published by the University of Missouri - Columbia Extension Division

Ration Work Sheet With Example

(Supplement to UMC GUIDE 3104, "Calculating Rations for Dairy Cattle")
Rex E. Ricketts, Department of Dairy Husbandry, College of Agriculture

RATION WORK SHEET

1. Daily Requirements of Nutrients for the Dairy Animal.
(See Table 1, UMC Guide 3104)
a. For maintenance (and growth, if not mature, and last 2 months of pregnancy, for
dry cows) of a cow weighing 1400
2. Use a phosphorus source, for example, dicalcium phosphate, to supply the needed phosphorus: \% phosphorus needed (10) $\div \%$ phosphorus in ingredient (Table 3, Guide 3104) $\times 100=\%$ phosphorus source in the ration. Example:
\qquad $\% \div 18$ \qquad $\% \times 100=$ \qquad \% DEcal in the ration.
3. Calculate the amount of calcium supplied by the phosphorus source: \% phosphorus source in the ration (11) $\times \%$ calcium in the ingredient (Table 3, Guide 3104) $\div 100$. Example:
\qquad \% x \qquad $\% \div 100=$ \qquad \% calcium supplied.
4. Calculate the \% calcium still needed to be supplied: calcium specification of the ration (6) - \% calcium in the ration (this includes calcium supplied by the phosphorus source in step 12) $=\%$ percent calcium still required in the ration. Example:
\qquad $\%$ - \qquad \% + \qquad $\%)=$ \qquad \% calcium required.
5. Use a single source of calcium to fulfill the calcium requirements, for example, limestone: calcium $\%$ required (13) $\div \%$ calcium in the calcium source (Table 3, Guide 3104) $\times 100=\%$ calcium source in ration. Example:
.14 \qquad $\% \div$ \qquad $\% \times 100=$ \qquad \% Limestone in the ration
6. If your percentages do not add up to 100% go back to the grain and either increase or decrease its proportion in the ration.
7. To determine the pounds of each ingredient in a given size batch, multiply the percent of each ingredient x total pounds in the batch. a ration (To calculate a ration on a dry matter basis refer to UMC Guide 3104, section entitled "Calculating a Ration on Dry Matter Basis").

A. Use Pearson's Square to calculate percent ingredients, to get a 21.5% protein grain ration (refer to Guide 3104).
B. Meet phosphorus first by difference .56 (phosphorus specifications) - . 41 (phosphorus supplied) $=. .15 \%$ (phosphorus need). Use a phosphorus source, e.g. dicalcium phosphate. Percent phosphorus needed \div by \% phosphorus in ingredient $\times 100.15 \div 18 \% \times 100=.83 \%$ dicalcium phosphate in ration. Then calculate amount of calcium supplied by dicalcium phosphate. Percent of dicalcium phosphate in ration \times percent calcium in ingredient $\div 100$, e.g., $.83 \times 22.8 \% \div 100=. .19$ calcium.
C. By difference determine remaining calcium to be supplied. Use limestone. Calcium percent needed \div percent calcium in limestone $\times 100$, e.g., . $13 \div 36 \% \times 100=.36=$ limestone .
D. This method may give an answer of slightly more than 100%. To bring back to 100%, adjust grain (e.g.: Corn to 61.91%).
E. To determine pounds of each ingredient in a given size batch, multiply the percent of each ingredient x the total batch size $\div 100$. 2000 lbs . mix batch $\times 61.91 \div 100=1,238$. 2 pounds.

				AIN SPECI	TIO						
INGREDIENTS		otein _\%		herms/cwt		cium \qquad \%		horus \qquad \%			
	\%	Lbs./cwt.	Therms/ lb.	Therms/ cwt.	\%	Lbs./cwt.	\%	Lbs./cwt.	Lbs./ batch	Assigned cost/cwt.	$\begin{aligned} & \text { Cost/ } \\ & \text { cwt. } \end{aligned}$
Subtotal											
Minerals											
Total											

A. Use Pearson's Square to calculate percent ingredients, to get a 21.5% protein grain ration (refer to Guide 3104).
B. Meet phosphorus first by difference \qquad _(phosphorus specifications) \qquad _(phosphorus supplied) = \qquad \% (phosphorus need). Use a phosphorus source, e.g. dicalcium phosphate. Percent phosphorus needed \div by \% phosphorus in ingredient $\times 100$. \qquad \div \qquad $\% \times 100=$ \qquad \% dicalcium phosphate in ration. Then calculate amount of calcium supplied by dicalcium phosphate. Percent of dicalcium phosphate in ration \times percent calcium in ingredient $\div 100$, e.g., \qquad x \qquad $\% \div 100=$ \qquad calcium.
C. By difference determine remaining calcium to be supplied. Use limestone. Calcium percent needed \div percent calcium in limestone $\times 100, e . g$., \qquad \div \qquad $\% \times 100=$ \qquad \% limestone.
D. This method may give an answer of slightly more than 100%. To bring back to 100%, adjust grain (e.g.: Corn to 61.91%).
E. To determine pounds of each ingredient in a given size batch, multiply the percent of each ingredient \times the total batch size $\div 100.2000 \mathrm{lbs}$. mix batch $\times 61.91 \div 100=$ \qquad pounds.

RATION WORK SHEET

	Crude Protein (lbs.)	Estimated Net Energy (therms)	Calcium (lbs.)	Phosphorus (lbs.)
1. Daily Requirements of Nutrients for the Dairy Animal. (See Table 1, UMC Guide 3104) a. For maintenance (and growth, if not mature; and last 2 months of pregnancy, for dry cows) of a cow weighing \qquad lbs.	(a)	(b)	(c)	(d)
b. For milk production, __lbs. per day, testing __\%	-	-	-	
c. Total daily requirements				,

2. Nutrients Supplied by the Forages. (See Table 4, UMC Guide 3104, or better yet use your own laboratory analysis results for age)

3. Pounds of Ration Required. ENE to be supplied by the ration (3, col. b) \div ENE of ration. Use .76 therms/lb. ENE for ration. (Use .70 if grain is high moisture grain or ear corn). Example:
\qquad
4. Percent Protein Needed in the Ration. Lbs. of crude protein to be supplied by the ration (3, col. a) \div Ibs. of ration required (4) $\times 100$. Example:
\qquad lbs. \div \qquad lbs. $\times 100=$ \qquad \% protein.
5. Percent Calcium Needed. Lbs. calcium to be supplied by the ration (3, col.c) \div Ibs. of ration required (4) $\times 100$. Example:
\qquad lbs. \div \qquad lbs. $\times 100=$ \qquad \% calcium.
6. Percent Phosphorus Needed. Lbs. of phosphorus to be supplied by the ration (3, col. d) \div Ibs. of ration required (4) $\times 100$. Example:
\qquad lbs. \div \qquad lbs. $\times 100=$ \qquad \% phosphorus.
7. Use Pearson's square to calculate percent ingredients, to get a \qquad \% protein ration. Refer to Guide 3104, Step 5 for use of the square.
8. Calculate the nutrients supplied by each ingredient of the grain ration: \% of ingredient in the ration $\times \%$ or therms/cwt of the nutrient in the ingredient.
9. Find the percent phosphorus still needed to be supplied: phosphorus specifications of the ration (7) - phosphorus supplied by the grain ration. Example:
\qquad \% - \qquad $\%=$ \qquad \% phosphorus needed.
10. Use a phosphorus source, for example, dicalcium phosphate, to supply the needed phosphorus: \% phosphorus needed (10) $\div \%$ phosphorus in ingredient (Table 3, Guide 3104) $\times 100=\%$ phosphorus source in the ration. Example:
\qquad $\% \div$ \qquad $\% \times 100=$ \qquad \% \qquad in the ration.
11. Calculate the amount of calcium supplied by the phosphorus source: \% phosphorus source in the ration (11) $\times \%$ calcium in the ingredient (Table 3, Guide 3104) $\div 100$. Example:
\qquad $\% \times$ \qquad $\% \div 100=$ \qquad \% calcium supplied.
12. Calculate the \% calcium still needed to be supplied: calcium specification of the ration (6) - \% calcium in the ration (this includes calcium supplied by the phosphorus source in step 12) $=\%$ percent calcium still required in the ration. Example:
\qquad \% - \qquad \% + \qquad $\%)=$ \qquad \% calcium required.
13. Use a single source of calcium to fulfill the calcium requirements, for example, limestone: calcium $\%$ required (13) $\div \%$ calcium in the calcium source (Table 3, Guide 3104) $\times 100=\%$ calcium source in ration. Example:

$$
\ldots \% \% \times 100=\ldots \text { in the ration. }
$$

15. If your percentages do not add up to 100% go back to the grain and either increase or decrease its proportion in the ration.
16. To determine the pounds of each ingredient in a given size batch, multiply the percent of each ingredient x total pounds in the batch. a ration (To calculate a ration on a dry matter basis refer to UMC Guide 3104, section entitled "Calculating a Ration on Dry Matter Basis").

- Issued in furtherance of Cooperative Extension Work Acts of May 8 and June 30, 1914 in cooperation with the United States Department of Agriculture. Leonard C. Douglas, Acting Director, Cooperative Extension Service, University of Missouri and Lincoln University, Columbia, Missouri 65211. An equal opportunity institution.

