
DeepNet: An Extensible Data Acquisition and Curation Framework

Supporting Computer Vision Deep Learning Research

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

TYLER NIVIN

Dr. Grant Scott, Thesis Supervisor

DECEMBER 2018

The undersigned, appointed by the Dean of the Graduate School, have examined

the thesis entitled:

DeepNet: An Extensible Data Acquisition and Curation Framework

Supporting Computer Vision Deep Learning Research

presented by Tyler Nivin,

a candidate for the degree of Master of Science and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Grant Scott

Dr. Curt Davis

Dr. Tim Matisziw

ACKNOWLEDGMENTS

I would like to thank Dr. Scott for his continued support and mentorship through

not only my graduate studies, but also through my undergraduate career. His pa-

tience, stoicism, and expertise are what have guided me on the path to where I am

today. I also would like to thank Dr. Davis. He had a large part in designing Deep-

Nets use-cases, and turning an implemented requirements spec into a project that

now is being used by multiple people, for multiple scenarios. His efforts helped make

the difference between a project that might not have been used again after I leave,

and a project that will continue on with a life of its own. Finally, I want to ac-

knowledge, some by name but not all, the efforts of my peers who helped implement

and discussed design decisions of DeepNet with me. James Alex Hurt, Raymond

Chastain, David Reese, and Alex Lasley all contributed significantly to the success of

DeepNet; your contributions were vital, and appreciated. A project such as DeepNet

eventually must either die, or become supported by more than the original authors;

it outgrows either its usefulness, or its support base. The consistently growing and

changing support base of DeepNet is what has made it into what it is today, and I’m

glad to have been able to see it grow into what it has.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF FIGURES . v

ABSTRACT . vi

CHAPTER . vi

1 Introduction . 1

2 System Overview . 6

2.1 Process Flow . 6

2.2 Connected Components . 7

2.2.1 Database . 8

2.2.2 Job Processing Server . 8

2.2.3 Web Application Server . 8

3 Database Design . 9

4 Automated Processes . 16

4.1 Data Ingestion . 16

4.2 Imagery Acquisition . 19

4.3 Dataset Creation . 21

4.4 Dataset Instantiation . 23

5 Web Application . 25

5.1 Curation Process . 25

5.2 Quality Assurance Process . 29

6 DeepNet Research Case Study . 33

iii

6.1 Exploring the Effects of Class-Specific Augmentation and Class Co-
alescence on Deep Neural Network Performance Using a Novel Road
Feature Dataset . 34

7 Summary and concluding remarks 36

BIBLIOGRAPHY . 38

iv

LIST OF FIGURES

Figure Page

1.1 DeepNet Data Flow Overview . 4

2.1 DeepNet Process Overview . 6

2.2 DeepNet System Overview . 7

3.1 DeepNet Schema Diagram . 14

3.2 Distribution of Geoms with More Than 1 Record 15

3.3 DeepNet Web Schema Diagram . 15

4.1 DeepNet Data Ingestion Sources . 17

4.2 DeepNet Imagery Acquisition Diagram 19

5.1 DeepNet Curation Activity Diagram 26

5.2 Main Curation Interface . 27

5.3 Seed Point / No Records Curation Interface 28

5.4 QA Search Interface . 29

5.5 Main QA Interface . 30

v

ABSTRACT

We present a system, DeepNet, for ingestion, curation, and management of geospa-

tial data images to facilitate a range of geospatial research. The system allows for

the semi-autonomous ingestion of geospatial data from a variety of sources while pre-

serving data integrity and provenance. This data repository can then be utilized in

a number of ways, with our focus being on the creation of high resolution remote

sensing imagery data sets (HR-RSIDS) of a variety of modalities. In addition to ag-

gregating public data sets, the framework includes open source research data points

which are found during the course of curation and quality assurance of data while

utilizing the framework. These features are of particular value since there is a real

possibility that features found during the utilization of the system do not exist in any

previously ingested geodata source; the result being that the system grows through

its utilization without the reliance on third-party geodata data sets being released

publicly.

By using DeepNet, we can substantially accelerate the production of HR-RSIDS

from public data that is available without imagery. While curating the imagery and

data does take a non-trivial amount of time, DeepNet has been designed to support

multiple-user curation via a web application component. Allowing multiple people

the ability to curate the data and imagery simultaneously allows for the curation

process to scale linearly with the number of people doing the curation work. Once

the data have been curated, creating a new data set from the data can be done in a

matter of minutes. This is especially useful because it allows the data sets created

with DeepNet to be corrected, augmented, and extended with new data.

We present both the design and implementation of the framework, as well as a

number of current and potential uses for the data that the framework manages.

vi

Chapter 1

Introduction

The domain of image understanding and scene classification has been an actively

researched area in the last several years. In an effort to promote the furthering of

this research, there have been several open image understanding challenges[1][2][3][4].

These challenges include a number of tasks including scene classification, object detec-

tion, road segmentation, image retrieval and land-use classification. It has been seen

time and again that machine learning techniques, and specifically deep convolutional

neural networks, excel at these sorts of image understanding tasks.

However, one of the well-known and discussed challenges of using deep learning

techniques is the need for large amounts of training data that are numerous in per-class

examples and high in intra-class diversity, inter-class similarity, and image quality.

In recent years, there have been several novel data sets published as benchmark data

sets to measure image understanding techniques against. A brief discussion of some

of the current benchmark datasets follows:

UC Merced Land Use Dataset The UC Merced Land Use Dataset [5] con-

tains 21 classes of different types of land use. Published in 2010, it has been exten-

1

sively used and has reached saturation with many current DCNN available today. It

includes class such as agricultural, airplane, baseball diamond, buildings, river, sparse

residential, and more. There are 100 images per class, with each image being 256x256

pixels. These are RGB images.

Aerial Image Dataset AID[6] was created for benchmarking aerial scene clas-

sification techniques, and the classes in the dataset reflect that. Published in 2016,

It has a total of 30 classes with 200-400 images per class. The image size is 600x600

pixels, and is available as RGB imagery. The classes in the dataset include airport,

bare land, baseball field, beach, bridge, commercial, dense residential, resort, river,

school and more.

NWPU-RESISC45 NWPU-RESISC45 was published in 2017 and contains 45

scene classes. Each class has 700 images, each 256x256 pixels. The GSD of this

dataset varies widely, ranging from 30m to 0.2m. NWPU-RESISC45 addresses the

lack some of the problems with UC Merced in [7], and tries to address some of these

identified problems, discussing the need for high intra-class diversity and inter-class

similarity. NWPU-RESISC45 is a remote sensing image scene classification dataset,

which inspired it’s name.

IARPAs Functional Map of the World Dataset FMOW[8] is one of the

most extensive imagery datasets available to-date, consisting of over 1 million images

spanning 63 categories. The dataset is available as both 4-band and 8-band multi-

spectral imagery, and RGB only imagery. The FMOW dataset was originally part

of the FMOW challenge in 2017. With a number of image modalities and temporal

views of the same features, FMOW is an extensive dataset.

2

PatternNet PatternNet was created as one of the first benchmark imagery

datasets to be used in the context of remote sensing imagery retrieval (RSIR). [9]

discusses the problems with trying to use land use / land cover (LULC) imagery

datasets in the context of RSIR. The authors call out the fact that LULC imagery

frequently contains more than just the primary feature of interest, which presents

challenges in the context of RSIR. PatternNet contains 38 classes and 800 images per

class. PatterNet is a dataset of RGB imagery.

While benchmark data sets are necessary and valuable assets in the image under-

standing area, their usability is limited. Each new benchmark dataset published has

covered the reasons for why the preceding datasets are not sufficient in various con-

texts. Many times the reasons cited include lack of intra-class diversty and inter-class

similarity, like discussed in [7]. Other problems were the inability to take current

benchmark datasets, and apply them in new contexts, such as the motivation that

led to the creation of PatternNet. Sometimes, like with UC Merced, the current tech-

niques simply just perform too well, and there is no room for measurable improvement

using a particular benchmark. All of the current benchmark datasets suffer from the

inability to easily publish updated versions, that could try to address these problems.

The techniques employed to create these datasets are time and labor intensive, taking

tens of thousands of hours in the case of FMOW. Notably, the authors of [8] describe

the system used to create the FMOW dataset in detail and the system described is

actually not far from what we have done with DeepNet.

Producing imagery data sets for use with deep learning continues to be a labor and

time intensive task. The collection of information, acquisition of imagery, curation

of imagery and semantic data, and packaging of the data into datasets is an involved

and multi-phased process. Attempting to produce quality image datasets quickly can

lead to problems with quality or limit the amount of data able to be included in a

timely manner. One can not simply trust public data at face value, and even the best

3

imagery acquisition systems can not be blindly trusted due to the variety of potential

problems inherent to acquiring large volumes of imagery.

The limited amount of benchmark datasets, their limited applicability to ”in-the-

wild” use-cases, the time and labor involved with trying to source imagery and data

publicly, and the fragmented nature of most open geodata sources are all problems

that limit the development of deep learning techniques for image understanding.

Figure 1.1: DeepNet Data Flow Overview

To this end, we have designed and implemented DeepNet: a system that aims to

address some of these problems. DeepNets primary function serves to agglomerate and

curate open geospatial data (OGD), pair it with HR-RSI from a number of providers

and of a number of modalities, and create and publish open HR-RSI datasets. Deep-

Net was designed to accelerate the process of creating HR-RSI datasets: The ingestion

of OGD is a semi-automated process, involving minimal developer interaction. The

curation of OGD and associated imagery is done with a web user interface (WUI),

against live tiling services from a number of imagery providers. The acquisition of

HR-RSI is parallel and scalable, allowing for mass image acquisition. Each image

and its associated data go through a secondary quality assurance process which, like

4

the curation phase, is done via WUI and can be done by multiple concurrent users.

Finally, the selection of data to include in a data set, image preparation, and dataset

creation can happen in a time-scale of minutes for tens of thousands of images. Figure

Fig. 1.1 contains a high-level overview of the framework pipeline.

The remainder of this thesis details the design of the DeepNet framework. Chap-

ter 2 describes the system, discussing each of the components in Fig. 2.2. Chapter 3

dives into the design of the geodatabase behind DeepNet. Chapter 4 discusses the

automated and semi-automated processes that ingest the data, acquire the imagery,

and instantiate the data sets. Chapter 5 examines the web applications that enable

the curation and quality assurance processes.. Chapter 6 contains one of the stud-

ies done using the DeepNet framework, as well as discusses other uses of DeepNet.

Chapter 7 is a summary of the DeepNet framework, use-cases, and future plans.

5

Chapter 2

System Overview

2.1 Process Flow

Figure 2.1: DeepNet Process Overview

Fig. 2.1 shows the path that data takes as it flows through the DeepNet framework.

Beginning with bulk data ingestion, each datum in the geodatabase is then curated

against one of many different live map tiling services. Once the semantic label and

position have been verified / corrected, we acquire an image for this datum, and

proceed to the quality assurance (QA) phase. In QA, we mainly look to verify that

the semantic label and position are correct (as a second-pass check on the accuracy

of our data) and also to ensure that we have successfully acquired a quality image for

this data point. Once a data point has made it through QA, it is made available for

inclusion in new data sets. Each of these steps will be explored more thoroughly later.

Chapter 4 discusses ingestion, acquisition, and data set creation, while Chapter 5

6

covers the curation and QA processes.

2.2 Connected Components

Geodatabase

Web Application Server

Curation / QA web clients

Job Processing Server

NFS

Figure 2.2: DeepNet System Overview

DeepNet has been segmented into three connected components. Doing so al-

lows for each of the components to be developed, tested, and function without much

concern for the other portions of the framework. Additionally, as with any system

architecture that employs a separation of concerns approach, the resources utilized by

each of the three components are independent of each other, allowing for the creation

of datasets, ingestion of data, and acquisition of imagery to have no impact on the

availability of resources for the web application server or the geodatabase.

7

Fig. 2.2 shows the system architecture for DeepNet.

2.2.1 Database

The geodatabase (GeoDB) is the central component of the framework, with both the

job processing server (JPS) and web application server (WAS) interfacing with it as

not only the host of the data that they operate on, but also to inform the JPS and

WAS of what work they have to do.

2.2.2 Job Processing Server

The job processing server (JPS) is responsible for the execution of the various pro-

grams that enable DeepNet. Specifically, this is the ingestion, acquisition, and dataset

creation applications. Each application ran on the JPS checks the GeoDB for what

work it has available. When public data is ingested into DeepNet, the code is exe-

cuted on the JPS and the data is written to the GeoDB. Image acquisition is driven

by which records in the GeoDB have been marked as curated, signaling that they are

ready to have an image associated with them. The parallel image download to NFS,

and the recording of the images as successfully acquired happens on the JPS.

2.2.3 Web Application Server

The web application server (WAS) hosts the web application that enables the online

curation and QA phases. The WAS communicates with the geodatabase for the data

necessary to facilitate the curation and QA (e.g. users, roles, assigned work, the

temporary staging of work in progress, etc.). The design of hosting curation and

QA as web applications means that any number of users can simultaneously perform

curation and QA with no more than access to a web browser.

8

Chapter 3

Database Design

When designing the schema for the database behind our framework we wanted to

ensure that it was both extensible and consistent; the geospatial data that we in-

gested can come from anywhere in any format, so long as it has location information.

Additionally, we wanted to design the framework to be able to handle imagery from

multiple image providers, image layers, and image modalities. This way, if we were

to gain access to other imagery sources we could rapidly bolster the imagery we have

without significant changes to the database design. One example of this would be

if we were to gain access to hyper-spectral imagery; with access to the new imagery

we can simply create new records in the database for the location-imagery pair with

minimal inherent redundancy. We also knew that the secondary data that exists

across datasets was useful for driving the semantic labeling of the feature and thus

we wanted to preserve it.

To meet these design constraints, we needed to define the driving datum in Deep-

Net. This datum is from here on referred to as a record. A record in DeepNet in the

following way:

1. A location, represented by a geometry entry in deepnet.geom

9

2. A semantic label, associated with the geomtry and represented by deepnet.geom.tag id

3. An image, which is catalogued by deepnet.record.filename, and is conceptually

the marriage of a geom with an image source, at a certain point in time.

This is not to be confused with the generic term record in the context of a database.

With the two main design constraints satisfied by the chosen definition of a record,

the rest of the schema design was straightforward: 1) Have the ability to associate a

semantic label with a location on the earth. 2) Pair this label and location with an

image from a provider and layer. 3) Facilitate the processing of the record, including

adding a schema to enable the web-based curation and QA processes.

As such, the database has been segmented into two main schemas: deepnet and

deepnet web. The deepnet schema serves as the main driving schema. It holds all of

the information for every record in the database, and also facilitates it’s movement

through the framework.

DeepNet has been designed to be as data-agnostic as is feasible. Due to this design

decision there are no assumptions about the image modality, format, file size, location,

or even type of imagery. While we use DeepNet in the context of HR-RSI, there is

nothing inherent in the database design that requires that; DeepNet could feasibly be

used to curate and create data sets for any sort of feature of interest that has location

information and an image. It makes sense then, that the only assumptions made in

the database are that the record has a location, a semantic label, and an image. This

can be seen in Fig. 3.1.

This flexibility is what supports some of the key features of DeepNet:

1. Any arbitrary image modality can be supported.

2. Each feature can have multiple representative images, including time-series and

a variety of modalities.

10

All of this is made possible by the main deepnet schema design. Fig. 3.1 shows

the tables and their inter-relationships. The two main driving aspects of this schema

are the geometries in deepnet.geom and the records in deepnet.record. Every feature

of interest in DeepNet has its location and semantic label captured in the geom table.

The deepnet.tags table enumerates all of the semantic labels used in the DeepNet

ontology. Each geom can only have a single semantic label associated with it, re-

moving the need for the complexity of handling multiple semantic labels. However it

is true that a place on the earth could correctly have more then one semantic label

associated with it. To allow for this, there is no unique constraint on the geometry

column (deepnet.geom.the geom).

In general, each geom will have one or more records associated with it. Fig. 3.2

shows the distribution of geoms that have more than one record. Recall that the

definition of a record is the marriage of a geom with an image. Each record has a

”curation status” (enumerated by deepnet.curation status xlat) which keeps track of

where in the framework curation pipeline this record is; as the record moves through

each phase, the curation status will be updated.

For a practical example consider: We have ingested a data point that tells us

that there is a Baseball Diamond in St. Louis, MO. We created a record for this

geom with image source 1, Digital Globe Maps API. This means that we have began

the process of acquiring an image from Digital Globe Maps API service for the St.

Louis Cardinals stadium. As the curation of the image is done, the records curation

status is updated accordingly. The image will have a nominal GSD, filename (which

is an implied location on disk), and date/time that the image was captured. Since

DG Maps API does not provide image capture date/time information, this record

has image dttm set to 01-01-2000, a default value that is before the first remote

sensing satellite launch. For this record, that’s all there is; it will proceed through

the framework and eventually be included in a dataset.

11

However, DeepNet allows us to have time-series imagery, and imagery from multi-

ple providers for the same feature. Continuing our example of the Cardinals stadium

above, say we want to have a view of the stadium over time. Digital Globe Maps API,

in it’s most basic usage, returns only a single image for the location requested. How-

ever, DeepNet also supports Digital Globe Cloud Services (DGCS), a different service

offered by Digital Globe that allows for getting historical imagery, not just the best

imagery. So we use the geom we created initially, and create a new record for each im-

age available from DGCS. Each of these records will be processed independently from

each other, allowing them to be handled differently as necessary. However, since we

have already confirmed that this feature existed at this location at least during some

point in time, these new records go straight to the acquisition phase. We have seen an

average of 38 time-series images for each record that we manually curate. Skipping

the curation phase saves days of unnecessary man power, and sacrifices nothing since

we have at least one record for this feature. Now we have both an image from DG

Maps API Premium Imagery layer, as well as a number of time-series images. If we

wanted to add even more images from a different image source for this geom, say a

synthetic aperture radar imagery provider, we would do so in the same way.

The deepnet schema also has a number of views that enable convenient analysis

of the data in DeepNet. The view record stats view simply displays counts for each

record status, allowing for a quick glimpse at the state of things. Similarly, the

view wait stats view pulls together information from a series of tables, aiding in

diagnosing what went wrong when a record fails to move forward in the processing

pipeline.

The last piece worth discussion is the collection of tables named ds ready, ds finalized,

and ds failed. These tables exist to facilitate the data set creation process. When

a dataset has been prepared successfully, and is ready to be instantiated, it will be

logged in ds ready. Once a dataset has been successfully instantiated, it moves to

12

ds finalized. If something goes wrong during the dataset creation process, the data

set will be added to ds failed.

The other schema, deepnet web, has been designed to accommodate the web work-

flow that is used during curation and QA. It contains all of the requisite data for the

web application, such as users, user access controls, work assignments, and temporary

storage for work that is in progress. Fig. 3.3 is a diagram of the deepnet web schema.

13

Figure 3.1: DeepNet Schema Diagram

14

Figure 3.2: Distribution of Geoms with More Than 1 Record

Figure 3.3: DeepNet Web Schema Diagram

15

Chapter 4

Automated Processes

Fig. 2.1 shows the processing steps taken as records make their way through the

framework. Steps 1 and 5 are mostly automated processes, with step 3 being com-

pletely automated. This chapter takes a look at steps 1, 3, and 5, with steps 2 and 4

being covered in the next chapter. After steps 1-4 in Fig. 2.1 have been completed, the

imagery is a candidate to be included in a new imagery data set. These datasets are

then used for deep learning research and, with the approval of the imagery provider,

released to the public, with hope that they serve useful in the computer vision field.

4.1 Data Ingestion

The lifecycle of a record in the framework begins when the data is ingested into the

geospatial database. To date, we have ingested over 80 geospatial datasets of features

of interest, with plans to expand the database in the immediate future. These datasets

have largely been in the keyhole markup language (KML) format, however a collection

of them were in comma separated value (CSV) format. In addition to KML and CSV

we have the ability to ingest nearly any format of geospatial information (web services,

16

DeepNet

GeoNames HIFLD Wikimapia Others...

Figure 4.1: DeepNet Data Ingestion Sources

JSON, well-known binary, well-known text, etc). This is due to the modular and object

oriented design of the Python ingestion script. We have defined a number of ways to

ingest vector and raster geospatial data, with each implementation only needing to

provide a minimum set of data. This is the same data mentioned in Chapter 3 when

we discuss the definition of a record.

The main concerns when developing a parser for the framework are complete data

ingestion and preserving data provenance. The focus on preserving any and all data

within the original data source is part of what makes the framework so powerful. For

example, the well-known GEONames [10] dataset contains over 9 million features of

interest. While the associated metadata of each feature allows us to efficiently select a

sub-set of these features for ingestion, preserving this data allows us to sub-set features

for curation after ingestion. In this way we can bulk-load many potential features of

interest, and assign them to proceed through the framework at our discretion. All

of this was designed in order to maximize the amount of available information, while

17

also allowing us to quickly identify feature sets that we wish to prioritize.

DeepNet has been designed to handle both 1) publicly available geospatial vector

data (e.g. data sets of latitude/longitude pairs with a semantic description of the fea-

ture) and 2) publicly available labeled raster image data sets. Raster data (typically

imagery of various geospatial features of interest) may or may not be accompanied

by location information, but always has at minimum a semantic label. This type of

data is ingested into the framework and immediately ready to be assigned for QA;

We bypass the curation and acquisition phases since this data already has associated

imagery. Vector data, conversely, must have location information associated with

each feature label in order to be of any use. This being the case, we create a geom

in deepnet.geom, and immediately create a record for this new geom, using a default

imagery source. Having both a geom and a record, the ingested data is ready to be

assigned for curation.

When ingesting both types of data, the semantic label used in DeepNet is either

1) the exact label provided in the original data source or 2) a mapping of the original

label to a label in the DeepNet ontology.

Being able to process both types of data gives us more flexibility. By being

able to ingest data that has nothing more than location and semantic label, we can

acquire imagery for features that do not have public imagery associated with them.

Conversely, whether it be across time, or for different image modalities, ingesting data

that has imagery and its location and semantic label means we can expand upon the

current public imagery data sets. When raster data does not have location information

available, we decided that it is still worth-while to ingest these datasets, as we can

combine current public datasets with other imagery from DeepNet, complimenting

public raster data with imagery that we have aggregated.

18

4.2 Imagery Acquisition

Figure 4.2: DeepNet Imagery Acquisition Diagram

Imagery acquisition is done as a batch-processing step. Once a record has been

marked as curated in the database, the image download process will attempt to

acquire an image for it. The downloader reads from the record table, and dispatches

a concurrent process to handle downloading of the image. If all goes well, the image is

written to a network file system, and marked as downloaded in the database. However,

there are a number of reasons that an image download could fail, with some being

outside of our control. Network ”hiccups” such as random disconnections, timeouts,

19

or even HTTP 500 responses from the imagery provider are all things the downloader

has to gracefully handle. When any of these types of problems occur, the downloader

reports the failed download to the database by setting the records curation status to

”wait”, with as much contextual information about the reason for failure as it can

provide. Later, these records can be examined by a DeepNet administrator, who then

makes a judgment call for these records; either try to acquire them again to see if the

failure was coincidental (which happens more often than one would think) or remove

the record as something has gone wrong that can not be fixed. When the decision

is made to do something other than simply try again, investigation is done to try to

determine the source of the error.

20

Sometimes, the downloader fails for reasons that are due to our systems. For

example, if the network file storage goes offline, the downloader will be unable to save

the image. In this case, the database may still be active; if so, the downloader will

mark the record as ”wait” and report that it failed to save the image. This is helpful

as it allows us to identify and fix the issue, and retry the ”wait” records that were

associated with this failure with high confidence that we should be able to acquire

those previously failed records. Further, if the downloader itself should completely

fail, say lose power in the middle of downloading the imagery, there is no cause for

concern. We have designed the downloader so that the records in the database will

not be updated until and unless the downloader finishes its task; the records will

either be left untouched, completely marked as downloaded, or completely marked as

failed.

4.3 Dataset Creation

The last step in the framework is to package the curated and quality assured data

points into a dataset ready for publication. After a record has been quality assured

(step 4 in Fig. 2.1), it is eligible to be included in a dataset. The selection of which

records to include in a dataset can happen in one of two ways:

SQL selection With SQL selection, the user identifies which records to in-

clude in the dataset by specifying metadata to match the records against. For ex-

ample, a user could decide to include all records with tag ”Bridge”, which also have

qa metadata field ”small” and limit those matches to records from DG Maps API.

This allows for dynamic selection of records based only on their metadata.

21

Record id based selection As an alternative to SQL selection, it is possible

to create a dataset through a list of record ids. When the dataset is created this way,

one uses a Python script that has been made for this process. The user provides the

Python script with a CSV of record id and semantic label. Like with SQL selection,

the semantic file for the dataset does not need any correlation with the DeepNet

tag ontology. With the record id based selection, the user can use arbitrary SQL

statements to select which records they want, iteratively building up the CSV file.

They also can manually edit the CSV file, making sure that specific records are

included or excluded.

Regardless of which method of record selection is used, dataset creation is a two-

step process. First, the dataset is prepared by defining the list of semantic class labels

that define the dataset. During the preparation step, the used also specifies the image

size and resolution on a per-class basis. This preparation step creates a staging schema

whose name is specified during dataset preparation. This schema contains a number of

tables that enumerate the dataset semantic labels, their associated export resolution

and image size, and the records to be included in the dataset. Additionally, metadata

about the records is preserved in the schema so that it can be included in tertiary

data files when the dataset is instantiated. Later, when the dataset is instantiated,

the source images will be resized and cropped around the feature in order to meet

the specified constraints. The last step in the dataset preparation process is the

specification of which records to include in the dataset, and what their semantic label

should be. If no invalid constraints have been specified, then the dataset will be added

to deepnet.ds ready, at which point the dataset can be instantiated.

22

4.4 Dataset Instantiation

Instantiating the dataset is done by invoking another Python script with the name

of the dataset (specified during the preparation phase), and the location to write

the dataset to. The dataset creator also allows for converting the image file type

during the instantiaton phase, should this be desired. The dataset creator reads the

information from the schema created in the dataset preparation phase. The dataset

creator then does the following:

1. finds the source file for each of the records listed in the dataset

2. performs any image transformations necessary to meet the constraints specified

in the dataset preparation phase

3. writes the transformed images in class-based folders in the destination

4. creates a metadata file containing metadata of each record in the dataset

5. creates a netadata file for the entire data set, containing statistics about the

images in the dataset

The resulting dataset consists of two metadata files and several folders contain-

ing the potentially transformed imagery. Each folder is named with the semantic

label defined during the dataset preparation phase. The dataset metadata file details

the name of the dataset, the version, the classes contained in the dataset, per-class

image counts, and any other data that the researchers find might be useful for the

consumption of the dataset. The per-image metadata file contains nearly all meta-

data associated with the record, including the QA metadata, original metadata from

ingestion, location information, semantic tag, theme, and original data source.

Should any of the constraints specified during the preparation phase be impossible

to meet (e.g. specifying a resolution and image size that can not both be met) the

23

dataset creator will report the error and stop. This is due to the fact that we have

decided to take a prudent approach toward dataset creation; if a record was specified

as to be included in the dataset, we do not want to finally fail to add it to the data

set. This prevents erroneously excluding records that were intended to be included,

and also calls attention to which records have caused the problem. When the dataset

creator has finished successfully, the instantiated dataset is ready for use in machine

learning experiments, or distribution as necessary.

24

Chapter 5

Web Application

5.1 Curation Process

Fig. 5.1 shows the different tasks and possibilities for a user during the curation phase.

The main goals of the curation process are to confirm that:

1. The ingested location does indeed have a feature of interest.

2. Our image provider has imagery for that location that includes the feature of

interest.

3. The ingested location is centered on the feature of interest .

4. The assigned semantic label is accurate and complete for the feature of interest.

5. There are no unnecessary duplicates in DeepNet.

After a feature is ingested, an initial semantic label is assigned to the feature

before curation; this initial label can come from a variety of places, but generally it

is based on the tertiary data in the features original data source. Pre-assigning a

label this way reduces the amount of labor required during the curation step; rather

25

Figure 5.1: DeepNet Curation Activity Diagram

than having to decide what a feature is, the curation user need only confirm that the

proposed label is accurate. If it is not, they have the opportunity to correct the label.

26

Figure 5.2: Main Curation Interface

It occasionally happens that while curating ingested features we find new features

of interest that are co-located. When this happens the curator can add a new feature

to the database with the correct semantic label. This is shown as path 2a in Fig. 5.1.

Because we use a live tiling service we can meet all five curation criteria for the

original feature and the new feature simultaneously.

Additionally, our curation interface allows a curation user to view any arbitrary

place on the earth, looking for potential features of interest without the requirement

of having ingested a location from a public data source. This allows us to enhance

our database with more than just pre-compiled public data, seeking and collecting

features of interest that may not be a part of any public dataset to-date. The same

mechanisms that allow us to do this arbitrary area exploration also allow us to do

area exploitation using the ingested feature locations as starting places. For example,

if we are interested in adding a number of parking lots with buses in them, we could

use the location of grade-shool campuses that are already in DeepNet as a starting

position for finding these parking lots.

27

Figure 5.3: Seed Point / No Records Curation Interface

If the curation user is unable to come to a decision about whether or not the

feature is at the location in question, they have the option of marking the record for

further review. This removes the record from the normal processing flow, but doesn’t

remove it entirely; it is set aside so that it can be assigned and reviewed by someone

with more experience, or against a future map tiling service.

Figs. 5.2 and 5.3 show the web application interface during the curation phase.

Fig. 5.2 shows the ability to edit the semantic label and drop a new point for a found

feature of interest. Not clear from a still image is that the location of the currently

under review record can be adjusted by clicking and dragging the marker to the

correct position. The red marker in the image is the record that is currently under

review. The green marker with the letter ”A” is another record that is already in

DeepNet. The ability to see other co-located DeepNet records allows the curation user

to know if they should add the neighboring feature or not. Additionally, if there is

doubt about whether or not the feature is in the image (blurry, cloudy, small feature,

etc.) seeing other features that should be co-located can help solidify the decision.

28

The tiles icon in the upper right corner of the user interface allows for changing

of the current map tiling service. This is useful when someone wants to view this

location on the earth against another map tiling service, such as Google Earth, or

OpenStreetMaps.

5.2 Quality Assurance Process

Figure 5.4: QA Search Interface

The quality assurance (QA) process that we have established allows us to do a

final verification that the image we have downloaded from the imagery provider for

this record (the same image that will eventually be part of a publishable dataset)

is of the same quality and content as what was viewed during live curation. This

is necessary because, it is feasible that we may use a different service for curation

than the service we acquire the image from. For example, our time-series imagery

come from a couple of different DigtalGlobe services; what is typically done is that

29

Figure 5.5: Main QA Interface

we curate records against the DigitalGlobe Maps API service, check to see if time-

series or other instances of the feature are available from the other services, and then

acquire and QA all of these records. This ”curate once, acquire multiple” approach

is what has allowed for the explosion of records in DeepNet in such a relatively small

time-frame.

While quality assuring an image the QA user has the ability to do a number of

things:

1. Verify the image was acquired successfully, and is worth inclusion in future

datasets.

2. See other feature points in our database that are physically co-located (for

feature de-duplication and for confirming the semantic label).

3. Verify and correct the semantic label if necessary.

4. Assign various metadata to the record to be used for dataset production and to

30

better define the record.

5. Assign secondary descriptive semantic labels that could be useful but are not

part of the established ontology.

Many aspects of the quality assurance process are a simple verification of the work

that is done during curation. However, there are a couple of tasks that are introduced

at this stage in the framework. Thevisual de-duplication ability from the curation

step is replicated during QA to ensure that we both do not have semantic duplicates

in the database and that we have not missed any features that we would like to

capture. Additionally, the QA user can assign various other supplementary labels (e.g.

camouflaged, earth, concrete, various types of land cover, etc.) that are potentially

useful for both the authors in creating discrete datasets and the consumers of the

published datasets. This is particularly useful with features that are both numerous

and varied in appearance, allowing the potential to release disparate datasets that

have the same feature class.

Figs. 5.4 and 5.5 show the QA interface. QA begins with the QA user selecting

which records they want to work on during the current session. As can be seen

in Fig. 5.4 the ability to select records is extensive, allowing for selection based on

any data point associated with the record. If the user does not wish to sub-select

from their assigned QA work, they have the option of clicking search with no options

selected, which takes them to a queue of all of their assigned records.

Once the user has decided which records they want to work on during a session

they are taken to the interface shown in Fig. 5.5. Fig. 5.5 shows the multitude of

options available to the QA user while working on a record. Here they can add

various metadata about the record, see it’s current semantic label, toggle off and on

the viewing of co-located records, and either accept or reject the record.

31

Not shown here is also the ability to simultaneously QA other records that are

associated with this same location and label. This capability allows for efficient review

of many records without the need to visit each one individually. This is particularly

helpful when there is many time-series images associated with a feature.

If a record is accepted during QA it’s metadata and status is updated in main

deepnet schema, and it is removed from the assigned work for that user. Once this

happens, it is ready to be included in a dataset. If the record is rejected for any reason,

it is not completely removed from the framework. It is cataloged as a ”soft reject”

since this record did make it through curation previously, and more investigation is

warranted.

32

Chapter 6

DeepNet Research Case Study

We have created a multitude of imagery datasets to support ongoing research projects.

Many of these datasets were used to support research into the effects of sensor col-

lection geometry on DCNN performance. The imagery and location information of

surface-to-air-missile sites in DeepNet are what supported the efforts in [11]. We

have created a novel high-resolution remote sensing imagery (HR-RSI) dataset of

nodal road network features (NRNF). This dataset was used in a study to explore

the potential of certain techniques to increase the fitness of DCNN models in the face

of limited or imbalanced training data. The techniques explored were class-specific

augmentation and semantic class coalescence.

Near-term plans for DeepNet include: 1) Extend and supplement the imagery

in the above mentioned NRNF dataset, and release it publicly so that it might be

utilized by the larger scientific community. 2) The continued publishing of new and

enhanced HR-RSID to continuously produce ever-more diverse and growing data sets

with which to benchmark and aid in furthering of the state-of-the-art.

What follows is the research done with the NRNF dataset mentioned previously,

and the results found. The research described below was submitted to IEEE for the

AIPR 2018 conference, and will be published in the near future. Look for the IEEE

33

conference paper for the full study.

6.1 Exploring the Effects of Class-Specific Aug-

mentation and Class Coalescence on Deep Neu-

ral Network Performance Using a Novel Road

Feature Dataset

We were interested in exploring the potential of two techniques for improving the

fitness of deep learning models in the context of a limited dataset. The techniques

we investigated were 1) class-specific augmentation (CSA) and 2) semantic class co-

alescence (SCC). We utilized DeepNet in order to create the nodal road network

feature dataset that was used in this experiment. The dataset we generated with

DeepNet was organized into two separate datasets in order to explore the semantic

class coalescence. The expanded, non-coalesced dataset contained the following 18

classes: 1) Bridge - Large, 2) Bridge - Medium, 3) Bridge - Small, 4) Cul-de-Sac,

5) Freeway Exchange - Clover, 6) Freeway Exchange - Diamond, 7) Freeway Exit, 8)

Road Intersection - 3WT (Three-way intersection with orthogonal angles), 9) Road

Intersection - 3WY (Three-way intersection with a Y shape), 10) Road Intersec-

tion - 4W (Four-way intersection that does not meet other category criteria), 11)

Road Intersection - 4W+ (Four-way intersection with orthogonal angles), 12) Road

Intersection - 4WX (Four-way intersection with non-orthogonal angles), 13) Road

Intersection 5/6W (Five and Six way intersections with various shapes), 14) Road

Overpass, 15) Road Overpass Group (consisting of more than one overpass), 16) Traf-

fic Circle - 3W, 17) Traffic Circle - 4W, and 18) Traffic Circle - 5W+. The second

dataset included all of the same images as the first dataset, with the following classes

coalesced as follows: all Traffic Circle classes were combined into one Traffic Circle

class, the Road Intersection classes were coalesced to 3W, 4W, and 5/6W, and the

34

two Road Overpass classes were combined into ”Road Overpass”. When the dataset

was created, we used all of the NRNF records that we had in DeepNet at the time.

At that time, we did not yet have time-series imagery, so the datasets used in this

research study did not contain temporal views of the features. We trained 12 models:

using both ResNet50[12] and Xception[13], we ran three experiments per network,

per dataset. The three experiments were a set of baseline augmentations, a more

aggressive rotation augmentation, and our set of class-specific augmentations.

To evaluate the performance of the models, we used five-fold cross validation

and measured the weighted f1-scores of the models. We also computed the McNemar

statistic for measuring the statistical relevance of the model performance deltas. That

is to say, per each dataset, we tested if the models performance baseline, maximal

rotation, and class-specific augmentation experiments were statistically different from

each other, and not just due to noise in the model training.

When considering the performance of the models, there were a few key take-

aways: For the expanded dataset, for both Xception based models and ResNet50

based models, the models trained with CSA had a statistically significant positive

delta from the baseline and maximum rotation experiments. Also of note, the model

trained with CSA and based on ResNet50 did not perform statistically different from

the models based on Xception. This is not what one would expect, since Xception

has depth-wise separable convolutional layers which generally lead to Xception based

models out-performing ResNet50 based models. For the coalesced dataset, the Xcep-

tion models outperformed the ResNet50 models as one would expect, and the CSA

based models did not significantly outperform the baseline models. This was inter-

preted as the CSA used for these experiments becomes ineffective after coalescing the

classes, which changes the decision surfaces and also creates class with more depth

and diversity of examples.

35

Chapter 7

Summary and concluding remarks

We created a system for ingesting, curating, acquiring, quality assuring, and packing

imagery into datasets to be used to support computer vision research. We have used

this system in our own research using HRRS imagery for a number of published and

unpublished works. The system we created, DeepNet, not only can provide HRRS

imagery, but is capable of providing imagery of a number of different modalities, as

well as multiple views of a feature of interest over time. DeepNet currently contains

over 4.5 million records, generated by ingestion of both raster and vector geospatial

data, as well as features of interest found while utilizing the framework.

Further, we evaluated CSA as a technique to help bolster training datasets that

were lacking in some classes but not others. Using DeepNet, we created a dataset

with a number of classes that were strongly imbalanced, lacking in number of available

examples, and semantically coalescable. CSA yielded small, but statistically signif-

icant improvements compared to our baseline experiments. It is feasible that more

aggressive or alternative CSA methods would have produced better results. We also

explored the effects of SCC, and the potential trade-offs it presents. SCC resulted in

improvements in the five-fold cross-validation results for the coalesced classes. Im-

provements in weighted F1-scores for the coalesced classes averaged 0.17.

36

DeepNet is an extensible framework that can change the way imagery data sets

for deep learning are currently created. We do not know of any other system like it

that stands to be capable of producing datasets with the breadth and depth that is

capable with DeepNet. What is also unique about DeepNet is the partnerships with

imagery providers that allow us to acquire imagery for a feature from a number of

sources. Other benchmark datasets to date typically publish imagery from a single

source, and all imagery in the dataset will be homogeneous. DeepNet has the poten-

tial to combine imagery from a multitude of image layers and modalities to provide

researchers with more views of a feature than has been seen to date. With 4.5 million

features currently in the framework under or past quality assurance, DeepNet has a

lot to offer. Additionally, its design will allow it to continue to grow and adapt as

new imagery modalities and sources become available.

37

Bibliography

[1] DEEPGLOBE - CVPR18. http://deepglobe.org/.

[2] Large-Scale Scene Understanding Challenge. http://lsun.cs.princeton.

edu/.

[3] Top Coder RoadDetector Challenge. https : / / community . topcoder . com /

longcontest/?module=ViewProblemStatement&rd=17036&pm=14735.

[4] SpaceNet Challenge: Road Extraction and Routing. https://spacenetchallenge.

github.io/Challenges/Challenge-3.html.

[5] Y. Yang and S. Newsam. “Bag-Of-Visual-Words and Spatial Extensions for

Land-Use Classification”. In: ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems (ACM GIS). 2010, pp. 270–279.

[6] G. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, and L. Zhang. “AID: A Bench-

mark Dataset for Performance Evaluation of Aerial Scene Classification”. In:

CoRR abs/1608.05167 (2016).

[7] G. Cheng, J. Han, and X. Lu. “Remote Sensing Image Scene Classification:

Benchmark and State of the Art”. In: Proceedings of the IEEE (2017).

[8] G. Christie, N. Fendley, J. Wilson, and R. Mukherjee. “Functional Map of the

World”. In: arXiv:1711.07846 [cs] (Nov. 2017). arXiv: 1711.07846. url: http:

//arxiv.org/abs/1711.07846 (visited on 10/31/2018).

38

[9] W. Zhou, S. Newsam, C. Li, and Z. Shao. “PatternNet: A Benchmark Dataset

for Performance Evaluation of Remote Sensing Image Retrieval”. In: ISPRS

Journal of Photogrammetry and Remote Sensing 145 (2018). url: https://

doi.org/10.1016/j.isprsjprs.2018.01.004.

[10] GeoNames. https://www.geonames.org.

[11] R. A. Marcum, C. H. Davis, G. J. Scott, and T. W. Nivin. “Rapid broad area

search and detection of Chinese surface-to-air missile sites using deep convolu-

tional neural networks”. In: Journal of Applied Remote Sensing 11 (2017). url:

https://doi.org/10.1117/1.JRS.11.042614.

[12] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image

Recognition”. In: arXiv preprint arXiv:1512.03385 (2015).

[13] F. Chollet. “Xception: Deep Learning with Depthwise Separable Convolutions”.

In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2017, pp. 1800–1807.

39

