage is one of those barriers that clear out much of topical application. Therefore, the 

effect of dilution on the stability of the NMF was studied. The results shown in Table 6-

7 was found that there is no significant effect on nanomicelle size and PDI with dilution 

up to 400 times. The size of NMF was slightly increased from 18.23 nm to 26.23 nm 

upon 400 dilution times. However, the tear secreted in the eye following topical 

administration may form less than 10 times dilution. FA NMF was very stable at that 

dilution factor, almost approximately the same 18.35 nm. The formulation stability with 

continuous dilution may help the formulation reach the target.   
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Table 6-7: Effect of Dilution on Nanomicelles Size and PDI of Optimal FA 

NMF 

Dilution factor 

(times) 

Average size (nm) PDI 

0 18.23 0.126 

10 18.35 0.107 

20 18.55 0.140 

50 19.03 0.195 

100 19.62 0.220 

200 23.79 0.347 

400 26.23 0.332 

 

6.4.8 Osmolality and pH 

Osmolality is an important attribute for the topical eye drop formulation. The 

hyper-osmolality is a main pathogenic factor in dry eye 314. The osmolality and pH of the 

NMF was adjusted similar to the tear pH ~ 6.8 with phosphate buffer as depicted in Table 

6-6. Osmolality of FA NMF was ranged from 289 to 301 mmol/Kg or mOsm/kg and pH 

was around 6.8. The physiological tear has osmolarity of 289 mOsm/L329 and osmolality 

of 290 mOsm/L which is equivalent to 0.9% saline.  

6.4.9 1H NMR Characterization 

We have already reported that 1H NMR spectral analysis of nanomicelles. The 

free drug molecules in nanomicelle solution was identified by 1H NMR analysis at parts 
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per million (ppm) levels. 1H NMR studies were conducted for FA in CDCl3 to identify 

the corresponded resonance peaks of FA to compare or serve as positive control. 1H NMR 

studies of blank NMF in CDCl3 and FA-loaded NMF were conducted in different solvent 

such as CDCl3 and D2O.  

As similar with our previous chapter, the resonance signals for TA were absent, 

the resonance signals for FA were absent when suspended FA NMF in D2O (Fig. 6-14). 

All FA in solution was entrapped inside nanomicelles and there was no free/unentrapped 

FA in the D2O or water. Since amphiphilic polymers have encapsulated FA inside the 

core which muted the NMR signal during micelle formulation. This explains the absence 

of FA signal in D2O.  

There were obvious resonance peaks of FA for the pure FA in CDCl3 and the 

similar corresponding peak of FA was observed for FA NMF in CDCl3 (data not shown). 

The spectra indicated that FA was presented in organic solvent (CDCl3) where the reverse 

micelles was formed. However, there was no observable peak corresponding to FA 

except polymer peak for blank NMF in CDCl3 (data not shown). FA NMF was dissolved 

in both organic solvent and water, free FA was presented only in organic solvent (CDCl3) 

not in water (D2O). That means no free FA in FA NMF solution and this FA NMF will 

not cause any irritation for the eyes due to free FA particles.   
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Figure 6- 14: Qualitative 1H NMR Studies, 1H NMR Spectrum for FA 

Nanomicelles in D2O 

6.4.10 In vitro Cytotoxicity   

Following the topical administered, the formulations/solutions are rapidly washed 

(within 5 to 10 min) 312. Previous results from our laboratory showed drug molecules in 

nanomicelles reaching back of the eye tissues (retina/choroid) 315 and we target back of 

the eyes disease. Therefore, cytotoxicity studies were conducted on human corneal 

epithelial cells (HCEC cells) and human retinal pigment epithelial cells (D407 cells) and 

ARPE-19 for 1 h incubation period. The experiments have been conducted with all DOE 

blank and FA loaded formulations, optimal FA NMFs.  

D2O solvent - O-( CH2 – CH2) 



 

138 

 

In order to evaluate the cytotoxicity of NMF, MTT assay was performed on 

HCEC. The medium and Triton X-100 10% served as positive and negative controls, the 

% cell viability of all NMFs were compared with negative and positive control (Fig. 6-

15 and 6-16). On all cell lines, HCEC, ARPE 19 and D407, all blank and FA-loaded 

NMFs had more than 80% cell viability as compared to medium, where Triton X-100 

showed less than 10 % viability.  

 

Figure 6- 15: MTT Cytotoxicity of FA-Loaded NMFs on HCEC and D407 

In another study, all blank and FA-loaded NMF were evaluated for cytotoxicity 

by LDH leakage (Fig. 6-17). The amount of LDH released in the culture medium directly 

correlates with membrane damage and cytotoxicity. Triton-X 100 caused significant 

toxicity/ membrane damage and served as positive control. LDH study NMFs were found 
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to be safe without any cytotoxic effects the results are compared with the blank culture 

medium. Results from these assays clearly suggest that NMF do not cause cell death or 

damage to plasma membrane. NMFs are safe, and well-tolerated. These NMF may 

potentially be suitable for further in-vivo and human studies. 

 

Figure 6- 16: MTT Cytotoxicity of Optimal NMFs on HCEC and D407 
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Figure 6- 17: LDH Cytotoxicity of Optimal NMFs on HCEC and D407 

6.4.11 In Vitro Drug Release   

To determine the release kinetics of FA from nanomicelles formulation, the 

optimal FA NMF (HCO-40 2% and OC-40 0.5%) was investigated under sink condition 

in physiological buffer pH of 7.4 at 37°C. The control represented an equal quantity of 

FA (1 mg) in 1 ml of absolute ethanol with a clear solution however FA in water cause a 

FA suspension. FA release from NMF was slower than FA release from ethanolic 

solution and higher than FA suspension. The release kinetic profiles of ethanolic and 

encapsulated FA from the nanomicelles and FA suspension are shown in Fig. 6-18. The 

release study has been performed for more than 72 hours. Within this time almost 100% 

of FA was released. At the beginning, the amount of FA was released very fast and 

enough to have effect.  Different drugs have different logP, surface polar area, the 
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interaction between polymer and drug, the release mechanism from nanomicelle may 

change. Results suggest that, topical administration of FA NMF may release FA at a slow 

rate under physiological conditions. Consequently, this NMF dosing frequency can be 

reduced. However, achieving therapeutic FA concentrations in ocular tissues has not 

examined.   

   

 

Figure 6- 18: Release Study of FA-Loaded NMF 

                                                                                                                                                                                                                                                                                   

6.5 Conclusion 

In summary, a clear, stable, aqueous FA-loaded NMF have successfully been 

optimized, prepared and characterized with size, PDI, surface charge, osmolality, pH, % 

T transparent, release and cytotoxicity. The micelles preparation method was optimized 
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to achieve higher solubility utilizing the DOE and exploratory model. HCO-40 plays the 

most important role in improving FA solubility with significant p-value. HCO-40 and 

HCO-40 interaction also found to be significant in statistical model. The predictive 

profiler was generated to fit highest desirability and achieve the highest FA solubility. 

The optimal FA solubility has agreed with prediction profiler. Optimal FA NMF has 

small size with unimodal distribution, negligible charge, and the osmolality and pH of 

FA NMF were very good for crossing tissue membrane. Moreover, the FA NMF was 

very stable in dilution study. Qualitative 1H NMR showed the absence of free FA in 

micelles solution. Also, the FA NMFs were safe and well-tolerated on cell viability on 

HCEC and ARPE-19. These results indicate that FA NMF was safe and used for further 

in vivo studies.  
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CHAPTER 7 

7 APPLICATION OF MATHEMATICAL ENGINEERING STEEPEST ASCENT 

METHOD TO OPTIMIZE TOPICAL OCULAR NANOMICELLAR 

FORMULATION 

7.1 Rationale 

Triamcinolone (T1) (C21H27FO6) is a synthetic glucocorticoid. T1 acts as a 

corticosteroid hormone receptor agonist with anti-inflammatory and immunomodulating 

properties. Upon cell entry, T1 binds to and activates the glucocorticoid receptor, and 

switch on multiple anti-inflammatory genes 330. The activation of glucocorticoid 

receptors leads to translocation of the ligand-receptor complex to the nucleus. It induces 

expression of glucocorticoid-responsive genes such as annexin-1 (lipocortins), 

interleukin-6, (IL-6), IL-10 and secretory leukoprotease inhibitor (SLPI) 331-333. 

Lipocortins inhibit phospholipase A2, therefore blocking the release of arachidonic acid 

from membrane phospholipids and inhibiting the synthesis of mediators of inflammation 

such as prostaglandins and leukotrienes. In addition, pro-inflammatory cytokine 

production, including interleukin (IL)-1and IL-6, and the activation of cytotoxic T-

lymphocytes and nuclear factor (NF) kappa-B are also inhibited. T-cells are prevented 

from secreting IL-2 and proliferating. This agent also decreases the number of circulating 

lymphocytes, induces cell differentiation, and stimulates apoptosis through Ikappa-B 

expression and curtailing activation of nuclear factor (NF) kappa-B. 

Diabetic macular edema (DME) is a back-of-the-eye chronic disease, a sight 

threatening condition caused by the accumulation of fluid in the center of the macula 

which may lead to vision loss303, 316. DME affects an estimated around 21 million 
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individuals with diabetes worldwide317. The common pathogenesis of DME is the 

breakdown of blood retinal barrier resulting in retina microvascular damage leading to 

leakage, capillary dropout, upregulation of angiogenic growth factors and 

neovascularization304, 323. Sustained hyper-glycemia causes degeneration of the inner 

lining of the blood vessels rendering them porous and leaky. Blood leakage through 

retinal vasculature accumulates in the center of the retina causing swelling and 

developing a condition known as DME 108. Such swelling leads to macular detachment 

and is responsible for the vision loss. Current treatment of DME includes laser 

photocoagulation, surgery, intravitreal injection of anti-vascular endothelial growth 

factor (anti-VEGF), intravitreal injection of VEGF inhibitors (ranibizumab - Lucentis, 

aflibercept – Eylea®, bevacizumab - Avastin®) and steroid implant (dexamethasone – 

Ozurdex®)  141, 303, 323, 324. Corticosteroids have been used not only to reduce the effect of 

VEGF overexpression but also attenuate the inflammation by suspending VEGF-A, 

ICAM-1, IL-6 pathway, decreasing AQP4, reducing paracellular permeability, raising up 

the tight junction integrity325. K Kriechbaum et al has compared the retinal morphology 

and function after intravitreal injection administering of bevacizumab (Avastin®) and 

triamcinolone (Volon A®) in early DME patients334. After one-year result, both 

triamcinolone and bevacizumab equally reduced central retinal subfield thickness and 

bevacizumab improved best corrected visual acuity more than triamcinolone. Delivery 

of drugs at therapeutic concentrations to back of the eye tissues (retina/choroid) is a very 

challenging task. Because of static and dynamic barriers, less than 5% of topical 

administered dose reaches the back of the eye segment 5. Steroids have many limitations 

such as low aqueous solubility, sub-optimal physiochemical properties, and poor ocular 



 

145 

 

membrane permeability. Therefore, glucocorticoids must be administered by implant or 

intravitreal injection. Those invasive modalities are associated with side effects like 

higher intraocular pressure (IOP) leading to glaucoma, moreover continuous exposure to 

the lens may cause cataract305, 326, 327.  

Therefore, there is an urgent need to develop a clear, aqueous topical eye drop 

formulation to deliver T1 in therapeutic levels to back of the eye tissues (macula region). 

Topical administration is the most patient compliant route. In such a scenario, aqueous 

nanomicellar formulation with amphiphilic polymers appear to be a promising approach. 

Hydrophobic-T1 will be encapsulated in the core of nanomicelles. Hydrophilic corona 

covers the outside and aids in the development of clear, aqueous solutions. This novel 

nanomicellar strategy may (i) improve drug solubility

(ii) improve drug uptake and cell permeability, (iii) allow for non-invasive delivery of 

hydrophobic drugs to posterior ocular tissues and (iv) improve patient acceptability and 

compliance due to its noninvasive, nonirritating clear and aqueous system. Nanomicelles 

may primarily follow the non-corneal pathway such as conjunctival-scleral rather than 

uveo-sclera pathway after topical administration to reach the retina 197. 

Design of Experiment (DOE) is a systematic method to determine the 

relationship between factors affecting a process and the output of that process. DOE can 

accentuate the pattern of interaction between independent and dependent factors. This 

method can reduce the number of experiments required for optimization which can save 

time and cost.  

Steepest ascent: is a simple and economical method to estimate the operating 

conditions, which are far from the actual optimum, but based on the initial optimum. It 
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is the procedure for increasing maximum response. Steepest ascent has been applied in 

engineering and pharmaceutical industry since numerous factors involve in 

manufacturing. For pharmaceutical companies saving time and money are crucial and 

they employ DOE and steepest ascent to quickly increase their profit by determining the 

main factor and optimize the ideal manufacturing conditions. Salih Dincer has 

demonstrated how to apply steepest ascent to determine the most suitable combinations 

for enteric film coating of tablets 335.  

In the present study, the amphiphilic polymers approved by FDA namely 

Octoxynol-40 (OC-40) and hydrogenated castor oil 40, 60, 80 and 100 are selected to 

improve the solubility of T1. Both OC-40 and HCO-40 are amphiphilic nature containing 

both hydrophobic and hydrophilic branches. These characteristics allow natural form 

self-assembly of spherical nanomicelles in aqueous solution. Consequently, hydrophobic 

T1 stays into hydrophobic core and hydrophilic corona allows aqueous solubility. Based 

on the preliminary studies (data not shown, similarly to table 6-1, page 105), 

hydrogenated castor oil 40 (HCO-40) provide the best results in solubility. For the reason, 

HCO-40 was selected to continue further for formulation optimization. The objective of 

study is to improve T1 solubility utilizing nanomicellar technology with the help of 

design of experiment (DOE). The amounts of HCO-40 and OC-40 were considered as 

independent factors while T1 solubility was presented the response outcome. The best 

ratio of the combination HCO-40 and OC-40 is determined by JMP 13.0 software. The 

optimized formulation was checked for size, polydispersity index (PDI), % light 

transparency, viscosity, osmolality and pH. Moreover, we have examined in vitro 
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cytotoxicity on both human retinal pigment epithelial cells (D407 cells) and human 

corneal epithelial cells (HCEC). 

7.2 Methods 

7.2.1 Nanomicelle Preparation 

T1 encapsulated nanomicelles were prepared using solvent evaporation film 

hydration methods, see section 5.3.1 for method. 

7.2.2  Solubility Determination using HPLC 

We analyzed and quantified the samples by reversed-phase HPLC (RP-HPLC). 

Also, we applied Shimadzu UV/Vis detector (SPD-20AV), Alcott autosampler (model 

718 AL), Phenomenex C8 column (spherisorb 250x4.60 mm, 5µm), and Shimadzu LC 

pump (Waters Corporation, Milford, MA) for this HPLC analyses. We carried out 

detection and separation of samples utilizing a gradient method developed in HPLC with 

the mobile phase containing methanol (40%-60%) and water. The flow rate and UV 

detector remained at 0.5 ml/min and 252 nm, respectively. We calibrated samples using 

standard curve (1.5 to 200 µg/mL) of T1. 

7.2.3 Design of Experiment (DOE) 

Primarily we have investigated the two crucial factors: the amount or percentage 

of two polymers, HCO-40 and OC-40 and their effects on T1 solubility (Y) in 

nanomicelles.  To understand the factors and interactions between these two factors that 

affect T1 solubilization in nanomicelles, we employed a response surface design with 

full factorial design combining two degrees with continuous factors. We selected the 

student version of JMP® 13.0 software (SAS Institute, USA) to develop the experimental 

design and analyze the data. The study consisted of X1 (HCO-40) and X2 (OC-40), which 
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served as independent variables and solubility (Y) served as a dependent variable. The 

design had eight runs including two times repeat (Table 7-1). HCO-40 assigned as a 

continuous factor ranging from 0.5-2 % while OC-40 continuously varied from 0.1-0.5%.  

We utilized the response surface design with full factorial, which provides the value only 

inside the box. 

Statistical Analysis: JMP 13.0 software student version was selected to perform 

the experimental design and data analysis. We investigated the proportional effect of two 

polymers (HCO-40 and OC-40) on dependent variables (solubility (mg/mL) with 

statistical models. Then we predicted the interactive and polynomial influences 

depending on the outcome the fit model (Eq.6-1) and evaluated their influence on the 

response variable (Y) 

Y = b0 + b1 X1 + b2X2 + b3 X1X2 + b4 X1X1 + b5 X2X2 (Eq. 6-1) 

 Where Y is response outcome, b0 denotes intercept, b1, b2, b3, b4, b5 represent the 

regression coefficients for factors X1, X2, interaction X1 and X2, interaction X1 and X1, 

interaction X2 and X2, respectively. X1 denotes amount of HCO-40 and X2 represents 

amount of OC-40. X1X1 and X1X2, X2X2 are polynomial terms of individual effects 

which represent the polymer 1- polymer 1, polymer 1 -polymer 2 and polymer 2 -polymer 

2 interactions.  

We utilized one-way analysis of variance (ANOVA) to evaluate the results from 

DOE. We determined the important relationship between dependent and independent 

variables using F-test at α = 0.05. The t-test identified significant factors and interactions 

at 95% significance level. We calculated a regression model with the help of R2 and 
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adjusted R2 values. We established validation by checking model assumptions and 

summary of fit. The JMP 13.0 software student version did statistical analysis.   

7.2.4 Steepest Ascent 

As mentioned previous, steepest ascent should be applied to rapidly move the 

initial estimate to optimum region which can maximize the response outcome. All 

calculations were done according to the book “Design and Analysis of Experiments” by 

Douglas C. Montgomery. The fit model followed first model with single response, as 

shown in previous section with following equation: 

Y=𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + ⋯ +   𝛽𝑘𝑋𝑘 + 𝜖 (Eq. 7-1) 

Where Y: response variable, X1, X2,…..Xk: independent factors 

β0, β1, β2, ….., βk: regression coefficients for first-order polynomial 

The path of steepest ascent is defined and continuous increase with the constant 

step size (parallel) from the center point where we assume the X1= X2= …. =Xk =0. We 

called this point as the original or base point. For steepest ascent, the scientists have used 

coded unit and uncoded unit or physic unit (real value) for processing data. The central 

point is considered as 0.000 for coded unit. And the physic unit of central point is the 

central point true value. From this central point, the basic step size (Δ) has been added to 

move along the path of steepest ascent.   

The following procedure shows all steps to calculate in steepest ascent and move 

from small region to optimum region in details: 

Step 1: Select the step size of standard variable ΔXj, Calculate the step size of 

other variables ΔXi: 
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 The step size of standard variable ΔXj was selected subjectively based on how 

fast we want to move from the center to optimum region, calculate the step size of other 

variables ΔXi following the equation 7-2 (Eq. 7-2): 

ΔXi= βi/ (βj/ΔXj) (Eq. 7-2)  

Where i, j =1,2 3, 4….,k;   i≠j: independent factor and j is chosen as a 

standard variable or known factor. 

Step 2: Calculate the Xnc(i) coded variables based on coded standard variable 

Xnc(j)  

Xnc(j) coded variable of independent factor j at n step size. Xnc(j) = origin + n* 

Δ  

Xnc(i) coded variable of independent factor i at n step size, n = 1, 2, 3,….,n 

Xnc(i)  was calculated by equation 7-3 (Eq. 7-3): 

𝑋𝑐(𝑖)
𝑛 =

𝛽𝑖

𝛽j/𝑋𝑐(𝑗)
𝑛    (Eq. 7-3)  

Where βi, βj: regression coefficients of independent factor i, j; i, j =1, 2 3, 4…., 

k; i≠j: independent factor and n: the step size level; n = 1, 2, 3,….,n 

Step 3: Calculate the uncoded Xnp(i) and uncoded Xnp(j) or physical unit 

variables: 

1. Convert coded Xnc(j) to Uncoded Xnp(j) follow equation 7-4 (Eq. 7-4) 

Xnp(j) = X(n-1)p(j) + Xnc(j) (Eq. 7-4) 



 

151 

 

Where Xnp(j): uncoded variable (physical unit) of independent factor j at n step 

size. n = 1, 2, 3,….,n 

   Xnp(i): uncoded variable (physical unit) of independent factor i at n step size, n 

= 1, 2, 3,….,n 

i, j =1,2 3, 4….,k;  i≠j: independent factor  and n: the step size level 

2. Convert uncoded Xnp(i) to Uncoded Xnp(i) follow equation 7-5 (Eq. 7-5) 

𝑋𝑝
𝑛(𝑖) = 𝑋𝑝

(𝑛−1)(𝑖) +
𝑋𝑝𝑖(+1)−𝑋𝑝𝑖(0)

𝑋𝑐𝑖(+1)−𝑋𝑐𝑖(0)
∗ Δ Xi  (Eq. 7-5) 

Where Xnp(i): uncoded variable (physical unit) of independent factor i at n step 

size, n = 1, 2, 3,….,n 

X(n-1)p(i): uncoded variable (physical unit) of independent factor i at (n-1) step 

size 

Xpi(+1): physical value of independent factor i at high level 

Xpi(0) physical value of independent factor i at central level 

Xci(+1) coded value of independent factor i at high level; Xci(+1) = +1 = constant 

Xci(0) coded value of independent factor i at central level; Xci(0) =0 = constant 

ΔXi= βi/ (βj/ΔXj) (Eq. 7-2) 

Step 4: Calculate the predicted response coded and uncoded 

With new coded and uncoded variables, the coded and uncoded predicted 

response are calculated following the first order polynomial  



 

152 

 

Y=𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 + ⋯ +   𝛽𝑘𝑋𝑘 + 𝜖 (Eq. 7-1) 

Where Y: response variable, X1, X2,…..Xk: independent factors 

β0, β1, β2, ….., βk: regression coefficients for first-order polynomial 

7.2.5 Micellar Size, Polydispersity Index and Surface Potential  

See section 5.3.6 for method. 

7.2.6 Viscosity 

See section 5.3.13 for method. 

7.2.7 Dilution Effect  

See section 5.3.9 for method. 

7.2.8 Optical Clarity/ Appearance 

See section 6.3.6 for method. 

7.2.9 Osmolality and pH 

See section 5.3.12 for method. 

7.2.10 1H-NMR Spectroscopy of Blank NMF and T1 NMF 

See section 5.3.15 for method. 

7.2.11 In Vitro Cytotoxicity 

See section 5.3.11 for method. 

7.3 Results & discussion 

7.3.1 HPLC Analysis: 

The amount of T1 was determined using HPLC. The detection and separation was 

carried on gradient HPLC with the mobile phase containing methanol (40%-60%) and 

water. The flow rate set at 0.5 ml/min and UV detector was set at 252 nm. A calibration 



 

153 

 

standard curve (1.5 to 200 µg/mL) for T1 was constructed. As Fig. 7-1 showed the linear 

equation relationship between the amount of T1 (ug/ml) and area under curve. (Eq. 7-6) 

y = 235104 x + 783548, R2 = 0.9992 (Eq. 7-6) 

The R2 is a statistical measure of how close the data are able to the fitted regression line 

given. It shows a percentage of the response variable variation that is explained by a 

linear model. In this case the standard curve is linear with an excellent R2 (>0.99).  

 

Figure 7- 1: HPLC Triamcinolone Standard Curve 

7.3.2 Design of Experiment (DOE1) and T1 Solubility  

In this study, a full factorial with two level of two continuous factor, (22 runs) was 

selected to screen the independent factors for dependent variables. The T1 solubility was 

determined using HPLC with the above method. The design runs (coded and uncoded) 

and corresponding variables are summarized in Table 7-1. The design had eight runs with 

repeated. HCO-40 was continuous factor and ranged from 0.5-2 % while OC-40 

continuously ranged from 0.1-0.5%.   

y = 235104x + 783548
R² = 0.9992
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Table 7-1: Design of Experiment (DOE) 1 Runs Coded, Uncoded Designs 

Run No. Pattern HCO-40 (%) OC-40 (%) 

DOE1 

Solubility 

(mg/ml) 

1 -- 0.50 0.10 0.074 

2 -+ 0.50 0.50 0.089 

3 +- 2.0 0.10 0.089 

4 ++ 2.0 0.50 0.101 

5 -- 0.50 0.10 0.074 

6 -+ 0.50 0.50 0.092 

7 +- 2.0 0.10 0.009 

8 ++ 2.0 0.50 0.109 

 

T1 solubility ranged from 0.0735 to 0.109 mg/mL. Among all runs, the highest solubility 

of T1 was 0.109 mg/mL, run no. 8 and 4 (coded ++) with 2% HCO-40 and 0.5% OC-40.  

T1 solubility was markedly higher at HCO-40 were at high level. Apparently, the amount 

of HCO-40 has more effect on T1 solubility than OC-40. Statistical analysis was applied 

to analyze the data. The software analyzed and gave the similar results. The fit model is 

given by Eq.7-7. 

Y= 0.0896963 + 0.0075988 X1 + 0.0082513 X2 -0.000346 X1X2 (Eq.7-7)  
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Figure 7- 2: Actual by Predicted Plot DOE1 of T1 NMF  

The model was validated based on the actual by predicted plot Fig. 7-2.  Statistical 

parameters for the fit model including Parameter Estimates, ANOVA for the fit model, 

summary of fit, lack of fit, effect tests and effect summary are summarized in Fig. 7-3. 

The fit model was found to be significant based on the p-value (p = 0.0017), R2 = 

0.969865 and adjusted R2= 0.947263. R2 is the correlation coefficient for the regression 

model. It shows 97% model can explain the variation in T1 solubility. Also, the lack of 

fit suggested that the model was significant and could predict T1 solubility. According 

to effect summary and parameter estimates, statistical significant factor was the amount 

of HCO-40 (X1, p= 0.0015) and OC-40 (X2, p= 0.0011). Another estimated coefficient 

for each factor and interaction between factors associated p value are presented in effect 

test and effect summary. From the model, HCO-40 and OC-40 interaction (X1X2, 

p=0.7439). Only the estimated coefficients with p < 0.05 were considered to be 

significant. X1X2 had a negative effect on T1 solubility while X1 (HCO-40) and X2 
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(OC-40) had positive effect on T1 solubility. As mentioned above, solubility of T1 

increase at higher level of amount of HCO-40.  

 

Figure 7- 4: Prediction Profiler of T1 DOE1 

Figure 7- 3: Statistical Summary of DOE1 of T1 NMF Optimization 
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Figure 7- 5: Surface Response of T1 DOE1 

The response surface curve provides a diagrammatical representation of T1 

solubility as a function of the amount of HCO-40 and OC-40 in the prediction profiler 

(Fig. 7-4). The prediction profiler was generated to determine the optimal point with 

highest desirability. It also predicts the combination effects of variables at different 

levels. As anticipated, increase the amount of HCO-40 and OC-40 the T1 solubility will 

increase since the amount of HCO-40 and OC-40 had positive effect on the T1 solubility. 

Based on the prediction profiler, HCO-40 2% and OC-40 0.5% produced the highest T1 

solubility with highest desirability. The predicted solubility is 0.1052 mg/mL. This value 

is very close to the actual value which was run no. 4 and 8. Based on the graph, the T1 

solubility followed the first order response. The surface response can allow us to predict 

higher solubility with various amounts of polymers (Fig 7-5). This solubility may rise 

higher since the curve is very linear. This is the reason for the steepest ascent to be 

utilized. Steepest ascent is recommended for moving sequentially in the direction of 
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maximum escalation in the response or T1 solubility (Fig. 7-6). The DOE2 is another 

experimental design after applying steepest ascent.  

 

Figure 7- 6: Path of Steepest Ascent  

7.3.3 Steepest Ascent Steps and T1 Solubility 

As mentioned above, steepest ascent was used to maximize the T1 solubility in 

nanomicelles (Fig. 7-6). Based on DOE1, both HCO-40 and OC-40 have effect on T1 

solubility and the fit model followed first model with single response, as shown in 

previous section with following equation: 

Y=𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2 (Eq. 7-1 modified in this case, only 2 factors) 

Where Y: response variable T1 solubility, X1, X2: independent factors 

β0, β1, β2: regression coefficients for first-order polynomial 

For steepest ascent, scientists have used coded unit and uncoded unit or physic 

unit (real value) for processing data. The central point was considered as 0.000 for coded 

unit. From this central point, the basic step size (Δ) has been added to move along the 
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path of steepest ascent. This step the coded variables and uncoded variables have been 

calculated based on the step size of increase (Δ). 

Table 7- 2: Coded and Uncoded Levels of Factors X1 And X2 

Level Low Central Point High 

Coded -1 0 +1 

X1 (HCO-40) 0.50% 1.25% 2.0% 

X2 (OC-40) 0.10% 0.30% 0.50% 

 

Table 7-2 showed levels of factors X1 and X2 or polymers HCO-40 and OC-40 

at low high and central point.  

The central point with coded unit of X1 and X2 is 0 or 0.000 while the uncoded 

central point of X1 is 1.25% and X2 is 0.3%. In this calculation, X1 was chosen as 

standard variable and other variable X2 calculated according to X1. Based on the linear 

equation (Eq. 7-7), if rising X1 and X2, Y will increase.  

The following calculations showed how the data in Table 3 were calculated. 

Hence, we used the black bond region where 1 step increases, and 2 step increases as the 

example.  

Step 1: Choose the step size of standard variable ΔX1, Calculate the step size of 

other variables ΔX2. 

In this experiment, the first-order model of solubility was presented as uncoded:  

Y= 0.0896963 + 0.0075988 X1 + 0.0082513 X2 (Eq. 7-7 modified) 
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The step size of X1: ΔX1 = 0.100 (objective chosen since we want to increase or 

maximize Y) 

Apply Eq. 7-2, ΔX2 =
𝛽2

𝛽1/ΔX1
   where β1 =0.0075988, β2 =0.0082513 

The step size of X2: ΔX2 =
0.0082513

0.0075988/0.1
  = 0.1086 

Step 2: Calculate the Xnc(2) coded variables based on coded standard variable 

Xnc(1)  

For example, β1 =0.0075988, β2 =0.0082513  

For 1 Δ step increase n=1, Coded X1c(1)= origin + Δ= 0.000 + 0.100 = 0.1 for 

independent factor X1, apply Eq. 7-3 to calculate coded X1c(2) =
0.0082513

0.0075988/0.1
  =0.1086 

independent factor X2 

For 2 Δ step increase n=2, Coded X2c(1)= origin + 2Δ= 0.000 + 2x 0.100 = 0.2 

for independent factor X1, apply Eq. 7-3 to calculate coded X2c(2) =
0.0082513

0.0075988/0.2
 =0.2172 

independent factor X2 

Step 3: Calculate the uncoded Xnp(1) and uncoded Xnp(2) or physic unit 

variables: 

1. Convert coded Xnc(1) to uncoded Xnp(1) follow Eq. 7-4 

Apply Eq. 7-4 to calculate Xp1, physical unit or uncoded variables 

For 1 Δ step increase, physical value or uncoded variables X1p(1) = X0p(1) + 

X1c(1) = 1.25% + 0.100 = 1.35 (%) 
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For 2 Δ step increase, that mean 1 Δ step increase from the previous (X1p1) , 

physical value or uncoded variables X2p(1) = X1p(1) + X2c(1)  = 1.35% + 0.200 = 1.55 

(%) 

2. Convert uncoded Xnp(1) to uncoded Xnp(2) follow Eq. 7-5 

𝑋𝑝
𝑛(𝑖) = 𝑋𝑝

(𝑛−1)(𝑖) +
𝑋𝑝𝑖(+1)−𝑋𝑝𝑖(0)

𝑋𝑐𝑖(+1)−𝑋𝑐𝑖(0)
∗ Δ Xi  (Eq. 7-5) 

Where Xpi(+1) = 0.5%; Xpi(0) = 0.3%; Xci(+1) = +1; Xci(0) = 0  

Therefore, Eq. 7-5 could be re-written as: 

𝑋𝑝
𝑛(𝑖) = 𝑋𝑝

(𝑛−1)(𝑖) +
0.5−0.3

+1−0
∗ Δ Xi  (Eq. 7-5 modified) 

ΔXi= βi/ (βj/ΔXj) (Eq. 7-2)  

For 1 Δ step increase, apply Eq. 7-5 modified where ΔXi = 0.1086, Physical value 

of X1p(2) = 0.3 + 0.2x 0.1086 = 0.32172 (%) 

For 2 Δ step increase, apply Eq. 7-5 modifed ΔXi = 0.2172, physical value of 

X2p(2) = 0.32172 + 0.2x0.2172 = 0.3652 (%) 

Step 4: Calculate the coded and uncoded predicted response  

In this experiment, the first-order model of solubility was presented  

Y= 0.0896963 + 0.0075988 X1 + 0.0082513 X2 (Eq. 7-7- modified) 

For example 

For 1 Δ step increase, X1c(1) = 0.1000, X1c(2) = 0.1086; predicted response 

coded: Y = 0.0896963 + 0.0075988 (0.1000) + 0.0082513 (0.1086) = 0.09152163 
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For 2 Δ step increase, X2c(1) = 0.2000, X2c(2) = 0.2172; predicted response 

coded: Y = 0.0896963 + 0.0075988 (0.2000) + 0.0082513 (0.2172) = 0.093008026 

Similar with uncoded predicted response 

For 2 Δ step increase, X2p(1) = 1.5500, X2p(2) = 0.3652; predicted response uncoded: Y 

= 0.0896963 + 0.0075988 (1.5500) + 0.0082513 (0.3652) = 0.10448742  
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Table 7- 3: Steepest Ascent Calculations for Coded, Uncoded Variables and 

Predicted Response Value  

  

Coded level 

variables (Xnc) 

UnCoded Variables in 

units (Xnp) Predicted response (Solubility) (Y) 

Steps 

X1 

(Xnc(1)) 

X2 

(Xnc(2)) 

X1 (%) 

(Xnp(1)) 

X2 (%) 

(Xnp(2)) 

Coded 

(Ync) 

Uncoded 

(Ynp) 

Origin 0.0000 0.0000 1.2500 0.3000 0.0896963 0.10167019 

Δ 0.1000 0.1086 0.1000       

Origin +1Δ 

n =1 

X1c(1)= 

0.1000 

X1c(2)= 

0.1086 

X1p(1) = 

1.3500 

X1p(2) = 

0.3217 0.091352163 0.102609267 

Origin +2Δ 

n =2 

X2c(1) = 

0.2000 

X2c(2) = 

0.2172 

X2p(1) = 

1.5500 

X2p(2) = 

0.3652 0.093008026 0.10448742 

Origin +3Δ 0.3000 0.3258 1.8500 0.4303 0.094663889 0.10730465 

Origin +4Δ 0.4000 0.4343 2.2500 0.5172 0.096319752 0.111060956 

Origin +5Δ 0.5000 0.5429 2.7500 0.6258 0.097975615 0.115756339 

Origin +6Δ 0.6000 0.6515 3.3500 0.7561 0.099631478 0.121390798 

Origin +7Δ 0.7000 0.7601 4.0500 0.9081 0.101287341 0.127964334 

Origin +8Δ 0.8000 0.8687 4.8500 1.0818 0.102943204 0.135476947 

Origin +9Δ 0.9000 0.9773 5.7500 1.2773 0.104599066 0.143928636 

Origin +10Δ 1.0000 1.0859 6.7500 1.4945 0.106254929 0.153319402 

Origin +11Δ 1.1000 1.1945 7.8500 1.7333 0.107910792 0.163649245 

Origin +12Δ 1.2000 1.3030 9.0500 1.9940 0.109566655 0.174918164 

Origin +13Δ 1.3000 1.4116 10.3500 2.2763 0.111222518 0.18712616 

Origin +14Δ 1.4000 1.5202 11.7500 2.5803 0.112878381 0.200273232 

Origin +15Δ 1.5000 1.6288 13.2500 2.9061 0.114534244 0.214359381 
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Origin +16Δ 1.6000 1.7374 14.8500 3.2536 0.116190107 0.229384606 

Origin +17Δ 1.7000 1.8460 16.5500 3.6228 0.11784597 0.245348908 

Origin +18Δ 1.8000 1.9546 18.3500 4.0137 0.119501833 0.262252287 

Origin +19Δ 1.9000 2.0632 20.2500 4.4263 0.121157696 0.280094742 

Origin +20Δ 2.0000 2.1717 22.2500 4.8606 0.122813559 0.298876274 

Origin +21Δ 2.1000 2.2803 24.3500 5.3167 0.124469422 0.318596882 

Origin +22Δ 2.2000 2.3889 26.5500 5.7945 0.126125285 0.339256567 

Origin +23Δ 2.3000 2.4975 28.8500 6.2940 0.127781148 0.360855328 

Origin +24Δ 2.4000 2.6061 31.2500 6.8152 0.129437011 0.383393166 

Origin +25Δ 2.5000 2.7147 33.7500 7.3581 0.131092874 0.406870081 

 

From DOE1, the fit model equation first order is  

Y= 0.0896963 + 0.0075988 X1 + 0.0082513 X2 (Eq. 7-7 modified) 

The steepest ascent has been calculated in the Table 7-3 where the solubility has 

been increased when the amount of HCO-40 and OC-40 increase. However, the amount 

of polymer may be limited due to potential cytotoxicity, side effects as well as the 

economic consideration. The amount of HCO-40 and OC-40 in the range 3% to 6% gave 

better than expected results. Even further increasing polymer, the solubility increased but 

slowly. DOE2 has been designed with HCO-40 3% - 6% while OC-40 ranged from 0.7%-

1.5%. In this study, a central composite design with two level of two continuous factor, 

two center points along with axial value for rotatable 1.414 was selected to screen the 

independent factors for dependent variables.  
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7.3.4 Design of Experiment (DOE2) and T1 Solubility 

DOE2 was modified from DOE1 to maximize the solubility of T1 after applying steepest 

ascent. Fig. 7-7 showed HCO-40 ranged from 3% - 6% ad OC-40 ranged from 0.7% - 

1.5%. Response surface design CCD has been utilized with 5 center point and Table 7-4 

presented all the runs.   

Figure 7- 7: DOE2 JMP 
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Table 7-4: DOE2 Runs and Solubility 

Run No. Pattern HCO-40 (%) OC-40 (%) 

DOE2 Solubility 

(mg/ml) 

1 −− 3.0 0.70 0.52 

2 −+ 3.0 1.50 0.42 

3 +− 6.0 0.70 0.40 

4 ++ 6.0 1.50 0.38 

5 a0 2.37 1.10 0.39 

6 A0 6.62 1.10 0.43 

7 0a 4.50 0.53 0.39 

8 0A 4.50 1.67 0.41 

9 0 4.50 1.10 0.39 

10 0 4.50 1.10 0.32 

11 0 4.50 1.10 0.36 

12 0 4.50 1.10 0.39 

13 0 4.50 1.10 0.37 

 

The design runs (coded and uncoded) and corresponding variables are 

summarized in Table 7-4. The design also had thirteen runs including 5 center points. 

HCO-40 was continuous factor and ranged from 3-6% while OC-40 continuously ranged 

from 0.7-1.5%.  The response surface design has been utilized with the central composite 

design (CCD) which provide the value not only inside the box but outside of the box. 

The run a0, A0, 0a and 0A were the point outside of the range (< 3%, >6%, <0.7% and 
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>1.5%). T1 solubility ranged from 0.32 to 0.52 mg/mL. Among all the runs, the highest 

solubility of T1was 0.52 mg/mL, run no. 1 (coded --) where HCO-40 is at 3.0% and OC-

40 0.70%. T1 solubility improved when the HCO-40 was at medium or low levels 

compared to high level. Apparently, the amount of HCO-40 has more effect on T1 

solubility than OC-40. Statistical analysis was applied to  data. And the software analyzed 

and gave the similar results. The fit model is given by Eq. 7-8. 

Y= 0.366 – 0.011972 X1 - 0.010684 X2 + 0.023 X1X2 - 0.0290625 X1X1 + 

0.0228125 X2X2 (Eq. 7-8)  

 

Figure 7- 8: Actual By Predicted Plot for DOE2 T1 NMF 
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Figure 7- 9: Statistical Parameter of DOE2 T1 NMF  

The model was validated based on the actual by predicted plot (Fig. 7-8).  

Statistical parameters for the fit model including Parameter Estimates, ANOVA for the 

fit model, summary of fit, lack of fit, effect tests and effect summary are summarized in 

Fig. 7-9. The fit model was found not to be significant based on the p-value (p = 0.3450), 

R2 = 0.491376 and adjusted R2= 0.128073. R2 is the correlation coefficient for regression 

model. The model can explain 49% of the variation in T1 solubility. Also, the lack of fit 

suggested that the model was significant and could predict T1 solubility.  According to 

effect summary and parameter Estimates, the statistical factors had negative effect on T1 

solubility the amount of HCO-40 (X1, p= 0.4587) and interaction between HCO-40 

HCO-40 (X1X1, p= 0.1192), the amount of OC-40 (X2, p= 0.5067), HCO-40 and OC-
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40 interaction (X1X2, p= 0.3222), and OC-40 and OC-40 (X2X2, p= 0.2062). Only the 

estimated coefficients with p < 0.05 were considered to be significant. X2(OC-40).  

The response surface curve provides a representation of T1 solubility as a 

function of the amount of HCO-40 and OC-40 in the prediction profiler (Fig. 7-10 and 

7-11). The prediction profiler was generated to determine the optimal point with highest 

desirability. It also predicts the combination effects of variables at different levels. Even 

the model does not have very powerful to predict the solubility (p=0.345, R2 =0.491376), 

the predicted solubility (0.462307 mg/mL) was very close to the actual one (0.522 

mg/mL). This optimized nanomicelle formulation (HCO-40 3% and OC-40 0.7%) was 

carried for the nanomicelle formulation characterizations and for all the later studies.  

 

Figure 7-10: Prediction Profiler of DOE2 T1 NMF 
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Figure 7- 11: Surface Response T1 DOE2 

7.3.5 Micellar Size, Polydispersity Index (PDI) and Surface Potential 

Nanomicellar size, polydispersity index (PDI), Zeta potential and size distribution 

were determined by dynamic light scattering (DLS) method. The results are summarized 

in Tables 7-5. All T1-loaded NMFs were in the size range around 18 nm with unimodel 

distribution irrespective of the T1 solubility and the DOE1 or DOE2. The blank NMFs 

also were prepared with method 1 and measured the size, PDI and summarized in Table 

7-5. Fig. 7-12 and 7-13 illustrated the distribution of T1- loaded NMFs. The small size  

may sufficiently allow NMF to travel across ocular tissues such as scleral channels/pores, 

are in the size range between 20 and 80 nm311. The PDI of all runs bellow 0.5 surface 

charge was negligible. Such properties of nanomicelles may help to deliver T1 to back 

of the eyes by the conjunctival/ sclera pathway. The surface potential of all blank and 

T1-loaded NMFs did not have any charge on it (Table 7-5) 0.212 for blank NMF DOE2 

and 0.126 for T1 NMF DOE2 was considered no charge or negligible. This charge will 

not cause any effect when nanomicelles across tissue membrane.  
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Figure 7-12: Size distribution of T1 NMF1 to T1 NMF8 

Figure 7-13: Size Distribution of Optimized T1 NMF  
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Table 7-5: Characterizations of Optimized T1 NMF 

Formulation 

code 

HCO-40 

(wt%) 

OCO-40 

(wt%) 

Size 

(nm) 
PDI 

Surface 

potential 

(mV) 

T  

(%) 

Blank T1 NMF 

DOE 2 

3.0 0.70 18.72 0.109 0.212 98.5 

T1 NMF DOE 2 3.0 0.70 18.35 0.126 0.139 98.0 

 

7.3.6 Optical Clarity/Appearance  

Optical appearance / clarity is defined as the ability of light to be transmitted 90% 

or more through a 1.0-cm path length at 400nm wavelength and compared with water. 

Due to the interference of particles, the light was scattered and give different angles. 

However, particles of extremely small size i.e. nanometers will not produce enough 

hindrance or light scattering results in a clear and transparent solution. T1 NMF is clear 

as water (Fig. 7-14) or transparent and more than 97% of light has been transmitted 

(Table 7-5).  All NMFs can be compared with distilled deionized water measured by 

transmittance. Percentage light transmittance of optimized formulations (blank and T1 

loaded NMF DOE1 and DOE2) at wavelength 400nm ranged from 97 % to 99 %. It was 

observed that there was no particle interfering with light scattering, the T1 NMF looks 

as clear as water. The nanomicelles helped improve the T1 solubility and formed clear, 

aqueous solution 
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Figure 7-14: Clarity of T1 NMF Compared with Water 

7.3.7 Viscosity 

The viscosity of optimized NMFs has been summarized in Table 7-6. The 

viscosity of formulations was 1.13 centipoise (Cp) for blank NMFs, and 1.25 Cp for T1 

NMFs which are very close to water (0.89 Cp).  This clear, aqueous formulation 

completely water like, which may help reduce the ocular irritation. NMFs produce 

viscosity well below critical point of 4.4 cP, such that the drainage rate is not affected 

313. However, high viscosity of formulation can have effect on its residence time in the 

cul-de-sac enhancing therapeutic effect. The viscosity of formulation may offer 

advantages due to longer residence in the cul-de-sac which may increase ocular 

absorption but again eye irritation should be considered carefully.  
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Table 7-6: Viscosity of Blank NMF Vs T1 NMF 

Formulation code HCO-40 (wt%) OCO-40 (wt%) Viscosity 

(cP) 

Blank T1 NMF DOE 2 3.0 0.70 1.13 

T1 NMF DOE 2 3.0 0.70 1.25 

 

7.3.8 Dilution Effect 

The dilution effect on NMF was investigated following the size and PDI and was 

summarized in Table 7-7. Since human eyes have many different mechanism and barriers 

to protect and prevent any harm from external particles from body. Major ocular barriers 

are static (corneal epithelium, corneal stroma, and blood–aqueous barrier) and dynamic 

barriers (blood-retinal barrier, conjunctival blood flow, lymph flow, and tear drainage). 

Tear drainage is one of those barriers that clear out much of topical application. 

Therefore, the stability of the NMF was studied upon the effect of dilution. The results 

shown in Table 7-7 was found that there is no significant effect on nanomicelle size and 

PDI with dilution up to 400 times. The size of NMF was slightly increased from 18.35 

nm to 35.53 nm upon 400 dilution times. However, the tear secreted in the eye following 

topical administered should be less than 10 times dilution and FA NMF was very stable 

at that dilution factor, very close 19.62 nm. The formulation stability with dilution will 

help the formulation across the membrane as it is.  
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Table 7-7: Dilution Effect of Optimized T1 NMF  

Dilution factor Average size (nm) PDI 

0 18.35 0.119 

10 19.62 0.154 

20 26.51 0.218 

50 31.21 0.223 

100 31.33 0.254 

200 32.03 0.207 

400 35.53 0.322 

 

7.3.9 Osmolality and pH 

Osmolality is an important attribute for the topical eye drop formulation. The 

hyper-osmolality is a main pathogenic factor in dry eye 314. The osmolality and pH of the 

NMF was adjusted similar to the tear pH ~ 6.8 with phosphate buffer as depicted in Table 

7-8. Osmolality of T1 NMF was 385 mmol/L or mOsm/kg and pH was around 6.8. The 

physiological tear osmolality of 289 mOsm/L and osmolality of 290 mOsm is equivalent 

to 0.9% saline.  
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Table 7-8: Osmolality ond pH of Blank and T1 Optimized NMF 

Formulation 

code 

HCO-40 

(wt%) 

OCO-40 

(wt%) 

Osmolality 

(mmol/Kg) 

pH 

Blank T1 NMF 

DOE2 

3.0 0.70 335 6.8 

T1 NMF DOE2 3.0 0.70 385 6.8 

 

7.3.10 1H NMR Characterization 

As we have presented in many of our paper about the 1H NMR spectral analysis 

of nanomicelle. The free drug molecules in nanomicelle solution was identified by 1H 

NMR analysis at parts per million (ppm) levels. 1H NMR studies were conducted for T1 

in CDCl3 to identify the corresponded resonance peaks of T1 to compare or serve as 

positive control. 1H NMR studies of blank NMF in CDCl3 and T1-loaded NMF in 

different solvent such as CDCl3 and D2O.  

Similar with our previous papers, the resonance signals for T1 were absent when 

suspended T1 NMF in D2O (Fig. 7-15). All T1 in solution was entrapped inside 

nanomicelles and there was no free/unentrapped T1 in the D2O or water. Since 

amphiphilic polymers have encapsulated T1 inside the core which muted the NMR signal 

during micelle formulation. This explains the absence of T1 signal in D2O.  

There were obvious resonance peaks of T1 for the pure T1 in CDCl3 and the 

similar corresponding peak of T1 was observed for T1 NMF in CDCl3 (data not shown). 

The spectra indicated that T1 was presented in organic solvent (CDCl3) where the reverse 

micelles was formed. However, there was no observable peak corresponding to T1 except 
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polymer peak for blank NMF in CDCl3 (data not shown). T1 NMF was dissolved in both 

organic solvent and water, free T1 was presented only in organic solvent (CDCl3) not in 

water (D2O). That means no free T1 in T1 NMF solution and this T1 NMF will not cause 

any irritation for the eyes due to free T1 particles.   

 

7.3.11 In vitro Cytotoxicity   

Following the topical administered, the formulations/solutions are rapidly washed 

(within 5 to 10 min) 312. Previous results from our laboratory showed drug molecules in 

nanomicelles reaching back of the eye tissues (retina/choroid) 315 and we target back of 

the eyes disease. Therefore, cytotoxicity on human retinal pigment epithelial cells 

(ARPE-19) was performed for 1 h incubation period. The cytotoxicity of optimized 

Figure 7-15: Proton NMR of T1 Optimized NMF in D2O 

D2O solvent - O-( CH2 – CH2) 
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DOE1 blank and T1 loaded formulations were compared with medium and Triton-X 

10%.  

 

Figure 7- 16: MTT Cytotoxicity of Blank and T1 Optimized NMF on ARPE-

19 

MTT assay was conducted on ARPE-19 to check the cytotoxicity of NMFs. The 

medium was positive control while Triton X-100 10% was negative controls, the 

percentage of cell viability of all NMFs were recorded and plotted in Fig. 7-16. On ARPE 

19 cell line, less than 10 % cell viability was observed with Triton X-100 while more 

than 90% cell viability was shown for both blank and T1-loaded NMFs relative to 

medium (100%). 

In alternative study, both T1-loaded and blank NMFs were estimated for LDH 

cytotoxicity (Fig. 7-17). The amount of LDH released in the culture medium is directly 

proportional to the membrane damage and toxicity. Again, Triton-X 100 was served as 

positive control and medium as negative control. In this study NMFs were found to be 

0

20

40

60

80

100

120

Medium Blank T1 NMF DOE 2 T1 NMF DOE 2 Triton x 10%

%
 C

el
l 

V
ia

b
il

it
y

*



 

179 

 

safe and doesn’t showed any signs of cytotoxicity as compared to blank. These results 

clearly suggest that NMF do not cause cell death or harm to plasma membrane, the 

formulations are safe enough and well-tolerated for further in-vivo studies. On basis of 

above results and observations, these formulations are not toxic and safe for topical 

ocular application. 

 

Figure 7- 17: LDH Cytotoxicity of Blank and T1 NMF on ARPE-19 

7.4 Conclusion 

In summary, we successfully incorporated T1 solubility and improved with 

nanomicellar technology. We prepared a clear, stable, aqueous T1-loaded NMF with the 

best combination ratio of HCO-40 and OC-40 using design of experiment software JMP. 

Both HCO-40 and OC-40 have significant effect on T1 solubility and steepest ascent has 

improved a noticeable solubility of T1. We optimized the highest solubility with T1-

loaded NMF where the combination ratio of HCO-40 and OC-40 is 3% and 0.7% 

respectively.  We further characterized this T1-loaded NMF for size, PDI, zeta potential, 

viscosity, osmolality, pH, clarity, % light transparent and cytotoxicity. The optimized T1 
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loaded NMF is clear like water. It has small nanoparticle size (18nm) with uniform 

distribution, negligible charge, which is very good for crossing tissue membrane. The 

osmolality, pH, and viscosity of T1 loaded NMF appear appropriate for topical purpose. 

Moreover, the T1 loaded NMF is very stable in dilution test and there is no free T1 drug 

in micelles solution presented in 1H NMR.  Moreover, the in vitro cytotoxicity of T1 

NMFs showed more than 80% of cell viability, which indicates that T1 NMF is safe 

enough for further in vivo studies. 

. 
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CHAPTER 8 

8 SUMMARY AND RECOMMENDATIONS 

8.1 Summary 

Topical formulation administration is non-invasive and the most patient 

compliance route. However, delivery of therapeutic level of drugs following topical 

administration is very challenging due to structure of the eye, ocular static and dynamic 

barriers. Less than 5% of topical administered dose is absorbed, and 95% is washed out 

through the eye tissues.   

Nanomicelles is one of the carriers which have been studied to enhance the 

solubility of drugs and target drug delivery due to their advantages over conventional 

formulations. Nanomicelles has been developed for posterior as well as anterior ocular 

delivery. It is an excellent vehicle for hydrophobic drugs and has significantly overcome 

the ocular barriers to deliver the drugs to the back-of- the eye. Nanomicelles has small 

size which helps to pass through the slera pore as well as follow trans-sclera pathway. 

Our laboratory has shown that nanomicelle formulation is an effective carrier system for 

hydrophobic drugs such as Cys-A, dexamethasone to intraocular tissues. These 

formulations followed trans-scleral pathway more than trans-corneal pathway due to 

their small size. 

Glucocorticoids including fluocinolone acetonide, triamcinolone acetonide have 

been used widely to treat ocular disease including DME. Because glucocorticoids are 

hydrophobic and have poor water solubility, they are administered locally by intravitreal 

injection or implants. There are many side effects associated with those routes. Therefore, 

there is an urgent need to develop a clear formulation for topical administration. 
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Nanomicelle is an ideal system to improve aqueous solubility of FA, TA and T1 by 

dissolving it in the hydrophobic micelle core. This is a very simple method and can be 

scaled up at industrial level.  

In order to achieve this goal, we utilized the statistical design of experiment to 

optimize the formulation. An exploratory model was employed to identify factors or 

interactions influencing drug solubilization in nanomicelles.  

In chapter 5, the objective of this chapter was to develop a clear aqueous mixed 

nanomicellar formulation (NMF) of triamcinolone acetonide (TA) with a combination of 

nonionic surfactant hydrogenated castor oil 60 (HCO-60) and octoxynol-40 (Oc-40). In 

order to delineate the effects of drug-polymer interactions on entrapment efficiency (EE), 

loading efficiency (LE) and critical micellar concentration (CMC), a design of 

experiment (DOE) was performed to optimize the formulation. In this study, full factorial 

design has been used with HCO-60 and OC-40 as independent variables. All 

formulations were prepared following solvent evaporation and film rehydration method, 

characterized with size, polydispersity, shape, morphology, EE, LE and CMC. A specific 

blend of HCO-60 and Oc-40 at a particular wt% ratio (5:1.5) produced highest drug EE, 

LE, and smallest CMC (0.0216 wt %). Solubility of TA in NMF improved twenty times 

relative to normal aqueous solubility. Qualitative 1H NMR studies confirmed the absence 

of free drug in the outer aqueous NMF medium. Moreover, TA loaded NMF appeared to 

be highly stable and well tolerated on human corneal epithelial cells (HCEC) and human 

retinal pigment epithelial cells (D407 cells). Overall, this study suggests that TA in NMF 

is safe and potentially could be used for human topical ocular drop application. 
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In chapter 6, the objective of this chapter was to develop a clear aqueous 

nanomicellar formulation (NMF) of fluocinolone acetonide (FA) with a combination of 

nonionic surfactant hydrogenated castor oil 40 (HCO-40) and octoxynol-40 (OC-40). To 

delineate the effects of polymer-polymer interactions on solubility (mg/ml) a design of 

experiment (DOE) was performed to optimize the formulation. In this study, central 

composite design was employed with two continuous factors, the amount of polymers 

HCO-40 and OC-40 as independent variables and resultant solubility is response 

outcome. All formulations were prepared following solvent evaporation and film 

rehydration method and characterized for size, polydispersity (PDI), zeta potential, 

percentage light transmittance (%T), osmolality, pH and cytotoxicity. DOE1 devoid of 

heating but DOE2 the film was heated at 65 ºC for 10-15 mins to allow the film melt 

before rehydration. Different ratios of HCO-40 and Oc-40 by two DOEs produced 

highest solubility. Solubility of FA in NMF improved fifteen and fourteen times, 

respectively for DOE1 and DOE2 relative to normal aqueous solubility. Qualitative 1H 

NMR studies confirmed the absence of free drug in the outer aqueous NMF medium. 

Moreover, FA loaded NMF appeared very stable with dilution factors up to 400 times 

and well tolerated on human corneal epithelial cells (HCEC) and human retinal pigment 

epithelial cells (D407 cells). Overall this study suggests that FA in NMF is safe and 

potentially could be used for human topical ocular drop application. 

In chapter 7, the objective of this chapter is to enhance Triamcinolone (T1) 

solubility by applying nanomicellar technology and design of experiment (DOE). We 

have prepared T1-nanomicellar formulation (NMF) with a mixture of nonionic surfactant 

hydrogenated castor oil 40 (HCO-40) and Octoxynol-40 (OC-40). We have established 
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the experimental strategies utilizing full factorial design and central composite base on 

interaction between polymers HCO-40 and OC-40 on drug solubility (mg/ml). In this 

paper, two continuous factors HCO-40 and OC-40 serve as independent variables while 

the dependent response is solubility. We have developed this nanomicellar formulation 

(NMFs) by solvent evaporation and film rehydration method. So we exploited DOE1 full 

factorial design to establish positive effect of both HCO-40 and OC-40 improving 

T1solubility, R square 0.97, (p-value 0.0015 for HCO-40 and 0.0011 for OC-40) and 

followed first order response. In addition, we applied steepest ascent to optimize outside 

the feasible region and to maximize the solubility with first order response. Steepest 

ascent is a numerical method for approaching local maxima of differentiable functions. 

It is a simple but convergent method for system of nonlinear equations. Steepest ascent 

allows moving the optimal region to the higher solubility. Applying steepest ascent, we 

designed the DOE2 to optimize different ratios of HCO-40 and OC-40 resulting in higher 

solubility. T1-solubility in NMF improved almost four times from DOE1 to DOE2. The 

optimal T1-NMF has small size, negligible polydispersity (PDI) and zeta potential. It 

allows more than 95% light transmitted. The osmolality, pH of T1-NMF are suitable for 

eye drop formulation with no cytotoxicity on human retinal ARPE-19 cells. Qualitative 

1H NMR studies show no free drug T1 in nanomicellar solution. T1-NMF appears well 

established with dilution factors up to 400 times. These results establish the T1 loaded 

NMF a nontoxic and potentially could be used for human topical ocular drop application. 

All the hydrophobic drugs are successfully encapsulated inside the nanomicelle 

and the solubility of drugs has been enhanced. All the NMFs are clear, no free drug 

articles present in the solution. Also, all NMFs are safe and well tolerated on human 
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corneal and retinal cell lines. Moreover, the small size of NMFs will help them penetrate 

through the tissue and release the drug.   

8.2 Recommendations 

The above studies were aimed at improving solubility and developing aqueous 

formulation of drug molecules and safely delivery to ocular tissues without any side 

effects. A few recommendations can be made to move further with this work based on 

the results obtained from the above studies.  

First, as we can see that different drugs including triamcinolone acetonide, 

triamcinolone, fluocinolone acetonide, the ratio of polymers was different. Those drugs 

have different chemical structure and will have different interactions with polymers. 

Therefore, the ratio of polymers in different formulations are different. Different chain 

length of polyethylene may cause different pocket to encapsulate the hydrophobic drugs 

inside. Those different formulations may need further studies to investigate to know the 

hydrogen bond formation.  

Second, investigations for FA, TA and T1 NMF in vivo ocular tolerability and 

pharmacokinetic studies with single and multiple drop administration of NMF should be 

undertaken. Such studies allow identification of the best possible dose to treat ocular 

diseases such as dry eye syndrome, uveitis and ocular neovascularization.  

Third, these drug molecules may be conjugated with targeting moieties and 

loaded into NMF. Such carriers may deliver the cargo non-invasively to back-of- the-eye 

tissues. Moreover, targeted drugs (constructs) may help to improve drug permeability 

and overcome efflux transporters. Peptide transporter and folate receptor are expressed 

on the choroidal side of RPE. Conjugation of peptide and/or folate molecule to drug and 
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simultaneous loading into NMF should be undertaken in order to come up with the best 

possible formulation.  
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