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Existence and construction of real-valued equiangular tight frames

Daniel Redmond

Dr. Peter Casazza, Dissertation Supervisor

ABSTRACT

This paper presents results on real-valued equiangular tight frames (ETFs) and

related topics. Some geometric theorems are developed, and aspects of frame theory

are used to gain insight into ETFs. We develop a projection method for analyzing

equiangular tight frames that leads to new existence results, and that establishes a

link between the geometry of the ETF and the spectrum of the associated Gramian

and signature matrices. A new lower bound on the number of frame vectors improves

on the best known necessary conditions. We recover the Holmes-Paulsen criterion two

different ways, along with additional necessary conditions. We also show that ETFs

can be rotated to match a standard position, and that this corresponds to a binary

tree structure (partial ordering) of embedded sub-spheres of decreasing dimension.

This leads to a new canonical form and an enumerative algorithm to algebraically

construct or prove the non-existence of equiangular tight frames.
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Chapter 1

Introduction

1.1 Outline

This paper presents original and significant results of research into open problems

surrounding the study of equiangular lines and equiangular tight frames. This was

done under the guidance of, and in cooperation with, my adviser Dr. Peter Casazza,

and the some of the shared results are published in [9] and an upcoming paper [10].

We use frame theory tools to analyze equiangular lines and equiangular tight

frames, and give a new projection method to analyze equiangular tight frames that

uses both equiangularity and tightness, yields new theoretical existence results, leads

to a new canonical form, and results in a novel construction and existence-testing

algorithm.

In Chapter 1, Introduction, we give some basic definitions, review the results and

the structure of the paper, discuss the motivation for studying equiangular lines and

equiangular tight frames, and define the problems that will be addressed. We also

provide some of the important existing results as background information, and then

introduce some theorems as initial observations which are built upon in subsequent

chapters.
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In Chapter 2, Properties of Unit-Norm Equiangular Tight Frames, we apply tech-

niques from frame theory to the problem of the existence of equiangular tight frames

(ETFs). We derive a new lower bound on the number of lines in a given space. We

then develop a projection method that recovers the Holmes-Paulsen Theorem and

establishes a link between the geometry of equiangular tight frames and the spec-

trum of their associated Gramian and signature matrices. The projection method

also yields new insights into the existence conditions for equiangular tight frames,

and allows for a type of counting that leads to a discrete enumerative construction

and existence-testing algorithm in the last chapter.

In Chapter 3, Constructing Equiangular Tight Frames, we expand again on the

projection method from Chapters 1 and 2. This is done in an intuitive way, where

we build up to it using examples of constructing the equiangular tight frames in

R2, R3, and R7. We outline the decomposition of equiangular tight frames into

a dyadic partial ordering of embedded sub-spheres with prescribed size, location,

and internal angular conditions (corresponding to equiangularity in the full space),

and define a new standard position orientation of equiangular tight frames using

rotations and inversions to facilitate determining existence theoretically and with

the construction algorithm. This standard position is essentially a new canonical

form for the matrix of points, and leads to a discrete, finite, algebraic, enumerative,

combinatoric construction algorithm.

The major results are Theorem 12 on page 15, Theorem 20 on page 24 and the sub-

sequent corollaries and lemmata, and the canonical form and construction algorithm

outlined in Chapter 3.

Results and tables are summarized in several areas. A summary of the major

results given is in the next section. Major formulas and relationships summarized in

Section 2.2.2.3. A summary of existence conditions on equiangular tight frames is in

Section 2.3. A List of Tables and List of Figures can be found at the beginning of

2



the document. The appendices contain computer outputs in the form of matrices and

tables, and some additional proofs.

1.2 Overview

1.2.1 Motivation

We are interested in equiangular lines, equiangular frames, and equiangular tight

frames. These are closely related to Grassmannian frames, optimal Grassmannian

frames, and strongly regular graphs. They overlap other concepts such as spherical

codes, spherical t-designs, algebraic geometry, and sphere packing.

The idea of studying equiangular lines was first introduced by Haantjes in 1948 [14],

and the first major results come from the seminal paper by van Lint and Seidel in

1966 [29]. In 1973, Lemmens and Seidel [17] made a comprehensive study of real

equiangular line sets which is still a fundamental contribution. Little progress was

made until recently, but with the development of frame theory, and other new tools,

several recent advances, such as [25, 16], have reinvigorated the topic. For our pur-

poses, the area can be divided into three related topics: equiangular lines, equiangular

frames, and tight equiangular frames.

The study of equiangular lines is interesting in its own right as a geometric con-

struction problem, and relates to many other areas of mathematics. We are interested

in determining the maximum number of equiangular lines (through the origin) in a

given space, and constructing them. Still almost nothing is known about sufficient

conditions or methods of construction, and the maximum number of lines for RN is

only known for some of the dimensions N < 50.

We discuss the real-valued case from the point of view of frame theory and linear

algebra, as frames are a generalization of bases. Real-valued equiangular frames

correspond to equiangular lines that span their space. In particular we are interested

3



in the existence and construction of real-valued equiangular tight frames.

Equiangular tight frames are particularly interesting and useful. Tightness, in the

setting of ETFs, is a spectral and a geometric condition. Equiangular tight frames

correspond to optimal grassmannian packings of 1-dimensional spaces [25], and to

strongly regular graphs [25, 26]. In signal processing, equiangular tight frames meet

the Welch bound for optimal codes [25]. In coding theory they correspond to optimal

Gaussian channels [9, 26, 20, 18], and are thus ideal for certain information trans-

mission scenarios. Complex-valued equiangular tight frames are useful in quantum

information theory [23, 22, 21]. Tight frames are applicable to CDMA cellular tele-

phone network communication [19, 20], and are optimal for reconstruction in some

cases of erasures [16], or loss of coefficients. “Due to their rich theoretical properties

and their numerous practical applications, equiangular tight frames are arguably the

most important class of finite-dimensional frames, and they are the natural choice

when one tries to combine the advantages of orthonormal bases with the concept of

redundancy provided by frames” [24]. Equiangular tight frames were introduced by

van Lint and Seidel in the setting of discrete geometry [29].

For an introduction to frame theory, see [11]. A good source for more information

about abstract frame theory is The Art of Frame Theory by Peter Casazza [7].

1.2.2 Background definitions

A sequence of vectors F = {fk}k∈I , with |I| ≤ ℵ0, belonging to a (separable) Hilbert

space H, is a frame for H if there exist 0 < A,B such that

A ‖f‖2
2 ≤

∑
k∈I
|〈f, fk〉|2 ≤ B ‖f‖2

2 (1.1)
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for each f ∈ H. A frame {fk}k∈I is tight if there exists 0 < A such that

∑
k∈I
|〈f, fk〉|2 = A ‖f‖2

2 (1.2)

for each f ∈ H. If A = B = 1, F is a Parseval frame. If ‖fi‖ = ‖fj‖ for all i, j ∈ I,

then F is an equal-norm frame, and if ‖fi‖ = 1 for all i ∈ I then F is a unit-norm

or norm-1 frame. If we have the right hand inequality in inequality 1.1, then we call

{fi}i∈I a B-Bessel sequence.

If {fi}i∈I is a frame for H with frame bounds A, B we define the analysis oper-

ator T : H→ l2(I) to be

T (f) =
∑
i∈I

< f, fi > ei, for all f ∈ H,

where {ei}i∈I is the natural orthonormal basis of `2(I). The adjoint of the analysis

operator is the synthesis operator, which is given by

T ∗(ei) = fi.

It follows that T is a bounded operator if and only if {fi}i∈I is a Bessel sequence. We

also have that

‖T (f)‖2 =
∑
i∈I
|< f, fi >|2 .

The frame operator for the frame is S = T ∗T : H→ H given by

Sf = T ∗Tf = T ∗
(∑
i∈I

< f, fi > ei

)
=
∑
i∈I

< f, fi > T ∗ei =
∑
i∈I

< f, fi > fi,

which implies that

< Sf, f >=
∑
i∈I
|< f, fi >|2 .

Therefore, the frame operator is a positive, self-adjoint, and invertible operator

5



on H, with

A · I ≤ S ≤ B · I.

We can reconstruct vectors in the space using

f = SS−1f

=
∑
i∈I

< S−1f, fi > fi

=
∑
i∈I

< f, S−1fi > fi

=
∑
i∈I

< f, S−
1
2fi > S−

1
2fi.

The sequence {< f, fi >} is called the frame coefficients of the vector f ∈ H. Since

S is invertible, the family {S−1fi}i∈I is also a frame for H called the canonical dual

frame.

In the case where F is a tight frame, we have that S = AI, where I is the identity

map. This allows for decomposition (or reconstruction) with

f = 1
A

M∑
m=1

< f, fm > fm, for all f ∈ H,

which is a big advantage in applications, in that it acts like a basis up to a scaling

constant. We use this fact in the proof of Theorem 20 on page 24.

The Gramian matrix of a set of vectors f1, . . . , fM is the symmetric matrix G of

inner products, defined by Gi,j =< fi, fj >. In other words,

G = F ∗F. (1.3)

A frame {fk}Mk=1 in H is called a Grassmannian frame if it is a solution to

min{M({fk}Mk=1)}

6



where min is taken over all unit-norm frames and

M({fm}Mm=1) =: max{|〈fm, fn〉| : 1 ≤ m 6= n ≤M}.

It is known that

M({fk}Mk=1) ≥
√

M −N
N(M − 1) ,

and if we have equality then the Grassmannian frame is optimal. For more on

optimal Grassmannian frames, see [25].

For any family of vectors {fm}Mm=1, the frame potential is

FP ({fm}Mm=1) =
M∑

m,k=1
|〈fm, fk〉|2.

In this paper we will always have H = RN for some N ∈ N.

1.2.3 Definition of the problem

We are interested in equiangular lines, equiangular frames, and, in particular, equian-

gular tight frames.

A set L = {li}i∈I , with |I| ≤ ℵ0, of lines through the origin, is called a set of

equiangular lines if the acute angles between any two of them are the same. That

is, there exists some θ ∈ (0, 1), so that the acute angle between li and lj is arccos θ,

for all i, j ∈ I with i 6= j.

If we have a frame, F = {fi}Mi=1 in RN and θ ∈ (0, 1), such that

|〈fi, fj〉| = θ, for all 1 ≤ i 6= j ≤M, (1.4)

then F is called an equiangular frame, where θ is actually the cosine of the acute

angle of the equiangular lines corresponding to the frame vectors. In the same spirit
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as “equiangular”, for this paper we will call θ the system angle of F (we could

say that θ is the inner product of F , instead). If F is also tight, then it is an

equiangular tight frame or ETF. If F is a frame that is equiangular, tight, and

unit-norm, we call it a unit-norm equiangular tight frame or UNETF.

In a recent paper by Bodmann, Paulsen, and Tomforde [3], it is shown that if a

frame is tight and equiangular, it is automatically equal-norm. However, for clarity,

we will work with unit-norm equiangular tight frames in this paper.

Definition 1. For convenience we will now assign

α = 1
θ

for the rest of this paper. That is, if F is a UNETF, then α is the reciprocal of the

system angle of F .

Also, define the signature matrix of F :

A = 1
θ

(F TF − I) = 1
θ

(G− I),

where G is the Gramian of F . Analysis of the eigenvalues of the signature matrix A

has led to some fundamental results such as Theorem 4 on page 10 and Theorem 7

on page 11.

We are specifically interested in unit-norm tight equiangular frames for their inter-

esting theoretical properties, their intersection with other areas of research, and their

usefulness in applications. Tightness is generally thought of as as spectral property,

but we show it also has geometric implications in settings of equiangular frames.

We are primarily interested in unit-norm tight equiangular frames, so we are

looking for a set F of vectors {fk}Mk=1 in RN , a constant θ ∈ (0, 1), and A > 0 such

8



that

|〈fi, fj〉| = θ and ‖fi‖ = 1

and ∑
k∈I
|〈f, fk〉|2 = A ‖f‖2

2

for each f ∈ RN. It is also known that the tight frame bound is A = M
N

(Theorem 10).

If all of these conditions are all satisfied, then F is a UNETF.

1.3 Summary of existing results

Most of the known information about equiangular lines is summarized in [17]. What

results there have been since then are included in this paper and summarized in later

sections.

Let M be the number of elements in a real-valued unit-norm equiangular tight

frame in RN . It is known (see [17] or Theorem 2 below) that (1.4) can only hold if

M ≤ N(N+1)
2 . Also, we must have M ≥ N since if 0 ≤ M < N , then F cannot be a

frame because there are not enough vectors to span the space, and the lower frame

bound in equation (1.1) will fail if we choose a non-zero f outside of the span of the

vectors of F . If M = N , then F corresponds to a basis for RN . Therefore, we want

to construct sets F of norm-1 vectors which satisfy (1.4) with N < M ≤ N(N+1)
2 . It

is known (see Theorem 3 on the next page and 10 on page 14) that

θ ≥
√

M −N
N(M − 1) (1.5)

with equality in (1.5) if and only if F is equiangular and tight (also see Theorem

2.3 from [25], or [10]). In this case F is an optimal Grassmannian frame as in

Section 1.2.2.

An important result is the upper bound by Gerzon [17] on the number of equian-
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gular lines (and therefore on the number of elements of an equiangular frame) with

respect to the number of dimensions.

Theorem 2. [Gerzon] If there exist M equiangular lines in RN , then

M ≤ N(N + 1)
2 (1.6)

is an upper bound on the number of lines.

The next inequality was first discovered by Welch [30] in the context of coding

theory.

Theorem 3. Let {fm}Mm=1 be a unit-norm frame for HN . Then

M({fm}Mm=1) ≥
√

M −N
N(M − 1) ,

with equality if and only if {fm}Mm=1 is an equiangular tight frame. In this case the

tight frame bound is M
N
.

We give a proof of this in the next section. Also, if F is a UNETF, we have that

θ =
√

M −N
N(M − 1) (1.7)

and will assume this whenever discussing UNETFs for the rest of the paper.

An important theorem on the structure of equiangular lines was given by Peter

Neumann in [17], and its main idea was recently used to extend the result by the

authors of [26]. See Theorem 7 below.

Theorem 4. [Peter Neumann] If there existM equiangular lines in RN withM > 2N

and system angle θ = 1
α
, then α is an odd integer.

10



Corollary 5. If F is a UNETF with M > 2N and system angle θ = 1
α
, then α is an

odd integer.

Also important is the Holmes-Paulsen criterion which we will later recover in two

ways.

Theorem 6. [Holmes-Paulsen] If N < M and an ETF exists with M vectors for RN ,

then

(M − 2N)
√

M − 1
N(M −N) is an integer.

The two previous results were improved upon in [26], where the authors prove the

following:

Theorem 7. [Theorem A] Suppose that 1 < N < M − 1. When M 6= 2N , a UNETF

can exist only if

√
N(M − 1)
M −N

and

√
(M −N)(M − 1)

N
are odd integers.

In particular, M is an even number. Furthermore, if M = 2N , a UNETF can exist

only if N is an odd number and 2N − 1 is the sum of two squares.

Due to this, for the rest of the paper will we assign

α =
√
N(M − 1)
M −N

= 1
θ

and

β =
√

(M −N)(M − 1)
N

.

It is also known, see [26], that the above numbers α and β closely relate to the

eigenvalues of the signature matrix. That is, if F is a UNETF, then the associated
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signature matrix has two distinct eigenvalues, λ1 and λ2, given by:

λ1 = −α

λ2 = β.

1.3.1 Equiangular line sets

We are interested in constructing the maximal number of equiangular lines for a given

number of dimensions N for RN . Not much is known about this for large N . What

is known [17, 27, 9, 10] is summarized in Table 1.1:

Table 1.1: Known maximal equiangular line sets

N = 2 3 4 5 6 7 . . . 13 14 15 16 17 18
M = 3 6 6 10 16 28 . . . 28 28–30 36 ≥ 40 ≥ 48 ≥ 48
α = 2

√
5 3 3 3 3 . . . 3 5 5 5 5 5

N = 19 20 21 22 23 . . . 41 42 43
M = 72–76† 92–96† 126 176 276 . . . 276 ≥ 276 344
α = 5 5 5 5 5 . . . 5 5 7

†reported to be solved but actually still open

1.3.2 Equiangular tight frames

It is well known that orthonormal bases are UNETFs, and also that the standard

N -simplex of N + 1 points in RN+1 is equivalent to a (N + 1)-element UNETF for

RN . Therefore, there are always N and (N + 1)-element UNETFs for RN , and so we

will focus on the case M > N + 1.

Equiangular lines are not necessarily equiangular frames, as they may not span

the full space. A table of equiangular tight frames with M ≤ 100 is given in [26]. For

dimension N less than 50, and M > N + 1 we list the equiangular tight frames in

Table 1.2.
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Table 1.2: All equiangular tight frames for dimension M > N + 1 and N ≤ 50.

N M θ N M θ N M θ N M θ

3 6 1√
5 19 38 1√

37 25 50 1
7 41 246 1

9
5 10 1

3 19 76†† 1
5 27 54 1√

53 42 288†† 1
7

6 16 1
3 20 96†† 1

5 28 64 1
7 43 86 1√

85
7 14 1√

13 21 28 1
9 31 62 1√

61 43 344 1
7

7 28 1
3 21 36 1

7 33 66 1√
65 45 90 1√

89
9 18 1√

17 21 42 1√
41 35 120†† 1

7 45 100 1
9

10 16 1
5 21 126 1

5 36 64 1
9 45 540†† 1

7
13 26 1

5 22 176 1
5 37 74 1√

73 46 736†† 1
7

15 30 1√
29 23 46 1√

45 37 148†† 1
7 49 98 1√

97
15 36 1

5 23 276 1
5 41 82 1

9

†† means the existence is unknown.

1.3.3 Background

For completeness, some background theorems are given without proof, which can be

found in [10].

Theorem 8. If {fi}Mi=1 is a family of vectors in HN with frame operator S having

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN . Then

(1) We have:
M∑
m=1
‖fm‖2 =

N∑
n=1

λn.

(2) We have:
M∑

n,m=1
|〈fn, fm〉|2 =

N∑
n=1

λ2
n.

Proof. The proof is detailed in [10].

Proposition 9. For any family of vectors {fm}Mm=1 in HN ,

FP ({fm}Mm=1) ≥
1
N

(
M∑
m=1
‖fm‖2

)2

.
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We have equality if and only if the frame is tight. If this is a unit-norm frame then

FP ({fm}Mm=1) ≥
M2

N
,

with equality if and only if the frame is tight.

Proof. The proof is detailed in [10].

Theorem 10. Let {fm}Mm=1 be a unit-norm frame for HN . Then

M({fm}Mm=1) ≥
√

M −N
N(M − 1) ,

with equality if and only if {fm}Mm=1 is an equiangular tight frame. In this case the

tight frame bound is M
N
.

Proof. Let S be the frame operator for the frame with eigenvalues λ1 ≥ λ2 ≥ · · · ≥

λN . Then applying Theorem 8 and Proposition 9 we have:

M + (M2 −M)M({fm}Mm=1)2 ≥
M∑

m,k=1
|〈fm, fk〉|2

≥ M2

N
.

Hence,

M({fm}Mm=1)2 ≥
M2

N
−M

M2 −M
= M −N
N(M − 1) .

Since we have equality, we have:

M∑
m,k=1

|〈fm, fk〉|2 = M2

N
,

and so the frame is tight. We also have

M∑
m,k=1

|〈fm, fk〉|2 = M + (M2 −M)M({fm}Mm=1),

14



and so the frame is equiangular.

Corollary 11. If {fm}Mm=1 is a unit-norm equiangular tight frame for HN , then no

subset is a tight frame for HN .

Proof. The function

f(x) = N(x− 1)
x−N

is strictly decreasing and so we can have equality only once in Theorem 10.

1.4 Fundamental observation

The following is a useful observation about equiangular lines and equiangular frames.

Theorem 12. Let {fi}Mi=1 be a UNETF in RN . By applying a change of phase, and

taking inverses as necessary, we can assume that

< fM , fm >= θ for all m = 1, 2, . . . ,M − 1.

Let I − P be the orthogonal projection of RN onto the span of fM . Let

ψm = Pfm
‖Pfm‖

, for all m = 1, 2, . . . ,M − 1.

The following are equivalent:

(1) |〈fi, fj〉| = θ for all 1 ≤ i 6= j ≤M − 1.

(2) 〈P (fi), P (fj)〉 = ±θ − θ2 for all 1 ≤ i 6= j ≤M − 1.

(3) 〈ψi, ψj〉 = ±θ−θ
2

1−θ2 = θ
1+θ or −θ1−θ for all 1 ≤ i 6= j ≤M − 1.

Proof. (1)⇔ (2): Let fi, fj be elements of F with i 6= j. By our assumptions, there

15



is an orthonormal basis for RN whose last element is ψM , so we can write:

fi = (P (fi), θ)

fj = (P (fj), θ)

where θ ∈ (0, 1) ⊂ R1. Now we have that

θ = |〈fi, fj〉|

= |〈(P (fi), θ), (P (fj), θ)〉|

= |〈(P (fi), 0), (P (fj), 0)〉+ 〈(0, . . . , 0, θ), (0, . . . , 0, θ)〉|

=
∣∣∣〈P (fi), P (fj)〉+ θ2

∣∣∣ .
Remove the absolute value to get that |〈fi, fj〉| = θ if and only if

〈P (fi), P (fj)〉 = ±θ − θ2.

(2)⇔ (3): Since |〈fM , fj〉| = θ and ‖fi‖ = 1 for all 1 ≤ i ≤M , we have that

‖P (fi)‖ =
√

1− θ2 for all 1 ≤ i ≤M − 1.

Therefore,

ψi = P (φi)√
1− θ2

,

and we get that

〈P (φi), P (φj)〉 = ±θ − θ2

if and only if

〈ψj, ψk〉 =
〈
P (φj)√
1− θ2

,
P (φk)√
1− θ2

〉
= ±θ − θ

2

1− θ2 .
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This theorem is used to prove some of our main results, such as Theorem 20 in

Section 2.2.2.

The rational functions in (3) are used repeatedly and so we will label them. These

functions map the system angle θ for dimension N to the two values θ
1+θ and −θ1−θ for

the inner products between the relative north pole of the reduced (N−1)-dimensional

space and points in the space, a necessary condition if the points in the full N -

dimensional space are mutually equiangular with system angle θ on SN−1 ⊂ RN .

Definition 13. Let

f+(x) = x

1 + x

with domain (−1
2 , 1) and range (−1, 1

2). Next, let

f−(x) = −x
1− x,

with domain (−1, 1
2) and range (−1, 1

2). Note that f−1
+ (x) = −f−(x), and also that

f−1
− (x) = −f+(x).

The graphs of these functions are given in Figure 1.1 and Figure 1.2. Theorem 12

can be useful for constructing UNETFs. Examples of the construction of the UNETFs

with 3 vectors in R2 and 6 vectors in R3 are given in Section 3.2.1 on page 48, and

this technique is developed further in subsequent sections.
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Figure 1.1: The graphs of f+ and |f−|

Figure 1.2: The graphs of f+, f−, f−1
+ , and f−1

−
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Chapter 2

Properties of Unit-Norm

Equiangular Tight Frames

2.1 Initial ideas

In this section we will derive a number of relationships between the system angle of

an equiangular tight frame and the values of M and N .

First we use Naimark’s Theorem, a tool from frame theory, to develop the concept

of the complementary UNETF, which leads to a new lower bound on the number of

vectors in a UNETF for a given dimension. This is an improvement on the best

known necessary conditions, and a counterexample to the conjecture in [26], that

their Theorem A (given on page 11 above) is a sufficient condition for existence. We

list all such counterexamples up to N = 1, 000, 000 in Table 2.2 on page 24.

Next, we use Theorem 12 on page 15, and apply projection techniques to analyze

an arbitrary UNETF. Using both tightness and equiangularity, we are able to divide

M − 2 of the M points into two sets, and count how many vectors are in each

set. This establishes a link between the geometry of the UNETF and the spectrum

of the associated Gramian and signature matrices. It also provides a number of
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insights into the relationship between N , M , and α that help to classify UNETFs.

We recover the Holmes-Paulsen criterion and improve upon it. This technique leads

to the constructing and existence testing algorithm of Chapter 3.

2.2 Frame theoretic analysis

2.2.1 Complementary equiangular tight frame

A theorem by Naimark [8, 15] says that:

Theorem 14. [Naimark] The family {fm}Mm=1 is a Parseval frame for RN if and

only if there is an orthogonal projection P on RM satisfying Pem = fm for all m =

1, 2, . . . ,M where {em}Mm=1 is an orthonormal basis for RN .

Lemma 15. Let P be an orthogonal projection on RM and let {em}Mm=1 be an or-

thonormal basis for RM .

1. {Pem}Mm=1 is equal norm if and only if {(I − P )em}Mm=1 is equal norm.

2. {Pem}Mm=1 is equiangular if and only if {(I − P )em}Mm=1 is equiangular.

Proof. (1) is obvious.

(2) For all 1 ≤ i 6= m ≤M we have

|〈(I − P )ei, (I − P )em〉| = |〈ei, ei〉 − 〈Pei, em〉 − 〈ei, P em〉+ 〈Pei, P em〉|

= |〈Pei, P em〉|.

Now, since we can renormalize any tight frame into a Parseval frame, we get that:

Theorem 16. If F = {fm}Mm=1 is an equiangular tight frame for RN with Pem =√
N
M
fm, then F c = {

√
M

M−N (I − P )em}Mm=1 is an equiangular tight frame for R(M−N).
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We call this the complementary equiangular tight frame, and will denote it

as F c.

This shows that UNETFs come in pairs, one with M elements in RN and the

complementary one withM elements in R(M−N). Applying the known upper bound to

the complementary equiangular tight frame gives a new lower bound on the existence

of UNETFs. Essentially, if the number of vectors in the original frame is below the

new lower bound, then the number of vectors in the complementary equiangular tight

frame will be above the known upper bound.

Definition 17. If F is a UNETF with M vectors for RN , then let F c denote it’s

complementary UNETF with M vectors in RM−N .

Theorem 18. [New Lower Bound] If F is an UNETF with M vectors in RN , then

we have

M ≤ min
{
N(N + 1)

2 ,
(M −N)(M −N + 1)

2

}
, (2.1)

except for when M = N or M = N + 1. Solving the 2nd value for M leads to the

bound:

LB(N) =
⌈

2N + 1 +
√

8N + 1
2

⌉
≤M ≤ N(N + 1)

2 . (2.2)

Proof. Note that we need the conditions on (2.1), because the theorem fails if M =
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N + 1. Rearranging the 2nd value in (2.1), and solving for M , we get

M ≤ (M −N)(M −N + 1)
2

⇐⇒

2M ≤ M2 − 2NM +M +N2 −N

⇐⇒

0 ≤ M2 − 2NM −M +N2 −N

⇐⇒

0 ≤ M2 + (−2N − 1)M + (N2 −N). (2.3)

The zeros of (2.3) (i.e. equality) occur when

M = −b±
√
b2 − 4ac

2a

=
2N + 1±

√
(2N + 1)2 − 4(N2 −N)

2a
2N + 1±

√
4N2 + 4N + 1− 4N2 + 4N

2a
2N + 1±

√
8N + 1

2 .

We can discard the negative option sinceM < 2N+1±
√

8N+1
2 = N+ 1

2±
√

2N + 1
4 < N ,

a contradiction by assumption since we started with N + 1 < M ≤ N(N+1)
2 . The

function in (2.3) is increasing in terms of M , so we get that

M ≥
⌈

2N + 1 +
√

8N + 1
2

⌉
= LB(N).

This means that F must not have too few vectors in order to guarantee that F c, the

complementary UNETF of F , does not have too many vectors. A list of the lower

bound for each 2 ≤ N ≤ 50 is given in Table 2.1.
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Table 2.1: N and LB(N) for 2 ≤ N ≤ 50

N LB(N) N LB(N) N LB(N) N LB(N) N LB(N)
2 5
3 6
4 8
5 9
6 10
7 12
8 13
9 14
10 15

11 17
12 18
13 19
14 20
15 21
16 23
17 24
18 25
19 26
20 27

21 28
22 30
23 31
24 32
25 33
26 34
27 35
28 36
29 38
30 39

31 40
32 41
33 42
34 43
35 44
36 45
37 47
38 48
39 49
40 50

41 51
42 52
43 53
44 54
45 55
46 57
47 58
48 59
49 60
50 61

Example 19. Theorem 7 (Theorem A from [26]) allows that there could exist 64

vectors forming a UNETF in R56, since

α =
√
N(M − 1)
M −N

=
√

56(64− 1)
64− 56 = 21

is an odd integer and so is

β =
√

(M −N)(M − 1)
N

=
√

(64− 56)(64− 1)
56 = 3

However, this is not possible since

M = 64 < 68 =


2(56) + 1 +
√

8(56) + 1
2

 = LB(56) = LB(N),

a contradiction of Theorem 18.

Table 2.2 gives a list of computed N ,M values that satisfy the conditions of Theorem

A, but which do not exist because its complementary UNETF does not exist (it has

too many vectors) by the lower bound of Theorem 2.2.
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Table 2.2: List of all possible UNETFs for 2 ≤ N ≤ 1, 000, 000 that satisfy Theorem
A, but do not exist by Theorem 18.

N M d.n.e LB(N)
56
552
2256
6320
14280
28056
49952
82656
129240
193160
278256
388752
529256
704760
920640

64
576
2304
6400
14400
28224
50176
82944
129600
193600
278784
389376
529984
705600
921600

68
586
2324
6433
14450
28294
50269
83064
129749
193783
279003
389635
530286
705948
921998

2.2.2 Projection method

The following important theorem lets us count the number of points on the parts of

a projected ETF corresponding to the two possible inner product values as given in

Theorem 12. We also get a new relationship between the eigenvalues of the associated

Gramian and signature matrices, and the geometric distribution of the points. The

power of this next theorem comes from that it uses both equiangularity and tightness,

while reducing the dimension of the problem.

Theorem 20. Let {fm}Mm=1 be a unit-norm equiangular tight frame for RN . Then

the tight frame bound is M
N

and the system angle is

θ =
√

M −N
N(M − 1) .

By applying a change of phase and taking inverses, we assume

〈fM , fm〉 = θ, for all m = 1, 2, . . . ,M − 1.
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Let I − P be the orthogonal projection of RN onto the span of fM . Let

ψm = Pfm
‖Pfm‖

, for all m = 1, 2, . . . ,M − 1.

The following hold:

(1) {ψm}M−1
m=1 is a unit-norm tight frame with tight frame bound

M

N(1− θ2) = M − 1
N − 1 .

(2) We have
M−1∑
m=1

ψm = 0.

(3) We have

−1 = x
θ

θ + 1 + y
θ

θ − 1 ,

where

x =
∣∣∣∣∣{1 ≤ m ≤M − 2 : 〈ψM−1, ψm〉 = θ

θ + 1}
∣∣∣∣∣ ,

and

y =
∣∣∣∣∣{1 ≤ m ≤M − 2 : 〈ψM−1, ψm〉 = θ

θ − 1}
∣∣∣∣∣ .

(4) We have

1 = (M − 1)θ2 + (x− y)θ

= M −N
N

+ (x− y)
√

M −N
N(M − 1) .

Hence,
M − 2N

N
= (y − x)

√
M −N
N(M − 1) .

Proof. (1) Since {fm}Mm=1 is a tight frame with tight frame bound M
N
, and P is an

orthogonal projection, we have that {Pfm}M−1
m=1 is a tight frame with bound M

N
. Since
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‖Pfm‖2 = 1 − θ2, we get that {ψm}Mm=1 is a tight frame with the new tight frame

bound as stated.

(2) Since

fM = M

N

M∑
m=1
〈fM , fm〉fm = M

N
‖fM‖2fM + M

N

M−1∑
m=1
〈fM , fm〉fm.

Hence,

(1− M

N
‖fM‖2)fM = M

N

M−1∑
m=1
〈fM , fm〉fm.

Now,

0 = P (1− M

N
‖fM‖2)fM = M

N

M−1∑
m=1
〈fM , fm〉Pfm = θ

M

N

M−1∑
m=1

Pfm.

Finally,

0 =
M−1∑
m=1

Pfm =
√

(1− θ2)
M−1∑
m=1

ψm.

(3) By (2),

−ψM−1 =
M−2∑
m=1

ψm.

Now we compute,

−1 = 〈ψM−1,−ψM−1〉

=
M−2∑
m=1
〈ψM−1, ψm〉

= x
θ

θ + 1 + y
θ

θ − 1 .

(4) Multiply through the equation in (3) by (θ + 1)(θ − 1) to get

−(θ + 1)(θ − 1) = xθ(θ − 1) + yθ(θ + 1).

Hence,

1− θ2 = xθ2 − xθ + yθ2 + yθ.
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We now have

1 = (x+ y + 1)θ2 + (y − x)θ.

Since x+ y + 1 = M − 1 and

θ2 = M −N
N(M − 1) ,

we have (4).

Part (2) is interesting. It is known that if F is a tight frame for R2 then its

elements must sum to zero. In general, this is not true for tight frames for RN when

N > 2. Part (2) tells us that for any N , if F is a tight equiangular frame, then all

the points sum to zero after a projection along one of them, after taking inverses if

necessary.

The following is immediate from Theorem 20, Part (4).

Corollary 21. If {fm}Mm=1 is an equal norm equiangular tight frame for RN , then

one of the following must hold:

(1) x = y and so M = 2N .

(2) x 6= y and √
M −N
N(M − 1) is rational.

Another important consequence is that if we substitute θ = 1
α
into the equation

in part (4) of Theorem 20, we get that

1 = (M − 1)θ2 + (y − x)θ

⇔

0 = α2 − (y − x)α− (M − 1). (2.4)

Lemma 22. We have that αβ = M − 1.
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Proof. By direct computation

αβ =
√
N(M − 1)
M −N

√
(M −N)(M − 1)

N
=
√

(M − 1)2 = M − 1. (2.5)

Now recall the Rational Root Theorem, which can be proven using Gauss’s lemma

about primitive polynomials.

Theorem 23. [Rational Root Theorem] If f(x) = anx
n + · · ·+ a0x

0 is a polynomial

with integer coefficients, and a0 6= 0, then if f(x) has any rational root r = ±p
q
, with

p, q relatively prime positive integers, then p is a divisor of a0 and q is a divisor of

an.

The Integral Root Theorem is a special case of the Rational Root Theorem.

Theorem 24. [Integral Root Theorem] Let f(x) = xn + an−1x
n−1 + · · · + a0x

0 be a

monic polynomial with integer coefficients and a0 6= 0, then any rational root of f(x)

must be an integer.

Corollary 25. If F is a UNETF, the numbers α and β are both integers, and so are

the eigenvalues of the signature matrix.

Proof. By Corollary 21, we know that α is a rational number. By the Integral Root

Theorem 24, it must be an integer. By the Rational Root Theorem, α is a divisor of

(M − 1), so that M−1
α

is an integer. But now by Lemma 22,

β = M − 1
α

is an integer.

This shows that α and β are both positive integers.

Lemma 26. y − x = α− β.
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Proof. Equation (2.4) says that 0 = α2 − (y − x)α− (M − 1). Rearrange and divide

by α to get

y − x = α− M − 1
α

= α− β.

In this notation we can now rewrite the Holmes-Paulsen condition.

Lemma 27. The Holmes-Paulsen criterion is equivalent to saying that F is an ETF

only if the sum of the eigenvalues of the signature matrix is an integer. That is,

(M − 2N)
√

M−1
N(M−N) is an integer if and only if −α + β = λ1 + λ2 is an integer, or

equivalently

Holmes-Paulsen⇐⇒ α− β ∈ Z.

Proof.

(M − 2N)
√

M − 1
N(M −N) = (M − 2N)

N

√√√√N(M − 1)
(M −N)

= x− y

= β − α

= λ1 + λ2

where the second step is from Theorem 20, part (4).

Now we recover the Holmes-Paulsen criterion in two ways:

If F is a UNETF, then by Corollary 25, α and β are both positive integers, and

therefore β−α is an integer. By Lemma 27, the Holmes-Paulsen criterion is satisfied.

Lemma 26 also recovers the Holmes-Paulsen criterion, since if F is a UNETF,

α − β = y − x must be an integer, since x and y are integers, being cardinalities of

finite sets as defined in Theorem 20. Once α−β is an integer, then we are done after
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applying Lemma 27. To summarize:

(M − 2N)
√

M − 1
N(M −N) = β − α = y − x

is an integer, since y − x is an integer.

2.2.2.1 Some resulting equations

Lemma 28. Formula for x and y (from part (3) of Theorem 20) in terms of α and

β:

x = (α + 1)(β − 1)
2

y = (α− 1)(β + 1)
2 .

Proof. We have that shown in Lemma 26 that y−x = α−β, and by definition, from

Theorem 20, we have that x+ y + 2 = M . Starting with the first equation, and then

substituting for y using the second, we get that

x = y − α + β

= (M − x− 2)− α + β

⇔

2x = (M − 1)− 1− α + β

= αβ − 1− α + β

and so x = (α+1)(β−1)
2 , where the substitution using (M − 1) = αβ comes from

Lemma 22. The proof for y is similar.

Lemma 29. With no restrictions on x and y, we have that

y = x
(
α− 1
α + 1

)
+ α− 1 (2.6)
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and

y − x ≤ α− 1. (2.7)

Proof. If there are no restrictions on x and y, then (2.10) is equivalent to (2.6) by

algebraic manipulation. Since 0 < α−1
α+1 < 1 we can write

x ≥ x
(
α− 1
α + 1

)
= y − α + 1

Hence

y − x ≤ α− 1

or

x ≥ y − α + 1.

Lemma 29 tells us that y cannot be much larger than x in a sense.

2.2.2.2 Conditions on M, N, and α

The following describes when the maximal number of vectors can be achieved.

Lemma 30. We can have M = N(N+1)
2 if and only if N = α2 − 2 where α ∈

{3, 5, 7, . . .}.

Proof. If N = α2 − 2, then it is easy to check using equation (2.15):

M = (α2 − 1)N
α2 −N

= (α2 − 1)(α2 − 2)
α2 − (α2 − 2)

= (N + 1)N
2 .
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Conversely, if M = N(N+1)
2 , then by equation (2.15) again

N(N + 1)
2 = (α2 − 1)N

α2 −N

if and only if

(N + 1)(α2 −N) = 2α2 − 2

if and only if

N2 − α2N +N − a2 + 2α2 − 2 = 0

if and only if

N2 − (α2 − 1)N + (α2 − 2) = 0

if and only if [
N − (α2 − 2)

]
(N − 1) = 0

if and only if (since N ≥ 2)

N = (α2 − 2).

Lemma 31. N |αM .

Proof. From equations (2.9) and (2.14) (which comes from part (4) of Theorem (20),

we get that
αM

N
− 2α = y − x,

so that αM
N

is an integer.

Lemma 32. If N is even and RN has an equiangular tight frame with M elements

then 4 divides M .

Proof. We have that
αM

N
= 2α + x− y, is even.
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i.e.
αM

2N = α + x− y
2 , an integer.

Since α is odd and N is even, we have that 4 divides M .

Lemma 33. (M −N)|N(N − 1) and α2 > N ≥ α (for both x = y and x 6= y) and

α2 = N + N(N − 1)
M −N

. (2.8)

Also, α = N if and only if M = N + 1.

Proof. Using equations (2.9) and (2.15), we get that

α2 = N(M − 1)
M −N

= (M −N)N +N2 −N
M −N

= N + N(N − 1)
M −N

which gives (2.8) and shows that (M −N)|N(N − 1).

From equation (2.8) we have immediately that α2 > N . To see that N > α.

Set f(x) =
√

N(x−1)
x−N on [N + 1,∞). Since f(x) is strictly increasing, α = f(x) <

f(N + 1) = N for all x ∈ [N + 1,∞). We have that N ≥ α when M ≥ N + 1.

Next, M = N + 1 implies α = N by equation (2.8). The other direction, that

α = N impliesM = N+1 is clear because f(x) is strictly increasing on [N+1,∞).

2.2.2.3 Summary of relationships

If F is an M vector UNETF for RN with system angle θ = 1
α
, and F c is the comple-

mentary UNETF with M vectors for RM−N with system angle θc = 1
β
then we have

the following:
1
α

= θ =
√

M −N
N(M − 1) (2.9)
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− 1 = x
θ

θ + 1 + y
θ

θ − 1 (2.10)

1 = (M − 1)θ2 + (y − x)θ (2.11)

α2 − (y − x)α− (M − 1) = 0 (2.12)

M

N
− 2 = (y − x)

√
M −N
N(M − 1) (2.13)

M − 2N
N(y − x) =

√
M −N
N(M − 1) (2.14)

M = (α2 − 1)N
α2 −N

(2.15)

N = α2M

α2 +M − 1 (2.16)

x = (α + 1)(β − 1)
2 (2.17)

y = (α− 1)(β + 1)
2 (2.18)

M = αβ + 1 (2.19)

N = 1 + αβ

1 + β
α

= α(αβ + 1)
α + β

(2.20)

M −N
N

= M − 1
α2 . (2.21)

2.3 Existence conditions

2.3.1 Connection to tight spherical 5-designs

In a recent paper [1], Bannai, Munemasa, and Venkov showed, in the setting of tight

spherical t-designs, that a UNETF does not exist for N = 47 and M = 1128 (which

also means that no ETF exists for N = 47) and infinitely many other values of N .
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In their setting, tight 5-designs (with tight having a different meaning than that of a

tight frame) correspond to ETFs that attain the maximal number of points, that is

when N = α2 − 2, and M = N(N+1)
2 for odd α.

Theorem 34. [Bannai, Munemasa, and Venkov] [1] Suppose that m = 2k is even,

k ≡ 2 mod 3, and that both k and 2k + 1 are square-free. Then no tight spherical

5-design exists in RN with N = (2m + 1)2 − 2, and there are infinitely many such

occurrences. In addition, no tight spherical 5-design exists when m = 3.

The theorem rules out existence of a tight spherical 5-design for infinitely many

values of m, starting with m = {4, 10, 22, 28, 34, 46, 52, 58, . . .}. Therefore, infinitely

many (previously thought to be possibly valid) values of M and N for UNETFs are

ruled out, with N = (2m+ 1)2 − 2, M = N(N+1)
2 , and α = 2m+ 1.

Example 35. If we choosem = 4, thenN = (2·4+1)2−2 = 79 cannot have a UNETF

with the maximal number of points, which would be M = 3160 by equation (2.15).

This rules out the case of α = 9, N = 79, M = 3160.

2.3.2 Summary of best known necessary conditions

If N + 1 < M < N(N+1)
2 , then we must have that:

1. If M 6= 2N , then α and β must be odd (Theorem 7).

2. If M = 2N , then N is an odd number and 2N − 1 is the sum of two squares

(Theorem 7).

3. We must have that
⌈

2N+1+
√

8N+1
2

⌉
≤ M ≤ N(N+1)

2 (by equation 2.2 of Theo-

rem 18.

4. If M = N(N+1)
2 , and there exists m, k ∈ N such that N = (2m + 1)2 − 2 with

m = 2k, k ≡ 2 mod 3, and both k and 2k + 1 are square-free, then there is
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no UNETF with M vectors for RN . Additionally, we cannot have N = 47 and

M = 1128 (m = 3), by [1] and Theorem 34.

For a table of all possibleM and N values, up to N = 1000, remaining after applying

all of the known necessary conditions above, see Appendix C.
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Chapter 3

Constructing Equiangular Tight

Frames

Very little is known about methods to construct or prove the existence of equiangular

lines, equiangular frames, or tight equiangular frames.

Most constructions for equiangular frames come from graph theory, and there

is a 1–1 correspondence between UNETFs and strongly regular graphs [26]. For an

introduction to strongly regular graphs, see [4, 29, 5, 6]; for the related concept of two-

graphs, see [13]. A construction given by de Caen [12] yields 2
9(N + 1)2 equiangular

lines in RN when N = 3 · 22t−1 for any t ∈ N. This compares well with the upper

bound of N(N+1)
2 , but in general does not give tight equiangular frames.

A large number of exact-valued UNETFs and equiangular line sets have been

constructed by Janet Tremain [27]. These are usually sparse and are interesting, in

that they show patterns that might lead to generalization or other insights.

A search algorithm was developed in [28], which uses projections alternating be-

tween geometric and spectral conditions to solve a variety of matrix nearness prob-

lems. It converges numerically, and the authors are able to find the equiangular tight

frames for RN up to dimension N = 6.
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We give examples of manually constructing UNETFs using the ideas established

in the previous chapters. These lead naturally to defining a new standard position

orientation of ETFs using rotations and inversions to facilitate determining existence

and methods of construction. This standard position is essentially a new canoni-

cal form for the matrix representation of the frame, and leads to a discrete, finite,

enumerative, and combinatoric construction algorithm that finds the UNETFs if and

only if they exist, has deterministic runtime, is guaranteed to terminate, and gives

exact algebraic coordinates.

3.1 Projecting and spherical decomposition

Let F be a UNETF. If we apply a Givens rotation, then F is still a UNETF, since

rotations are angle preserving conformal mappings. Also, if we take inverses of points,

the equiangularity condition is preserved since

|< fi, fj >| = |< −fi, fj >| for all 1 ≤ i, j ≤M ,

and tightness is preserved since

∑
k∈I\{i}

|〈f, fk〉|2 + |〈f, fi〉|2 =
∑

k∈I\{i}
|〈f, fk〉|2 + |〈f,−fi〉|2 .

Therefore, we may rotate and take inverses of F without loss of generality. If

F is a UNETF with M vectors for RN , then apply Givens rotations until one of

the elements lies on the first coordinate axis. For instance fM = (1, 0, . . . , 0) ∈ RN.

Similarly, we may take the inverses of the remaining points, as needed, so that

< fi, fM >= +θ, for all 1 ≤ i ≤M − 1.
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That is, we can assume that f1, . . . , fM−1 all lie in the same upper half space as

fM . We will call this orientation the standard position, but a more general version

will be given in a later section, see Definition 40 on page 57.

We saw in Lemma 28, that we can write:

x = (α + 1)(β − 1)
2

y = (α− 1)(β + 1)
2 .

Similarly, x and y are determined exactly by M and N , since these determine α

and β. Geometrically, this means that, if we assume without loss of generality that F

is in standard position, the points f1, . . . , fM−1 have the property that you may pick

any one of them, and out of the remaining M − 2 points, x of them are “near”, with

inner product θ, and y of them are “far” with inner product −θ.

3.1.1 Projecting and normalizing to get a similar problem

In general, given SN−1, the unit sphere in RN , with N arbitrary and finite, if we fix

the desired system angle θ ahead of time, and without loss of generality choose φ0

to be the north pole (0, 0, . . . , 0, 1) of Sn−1, then any further points must lie on a

sphere of one lower dimension with center at (0, 0, . . . , 0, θ) and radius
√

1− θ2 (see

Figure 3.6). We then want to use a projection to map this sub-sphere down to its

first N − 1 dimensions.

To start the construction of the M vectors in RN , we will use rotations, Theo-

rem 12, and Theorem 20. Let θ ∈ (0, 1) ⊂ R. We are looking for sets F = {φi}i∈I⊂N

of points on SN−1 in RN satisfying condition (1.4) that also form a tight frame for
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RN . Define

M0,0 = SN−1 ⊂ RN (3.1)

θ0,0 = θ

φ0 = (0, . . . , 0, 1) ∈M0

M∗
1,0 = {f ∈ RN | 〈φ0, f〉 = θ0,0 and ‖f‖ = 1} (3.2)

We can also define

C+
i = {x ∈ Rn | 〈φi, x〉 = θ}

as the positive cone of equiangularity about φi.

Geometrically, M∗
1,0 = C+

0
⋂ SN−1 where C+

0 = {x ∈ RN | 〈φ0, x〉 = θ0} or the

positive cone of equiangularity about φ0, and SN−1 = {x ∈ RN | ‖x‖ = 1} is the unit

sphere in N -dimensional space. Without loss of generality, since φ0 is the north pole

of M0,0, we use the positive cone only. The absolute value in (1) makes the negative

cone redundant, because for all x we have that

|〈φ0,−x〉| = |− 〈φ0, x〉| = |〈φ0, x〉| .

Consider P (M∗
1,0) where I−P is the orthogonal projection of RN onto the span of

φ0. As shown in Theorem 12, the equiangularity condition corresponds to a similar

condition on the projected sub-sphere, that is that:

|< Pφi, Pφj >| = a or b,

where, in this case, a = θ − θ2 and b = −θ − θ2.

This means that, for an arbitrary point P (φ1) on P (M∗
1,0), the remaining points
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Figure 3.1: Simplified structure of possible points on the spherical decomposition

must lie on one of two spheres (of one lower dimension) corresponding to the two

new inner product values a and b. Suppose these sub-spheres are projected along the

arbitrary point P (φ1) (that is, the orthogonal projection that reduces dimension by 1

and maps P (φ1) to the origin), and then similarly normalized to be unit spheres. We

label these in a dyadic fashion, so that for a normalized sphere Mi,j, the normalized

projected sub-spheres are Mi+1,2j and Mi+1,2j+1. See Figure 3.1.

The idea is to fix some of the points correctly without loss of generality, and then

lower the dimensionality of the problem and repeat until the potential for placing more

points is exhausted. The downside is that constraints between multiple “cuts” must

be explicitly constructed and are complex algebraically; nevertheless, this method can

establish and construct norm-1 equiangular frames with the smallest possible system

angle θ.
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3.1.2 Decomposing into sub-spheres of one lower dimension

As shown previously, we have reduced the main problem of finding points on the

sphere SN−1 in RN to a related problem (not involving absolute values) in RN−1

where we want to find points on SN−2 satisfying

〈ψj, ψk〉 = a or b, for all 1 ≤ j 6= k ≤M − 1

where

a = θ

1 + θ
= f+(θ) b = −θ

1− θ = f−(θ)

We would like to keep reducing the dimension, and, repeating the process, we

have that at each level the two new possible angles are given by a function of two

variables:

Definition 36. For x, y ∈ R, let

gy(x) = x− y2

1− y2 .

Suppose we consider a sub-sphere Mk,l as in Figure 3.1, and suppose we want that

〈φi, φj〉 = θ+
k,l or θ

−
k,l, for all appropriate i 6= j with φi, φj ∈ Sn−k−1 ⊂ Rn−k, where

θ+
k,l and θ−k,l are arbitrary in (−1, 1). Looking for points on Mk+1,2l (for example), call

them {ψi} with 〈ψi, ψj〉 = θ+
k+1,2l or θ

−
k+1,2l, does not work the same way as starting

from M0, because we do not have that
∣∣∣θ+
k,l

∣∣∣ =
∣∣∣θ−k,l∣∣∣.

Reducing dimension the first timeM0,0 7→M1,0, we get that the functions mapping

the allowable angles θ+
k,l and θ−k,l, because of the absolute value in (1.4), are special

cases of the more general function for mapping points Mk,l 7→Mk+1,2l, Mk+1,2l+1:

gy(x) = x− y2

1− y2
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Figure 3.2: Graph of the inner product transition function gy(x) = x−y2

1−y2

where x is the positive or negative preimage of the inner product and y is which cut

we are picking to project onto, (x and y are θ+
k,l and θ−k,l of the previous Mk,l for some

k and l.)

This can be viewed as x determining the allowable angles in the new sphere, and

y as the amount of normalization. Dropping the l for convenience (localize notation

to one sphere), if we project into the positive cut (moving left on Figure 3.1), then

θ+
k+1 = gθ+

k
(θ+
k )

θ−k+1 = gθ+
k

(θ−k )

If we project onto the negative cut (move down and right on Figure 3.1), then

θ+
k+1 = gθ−

k
(θ+
k )

θ−k+1 = gθ−
k

(θ−k )

43



Letting wi,2j and wi,2j+1 be the inner-product values corresponding to the equiangu-

larity conditions mapped down to the Mi,j, we can find a recursive definition for the

inner-product values corresponding to a lower-dimensional sphere as depicted in the

tree from Figure 3.1.

Definition 37. Let w0,0 = +θ, w0,1 = −θ, and

wi,j = gw
i−1,b j2c

(wi−1, 2b j4c+ j mod 2) (3.3)

Using this formula we can compute the tree of rational functions associated with

the tree of sub-spheres1. See Figure 3.32:

θ −θ ← unused

gθ(θ) or gθ(−θ)

ggθ(θ)(gθ(θ)) or ggθ(θ)(gθ(−θ)) ggθ(−θ)(gθ(θ)) or ggθ(−θ)(gθ(−θ))

gggθ(θ)(gθ(θ))(ggθ(θ)(gθ(θ))) or gggθ(θ)(gθ(θ))(ggθ(θ)(gθ(−θ))) . . .
. . . . . .

or

w0,0 = +θ w0,1 = −θ ← unused

w1,0 = gw0,0(w0,0) w1,1 = gw0,0(w0,1)

w2,0 = gw1,0(w1,0) w2,1 = gw1,0(w1,1) w2,2 = gw1,1(w1,0) w2,3 = gw1,1(w1,1)

with3:

gw0,0(w0,0) = θ
θ+1

gw0,0(w0,1) = θ
θ−1

1recall that, without loss of generality, −θ has no branches below it
2computed by Mathematica
3computed by hand
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gw1,0(w1,0) = θ
2θ+1

gw1,0(w1,1) = θ(1+3θ)
(θ−1)(1+2θ)

gw1,1(w1,0) = θ(1−3θ)
(θ+1)(1−2θ)

gw1,1(w1,1) = θ
2θ−1

+θ −θ ← unused

θ

θ + 1
θ

θ − 1
θ

2θ + 1
θ(1 + 3θ)

(θ − 1)(1 + 2θ)
θ(1− 3θ)

(θ + 1)(1− 2θ)
θ

2θ − 1 .

Each pair of two produces four at the next level down. Equivalently, each problem

statement in Mk,l produces two new problem statements, one each in Mk+1,2l and

Mk+1,2l+1.

θ{
θ
θ+1 ,

θ
θ−1

}{
θ

2θ+1 ,
θ(3θ+1)

(θ−1)(2θ+1) ,
θ(3θ−1)

(θ+1)(2θ−1) ,
θ

2θ−1

}
{

θ
3θ+1 ,

θ(5θ+1)
(θ−1)(3θ+1) ,

θ(7θ2+2θ−1)
(θ+1)(5θ2−1) ,

θ(3θ+1)
5θ2−1 ,

θ(3θ−1)
5θ2−1 ,

θ(7θ2−2θ−1)
(θ−1)(5θ2−1) ,

θ(5θ−1)
(θ+1)(3θ−1) ,

θ
3θ−1

}
{

θ
4θ+1 ,

θ(7θ+1)
(θ−1)(4θ+1) ,

θ(11θ2+2θ−1)
(θ+1)(8θ2−θ−1) ,

θ(5θ+1)
8θ2−θ−1 ,

θ(7θ2+2θ−1)
(3θ+1)(4θ2+θ−1) ,

θ(17θ3+5θ2−5θ−1)
(θ−1)(3θ+1)(4θ2+θ−1) ,

θ(13θ2+4θ−1)
(θ+1)(8θ2+θ−1) ,

θ(3θ+1)
8θ2+θ−1 ,

θ(3θ−1)
8θ2−θ−1 ,

θ(13θ2−4θ−1)
(θ−1)(8θ2−θ−1) ,

θ(17θ3−5θ2−5θ+1)
(θ+1)(3θ−1)(4θ2−θ−1) ,

θ(7θ2−2θ−1)
(3θ−1)(4θ2−θ−1) ,

θ(5θ−1)
8θ2+θ−1 ,

θ(11θ2−2θ−1)
(θ−1)(8θ2+θ−1) ,

θ(7θ−1)
(θ+1)(4θ−1) ,

θ
4θ−1

}
Figure 3.3: Evaluation of wi,j|θ for i ∈ {0, . . . 4} and j ∈ {0, . . . , 2i − 1}

notice the pattern up and down the outer diagonals. The pattern of the left

diagonal, for instance, is
{
θ, θ

θ+1 ,
θ

2θ+1 ,
θ

3θ+1 , . . .
}
and hints at more structure than we

are currently using.
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Lemma 38. wk,0 = θ
kθ+1

Proof. It is easy to prove the formula with induction. First, w0,0 = θ
0·θ+1 = θ, which

is true by definition. Next, if we assume wk−1,0 = θ
(k−1)θ+1 , then

wk,0 = gwk−1,0(wk−1,0) (defn. of wi,j)

=
wk−1,0 − w2

k−1,0

1− w2
k−1,0

(defn. of g)

= wk−1,0

wk−1,0 + 1

=
θ

(k−1)θ+1
θ

(k−1)θ+1 + 1

=
θ

(k−1)θ+1
θ

(k−1)θ+1 + (k−1)θ+1
(k−1)θ+1

=
θ

(k−1)θ+1
kθ+1

(k−1)θ+1

= θ

kθ + 1 .

46



Figure 3.4: Plot of the rational functions from Figure 3.3

The tree structure of inner products is similar to Pascal’s triangle, in that each

entry depends on the two entries immediately above it (except the ones on the ends).

As an example, take the case of the maximal number of lines for R6 (which do

not actually exist), so that N = 6, and M = 21. For the largest M = N(N+1)
2 the

optimal angle is θ =
√

M−N
N(M−1) =

√
N(N+1)

2 −N
N(N(N+1)

2 −1)
=
√

N2+N
2 − 2N

2
N2(N+1)

2 − 2N
2

=
√

N2−N
N3+N2−2N =√

N(N−1)
N(N2+N−2) =

√
N(N−1)

N(N+2)(N−1) =
√

1
(N+2) . We get that θ = 1

2
√

2 . Substituting into the

above, we get the tree of inner products:
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{0.261204,−0.546918}

{0.207107,−0.660189,−0.0540971,−1.20711}

{0.171573,−0.734591,−0.405463,−1.94281,−0.057191,−1.21358, 3.30602, 5.82843}

{0.146447,−0.787201,−0.799456,−2.76777,−0.681981,−2.52179, 1.50656, 2.06066,

−0.0606602,−1.22085, 3.23608, 5.68198, 0.767767, 0.513742, 0.930058, 0.853553},

and the same, but in angular degrees:

{74.8585, 123.156}

{78.0471, 131.314, 93.101, 180.− 36.2668i}

{80.1207, 137.273, 113.92, 180.− 73.5271i, 93.2786, 180.− 36.8111i, 0.+ 106.868i, 0.+ 140.286i}

{81.5789, 141.925, 143.078, 180.− 96.0752i, 132.999, 180.− 90.3131i, 0.+ 55.4778i, 0.+ 77.4234i,

93.4777, 180.− 37.4109i, 0.+ 105.581i, 0.+ 138.805i, 39.8462, 59.0866, 21.5561, 31.3997}

Notice that many of the values in the first listing are outside of (−1, 1). If a value

is outside of (−1, 1), then that also eliminates all of its sub-spheres (in the sense of

Figure 3.1) from consideration, even if their required inner product values are inside

of the interval (−1, 1).

3.2 Examples

3.2.1 3 equiangular lines in R2

We will construct the 3 vectors for the UNETF in R2. By Gerzon’s Theorem, we know

that 3 is the maximal number of lines or vectors in R2. Without loss of generality, let

φ0 = (0, 1) in R2, let φ1 and φ2 be in the same half-space as φ0, and suppose we want

the system angle to be equal to an arbitrary value θ ∈ (0, 1) ⊂ R. Then we have that
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the last coordinate for φ1 and φ2 must be θ. That is, set

φ1 = (φ1,1, θ)

φ2 = (φ2,1, θ),

so that φ1 and φ2 are both equiangular to φ0.

Now, since φ1 and φ2 are unit-norm, we have that φ2
1,1 + θ2 = 1 and φ2

2,1 + θ2 = 1.

This implies that

φ1,1 = ±
√

1− θ2

φ2,1 = ±
√

1− θ2.

Since, φ1 and φ2 must be distinct, we choose without loss of generality that

φ1,1 = +
√

1− θ2

φ2,1 = −
√

1− θ2.

Next, for the three vectors to be equiangular, we must have that < φ1, φ2 >= θ or

−θ. However, this means that

φ1,1 · φ2,1 + θ2 =
(√

1− θ2
) (
−
√

1− θ2
)

+ θ2

= −1 + 2θ2

= θ or − θ.

First, consider the case −1 + 2θ2 = θ. This is impossible, because this quadratic

equation has two real solutions 1 and −1
2 , both of which are out of bounds, as θ ∈

(0, 1). Second, consider the case −1 + 2θ2 = −θ. This quadratic equation has

two real solutions −1 and 1
2 . Only the latter is allowable, and so it is the only
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(a) Our constructed vectors (b) Traditional Mercedes-Benz
symbol representation

Figure 3.5: 3 vectors forming the equiangular tight frame for R2

choice that remains. That is, by applying the unit-norm and equiangular conditions,

we have eliminated the possibilities so that we are left with the solution θ = 1
2 as

the system angle, and this gives the first coordinates φ1,1 =
√

1− θ2 =
√

3
2 and

φ2,1 = −
√

1− θ2 = −
√

3
2 . The 3 vectors are:

φ0 = (0, 1)

φ1 = (
√

3
2 , θ)

φ2 = (−
√

3
2 , θ).

The set must also form a tight frame by Theorem 10 on page 14, and so we have

constructed the 3 vectors forming a unit-norm equiangular tight frame for R2. In

matrix form we have: 
0 1
√

3
2

1
2

−
√

3
2

1
2

.

We can also take inverses of the last two points, to recover the traditional Mercedes-

Benz symbol as a representative of this equivalence class (under rotations and inver-
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sions) of equiangular tight frames. See Figure 3.5 on the preceding page.

3.2.2 6 equiangular lines in R3

To start the construction, of the 6 equiangular lines in R3 using rotations and Theo-

rem 12, let θ ∈ (0, 1) ⊂ R. We are looking for sets F = {φi}i∈I⊂N of norm-1 vectors

in RN satisfying condition (1.4).

Example 39. 6 in R3. Lemma 12 can be used to analytically find the six vectors in

R3 that satisfy (1.4), i.e. they are mutually equiangular in the sense that the absolute

values of all pairwise inner products are equal to the same θ ∈ (0, 1). We find the

correct θ analytically.

Let φ0 = (0, 0, 1) and θ ∈ (0, 1). Next consider the points on M∗
1,0 (see 3.1.1 on

page 39) and set φ1 = (0,
√

1− θ2, θ) and set P such that I − P is the orthogonal

projection onto the span of φ0. Now consider the projected sphere P (M∗
1,0) where

P (φ1) is the relative north pole of the sub-sphere, a circle (see Figure 3.6). Define θ1

as the inner product of the elements of M1,0. By Lemma 12,

θ1 = ±θ − θ2.

Without loss of generality, let φ1, . . . , φ5 be oriented counter-clockwise starting with

φ1 at the north pole in M1,0. Next define ψi = P (φi) for i ∈ {1, . . . , 5} and corre-

sponding φ1, . . . , φ5 on M∗
1,0. It is also required that the distances between adjacent

elements on the circle P (M∗
1,0) must be the same, because under rotation any other

point on P (M∗
1,0) can be considered the relative north pole for purposes of computing

the correct inner product between elements, and “angle (not inner product) between

adjacent elements being equal” is a sufficient condition for this. If αi,j is the angle
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Figure 3.6: Three equiangular points on S2 ⊂ R3 with φ0 = (0, 0, 1)

between ψi and ψj, the equidistance condition is equivalent to saying that

2α1,2 = α1,3.

Using the formula

cos(αi,j) = < ψi, ψj >

‖ψi‖2 ‖ψj‖2
, (3.4)

we get that

α1,2 = arccos
(
< ψ1, ψ2 >

‖ψ1‖2 ‖ψ2‖2

)

= arccos
(
θ − θ2

1− θ2

)

= arccos
(

θ

1− θ

)
,

and similarly,

α1,3 = arccos
(
−θ

1− θ

)
.

Combining we get an equation for θ which constrains the vectors so that they are all
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equiangular to φ0 , and each other, by the Lemma 12:

arccos
(
−θ

1− θ

)
= 2 arccos

(
θ

1 + θ

)

Compare the graphs of these functions to see that a numerical algorithm will converge

quickly.

Figure 3.7: Graph of arccos
(
−θ
1−θ

)
and 2 arccos

(
θ

1+θ

)

Using the identity cos(2x) = 2 cos(x)− 1, we can solve for θ analytically:

(
−θ

1− θ

)
= cos

(
2 · arccos

(
θ

1 + θ

))

= 2 cos2
(

arccos
(

θ

1 + θ

))
− 1

= 2
(

θ

1 + θ

)2

− 1

= 2θ2

(1 + θ)2 −
(1 + θ)2

(1 + θ)2

= θ2 − 2θ − 1
(1 + θ)2 .
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Figure 3.8: Six equiangular points on the icosahedron

Equivalently,
−θ (1 + θ)2

(1− θ) (1 + θ)2 = (1− θ) (θ2 − 2θ − 1)
(1− θ) (1 + θ)2

⇐⇒

−θ − 2θ2 − θ3 = −θ3 + 3θ2 − θ − 1

⇐⇒

5θ2 − 1 = 0.

Solving for θ yields a unique positive value 1√
5 ≈ 0.447214, in which case F is tight

and equiangular by condition (1.5). The points given by F ⋃{−f |f ∈ F} correspond
to the points of an icosahedron inscribed in the unit sphere, as shown in Figure 3.8.
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The exact coordinates, with respect to the standard basis, are:

This demonstrates the construction of 3 and 6 equiangular lines in R2 and R3

respectively, which are the maximum possible as given by equation (1.6). A paper

by Benedetto and Kolesar [2] does this in another way. The maximum number of

equiangular lines for R2 and R3 was first determined by Haantjes [14] in the setting

of elliptic geometry.

3.2.2.1 A simpler method

Another way, using the methods outlined above, is to start off by using the fact that if

F is a UNETF with 6 vectors in R3 we know that θ =
√

M−N
N(M−1) = 1√

5 . By Theorem 12

on page 15, we know the inner products on the projected normalized sub-sphereM1,0.

That is, if ψi and ψj are arbitrary points on M1,0 corresponding to vectors of F , then

we must have that

〈ψi, ψj〉 = θ

1 + θ
or −θ

1− θ = 1
1 +
√

5
or 1

1−
√

5
,

which correspond to 72 and 144 degrees respectively. Since 2N = M , we know by

Corollary 21 on page 27 that α = β =
√

5. By Lemma 28 on page 30, we can

determine that x and y are both 2. Now since M1,0 is 2-dimensional, the sub-spheres

corresponding to each inner-product value, M2,0 and M2,1 are both 1-dimensional,
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containing a maximum of two possible points. This gives the possible layout of the 6

points: the first one chosen arbitrarily in M0,0, the second one chosen arbitrarily in

M1,0, and two sets of two possible points on M2,0 and M2,1.

Because we know the radius and inner product of the highest dimensional sphere,

we can determine the radius, inner product, and location of the sub-spheres, in an

iterative fashion. We can then check that the given points are all mutually equiangular

and form a tight frame, which they do.

3.2.3 28 equiangular lines in R7

The UNETF consisting of 28 vectors in RN has the nice property that for most of

the sub-spheres in its decomposition, the points lying on that (projected) sub-sphere

all sum to zero. This lets us characterize the UNETF and give the exact layout up to

the rotations between the sub-spheres. Later we use a more advanced technique to

give the exact coordinates. See Figure 3.9 on the following page to see the completed

diagram, with the placement of all 28 points given up to scaling and rotations. For

all the details, see Appendix A on page 71.

This does not give the relative orientation (via rotations) of sibling nodes (spheres).

For example, with M5,0 and M5,1 we have to apply Lemma 44, and check that the

lengths of the sums are equal (have to undo normalization to pull back up into M4,0),

and that the directions of the sums are opposite, which gives the rotations.
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Figure 3.9: Completed diagram of normalized sub-spheres showing relative layout (up
to rotations) of the 28 points forming a UNETF for R7

3.3 A type of canonical form

We continue the process of applying rotations to align the UNETF into a favorable

position.

Definition 40. [Standard Position] Let F = {φi}Mi=1 be a UNETF with M vectors

for RN and system angle θ. Without loss of generality, we may apply a series of

planar Givens rotations (or other types) so that the first vector φ1 aligns with the

first element of the standard basis for RN , e1. We have shown that the remaining
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M − 1 elements must lie on a sphere of one lower dimension, with radius
√

1− θ2.

The projected, normalized version of this sphere is labeled M1,0. Now any rotations

we apply in dimensions 2, . . . , N will leave φ0 fixed. Therefore, we are free to choose

one of theM−1 points, call it φ2 onM1,0 and apply rotations so that it lines up with

the second element of the standard basis, e2. That is, on the projected sub-sphere

M1,0, we apply rotations so that φ2 lies on the axis corresponding to e2.

Continuing, since we have chosen φ2, we get two new sub-spheres of again one

lower dimension, see Figure 3.1 on page 41. In this case, M2,0 and M2,1 are the

projected and normalized versions of these sub-spheres. Again we are free to choose

an arbitrary point φ3, and we choose, in order of priority from the cut corresponding

to the most positive valued inner product of the numerically lowest index j out of

all the M2,j, from where there are actually points (there may not always be points

on all sub-spheres). This process can always succeed, because since we have that

M > N and we can only reduce dimension N − 1 times, there will always be points

remaining on at least one of the sub-spheres. After choosing φ3, again apply rotations

in dimensions 3, . . . , N so that φ3 aligns with e3.

Repeat this process N − 1 times, each time choosing the first available point to

be φi (with respect to positive inner product and numerically low valued j out of the

Mi,j), and applying rotations in the unused dimensions to align that point with the

standard basis element ei. We call this alignment the standard position.

The standard position yields a matrix representation for F where the first N rows

of the N by M matrix form a lower triangular matrix. Using this idea, and the

preceding sections, we can now recursively define a new canonical form for F :

Let F = {φi}Mi=1 be a UNETF for RN with |〈φi, φj〉| = θ for 1 ≤ i 6= j ≤ M . Let

r1 = 1, and s1,1 = θ. Define the block matrices Bi,j:
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B0,1 =


r1 0

s1,1 B1,1

s1,2 B1,2



B1,1 =


r2 0

s2,1 B2,1

s2,2 B2,2



B2,1 =


r3 0

s3,1 B3,1

s3,2 B3,2



B2,2 =

 s3,3 B3,3

s3,4 B3,4



B3,1 =


r4 0

s4,1 B4,1

s4,2 B4,2



B3,2 =

 s4,3 B4,3

s4,4 B4,4



B3,3 =

 s4,5 B4,5

s4,6 B4,6



B3,4 =

 s4,7 B4,7

s4,8 B4,8


... ... ...

BN−1,2N−2 =

 s4,7

s4,8


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r1 = 1, s1,1 = s1,2 = θ

r2 =
√
r1 − s2

1,1, s2,1 = w2,1 · r2 = θ2,1

r2
s2,2 = w2,2 · r2 = θ2,2

r2

ri+1 =
√
ri − s2

i,?, si+1,j = wi+1,j · ri+1 = θi+1,j

ri+1
,

where ? corresponds to the first non-empty sub-sphere on that level, with the ordering

as given in the definition of standard position.

Identifying the elements φi of F as row vectors of a matrix, we can write

F =


φ1

...

φM

 = B0,1

Bi,1 =



(ri+1, 0, . . . , 0)︸ ︷︷ ︸
N−i

(si+1,1) × Bi+1,1

(si+1,2) × Bi+1,2



Bi,j>1 =

 (si+1,2j−1) × Bi+1,2j−1

(si+1,2j) × Bi+1,2j


Example for N = 5:
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B0,1 =



r1 0 0 0 0

s1,1 r2 0 0 0

s1,1 s2,1 r3 0 0

s1,1 s2,1 s3,1 r4 0

s1,1 s2,1 s3,1 s4,1 B4,1

s1,1 s2,1 s3,1 s4,2 B4,2

s1,1 s2,1 s3,2 s4,3 B4,3

s1,1 s2,1 s3,2 s4,4 B4,4

s1,1 s2,2 s3,3 s4,5 B4,5

s1,1 s2,2 s3,3 s4,6 B4,6

s1,1 s2,2 s3,4 s4,7 B4,7

s1,1 s2,2 s3,4 s4,8 B4,8


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B0,1 =



1

θ

0 0 0 0

r2 0 0 0

θ

θ

θ

θ

θ

θ

x





s2,1 r3 0 0

s2,1 s3,1 r4 0

s2,1 s3,1 s4,1 B4,1

s2,1 s3,1 s4,2 B4,2

s2,1 s3,2 s4,3 B4,3

s2,1 s3,2 s4,4 B4,4


θ

θ

θ

θ

y





s2,2 s3,3 s4,5 B4,5

s2,2 s3,3 s4,6 B4,6

s2,2 s3,4 s4,7 B4,7

s2,2 s3,4 s4,8 B4,8





3.4 Construction algorithm

The algorithm presented in this section has the following characteristics:

• Discrete algebraic enumeration

• If the UNETF exists for a given N and M , the algorithm is guaranteed to find

it and can find all configurations matching the standard position and canonical

form

• If the algorithm does not find a UNETF, then none exists for that given N and

M with corresponding θ =
√

M−N
N(M−1)
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• Fixed runtime

• Guaranteed to terminate

• Combinatorial growth in runtime with respect to N

The basic idea is to suppose a UNETF exists for a givenN andM , and apply rotations

to the standard position, while using dimension-reducing iterative projections which

yield a tree structure of sub-spheres, the tightness property, and knowledge of the

required inner-products at each sub-sphere in order to allow for equiangularity in the

full space. It turns out that the points can only be distributed finitely many ways,

which can be counted by solving Diophantine equations. By enumerating through the

solutions at each level, and projecting and repeating the process for each solution, all

possible distributions of points can be examined in recursive manner. When there

is a solution for each level of dimension-reduction, with each solution relating to an

equation given by the solution for one higher dimension, the points are tested to

see if they form a UNETF. This method finds all solutions (distributions of points

corresponding to a UNETF) fitting the standard form, up to rotations and inversions,

and if it fails, it guarantees that the UNETF does not exist for that choice ofN andM .

This method produces the exact algebraic coordinates, with respect to the standard

basis, of the UNETF in our standard form.

3.4.1 Algorithm outline

Note: in this algorithm description, the index for i in subscript for ri,j is offset by 1

from the index used to describe the canonical form: ri,j in the algorithm is equal to

ri+1,j in the canonical form.

I. Let N and M be candidate values for some F to be a UNETF with M vectors

in RN . This fixes θ, α, x, and y.
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II. Let θi,j be the inner products on the unnormalized and non-projected sub-

spheres, required for equiangularity in the full space. Note that the inner prod-

ucts on the normalized projected sub-spheres is given by wi,j from section 3.1.1.

Let ri,j be the radius of the unnormalized sub-sphere corresponding toMi,j, and

let ri be the radius of the chosen (in the sense of the definition of standard po-

sition) sub-sphere having dimension N − i. Let xi,j be the number of points on

Mi,j. Let si,j be the coordinate of the unnormalized nonprojected sub-sphere

corresponding to Mi,j, in the direction of ei, inside of Mi−1,b j2c. In general,

all these constants are exactly determined by the constants from one-higher

dimension, except the xi,j which are found by setting up and solving equations.

III. Starting at dimension N , rotate one point into standard position and setup the

equations to determine the possible distributions of points for the next lower

dimension.

1. Dimension = N . We have r0,0 = 1. Set θ0,0 = θ, and θ0,1 = −θ. Imme-

diately x1,0 = M − 1, and s1,0 = θ. This determines the first column of

F .

2. Dimension = N − 1. We have r1,0 =
√

1− θ2
0,0, θ1,0 = w1,0 · r2

1,0, and

θ1,1 = w1,1 · r2
1,0. Also, we compute the coordinate values s2,0 = w2,0 · r1,0

and s2,1 = w2,1 · r1,0. Because the points sum to zero by Theorem 20, we

get the equation r1,0 + s2,0 · x2,0 + s2,1 · x2,1 = 0, which corresponds to

summing the 2nd column of F to 0. However, we also have the equation

x2,0 + x2,1 = M − 2. This is the same as x + y = M − 2 in the notation

of Chapter 2. Now there are two equations and two unknowns so we can

solve exactly for x2,0 and x2,1 and we now know the number of points on

the sub-sphere corresponding to M2,0 and M2,1. Proceed to the next step;

if we return to this step, the algorithm has failed.
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3. Dimension = N − 2. Determine r2,0,, r2,1, θ3,0, . . . , θ3,3, and s3,0, . . . , s3,3.

Because the points ofM1,0 must sum to zero, the coordinates of the matrix

must sum to zero column-wise. Because of the standard position, we can

setup the equations4:

r2,0 + s3,0 · x3,0 + · · ·+ s3,3 · x3,3 = 0

x3,0 + x3,1 = x2,0 − 1 and x3,2 + x3,3 = x2,1.

Now there are more unknowns than equations and so we cannot solve

explicitly. However, subject to the constraints that 0 ≤ x3,0 ≤ x2,0 − 1,

0 ≤ x3,1 ≤ x2,0 − 1, 0 ≤ x3,2 ≤ x2,1, 0 ≤ x3,3 ≤ x2,1, and that x3,0, . . . , x3,3

must be integers, this forms a set of Diophantine equations, for which there

are finitely many solutions {x3,0, . . . , x3,3}. For each solution, assume that

it is the correct solution and proceed to the next step. If that step fails,

then try the next step again with the next solution. If all solutions fail,

this step fails, and so return to the previous step.

...

4. Dimension = N−(i−1). Determine ri−1,0, . . . , ri−1,2i−2−1, θi,0, . . . , θi,2i−1−1,

and si,0, . . . , si,2i−1−1. Let ri−1 = ri−1,? where ? is the index corresponding

to the first nonempty sub-sphere in the sense of standard position. We get

equations5:

ri−1 +
2i−1∑
j=0

si,j · xi,j = 0

xi,j + xi,j+1 = xi−1,b j2c − δ(k,
⌊
j

2

⌋
) for all j ∈ {0, 2, 4, . . . , 2i−1 − 2}.

4where the term x2,0 − 1 has the −1 because one of the points is represented by r2,0 and was
chosen without loss of generality in the sense of the standard position

5define δ(k, l) = 1 if k = l, and 0 otherwise
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Solve these equations subject to the constraints that 0 ≤ xi,j ≤ xi−1,b j2c −

δ(k, j) for all 0 ≤ j ≤ 2i−1− 1, and that xi,0, . . . , xi,2i−1−1 are integers. For

each solution, assume that it is the correct solution and proceed to the

next step. If that step fails, then try the next step again with the next

solution. If all solutions fail, this step fails, and so return to the previous

step.

...

5. Dimension = 2. Then i− 1 = N − 2 and i = N − 1. As above, determine

ri−1,0, . . . , ri−1,2i−2−1, θi,0, . . . , θi,2i−1−1, and si,0, . . . , si,2i−1−1. Let ri−1 =

ri−1,k where k is the index corresponding to the first nonempty sub-sphere

in the sense of standard position. We get equations6:

ri−1 +
2i−1∑
j=0

si,j · xi,j = 0

xi,j + xi,j+1 = xi−1,b j2c − δ(k,
⌊
j

2

⌋
) for all j ∈ {0, 2, 4, . . . , 2i−1 − 2}.

Solve these equations subject to the constraints that 0 ≤ xi,j ≤ xi−1,b j2c −

δ(k, j) for all 0 ≤ j ≤ 2i−1 − 1, and that xi,0, . . . , xi,2i−1−1 are integers.

Heuristic optimization can happen here, since, for example, the next sub-

spheres are 1-dimensional, and so they can have at most 2 points. There-

fore, any solutions with more than 2 points on a sub-sphere can be dis-

carded. Each solution at this level, along with the current solution for all

the previous levels, forms a candidate solution, that may correspond to a

UNETF. If all solutions fail, this step fails, and so return to the previous

step.

IV. When a candidate solution is found, check that it is a UNETF by forming the
6define δ(k, l) = 1 if k = l, and 0 otherwise
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matrix for F and checking the entries of the Gramian G = FF T . If it is 1 on

the diagonal, and ±θ everywhere else, then F is unit-norm and equiangular. By

the conditions on N and M , the set of vectors is also a tight frame.

V. If no candidates are found, or every candidate fails to be a UNETF, then there

is no UNETF for the choice of N and M .

There are many ways to optimize the above algorithm. For instance, solutions with

xi−1,j > 1 and ri,j = 0 can be discarded because ri,j = 0 indicates that Mi,j is a

0-dimensional sphere, and contains at most 1 point. There are many other possible

optimizations.

Some of the initial results for low dimensions are listed in matrix form in Ap-

pendix B.

3.4.2 Example of 10 points forming a UNETF for R5

Let N = 5 and M = 10. If F is a UNETF for R5 with 10 vectors, then θ = 1
3 .

1. Dimension = 5. θ0,0 = 1
3 , θ0,1 = −1

3 , x0,0 = M . We get that x1,0 = M − 1 = 9.

2. Dimension = 4. r1,0 = 2
√

2
3 , θ1,0 = 2

9 , θ1,1 = −4
9 , x1,0 = M − 1. Next w2,0 = 1

4

and w2,1 = −1
2 . s2,0 = 1

3
√

2 and s2,1 = −
√

2
3 . Solve

r1,0 + s2,0 · x2,0 + s2,1 · x2,1 = 0

or
2
√

2
3 + 1

3
√

2
x2,0 −

√
2

3 x2,1 = 0

along with x2,0 + x2,1 = 9 − 1 and the constraints on the domain of x2,0 and

x2,1, to get that x2,0 = x2,1 = 4.
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3. Dimension = 3. r2,0 =
√

5
6 and r2,1 =

√
2
3 . Compute θ2,0 = 1

6 , θ2,1 = −1
2 ,

θ2,2 = 1
3 , θ2,3 = −1

3 , s3,0 = 1√
30 , s3,1 = −

√
3
10 , s3,2 =

√
2
15 , s3,3 = −

√
2
15 . Solve

r2,0 + s3,0 · x3,0 + s3,1 · x3,1 + s3,2 · x3,2 + s3,3 · x3,3 = 0

or√
5
6 + 1√

30
x3,0 −

√
3
10x3,1 +

√
2
15x3,2 −

√
2
15x3,3 = 0

along with the other constraints. There are four possible solutions, and we have

that (x3,0, x3,1, x3,2, x3,3)∈

{(0, 3, 3, 1), (1, 2, 2, 2), (2, 1, 1, 3), (3, 0, 0, 4)} .

Trying the solutions in order, they all fail at subsequent levels, except the last

one, so that (x3,0, x3,1, x3,2, x3,3) = (3, 0, 0, 4) is the only remaining solution.

4. Dimension = 2. Doing as above, we find that there are six possible solutions,

with the only correct one being

(x4,1, . . . , x4,8) = (0, 0, 0, 2, 0, 2, 2, 0).

At this point, there are at most two points on the next sub-spheres, which

correspond to spheres of dimension 1, such that there are only two possible

points, which also agrees with the solution. We can now compute the next si,j

values, and write down the coordinates in the canonical form, since we know
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the coordinates at each level, and the number of points per level (the xi,j):

F =



1 0 0 0 0
1
3

2
√

2
3 0 0 0

1
3

1
3
√

2

√
5
6 0 0

1
3

1
3
√

2
1√
30

2√
5 0

1
3

1
3
√

2 −
√

3
10 −

1√
5

1√
3

1
3

1
3
√

2 −
√

3
10 −

1√
5 −

1√
3

1
3 −

√
2

3

√
2
15 − 1√

5
1√
3

1
3 −

√
2

3

√
2
15 − 1√

5 −
1√
3

1
3 −

√
2

3 −
√

2
15

1√
5

1√
3

1
3 −

√
2

3 −
√

2
15

1√
5 − 1√

3



.

5. Checking the Gramian of F , we see that it is a UNETF.

3.5 Future work

The research presented has revealed some new types of structure in equiangular tight

frames. There are several directions of research arising from this work which should

be explored further.

First, the projection method for analyzing equiangular tight frames in lower di-

mensions has established a link between the geometry of the frame and the spectrum

of the associated Gramian and signature matrices. Several important results, such as

Theorem 4 and Theorem 7, have come from analyzing the eigenvalues of the signature

matrix. With this additional structure, some new results may be reached.

Second, the structure elucidated in both Chapter 2 and Chapter 3 hints at tech-

niques for determining the existence of equiangular tight frames, and alternative

methods for constructing them explicitly. In fact, we have already developed several
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more efficient construction algorithms, based on quite different techniques, which may

be presented in a later paper.

Finally, equiangular tight frames can be studied in geometric setting. If F is a

UNETF for RN , then F ∪−F forms a polytope for RN . We have made some progress

in determining the generalized f -vector, which counts the i-faces of the polytope.

Combining the research presented with standard geometric techniques may yield new

insights into the existence of equiangular tight frames.
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Appendix A

Layout of the UNETF with 28

Points in R7

A.1 Equiangular tight frames with θ = 1
3

Equiangular tight frames correspond to a binary tree decomposition (partial ordering

via subsets) of the sphere into embedded sub-spheres, with all but the lowest dimen-

sion containing two possible sub-spheres of one less dimension and associated angular

criteria.

A.1.1 Visualizing 28 points forming a UNETF for R7

The diagram in Figure A.1 shows a breakdown of S6 into sub-spheres, containing

the 28 points of the UNETF at θ = 1
3 spanning R7. The topmost sphere at node 0,

labeled M0,0 corresponds to the unit sphere in R7 containing the 28 points, with one

point φ0 oriented at the relative north-pole1, and the remainder oriented in the

upper-half space2 (all without loss of generality via rotations and inversions).

Therefore, the remaining points φi lie on a smaller sphere of radius
√

1− θ2

1relative to the last dimension, i.e. (0,0,0,0,0,0,1)
2again, relative to the last dimension, i.e. {x ∈ S7| 〈x, φ0〉 ≥ 0}
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embedded at latitude θ (with respect to φ0 being in the north-pole position), as

their 7th coordinates all must be θ since |〈φi, φ0〉| = θ.

Figure A.1: Angular decomposition into a tree of normalized projected spheres

Consider the projected and normalized version of this sphere, spanning one-less

dimension and that is node 1 in Figure A.1, also labeledM1,0. Inside this there are two

possible values for the inner product, they are labeled, along with the corresponding

angles relative to an arbitrary point (one of the φi ∈ F rotated to a relative3 north

pole).
3in the sense that multiple nodes at the same level may be out of rotation with each other, but

points inside any particular node (and its child nodes) are equiangular to the north pole of that
node
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Now consideringM1,0, once we pick a point φ1 and assume (without loss of equian-

gularity) it to be the relative north pole, we immediately have two angles and two

sub-spheres upon which all of the remaining points must lie; that is, if ψi = P (φi)
‖P (φi)‖ ,

then for j ∈ {2, ..,M} we have that 〈ψj, ψi〉 = a or b. After projecting along the

natural projection given by φ1, and normalizing, we get two spheres M2,0 and M2,1

with some unknown orientation between the two.

Repeating the process gives the rest of the tree. It ends when the sphere is S0 or

when the inner products go out of bounds via the transition functions

(a, b) +7−→ (ga(a), ga(b))

(a, b) −7−→ (gb(a), gb(b))

with

gx(y) = x− y2

1− y2

The + mapping corresponds to a transition down and to the left in the diagram,

and the − mapping corresponds to a transition down and to the right (the more

negative value).

A.1.2 Explanation and filling-in of the diagram

We want to use the idea that the points of M1,0 sum to zero. We know already that

we can count the points on the sub-sphere since, by applying part (3) of Theorem 20

on page 24:

0 = 1 + x
(1

4

)
+ y

(
−1

2

)
28 = 2 + x+ y
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which gives

x = 16

y = 10

Proposition 41. In addition to node M1,0 having the property that its points sum to

zero, the following sub-spheres also have that property: M2,1, M3,2, M4,4, M5,8, M2,0,

M3,1, M4,2, M5,4, M3,0, M4,1, M5,2, and M4,0. The nodes M3,3, M4,5, and M5,9 also

sum to zero (they are a single point at zero). The nodes M5,0 and M5,1 do not sum

to zero, but are contained in M4,0 which does.

Proof. First note that M3,3, M4,5, and M5,9 are spheres of radius zero, a single point.

They each correspond to the sub-sphere of the parent sphere which is at 180 degrees

(inner product -1) from the relative north pole of that parent, which shows radius

zero. The other inner product value for M3,3, M4,5, and M5,9 is 0−1
1−1 = −1

0 , which is

why there is only the one point, on a sphere of radius 0. The rest of the proof will be

with a series of lemmas.

Lemma 42. The 10 points on M2,1 are exactly specified (up to rotation) and they

add up to zero in M2,1.

Proof. Next consider that there are exactly 10 possible points on M2,1, by looking at

the sub-spheres. One way is to start at the bottom. Since M5,8 is S1 in R2, there are

a maximum of four possible points, and they can all four exist mutually satisfying the

required relative angles regardless of which of the 4 is situated as the relative north

pole. These four add to zero. Its sibling M5,9 is only one point, so now in M4,4 there

is: the relative north pole, the south pole at 180 degrees from it in the diagram in

Figure A.1, and the four points of M5,9 lie along the equator. Six total points, the

four points add to zero, and the two new points also add to zero; the points on M4,4

add to zero. Similarly the points on M3,2 and M2,1 add to zero, and continuing to
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add points we see there are 10 total points possible, and only 10, so this must be all

of them.

Lemma 43. Since the points on M2,1 add to zero, so do the points on M2,0. Since

the points on M1,0 add to zero, as shown in part (2) of Theorem 20.

A generalization of this is:

Lemma 44. If the points on Mi,j add to zero for some i and j, then the sum vector

of the points on Mi+1,2j has the same length (except they may have been normalized

by different constants) and opposite orientation (about the origin) when compared to

the sum vector of the points on Mi+1,2j+1.

Now that we have that the points on M2,0 adding to zero, we can repeat the idea

of counting the number of points on the sub-spheres.

If Mi,j is one of the sub-spheres with possible inner products a and b with a > b.

Let xi,j be the number of points (if it is well defined) on the sub-sphere corresponding

to a, and yi,j the number of points on the sub-sphere corresponding to b. This gives

our normal x = x1,0 and y = y1,0.

For M2,0 we solve:

0 = 1 + x2,0

(1
5

)
+ y2,0

(
−3

5

)

16 = 1 + x2,0 + y2,0

to get

x2,0 = 10 and y2,0 = 5.

Lemma 45. M3,0 and M3,1 add up to zero.

Proof. Similar to Lemma 43, we start at the bottom of the right-hand side, at M5,4.

Because the angle is 120 degrees, all three possible points can exist, since it looks the

same under rotation by 120 degrees, and they sum to zero. We can also check that it
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adds to zero in the direction of the north pole (vertical direction). Ex: 0 = 1+−1
2 +−1

2 ,

adding the y-coordinates of each point. Similarly for M4,2 the three points on the cut

at angle 109.4 degrees means that the three points that contribute −1
3 cancels out the

one point at north-pole that contributes +1; they add up to zero. Similarly, M3,1 has

one point at the north-pole, four points on the sub-sphere, and they add to zero. But

this means M3,0 must also add to zero.

For M3,0 we solve:

0 = 1 + x3,0

(1
6

)
+ y3,0

(
−2

3

)

10 = 1 + x3,0 + y3,0

to get

x3,0 = 6 and y3,0 = 3.

Lemma 46. The points on M4,0, M4,1, and M5,2 all add to zero.

Proof. As previously we seeM5,2 has two possible points, both allowable by symmetry,

and adding to zero. This gives that the points on M4,1 adds to zero, and therefore

the points on M4,0 add to zero.

For M4,0 we solve:

0 = 1 + x4,0

(1
7

)
+ y4,0

(
−5

7

)

6 = 1 + x4,0 + y4,0

to get

x4,0 = 3 and y4,0 = 2.

At most two points can fit on M5,1 (the third does not fit because it is not at

angle 138.5 degrees to the first two). Three points can fit on M5,0 (see Figure 3.9).

Partitioning the circle into degrees, 360 = 138.59 + 138.59 + 82.2 with 138.59 ≈

arccos(−3
4 ) and 82.2 ≈ arccos(1

8), that is: the angle between points on opposite sides
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of M5,0 works out to be rotationally symmetric. It does not work if they are on the

same side (left-to-right).

Exercise 47. Try to visualize or compute the relative rotation between M5,0 and

M5,1 as they sit inside of M4,0 so that the six points on M4,0 can add to zero.

A.1.3 Conclusion

We have seen how the UNETF at α = 3, N = 7, and M = 28 has a corresponding

decomposition diagram with the property that for most of the projected normalized

sub-spheres Mi,j (with exception of some of the leaf nodes — those with no further

possible points or copies of S1), the points on that sphere sum to zero. In general this

property does not seem to hold as nicely for other angles associated with α = 5, 7, 9, . . .

but still is useful, and the same ideas and equations can tell where to look. It is a

separate, but related, problem to find the relative rotations and merge siblings up-

wards into the final construction of points. This is done in the section 3.4 on page 62,

and we give the matrix of coordinates determined algebraically, for the 28 vectors in

standard position that are an equiangular tight frame for R7 (see Appendix B on the

next page).
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Appendix B

UNETF Algorithm Result

Printouts

Table B.1: UNETF algorithm result printouts

6 in R3



1 0 0
1√
5

2√
5 0

1√
5

1
10

(
5−
√

5
) √

1
10

(
5 +
√

5
)

1√
5

1
10

(
5−
√

5
)
−

√
1
10

(
5 +
√

5
)

1√
5

1
10

(
−5−

√
5
) √

1
10

(
5−
√

5
)

1√
5

1
10

(
−5−

√
5
)
−

√
1
10

(
5−
√

5
)


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10 in R5



1 0 0 0 0
1
3

2
√

2
3 0 0 0

1
3

1
3
√

2

√√√√5
6 0 0

1
3

1
3
√

2
1√
30

2√
5 0

1
3

1
3
√

2 −
√√√√ 3

10 −
1√
5

1√
3

1
3

1
3
√

2 −
√√√√ 3

10 −
1√
5 −

1√
3

1
3 −
√

2
3

√√√√ 2
15 −

1√
5

1√
3

1
3 −
√

2
3

√√√√ 2
15 −

1√
5 −

1√
3

1
3 −
√

2
3 −

√√√√ 2
15

1√
5

1√
3

1
3 −
√

2
3 −

√√√√ 2
15

1√
5 −

1√
3


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16 in R6



1 0 0 0 0 0
1
3

2
√

2
3 0 0 0 0

1
3

1
3
√

2

√
5
6 0 0 0

1
3

1
3
√

2
1√
30

2√
5 0 0

1
3

1
3
√

2
1√
30

1
3
√

5

√
7

3 0
1
3

1
3
√

2
1√
30

1
3
√

5
1

3
√

7
4√
21

1
3

1
3
√

2
1√
30 − 4

3
√

5 −
4

3
√

7 −
2√
21

1
3

1
3
√

2 −
√

3
10

2
3
√

5 − 4
3
√

7 −
2√
21

1
3

1
3
√

2 −
√

3
10 − 1√

5
1√
7 − 2√

21

1
3

1
3
√

2 −
√

3
10 − 1√

5 − 1√
7

2√
21

1
3 −

√
2

3

√
2
15

2
3
√

5 − 4
3
√

7 −
2√
21

1
3 −

√
2

3

√
2
15 − 1√

5
1√
7 − 2√

21

1
3 −

√
2

3

√
2
15 − 1√

5 − 1√
7

2√
21

1
3 −

√
2

3 −
√

2
15

1√
5

1√
7 − 2√

21

1
3 −

√
2

3 −
√

2
15

1√
5 − 1√

7
2√
21

1
3 −

√
2

3 −
√

2
15 −

2
3
√

5
4

3
√

7
2√
21



and



1 0 0 0 0 0
1
3

2
√

2
3 0 0 0 0

1
3

1
3
√

2

√
5
6 0 0 0

1
3

1
3
√

2
1√
30

2√
5 0 0

1
3

1
3
√

2
1√
30 − 4

3
√

5
2
3 0

1
3

1
3
√

2
1√
30 − 4

3
√

5 −
1
3

1√
3

1
3

1
3
√

2
1√
30 − 4

3
√

5 −
1
3 −

1√
3

1
3

1
3
√

2 −
√

3
10

2
3
√

5
2
3 0

1
3

1
3
√

2 −
√

3
10

2
3
√

5 −1
3

1√
3

1
3

1
3
√

2 −
√

3
10

2
3
√

5 −1
3 −

1√
3

1
3 −

√
2

3

√
2
15

2
3
√

5
2
3 0

1
3 −

√
2

3

√
2
15

2
3
√

5 −1
3

1√
3

1
3 −

√
2

3

√
2
15

2
3
√

5 −1
3 −

1√
3

1
3 −

√
2

3 −
√

2
15 −

2
3
√

5
1
3

1√
3

1
3 −

√
2

3 −
√

2
15 −

2
3
√

5
1
3 − 1√

3

1
3 −

√
2

3 −
√

2
15 −

2
3
√

5 −
2
3 0


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28 in R7


1 0 0 0 0 0 0
1
3

2
√

2
3 0 0 0 0 0

1
3

1
3

√
2

√
5
6 0 0 0 0

1
3

1
3

√
2

1√
30

2√
5 0 0 0

1
3

1
3

√
2

1√
30

1
3

√
5

√
7

3 0 0
1
3

1
3

√
2

1√
30

1
3

√
5

1
3

√
7

4√
21 0

1
3

1
3

√
2

1√
30 − 4

3
√

5
2

3
√

7
1√
21

1√
3

1
3

1
3

√
2

1√
30

1
3

√
5

1
3

√
7

1
2

√
21 −

√
3

2

1
3

1
3

√
2

1√
30

1
3

√
5

1
3

√
7 −

√
3
7

1√
3

1
3

1
3

√
2

1√
30

1
3

√
5 − 5

3
√

7
1√
21

1√
3

1
3

1
3

√
2

1√
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Appendix C

Table of Allowable N and M

Values for UNETFs with N ≤ 1000

This table lists values of N and M with M > N + 1 for which UNETFs are allowed

to exist under the best known necessary conditions. Some of them have been shown

to exist (see Table 1.2), however most of them are unknown. If N +1 < M < N(N+1)
2 ,

then we must have that:

1. If M 6= 2N , then α and β must be odd (Theorem 7).

2. If M = 2N , then N is an odd number and 2N − 1 is the sum of two squares

(Theorem 7).

3. We must have that
⌈

2N+1+
√

8N+1
2

⌉
≤ M ≤ N(N+1)

2 (by equation 2.2 of Theo-

rem 18).

4. If M = N(N+1)
2 , and there exists m, k ∈ N such that N = (2m + 1)2 − 2 with

m = 2k, k ≡ 2 mod 3, and both k and 2k + 1 are square-free, then there is

no UNETF with M vectors for RN . Additionally, we cannot have N = 47 and

M = 1128 (m = 3) [1] and Theorem 34.
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Table C.1: Table of allowable N and M values for UNETFs for N < 1000

If M 6= 2N , then the value of α = 1
θ
is given in subscript after M in the following

table. If M = 2N , then by equation 1.7 we always have that

α = 1
θ

=
√
N(M − 1)
M −N

=
√
N(2N − 1)

2N −N =
√

2N − 1,

and so no value is given.
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N M N M

3

5

6

7

9

10

13

15

19

20

21

22

23

25

27

28

31

33

35

36

37

41

42

43

45

6

10

163

14 283

18

165

26

30 365

38 765

965

289 367 42 1265

1765

46 2765

50

54

647

62

66

1207

649

74 1487

82 2467

2887

86 3447

90 1009 5407

46

49

51

55

57

59

61

63

66

69

71

72

73

75

76

77

78

79

85

87

88

91

93

97

99

7367

98

102 1369

10011 110

7615 114 1909

118

122 2449

126 2809

14411 3529

138 4609

5689

6409

146 7309

150 10009

9619 12169

154 21011 15409

14413 20809

158

12017 13615 170

174

32011

182 19613 36411

186

194

198 54011
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N M N M

101

103

105

106

109

110

111

113

115

116

117

118

119

120

121

123

127

129

130

131

133

135

136

139

141

60611

206

12625 19615

84811

109011

120011

14821 222 133211

226

230 230011

278411

234 37813 351011

472011

714011

25615

242

246

50813

258

56013

262

19021 21019 266

270

25617

278

282 37615 84613

143

145

147

148

153

154

155

156

157

159

162

163

165

166

167

169

171

175

177

181

183

185

187

189

190

92413

290 40615

294

118413

306 32417

17635

49615 186013

201613

314 219813

318

388813

326 456413

61615 693013

929613

334 1402813

338 67615

32419

350

354 82615

362

24427 366 97615

370 103615

374 52817

378

40019 121615
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N M N M

195

197

199

201

203

204

205

209

210

211

213

215

217

218

219

220

221

222

223

225

229

231

232

235

238

92413

290 40615

294

118413

306 32417

17635

49615 186013

201613

314 219813

318

388813

326 456413

61615 693013

929613

334 1402813

338 67615

32419

350

354 82615

362

24427 366 97615

370 103615

374 52817

378

40019 121615

239

241

243

246

247

253

255

261

265

266

267

271

272

273

275

276

277

279

280

281

283

285

286

287

289

478

482 144617

486

28841

494 78019

27655 48423 506 202417

510 216017

37829 40627 522

530 318017

100819

534

542 108419 433617

460817

36433 546 491417

550

57623 73621

664817

558

896017

1011617

566 1358417

570 135019 2052017

35239 2745617

82021 4132817

578
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N M N M

293

297

300

301

303

304

307

309

313

315

316

319

321

323

325

327

329

331

336

337

339

341

342

343

345

586

594

57625

34449 602 94621 180619

606

192019

614

618 103021

626

630

252819

638

642

306019

67625 325019

654

658

662 132421 397219

140821

674

678

49633 52831 613819

648019

686 686019

690 99023

346

349

351

352

355

356

357

358

359

363

364

365

367

371

373

375

378

379

381

383

385

386

387

391

393

830419

698 1047019

67627 702 1263619

1408019

710 2130019

2563219

187021 3213019

4296019

6462019

726

208021

730 87625

734

233221

746

250021

78427

758

50839 762 279421

766

770

308821

774

46051 149623

786
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N M N M

397

399

401

405

406

408

411

413

415

417

419

420

421

423

425

426

427

429

430

431

433

434

435

436

437

794 158823 397021

798 418021

802

810

78429 510421

544021

822 602821

649021

830

834

838021

880021

842 926221

846

132625

1249621

854 1342021

858 1573021

56043 137625 1720021

1896421

866

2728021

90029 3190021

3836821

874 250823 4807021

438

439

441

451

453

455

456

460

463

465

469

471

475

477

481

483

485

489

491

493

495

496

497

499

505

6424021

878

54049 882 264623

61641 902

906

910

121627

73635 352023

926 370423

90031 930

938 187625

942

950 197625

954 137827

962

966 554423

582023

978

982

986 119029

54077 154027 237625

102431 793623

56863

998

60655 1010 262625 1111023
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N M N M

506

507

509

511

513

517

518

519

521

523

525

526

527

528

531

533

535

537

540

545

547

549

550

551

553

6424021

878

54049 882 264623

61641 902

906

910

121627

73635 352023

926 370423

90031 930

938 187625

942

950 197625

954 137827

962

966 554423

582023

978

982

986 119029

54077 154027 237625

102431 793623

56863

998

60655 1010 262625 1111023

555

559

560

561

563

565

568

573

575

577

579

583

585

586

589

591

595

597

599

600

601

603

605

607

609

1110

1118

537625

115633

1126

1130 587625

64071

1146 267427 687625

717625

1154

1158

1166

912625

937625

152031

1182

115635 1190 1237625

1194

1437625

1497625

1202 1562625

1206 348427

1887625

1214

1218
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N M N M

610

612

613

615

617

619

620

621

622

623

625

630

631

638

639

643

645

649

651

653

657

661

663

666

667

2537625

380827 2937625

1226 3187625

1230 3837625

1234 4812625

1238 6437625

7737625

1242 418627 9687625

12937625

19437625

1250

129635

1262 252429

264029 510427

1278

1286

94645 99043 1290 559027

82655 1298

86851 1302 201631 607627

1306

73081 1314

1322

1326

129637 769627

322029

671

673

675

677

681

685

687

689

690

691

693

696

697

701

702

703

705

707

708

709

711

713

715

716

1342

1346

910027

947827

1362 181633

1370

1374 1190827

1378

736105 1288027

1382

1386 1401427

403229

119041

420629 1822627

1892827

1406 144437 1968427

84665 1410

1414

2454427

1418

1422 2875627

276031

93655 1430 171635

and 208033 3718027

4009627
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N M N M

717

720

721

722

723

725

726

727

733

735

736

737

741

742

745

747

749

754

757

759

760

761

763

769

771

1434 4349827

5824027

103049 288431

7508827

1446 8772427

525029 13195027

17617627

1454 26462827

1466

1470

588829

227833

144439 1482

84877 100853

1490

1494

192635

728029

1514 757029

1518

121645

1522

1526

1538

925229

775

777

779

780

781

783

787

793

799

801

805

806

807

811

812

813

815

817

819

820

821

825

826

827

829

1550 400031

1554

1558

160039

92471 1093429

1566 1134029

1574

97665 1586

1598 1598029

1602 480631

1610 234635

499231 1934429

1614

1622 2270829

2352029

108457 1626 2439029

1630

326833

1638

160041 3280029

3448229

1650 340033

4625629

4962029

1658 5803029
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N M N M

831

833

834

835

836

837

838

839

841

843

847

849

851

855

859

861

865

867

868

869

871

873

877

881

883

6980429

1666

10008029

1670 11690029

14044829

648031 17577029

23464029

35238029

1682 672831

1686

1694

1698

103669

1710

1718

1722 176441

865031

1734

297635 896031

1738

1742

1746

1754

1057231

1766

885

887

889

891

895

899

901

902

903

907

910

913

919

921

923

925

927

929

930

931

933

937

939

941

943

1770 318635 472033

1666

10008029

1670 11690029

14044829

648031 17577029

23464029

35238029

1682 672831

1686

1694

1698

103669

1710

1718

1722 176441

865031

1734

297635 896031

1738

1742

1746

1754

1057231

1766
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N M

945

946

949

951

953

955

956

957

958

959

961

967

969

970

973

975

981

987

990

993

995

997

999

1770 318635 472033

137655 193643 6054431

7592031

1902 253639 9129631

762433 11436031

15280031

18355231

1914 788833 22968031

30656031

46032031

1922

1934

1938

465635

1946 472635

1950

109099 1962

1974 507635 1052833

193645

132463 1986 1125433

1990

1994

1998
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Index

5-designs, 35

algorithm, 62

α, 8

analysis operator, 5

Bessel sequence, 5

β, 11

canonical dual frame, 6

canonical form, 57, 58

CDMA, 4

coding theory, 4

complementary equiangular tight frame,

21

complementary UNETF, 22

construction algorithm, 62

counterexample for Theorem A, 23

dual frame, 6

eigenvalues, 12

equal-norm, 5, 8

equiangular frame, 7

equiangular lines, 7

equiangular tight frame, 8

erasures, 4

ETF, 8

frame, 4

frame bounds, 4

frame coefficients, 6

frame operator, 5

frame potential, 7

Gauss’s lemma, 28

Gaussian channels, 4

Gerzon’s Theorem, 10

Gramian, 6

Grassmannian frame, 6

Holmes-Paulsen criterion, 11

inner product of F, 8

Integral Root Theorem, 28

invertible operator, 5

latitude, 72

leaf nodes, 77

Mercedes-Benz, 50
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N-simplex, 12

Naimark’s Theorem, 20

norm-1, 5

north pole, 40

optimal Grassmannian frame, 7, 9

Parseval frame, 5

Peter Neumann’s Theorem, 10

positive cone of equiangularity, 40

positive operator, 5

quantum information theory, 4

Rational Root Theorem, 28

reconstruction, 6

self-adjoint, 5

signature matrix, 8

six vectors, 51

south pole, 74

spherical decomposition, 38

spherical t-designs, 34

standard position, 39, 58

strongly regular graphs, 4

synthesis operator, 5

system angle, 8

t-designs, 34

table of

equiangular frames, 13

ETFs that may exist, N < 1000, 83

lower bound, 23

maximal equiangular lines, 12

Theorem A counterexamples, 24

UNETF algorithm results, 78

Theorem A, 11

three vectors, 48

tight, 5

tight 5-designs, 35

tight frame, 6

transition function, 42

twenty-eight vectors, 56

UNETF, 8

unit sphere, 40

unit-norm, 5

unit-norm equiangular tight frame, 8

Welch bound, 4, 10
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