EVALUATION OF PILOT AND QUADCOPTER PERFORMANCE FROM OPEN LOOP MISSION ORIENTED FLIGHT TESTING

A Thesis
IN
Mechanical Engineering

Presented to the Faculty of the University of Missouri–Kansas City in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

by
MUHAMMAD JUNAYED HASAN ZAHED

B. S., Bangladesh University of Science and Technology, Dhaka, Bangladesh, 2014

Kansas City, Missouri
2018
EVALUATION OF PILOT AND QUADCOPTER PERFORMANCE FROM OPEN LOOP MISSION ORIENTED FLIGHT TESTING

Muhammad Junayed Hasan Zahed, Candidate for the Master of Science Degree
University of Missouri–Kansas City, 2018

ABSTRACT

Ease of control, portability and efficiency in versatile applications have made Unmanned Aerial Vehicle (UAV) very popular. Considering various usefulness, safe operation of UAV is important and to ensure safe operation, proper synergy between pilot and UAV is mandatory. For this reason, individual evaluation of both pilot and UAV performance is vital so that pilot can accomplish a task with the assigned system without any accident. In this study, a new evaluation technique of pilot and UAV performance is presented based on flight test results of a mission task of following a desired path. Seven pilots are categorized into two groups based on their experience level and a quadcopter is categorized into three groups based on level of autonomy associated with it. Path error is calculated in time domain to distinguish between pilot levels and level of autonomy of UAV. Path error metrics show that novice pilots make more error than experienced pilots...
and error increases from more autonomous to less autonomous UAV. For frequency do-
main analysis, transfer function modeling is done including human operator in the open
loop so that full scenario of the flight, from pilot to UAV can be analyzed. Frequency
domain analysis helps to identify system complexity, stability and fastness based on level
of autonomy as well as pilot performance based on experience level. Apart from time
and frequency domain analysis, Cooper-Harper rating scale is used by the pilots to rate
the UAV based on ease of control. Along with time and frequency domain variables,
Cooper-Harper rating is included as predictors in the modeling of evaluation of pilot and
quadcopter performance. The parameter estimation of regression model shows the change
in model outcome for both pilot and UAV level with the variation of predictor values. In
the end, a verification test case is included where an eighth pilot flies the same quadcopter
to complete the same task and variables derived from the flight data of this single flight
test are placed in the binary logistic regression model equation to predict pilot experience
level and multinomial logistic regression model equation to predict UAV autonomy level.
The established model can predict pilot experience level and UAV autonomy level cor-
rectly that matches with the real case. The evaluation technique developed in this thesis
shows a path to evaluate pilot and quadcopter performance individually, that can be used
to train pilots to accomplish a specific task with the assigned UAV system.
The faculty listed below, appointed by the Dean of the School of Computing and Engineering, have examined a thesis titled “Evaluation of Pilot and Quadcopter Performance from Open Loop Mission Oriented Flight Testing,” presented by Muhammad Junayed Hasan Zahed, candidate for the Master of Science degree, and hereby certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Travis Fields, Ph.D., P.E. Committee Chair
Department of Civil & Mechanical Engineering

Gregory W. King, Ph.D., P.E.
Department of Civil & Mechanical Engineering

Sarvenaz Sobhansarbandi, Ph.D.
Department of Civil & Mechanical Engineering
CONTENTS

ABSTRACT ................................................................. iii
List of Figures ........................................................... viii
List of Tables ............................................................ x
ACKNOWLEDGEMENTS .................................................. xii

Chapter

1 INTRODUCTION ....................................................... 1

1.1 Significance of evaluating pilot & unmanned aircraft performance ... 1
1.2 Evaluation of pilot & quadcopter performance ......................... 2
1.3 Goals and Objectives ............................................... 5

2 LITERATURE REVIEW .............................................. 6

2.1 Open & Closed Loop System ...................................... 6
2.2 Human Operator Modeling ....................................... 7
2.3 Transfer Function Modeling ..................................... 9
2.4 Error Metrics ...................................................... 10
2.5 Stability Margin Criteria ........................................ 11
2.6 Cooper-Harper Rating Scale .................................... 14
2.7 Logistic Regression Modeling .................................... 15

3 METHODOLOGY ..................................................... 18

3.1 Test Arena & Path Planning ...................................... 18
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>13</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>49</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

List of Figures
15 Fourth order transfer function fitting for Level 3 autonomy . . . . . . . . 50
16 Bode plot of Level 1 autonomy mode . . . . . . . . . . . . . . . . . . 51
17 Bode plot of Level 2 autonomy mode . . . . . . . . . . . . . . . . . . 52
18 Bode plot of Level 3 autonomy mode . . . . . . . . . . . . . . . . . . 53
List of Tables

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pilot self rating &amp; experience level</td>
<td>21</td>
</tr>
<tr>
<td>2 Specifications of flight controller</td>
<td>24</td>
</tr>
<tr>
<td>3 Abbreviated Cooper-Harper rating scale for UAV tasks</td>
<td>32</td>
</tr>
<tr>
<td>4 Mean value of path error (ft) for each pilot’s flight test in each autonomy level</td>
<td>45</td>
</tr>
<tr>
<td>5 Standard Deviation of path error (ft) for each pilot’s flight test in each autonomy level</td>
<td>46</td>
</tr>
<tr>
<td>6 RMS value of path error (ft) for each pilot’s flight test in each autonomy level</td>
<td>47</td>
</tr>
<tr>
<td>7 Gain Margin(dB) and Phase Margin (degree) for each pilot’s flight test in each autonomy level</td>
<td>55</td>
</tr>
<tr>
<td>8 Pilot given C-H rating of UAV in different flight modes</td>
<td>56</td>
</tr>
<tr>
<td>9 P value of independent sample t-test for pilot experience level</td>
<td>57</td>
</tr>
<tr>
<td>10 Parameter estimation for pilot level modeling</td>
<td>58</td>
</tr>
<tr>
<td>11 P value of ANOVA test for flight autonomy level</td>
<td>59</td>
</tr>
<tr>
<td>12 Post hoc test for flight autonomy level</td>
<td>60</td>
</tr>
<tr>
<td>13 Parameter estimation for flight autonomy level modeling</td>
<td>62</td>
</tr>
<tr>
<td>14 Model predictors’ values of verification flight test</td>
<td>63</td>
</tr>
</tbody>
</table>
15 Parameters and independent variable values for pilot experience level prediction ............................................. 63
16 Parameters and independent variable values for UAV autonomy level prediction ............................................. 64
ACKNOWLEDGEMENTS

Funding was provided by UMKC Strategic Funding Initiatives. I would like to thank my academic advisor Dr. Travis Fields for his continuous support and ideas during the research work. Thank you to all the members of Parachute and Aerial Vehicle Systems Lab and Drone Research and Teaching Lab at UMKC including Mohammed Alabsi, Ignacio Hernandez, Shawn Harrington, Jeff Renzalmann, Chris Tiemann, Joshua A. Harp, this would not have been possible without your help.
CHAPTER 1

INTRODUCTION

1.1 Significance of evaluating pilot & unmanned aircraft performance

The utilization of unmanned aerial vehicle (UAV) is increasing exponentially. Ease of control, variation in size, low cost, maneuverability, effectiveness of accomplishing tasks that are difficult or impossible for human beings to fulfill, making unmanned aircraft systems more popular day by day. Though use of UAV was originated mostly in military applications [2], their use is rapidly expanding to commercial [3], recreational [4], agricultural [5] and many more applications. In the field of surveillance [6], product deliveries [7], aerial photography [8], 3D mapping [9], drone racing [4], bridge inspection [10], UAV performance making it lucrative to the users. But performance of the unmanned aircraft system not only depends on the system, but also on the pilot. There is a need for proper synergy between the driver (pilot) and the vehicle (UAV). Lacking of proper synergy between the unmanned aircraft and the pilot can result in loss of control of vehicle during flights and cause moderate to dangerous accidents. To avoid accidents and ensure safety, the capability of pilot and UAV needs to be evaluated based on the specific task to fulfill.

Research on workload models based on specific tasks to evaluate predicted pilot performance included mission completion, target search and systems monitoring [11].
But, performance of unmanned aircraft system was not evaluated to find out if pilot’s performance improves or degrades based on the level of autonomy of aircraft. If a model can be developed, that predicts pilot and UAV performance based on the flight test results, it would be an easy and effective way to quantify pilot and aircraft performance individually. The purpose of this research work is to develop an evaluation technique to quantify individual performance of pilot and UAV, for training pilots to accomplish a specific task with the assigned UAV system. Pilots are categorized based on their experience levels and unmanned aerial vehicles are categorized based on the level of autonomy associated with the system. All the pilots cannot fly all the UAV systems. Identification of the individual pilot experience level and level of autonomy of aircraft is crucial, to find out if a pilot can fulfill the specific task requirement with the assigned system.

1.2 Evaluation of pilot & quadcopter performance

For flight testing experiments, seven pilots have participated to complete a task by flying a common unmanned aircraft system. The task is to follow a desired path. Seven pilots are divided into two groups, experienced and novice. Three levels of autonomy are associated with the unmanned aircraft system and labeled as Level 1, 2 and 3 autonomy flight mode. Level 1 for the highest level of autonomy and Level 3 for the lowest level of autonomy. The differences in pilot experience levels and quadcopter control levels can be observed from the flight test results. The goal is to evaluate and quantify pilot and quadcopter performance individually based on these flight test results.

To analyze the flight test results, time and frequency domain analysis techniques
are applied. While following the desired path, pilots have made errors. The path error values are estimated with respect to time and mean value of path error (ME) [12], standard deviation of path error (SD) [13] and root mean square value of path error (RMSE) [14], these three path error metrics are calculated. ME represents the average error made by the pilots. SD is calculated to show how much path error is dispersed from its mean value and RMSE is calculated to quantify the larger errors during the flight test. As three error metrics have three different estimation techniques to quantify the error, all three metrics are useful for time domain analysis.

The path error metrics are time domain values used for the analysis. But, only time domain analysis does not always represent the whole scenario of input-output relationship of the system. Frequency response of the system is also significant. In case of unmanned aerial vehicle transfer function modeling in frequency domain has become very popular. Research works have been performed extensively for transfer function modeling in frequency domain for unmanned aircraft [15, 16]. Most of these research considered SISO (Single Input Single Output) transfer function modeling. Some of the UAV research considered MIMO (Multi Input Multi Output) transfer function [16, 17]. Though not exactly the same inputs and outputs, the same concept of MIMO transfer function is used while conducting further analysis. For the MIMO transfer function modeling, longitude (Xd) and latitude (Yd) data of desired path is considered as input and longitude (Xa) and latitude (Ya) data of actual path is considered as output.

From the transfer function modeling, variables such as transfer function order, reliable frequency [18], coherence function [18] and stability margin criteria [19] are
analyzed to distinguish between different levels of pilot and level of autonomy associated with the unmanned aircraft system in frequency domain. Transfer function order, reliable frequency and coherence function, these three variables are used to distinguish between different levels of autonomy associated with the aircraft. Stability margin criteria is used to differentiate between experienced and novice pilots.

Apart from variables using time and frequency domain analysis, abbreviated version of modified Cooper-Harper rating scale [20] is used by the pilots to rate the aircraft that governs the ease and precision with which the pilot can accomplish a task. This rating represents the opinion of pilots about the quadcopter’s performance in different levels of autonomy. The rating scale is included as a predictor in modeling the pilot experience level and quadcopters’ autonomy level.

For the modeling purpose, dependency of the variables is tested using independent sample t test [21] and one way ANOVA test [21]. Independent sample t test is done for pilot experience level with outcome of two categories and ANOVA test is done for level of autonomy of UAV with outcome of three categories. The variables which show significant relation with pilot experience level from the independent sample t test are considered in the binary logistic regression [22] modeling to predict pilot level and the variables which show significant relation with UAV autonomy level from ANOVA test are considered in the multinomial logistic regression [22] modeling to predict level of autonomy of UAV [23]. Both the modeling techniques have similar concept. Multinomial logistic regression is an extension of binary logistic regression for more than two categories. Both of these techniques help to identify how the increase or decrease of predictor values
changes the outcome of the model. To verify the model, in the end a test case is included where an eighth pilot is assigned to do the same task with the same quadcopter. Variables that are used to establish the models are analyzed from the test case results and used as predictors in the model equations to predict the outcome of pilot being experienced or novice and UAV autonomy level being 1 or 2 or 3. Verification of the model using test case results, strengthens the established model to evaluate pilot experience level and UAV autonomy level.

1.3 Goals and Objectives

1.3.1 Goals

Evaluation technique of pilot and UAV individual performance for training pilots to accomplish a specific task with the assigned UAV system.

1.3.2 Objectives

- Setting up a mission task that the pilots need to accomplish.

- Outdoor flight testing to fulfill the task with different levels of pilots and different levels of autonomy associated quadcopter.

- Establishing a model to predict pilot and UAV level based on flight testing results.

- Conducting a test case to verify the established model.
CHAPTER 2

LITERATURE REVIEW

2.1 Open & Closed Loop System

The control loop of any system can either be open or closed based on the feedback from output to input for correction. In open loop system, the output has no influence on the control action of the input signal. The output signal or condition is neither measured nor fed back for comparison with the input signal [24]. On the other hand, in a closed loop system the output is monitored and fed back into the system for comparison with the input signal and correction [24].

Figure 1 shows the diagrams of open and closed loop control systems.

![Figure 1: Control System (a) Open loop (b) Closed loop](image)

Though closed loop control system is more accurate and are less affected by noise than open loop control system, it is difficult to design a closed loop system because of complexity in design. It is also costlier and less stable than open loop system. For simplicity, easier to construct and stability, open loop control system of UAV is designed for this study.
Open loop system identification and open loop transfer function modeling for unmanned aerial vehicles is a common strategy. Versatile applications of UAVs include open loop concept. A nonlinear open loop tracking control system was developed by which the size of the ultimate bound of the tracking errors can be reduced arbitrarily by open loop control system parameters [25]. Previously, communication among multiple UAV systems according to a fixed information graph was developed using open loop strategy [26]. Each UAV tries to minimize its terminal formation errors and terminal velocity differences to other UAVs according to the graph while at the same time minimizing its control efforts [26]. Open loop solution was presented for cooperative remote sensing for real-time water management and irrigation control using small UAVs where the sensing range is about $2.5 \times 2.5$ miles [27].

Considering the various usefulness of open loop system, in this study open loop transfer function modeling is done in frequency domain to identify frequency response of the system, analyze the frequency domain variables such as transfer function order, stability margin criteria, coherence function to understand system behavior in different levels of flight autonomy as well as distinguish between flight performance of different levels of pilots.

### 2.2 Human Operator Modeling

Any kind of device or vehicle that is operated and controlled by a human, usually includes controller and system in its control loop. Human operator keeps missing. Though it is difficult to model human operator because of its complexity, considering its
significance, research were done before to model human operator. A method was developed for modeling the human operator from actual input-output data utilizing time series analysis [28]. The technique first identified the form of the model and then estimated the parameters of the identified model based on actual data. The model helps to compensatory tracking data and has the potential for model building of any data that is corrupted with noise. Time series analysis was also applied to model human operator dynamics in pursuit and compensatory tracking modes by a second order dynamic system that shows human operator is not a generator of periodic characteristics [29]. Factors related to human operator are very important in system identifications for manned aerial vehicles, unmanned aerial vehicles, military aircrafts and so on [28]. Human operator model was developed for UAV search scheduling to include human-in-the-loop for scheduling, replanning task for a simulated UAV mission [30]. Comparisons were made between the expected performance difference between the scheduling system and a greedy scheduling strategy representative of operator planning, showing the potential for improvement of the proposed strategy [30]. This design maximizes the operator’s accumulated reward of the search tasks in a time-pressed environment [30]. Individual task specific workload dependent human behaviour patterns were observed and from the patterns task situations, operator performance and human error during task processing were derived that shows the development of a knowledge based cognitive, cooperative assistance system for multi-UAV guidance [31]. Pilot modeling was also performed to develop predictive models to determine operator capacity for controlling multiple UAVs [32]. Effects of increasing number of UAVs and/or system autonomy can be seen on system performance as well as operator
performance that helps to predict operator capacity [32].

As pilots have significant role while flying the unmanned aircraft to deal with the complexity and unpredictability of real-world scenarios and human operators’ presence is also crucial for taking the responsibility of critical decisions in high risk situations, in this study, human operator is introduced as a pilot transfer function and included with controller and UAV transfer function to generate the combined pilot (P), controller (C) and UAV (U) open loop transfer function.

### 2.3 Transfer Function Modeling

The transfer function of a system is the relationship of the system’s output to its input, represented in the complex Laplace domain [24]. Time and frequency domain analysis are done widely in transfer function modeling. In case of unmanned aerial vehicles, transfer function modeling in frequency domain has become popular as system complexity, stability and control derivatives can be efficiently derived from frequency response of the system [33]. Time domain flight data collection and analysis is also important as frequency domain system identification relies on the conversion of time domain fight data into the frequency domain [33]. Transfer function modeling in frequency domain has been applied for UAVs of different scales such as multi rotor UAV [34], fixed-wing UAV [33], helicopter [35, 36, 37, 38]. Transfer function modeling was performed for frequency response identification of the unmanned aircraft system [33]. A dynamic model was derived from transfer function modeling (in both frequency and time domain) for
both hover and cruise flight conditions and the accuracy of the developed model was verified by the comparison between predicted and actual responses from the model and the flight experiments [35]. Transfer function modeling for hovering and guidance control for autonomous small-scale unmanned helicopter was utilized to reduce the overshoot of the system [39]. For unmanned aircraft systems, transfer function modeling in frequency domain was helpful to model both angular positions [37] and rates [38].

Transfer function modeling serves different purposes for different types of unmanned aerial systems. In this thesis, transfer function modeling is performed for multi-rotor quadcopter in frequency domain to identify frequency response of the system in different autonomous level flights and differentiate between pilot levels and quadcopter autonomy levels analyzing the frequency domain parameters derived from frequency response data and transfer function generation.

2.4 Error Metrics

For time domain analysis, error metrics are widely used variables to quantify the quality of data and evaluate established model. Mean value of error (ME), standard deviation of error (SD) and root mean square value of error (RMSE) are regularly employed in model evaluation studies. ME is calculated by averaging all the error values. SD represents how much error is dispersed from its mean value. RMSE gives high weight to the larger errors. Research was done to identify which error metrics are needed to be calculated to evaluate model performance. In a study, it was described that RMSE is not a good indicator of average model performance and might be a misleading indicator of
average error, and thus ME would be a better metric for that purpose [12]. Later it was shown that the avoidance of RMSE in favor of ME is not the solution [40]. In fact, the RMSE is more appropriate to represent model performance than the ME when the error distribution is expected to be Gaussian [40]. However, RMSE is superior over the ME cannot be contended. Instead, a combination of metrics, including but certainly not limited to RMSEs and MEs, are often required to assess model performance. Another error metric that is used frequently to evaluate errors is standard deviation (SD). The main exception of standard deviation is when the measurement error depends on the size of the measurement, usually with measurements becoming more variable as the magnitude of the measurement increases [13].

Considering usefulness of all the error metrics, to quantify pilot and UAV performance in time domain, mean value of path error, standard deviation of path error and root mean square value of path error is calculated. ME gives an estimation of average performance of both pilot and quadcopter. SD is calculated to identify the probability of making errors by different pilots in different flight autonomy modes while following the path. RMSE is estimated to quantify pilot and quadcopter performance based on larger errors made by pilots during flight testing.

2.5 Stability Margin Criteria

Stability of a system in open loop is quantified by two margin values, gain and phase margin. The phase margin measures how much phase variation is needed at the gain crossover frequency to lose stability. Similarly, the gain margin measures what relative
gain variation is needed at the phase crossover frequency to lose stability [24]. The gain crossover frequency is the frequency where the amplitude ratio of input and output of a system is 1, or when magnitude is equal to 0 dB. The phase crossover frequency is the frequency where phase shift between input and output of a system is equal to -180 degrees. Together, these two numbers give an estimate of the safety margin for open-loop stability [24]. Gain and phase margin can be interpreted from Figure 2.

![Bode Plot](image)

**Figure 2: Interpretation of gain and phase margin from bode plot**

From Figure 2, the gain is 0 dB at 0.25 rad/s. Gain crossover frequency is 0.25 rad/s and at this frequency phase margin is -51.3 deg. The phase difference between input and output is -180 deg at 0.217 rad/s and at this frequency gain margin is -84.7 dB. Gain value of 0 dB and phase value of -180 deg are avoided to ensure stability of a system. For this reason, the gain and phase margin values at the crossover frequencies denotes stability of the system. Higher margin values indicates more stability of a system in open
loop. The smaller the stability margins, the more fragile the system is [41].

Research on stability margin analysis is done for safety purposes. A method was proposed to obtain complete information about the effects of adjustable parameters on gain and phase margins to a pitch rate control system [42]. This control system was applied for a re-entry vehicle and comparisons with results of previous work are made successfully [42]. The change in gain and phase margins for dynamic compensation control of a rotary wing UAV using positive position feedback was analyzed to design the feedback controller [43]. The controller takes advantage of the two level hierarchical control schemes without penalizing the phase response and mitigates the presence of flybar [43]. An autopilot design of tilt-rotor UAV using particle swarm optimization method considered stability margin criteria to evaluate the control system for stability and the designed control guarantees the satisfaction of the control system requirement ensuring a sufficient stability margin of the control system in both helicopter and airplane mode [44]. For dynamic modeling and stabilization techniques for tri-rotor UAV, stability margins were used to check stability of the system and the altitude and attitude channels show infinity gain margin representing stable behavior of the system [45].

To analyze the stability of UAV in open loop, stability margin is a widely used criteria. In this study, stability gain and phase margin criteria on the frequency domain transfer function model is analyzed for each pilot’s flight test in each autonomy level. Gain and phase margin values differ with respect to different levels of pilots as well as different levels of flight autonomy. The stability margin value is considered as a predictor in the regression modeling to predict both pilot and UAV levels.
2.6 Cooper-Harper Rating Scale

In 1969, George E. Cooper and Robert P. Harper Jr. established a rating scale for pilots to give rating to the aircraft for handling quality specifications to identify how efficient the aircraft is to accomplish a task [46]. New definition of handling qualities was proposed which emphasizes the importance of factors that influence the selection of a rating other than stability and control characteristics. The experimental use of pilot rating is discussed in detail, with special attention devoted to clarifying the difference between mission and task, identifying what the rating applies to and considering the pilot’s assessment criteria [46].

Later M. Christopher Cotting modified the C-H (Cooper-Harper) scale to use for performance evaluation of unmanned aerial vehicle. This modified scale not only evaluates the unmanned aerial vehicle in flight but also takes into account sensor package and successfully evaluates the integrated system’s mission effectiveness [1]. Figure 3 shows the modified Cooper-Harper rating scale for unmanned aircraft.

Modified C-H scale was also used for performance evaluation in UAV displays. The Modified Cooper Harper for Unmanned Vehicles Displays (MCH-UVD), modifies the commonly used Cooper-Harper manned aircraft assessment tool by shifting emphasis away from evaluating the physical control of an aircraft, to evaluating how well the displays support basic operator information processing [47]. It helps to identify what level of information processing and decision support the interface provides to UAV operators - activities critical to the success of most UAV missions [47]. Modified Cooper-Harper rating scale was abbreviated and used for handling quality specifications and rate mission
effectiveness for Vertical Take-Off and Landing (VTOL) UAV [20].

As Cooper-Harper rating scale reflects pilots’ opinion about the UAV system performance, this rating is a useful tool to identify how the performance of the same quadcopter system varies with respect to different levels of pilots. After completing the path following task, each pilot is introduced to the abbreviated modified C-H scale for UAV and pilots’ given rating in a scale of 1-10 is used as a predictor in the modeling to quantify pilot and quadcopter performance individually.

2.7 Logistic Regression Modeling

When the dependent variable consists of two categories that are not ordinal (no natural ordering), the ordinary least square estimator cannot be used. Instead, a maximum likelihood estimator like binary logistic regression (BLR) technique is used. Multinomial logistic regression (MLR) is an extension of binary logistic regression (BLR). MLR is used when dependent variable consists of more than two categories. Logistic regression has versatile applications such as research in the application of nursing [23], bioinformatics [48], drones [49] and so on.

Binary logistic regression was used to create models to predict factors of failure in operating UAV with two possible outcomes, operator failure and mechanical failure in the U.S. Air Force and the outcome was operator failure caused more than half of the mishaps [50]. In case of unmanned aerial vehicle, for multilabeling UAV imagery, typically characterized by a high level of information content, multinomial logistic regression technique was used [51]. Experiments conducted on two different UAV image data sets
demonstrate the promising capability of the proposed method done by multinomial logistic regression modeling [51]. In a study multinomial logistic regression modeling was used to explain opposition to US drone strikes in Pakistan [52]. The model tests hypotheses related to respondents attitudes toward the US drone attack where support coded 1, opposition coded -1 and do not know or no response coded 0 [52]. This study helps to understand the shape of attitudes in Pakistan toward American drone strikes.

In this study, regression model outcome, pilot level has two categories and UAV autonomy level has three categories. For this reason, to predict pilot level, BLR and to predict UAV autonomy level, MLR is used and time and frequency domain variables and C-H rating scale is used as predictors in the modeling. The regression equations and modeling steps are described in the methodology section.
Figure 3: Modified Cooper-Harper Rating Scale for Unmanned Aircraft [1]
CHAPTER 3

METHODODOLOGY

This chapter discusses the experiments conducted and flight data analysis techniques used for evaluating pilot and quadcopter performance based on a mission task of following a desired path. The modeling technique that is developed to quantify pilot and quadcopter performance helps to classify pilot experience level and level of autonomy of unmanned aircraft into specific categories by analyzing the flight test results. At the beginning, the selection process of pilots with different experience levels and unmanned aircraft with different autonomy levels is discussed. Then an overview of the unmanned system configuration and path planning technique across the test arena is included. Next, transfer function modeling, time and frequency domain analysis and Cooper-Harper rating scale are explained elaborately to quantify pilot and quadcopter performance. In the end, flight variable dependency test, modeling of pilot experience level and quadcopter autonomy levels and a test case to verify the established model are discussed.

3.1 Test Arena & Path Planning

The schematic diagram of the desired path is shown in Figure 4. The mission task is to fly the unmanned aircraft through the gates and follow the desired path according to the arrow marks shown. The first marker is set as a starting point where the pilot takes off and lands the quadcopter. The second marker is set at the farthest point of the path where
the pilot makes the turn to complete the path. The desired path is generated by walking through a pre-specified path, holding the quadcopter that has a GPS antenna mounted on it. The GPS antenna gives longitude (degree) and latitude (degree) data, that are used to quantify the desired path. Longitude (degree) and latitude (degree) data is converted to X axis and Y axis displacement (ft) and used as coordinates to show distance along the path and calculate path errors.

![Schematic diagram of desired path](image)

Figure 4: Schematic diagram of desired path

The flight testing is conducted at an outdoor area (Figure 5) of University of Missouri-Kansas City (UMKC). Four steel rods are used to make two gates (Figure 6) and two steel rods are used as two markers in the flight path (Figure 7). Two gates are set up on two sides of the tracking path.
3.2 Selection Process of pilot & unmanned aircraft

The purpose of this study is to evaluate and quantify pilot and quadcopter performance individually. The first step to fulfill the purpose is to select pilots of different experience levels and an unmanned aircraft system with different levels of autonomy. Seven pilots participated in the flight testing. The pilots self rate themselves on a scale of 1 to 10, 1 as the most experienced pilot and 10 as the least experienced or novice pilot. Half of the scale rating (1-5) is considered for experienced pilots and other half (6-10) is considered for novice pilots so that the pilots can be divided into two groups easily based

Figure 5: Flight test arena
Figure 6: Steel rod gates through which the quadcopter is flown by pilots to follow the desired path on the rating scale. According to the self rating, three pilots are placed in the experienced category and other four are placed in the novice category. Self rating of pilots are used to divide them into two groups. Table 1 shows self rating of pilots and their corresponding category based on experience levels.

Table 1: Pilot self rating & experience level

<table>
<thead>
<tr>
<th>Pilot Self Rating</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot 1</td>
<td>1</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>2</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>2</td>
</tr>
<tr>
<td>Pilot 4</td>
<td>7</td>
</tr>
<tr>
<td>Pilot 5</td>
<td>7</td>
</tr>
<tr>
<td>Pilot 6</td>
<td>8</td>
</tr>
<tr>
<td>Pilot 7</td>
<td>8</td>
</tr>
</tbody>
</table>

The level of autonomy of the unmanned aircraft denotes how autonomous the unmanned system is and the ease of control a pilot has when the quadcopter is flown. For the tested quadcopter, Level 1 autonomy is the linear position tracking mode or GPS mode. In this autonomy level, the unmanned aircraft receives GPS data (x,y,z) to hold
the linear position. Level 2 autonomy is the angular position tracking mode or stability mode. Angular position is the angle (or tilt) of the quadcopter, relative to the inertial axis [53]. In Level 2 autonomy mode, the pilot controls the roll, pitch and yaw angle [54]. Level 3 autonomy is the angular rate tracking mode or manual mode. In this flight mode pilot controls the roll, pitch and yaw rate of the quadcopter [55]. Level of autonomy of quadcopter is varied by changing the position of a three way switch of the controller. It is assumed that, Level 1 has highest level of autonomy and Level 3 has lowest level of autonomy.

It is intuitive that novice pilots make more error than experienced pilots and pilots make less error in more autonomous flight mode. The flight test results are useful to verify self rating of pilots as well as which flight mode is more autonomous. From the differences and analysis of flight test results a regression model is established to evaluate and quantify pilot and quadcopter performance individually.
3.3 System Configuration

The unmanned aircraft system that is used for flight testing is shown in Figure 8. A X-configuration frame is used in building the quadcopter. A Naza GPS module a flight control system is installed on the system. The GPS module helps in holding the position accurately. Four brushless motors are used. Maximum rotational speed of each motor is 11,598 RPM. Four 10 inch propellers are mounted on the motors. Three cell lithium-polymer batteries are used for the flight testing. Highest voltage value of these batteries is 12.6 V and the quadcopter is flown in a range of 12.6~11.3 V.

Figure 8: Quadcopter System

DJI Naza M-Lite flight controller and spectrum DX6e remote controller are used
for flight testing. Table 2 shows the specifications of the flight controller. The Naza M-Lite flight controller is configured using the Naza lite independent assistant software and firmware. The software is used to assign switches of the remote controller to specific range of values so that by switching the values, desired functionality of the flight controller can be achieved. Software changes needed to support variation of the autonomy level of unmanned aircraft and command limit are facilitated by the modular architecture of the flight controller which is based on the specific model of the flight controller.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh Frequency</td>
<td>400 Hz</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>7.2V ~ 26.0 V(2S ~ 6S LiPo)</td>
</tr>
<tr>
<td>Power</td>
<td>0.6W (0.12A @ 5V)</td>
</tr>
<tr>
<td>Hovering Accuracy</td>
<td>Vertical:± 0.8m, Horizontal:± 2.5m</td>
</tr>
<tr>
<td>Max Tilt Angle</td>
<td>45 degrees</td>
</tr>
<tr>
<td>Built-In Function</td>
<td>Three Modes Autopilot</td>
</tr>
</tbody>
</table>

Raspberry Pi 3 and Navio 2 autopilot are used as a data logger to log all the necessary flight information for further analysis. Flight information such as remote controller (RC) commands, GPS longitude and latitude information, sampling time, inertial measurement units (IMU) sensor information such as angular positions, angular rates etc. are logged. The Navio2 provides sensor information from dual 9 degree-of-freedom (DOF) inertial measurement units (IMU) to the RaspberryPi 3. The sampling frequency is 100 Hz and the attitude estimate is provided by a Madgwick Filter [56] algorithm operating at 300 Hz. To facilitate the efficient collection of experimental data, the system can be
activated remotely via radio control (RC) transmitter so that a remote operator can start and stop multiple experimental trials without interacting with a computer.

### 3.4 Time Domain Analysis

Errors made by the pilots while following the path with respect to time is used for time domain analysis to quantify pilot and quadcopter performance. The following subsections discuss the techniques used to calculate path error and error metrics for time domain analysis.

#### 3.4.1 Path Error

To calculate the path error, the GPS longitude and latitude data is converted to feet from degrees and named as X axis displacement and Y axis displacement, respectively. The path error at a specific point is calculated from the resultant of X axis error Equation (3.1) and Y axis error Equation (3.2). The equation Equation (3.3) shows the resultant path error, $E$.

\[
\Delta X = X_{desired} - X_{actual} \tag{3.1}
\]

\[
\Delta Y = Y_{desired} - Y_{actual} \tag{3.2}
\]

\[
E = \sqrt{(\Delta X)^2 + (\Delta Y)^2} \tag{3.3}
\]

The path error made by the pilots are quantified by calculating three error metrics,
mean value of path error (ME), standard deviation of path error (SD) and root mean square of path error (RMSE). The equations for these error metrics calculation are shown in the following sections.

3.4.2 Mean Value of Path Error (ME)

In the calculation of mean value of path error, all the errors made by a pilot through the whole path are averaged. Equation (3.4) are used to calculate the mean value of path error where N is the total number points along the whole path.

\[
E_{\text{mean}} = \frac{\sum_{i=1}^{N} \Delta E_i}{N} \quad (3.4)
\]

The mean value of path error actually gives a holistic idea of the flight test, how closely the pilot follows the path. But if a pilot makes a bigger error at a specific point and comes back to track to the next point while flying, mean value of error does not specify that error for that particular point. Standard deviation of error (SD) and root mean square value of error (RMSE) are two very useful metrics to identify the deviation of error from mean or desired value and comparatively larger errors respectively.

3.4.3 Standard Deviation of Path Error (SD)

Standard deviation of error (SD) shows how much error is dispersed from its mean [13]. A low SD indicates that the data points tend to be close to the mean or desired value of the set, while a high standard deviation indicates that the data points are spread out over a wider range of values. Equation (3.5) is used for the calculation of standard deviation of error.
\[
\sigma = \sqrt{\frac{\sum_{i=1}^{N}(E_i - E_{\text{mean}})^2}{N-1}}
\]  
(3.5)

3.4.4 Root Mean Square Value of Path Error (RMSE)

RMSE is very useful when large errors are particularly undesirable as it gives a relatively high weight to large errors. Equation (3.6) shows the formula of RMSE calculation.

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{N}(\Delta E_i)^2}{N}}
\]  
(3.6)

To demonstrate the full picture of flight test results and path errors made by the pilots in each flight autonomy level, all the three error metrics are useful [14].

3.4.5 Uncertainty

As, each pilot flies three times in each flight autonomy level, ME, SD and RMSE, these error metrics are expressed as (average ± uncertainty) format, where average is the average error value of three flight test results and uncertainty is calculated as shown in Equation (3.7). As sample number is low (only three) Equation (3.7) is used for uncertainty calculation.

\[
\text{Uncertainty} = \frac{\text{maximum value} - \text{minimum value}}{2}
\]  
(3.7)
3.5 Frequency Domain Analysis

Transfer function modeling in frequency domain is done to analyze frequency response of the system. From the MIMO (Multi Input Multi Output) transfer function modeling, frequency domain variables such as transfer function order [24], reliable frequency [18], coherence function value [18], stability margin criteria [19] are acquired to quantify pilot and quadcopter performance based on frequency response of the system.

3.5.1 Transfer Function Modeling

Previously, transfer function modeling for unmanned aircraft systems included a combination of controller and UAV transfer functions [16]. Pilot transfer function keeps missing from the system transfer functions. In this study, the transfer function is generated in frequency domain by combining pilot, controller and UAV transfer functions. For Controller(C) and UAV(U) transfer function, controller stick command (linear or angular positions or rates) is the input and longitude (Xa) and latitude (Ya) coordinate values of actual path are considered as the output and it is a SIMO (Single Input Multi Output) transfer function shown in Figure 9. For the pilot transfer function, longitude (Xd) and latitude (Yd) coordinate values of desired path are considered as input and controller stick command is considered as output and it is a MISO (Multi Input Single Output) transfer function as shown in Figure 10.

![Figure 9: Controller and UAV transfer function combined together](image-url)
These three transfer functions (P, C & U) are combined together to generate the overall transfer function where longitude (Xd) and latitude (Yd) coordinates of desired path are used as input and longitude (Xa) and latitude (Ya) coordinates of actual path are used as output and it is a MIMO (Multi Input Multi Output) transfer function shown in Figure 11.

3.5.2 Transfer Function Order

The general equation for second order function is given in Equation (3.8).

$$H(s) = \frac{As + B}{s^2 + Cs + D} \quad (3.8)$$

In this study, transfer function modeling is done on the frequency response of time domain data. Order of the system can be defined as the value of the highest exponent that appears in the denominator of the transfer function. From the value of order, an estimation can be done about how many factors affect the output. As the number of order of transfer function increases, the relationship between input and output of the system
becomes complicated or the system exhibits a wider range of responses that must be analyzed and described [24]. Transfer function order is estimated to identify the complexity of input-output relationship of the system.

3.5.3 Reliable Frequency & Coherence Function

To demonstrate the frequency response of a system, bode plots and coherence function plots are useful. Bode plots contain magnitude and phase curves from where the reliable frequency range to correctly express input-output relationship of the system can be identified. Magnitude and phase curves remain stable up to a specific frequency. The frequency is known as the reliable frequency [18]. After the reliable frequency, input-output relationship is not reliable as the magnitude and phase curves begin to oscillate dramatically [18]. With the bode plot, coherence function is plotted with respect to frequency, shown in results and discussions section. The coherence function value is used to assess the accuracy of the frequency response identification. Coherence value ranges from 0 to 1. The frequency range where coherence function value is $\geq 0.6$ and coherence function curve is not oscillating, is considered that the frequency response has acceptable accuracy in that range. A rapid drop or oscillation in the coherence function for a particular range of frequencies indicates poor frequency-response identification accuracy in that region [18]. The reliable frequency gives an approximate estimation and coherence function values give the actual frequency range where the input-output relationship of the system is accurate [18].
3.5.4 Stability Margin Criteria

The stability margin criteria includes two values, gain margin (Gm) and phase margin (Pm). These two values are estimated to find out the safety margin of open loop stability of the system. System stability is proportional to the safety margin values. The smaller value of safety margins indicate a fragile system, whereas a larger value indicates more stable system. Gain and phase margins are estimated in frequency domain to identify the system stability in different levels of flight autonomy and differentiate between flight performance of different levels of pilots [24].

3.6 Cooper-Harper Rating Scale

Apart from time and frequency domain analysis, an unmanned aircraft rating given by the pilots is used for evaluating pilot and quadcopter performance. The abbreviated version of the modified Cooper-Harper rating scale is used by the pilots to rate the aircraft that governs the ease and precision with which the pilot can accomplish a task in support of an aircraft. The modified version [1] of the Cooper-Harper scale is abbreviated [20] so that the rating scale can be shortened from 10 to 4 levels and becomes easier for pilots to rate the unmanned aircraft system quickly. Immediately after completing the pre-specified task of following the desired path, pilots are given the rating scale to evaluate the aircraft. This rating represents the opinion of pilots about the quadcopter’s performance in different levels of autonomy.

Table 3 shows abbreviated modified Cooper-Harper Rating scale for UAV tasks. Pilot rating of Level 1 indicates C-H rating range of 1-3. Pilots in this category rate the
system as "Good, negligible deficiencies" and desired performance can be achieved with low disturbances for completing the task. Pilot rating of Level 2 indicates C-H rating range of 4-6. Pilots in this category rates the system as "Objectionable, needs Improvement" and the system shows adequate performance. Pilot rating of Level 3 indicates C-H rating range of 7-9. Pilots in this category rates the system as "Major deficiencies, not tolerable" and the system is not suitable for completing the task. Pilot rating of Level 4 indicates C-H rating range of 10. Pilots in this category rates the system as "Loss of Control" and the system is not controllable for completing the task [20].

All the estimated time and frequency domain variables along with Cooper-Harper rating, are considered for the modeling of pilot experience level and quadcopter autonomy level in the following sections.

### 3.7 Pilot Experience Level Modeling

Pilot experience level modeling is divided into three steps.

Step 1: Identification of variables that have significant relationship with pilot experience
level and can be used as independent variables in the modeling to predict pilot level.

Step 2: Pilot experience level modeling using binary logistic regression technique to show how the increase and decrease in the value of independent variables changes the outcome of the model.

Step 3: Conducting a single flight test with an eighth pilot, analyzing flight variables from flight data and using as independent variables in the established model equation to verify if the model can predict the pilot experience level correctly.

3.7.1 Independent Sample t Test

The independent sample t test compares the means of two independent groups in order to determine whether there is statistical evidence that the associated population means are significantly different. The independent variable needs to be categorical. To find out the difference between two independent groups null hypothesis (H0) and alternative hypothesis (H1) are set. The null hypothesis (H0) and alternative hypothesis (H1) of the independent sample t test can be expressed by Equation (3.9) and Equation (3.10) respectively.

\[ H_0 : \mu_1 = \mu_2 \text{ (the two population means are equal)} \] (3.9)

\[ H_1 : \mu_1 \neq \mu_2 \text{ (the two population means are not equal)} \] (3.10)
Here $\mu_1$ and $\mu_2$ are the population means for group 1 and group 2, respectively. To accept or reject a hypothesis, a significance value (P value) [57] is calculated using Independent Sample t Test. If P value $< 0.05$, there is a significant difference between the two population means and null hypothesis is rejected. If P value $\geq 0.05$, there is no significant difference between two population means and alternate hypothesis is rejected [21]. The significance value (P value) estimation of 0.05 comes from the 95% confidence interval criteria. A 95% confidence interval is a range of values that gives 95% certainty that the samples contain the true mean of the population.

In this study, pilot experience level has two categories. For independent sample t test, pilot experience level is considered as an independent variable and dependent variables included all the time and frequency domain variables along with Cooper-Harper rating scale. The variables that yield P values $< 0.05$, are included in the modeling of pilot experience level. The variables that show P value $\geq 0.05$, do not have a significant relation with the pilot experience level and are not included in the modeling.

### 3.7.2 Binary Logistic Regression

Time domain variables (error metrics), frequency domain variables (transfer function order, coherence function and gain margin) and Cooper-Harper rating scale are considered as independent variables to model the dependent variable, (pilot experience level) using binary logistic regression. The dependent variable is divided into two groups labeled ‘0’ and ‘1’, where ‘0’ is the comparison group and ‘1’ is the referent group. For pilot experience level, experienced pilots are considered as comparison group and novice
pilots as referent group. As a linear predictor function, binary logistic regression equation can be written as Equation (3.11).

$$f(i) = \beta_0 + \beta_1.x_{1,i} + ... + \beta_m.x_{m,i}$$  \hspace{1cm} (3.11)

where $\beta_0, \beta_1, ..., \beta_m$ are regression coefficients indicating the relative effect of a particular independent variable on the outcome. The regression coefficients are grouped into a single vector $\beta$ of size $m + 1$. For each observation $i$, an additional explanatory pseudo-variable $x_{0,i}$ is added, with a fixed value of 1, corresponding to the intercept coefficient $\beta_0$. The resulting explanatory variables $x_{0,i}, x_{1,i}, ..., x_{m,i}$ are then grouped into a single vector $X_i$ of size $m + 1$.

The compact form of binary logistic regression equation can be written as Equation (3.12).

$$f(i) = \beta.X_i$$  \hspace{1cm} (3.12)

Here $\beta$ is the set of regression coefficients are grouped into a single vector of size $m + 1$. and $X_i$ is the set of explanatory variables associated with observation $i$. Exponential of coefficients, $\text{Exp}(\beta)$ are known as odds ratio. Odds ratio is calculated to find out how the increase or decrease in an independent variable or predictor’s value changes the outcome of the model. An odds ratio $> 1$ indicates that the risk of the outcome falling in the comparison group relative to the risk of the outcome falling in the referent group increases as the variable increases. In other words, the comparison group outcome is more likely. An odds ratio $< 1$ indicates that the risk of the outcome falling in the
comparison group relative to the risk of the outcome falling in the referent group decreases as the variable increases, the referent group is more likely [22].

3.7.3 Verification Test Case

In the end, a test case is included to verify the model where an eighth pilot is assigned to do the same task with the same quadcopter. The Level of autonomy of UAV is kept unknown to the pilot and both the pilot level and autonomy level of unmanned aircraft is predicted by analyzing the flight test data and using the model. Time and frequency domain analysis are done on the collected flight test data. The pilot is also introduced with the Cooper-Harper rating scale to rate the unmanned aircraft system. After getting all the explanatory variables or predictors \(X_i\), they are used on the right hand side of Equation (4.1) to estimate the probability of predicting experienced or novice pilot, based on the explanatory variables.

\[
P(\text{experienced}) = \frac{e^{\beta_1 x_1 + \ldots + \beta_m x_m}}{1 + e^{\beta_1 x_1 + \ldots + \beta_m x_m}} \quad (3.13)
\]

Left hand side of Equation (4.1) estimates the probability of pilot being experienced, as the coefficients, \(\beta\) on the ride hand side are acquired from comparison group (experienced) of binary logistic regression. Based on the value of probability of Equation (4.1), the pilot experience level can be predicted.

3.8 Autonomy Level of UAV Modeling

The autonomy level of UAV modeling is also divided into three steps.
Step 1: Identification of variables that have significant relationship with autonomy level of unmanned aircraft and can be used as independent variables in the modeling to predict flight autonomy level.

Step 2: Level of autonomy of aircraft modeling using multinomial logistic regression technique to show how the increase and decrease in the value of independent variables changes the outcome of the model.

Step 3: Conducting a single flight test with an eighth pilot, analyzing flight variables from flight data and using as independent variables in the established model equation to verify if the model can predict the flight autonomy level correctly.

3.8.1 ANOVA Test

One way ANOVA is an extension of independent sample t test. Independent sample t test is used to differentiate between two independent groups. The same concept of hypothesis testing and significance value are used for ANOVA test, the difference is that ANOVA generalizes the t test to more than two groups. As, level of autonomy has three categories, ANOVA test is done to find out which variables have an overall effect on the flight autonomy levels. The significant relationship among variables can be identified from P values, same as t test. After the one way ANOVA test, a post hoc test using Tukey method [58] is performed to identify which flight autonomy levels are different from each other among the three and where the difference lies.
3.9 Multinomial Logistic Regression

Time domain variables (error metrics), frequency domain variables (transfer function order, coherence function and gain margin) and Cooper-Harper rating scale are considered as independent variables to model the dependent variable (level of autonomy of unmanned aircraft) using multinomial logistic regression (MLR). Multinomial logistic regression uses a linear predictor function $f(k, i)$ to predict the probability that observation $i$ has on outcome $k$ Equation (3.14).

$$f(k, i) = \beta_{0,k} + \beta_{1,k}x_{1,i} + \ldots + \beta_{m,k}x_{m,i}$$  \hspace{1cm} (3.14)

where $\beta_{m,k}$ is a regression coefficient associated with the $m$th explanatory variable and the $k$th outcome. As explained in the binary logistic regression section, the regression coefficients and explanatory variables are normally grouped into vectors of size $m + 1$, so that the predictor function can be written more compactly as Equation (3.14)

$$f(k, i) = \beta_k . X_i$$  \hspace{1cm} (3.15)

Here $\beta_k$ is the set of regression coefficients associated with outcome $k$, and $X_i$ is the set of explanatory variables associated with observation $i$. Exponential of coefficients, $\exp(\beta_k)$ are known as odds ratio. Odds ratio is calculated to find out how the increase or decrease in an independent variable or predictor’s value changes the outcome of the model. An odds ratio $> 1$ indicates that the risk of the outcome falling in the comparison group relative to the risk of the outcome falling in the referent group increases as the
variable increases. In other words, the comparison group outcome is more likely. An odds ratio $< 1$ indicates that the risk of the outcome falling in the comparison group relative to the risk of the outcome falling in the referent group decreases as the variable increases, the referent group is more likely [23]. The referent group is selected as $k^{th}$ outcome (last outcome) and $(k - 1)$ outcomes are separately regressed against the $k^{th}$ outcome. For level of autonomy of quadcopter modeling, based on the ANOVA post hoc test, Level 3 autonomy is considered as the pivot ($k^{th}$) outcome and Level 1 and 2 are compared with the pivot come. For this reason, Level 3 autonomy is considered as the referent group whereas Level 1 and 2 are considered as the comparison groups 1 and 2, respectively.

### 3.10 Verification Test Case

After conducting the verification flight test and getting all the explanatory variables or predictors $X_i$, they are used on the right hand side of Equation (4.2) and Equation (4.3) to estimate the probability of predicting level of autonomy of UAV, based on the explanatory variables.

$$P(\text{Level 1 or 3}) = \frac{e^{\beta_{1,1}x_1 + \ldots + \beta_{m,1}x_m}}{e^{\beta_{1,1}x_1 + \ldots + \beta_{m,1}x_m} + e^{\beta_{1,2}x_1 + \ldots + \beta_{m,2}x_m}}$$  

(3.16)

$$P(\text{Level 2 or 3}) = \frac{e^{\beta_{1,2}x_1 + \ldots + \beta_{m,2}x_m}}{e^{\beta_{1,1}x_1 + \ldots + \beta_{1,m}x_m} + e^{\beta_{1,2}x_1 + \ldots + \beta_{m,2}x_m}}$$  

(3.17)

Right hand side of Equation (4.2) estimates the probability of autonomy level either 1 or 3 and right hand side of Equation (4.3) estimates the probability of autonomy.
level either 2 or 3. The coefficients of the numerator of right hand side of Equation (4.2) and Equation (4.3), are from comparison group 1 (Level 1 autonomy) and comparison group 2 (Level 2 autonomy) respectively. The coefficients are estimated from the established model using MLR and when new flight variables are available from the test case, those are used as explanatory variables \( (X_i) \) in Equation (4.2) and Equation (4.3) to find out the probability of flight autonomy level.
CHAPTER 4

RESULTS AND DISCUSSIONS

This chapter discusses the results of data analysis and modeling outcome for pilot experience level and UAV autonomy level. The chapter begins with all the results and discussions from time domain analysis showing path error metrics. Then, frequency domain analysis section includes transfer function order, frequency response identification and stability margin criteria to quantify pilot and quadcopter performance based on frequency response. Next, results from the Cooper-Harper rating scale are presented that includes UAV rating given by the pilots. In the end, flight variable dependency test results using independent sample t test and one way ANOVA and modeling results using binary logistic regression regression and multinomial logistic regression are demonstrated and a test case results are described to verify the established model.

4.1 Time domain analysis

This section starts with the visual representation of path error along the flight path. Then, path error along the path is represented by error bars. After that path error metrics results are shown to quantify pilot and quadcopter performance individually.

4.1.1 Visual Representation of Path Error

Desired path and actual flight path of a representative from each category of pilots in each autonomy level are shown in Figure 12. The desired path is shown with solid
curve. The dash-dots curve represents the flight path of experienced pilot and the dash curve represents the flight path of novice pilot. Figure 12 (a), (b) and (c) show flight paths in Level 1, 2 and 3 autonomy mode, respectively. From Figure 12 a visual idea of pilot’s flight performance can be acquired that experienced pilots fly better than novice pilots, which is verified later in the path error metrics section.

Figure 12: Visual representation of flight path of each category pilot (a) Level 1 autonomy (b) Level 2 autonomy (c) Level 3 autonomy

4.1.2 Path Error Bars

To quantify the errors through the whole path, error bars are calculated. Error bars represent the resultant error (E) at each point. Error bars are estimated to show what factors are responsible in the increase or decrease of path error along the flight path. It is observed from Figure 13 that increase or decrease in error values made by the pilots depend on the level of autonomy of system, distance of the target path from the pilot and also on path pattern such as curved path or straight path.

From Figure 13, in Level 1 autonomy, considering a point for example on the
Figure 13: Path error diagram of an experienced pilot’s flight (a) Level 1 autonomy (b) Level 2 autonomy (c) Level 3 autonomy

straight path, $\Delta X = 0.9 ft$, $\Delta Y = 1.2 ft$ and $E = 1.5 ft$. For a point on a curved path, $\Delta X = 1.6 ft$, $\Delta Y = 1.9 ft$ and $E = 2.5 ft$. It is noticeable that path error increases for a curved path rather than a straight path.

From Figure 13, in Level 1 autonomy, considering a point for example on the nearer path, $\Delta X = 0.9 ft$, $\Delta Y = 1.2 ft$ and $E = 1.5 ft$. For a point on a distant path, $\Delta X = 3.5 ft$, $\Delta Y = 4.3 ft$ and $E = 5.5 ft$. Increase in the distance between the pilot and the quadcopter causes the error bar to increase as the pilot has less clear view of the desired path.

Flight in all three levels of autonomy show the same pattern but there is a noticeable difference in the path error diagram of level 3 autonomy flight mode. In Figure 13(c), the error bar increases at the start of the flight as the pilot needs a few seconds to adjust to fly. Considering a point for example on the start of the flight, $\Delta X = 6.9 ft$, $\Delta Y = 7.1 ft$ and $E = 9.9 ft$. As, the pilot becomes adaptive, the uncertainty decreases. Considering a point for example after a few seconds of the flight, $\Delta X = 3.5 ft$, $\Delta Y = 5.5 ft$ and
\[ E = 6.5 \text{ ft}. \] This estimation shows the difference between Level 3 and other two flight autonomy levels as the error is low at the start of the flight and increases after few seconds.

The representative plot of Figure 13 for an experienced pilot supports the plots of all other experienced pilots. All the novice pilots show same flight pattern for Level 1 and 2 autonomy. As novice pilots could not fly in the Level 3 autonomy mode, only experience pilot’s flight test results are shown for Level 3 flight autonomy in Figure 13(c).

4.1.3 Path Error Metrics

Mean value of path error (ME), standard deviation of path error (SD) and root mean square value of path error (RMSE), are calculated for the quantification of pilot and quadcopter performance in time domain. Each pilot flew the quadcopter three times in each autonomy level (total of nine flights). The error metrics in Table 4, Table 5 and Table 6 are shown as \((\text{average} \pm \text{uncertainty})\) format.

The mean value of path error is calculated to show the average performance of a pilot through the whole path following the task. From Table 4, considering Level 1 autonomy flight mode, mean value of error for flight test of pilot 1 (representative of experienced pilots) is \(3.3 \pm 0.1\) and mean value of error for flight test of pilot 7 (representative of novice pilots) is \(11.7 \pm 1.8\). Considering a specific fight autonomy level, the value of average and uncertainty increase as the pilot level changes from experienced to novice pilots. Increase in the average of error indicates that novice pilots have higher error than experienced pilots.

Considering a specific pilot, the mean value of path error for flight test of pilot
1 (representative of experienced pilots) is 3.3 ± 0.1 in Level 1 autonomy, 3.6 ± 0.2 in Level 2 autonomy and 6.2 ± 0.4 in Level 3 autonomy. Considering a specific pilot, value of average and uncertainty increases from Level 1 to Level 2 to Level 3 autonomy. Irrespective of pilot experience level, the mean value of path error increases as autonomy level of the aircraft decreases.

The mean value of path error is considered as a predictor during the modeling for pilot experience level and UAV autonomy level modeling to identify if the mean value of path error is a result of pilot performance or UAV performance or both.

Table 4: Mean value of path error (ft) for each pilot’s flight test in each autonomy level

<table>
<thead>
<tr>
<th>Pilot</th>
<th>Level 1 Autonomy</th>
<th>Level 2 Autonomy</th>
<th>Level 3 Autonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot 1</td>
<td>3.3 ± 0.1</td>
<td>3.6 ± 0.2</td>
<td>6.2 ± 0.4</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>3.5 ± 0.3</td>
<td>3.8 ± 0.4</td>
<td>8.1 ± 0.5</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>4.2 ± 0.3</td>
<td>4.5 ± 0.5</td>
<td>10.8 ± 0.6</td>
</tr>
<tr>
<td>Pilot 4</td>
<td>8.3 ± 0.9</td>
<td>8.9 ± 0.9</td>
<td>-</td>
</tr>
<tr>
<td>Pilot 5</td>
<td>8.4 ± 1.2</td>
<td>9.7 ± 1.3</td>
<td>-</td>
</tr>
<tr>
<td>Pilot 6</td>
<td>7.4 ± 1.2</td>
<td>9.2 ± 1.5</td>
<td>-</td>
</tr>
<tr>
<td>Pilot 7</td>
<td>11.7 ± 1.8</td>
<td>13.9 ± 2.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Standard deviation of path error (SD) is calculated to show how much path error is dispersed from its mean value and probability of making errors by the pilots. From Table 5, considering Level 1 autonomy flight mode, the standard deviation of path error, for flight test of pilot 1 (representative of experienced pilots) is 1.9 ± 0.1 and SD for flight test of pilot 7 (representative of novice pilots) is 6.6 ± 1.0. Considering a specific fight autonomy level, the value of the average and uncertainty increase as the pilot level changes from experienced to novice pilots. Increase in the standard deviation of path error indicates that novice pilots are more unpredictable and their probability of making errors
is higher than the experienced pilots.

Considering a specific pilot, standard deviation of path error for flight tests from pilot 1 (representative of experienced pilots) is 1.9 ± 0.1 in Level 1 autonomy, 2.1 ± 0.2 in Level 2 autonomy and 3.8 ± 0.3 in Level 3 autonomy. Considering a specific pilot, value of average and uncertainty increases from Level 1 to Level 2 to Level 3 autonomy. Irrespective of pilot experience level, standard deviation of path error increases as autonomy level of the aircraft decreases.

The standard deviation of path error (SD) is considered as a predictor during the modeling for pilot experience level and UAV autonomy level modeling to identify if the SD of path error is a result of pilot performance or UAV performance or both.

Table 5: Standard Deviation of path error (ft) for each pilot’s flight test in each autonomy level

<table>
<thead>
<tr>
<th>Pilot</th>
<th>Level 1 Autonomy</th>
<th>Level 2 Autonomy</th>
<th>Level 3 Autonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot 1</td>
<td>1.9 ± 0.1</td>
<td>2.1 ± 0.2</td>
<td>3.8 ± 0.3</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>1.7 ± 0.2</td>
<td>2.3 ± 0.2</td>
<td>2.8 ± 0.3</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>2.2 ± 0.2</td>
<td>2.8 ± 0.3</td>
<td>6.4 ± 0.4</td>
</tr>
<tr>
<td>Pilot 4</td>
<td>2.5 ± 0.5</td>
<td>7.2 ± 0.5</td>
<td>-</td>
</tr>
<tr>
<td>Pilot 5</td>
<td>4.8 ± 0.6</td>
<td>6.1 ± 0.8</td>
<td>-</td>
</tr>
<tr>
<td>Pilot 6</td>
<td>5.7 ± 0.6</td>
<td>6.2 ± 0.9</td>
<td>-</td>
</tr>
<tr>
<td>Pilot 7</td>
<td>6.6 ± 1.0</td>
<td>7.0 ± 1.1</td>
<td>-</td>
</tr>
</tbody>
</table>

The root mean square value of path error (RMSE) is calculated to show the variance of error. RMSE gives relatively high weight to large errors. From Table 6, considering Level 1 autonomy flight mode, RMSE for flight test of pilot 1 (representative of experienced pilots) is 3.6 ± 0.3 and RMSE for flight test of pilot 7 (representative of novice pilots) is 14.8 ± 2.1. Considering a specific fight autonomy level, the value of
average and uncertainty increase as the pilot level changes from experienced to novice pilots. Increase in the RMSE indicates that novice pilots can make larger errors comparing with experienced pilots.

Considering a specific pilot, RMSE for flight test of pilot 1 (representative of experienced pilots) is 3.6 ± 0.3 in Level 1 autonomy, 4 ± 0.4 in Level 2 autonomy and 6.5 ± 0.6 in Level 3 autonomy. Considering a specific pilot, value of average and uncertainty increases from Level 1 to Level 2 to Level 3 autonomy. Irrespective of pilot experience level, RMS value of path error increases as autonomy level of the aircraft decreases.

The root mean square value of path error (RMSE) is considered as a predictor during the modeling for pilot experience level and UAV autonomy level modeling to identify if the RMSE is a result of pilot performance or UAV performance or both.

In Table 4, Table 5 and Table 6, the ‘-’ sign indicates that novice pilots could not fly in Level 3 autonomy flight mode.

Table 6: RMS value of path error (ft) for each pilot’s flight test in each autonomy level

<table>
<thead>
<tr>
<th></th>
<th>Level 1 Autonomy</th>
<th>Level 2 Autonomy</th>
<th>Level 3 Autonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot 1</td>
<td>3.6 ± 0.3</td>
<td>4 ± 0.4</td>
<td>6.5 ± 0.6</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>4.2 ± 0.5</td>
<td>5.2 ± 0.6</td>
<td>8.7 ± 0.7</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>5.5 ± 0.5</td>
<td>6.3 ± 0.6</td>
<td>11.7 ± 0.7</td>
</tr>
<tr>
<td>Pilot 4</td>
<td>8.6 ± 1.1</td>
<td>10.2 ± 1.0</td>
<td>-</td>
</tr>
<tr>
<td>Pilot 5</td>
<td>9.3 ± 1.4</td>
<td>11.2 ± 1.6</td>
<td>-</td>
</tr>
<tr>
<td>Pilot 6</td>
<td>9.7 ± 1.3</td>
<td>11.4 ± 1.8</td>
<td>-</td>
</tr>
<tr>
<td>Pilot 7</td>
<td>14.8 ± 2.1</td>
<td>15.6 ± 2.4</td>
<td>-</td>
</tr>
</tbody>
</table>
4.1.4 Accuracy & Precision

In the average ± uncertainty format for ME, SD and RMSE, the average indicates the accuracy of the pilot performance as well as the unmanned aircraft system. Lower average values indicate that experienced pilots and Level 1 autonomy of unmanned aircraft have higher accuracy. Higher average values of error metrics indicate that novice pilots and Level 3 autonomy of unmanned aircraft have lower accuracy. The uncertainty value indicates the precision or repeatability of a pilot’s performance. Lower value of uncertainty indicates that the pilot is precise in accomplishing the task or pilots’ performance is repeatable as for experience pilots. As the uncertainty increases, pilot’s precision decreases as for novice pilots. The average ± uncertainty format of ME, SD and RMSE, is useful to differentiate pilot and quadcopter performance individually based on accuracy and precision characteristic.

4.2 Frequency domain analysis

This section includes variables derived from transfer function modeling in frequency domain such as transfer function order, reliable frequency, coherence function and stability margin criteria. The frequency domain variables are used to evaluate and quantify pilot and quadcopter performance considering the frequency response of the system.
4.2.1 Transfer Function Order

Transfer function (TF) order expresses the complexity of the relationship of input and output of the system [24]. For all the flight tests in each level of flight autonomy, MIMO transfer function modeling is done by using longitude (Xd) and latitude data (Yd) of desired path as input and longitude (Xa) and latitude (Ya) data of actual path as output. Transfer function is generated to identify which order best describes the relationship between input and output. The relationship between input and output becomes complicated in Level 3 autonomy flight mode, that is observed from increasing of the transfer function order during modeling. Second order transfer function modeling results for three levels of autonomy flights and percent fitting is shown in Figure 14.

Figure 14: Second order transfer function fitting (a) Level 1 autonomy (b) Level 2 autonomy (c) Level 3 autonomy

Level 1 and 2 autonomy flights give 85.5% and 84.7% fitting respectively whereas Level 3 flight autonomy gives 55.3% for second order transfer function modeling. Second order does not give satisfactory result for Level 3 flight autonomy. Higher order transfer function modeling is applied. It is observed, third order gives 67%, fourth order gives
83.1% and fifth order gives 72% fitting. Applying for all the flight test results in Level 3 flight autonomy, fourth order transfer function modeling is considered as the best model to describe the input-output relationship. Actual and model output with percent fitting is shown in Figure 15.

Figure 15: Fourth order transfer function fitting for Level 3 autonomy

Transfer function orders in frequency domain helps to distinguish between Level 3 autonomy flight mode from Level 1 and 2. Fourth order transfer function gives satisfactory fitting for Level 3 autonomy flight mode rather than second order transfer function for Level 1 and 2, it is observed that the complexity of input-output relationship of Level 3 autonomy mode is higher than Level 1 and 2 flight autonomy mode.

4.2.2 Frequency Response Identification

In this section, Bode plots on raw data and the corresponding coherence plots are shown to distinguish among three levels of flight autonomy based on frequency response
Figure 16: Bode plot of Level 1 autonomy mode identification of the system.

Though the magnitude curve starts oscillating before 2.7 Hz, the phase curve is uniform in the frequency range of 0.4-2.7 Hz shown in Figure 16. The reliable frequency ($F_r$) range is considered from 0.4-2.7 Hz, but it is a random estimation. For this reason, coherence function with respect to frequency is plotted to identify the accurate frequency range where the output can be best described by the input. Coherence function $\geq 0.6$ in frequency range of 0.98-1.7 Hz. This frequency range is considered as accurate frequency range for Level 1 flight autonomy that describes the output with respect to input accurately.
Figure 17: Bode plot of Level 2 autonomy mode

For Level 2 autonomy flight mode, the random estimation for reliable frequency ($F_r$) range is considered from 0.4-2.7 Hz shown in Figure 17. To identify accurate frequency range coherence function plot shows that coherence function $\geq 0.6$ in frequency range of 0.98-2.7 Hz. In this frequency range the output is best described by the input.

For Level 3 autonomy flight mode, reliable frequency ($F_r$) range is considered from 0.4-3.5 Hz shown in Figure 18. Reliable frequency range is a random estimation from the bode plots. To identify accurate frequency range coherence function is plotted and it shows that coherence function $\geq 0.6$ in frequency range of 0.98-3 Hz for Level 3 flight autonomy. In this frequency range the output is best described by the input of the system.
It is observed that reliable frequency estimation from the bode plots is not completely reliable though the frequency range is named as reliable frequency. Coherence function plots give accurate estimation of the frequency range where the output can be described by the input accurately. Initial value (0.98 Hz) of frequency range is same for all the flight autonomy levels. For this reason, coherence function frequency value is considered as 1.7 Hz, 2.7 Hz and 3 Hz (final values of frequency range) for Level 1, 2 and 3 flight autonomy mode respectively. All the flight test results of three levels of autonomy modes show similar frequency response plots irrespective of the pilot experience level. The coherence function is considered as a predictor in the modeling of quadcopter autonomy level.
4.2.3 Stability Margin Criteria

Gain margin (Gm) and phase margin (Pm) values for each pilot’s flight testing in each autonomy level are shown in Table 7. Each pilot has flown the quadcopter three times in each autonomy level. Phase margin values for experienced pilots and gain and phase margin values for novice pilots are expressed in (average ± uncertainty) format. In case of infinity gain margin values, uncertainty is not applicable.

For experienced pilots, infinity gain margin is achievable in all the three levels of flight autonomy. Table 7 shows that for Pilot 1, 2 and 3 (experienced group) gain margin is infinity in all three levels of flight autonomy. But, infinity gain margin is not achievable for novice pilots in any of the flight autonomy level that is visible in Table 7 for Pilot 4,5,6 and 7. Infinity gain margin denotes the system will not go unstable or unbalanced under the tested conditions. This criteria is helpful to distinguish between experienced and novice pilots.

Although a difference is visible between experienced and novice pilots’ performance from gain margin, phase margin does not show such distinction. From Table 7, in Level 1 autonomy, Pilot 2 shows phase margin of 55.9 ± 5 degrees, but for Pilot 5 this value is 126 ± 9.8 degrees. Pilot 7 has a phase margin of 10.9 ± 10.6 degrees, for Level 1 autonomy. This random values are also noticeable for Level 2 flight autonomy. Gain and phase margin values are empty for novice pilots in case of Level 3 autonomy as they could not fly in this mode. Phase margin values increase or decrease irrespective of the pilot experience level and unmanned aircraft autonomy level, phase margin values are not helpful to distinguish between experienced and novice pilots and different levels of flight
autonomy. For this reason, phase margin is not considered as an explanatory variable or predictor during dependency test and modeling.

Table 7: Gain Margin(dB) and Phase Margin (degree) for each pilot’s flight test in each autonomy level

<table>
<thead>
<tr>
<th></th>
<th>Level 1 Autonomy</th>
<th>Level 2 Autonomy</th>
<th>Level 3 Autonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gm(dB)</td>
<td>Pm(degree)</td>
<td>Gm(dB)</td>
</tr>
<tr>
<td>Pilot 1</td>
<td>Inf</td>
<td>Inf</td>
<td>Inf</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>Inf</td>
<td>55.9 ± 5</td>
<td>Inf</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>Inf</td>
<td>25.3 ± 5</td>
<td>Inf</td>
</tr>
<tr>
<td>Pilot 4</td>
<td>12.5 ± 8.2</td>
<td>27.3 ± 9.5</td>
<td>-84.7 ± 8</td>
</tr>
<tr>
<td>Pilot 5</td>
<td>7.84 ± 10.5</td>
<td>126 ± 9.8</td>
<td>22.9 ± 11.9</td>
</tr>
<tr>
<td>Pilot 6</td>
<td>21.5 ± 10.9</td>
<td>-2.66 ± 15.9</td>
<td>11.4 ± 9.5</td>
</tr>
<tr>
<td>Pilot 7</td>
<td>25.1 ± 12.5</td>
<td>10.9 ± 10.6</td>
<td>2.55 ± 7.3</td>
</tr>
</tbody>
</table>

4.3 Cooper-Harper Rating Scale

After completing each flight test, the pilots were given the abbreviated version of Cooper-Harper rating scale shown in Table 3 to give rating to the unmanned aircraft system. Each pilot has used this table nine times, three times per single autonomy level flight testing. An individual pilot has given the same rating for all three flights in a specific autonomy level, that is expressed by a number between 1-10 without any uncertainty range shown in Table 8.

The experienced pilots rate the unmanned system as Level 1 (C-H rating range from 1 to 3) for both Level 1 and 2 autonomy modes. They can achieve the desired performance from the quadcopter and feel comfortable while completing the task in these autonomy levels. But, in level 3 autonomy mode, C-H rating degrades to Level 2 (C-H
Table 8: Pilot given C-H rating of UAV in different flight modes

<table>
<thead>
<tr>
<th>Pilot</th>
<th>Level 1 Autonomy</th>
<th>Level 2 Autonomy</th>
<th>Level 3 Autonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot 1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Pilot 2</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Pilot 3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Pilot 4</td>
<td>5</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Pilot 5</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Pilot 6</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Pilot 7</td>
<td>8</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

rating range from 4 to 6) and Level 3 (C-H rating range from 7 to 9), meaning UAV is objectionable, needs improvement and not suitable enough to accomplish the task.

In the case of novice pilots, either the rating for UAV is Level 2 (C-H rating range from 4 to 6) or Level 3 (C-H rating range from 7 to 9) in both Level 1 and 2 autonomy modes. The novice pilots object the unmanned system while flying in Level 1 and 2 autonomy mode and after the flight in Level 3 autonomy mode, all of the novice pilots give 10 to the system, denoting that in this mode the quadcopter is not controllable.

From the results in Table 12, it is observed that C-H rating of UAV degrades for novice pilots comparing with the experienced pilots irrespective of flight autonomy level. The degradation is a criteria to distinguish between two categories of pilots. For an individual pilot, experienced or novice, C-H rating of the UAV degrades from Level 1 to 2 to 3 autonomy flight mode. This distinction is used to categorize three levels of flight autonomy irrespective of the pilot experience level.

4.4 Pilot Experience Level Modeling

The pilot level modeling results are divided into three steps.
Step 1: Variable dependency test results.

Step 2: Parameter estimation results using binary logistic regression.

Step 3: Verification test case results an pilot level modeling.

4.4.1 Variable Dependency Test

As pilot experience level has two categories, independent sample t test is performed to identify significant relation of pilot level with time, frequency domain and Cooper-Harper rating variables. Table 9 shows that flight variables such as flight autonomy level, transfer function order and coherence function have a P value greater than 0.05. These three variables do not have significant relationship with pilot experience level and are not considered as independent variables in the modeling of pilot experience level. The other six variables have a P value < 0.05, showing significant relationship with pilot experience level and are considered as independent variables in the modeling.

Table 9: P value of independent sample t-test for pilot experience level

<table>
<thead>
<tr>
<th>Independent Variable : Pilot Experience Level</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables</td>
<td></td>
</tr>
<tr>
<td>Flight Autonomy Level</td>
<td>1.000</td>
</tr>
<tr>
<td>TF Order</td>
<td>1.000</td>
</tr>
<tr>
<td>Coherence Function</td>
<td>1.000</td>
</tr>
<tr>
<td>ME</td>
<td>0.031</td>
</tr>
<tr>
<td>SD</td>
<td>0.022</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.027</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>0.048</td>
</tr>
<tr>
<td>Gain Margin</td>
<td>0.000</td>
</tr>
<tr>
<td>C-H</td>
<td>0.004</td>
</tr>
</tbody>
</table>
4.4.2 Binary Logistic Regression

Parameter estimation for pilot level modeling is shown in Table 10. Exponential of coefficients or parameters, \( \text{Exp}(\beta) \) are known as odds ratio. From Table 10, the odds ratio of gain margin is > 1 and for all the other predictors it is < 1. So, if the value of stability margin is increased, the outcome for the pilot level will fall into the comparison group, experienced. If values of all other independent variables are increased, the output will fall into the referent group, novice. Decrease in the value of stability margin will result outcome to be referent group, novice and decrease in all other variables will result the outcome to be comparison group, experienced.

Table 10: Parameter estimation for pilot level modeling

| Pilot Level (Referent Group : Novice) | Independent Variables | Parameter, \( \beta \) | \( \text{Exp}(\beta) \) |
|--------------------------------------|------------------------|------------------------|
| Comparison Group: Experienced        | Mean of Error          | -0.843                 | 0.43                  |
|                                      | SD                     | -0.086                 | 0.917                 |
|                                      | RMSE                   | -0.691                 | 0.501                 |
|                                      | Uncertainty            | -0.115                 | 0.891                 |
|                                      | Gain Margin            | 0.006                  | 1.006                 |
|                                      | C-H                    | -0.351                 | 0.704                 |

4.5 UAV Autonomy Level Modeling

The UAV autonomy level modeling results are divided into three steps.

Step 1: Variable dependency test results.

Step 2: Parameter estimation results using multinomial logistic regression.

Step 3: Verification test case results and level of autonomy of UAV modeling.
4.5.1 Variable Dependency Test Results

As the level of autonomy of the unmanned aircraft has three categories, one way ANOVA test is performed to identify any significant relation of flight autonomy level with time, frequency domain and Cooper-Harper rating variables. Table 11 shows that flight variables pilot experience level and stability margin have P value greater than 0.05. Pilot experience level and stability margin do not have significant relationship with flight autonomy level and are not considered as independent variables in the modeling of flight autonomy level. The other seven variables have P value < 0.05, showing significant relationship with flight autonomy level and are considered as independent variables in the modeling.

Table 11: P value of ANOVA test for flight autonomy level

<table>
<thead>
<tr>
<th>Independent Variable : Flight Autonomy Level</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot Experience Level</td>
<td>1.000</td>
</tr>
<tr>
<td>TF Order</td>
<td>0.025</td>
</tr>
<tr>
<td>Coherence Function</td>
<td>0.000</td>
</tr>
<tr>
<td>ME</td>
<td>0.004</td>
</tr>
<tr>
<td>SD</td>
<td>0.005</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.004</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>0.019</td>
</tr>
<tr>
<td>Gain Margin</td>
<td>0.123</td>
</tr>
<tr>
<td>C-H</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Table 11 shows that coherence function, ME, SD, RMSE, uncertainty, gain margin and Cooper-Harper rating scale have significant relationship with level of autonomy of aircraft. But, only one way ANOVA test does not tell full story, where the difference lies and among three, which levels are different from each other based on which variable.
For this reason, post hoc test using Tukey method is done to identify actual difference between two groups separately (between Level 1 and 2, Level 2 and 3, Level 3 and 1) flight autonomy levels, based on specific variables.

Table 12: Post hoc test for flight autonomy level

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Independent Variables</th>
<th>Independent Variables</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot Experience Level</td>
<td>Level 1 Autonomy</td>
<td>Level 2 Autonomy</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.999</td>
</tr>
<tr>
<td>TF Order</td>
<td>Level 1 Autonomy</td>
<td>Level 2 Autonomy</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.027</td>
</tr>
<tr>
<td>Coherence Function</td>
<td>Level 1 Autonomy</td>
<td>Level 2 Autonomy</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.028</td>
</tr>
<tr>
<td>Mean of Error</td>
<td>Level 1 Autonomy</td>
<td>Level 2 Autonomy</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.000</td>
</tr>
<tr>
<td>SD of Error</td>
<td>Level 1 Autonomy</td>
<td>Level 2 Autonomy</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.009</td>
</tr>
<tr>
<td>RMSE</td>
<td>Level 1 Autonomy</td>
<td>Level 2 Autonomy</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.009</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>Level 1 Autonomy</td>
<td>Level 2 Autonomy</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.034</td>
</tr>
<tr>
<td>Gain Margin</td>
<td>Level 1 Autonomy</td>
<td>Level 2 Autonomy</td>
<td>0.993</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.190</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.158</td>
</tr>
<tr>
<td>C-H</td>
<td>Level 1 Autonomy</td>
<td>Level 2 Autonomy</td>
<td>0.744</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>Level 2 Autonomy</td>
<td>Level 3 Autonomy</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Post hoc test shows the significant difference between two groups when number
of groups are more than two. From Table 12 only the coherence function can distinguish between Level 1 and 2 autonomy flight mode showing P value < 0.05. Other variables do not show significant difference between Level 1 and 2 autonomy flight mode, showing P value ≥ 0.05. Except pilot experience level and gain margin values (showing P value ≥ 0.05), all the other variables show significant relationship (P value < 0.05) to distinguish Level 3 flight autonomy from Level 1 and 2 flight autonomy modes. For this reason, while modeling the flight autonomy level using multinomial logistic regression, Level 3 autonomy mode is considered as referent group and Level 1 and 2 are considered as comparison group 1 and 2 respectively.

4.5.2 Multinomial Logistic Regression Modeling

Flight autonomy modeling results are shown in Table 13. Based on the post hoc test results, Level 3 autonomy is considered as referent group and Level 1 and 2 autonomy are considered as comparison group 1 and 2 respectively. For both Level 1 and 2, the odds ratio for all the parameters is < 1. While comparing autonomy level 1 and 3, if values of each of the independent variables are increased individually, the output will fall into the referent group, Level 3 flight autonomy. Decrease in the values of each of the independent variables individually will result outcome to be comparison group 1, Level 1 flight autonomy. Same scenario is observed, while comparing level 2 and 3. If values of each of the independent variables are increased individually, the output will fall into the referent group, Level 3 flight autonomy. Decrease in the values of each of the independent variables individually will result outcome to be comparison group 2, Level 2
flight autonomy

Table 13: Parameter estimation for flight autonomy level modeling

<table>
<thead>
<tr>
<th>Flight Autonomy (Referent Group : Level 3)</th>
<th>Independent Variables</th>
<th>Parameter, $\beta$</th>
<th>$\exp(\beta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Group 1:</td>
<td>Mean of Error</td>
<td>-1.058</td>
<td>0.347</td>
</tr>
<tr>
<td>Level 1</td>
<td>SD</td>
<td>-0.645</td>
<td>0.525</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>-0.938</td>
<td>0.391</td>
</tr>
<tr>
<td></td>
<td>Uncertainty</td>
<td>-0.947</td>
<td>0.388</td>
</tr>
<tr>
<td></td>
<td>TF Order</td>
<td>-0.025</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td>Coherence Function</td>
<td>-1.259</td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>-0.359</td>
<td>0.704</td>
</tr>
<tr>
<td>Comparison Group 2:</td>
<td>Mean of Error</td>
<td>-1.783</td>
<td>0.168</td>
</tr>
<tr>
<td>Level 2</td>
<td>SD</td>
<td>-0.352</td>
<td>0.703</td>
</tr>
<tr>
<td></td>
<td>RMSE</td>
<td>-1.306</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>Uncertainty</td>
<td>-0.834</td>
<td>0.434</td>
</tr>
<tr>
<td></td>
<td>TF Order</td>
<td>-0.025</td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td>Coherence Function</td>
<td>-2.292</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>-0.269</td>
<td>0.764</td>
</tr>
</tbody>
</table>

Comparison of different levels of autonomy, with respect to increase or decrease of independent variables helps to differentiate between Level 3 flight autonomous mode from Level 1 and 2 flight modes. MLR test is useful to differentiate between flight autonomy levels based on the flight data analysis and variation of values of predictor variables.

4.6 Verification Test Case

To strengthen the analysis and modeling of evaluation of pilot and quadcopter performance, a verification flight test was conducted. Flight data was collected from an eighth pilot's flight test. After the flight testing, the pilot gives rating to the UAV using abbreviated version of modified Cooper-Harper rating scale. Time and frequency domain analysis is done on the collected flight test data. The pilot was unknown about the flight
autonomy level of unmanned aircraft that is used for the test. Only the task assigner knew the flight autonomy level. The flight autonomy level was set to Level 1 autonomy mode and the pilot self rated himself as a novice pilot. Values of independent variables of the verification flight test are shown in Table 14. There is no uncertainty value as a single flight test is conducted to gather flight data.

Table 14: Model predictors’ values of verification flight test

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF Order</td>
<td>2</td>
</tr>
<tr>
<td>Mean of Error</td>
<td>8.1 ft</td>
</tr>
<tr>
<td>SD</td>
<td>5.9 ft</td>
</tr>
<tr>
<td>RMSE</td>
<td>10.9 ft</td>
</tr>
<tr>
<td>C-H</td>
<td>5</td>
</tr>
<tr>
<td>Gain Margin</td>
<td>30.5 dB</td>
</tr>
<tr>
<td>Coherence Function</td>
<td>1.7 Hz</td>
</tr>
</tbody>
</table>

4.6.1 Pilot Experience Level Prediction

Equation (4.1) is used to predict pilot experienced level. To predict the pilot experience level, \( m = 1, 2, \ldots 5 \) in Equation (4.1). The five parameters (\( \beta \)) with corresponding independent variables are shown in Table 15.

Table 15: Parameters and independent variable values for pilot experience level prediction

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Values</th>
<th>Parameters (( \beta ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of Error</td>
<td>8.1 ft</td>
<td>-0.843</td>
</tr>
<tr>
<td>SD</td>
<td>5.9 ft</td>
<td>-0.086</td>
</tr>
<tr>
<td>RMSE</td>
<td>10.9 ft</td>
<td>-0.691</td>
</tr>
<tr>
<td>C-H</td>
<td>5</td>
<td>-0.351</td>
</tr>
<tr>
<td>Gain Margin</td>
<td>30.5 dB</td>
<td>0.006</td>
</tr>
</tbody>
</table>
\[ P(\text{experienced}) = \frac{e^{\beta_1 x_1 + \ldots + \beta_m x_m}}{1 + e^{\beta_1 x_1 + \ldots + \beta_m x_m}} \] (4.1)

After placing all the coefficients or parameters and independent variable values on the right hand side of Equation (4.1) and calculating, left hand side of Equation (4.1) gives \( P(\text{experienced}) = 0 \) meaning pilot is not experienced or the eighth pilot is novice. Model prediction of pilot being novice matches the real scenario. The model predicts the pilot experience level correctly.

### 4.6.2 UAV Autonomy Level Prediction

The six parameters (\( \beta \)) with corresponding independent variables are shown in Table 15. Equation (4.2) and Equation (4.3) are used to predict the flight autonomy level from the flight test results. To predict the UAV autonomy level, \( m = 1, 2, \ldots 6 \) in Equation (4.2) and Equation (4.3). The parameters (\( \beta \)) with corresponding independent variables are shown in Table 15.

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Values</th>
<th>( \beta_{m,1} ) (Level 1 autonomy)</th>
<th>( \beta_{m,2} ) (Level 2 autonomy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF Order</td>
<td>2</td>
<td>-0.025</td>
<td>-0.025</td>
</tr>
<tr>
<td>Mean of Error</td>
<td>8.1 ft</td>
<td>-1.058</td>
<td>-1.783</td>
</tr>
<tr>
<td>SD</td>
<td>5.9 ft</td>
<td>-0.645</td>
<td>-0.352</td>
</tr>
<tr>
<td>RMSE</td>
<td>10.9 ft</td>
<td>-0.938</td>
<td>-1.306</td>
</tr>
<tr>
<td>C-H</td>
<td>5</td>
<td>-0.359</td>
<td>-0.269</td>
</tr>
<tr>
<td>Coherence Function</td>
<td>1.7 Hz</td>
<td>-1.259</td>
<td>-2.292</td>
</tr>
</tbody>
</table>

\[ P(\text{Level 1 or 3}) = \frac{e^{\beta_{1,1} x_1 + \ldots + \beta_{m,1} x_m}}{e^{\beta_{1,1} x_1 + \ldots + \beta_{m,1} x_m} + e^{\beta_{1,2} x_1 + \ldots + \beta_{m,2} x_m}} \] (4.2)
\[ P(\text{Level 2 or 3}) = \frac{e^{\beta_1,1x_1 + \ldots + \beta_m,2x_m}}{e^{\beta_1,1x_1 + \ldots + \beta_1,mx_m} + e^{\beta_1,kx_1 + \ldots + \beta_m,x_m}} \] (4.3)

After placing all the coefficients or parameters and independent variable values on the right hand side of Equation (4.2) and Equation (4.3) and calculating, left hand side of Equation (4.3) gives \( P(\text{Level 2 or 3}) = 0 \), meaning flight autonomy level is neither 2 nor 3. Left hand side of Equation (4.2) gives \( P(\text{Level 1 or 3}) = 1 \) meaning flight autonomy level is either 1 or 3. As, probability value from Equation (4.3) is 0, flight autonomy level is not 3. From Equation (4.2), the model predicts that level of autonomy of UAV is 1, that matches the real case. The model predicts the level of autonomy of UAV correctly.
CHAPTER 5

CONCLUSION

This work demonstrates an evaluation technique of pilot and quadcopter performance by analyzing the flight test results. Research was done before to evaluate pilot performance based on the workload. But, individually pilot and unmanned aircraft system evaluation is necessary as either pilot failure or UAV failure can cause severe accidents. Before assigning a task, both pilot and UAV evaluation will help to determine if the pilot can accomplish a task with the assigned unmanned aircraft system. The evaluation technique serves this purpose and would be useful for training pilots to fulfill the task avoiding any undesired situation.

Outdoor flight testing based on a specific mission task helps to gather flight data corresponding to real life experience. On gathered flight data, time and frequency domain analysis approach are used that help to understand system behavior in two domains individually. In the time domain analysis, three error metrics represent the full scenario of pilot and quadcopter performance based on path errors. All the three error metrics show better performance from experienced pilots and Level 1 flight mode with highest level of autonomy. Frequency domain analysis is done to understand frequency response of the system. System complexity is analyzed from transfer function orders that expresses Level 3 autonomy flight is more complex than Level 1 and 2 autonomy mode. Coherence function shows that Level 3 autonomous mode is faster than Level 1 and 2 with a wider range
of frequency response where the output can be described by the input of the system correctly. Stability gain margin criteria distinguishes between experienced and novice pilots analyzing flight stability performance where infinity gain margin is common for experienced pilots in all three flight modes but novice pilots do not show this flight performance. After the flight testing, pilots give rating to the UAV expressing ease of control of the system. Dependency test is performed on time domain variables, frequency domain variables and Cooper-Harper rating of UAV and significant variables are considered as predictors for modeling pilot and quadcopter performance. Model developed from flight test results to predict pilot and quadcopter performance is useful to identify the outcome based on the changes of predictor’s values. A verification test case strengthens the established model from a single flight test result when prediction of the model for both pilot experience level and quadcopter performance level matches the real life known condition of pilot and quadcopter.

Though some limitations such as GPS accuracy is not great, lower number of pilots and only one unmanned aircraft system, the evaluation technique developed to quantify pilot and quadcopter performance shows a path to train pilots to accomplish a task with an assigned unmanned aircraft system by analyzing the flight test results.
CHAPTER 6

FUTURE WORK

This research work is completed with seven pilots and one unmanned aircraft system. Though, established model is strengthened by a test case, continuation of this work includes a larger number of pilots (approximately 20) and different types of UAVs (multi-rotor, fixed wing, single-rotor helicopter, fixed-wing hybrid VTOL etc.). Flight testing with larger number of pilots and UAVs will make the model a standard for training pilots of different levels and evaluate capabilities of UAVs to work in various situations.
REFERENCE LIST


[27] Haiyang Chao, Marc Baumann, Austin Jensen, YangQuan Chen, Yongcan Cao, 
Wei Ren, and Mac McKee. Band-reconfigurable multi-uav-based cooperative 
remote sensing for real-time water management and distributed irrigation control. 

analysis. IEEE Transactions on Systems, Man, and Cybernetics, (5):446–458, 
1974.

Application of time-series modeling to human operator dynamics. IEEE 

[30] Luca Bertuccelli, W Beckers, and Mary Cummings. Developing operator models 
for uav search scheduling. In AIAA Guidance, Navigation, and Control 

[31] Diana Donath, Andreas Rauschert, and Axel Schulte. Cognitive assistant system 
concept for multi-uav guidance using human operator behaviour models. 
HUMOUSâ†‘, 2010.


VITA

Muhammad Junayed Hasan Zahed was born on September 1, 1989 in Chittagong, Bangladesh. He attended St. Mary’s School in Chittagong and then attended Ispahani Public School & College, Chittagong and graduated in 2008. In 2014, he earned Bachelor of Science degree in Mechanical Engineering from Bangladesh University of Engineering & Technology. After graduation, he has worked as a graduate research assistant under Dr. Travis Fields in the Drone Research and Teaching Laboratory. Junayed’s research has focused on the evaluation of pilot and quadcopter performance from open loop mission oriented flight test. After graduation Junayed plans to pursue PhD in the field of unmanned aerial vehicle and robotics.