GENOME SCAN IN COMMERCIAL ANGUS CATTLE FOR QUANTITATIVE TRAIT LOCI INFLUENCING GROWTH, CARCASS, AND REPRODUCTIVE TRAITS

A Dissertation Presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

MATTHEW CHARLES MCCLURE

Dr. Jeremy Taylor, Dissertation Supervisor

JULY 2009

The undersigned, appointed by the dean of the Graduate School, have examined the [thesis or dissertation] entitled

WHOLE GENOME SCAN IN COMMERCIAL ANGUS CATTLE FOR QUANTITATIVE TRAIT LOCI INFLUENCING GROWTH, CARCASS, AND REPRODUCTIVE TRAITS

Presented by Matthew McClure,

A candidate for the degree of Doctor of Philosophy,

And hereby certify that in their opinion it is worthy of acceptance.

Dr. Jeremy F. Taylor

Dr. Robert D. Schnabel

Dr. Robert L. Weaber

Dr. Gary S. Johnson

Dr. Kevin D. Wells

Dedication:

To my wife, mother, and father....without your support and encouragement this would have not have been possible.

Jen: While the journey through graduate school has had its ups and downs, dogs, horses, and a house there is no one else I would want to complete this journey with.

Mom and Dad: Thanks for always supporting my decisions and encouraging me to do my best. You were correct: Everything does work out in the end.

Love,

Matt

Acknowledgements:

One could not ask for a better advisor than Dr. Jeremy Taylor. I have learned so much over the years about science, myself, and life from him. I am constantly amazed of his skills as an advisor, mentor to multiple graduate students, and manager. I hope to be as effective of a mentor and advisor as you were to me. Thank you for allowing me to join your lab, for all the jokes, knowledge, and research skills you have given me.

Dr. Robert Schnabel, in many ways you have been a co-advisor along with being a committee member. I have thoroughly enjoyed your sense of humor, and commitment to the lab over the years. I recall many a paper on my desk or via email that you placed there for us to read. Not as 'homework' but because you thought we would gain knowledge from it. One bit of advice I will always remember is to check the page length first when reviewing and submitting papers.

I would like to thank my past and present members of my committee: Dr. Eric Antoniou, Dr. Kevin Wells, Dr. Robert Weaber, and Dr. Gary Johnson, for their help with my research and advice on being a

ii

scientist. Thank you for all the discussions over random scientific theories and the things in life that make us go 'hmmm that's interesting.'

Many thanks to the staff of Animal Science, I am amazed how supportive everyone is and how the department becomes one large family that stands ready to help each other no matter what the need is. I am especially thankful to our secretary Cindy Hudlow, no matter how small or large the task you have a smile on your face and make our life so much easier.

Without my friends outside of the lab I would have a much shallower understanding of science and life. Thank you Kyle Clower, Ginger Clower, Curtis Pritzel, Sarah Schaak Lydia Cook, Dan Schultz, Alex Innecco and Columbia Chorale, Dr. Franklin and all of the tailgaters.

Finally, I would like to thank my lab mates, past and present: Natalya Morsci, Yao Ping, Erin Sellner, Dr. Jae-Woo Kim, Dr. Stephanie McKay, Dr. Dan Vasco, Jared Decker, Tasia Taxis, and Megan Rolf. I especially want to thank Dr. McKay for all of her career advice. Without your help so much could not have been done. Thank you for all of your help.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTSii
LIST OF FIGURESv
LIST OF TABLESvi
CHAPTER 1. INTRODUCTION1
CHAPTER 2. GENOME SCAN IN COMMERCIAL ANGUS CATTLE FOR QUANTITATIVE TRAIT LOCI INFLUENCING CARCASS TRAITS16
CHAPTER 3. GENOME SCAN IN COMMERCIAL ANGUS CATTLE FOR QUANTITATIVE TRAIT LOCI INFLUENCING POSTNATAL GROWTH TRAITS72
CHAPTER 4. GENOME SCAN IN COMMERCIAL ANGUS CATTLE FOR QUANTITATIVE TRAIT LOCI INFLUENCING REPRODUCTIVE TRAITS
CHAPTER 5. ASSESSMENT OF DNA EXTRACTED FROM FTA® CARDS FOR USE ON THE ILLUMINA iSELECT BEADCHIP137
CHAPTER 6. CONCLUSION148
LITERATURE CITED153
VITA

LIST OF FIGURES

Figur	re Page
1.1	Graphical representation of locations of QTL for USDA marbling score reported in <i>Bos taurus</i>
1.2.	Graphical representation of the 29 generation Angus mapping population pedigree. Pedigree reads top to bottom, left to right5
1.3	Average registered American Angus EPD from 1972 to 20077
1.4	Photos of Grand Champion American Angus sires from the past 60 years8
1.5.	Cumulative count of animals according to their percentage of genotypes with high support (pGmx \geq 0.98)12
1.6	Count of males and females by percentage of genotypes with high support (pGmx <u>></u> 0.98)12
2.1	Carcass QTL graphs for each <i>Bos taurus</i> autosome57
3.1	Growth QTL graphs for each <i>Bos taurus</i> autosome91
4.1	Reproductive QTL graphs for each <i>Bos taurus</i> autosome122

LIST OF TABLES

Table	F	Page
1.1	Statistical summary of EPD values in the mapping population	9
1.2	Statistical summary of EPD accuracy values in the mapping population	10
2.1	Summary of microsatellite (MS) and SNP marker information	31
2.2	Single nucleotide polymorphism primer sequences	42
2.3	Multiplex PCR reagent concentrations and annealing temperature for 5 μl total volume	43
2.4	Multiplex PCR conditions	43
2.5	Marker coverage information for each autosome	44
2.6	Count of carcass QTL by chromosome	45
2.7	Carcass QTL data summary	46
2.8	Summary of carcass QTL identified as pleiotropic	53
2.9	Statistical summary of carcass QTL	54
2.10	Analysis of variance results for carcass weight QTL	55
2.11	Analysis of variance results for fat thickness QTL	55
2.12	Analysis of variance results for marbling score QTL	55
2.13	Analysis of variance results for ribeye area QTL	56
3.1	Growth QTL data summary	77
3.2	Count of growth QTL by chromosome	86
3.3	Summary of growth QTL identified as pleiotropic	87

3.4	Statistical summary of growth QTL88
3.5	Analysis of variance results for weaning weight QTL89
3.6	Analysis of variance results for mature height QTL
3.7	Analysis of variance results for mature weight QTL
3.8	Analysis of variance results for yearling height QTL90
3.9	Analysis of variance results for yearling weight QTL90
4.1	Count of reproductive QTL by chromosome111
4.2	Reproductive QTL data summary112
4.3	Statistical summary of reproductive QTL119
4.4	Analysis of variance results for birth weight QTL120
4.5	Analysis of variance results for calving ease direct QTL120
4.6	Analysis of variance results for calving ease maternal QTL120
4.7	Analysis of variance results for maternal milk QTL121
4.8	Analysis of variance results for scrotal circumference QTL121
4.9	Summary of reproductive QTL identified as pleiotropic121
5.1	One-way ANOVA comparing call rates for BovineSNP50 genotypes produced from DNA extracted by the FTA Elute protocol and the GenSolve kit from blood and nasal swabs harvested on FTA cards to 7,737 samples extracted from whole blood or cryopreserved semen extracted by proteinase K treatment, Phenol:Chloroform:Isoamyl alcohol extraction, and ethanol precipitation

5.2	One-way ANOVA comparing call rates for BovineSNP50 genotypes produced from DNA on FTA cards extracted by the GenSolve kit to 7,737 samples extracted by proteinase K treatment, Phenol:Chloroform: Isoamyl alcohol extraction, and ethanol precipitation145
5.3	One-way ANOVA comparing call rates for BovineSNP50 genotypes produced from DNA on FTA elute extracted by the FTA Elute protocol to 7,737 samples extracted proteinase K treatment,Phenol:Chloroform: Isoamyl alcohol extraction, and ethanol precipitation
5.4	Genotype call and concordance rates for DNA samples extracted from FTA cards, by sample type147
6.1	QTL count by trait and chromosome149
6.2	Total QTL count for each trait, total R^2 explained by QTL for each trait and the marker with the largest R^2 value150 $$
6.3	Average frequency of economically desirable QTL by trait in the mapping population based upon LOKI analysis151

CHAPTER 1

INTRODUCTION

Practically every economically important trait in the beef industry is quantitative and influenced by multiple genes as well as environmental factors. The genomic regions that contain genes which influence a trait's phenotypic variation are called quantitative trait loci (QTL) (Andersson 2001). The identification of QTL could lead to genetic improvement through the implementation of marker assisted selection (MAS) by producers to increase carcass quality and production efficiency (MacNeil & Grosz 2002). Genetic improvement by MAS may be substantially greater than selection based solely upon estimated breeding value for traits that are determined post-mortem, occur late in life, are lowly heritable, or are difficult and (or) expensive to measure (Davis & DeNise 1998). Considering the significant economic benefits from QTL discovery for traits deemed important to producers and consumers, multiple academic research groups have focused on the identification of QTL for quantitative trait variation in beef cattle.

While a number of QTL scans in cattle have been conducted with *Bos taurus* x *Bos indicus* crosses or with experimental *B. taurus* crosses the implementation of MAS using the detected QTL has been problematic. While the development of resource populations based upon crossbreeding does allow the detection of QTL, it hinders the identification of the underlying quantitative trait nucleotides (QTN) and thus the development of MAS programs. *B. indicus* and *B. taurus* diverged approximately 500,000 years ago (Miretti *et al.* 2002) and mutations with fixed allelic differences have accumulated about every 2 kb within these genomes (Taylor *et al.* 2006). Consequently, the confidence interval for any QTL trait found by

linkage analysis in such a crossbred population will contain thousands of mutations consistent with a *B. indicus* versus *B. taurus* QTL, which are statistically impossible to differentiate within the experimental design (Sellner *et al.* 2007). Our inability to identify the causal mutations underlying QTL makes it extremely difficult to implement MAS in commercial populations, since we do not know the marker-QTL allele phase relationships in these populations.

Furthermore, experimental designs that have historically been used for QTL mapping in cattle have captured a limited number of parental chromosomes and therefore have only detected the few QTL that were heterozygous within these parents (Casas *et al.* 2003; Mizoshita *et al.* 2004; Alexander *et al.* 2007). Typical genome scans for QTL in livestock use large, half-sib families from a few sires and 10-20 markers per chromosome, the resulting QTL confidence intervals are 5-20 cM with each family analyzed generating 3 to 5 QTL per trait studied (Chamberlain *et al.* 2007; Allan & Smith 2008). The QTL identified as segregating within a single sire half-sib family represent only a fraction of the total QTL segregating in a population (Mizoshita *et al.* 2005). With the large expense in collecting phenotypes on cattle many QTL scans have been underpowered and as a result underestimate the true number of QTL contributing to the phenotypic variance (Bogdan & Doerge 2005).

Since 1998, 1,375 bovine QTL for 110 traits have been identified and the number of unique QTL is likely to be considerably smaller because many of the published QTL have overlapping confidence intervals (http://www.animalgenome.org/cgi-bin/QTLdb/BT/summary) (Figure 1.1). Unfortunately among different populations the association between marker

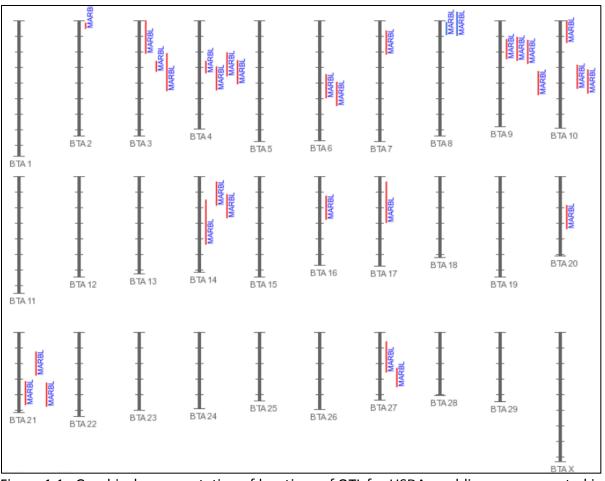


Figure 1.1. Graphical representation of locations of QTL for USDA marbling score reported in *Bos taurus*. Span of red lines represents confidence interval for QTL with significant statistical support, while blue lines represents confidence interval for QTL with suggestive statistical support. Image from: http://www.animalgenome.org/cgi-bin/QTLdb/BT/draw_traitmap?trait_ID=1027&QTLid=. Obtained June, 2009.

genotype and functional variation is unknown (Smith *et al.* 2003). As many of the populations used for QTL discovery are experimental crosses and do not represent commercial populations, discovered QTL need to be validated for marker phase relationship and magnitude of effect within each population in which the test is anticipated to have utility before it can be effectively commercialized (Van Eenennaam *et al.* 2007). This is necessary because diverse populations have different phase associations between the marker genotypes and the QTL alleles and the extent of linkage disequilibrium may differ due to dissimilar allele frequencies caused by drift or selection (Allan & Smith 2008). As a result of these issues, few of the discovered QTL have been commercialized as tests that can be used by producers for MAS.

To address many of these issues that have hampered the commercialization of previous research we have conducted a whole genome scan for carcass, growth, and reproductive QTL in a twenty-nine generation mapping population (N=1,769) comprised of registered American Angus sires born between 1955 and 2003 (Figure 1.2). This population represents the major commercial bloodlines in American Angus cattle and captures the majority of the chromosomes represented within the breed. By analyzing expected progeny differences (EPDs) for 14 traits: birth weight (BW), calving ease direct (CED), calving ease maternal (CEM), fat thickness (FAT), hot carcass weight (HCW), maternal milk (MILK), mature height (MH), USDA marbling score (MRB), mature weight (MW), ribeye muscle area (RIB), scrotal circumference (SC), weaning weight (WW), yearling

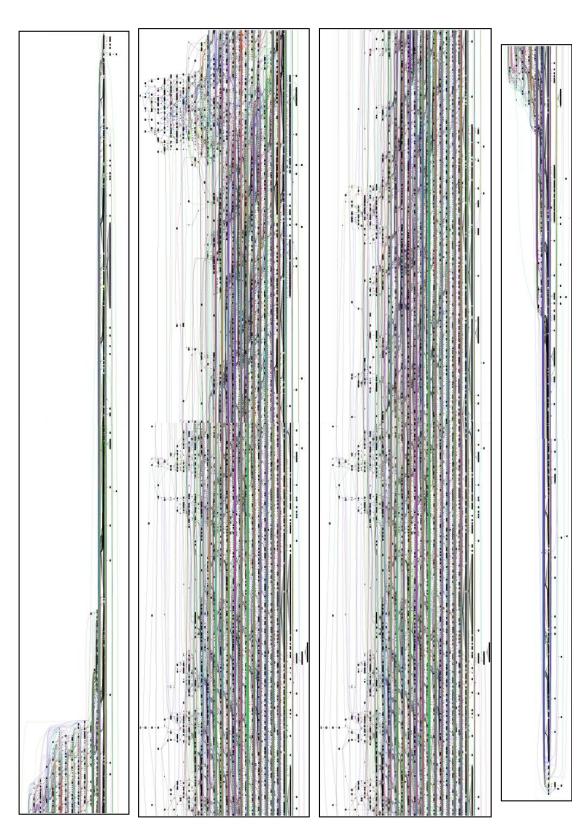


Figure 1.2. Graphical representation of the 29 generation Angus mapping population pedigree. Pedigree reads top to bottom, left to right.

height (YH), and yearling weight (YW) we were able to use the historic phenotypic data collected on each sire and its relatives, rather than having to generate phenotypic data in an experimental herd. Additionally each of the analyzed traits has a history of selection by Angus producers and measureable phenotypic change has resulted from this selection (Figure 1.3 and 1.4). EPD values, accuracies and pedigree information from the Spring, 2005 evaluation were obtained from the American Angus Association (St. Joseph, Missouri) and a statistical summary of the EPD values is in Table 1.1 and of the EPD accuracy values is in Table 1.2.

All sires were genotyped for 12 single nucleotide polymorphisms (SNP) and 417 microsatellite markers chosen from published genetic maps according to their numbers of alleles (Barendse *et al.* 1997; Kappes *et al.* 1997). Twenty-seven microsatellite markers worked poorly in multiplex PCR or were essentially monomorphic in our Angus population and were excluded from analysis. The remaining 402 genetic markers resulted in an average marker interval of 8.02 cM and a total genomic coverage of 2820.5 cM, representing a 93.5% coverage of the bovine genome. Genotype reactions that failed were not retried. GENOPROB (Thallman *et al.* 2001b, a) was used to assess genotype quality using map distances and locus order from the USMARC map (Kappes *et al.* 1997). Information linking all of the genotyped animals was assembled into a single pedigree to exploit the relationships between the genotyped sires and ungenotyped females. GENOPROB was also used to infer genotypes of other individuals in the pedigree. Individual genotypes with low quality (pGmx <0.98) were excluded from analysis. While only 1,769 males were genotyped 6,974 females and 4,458 additional males in the full pedigree had >1 estimated genotypes with a pGmx > 0.98.

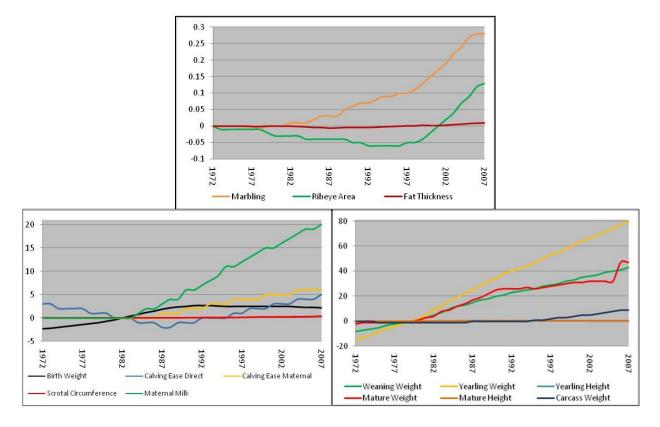
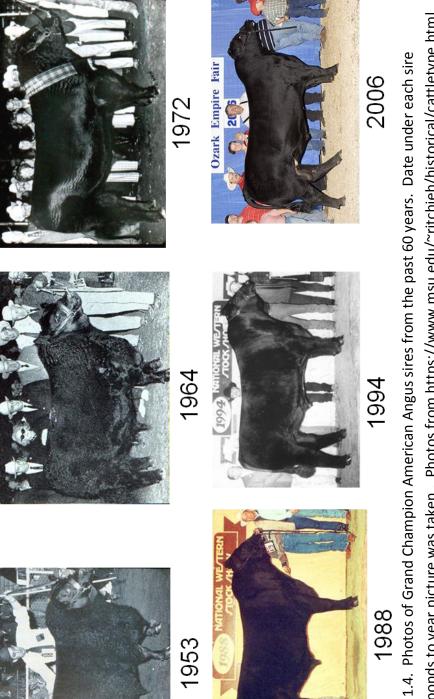



Figure 1.3. Average registered American Angus EPD from 1972 to 2007. X-axis unit is relative to EPD plotted. Data obtained from American Angus Association.

corresponds to year picture was taken . Photos from https://www.msu.edu/~ritchieh/historical/cattletype.html Figure 1.4. Photos of Grand Champion American Angus sires from the past 60 years. Date under each sire and http://holmescattlecompany.com/images/2007/aug8/HCC_BlackEagle.jpg

						Standard		
Trait	Unit	Variance	Kurtosis	Skewness	Average	Deviation	Minimum	Maximum
BW	spunod	5.965	-0.127	0.021	2.254	2.442	-5.80	10.80
CED	% of unassisted births	30.233	1.167	-0.701	3.308	5.498	-29.00	16.00
CEM	% of unassisted births	22.691	2.129	-0.942	4.811	4.763	-21.00	16.00
CW	pounds	111.504	0.832	-0.148	3.100	10.56	-42,00	41.00
FAT	inches	0.001	0.934	-0.032	0.003	0.023	-0.11	0.10
MARB	% difference in USDA marbling score	0.032	1.009	0.525	0.103	0.179	-0.64	0.86
НМ	inches	0.413	0.560	0.065	0.464	0.643	-1.60	3.00
MIIK	pounds of weaning weight due to milk and mothering ability	91.210	0.142	-0.355	15.578	9.550	-17.00	46.00
MM	bounds	1393.834	0.568	-0.208	29.221	37.334	-106.00	166.00
RIB	square inches	0.034	0.789	0.363	0.087	0.184	-0.62	0.82
Я	centimeter	0.317	0.226	0.179	0.135	0.563	-1.84	2.21
MM.	bounds	209.104	0.071	-0.496	33.34	14.46	-12.00	85.00
ΗY	inches	712.100	0.088	-0.557	61.552	26.685	-23.00	155.00
Ŵ	pounds	0.180	1.078	0.297	0.306	0.425	-1.00	2.10

Table 1.1. Statistical summary of EPD values in the mapping population.

Trait	Variance	Kurtosis	Skewness	Average	Standard Deviation	Minimum	Maximum
BW	0.046	-0.634	-0.622	0.685	0.216	0.11	0.98
CED	0.031	-0.616	0.484	0.533	0.176	0.05	0.96
CEM	0.043	-0.494	0.735	0.427	0.206	0.05	0.95
CW	0.044	-0.278	0.955	0.219	0.211	0.05	0.88
FAT	0.038	0.075	1.065	0.202	0.195	0.05	0.86
MARB	0.050	-0.526	0.870	0.232	0.223	0.05	0.89
MH	0.062	-0.836	0.579	0.313	0.249	0.05	0.95
MW	0.061	-0.781	0.595	0.313	0.247	0.05	0.95
MILK	0.070	-1.314	-0.035	0.554	0.265	0.05	0.98
RIB	0.041	-0.103	1.011	0.210	0.202	0.05	0.87
SC	0.068	-1.036	0.039	0.450	0.261	0.05	0.97
WW	0.050	-0.723	-0.625	0.680	0.223	0.1	0.98
YH	0.055	-0.971	-0.388	0.626	0.234	0.05	0.98
YW	0.073	-1.088	-0.010	0.450	0.271	0.05	0.97

Table 1.2. Statistical summary of EPD accuracy values in the mapping population.

The percentage of the 402 genetic markers that were called with high support is shown for all animals (Figure 1.5 and separately for males and females (Figure 1.6).

The population-based design allows the flexibility of using multiple analytical methods to exploit both within family variation and the full pedigree information. Ten sires with 18 or more progeny that had \geq 75% of their genotypes at pGmx>0.98 support were individually analyzed under a halfsib design model using QTL Express (Seaton *et al.* 2002) to determine the segregation status of each sire and to identify QTL. All animals analyzed had \geq 75% of their genotypes at pGmx>0.98 support and individual_EPDs were weighted by their accuracies. LOKI v2.4.5 (Heath 1997) was used to jointly analyze 2,854 animals that had >22% of their genotypes to estimate both the number and position of QTL within the full pedigree. As LOKI does not the use of weights reflecting heteroscedastic residual variances only EPDs with accuracies > 0.05 were used in the analysis. By combining the results of these analyses we are better able to estimate the number of QTL, their genomic positions, and their affects on trait variation.

Because the QTL scan was performed within a commercially relevant breed we can directly assess the extent of genetic variation currently found within the breed and explained by the discovered QTL. Further, because the discovery population is the .

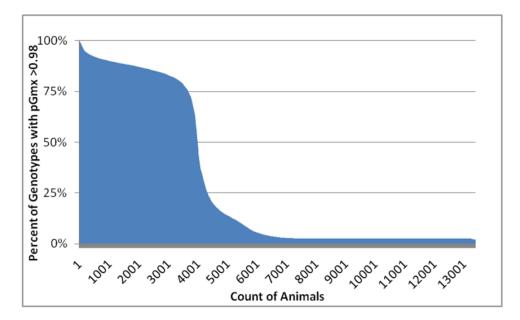


Figure 1.5. Cumulative count of animals according to their percentage of genotypes with high support (pGmx \geq 0.98). 100% indicates that an animal had high support for 402 genotypes.

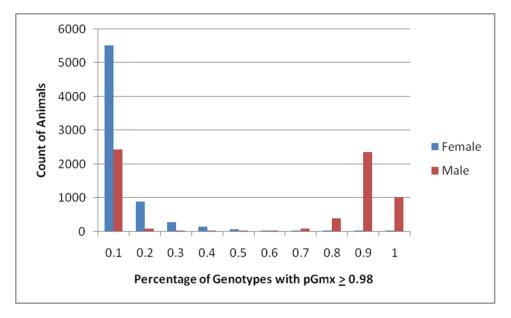


Figure 1.6. Count of males and females by percentage of genotypes with high support (pGmx \geq 0.98).

same as the implementation population, MAS can rapidly be implemented using linked markers (Schnabel *et al.* 2003) and these may be continually refined as high density SNP chips, such as the BovineSNP50 BeadChip from Illumina Inc. (Matukumalli *et al.* 2009) become widely utilized

Producers who wish to use MAS within their herds need to collect a DNA sample on each potential breeding stock using a convenient sample collection process that allows simple and safe storage. To facilitate this, a separate study was performed to assess the potential of using blood and nasal swab samples collected on FTA cards as a source of DNA for the BovineSNP50 BeadChip.

PUBLICATION OUTLINE

These studies represent the major focus of this thesis and results are presented in the following four publications, which will be referred to by their corresponding roman numerals:

- McClure, MC, NS Morsci, JW Kim, MM Rolf, SD McKay, RD Schnabel, and JF Taylor. 2009. Genome Scan in Commercial Angus Cattle for Quantitative Trait Loci Influencing Carcass Traits. (Manuscript).
- II. McClure, MC, NS Morsci, JW Kim, MM Rolf, RD Schnabel, and JF Taylor. 2009.
 Genome Scan in Commercial Angus Cattle for Quantitative Trait Loci
 Influencing Growth Traits. (Manuscript).

- III. McClure, MC, NS Morsci, JW Kim, MM Rolf, JE Decker, RD Schnabel, and JF Taylor. 2009. Genome Scan in Commercial Angus Cattle for Quantitative Trait Loci Influencing Reproductive Traits. (Manuscript)
- IV.McClure, MC, SD McKay, RD Schnabel, and JF Taylor. 2009. Assessment of DNA extracted from FTA[®] cards for use on the Illumina iSelect BeadChip. (*Published:* BMC Research Notes 2009, 2:107).

Paper I focuses on QTL results from the analysis of four traits that impact carcass quality: adjusted subcutaneous fat thickness between the 12th and 13th rib, final trimmed carcass weight, ribeye muscle area, and USDA marbling score. Paper II focuses on traits that determine the overall postnatal growth of an animal: weaning weight, yearling height, yearling weight, mature height, and mature weight. Traits that impact reproductive and maternal abilities are the focus of paper III: birth weight, calving ease direct, calving ease maternal, maternal milk, and scrotal circumference.

Paper IV considers the genotype call and concordance rates achieved between genomic DNA samples harvested from tissues collected on FTA filter paper and samples derived from whole blood. As FTA paper provides an ideal medium for the field collection of tissues from livestock, this paper analyzed bovine DNA extracted from tissues collected and stored on FTA paper to determine if the medium would provide DNA samples which yielded reliable genotypes when assayed using high-throughput and high-density SNP genotyping platforms, specifically the Illumina BovineSNP50 BeadChip.

While each paper is presented in the style required by the journal to which it was intended to be submitted to (Journal of Animal Genetics for papers I, II, and III and BMC Research Notes for paper IV), the reference style for all manuscripts in this thesis is that of the Journal of Animal Genetics. Each paper's figures and tables, including those submitted as supplemental information, are included after each corresponding manuscript. The numbering of figures and tables is sequential as each appears within the thesis.

CHAPTER 2

Genome Scan in Commercial Angus Cattle for Quantitative Trait Loci Influencing

Carcass Traits.

Abstract

A genome-wide quantitative trait loci (QTL) scan for carcass traits was performed in a registered Angus sire mapping population. Three hundred and ninety microsatellite loci and 12 single nucleotide polymorphisms were scored in 1,769 registered Angus sires from a twenty-nine generation pedigree in which the earliest animal was born in 1955. Data analyzed for each sire were expected progeny differences (EPD) provided by the American Angus Association for the Spring 2005 evaluation. Statistical analysis was performed using two different analytical methods: half-sib least squares regression and Bayesian Monte Carlo Markov Chain linkage analysis. Each analyzed trait resulted in the identification of multiple QTL with high levels of statistical support distributed throughout the genome: carcass weight (36 QTL), fat thickness (30 QTL), USDA marbling score (29 QTL), and ribeye muscle area (40 QTL). In total 115 QTL regions were detected with 16 of these being pleiotropic. In total, 55 to 75% of the genetic variance in each trait was explained by these QTL. These results provide insight into the large number of QTL effecting carcass quality within an important beef breed.

Introduction

Over the past 30 years producers have made enormous changes in beef cattle through evolving management practices and the use of expected progeny differences (EPDs) to improve economically important traits. Genomic research in livestock species has identified multiple QTL for numerous traits in an effort to identify genetic variation that can be selected to improve animals. Ideally, QTL for economically important traits will be selected in breeding programs via marker assisted selection (MAS) schemes in which the contributions of multiple QTL are simultaneously considered. MAS is especially beneficial when used to improve traits that are determined post-mortem, occur late in life, or that are difficult and (or) expensive to accurately measure.

Many of the beef cattle QTL mapping populations created in the 1990s were based upon *Bos taurus* x *Bos indicus* experimental crosses (Stone *et al.* 1999; Kim *et al.* 2003). The logic behind these crosses was that the large genetic and phenotypic divergence between these subspecies for meat quality traits would maximize the probability of detecting QTL of large effect. While the crossbreeding strategy did allow the detection of QTL it also hindered the identification of the underlying quantitative trait nucleotides (QTN) and the development of MAS programs. *B. indicus* and *B. taurus* diverged approximately 500,000 years ago (Miretti *et al.* 2002) and mutations with fixed allelic differences have accumulated about every 2 kb within these genomes (Taylor *et al.* 2006). Consequently, the confidence interval for any QTL found in such a crossbred population contains thousands of mutations with fixed differences between *B. indicus*

and *B. taurus* alleles, which are statistically impossible to differentiate from the causal QTL alleles within the experimental design (Sellner *et al.* 2007).

Furthermore, historical experimental designs used for QTL mapping in cattle have sampled a limited number of parental chromosomes and therefore have only detected the few QTL that were heterozygous within these parents (Casas et al. 2003; Mizoshita et al. 2004; Alexander et al. 2007). On average, each analyzed sire's half-sib family generated only 3 to 5 QTL per trait (Chamberlain *et al.* 2007; Allan & Smith 2008) and the QTL identified from a single sire will represent only a fraction of the total number of QTL segregating within a population (Mizoshita et al. 2005). While multiple carcass trait QTL have been identified in cattle, as of June 2009, less than 11% of all reported bovine QTL influence a meat production trait (143 of 1375; http://www.animalgenome.org/QTLdb/cattle.html). According to a recent review (Allan & Smith 2008), only 24 QTL for USDA marbling score (MARB), 24 for adjusted subcutaneous fat thickness between the 12th and 13th rib (FAT), 6 for ribeye muscle area (REA), and 27 for final weight of trimmed carcass (CW) have been reported. As previous genome scans have found only a limited number of QTL segregating in commercial populations that influence any one trait, genetic improvement by MAS in cattle has been hindered by the inability to test for sufficient QTL to economically justify the cost of testing.

By using the largest commercial cattle mapping population assembled to date and by using sires that represent the major bloodlines within American Angus, we have

captured the majority of the chromosomes represented within the US breed. Mapping within commercial populations offers the advantage that experimental crosses are not needed and consequently pedigrees and phenotypes can quickly be collected. Additionally, any QTL identified within a commercial population may immediately be incorporated in the breeding program for that population (Schnabel *et al.* 2003). This experimental design also allows the flexibility of using multiple analytical approaches, to exploit both within family variation and the full pedigree information. Finally, it also maximizes the potential for identifying QTL of large effect that segregate within commercially relevant cattle populations.

Materials & Methods

Animals and Traits

The mapping population consisted of a 29 generation pedigree comprised of 1,769 registered American Angus sires born between 1955 and 2003, which represents the major sire lines within the breed. All sires, except family founders, have DNA on their sire represented in the mapping population and 77.9% also have DNA represented for their maternal grandsire. Cryopreserved semen straws were obtained from multiple semen companies and registered Angus breeders as sources of DNA. Genomic DNA was isolated by proteinase K digestion followed by Phenol:Chloroform:Isoamyl alcohol extraction, and ethanol precipitation (Sambrook 1989). The population is comprised of 10 male lineages; however, all of these lineages were interrelated through the bulls'

maternal pedigrees. Pedigree data, EPDs, and their accuracies (Spring, 2005 evaluation) were obtained from the American Angus Association.

Markers

Microsatellite markers that possess a large number of alleles and were easy to score were chosen (N=417) from published genetic maps (Barendse *et al.* 1997; Kappes *et al.* 1997) and twelve SNPs representing candidate genes and commercialized tests were selected for genotyping (Table 2.1) (Barendse *et al.* 2001; Grisart *et al.* 2002; Grisart *et al.* 2004). The forward PCR primer for each microsatellite marker was synthesized with one of four fluorescent dye labels and multiplexed PCR were developed based on allele size distributions, fluorescent label and the empirically determined ability of each marker to co-amplify as described in Schnabel *et al.* (2003). Between two and nine markers were co-amplified in each reaction, with PCR conditions optimized to maximize the number of loci per reaction. PCRs were performed in 5 µl reactions on an ABI GeneAmp 9700 thermocycler (Applied Biosystems, Foster City, CA, USA). Microsatellite markers were multiplexed in 69 assays; PCR annealing temperatures and multiplex setup are described in Table 2.2.

SNPs were amplified by allele-specific PCR and co-amplified with a 16S rRNA gene fragment which was used as a positive control for the PCR. Each primer ending at an SNP locus was designed with a mismatched third base at the 3' end, as compared to the bovine genomic sequence (Table 2.2). Weakening the primer by providing a partial

primer mismatch minimizes error in SNP genotyping by PCR amplification. PCR annealing temperatures and setup for SNPs are described in Table 2.3 and 2.4.

Genotypes

All 1,769 sires were genotyped for 417 microsatellite markers and 12 SNP. Alleles were seperated on an ABI 3730 Automated Sequencer or an ABI 3100 Automated Sequencer, with fragment sizes determined relative to the Gene Scan 500 LIZ internal size standard (Applied Biosystems). Fluorescent signals were detected using GENESCAN v3.1 (Applied Biosystems) and fragment sizes analyzed by GeneMapper v3.7 (Applied Biosystems). SNPs were primarily genotyped by allele-specific PCR with amplification products visualized on a 2% standard agarose gel. However the SNP in the Thyroglobulin (*TG5*) (Barendse *et al.* 2001) and Acyl-CoA:diacylglycerol acyltransferase (*DGAT1*) genes (Grisart *et al.* 2002; Grisart *et al.* 2004) were genotyped as PCR RFLPs and scored on agarose gels: 1.5% for *DGAT1* and 3% for *TG5* (50% standard agarose and 50% high resolution NuSieve 3:1 agarose (Cambrex Bioscience, Rockland, ME)).

Twenty-seven of the microsatellite markers either worked poorly in multiplex reactions or were essentially monomorphic in our mapping population. These were excluded from further analysis leaving 402 genetic markers to be analyzed, resulting in a 93.51% genome coverage (2820.49 cM) of the bovine autosomes, with an average marker interval of 8.02 cM (Table 2.5).

Data Analysis

GENOPROB (Thallman *et al.* 2001a, b) was used to verify generated microsatellite and SNP genotype scoring against the pedigree and to check genotype quality using published marker positions from the USDA MARC cattle mapping database (http://www.marc.usda.gov/genome/genome.html). GENOPROB was also used to identify misinheritances, genotyping errors, predict missing genotypes, and to estimate the probability that a genotype was scored correctly (pGmx). Complete pedigree information linking all of the genotyped animals was assembled into a single pedigree to capture relationships among the maternal lineages which were not genotyped. Consequently genotypes were inferred on 6,974 females and an additional 4,458 males by GENOPROB. Genotype and grand-parental origin probabilities were estimated for each of the genotyped animals using genotype, map, and pedigree information. Individual genotypes with low probability (pGmx < 0.98) were excluded from further analysis. Subsequently, 1,117,936 genotypes with pGmx \ge 0.98 were generated, of which 224,708 genotypes were on females.

Two complementary approaches were used for QTL analysis to locate as many QTL as possible. Ten sires with 18 or more progeny (max 74) with at least \geq 0.75% of their genotypes satisfying pGmx \geq 0.98 from the GENOPROB analysis, were individually analyzed by half-sib least squares regression using the program QTL Express (Seaton *et al.* 2002) to identify QTL and determine the segregation status for each sire and trait combination. Chromosome and genome-wide significance levels were determined by

genome-wide permutations performed using 1,000 data permutations for each sire and each trait (Churchill & Doerge 1994). Since the number of offspring varied per sire, F statistic results were transformed to $-\log_{10}(P_{nominal})$ values to allow comparisons between sires. LOKI v.2.4.5 (Heath 1997) was used to perform multipoint QTL interval analysis on the AI sires using a Bayesian Markov chain Monte Carlo approach which analyzes all families jointly to simultaneously estimate the total number and position of QTL within the pedigree. This analysis was performed using 2,854 animals that had at <u>least</u> 22% of their genotypes satisfying pGmx \geq 0.98 from the GENOPROB analysis. LOKI does not allow the use of weights reflecting heteroscedastic residual variances, consequently, only EPDs with accuracies >0.05 were used. An initial burn-in of 1,000 iterations was followed by 500,000 iterations, with parameter estimates collected at each iterate. LOKI reports statistical support as a L factor which were converted to Bayes Factor using a PERL script, QTL significance levels were chosen according to Jefferys (1961), where a Bayes Factor of \geq 10 indicates strong support for the presence of a QTL

A chromosome was considered to harbor multiple segregating QTL for a trait if each detected QTL was separated by at least one marker and the QTL were at least 8 cM apart, which is the average marker interval. Statically significant QTL within 8 cM for the same trait were considered to be one QTL detected to be segregating in several families or by both analytical approaches The reported map location was chosen to correspond to the QTL with the highest statistical support. QTL were identified as being pleiotropic if separate trait QTL peaks were within 8 cM of each other, if both QTL were identified

by the same analytical approach, possess the same directional effect, visual support could be determined from the QTL graphs (Figure 2.1), and strong genetic correlations between the traits were demonstrated in the literature. For consistency, all analyses used a sex-averaged genetic map calibrated in Haldane cM units.

Analysis of variance (ANOVA) was performed using the PROC GLM function in SAS version 9.1 (SAS Institute, Cary, NC) to estimate the amount of genetic variation (in EPDs) explained by the QTL identified in this population. Microsatellite markers that were closest to each QTL position were included in the multiple factor ANOVA as a categorical variable using the class option in GLM. The model used was:

$$Y_k = \mu + M_{j1} \dots M_{jn} + e_k$$

Where Y_k is the EPD for animal k, μ is the overall mean, M_j is the genotype effect of marker j, and e_k is the random residual for each animal's EPD. This analysis was performed using 1,951animals that had at least 22% of their genotypes satisfying pGmx \geq 0.98 from the GENOPROB analysis. Additionally, 100% of these animals had EPD values for BW, CED, CEM, MILK, WW, and YW; 98% for SC and YH, 94% for CW, FAT, MRB, and REA; and 91% for MW and MH.

Results

At a chromosome-wide $P \le 0.01$ significance level or Bayes Factor ≥ 10 (Jefferys 1961), every autosome was found to harbor multiple carcass related QTL (Table 2.6). In total, 36 QTL for carcass weight, 30 QTL for fat thickness, 29 QTL for marbling and 40

QTL for ribeye area were identified to be segregating within the Angus genome (Table 2.7). Twenty-four of these carcass QTL have previously been reported in the literature. Of the 135 possible distinct QTL, 16 appear to be pleiotropic (Table 2.8), indicating that 119 independent carcass trait QTL were identified in this study.

On average, each chromosome harbors 4 carcass related QTL, with 4 chromosomes each harboring 6 QTL. Each chromosome contained, on average, 1.07 QTL for each trait with a range from 0 to 4 QTL. While significant QTL for carcass traits were found on every chromosome, on average, 7 chromosomes were not detected to contain QTL for any given trait. The average allele substitution effect (on EPDs which are one half of the allele substitution effects based upon phenotypes) from QTL Express for CW was 16.63 lb, REA was 0.29 in², MRB was 0.21, and FAT was 0.03 in. Differences between alternate homozygotes which are estimates of twice the allele substitution effect produced by LOKI were 3.05 lb for CW, 0.03 in² for REA, and 0.05 for MRB (Table 2.9).

The GLM analysis revealed that the QTL reported here explain a substantial amount of the genetic variation in each trait within our population (Table 2.10). With all significant QTL detected for each trait included in the model, 68.66% of the genetic variance was explained for CW, 60.15% for FAT, 55.15% for MRB, and 75.71% for REA. While at least 55% of each trait's genetic variation was explained when all QTLassociated markers were included in the model, no single marker individually explained more than 8% of the genetic variation within a trait.

Discussion

The experimental designs historically used for QTL detection in livestock have analyzed only a limited number of parental chromosomes. Therefore, most genome scans performed in *B. taurus* have identified a small number of QTL influencing any one trait. In this study, by capturing the majority of chromosomes represented within American Angus the experimental design maximizes the probability that the vast majority of economically important QTL segregating within American Angus will be identified.

The analysis detected 115 carcass trait QTL over 29 chromosomes at the chromosome-wide P \leq 0.01 significance level for QTL Express and Bayes Factor \geq 10 significance level for LOKI (Table 2.7), with many of these QTL appearing to be novel. Of the 115 detected QTL only 24 appear to have previously been reported, seven for FAT, three for REA, eight for MRB, and six for CW. LOKI did not detect any QTL with support \geq 10 Bayes Factor for FAT, which may be due to the low variance among EPDs (0.00076 in²) in this population possibly reflecting that progeny of these bulls were slaughtered at a fatness dependent end-point, and that less than 50% of the animals analyzed had an EPD accuracy for FAT >0.05 (Table 2.9).

The lack of FAT QTL being detected by LOKI and the discrepancies of QTL identified by both methods are likely due to the methodological differences between the two analytical methods used. Variance component (VC) models such as LOKI (Heath, 1997) assume that both the allelic QTL effects and the polygenic components

are normally distributed and segregate in both parental lineages. Additionally, the genetic variance explained by a QTL is estimated across all animals in the pedigree. If a QTL is segregating at low frequency it may not be detected by a VC analysis model as the power of detection depends on the amount of variance explained by the QTL across the population (de Koning *et al.* 2003), while half sib (HS) models like QTL Express estimate allele substitution effects as a fixed effect in each sire analyzed. Maternally inherited QTL alleles are assumed to be randomly distributed between half-sibs and used to increase the number of offspring that are informative for the sire's allele. A QTL will be missed by a HS model if the sires analyzed by QTL Express are not segregating for it, while a QTL segregating in sires but not dams will have its effect diluted in a VC analyses and therefore be missed (de Koning *et al.* 2003).

As with other studies, discrepancies between the magnitude of significance between QTL detected by both LOKI and QTL Express are likely due to the differences in each models' ability to represent the true architecture of QTL in a population (de Koning *et al* 2003; Schnabel *et al*. 2005). Comparing the data to published results suggests that the majority of these QTL segregate within all *B. taurus* breeds of cattle. These results support population-based approaches to QTL mapping within commercially relevant populations.

This study reveals an abundant number of QTL with moderate to large effect influence carcass traits in American Angus. Even with selection for carcass improvement using EPDs over the past 30 years there remains variation in the frequency of carcass-

27

and-yield-enhancing alleles to high levels at many QTL, with an average estimated allele frequency of 0.441 for CW, 0.856 for MRB, and 0.542 for RIB (Tables 2.7 and 2.9). This allele frequency for highly selected, economically important traits is in agreement with what has been found for milk production QTL in dairy cattle (Chamberlain *et al.* 2007).

While we have identified 16 putative pleiotropic QTL (Table 2.8), the resolution of our scan is not sufficient to determine if a single quantitative trait nucleotide (QTN) influences both traits or if each trait has a separate QTN under the QTL peak. As the phase relationship between potentially distinct QTN cannot be identified from our analysis and LD extends for 500 kb (McKay *et al.* 2007) it is possible that use of these QTL in a MAS program could result in divergent selection in each of the traits. Additionally if a single QTN underlies the pleiotropic QTL, further work is required to determine the contribution of QTL to a rational selection objective. It makes little sense to apply strong selection pressure on a QTL that will slightly increase marbling score but that also strongly increases fat thickness as the economic gain from increased marbling may be offset by the loss from increasing fat thickness.

While including all detected QTL in a GLM analysis explains 60% to 70% of the traits genetic variation, on average a single marker explained only 1.9% of the total genetic variation for a trait (Tables 2.10, 2.11, 2.12, and 2.13). These estimates of genetic variation were determined by using the same animals used for QTL discovery, therefore the true amount of variation explained is likely to be smaller (Lou *et* al. 2003; Xu, 1998). Additionally the larger allele substitution effects estimated by QTL Express

28

could be due to the smaller half-sib family size of each sire versus the larger size of the entire mapping population (Lou *et* al. 2003). Beavis (1998) observed that as the number of progeny decreases there is an increase in the overestimation of the average estimated variances associated with identified QTL. Even with this known probability of overestimation of the amount of true genetic variation explained by these QTL, one can note that most of a trait's genetic variation is influenced by a large number of QTL.

Consequently, for a MAS program to have a significant impact on even a single trait information from multiple QTL must simultaneously be used. Genetic improvement programs that implement information from one, or even a few economically important QTL will have little value in beef cattle. Strategies must be devised that simultaneously test for multiple QTL for MAS to be economically viable. The identification of multiple QTL underlying variation in carcass traits in this study will assist in the development of multiple QTL tests. Estimating EPDs in cattle by integrating QTL information with available phenotypic data will allow producers to select for genetically superior animals.

Acknowledgements

We are indebted to numerous breeders of registered Angus cattle and to the artificial insemination companies who provided semen samples from Angus bulls. In particular, we are grateful to Dr Harvey Blackburn, National Animal Germplasm Program and to Dr Scott Barao, University of Maryland for providing samples on a large number of older bulls. This project was supported by the University of Missouri and by National

29

Research Initiative grant number 2005-35205-15448 and 2008-35205-18864 from the

USDA Cooperative State Research, Education and Extension Service.

Table 2.1. Summary of microsatellite (MS) and SNP marker information. Markers were analyzed by both QTL Express and LOKI if an X is present, L=only LOKI analysis was performed, N=marker was not analyzed. Markers with the same multiplex ID were simultaneously assayed in a multiplex PCR. PCR set up refers to conditions in Table 2.3.

Marker Name	Analyzed	вта	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanomolar of primer
AGLA17	N	1	0.00		MS	FAM	1_3	6	2.6
BM6438 29	x	1	1.78	2	MS	FAM	1_2	1	1.8
 BM8139	х	1	10.01	6	MS	FAM	1 3	3	1.4
BMS574	x	1	15.43	7	MS	VIC	1_3	3	1.8
BMS4017	x	1	38.08	5	MS	FAM	1_1	3	3.0
TGLA57	х	1	51.02	6	MS	FAM	1_1	3	3.0
BMS527	х	1	62.45	8	MS	FAM	PRTG A	7	1.8
INRA119	х	1	76.50	4	MS	FAM	28_1	4	1.4
BM6506	х	1	77.68	7	MS	FAM	1_2	1	1.2
BM7145	х	1	77.69	2	MS	NED	PURITY_A	7	4.0
BMS4008	х	1	80.38	9	MS	NED	1_1	3	1.6
APM_1431	х	1	81.00	2	SNP		APM_1431	1	4.0
APM_INDEL	х	1	81.00	2	SNP		APM_Indel	6	4.0
APM_1596	х	1	81.00	2	SNP		APM_1596	1	4.0
APM_MS	х	1	81.00	4	MS	FAM	1_1	3	2.8
APM_11867	х	1	81.01	3	SNP		SST_467_AP M_11867	8/9	4.0
SST_467	х	1	82.00	2	SNP		SST_467_AP M_11867	8/9	4.0
BMS4031	х	1	87.12	4	MS	PET	1_3	3	3.4
BM864	х	1	99.71	9	MS	FAM	1_1	3	4.8
BMS4040	х	1	111.35	6	MS	FAM	PURITY_B	6	3.0
BM1824	х	1	122.39	5	MS	FAM	1_3	3	2.0
BMS599	х	1	139.32	8	MS	PET	1_3	3	0.7
BMS4014	х	1	148.21	8	MS	PET	28_1	4	2.0
URB014	х	1	154.67	5	MS	VIC	1_2	1	1.6
BMC9007	х	2	2.78	6	MS	VIC	205	1	0.5
TGLA44	х	2	3.86	11	MS	VIC	2_1	1	1.8
ILSTS026	х	2	10.77	6	MS	NED	14_1	1	1.1
DIK2111	х	2	13.48	5	MS	NED	2_1	1	2.8
DIK1172	х	2	18.13	6	MS	FAM	14_1	1	2.0
CSSM50	х	2	20.54	6	MS	VIC	14_1	1	3.0
TGLA61	х	2	23.11	9	MS	FAM	206	1	2.0
TEXAN2	х	2	25.97	4	MS	PET	2_1	1	4.0

Marker Name	Analyzed	BTA	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
TGLA377	х	2	30.74	6	MS	FAM	205	1	1.0
SRC23	x	2	33.84	9	MS	PET	26_2	1	8.0
URB042	х	2	37.56	8	MS	NED	204	1	1.6
CSSM42	х	2	38.01	9	MS	PET	PURITY_B	6	2.2
ETH121	х	2	38.10	9	MS	FAM	202	1	2.8
BM3010	х	2	38.90	3	MS	PET	203	1	1.4
ILSTS030	х	2	38.99	5	MS	FAM	204	1	2.0
BMC9002	х	2	40.19	4	MS	VIC	203	1	2.0
BMS803	х	2	44.51	7	MS	NED	202	1	1.8
BL1001	х	2	46.26	4	MS	PET	201	1	1.2
BMS1300	х	2	50.59	3	MS	VIC	204	1	2.0
RM356	х	2	56.91	5	MS	VIC	14_1	1	0.9
BM4440	х	2	60.26	12	MS	NED	PRTG B	6	2.8
BY32	х	2	67.26	10	MS	PET	2_1	1	3.4
RM041	х	2	74.84	7	MS	FAM	2_1	1	4.2
TGLA226	х	2	85.85	5	MS	FAM	205	1	1.8
BM1223	х	2	100.18	6	MS	NED	203	1	2.2
BMS2519	х	2	110.25	7	MS	PET	201	1	1.6
BL1028	х	2	114.21	6	MS	VIC	2_1	1	0.7
BM2113	х	2	115.44	11	MS	FAM	PRTG B	6	2.8
IDVGA37	х	2	117.18	5	MS	FAM	203	1	2.0
DIK1155	х	2	117.96	4	MS	VIC	204	1	2.0
DIK2084	х	2	125.62	2	MS	NED	205	1	0.9
IDVGA2	х	2	126.35	8	MS	FAM	202	1	1.0
FCB11	х	2	128.88	9	MS	NED	206	1	3.0
BMS871	х	3	0.00	3	MS	VIC	3_1	1	2.0
URB006	х	3	9.34	5	MS	VIC	3_1	1	5.0
BMS2904	х	3	26.05	4	MS	FAM	30_1	1	1.4
BMS482	х	3	34.04	11	MS	NED	3_2	1	3.0
BM723	х	3	46.04	7	MS	FAM	3_2	1	3.0
INRA003	х	3	59.36	7	MS	NED	7_1_M	1	2.0
HUJ246	х	3	67.98	5	MS	FAM	4_5	1	3.0
BMS1266	х	3	77.61	5	MS	NED	5_6	3	3.0
HUJII77	х	3	87.33	5	MS	FAM	3_2	1	5.0
BMS2145	х	3	93.83	8	MS	FAM	13_1	1	2.0
BM7225	х	3	101.75	8	MS	FAM	3_1	1	1.4
BMS896	х	3	116.54	3	MS	FAM	4_4	1	2.0
BMC4214	х	3	125.80	7	MS	FAM	4_2	1	4.0
RM309	х	3	127.91	5	MS	PET	13_1	1	2.4
BMC1410	х	4	4.16	7	MS	FAM	4_4	1	5.0

Marker Name	Analyzed	вта	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
BL1024	х	4	7.87	7	MS	VIC	4_2	1	2.0
BMS1788	х	4	12.54	8	MS	FAM	4_3	1	5.0
BMS827	х	4	28.45	7	MS	FAM	4_5	1	2.4
BMS1172	х	4	30.79	5	MS	PET	PRTG A	7	2.2
DIK2956	х	4	35.52	10	MS	FAM	4_6	1	3.0
BMS1840	х	4	46.54	7	MS	FAM	4_3	1	3.0
BMS885	х	4	53.89	10	MS	NED	4_5	1	5.0
INRA072	х	4	62.95	8	MS	FAM	30_1	1	2.4
BMS2571	х	4	69.73	7	MS	FAM	4_4	1	2.4
BMS2809	х	4	76.01	7	MS	FAM	4_1	1	5.0
UASMS2	х	4	87.33	2	SNP		UASMS2	1	4.0
UASMS3	х	4	87.33	3	SNP		UASMS3	1	4.0
LEP_EX2	х	4	87.33	2	SNP		GHR_LEP1	1	4.0
RM088	х	4	99.70	8	MS	NED	4_2	1	4.0
BR6303	х	4	104.91	4	MS	VIC	4_2	1	5.0
AGLA227	х	4	107.15	3	MS	PET	30_1	1	4.0
DIK4542	х	4	119.93	4	MS	NED	4_6	1	1.6
BMS695	х	5	1.17	4	MS	FAM	5_2	3	2.0
BM6026	х	5	6.05	9	MS	FAM	10_1	3	4.2
BMS610	х	5	12.02	12	MS	NED	5_1	3	2.0
BP1	х	5	17.29	12	MS	PET	5_1	3	4.6
RM103	х	5	29.43	8	MS	NED	10_1	3	2.6
DIK4759	х	5	40.29	4	MS	PET	5_6	3	6.0
BL37	х	5	52.09	7	MS	FAM	5_1	3	4.2
RM500	х	5	56.30	4	MS	FAM	PURITY_A	7	3.0
CA084	х	5	56.63	6	MS	VIC	5_3	3	1.7
BR2936	х	5	65.17	5	MS	PET	5_4	3	1.4
CSSM22	х	5	74.20	7	MS	FAM	5_1	3	4.2
BMS1216	х	5	78.21	9	MS	PET	5_3	3	4.0
RM029	х	5	81.92	5	MS	PET	5_2	3	4.0
BMS1248	х	5	90.85	5	MS	FAM	25_1	3	2.0
BM315	х	5	103.17	12	MS	PET	5_6	3	6.0
BMS1658	х	5	105.68	6	MS	FAM	11_2	5	8.0
BM2830	х	5	116.91	11	MS	FAM	5_2	3	2.4
ETH152	х	5	121.75	7	MS	FAM	5_1	3	1.8
BMS597	х	5	125.05	3	MS	NED	5_2	3	0.7
ILSTS093	х	6	0.00	6	MS	NED	6_2	2	2.4
INRA133	х	6	8.05	6	MS	VIC	6_2	2	2.0
BMS5006	х	6	17.00	3	MS	PET	6_1	2	2.4
URB016	х	6	34.45	9	MS	PET	6_2	2	4.6

Marker Name	Analyzed	вта	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
BM1329	N	6	35.40		MS	VIC	6_1	2	1.2
BMS2508	х	6	43.94	9	MS	FAM	6_2	2	4.6
ABCG2	х	6	46.70	3	SNP		ABCG2	10	2.0
OPN3907	х	6	46.86	2	MS	VIC	6_1	2	4.4
BM143	х	6	53.72	10	MS	PET	6_1	с	2.4
DIK082	х	6	57.57	6	MS	VIC	6_2	2	2.0
BMS360	х	6	72.88	9	MS	FAM	4_1	1	1.8
BM4621	х	6	77.61	3	MS	NED	6_1	2	1.6
CSNA	х	6	88.78	4	MS	FAM	6_1	2	4.0
CSN3	х	6	89.35	4	MS	FAM	6_1	2	1.0
BM8124	х	6	101.41	4	MS	NED	6_2	2	1.0
BMS5029	х	6	118.08	7	MS	VIC	6_1	2	1.8
BMC4203	х	6	119.05	7	MS	FAM	6_2	2	2.4
BM7160	х	7	0.00	6	MS	FAM	7_1	2	3.6
RM012	х	7	8.41	3	MS	VIC	15_3	2	1.0
DIK4378	х	7	16.76	8	MS	VIC	4_5	1	4.0
RM006	х	7	25.39	4	MS	VIC	30_1	1	2.2
IL4	х	7	32.04	5	MS	FAM	16_3	2	2.4
BM6105	х	7	36.95	9	MS	NED	17_2	1	3.0
DIK2819	х	7	47.91	8	MS	VIC	26_1	1	3.0
UWCA20	х	7	58.55	6	MS	FAM	15_4	1	2.0
BMS2840	х	7	65.31	11	MS	PET	7_1_M	1	3.4
BMS2258	х	7	77.19	7	MS	FAM	7_1	2	2.0
BM1853	х	7	85.32	4	MS	NED	4_2	1	3.0
BMS1331	х	7	90.70	4	MS	PET	30_1	1	2.4
BM9065	х	7	101.12	7	MS	PET	3_2	1	5.0
ILSTS006	х	7	116.63	7	MS	VIC	7_1_M	1	4.0
BMS1979	х	7	126.25	8	MS	NED	7_1_M	1	3.4
BMS1247	х	7	133.81	5	MS	PET	3_2	1	4.0
BL1043	х	7	135.56	9	MS	FAM	7_1	2	3.0
BMS1864	N	8	2.68		MS	NED	16_3	2	5.0
IDVGA11	х	8	11.34	7	MS	VIC	7_1	2	2.4
RM372	х	8	21.15	8	MS	VIC	PRTG A	7	4.4
BP2	х	8	30.52	5	MS	FAM	4_3	1	5.0
BMS678	х	8	41.60	6	MS	VIC	4_3	1	1.6
BM4006	х	8	50.11	6	MS	NED	3_1	1	5.0
BMS2072	х	8	66.03	5	MS	NED	7_1	2	3.0
MCM64	х	8	71.07	6	MS	NED	4_3	1	4.0
DIK2868	х	8	83.98	4	MS	FAM	30_3	1	4.0
BM711	х	8	92.73	9	MS	FAM	8_1	1	3.6

Marker Name	Analyzed	BTA	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
CSSM047	х	8	118.72	5	MS	NED	8_1	1	2.0
BMS2847	х	8	120.86	8	MS	FAM	4_1	1	3.6
BMS836	х	8	122.91	6	MS	VIC	3_2	1	1.8
BMS2151	х	9	4.89	6	MS	PET	1_2	1	1.8
BM757	х	9	5.38	7	MS	NED	29_5	4	1.8
ETH225	х	9	12.75	5	MS	NED	29_5	4	1.6
BM1227	х	9	24.14	3	MS	NED	1_2	1	1.4
BMS817	х	9	42.49	8	MS	NED	1_3	3	2.0
BMS434	х	9	57.09	6	MS	FAM	22_1	3	6.0
BMC701	х	9	62.35	9	MS	FAM	1_3	3	3.6
BMS2377	х	9	71.45	3	MS	VIC	1_1	3	0.8
BMS1724	х	9	80.26	5	MS	VIC	9_4	3	0.6
BM4208	х	9	90.69	6	MS	NED	9_4	3	1.6
BMS2295	х	9	98.65	5	MS	FAM	9_4	3	1.4
BMS1967	х	9	109.29	12	MS	PET	9_4	3	1.6
BMS2094	х	9	116.17	5	MS	VIC	9_4	3	1.0
BM3033	х	10	1.86	3	MS	PET	10_1	3	1.8
BM6418	х	10	14.30	6	MS	PET	10_2	1	2.4
BMS528	х	10	24.01	10	MS	FAM	22_1	3	2.6
BRN	х	10	35.07	9	MS	VIC	10_1	3	1.0
SPS113	х	10	35.07	9	MS	NED	PURITY_A	7	4.0
BMS2742	х	10	44.25	12	MS	FAM	12_1	4	3.0
BMS419	х	10	59.52	11	MS	FAM	5_3	3	3.0
INRA071	х	10	68.10	8	MS	PET	10_1	3	2.0
INRA037	х	10	79.01	9	MS	NED	5_3	3	2.4
BMS2641	х	10	87.46	4	MS	VIC	10_2	1	1.0
BMS614	х	10	100.01	6	MS	FAM	10_3	3	2.0
BMS2614	х	10	109.39	6	MS	FAM	5_1	3	1.8
BL1134	х	10	111.91	6	MS	VIC	10_1	3	0.8
BM827	N	11	10.58		MS	FAM	5_2	3	0.6
INRA044	х	11	12.08	8	MS	FAM	23_1	3	2.0
BMS2325	х	11	21.08	7	MS	PET	PRTG B	6	2.2
BM2818	х	11	30.01	4	MS	VIC	10_2	1	1.8
RM096	х	11	40.48	6	MS	FAM	10_1	3	1.0
BM7169	х	11	50.31	8	MS	FAM	5_3	3	3.2
BMS1716	х	11	54.58	10	MS	FAM	5_4	3	2.8
ILSTS036	х	11	61.57	6	MS	FAM	5_6	3	2.8
RM150	х	11	70.14	9	MS	FAM	11_1	3	1.4
IDVGA3	х	11	81.80	6	MS	NED	10_1	3	1.0
BMS989	х	11	92.18	6	MS	PET	11_2	5	3.4

Marker Name	Analyzed	BTA	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
BL1103	х	11	97.57	5	MS	FAM	5_3	3	2.0
BMS460	х	11	109.44	7	MS	FAM	10_2	1	1.2
HEL13	х	11	122.37	6	MS	VIC	11_2	5	11.0
DIK2571	х	11	126.09	3	MS	NED	12_1	4	6.0
BMS410	х	12	0.00	13	MS	NED	PRTG A	7	1.2
TGLA36	х	12	6.04	6	MS	FAM	5_4	3	0.6
BMS2252	х	12	14.36	8	MS	FAM	5_4	3	1.4
BMS2057	х	12	20.84	10	MS	FAM	25_1	3	2.0
BY10	х	12	27.42	2	MS	PET	12_1	4	4.0
INRA138	х	12	37.24	7	MS	VIC	5_4	3	0.7
BM1827	х	12	46.30	7	MS	NED	10_2	1	1.0
BMS975	х	12	63.84	5	MS	FAM	5_3	3	2.2
SRC97	L	12	73.60	2	MS	VIC	5_2	3	4.0
BM4028	х	12	83.56	9	MS	FAM	5_6	3	1.6
INRA5	х	12	86.85	3	MS	FAM	12_1	4	10.0
BMS1316	х	12	101.97	8	MS	NED	11_2	5	5.0
BMS2724	х	12	108.98	5	MS	NED	5_4	3	3.6
TGLA23	х	13	8.99	8	MS	VIC	4_4	1	1.2
BMC1222	х	13	27.60	11	MS	FAM	30_3	1	4.0
BMS1352	х	13	38.66	6	MS	PET	3_1	1	2.4
BM720	х	13	46.63	12	MS	VIC	PRTG B	6	3.0
BM9248	х	13	62.81	8	MS	NED	13_1	1	3.0
RM327	х	13	73.64	10	MS	FAM	13_1	1	2.0
BL1071	х	13	80.98	8	MS	FAM	13_1	1	2.0
AGLA232	х	13	91.38	10	MS	FAM	16_3	2	2.0
BMS2319	х	13	97.26	7	MS	FAM	26_2	1	1.6
BM6548	х	13	99.38	4	MS	PET	3_1	1	5.0
DGAT	х	14	0.00	2	SNP		DGAT1	1	4.0
CSSM66	х	14	5.13	8	MS	NED	206	1	0.7
DIK4015	х	14	10.03	7	MS	PET	201	1	2.0
BMS1747	х	14	10.50	7	MS	VIC	203	1	1.0
TG	х	14	11.95	2	SNP		TG	1	4.0
DIK4438	х	14	14.09	3	MS	FAM	202	1	2.0
BM1508	х	14	17.85	6	MS	FAM	17_2	1	4.0
RM180	х	14	33.31	5	MS	PET	204	1	2.0
RM011	х	14	43.63	8	MS	NED	14_1	1	2.6
BMC1207	х	14	51.94	9	MS	PET	14_1	1	1.4
BL1029	х	14	59.44	8	MS	FAM	14_1	1	1.4
BM1577	х	14	63.16	8	MS	FAM	2_1	1	1.8
BMS108	х	14	67.67	7	MS	PET	14_1	1	2.0

Marker Name	Analyzed	BTA	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
BMS1304	х	14	67.70	3	MS	VIC	204	1	1.0
BMS1899	x	14	69.01	9	MS	FAM	14_1	1	1.6
BMS2513	х	14	69.10	4	MS	PET	206	1	2.4
BMS947	x	14	69.79	11	MS	NED	201	1	4.4
NRKM020	х	14	74.09	3	MS	FAM	203	1	3.6
DIK2648	N	14	75.03		MS	FAM	15_4	1	4.0
DIK2742	х	14	76.56	8	MS	PET	205	1	3.6
BM4513	х	14	79.79	9	MS	VIC	PURITY_A	7	2.4
RM66	х	14	81.25	2	MS	VIC	205	1	1.2
BM4305	х	14	83.31	6	MS	NED	204	1	2.0
BM2934	х	14	83.93	7	MS	NED	202	1	2.4
BMS2055	x	14	93.70	8	MS	VIC	202	1	2.8
BM6425	x	14	95.14	8	MS	FAM	201	1	2.8
BL1036	х	14	100.02	8	MS	VIC	201	1	2.4
DIK2777	х	15	0.00	15	MS	PET	30_2	1	5.0
MGTG13B	х	15	8.25	5	MS	PET	15_3	2	4.4
BR3510	х	15	9.41	7	MS	NED	15_1	2	2.4
BMS2533	х	15	13.92	12	MS	FAM	15_2	2	3.6
ADCY2	х	15	22.67	8	MS	FAM	15_2	2	3.6
JAB8	х	15	31.21	4	MS	NED	15_2	2	3.6
HEL1	х	15	37.96	4	MS	NED	4_1	1	4.0
MBO76	х	15	54.29	6	MS	NED	15_1	2	2.4
INRA046	х	15	59.28	4	MS	VIC	15_2	2	2.0
DIK2768	х	15	77.95	9	MS	VIC	15_4	1	5.0
BMS812	х	15	84.89	10	MS	FAM	15_1	2	1.6
BL1095	х	15	94.78	4	MS	VIC	30_2	1	4.0
BMS927	х	15	105.00	7	MS	PET	16_3	2	5.4
TGLA245	х	16	0.91	12	MS	NED	16_2	2	2.2
BMS1348	х	16	14.77	6	MS	FAM	16_2	2	1.2
BY22	х	16	34.72	5	MS	FAM	16_2	2	2.0
TGLA53	х	16	38.55	11	MS	PET	19_2	2	4.6
BMS1907	х	16	43.74	5	MS	VIC	26_1	1	5.0
IDVGA49	х	16	54.10	6	MS	FAM	15_1	2	5.4
IDVGA69	х	16	65.20	3	MS	FAM	15_1	2	5.4
INRA048	х	16	72.20	8	MS	FAM	20_1	2	5.4
BM1706	х	16	80.00	8	MS	FAM	PRTG B	6	4.4
BM3509	х	16	84.00	18	MS	FAM	16_1	2	1.0
DIK4437	х	16	93.50	8	MS	PET	17_1	2	4.0
BMS462	х	16	94.46	5	MS	PET	16_1	2	1.2
IDGVA49	N	16			MS	FAM	16_2	2	2.0

Marker Name	Analyzed	BTA	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
BB718	х	17	0.00	4	MS	PET	15_1	2	3.0
BMS1825	х	17	5.50	15	MS	FAM	17_1	2	2.2
DIK5379	x	17	13.94	9	MS	NED	17_2	1	3.0
DIK4665	х	17	21.41	5	MS	PET	17_2	1	3.6
INRA193	N	17	33.38		MS	PET	17_1	2	1.2
BMS941	х	17	37.01	12	MS	NED	20_2	2	2.0
OARFCB48	х	17	41.70	3	MS	VIC	17_1	2	2.0
BM305	х	17	44.45	15	MS	NED	17_1	2	1.0
DIK2668	х	17	57.09	8	MS	VIC	4_6	1	6.0
BM8125	х	17	66.48	5	MS	FAM	17_1	2	1.0
BM1862	х	17	80.86	8	MS	FAM	19_2	2	1.0
BM1233	х	17	92.07	6	MS	VIC	17_1	2	1.8
BMS3004	N	18	1.71		MS	NED	18_1	2	0.5
BMS1355	х	18	2.86	5	MS	FAM	16_1	2	3.0
BMS1322	х	18	13.48	5	MS	FAM	19_2	2	1.4
TEXAN10	х	18	20.70	7	MS	VIC	18_1	2	1.6
BMS2213	х	18	24.49	7	MS	FAM	18_1	2	4.0
BR4406	х	18	33.40	4	MS	VIC	18_1	2	2.4
BM8151	х	18	40.21	7	MS	PET	21_2	2	1.6
BM7109	x	18	46.98	6	MS	FAM	18_1	2	5.0
BMS2639	х	18	55.53	9	MS	PET	PRTG A	7	4.0
IDVGA55	х	18	67.72	3	MS	NED	16_1	2	4.0
BM2078	x	18	76.78	8	MS	NED	18_1	2	1.0
TGLA227	х	18	84.09	7	MS	FAM	PURITY_B	6	4.4
DIK4013	х	18	84.38	9	MS	VIC	16_2	2	4.0
BM9202	х	19	0.00	7	MS	FAM	19_1	2	3.6
BM6000	х	19	5.35	3	MS	PET	19_1	2	1.4
BMS745	х	19	16.04	7	MS	VIC	19_1	2	0.6
X82261	х	19	18.80	5	MS	PET	19_2	2	3.2
BMS2142	х	19	43.32	12	MS	NED	19_1	2	1.0
BMS650	х	19	56.52	13	MS	NED	19_1	2	1.4
BM17132	х	19	59.20	10	MS	FAM	PRTG A	7	2.8
CSSM065	х	19	69.83	4	MS	FAM	19_1	2	1.4
IDVGA44	х	19	86.01	9	MS	VIC	19_1	2	2.2
RM388	х	19	95.04	6	MS	NED	20_1	2	1.1
BMC1013	х	19	106.83	4	MS	NED	19_2	2	3.2
BMS601	х	19	107.95	7	MS	FAM	20_1	2	1.0
BM3517	х	20	0.00	9	MS	PET	20_2	2	1.6
RM106	х	20	2.69	5	MS	PET	20_1	2	1.6
BM1225	х	20	8.24	8	MS	NED	PRTG B	6	3.0

Marker Name	Analyzed	BTA	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
BMS1282	х	20	19.14	6	MS	FAM	20_2	2	2.0
DIK2467	х	20	26.28	4	MS	PET	30_3	1	3.0
DIK5354	х	20	37.12	8	MS	FAM	15_4	1	2.4
GHR	х	20	42.00	2	SNP		GHR_LEP1	1	4.0
BMS2361	х	20	49.73	5	MS	FAM	20_1	2	1.8
BMS703	х	20	60.08	10	MS	PET	20_2	2	5.0
BM5004	х	20	71.81	8	MS	VIC	20_2	2	3.0
UWCA26	х	20	77.09	9	MS	NED	20_1	2	1.1
DIK553	х	20	82.94	2	MS	NED	20_2	2	1.8
BM8115	х	21	0.00	6	MS	VIC	19_2	2	4.0
BMS1117	х	21	10.97	6	MS	PET	21_2	2	2.0
BM3413	х	21	14.99	8	MS	PET	21_1	2	2.4
ILSTS095	Х	21	23.74	4	MS	FAM	21_2	2	1.0
BM103	х	21	29.77	7	MS	VIC	21_1	2	0.7
BMS2557	х	21	35.90	4	MS	NED	16_1	2	3.0
RM222	х	21	41.56	7	MS	VIC	21_1	2	2.0
BMS868	х	21	43.13	7	MS	FAM	21_1	2	6.0
TGLA337	х	21	52.14	8	MS	NED	21_2	2	2.4
BM846	х	21	61.25	6	MS	FAM	17_2	1	3.0
ILSTS054	х	21	65.85	7	MS	PET	21_1	2	2.8
BMS743	х	21	75.31	9	MS	NED	21_1	2	1.0
BMS2382	х	21	80.28	3	MS	VIC	21_1	2	1.1
DIK3023	х	21	83.79	7	MS	VIC	21_2	2	1.6
CSSM026	х	22	0.00	11	MS	FAM	15_3	2	4.4
INRA026	х	22	2.86	5	MS	VIC	22_1	3	2.8
BMS672	х	22	5.79	6	MS	PET	22_1	3	2.6
BM1558	х	22	19.05	4	MS	FAM	30_4	1	3.0
DIK2694	х	22	31.53	6	MS	NED	26_1	1	5.0
BMS2573	х	22	42.38	7	MS	FAM	15_4	1	2.0
BM3628	х	22	47.07	9	MS	PET	PRTG B	6	3.0
BM2613	Х	22	54.05	6	MS	NED	22_1	3	2.4
BMS875	х	22	64.09	4	MS	FAM	15_3	2	0.5
OARFCB304	х	22	70.74	6	MS	VIC	23_1	3	1.8
BM4102	Х	22	82.93	4	MS	FAM	7_1_M	1	0.8
DIK115	х	22	85.37	9	MS	PET	10_3	3	6.0
INRA132	х	23	4.70	7	MS	PET	28_1	4	4.0
SRC119	х	23	10.71	8	MS	VIC	23_1	3	4.0
BM47	х	23	13.77	14	MS	FAM	4_6	1	4.0
UWCA1	х	23	26.52	13	MS	PET	23_1	3	5.0
BOLADRB1	х	23	37.72	10	MS	FAM	30_2	1	2.0

Marker Name	Analyzed	BTA	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
RM185	х	23	52.29	8	MS	FAM	8_1	1	3.6
BM1818	х	23	58.19	7	MS	FAM	7_1_M	1	4.0
BMS2269	x	23	67.93	13	MS	NED	11_2	5	2.0
BM1905	х	23	71.65	9	MS	NED	PRTG B	6	2.4
BM1443	х	23	73.78	7	MS	NED	25_1	3	3.6
DIK4203	х	23	73.80	9	MS	PET	23_1	3	6.0
BL6-1	N	24	2.87		MS	VIC	8_1	1	2.4
BMS2526	х	24	8.15	8	MS	VIC	22_1	3	3.0
DIK2662	х	24	16.34	7	MS	FAM	26_2	1	1.6
BMS2270	х	24	23.69	12	MS	VIC	PURITY_A	7	1.0
AGLA269	х	24	30.53	11	MS	FAM	10_3	3	4.0
BMS1862	х	24	35.50	12	MS	VIC	PRTG A	7	2.0
BMS1743	х	24	43.85	11	MS	FAM	4_5	1	2.0
BMS466	х	24	48.80	8	MS	NED	25_1	3	1.8
BMS1926	х	24	61.20	6	MS	NED	23_1	3	6.0
BMS3024	х	24	65.93	5	MS	FAM	30_2	1	2.0
BMC4216	х	25	0.59	3	MS	PET	25_1	3	5.0
RM074	х	25	2.24	3	MS	VIC	25_1	3	3.2
BMS130	х	25	14.45	5	MS	NED	11_1	3	3.2
BMS2843	х	25	22.64	6	MS	VIC	11_2	5	5.0
BM737	х	25	31.60	8	MS	PET	11_1	3	4.0
BMS1353	х	25	46.44	7	MS	FAM	30_3	1	2.0
MB063	N	25	57.65		MS	NED	12_1	4	2.0
AF5	х	25	61.67	11	MS	FAM	17_2	1	3.6
BM1864	х	25	68.42	5	MS	NED	12_1	4	1.2
RM169	x	26	0.00	6	MS	PET	26_1	1	3.6
BMS651	x	26	2.84	10	MS	VIC	5_6	3	7.0
FASMC2	x	26	15.46	8	MS	NED	28_1	4	1.8
BM1314	х	26	26.90	4	MS	PET	PURITY_B	6	3.0
INRA081	х	26	29.62	8	MS	FAM	4_6	1	1.4
BM188	х	26	42.48	9	MS	FAM	26_1	1	3.0
BMS2567	х	26	52.46	7	MS	FAM	26_2	1	5.0
BM804	х	26	60.48	6	MS	PET	11_1	3	1.0
ILSTS091	N	26	71.51		MS	VIC	12_1	4	0.5
BM3507	х	27	0.00	9	MS	FAM	15_3	2	3.0
BMS2168	х	27	3.00	8	MS	VIC	11_1	3	2.4
BM6526	х	27	10.06	8	MS	PET	10_3	3	1.6
BMS2137	х	27	20.78	4	MS	PET	4_2	1	3.0
CSSM043	х	27	34.53	6	MS	FAM	4_6	1	4.0
CSSM36	х	27	43.00	8	MS	FAM	PURITY_A	7	4.0

Marker Name	Analyzed	BTA	Position cM	Allele Count	Туре	Dye Label	Multiplex	PCR set up	Nanograms of primer
INRA134	х	27	45.25	5	MS	VIC	4_1	1	3.4
BMS2116	х	27	54.39	8	MS	FAM	28_1	4	3.2
BMS1675	х	27	64.10	6	MS	FAM	4_2	1	3.2
BM203	х	27	64.10	9	MS	VIC	15_1	2	3.6
BMS2060	х	28	6.04	4	MS	NED	28_1	4	2.2
DIK2451	х	28	7.64	7	MS	VIC	15_3	2	3.0
IDVGA29	х	28	16.06	6	MS	VIC	13_1	1	3.0
BL25	х	28	24.77	7	MS	FAM	28_1	4	2.0
BMS510	х	28	29.16	9	MS	VIC	PRTG A	7	1.0
BMS2608	х	28	38.48	8	MS	PET	4_4	1	2.0
BMS1714	х	28	49.40	6	MS	PET	4_3	1	4.0
MB023	L	28	59.56	3	MS	VIC	28_1	4	4.0
BM4602	х	29	0.92	11	MS	FAM	29_5	4	4.0
BMS764	х	29	11.29	7	MS	FAM	11_1	3	1.8
BMS1787	х	29	19.58	9	MS	FAM	9_4	3	1.6
BMS1600	х	29	29.20	4	MS	PET	29_5	4	2.4
RM040	х	29	40.16	2	MS	VIC	29_5	4	0.8
BMC3224	х	29	46.67	3	MS	VIC	PURITY_B	6	2.4
BL1100	х	29	50.41	6	MS	VIC	9_4	3	1.1
BMS1948	х	29	65.64	6	MS	NED	29_5	4	4.0
ILSTS081	х	29	69.01	6	MS	PET	29_5	4	2.0
BMS631	N	х	0.00		MS	VIC	8_1	1	2.4
BM6017	N	х	6.50		MS	NED	30_1	1	3.6
ACC40	N	х	24.70		MS	PET	30_4	1	8.0
BMS811	N	х	42.10		MS	PET	7_1_M	1	4.0
BMS2227	N	х	53.30		MS	FAM	30_3	1	8.0
XBM111	N	х	61		MS	NED	8_1	1	2.4
BMS417	N	х	69.50		MS	VIC	4_4	1	5.0
BR215	N	х	79.10		MS	VIC	16_3	2	2.4
BMC6021	N	х	90.40		MS	PET	8_1	1	2.4
BMS2798	N	х	101.60		MS	VIC	15_2	2	5.0
BMS397	Ν	х	106.50		MS	VIC	7_1_M	1	1.6
INRA120	N	х	120.60		MS	NED	15_4	1	2.8
BMS911	N	х	130.10		MS	FAM	30_2	1	2.0
TGLA325	N	х	135.80		MS	PET	4_1	1	1.8
INRA30	N	х	140.90		MS	NED	30_2	1	3.6
XBM451	N	х	142.1		MS	NED	4_4	1	3.0

Primer Name1Primer Sequence* 5'-3'Polymorphis165_FCCCCGCCTGTTTACCAAAAACAT165_R1TACTCCGGTTTGAACTCAGATC165_R2GAGGTCGTAAACCCTATTGTCGABCG2_AFAGCATTCCTCGATACGGATAABCG2_CFGAGCATTCCTCGATACGGATAABCG2_CFGAGCATTCCTCGATACGGTTCABCG2_CFGACAGAAAAGTCCCCTATGCACAPM_11867_CFGACAGAAAAGTCCCCTATGCACAPM_11867_TFGACAGAAAAGTCCCCTATGCATAPM_11867_TFGACAGAAAAGTCCCCTATGCATAPM_11867_TRTTCCCTCCAACTTTATCTCCAAIleleAPM_1431_CFGGCAACCAGGGAGAAAGGATGTAPM1 SNAPM_1431_CRGGGAACCTGGTGCAACCTAGAPM_1431_TFGGCCAGAGAGGAGAAAGGATGTAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM_1596_AFAGTGGGAGCTGGTGGAAGTAGGAAGTAPM_1596_GRCCTTGGTCCCGTCTTCTGTAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAPM_5UE1_R4CTCGGTACTCATGGGGACATAAAPM_159GRAPM_5UE1_R4CTCGGTACTCATGGGGACATAAAPM_159GGGAAGTTGACCTCGTAGCADGAT_RGGGAAGTTGACCAGCAGTGACATTGTTGHR_FFTGGGCTAGCAGTGACATTGTAGHR_FFTGGGCTAGCAGTGGCCTTACCAAlleleSST_467_AATGCTGGATAGAAGTGGTCTGATGSST_467_CATCCACCAGCGGTTTGCAACCTACAIleleSST_467_GRGAGCCCCTGTATCGATAGGAGTGACTGASST_467_CATCCACCAGCGGTTGCAACATACAGGAAACTTGTGGAGAGGTGGACATACAAGS2_CFACTCACGCGGTAG	sm Size $(bp)^1$
16S_R1TACTCCGGTTTGAACTCAGATC16S_R2GAGGTCGTAAACCCTATTGTCGABCG2_AFAGCATTCCTCGATACGGATAABCG2_CFGAGCATTCCTCGATACGGTTAABCG2_CRTATGAGTTATCTCCCAAGCTTAAPM_11867_CFGACAGAAAGTCCCCTATGCACAPM_11867_CRCTCCAGGTTCTCCCTTTCTGAPM_11867_CRCTCCAGGTCCCCTATGCATAPM_11867_TRTTCCCTCCAACTTTATCTCCAAPM_11867_TRTTCCCTCCAAGGTACCTAGAPM_1431_CFGACAGAAAAGTCCCCTATGCATAPM_1431_CFGACCACCAGGCAATTCATTTAPM_1431_CRGGGAACCTGGTGCAACCTAGAPM_1431_TFGGCAACCTGGTGCAACCTAAAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM_1596_AFAGTGGGAGCTGGTGGAAGTAGGAAGTAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAPM_5UE1_F3GCCAAAGCCTGGGGACATAAAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM_1596_GFCCTGGGTACTCATGGGGACATAAAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM_1596_GRCCGGGTACTCATGGGGGACATAAAPM_1596_GRCCAGGGAGTGACATGGTAGCAGRAT_RGGGAAGTGACCTGGAGACATAAAPM_1596_GRCCAGGGGAGTGACATGGACATGGTGFT_RGTAGCACCAGCAGTGACATGGTGFT_RGGGCAAGCAGTGACATGGACATGGAGGGAAGTGACTCCTGAGCACTGAAGHR_YFTGGGCTAGCAGTGGACATGGACATGGAGHR_YFGGGGATGCCTTTCATTALEP_EX2_CRCCAGGGAGGCCTTTCATTALEP_EX2_TFGGACCCCGGATAGGAGTGGTCGATASST_467_A	
16S_R2GAGGTCGTAAACCCTATTGTCGABCG2_AFAGCATTCCTCGATACGGATAABCGABCG2_ARTCAACTTGACCCAAGGCTTAAllekABCG2_CFGAGCATTCCTCGATACGGTTCABCGABCG2_CRTATGAGTTATCTCCCAATCCTTCAAllekAPM_11867_CFGACAGAAAAGTCCCCTATGCACAPM1 SNAPM_11867_CRCTCCAGGTTCTCCCTTTCTGAllekAPM_11867_TRTTCCCTCCAACTTTATCTCCAAPM1 SNAPM_11867_TRTTCCCTCCAACTTTATCTCCAAllekAPM_1431_CFGACACACAGGCAATTCATTTAPM1 SNAPM_1431_CFGGCAACCTGGTGCAACCTAGAllekAPM_1431_TFGGCAAGGAGGAGAAAGGATGTAPM1 SNAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_AFAGTGGGAGCTGGTGAAGCTAAAPM1 SNAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACCATGGGGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACCATGGGAGCATGGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTAGH1GHR_FFTGGGCTAGCAGTGACATTGTAAllekGHR_YRACGTTTCACTGGACCTTACAAllekST_467_AATGCTGGATAGAGTGGTCTGATAAllekSST_467_AATGCTGGATAGAGTGGTCTGATAAllekSST_467_GFGTGACACACCACGAGTATGACTGGATAAllekSST_467_GFGGGGATGACTACGAGTGTGCATACAllekSST_467_GFGTGCACACATAGGCTGCATAGAGTGGCTGATAAllek	
ABCG2_AFAGCATTCCTCGATACGGATAABCCABCG2_ARTCAACTTGACCCAAGGCTTAAlleleABCG2_CFGAGCATTCCTCGATACGGTTCABCGABCG2_CRTATGAGTTATCTCCCAATCCTTCAAlleleAPM_11867_CFGACAGAAAAGTCCCCTATGCACAPM1 SNAPM_11867_CRCTCCAGGTTCTCCCTTTCTGAlleleAPM_11867_TFGACAGAAAGTCCCCTATGCATAPM1 SNAPM_11867_TRTTCCCTCCAACTTTATCTCCAAlleleAPM_1431_CFGACCACCAGGCAATTCATTTAPM1 SNAPM_1431_FFGGCAAGAGAGGAAGGAAGGATGTAPM1 SNAPM_1431_TFGGCAAGCTGGTGCAACCTAGAlleleAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_AFAGTGGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_5UE1_F3GCCAAAGCCTGGAGAAGTAGGAAGTAlleleAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PTAPM_5UE1_R4CTCGGTACCAGTGAGCATAAAPM1 PTAPM_5UE1_R4CTCGGTACCAGTGACATTGTTGHIGHR_FFTGGGCTAGCAGTGACATTGTAGHIGHR_FFTGGGCTAGCAGTGACATTGTAGHIGHR_FRGTAGTCATCAGGGGTGAACTTGTAAlleleGHR_YFGGGAAGTGCCTTTCATTALEP ESLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ESLEP_EX2_TFGGACCCCTGTATCGGACCTTACAAlleleSST_467_CATCCCACCAGCGGTTTACAAlleleSST_467_GRGATGCCACATATGTCACAGAGTATGACTG*TG_RGTGAAAATCTTGTGGGAGCTGTAAlleleSST_467_GRGATGCCACATATGTCACCATAGCTGATAAllele	594
ABCG2_ARTCAACTTGACCCAAGGCTTAAlleleABCG2_CFGAGCATTCCTCGATACGGTTCABCGABCG2_CRTATGAGTTATCTCCCAATCCTTCAAlleleAPM_11867_CFGACAGAAAAGTCCCCTATGCACAPMI SNAPM_11867_CRCTCCAGGTTCTCCCTTTCTGAlleleAPM_11867_TFGACAGAAAGTCCCCTATGCATAPMI SNAPM_11867_TRTTCCCTCCAACTTTATCTCCAAlleleAPM_1431_CFGACCACCAGGCAATTCATTTAPMI SNAPM_1431_CFGGCAAGAGAGGGAAGGGAGTGTAPMI SNAPM_1431_TRGGGAACCTGGTGCAACCTAGAlleleAPM_1431_TRGGGAACCTGGTGCAACCTAAAPMI SNAPM_1596_AFAGTGGGAGGCTGATGGTGGTAAPMI SNAPM_1596_GRCCTTGGTCCCGTCTTCTGTAPMI SNAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAlleleAPM_5UE1_F3GCCAAAGCCTGGTGGAACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGGACAAmsertion/cDGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTAGHIGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YFGGGACGTGCCTTCCTAACGAlleleLEP_EX2_CRCCAGGGAGTGCCTTCATTALEP ESLEP_EX2_TFGGACCCCTGTATCGGATGACATTGTAAlleleSST_467_CATCCACCAGCGGTTTACAAlleleSST_467_GRGTGCAACACTAGGAGTGGCTGATGACTG*TG_RGTGAAAATCTTGTGGGAGGGTGTAAlleleSST_467_GFATGCTGGATAGAGTGGCTGATAAlleleSST_467_GFGGGAGCACACACATAGGAGTAGACTGACTG*TG_RGTGAAAATCTTGTGGGAGGGTGTAAllele<	500
ABCG2_CFGAGCATTCCTCGATACGGTTCABCCABCG2_CRTATGAGTTATCTCCCAATCCTTCAAlleleAPM_11867_CFGACAGAAAAGTCCCCTATGCACAPM1 SNAPM_11867_CRCTCCAGGTTCTCCCTTTCTGAlleleAPM_11867_TFGACAGAAAAGTCCCCTATGCATAPM1 SNAPM_11867_TRTTCCCTCCAACTTTATCTCCAAlleleAPM_1431_CFGACCACCAGGCAATTCATTTAPM1 SNAPM_1431_CFGGCAACCTGGTGCAACCTAGAlleleAPM_1431_TFGGCAACCTGGTGCAACCTAAAPM1 SNAPM_1596_AFAGTGGGAGCTGATGGTGGAACTAAAPM1 SNAPM_1596_AFAGTGGGAGCTGATGGTGGAAGTAGGAAGTAlleleAPM_1596_GRCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_5UE1_F3GCCAAAGCCTGGAGAAGTAGGAAGTAlleleAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_F4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTGGAGCAATGAAAlleleGHR_FFTGGGCTAGCAGTGACATTGATGHIGHR_YRACGTTTCACTGGACCTCACCCTCAlleleGHR_YRACGTTTCACTGGACCTTACGAlleleLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ESLEP_EX2_TFGGACCCCTGTATCGAACTGATGAAlleleSST_467_AATGCTGGATAGAGTGGTCTGATAAlleleSST_467_GRATGCTGGATAGCAGTGGACTGACATGACTAlleleSST_467_GRGATGCCACATATGTCACCACATACAlleleTG_RGGGAGATGACTACGAGTATGACTG*TG_RGGGGATGACTACGAGTATGACTG*TG_RGGGGATGACTACGAGTATGACTG*<	G2
ABCG2_CRTATGAGTTATCTCCCAATCCTTCAAlleleAPM_11867_CFGACAGAAAAGTCCCCTATGCACAPM1 SNAPM_11867_CRCTCCAGGTTCTCCCTTTCTGAlleleAPM_11867_TFGACAGAAAAGTCCCCTATGCATAPM1 SNAPM_11867_TRTTCCCTCCAACTTTATCTCCAAlleleAPM_1431_CFGACCACCAGGCAATTCATTTAPM1 SNAPM_1431_CRGGGAACCTGGTGCAACCTAGAlleleAPM_1431_TFGGCCAGAGAGGAGGAAGGATGTAPM1 SNAPM_1431_TRGGGAACCTGGTGCAACCTAAAPM1 SNAPM_1596_AFAGTGGGGGGGGAGTGGTGGAAAPM1 SNAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GFCCTGGTCCCGTCTTCTGTAPM1 SNAPM_5UE1_F3GCCAAAGCCTGGAGGAAGAGCAlleleAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PTAPM_5UE1_F4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCATGGCACATTGTAGHIGHR_FFTGGGCTAGCAGTGACATTGTAGHIGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YFGGGCACCCTGTATCCAGCCTCAlleleLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP E5LEP_EX2_TFGGACCCCTGTATCGGATTGATGAAlleleSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCCACATAGCTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	e A 171
APM_11867_CFGACAGAAAAGTCCCCTATGCACAPM1 SNAPM_11867_CRCTCCAGGTTCTCCCTTTCTGAlleleAPM_11867_TFGACAGAAAAGTCCCCTATGCATAPM1 SNAPM_11867_TRTTCCCTCCAACTTTATCTCCAAlleleAPM_1431_CFGACCACCAGGCAATTCATTTAPM1 SNAPM_1431_CRGGGAACCTGGTGCAACCTAGAlleleAPM_1431_TFGGCCAGAGAGGAGGAAAGGATGTAPM1 SNAPM_1431_TRGGGAACCTGGTGCAACCTAAAPM1 SNAPM_1596_AFAGTGGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAlleleAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGGAAGTTGACACTAGCACTGACATTGTAGHIGHR_FFTGGGCTAGCAGTGACATTGTAGHIGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YFGGGGAAGTCCCTGTAGCACTTGAAAlleleLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP EsLEP_EX2_TRGGTGTCATCCTGGACCTTACGAlleleSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GRGATGCCACATATGTCACCAGGGTTTACAlleleTG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	G2
APM_11867_CRCTCCAGGTTCTCCCTTTCTGAlleleAPM_11867_TFGACAGAAAAGTCCCCTATGCATAPM1 SNAPM_11867_TRTTCCCTCCAACTTTATCTCCAAlleleAPM_1431_CFGACCACCAGGCAATTCATTTAPM1 SNAPM_1431_CRGGGAACCTGGTGCAACCTAGAlleleAPM_1431_TFGGCCAGAGAGGAAGGAAGGATGTAPM1 SNAPM_1431_TRGGGAACCTGGTGCAACCTAAAlleleAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_GRCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_50E1_F3GCCAAAGCCTGGAGAAGTAGGAAGCAlleleAPM_50E1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_50E1_R4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCAGGGTGACATTGTTGHIGHR_FFTGGGCTAGCAGTGACATTGTAGHIGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YFGGGACCCTGTATCCTGGACCTTACGAlleleLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGACCCCTGTATCGATTGAAAlleleSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_CATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	e C 240
APM_11867_TFGACAGAAAAGTCCCCTATGCATAPM1 SNAPM_11867_TRTTCCCTCCAACTTTATCTCCAAlleleAPM_1431_CFGACCACCAGGCAATTCATTTAPM1 SNAPM_1431_CRGGGAACCTGGTGCAACCTAGAlleleAPM_1431_TFGGCCAGAGAGGAAGGAAGGATGTAPM1 SNAPM_1431_TRGGGAACCTGGTGCAACCTAAAlleleAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_GRCAGTCAGGGTGGAAGTAGGAAGTAlleleAPM_1596_GRCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAlleleAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTGACAGTGACATTGTTGHIGHR_FFTGGGCTAGCAGTGACATTGTAGHIGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YFGGGACCCTGTATCCACCCTCAlleleLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGACCCCTGTATCGATCCTLEP ExLEP_EX2_TFGGGGTCATCCTGGACCTTACAAlleleSST_467_AATGCTGGATAGAGTGGTCTGATG\$ST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCCCATAlleleTG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	P 11867
APM_11867_TRTTCCCTCCAACTTTATCTCCAAlleleAPM_1431_CFGACCACCAGGCAATTCATTTAPM1 SNAPM_1431_CRGGGAACCTGGTGCAACCTAGAlleleAPM_1431_TFGGCCAGAGAGGGAAGGAAGGATGTAPM1 SNAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_ARCAGTCAGGGTGGAAGTAGGAAGTAlleleAPM_1596_GRCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_50E_GRTCAGGGTGGAAGTAGGAAGCAlleleAPM_50E_1R3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTAGH1GHR_YFTGGGCTAGCAGTGACATTGTAAlleleGHR_YFGGGAAGTTCACTGGGACCTTACGAlleleGER_YFGGGACCCTGTACCTGGACCTTACGAlleleSST_467_AATGCTGGATAGAGTGGTCTAACAAlleleSST_467_GFGGGGATGACTAGCGGTTGATGAAlleleSST_467_GFGGGGATGACTACGAGTGGTCTGATG\$ST SNSST_467_GRGATGCCACATAGCAGTAGCAGTGGTCTGATASST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCACCATAlleleTG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	e C 397
APM_1431_CFGACCACCAGGCAATTCATTTAPM1 SNAPM_1431_CRGGGAACCTGGTGCAACCTAGAlleleAPM_1431_TFGGCCAGAGAGGAGGAAAGGATGTAPM1 SNAPM_1431_TRGGGAACCTGGTGCAACCTAAAlleleAPM_1596_AFAGTGGGAGGTGGAAGTAGGAAGTAlleleAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAlleleAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCACCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGH1GHR_YFTGGGCTAGCAGTGACATTGTAAlleleGHR_YFGGACCCTGTATCATGGGTTGATGAAlleleLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP EzLEP_EX2_TFGGACCCCTGTATCGATTCCTLEP EzLEP_EX2_TFGGTGTCATCCTGGACCTTACAAlleleSST_467_AATGCTGGATAGAGTGGTCTGATG\$ST SNSST_467_GRGATGCCACATATGTCACCACATAGCTGATASST SNSST_467_GRGATGCCACATATGTCACCAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	P 11867
APM_1431_CRGGGAACCTGGTGCAACCTAGAlleleAPM_1431_TFGGCCAGAGAGGAGGAAAGGATGTAPM1 SNAPM_1431_TRGGGAACCTGGTGCAACCTAAAlleleAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_ARCAGTCAGGGTGGAAGTAGGAAGTAlleleAPM_1596_GRCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_50E1F3GCCAAAGCCTGGAGAAGAAGCAlleleAPM_50E1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_50E1_R4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGH1GHR_YFTGGGCTAGCAGTGACATTGTAAlleleGHR_YFTGGGCTAGCAGTGACATTGTAGH1GHR_YFGGGAGTGCCTTTCATTALEP ExLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGACCCCTGTATCGACTGATGAAlleleSST_467_CATCCACCAGCGGTTTACAAlleleSST_467_GFATGCTGGATAGAAGTGGTCTGATASST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCACATAGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	e T 102
APM_1431_TFGGCCAGAGAGAGGAAAGGATGTAPM1 SNAPM_1431_TRGGGAACCTGGTGCAACCTAAAllelaAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_ARCAGTCAGGGTGGAAGTAGGAAGTAllelaAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/aDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCATGGCGACATTGTTGHIGHR_FFTGGGCTAGCAGTGACATTGTAGHIGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YFGGGAAGTGCCTTTCATAAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGGACCCCTGTATCGATTGCTLEP ExLEP_EX2_TFGGGGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATAGCAGTGACATTGATAAllelaTG_FGGGGATGACTACGAGTGGCTGATASST SNSST_467_GRGATGCCACATATGTCACCCATAllelaTG_FGGGGATGACTACGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCCATAllelaTG_FGGGGATGACTACGAGTAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCCATAllelaTG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	JP 1431
APM_1431_TRGGGAACCTGGTGCAACCTAAAlleleAPM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_ARCAGTCAGGGTGGAAGTAGGAAGTAlleleAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_50E1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGH1GHR_YFTGGGCTAGCAGTGACATTGTAAlleleGHR_YFGGGGATGCCTTTCATGACAlleleLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGACCCCTGTATCGATCGTAlleleSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GRGATGCCACATAGCAGTGACATTGTASST SNSST_467_GRGATGCCACATATGTCACTCCATAlleleTG_FGGGGATGACTACGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAlleleTG_FGGGGATGACTACGAGTATGACTGA**TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	e C 186
APM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_ARCAGTCAGGGTGGAAGTAGGAAGTAllelaAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAllelaAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/aDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGHIGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YFGGGGAGTGCCTTTCATTALEP E2LEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP E2LEP_EX2_TFGGACCCCTGTATCGGACCTTACGAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCACATTGTAAllelaTG_FGGGGATGACTACGAGTGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCATACUASMS2_CFACTCAGCGGTTGCAACATACUASMVASMS2_CFCTCACCAGCGTTGCAACATACUASM	JP 1431
APM_1596_AFAGTGGGAGCTGATGGTGGTAAPM1 SNAPM_1596_ARCAGTCAGGGTGGAAGTAGGAAGTAllelaAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAllelaAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/aDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGHIGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YFGGGGAGTGCCTTTCATTALEP E2LEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP E2LEP_EX2_TFGGACCCCTGTATCGGACCTTACGAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCATAGCATTGTAAllelaTG_FGGGGATGACTACGAGTGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTGTGATGACTG*TG_RGTGAAAATCTTGTGGAAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACCATACUASMUASMS2_CFACTCAGCGGTTGCAACATACUASM	e T 281
APM_1596_ARCAGTCAGGGTGGAAGTAGGAAGTAllelaAPM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GRTCAGGGTGGAAGTAGGAAGCAllelaAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/aDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGHIGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YRACGTTTCACTGGGTTGATGAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP E2LEP_EX2_TFGGACCCCTGTATCGACTTGTAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCATAllelaSST_467_GRGATGCCACATATGTCACTCATAllelaSST_467_GRATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaSST_467_GRGATGCCACATATGTCACTCCATAllelaSST_467_GRGATGCCACATATGTCACTCCATAllelaSST_467_GRGATGCCACATATGTCACTCCATAllelaSST_467_GRGATGCCACATATGTCACTCCATAllelaSST_467_GRGATGCCACATATGTCACTCCATAllelaSST_467_GRGATGCCACATATGTCACTCCATAllelaSST_467_GRGATGCCACATACGAGTATGACTG*<	JP 1596
APM_1596_GFCCTTGGTCCCGTCTTCTGTAPM1 SNAPM_1596_GRTCAGGGGTGGAAGTAGGAAGCAllelaAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/aDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGH1GHR_FRGTAGTCACTAGCCTCACCCTCAllelaGHR_YFTGGGCTAGCAGTGACATTGTAGH1GHR_YRACGTTTCACTGGGTTGATGAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGACCCCTGTATCGGATCCTLEP ExLEP_EX2_TFGGTGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
APM_1596_GRTCAGGGTGGAAGTAGGAAGCAllelaAPM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGHIGHR_FRGTAGTCACTAGCCTCACCCTCAllelaGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YRACGTTTCACTGGGTTGATGAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGACCCCTGTATCGATTCCTLEP ExLEP_EX2_TRGGTGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
APM_5UE1_F3GCCAAAGCCTGGAGACATAAAPM1 PrAPM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/cDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGHIGHR_FRGTAGTCACTAGCCTCACCCTCAlleleGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YRACGTTTCACTGGGTTGATGAAlleleLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGACCCCTGTATCGGACCTTACGAlleleSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAlleleTG_FGGGGATGACTACCAGAGTAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAlleleTG_FGGGGATGACTACGAGTAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAlleleTG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
APM_5UE1_R4CTCGGTACTCATGGGGACAAinsertion/dDGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGHIGHR_FRGTAGTCACTAGCCTCACCCTCAllelaGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YRACGTTTCACTGGGTTGATGAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGTGTCATCCTGGACCTTACGAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GRATGCTGGATAGAGTGGTCTGATAAllelaSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGAADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
DGAT_FCCATCCTCTTCCTCAAGCTG*DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGHIGHR_FRGTAGTCACTAGCCTCACCCTCAlleleGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YRACGTTTCACTGGGTTGATGAAlleleLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGACCCCTGTATCGATTCCTLEP ExLEP_EX2_TRGGTGTCATCCTGGACCTTACAAlleleSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAlleleTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
DGAT_RGGGAAGTTGACCTCGTAGCADigested wGHR_FFTGGGCTAGCAGTGACATTGTTGHIGHR_FRGTAGTCACTAGCCTCACCCTCAllelaGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YRACGTTTCACTGGGTTGATGAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGTGTCATCCTGGACCTTACGAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GFGAGCCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	200,200
GHR_FFTGGGCTAGCAGTGACATTGTTGHIGHR_FRGTAGTCACTAGCCTCACCCTCAllelaGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YRACGTTTCACTGGGTTGATGAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGACCCCTGTATCGACCTTACGAllelaLEP_EX2_TFGGTGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	vith Eael
GHR_FRGTAGTCACTAGCCTCACCCTCAllelaGHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YRACGTTTCACTGGGTTGATGAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGTGTCATCCTGGACCTTACGAllelaLEP_EX2_TRGGTGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
GHR_YFTGGGCTAGCAGTGACATTGTAGHIGHR_YRACGTTTCACTGGGTTGATGAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_TFGGTGTCATCCTGGACCTTACGAllelaLEP_EX2_TRGGTGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
GHR_YRACGTTTCACTGGGTTGATGAAllelaLEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_CRGGTGTCATCCTGGACCTTACGAllelaLEP_EX2_TFGGACCCCTGTATCGATTCCTLEP ExLEP_EX2_TRGGTGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_CATGCTGGATAGAGTGGTCTGATASST SNSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GFGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
LEP_EX2_CRCCAGGGAGTGCCTTTCATTALEP ExLEP_EX2_CRGGTGTCATCCTGGACCTTACGAlleleLEP_EX2_TFGGACCCCTGTATCGATTCCTLEP ExLEP_EX2_TRGGTGTCATCCTGGACCTTACAAlleleSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_CATCTCACCAGCGGTTTTACAlleleSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GFGATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAlleleTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
LEP_EX2_CRGGTGTCATCCTGGACCTTACGAllelaLEP_EX2_TFGGACCCTGTATCGATTCCTLEP ExLEP_EX2_TRGGTGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_CATCTCACCAGCGGTTTACAAllelaSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
LEP_EX2_TFGGACCCCTGTATCGATTCCTLEP ExLEP_EX2_TRGGTGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_CATCTCACCAGCGGTTTTACAllelaSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GFGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
LEP_EX2_TRGGTGTCATCCTGGACCTTACAAllelaSST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_CATCTCACCAGCGGTTTTACAllelaSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
SST_467_AATGCTGGATAGAGTGGTCTGATGSST SNSST_467_CATCTCACCAGCGGTTTTACAllelaSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAllelaTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
SST_467_CATCTCACCAGCGGTTTTACAlleleSST_467_GFATGCTGGATAGAGTGGTCTGATASST SNSST_467_GRGATGCCACATATGTCACTCCATAlleleTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
SST_467_GFATGCTGGATAGAGTGGTCTGATA GATGCCACATATGTCACTCATSST SN AlleleSST_467_GRGATGCCACATATGTCACTCCATAlleleTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested withUASMS2_CFACTCAGCGGTTGCAACATACUASM	
SST_467_GRGATGCCACATATGTCACTCCATAlleleTG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
TG_FGGGGATGACTACGAGTATGACTG*TG_RGTGAAAATCTTGTGGAGGCTGTADigested wUASMS2_CFACTCAGCGGTTGCAACATACUASM	
TG_R GTGAAAATCTTGTGGAGGCTGTA Digested w UASMS2_CF ACTCAGCGGTTGCAACATAC UASM	e A 164
UASMS2_CF ACTCAGCGGTTGCAACATAC UASM	
_	<u>.</u>
UASMS2_CR GCCTTCCTTGGTGGTACAGT Allele	
UASMS2_TF ACTCAGCGGTTGCAACATAT UASM	
UASMS2_TR CTCAGTCTCTCCCCAGTCCTT Allele	e T 286
UASMS3_CF GTGAGAGTGTGTGTGTATTGATCGC UASM	4S3
UASMS3_CR CACAAGACCATTACCACAAGA Allele	e C 437
UASMS3_GF GTGAGAGTGTGTGTGTATTGATCGG UASM	4S3
UASMS3_GR GAGCCTGGTTGTTTTGCTTT Allele	e G 332

Table 2.2. Single nucleotide polymorphism primer sequences.

¹ DGAT and TG PCR products scored as cut or uncut by their respective restriction enzyme.

	DNA	Buffer ¹	MA ²	dNTP	MgCl ₂	Taq	Annealing
PCR ID	(ng)	(µl)	(µl)	(mM)	(mM)	(U)	Temp (°C)
1	20	0.50	0.50	0.25	2.75	0.5	56
2	20	0.50	0.50	0.25	3.00	0.5	56
3	20	0.63	0.50	0.25	2.99	0.5	56
4	20	0.50	0.50	0.25	2.60	0.5	56
5	20	0.50	0.50	0.25	2.60	0.5	56
6	20	0.50	0.50	0.25	2.75	0.5	54
7	20	0.63	0.50	0.25	2.99	0.5	54
8	20	0.50	0.50	0.25	2.75	0.5	58
9	20	0.50	0.50	0.25	2.75	0.5	60
10	20	0.63	0.50	0.25	2.99	0.4	56

Table 2.3. Multiplex PCR reagent concentrations and annealing temperature for 5 µl total volume.

¹ Buffer is 10X Buffer (Promega, Madison, WI, USA).
 ² MA is MasterAmp (Epicentre Biotechnologies, Madison, WI, USA).

Table 2.4. Multiplex PCR conditions.

Temperature	Time	
	(min)	
94°	1.00	
94°	0.20	4 cycles
А	0.30	–1.0°/cycle
65°	0.30	
94°	0.20	
В	0.30	30cycles
65°	0.30	
65°	5.00	

A is the annealing temperature from Table 2.3 plus 4°. B is the annealing temperature from Table 2.3.

BTA	# of markers	Average interval (cM)	Centromeric Marker (cM)	Telomeric Marker (cM)	Genome Coverage (cM)
1	23	6.95	1.78	154.67	152.89
2	33	3.94	2.78	128.88	126.10
3	14	9.84	0.00	127.91	127.91
4	18	6.81	4.16	119.93	115.77
5	19	6.88	1.17	125.05	123.88
6	17	7.94	0.00	119.05	119.05
7	17	8.47	0.00	135.56	135.56
8	13	10.14	11.34	122.91	111.57
9	13	9.27	4.89	116.17	111.28
10	13	9.17	1.86	111.91	110.05
11	15	8.77	12.08	126.09	114.01
12	13	9.08	0.00	108.98	108.98
13	10	10.04	8.99	99.38	90.38
14	27	4.00	0.00	100.02	100.02
15	13	8.75	0.00	105.00	105.00
16	13	8.50	0.91	94.46	93.55
17	12	9.21	0.00	92.07	92.07
18	13	7.41	2.86	84.38	81.52
19	12	9.81	0.00	107.95	107.95
20	12	7.54	0.00	82.94	82.94
21	14	6.45	0.00	83.79	83.79
22	12	7.76	0.00	85.37	85.37
23	11	6.91	4.70	73.80	69.10
24	10	7.22	8.15	65.93	57.78
25	9	9.69	0.59	68.42	67.82
26	9	8.64	0.00	60.48	60.48
27	10	7.12	0.00	64.10	64.10
28	8	7.65	6.04	59.56	53.52
29	9	8.51	0.92	69.01	68.09
Average	14.21	8.02		Total	2820.49

Table 2.5. Marker coverage information for each autosome.

Table 2.6. Count of carcass	ut i	of c	arca	ISS (Ę	٨	chr	Ğ	QTL by chromosome	ne																			
													ğ.	Bos taurus autosome	nin	s aut	toso	me											
Trait	1	1 2 3 4	m		2	9	~	。 。	1	1	1	2 1		5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	15	. 91	1	8	19	0	21	22	23	24	25	26	27	28	29
Carcass Weight 2	2	4	4		-	5	2		-					-	2		2				2		-			-	-	-	1
Fat Thickness	1		7	H	H	2	-					_	2	H	-	e		1			1	-	2	2			1	2	2
Marbling	1	-			-	4		-					2	1		7	H.		2	H,	7			-	7		2	-	2
Ribeye Area	2		7			H	5	2	_	4			2	-	7	ŝ	1	1	H	2	1	T,	-	-		7	7	H	
Pleiotropic	-	İ	~	t	t	,			ł		_				Ļ	Ļ	Ļ	ł	ł	ł	-	t	-	t	İ	Ì	-	Ì	1
Total	2	5 5 5 1	2	1	8	00	2	Š	5				5	3 8 5 5 6 5 7 3 5 4 4 7 3 2 3 3 4 3 3 4 1 2 4 5 4	4	2		2	3	33	4	3	3	4	1	2	4	2	4
					ł																							l	

	۶	
	>	5
	5	-
	۲	5
	2	
	ē	5
	č	
_	c	
	C	J
	7	5
ŀ		
ł		
	9	2
	2	1
	č	1
	č	_
	π	0
	Ċ	J
4		
	C	5
4		
1	2	
	1	
	7	5
ί		1
١	-	,
¢	ſ	5
		1
ç		١
1		D
-		
ŀ	5	1
	(1	J
ŀ		

		QTL	QTL Peak ¹		QTL Express ²	oress ²		LC	LOKI		Reference ⁴
Trait ³	BTA	Position	Flanking Markers	Aarkers	-log10 (Pnominal)	QTL Effect	Bayes	Freq 1	Effect 12	Effect	
MRB	T	2.78	BM6438_29	BM8139	2.731*	0.255					
REA	1	79.78	BM7145	BMS4008	2.602*	0.314					
CM	1	138.78	BM1824	BMS599	2.802*	17.202					
FAT	1	138.78	BM1824	BMS599	5.575***	0.03					
REA	1	149.78	BMS599	URB014	2.412*	0.299					
CW	T	152.78	BMS4014	URB014	4.685***	29.512					
CW	2	44.78	BMS803	BL1001	4.264***	13.23					
MRB	2	63.5	BM4440	BY32	2.71*	0.146					MRB (4)
CW	2	74.78	BY32	RM041	3.612**	18.967					SW (8)
CW	7	93.5	TGLA226	BM1223	3.409**	16.494	38.22	0.877	-0.016	4.607	
CW	2	125.5	DIK1155	DIK2084	4.893***	19.976	14.46	0.672	-0.006	-4.482	HCW (10)
CW	8	0.5	BMS871	URB006			10.78	0.843	-0.064	3.061	
REA	e	1.5	BMS871	URB006			20.27	0.88	-0.008	0.052	
CW	e	17	URB006	BMS2904	2.057*	20.38					
REA	e	19	URB006	BMS2904	3.891**	0.328					
CW	e	79.5	BMS1266	171ILUH			13.36	0.842	-0.04	2.869	
CW	e	102.5	17IILUH	BMS896	3.606*	14.206					
FAT	8	117	BMS896	BMC4214	2.713*	0.021	3				
FAT	4	93.16	LepEx2	RM088	3.183*	0.04	2 2				
MRB	S	41.17	DIK4759	8137	3.752**	0.206			×		MRB (11)
CW	S	123.17	ETH152	BMS597	2.328*	17.769					
-											

-
~
summary
-
~
-
-
_
-
~
_
_
_
10
01
-
00
-
-
data
-
0
-
_
I
-
_
\sim
\sim
arcass (
S
5
-
()
-
_
m
1 1
U
-
~
-
The second second
w w
_
_
0
-
10
_

		QTL	QTL Peak ²		QTL Express ⁴	oress*		9	LOKI		Reference [*]
Trait	BTA	Position	Flanking	g Markers	-log ₁₀ (P _{nominal})	QTL Effect	Bayes Factor	Freq 1	Effect 12	Effect 22	
MRB	9	36	URB016	BMS2508	3.089*	0.232					
FAT	9	88	CSNA	CSN3	3.442**	0.035					FAT (9)
CW	9	93.5	BM4621	BM8124	5.981***	20.716					
REA	9	101	CSN3	BM8124	3.115*	0.263					
MRB	9	108.5	BM8124	BMS5029			17.89	0.893	-0.004	0.054	
FAT	9	112	BM8124	BMS5029	2.923*	0.038					
CW	9	119	BMS5029	BMC4203	3.036*	11.543					
MRB	9	134.25	BMC4203	Telomeric			14.77	0.895	-0.006	0.054	
CW	2	21	DIK4378	RM006	4.653***	19.461	1	5 1 1 1 1	•3		1
REA	2	62	BMS2258	BM1853	2.93*	0.137					
FAT	2	95	BMS1331	BM9065	4.473***	0.044					
REA	2	105	BM9065	ILSTS006	3.94***	0.714					
CW	2	119.5	1LSTS006	BMS1979			27.35	0.812	0.011	-4.559	
CV	8	11.34	BL1043	IDVGA11	3.014*	9.859	1	2		20 40	
FAT	00	11.34	BL1043	IDVGA11	3.46**	0.033					FAT (3)
REA	00	16.34	IDVGA11	RM372	4.162***	0.248					
MRB	00	18.34	IDVGA11	RM372	5.96***	0.274					MRB (3)
CW	00	53.34	BM4006	BMS2072	2.735*	8.711					
REA	00	67.34	BMS2072	MCM64	3.599**	0.511					
CW	00	101.34	BM711	CSSM047	3.779**	19.932					

		QTI	QTL Peak ¹		QTL Express ²	oress ²		9	LOKI		Reference ⁴
Trait ³	BTA	Position	Flanking Markers	Aarkers	-log10 (Pnominal)	QTL Effect	Bayes	Freq 1	Effect 12	Effect 22	
CW	6	0.5	Centromeric	BMS2151			11.31	0.83	0.239	-3.487	
REA	6	21.5	ETH225	BM1227			15.92	0.852	0.005	-0.047	
REA	6	32.89	BM1227	BMS817	6.417***	0.445					
REA	6	61.89	BMS434	BMC701	2.872*	0.227					
REA	6	77.89	BMS2377	BMS1724	2.782*	0.212					
MRB	6	99.89	BMS2295	BMS1967	2.486*	0.112					
CW	10	36.86	SPS113	BMS2742	2.052*	20.557					CW (5)
MRB	10	55.86	BMS2742	BMS419	2.555*	0.153					
MRB	10	88.86	BMS2641	BMS614	2.341*	0.159					
CW	10	111.86	BMS2641	BL1134	3.207**	15.541					
MRB	11	50.08	RM096	BM7169	3.482**	0.209					
FAT	11	54.08	BM7169	BMS1716	2.538*	0.027					
REA	11	54.08	BM7169	BMS1716	4.396***	0.396					
CM	11	58.08	BMS1716	ILSTS036	3.407**	8.223					
REA	11	70.08	ILSTS036	RM150	2.787*	0.152					
FAT	11	98.08	BL1103	BMS460	2.95*	0.034					%KPH (13)
REA	11	102.5	BL1103	BMS460			12.76	0.821	0	600.0	
MRB	11	109.08	BL1103	BMS460	4.591***	0.161					
REA	11	129.5	HEL13	Telomeric	3.722**	0.329	23.09	0.86	0.007	-0.046	
REA	12	0.5	BMS410	TGLA36			11.43	0.845	0.005	-0.038	1
FAT	12	1	BMS410	TGLA36	2.993*	0.023					
REA	12	46	INRA138	BM1827	3.081**	0.359					REA (10)

		QTL	QTL Peak ¹		QTL Express ²	press ²		H	LOKI		Reference ⁴
Trait ³	BTA	Position	Flanking I	g Markers	-log ₁₀ (P _{nominal})	QTL Effect	Bayes	Freq 1	Effect 12	Effect 22	
REA	13	18.99	TGLA23	BMC1222	2.825*	0.284	8	2			2
FAT	13	32.99	BMC1222	BMS1352	2.685*	0.021					
MRB	13	50.99	BM720	BM9248	3.565**	0.269					
FAT	13	57.99	BM720	BM9248	2.795*	0.049					RF (13)
REA	13	82	BL1071	AGLA232			16.76	0.872	0.872 -0.007 0.045	0.045	
MRB	13	66.06	BL1071	AGLA232	2.471*	0.278					MRB (11)
MRB	14	5	DGAT	CSSM66	3.735***	0.219					
CW	14	38.5	RM180	RMOII			14.6		0.818 0.013	3.026	CW (8,12)
REA	14	45	RM011	BMC1207	3.877**	0.34					
FAT	14	66	BM6425	BL1036	3.165**	0.021					
CW	15	14	BMS2533	ADCY2	2.607*	13.075					
FAT	15	15	BMS2533	ADCY2	2.625*	0.03					%KPH (8)
REA	15	53.5	HELI	MB076			17.87		0.835 -0.002	0.011	
CW	15	101	BL1095	BMS927	4.168***	19.214					
REA	15	101	BL1095	BMS927	3.882**	0.371					
MRB	16	0.91	BMS927	TGLA245	3.106**	0.146					
FAT	16	19.91	BMS1348	BY22	3.818**	0.04					
CW	16	31.5	BMS1348	BY22	3.02*	22.522					
REA	16	37.5	BMS1348	TGLA53	2.356*	0.207					
REA	16	58.91	IDVGA49	IDVGA69	3.166*	0.424					
FAT	16	83.91	BM1706	BM3509	4.355**	0.016					FAT (10)
REA	16	83.91	BM1706	BM3509	3.155**	0.123					
FAT	16	93.91	DIK4437	BMS462	2.95*	0.026					

		QTL	QTL Peak ¹		QTL Express ²	oress ²		J	LOKI		Reference ⁴
Trait	BTA	Position	Flanking Markers	Markers	-log ₁₀	QTL	Bayes	Freq	Effect	Effect	
REA	•		88718	TEXAN10	4.207***	0.156					
CW	17	14	DIK5379	DIK4665	4.409***	10.546					
CW	17	59	DIK2668	BM8125	3.802**	17.551					
MRB	17	63	DIK2668	BM8125	3.388**	0.222			100 100		
FAT	18	9.86	BMS1355	BMS1322	2.572*	0.03					c.
REA	18	27.86	BMS2213	BR4406	3.743**	0.341	2	2	2	8	
MRB	19	43	X82261	BMS2142	2.461*	0.171	•		80. 30	50 	
REA	19	75	CSSM065	IDVGA44	4.159**	0.384					REA (14)
MRB	19	78.5	CSSM065	IDVGA44	3.94***	0.274					10000000
REA	20	60	BMS2361	BMS703	2.803*	0.202	•		2	27 7	
MRB	20	69	BMS703	BM5004	2.323*	0.236					
REA	20	70	BMS703	BM5004	3.337*	0.249	2		10 10		
FAT	21	1	BM8115	BMS1117	2.197*	0.024					
CW	21	43.5	BMS868	TGLA337			17.44	0.872	0.058	-5.115	
MRB	21	66.5	ILSTS054	BMS743			10.47	0.871	-0.004	0.039	
REA	21	74	ILSTS054	BMS743	2.597*	0.152					
CW	21	81	BMS2382	DIK3023	2.337*	15.9446					
CW	22	33	DIK2694	BMS2573	4.234*	20.6455					
FAT	22	82	OARFCB304	BM4102	3.476**	0.0302					
REA	22	83	BM4102	DIK115	2.49*	0.1157					
CW	23	26.7	UWCAI	BOLADRB1	2.557*	12.8922	8	8	ta N		SW (7), HCW (8)
REA	23	26.7	UWCAI	BOLADRB1	2.419*	0.1981					
FAT	23	47.7	BOLADRB1	RM185	2.169*	0.0182					
FAT	23	62.7	BM1818	BMS2269	2.608*	0.0283					FAT (9)

Reference ⁴								REA (13)			MRB (5)			MRB (2,6)						HCW (1,8)		MRB (10)		
ä								-			-			2						т		2		
	Effect	22				0.062					0.042						-2.451			-3.035				
¥	Effect	12				-0.007					-0.003						0.054			0.007				
LOKI	Freq	1				0.892 -0.007					0.824						0.788 0.054 -2.451			0.792				
	Bayes	Factor				33.27					13.78						15.58			13.08				
ress ²	QП	Effect	0.3274	0.0189	0.0145		0.2643	0.3052	13.068	0.0254		0.2338	16.0926	0.2283	0.232	0.0381		0.0382	0.1855		0.0257	0.1695	0.0234	01010
QTL Express ²	-log10	(Pnominal)	2.924*	3.447**	3.374*		3.037*	3.492*	2.56*	2.419*		3.685**	3.332*	2.283*	3.862**	3.138*		4.204***	2.613*		2.990*	2.828*	2.897*	1 1 1 1 1
		g Markers	DIK2662	BMS1862	BMS1743	Telomeric	BMS130	BMS651	BMS651	CSSM043	CSSM043	CSSM36	INRA134	BMS1675	IDVGA29	BL25	BMS510	BMS510	BMS2608	BMS764	BMS1787	BMS1600	RM040	I CTCOOL
QTL Peak ¹		Flanking I	BMS2526	AGLA269	BMS1862	BMS3024	RM074	RM169	RM169	BMS2137	BMS2137	CSSM043	CSSM36	INRA134	DIK2451	IDVGA29	BL25	BL25	BMS510	BM4602	BMS764	BMS1787	BMS1600	0101010
QTL		Position	8.15	31.15	43.15	77.5	6.59	0	2.5	32	34.5	6	4	51.5	9.04	17.04	25.5	28.04	30.04	1.5	18.92	19.92	29.92	2000
		BTA	24	24	24	24	25	26	26	27	27	27	27	27	28	28	28	28	28	39	29	29	29	2
		Trait	REA	FAT	FAT	MRB	MRB	REA	CW	FAT	MRB	REA	S	MRB	REA	FAT	S	FAT	MRB	CV	FAT	MRB	FAT	

¹ Listed is each QTL's most likely location in cM, flanking markers, associated information from QTL Express and LOKI, and whether the QTL has previously been identified.

² Significance levels for QTL Express: *=P<chromosome-wide 0.01, **=P<genome-wide 0.05, ***=P<genome-wide 0.01. Freq_1 is the frequency of the 1 allele; effect values estimated in LOKI assume that 11 genotype has an effect of 0.

³ Abbreviations: carcass weight (CW); fat thickness (FAT); hot carcass weight (HCW); kidney, pelvic, heart percent fat (%KPH); rib fat (RF); ribeye area (REA); slaughter weight (SW).

⁴ References: 1=(Alexander *et al.* 2007); 2= (Casas *et al.* 2000); 3=(Casas *et al.* 2001); 4=(Casas *et al.* 2003); 5=(Casas *et al.* 2004b); 6=(Elo *et al.* 1999); 7=(Kim *et al.* 2003); 8=(Li *et al.* 2004); 9=(MacNeil & Grosz 2002); 10=(Mizoshita *et al.* 2004); 11=(Mizoshita *et al.* 2005); 12=(Stone *et al.* 1999); 13=(Taylor *et al.* 1998).

BTA	Position	Trait 1	Trait 2	Express 1	LOKI 1	Express 2	LOKI 2
1	150	CW	REA	17.202		0.299	
3	1	CW	REA		3.061		0.052
3	18	CW	REA	20.380		0.328	
6	97	CW	REA	20.716		0.263	
8	14	CW	REA	9.859		0.248	
8	14	MRB	FAT	0.248		0.033	
11	52	MRB	FAT	0.209		0.027	
11	56	CW	REA	8.223		0.396	
13	54	MRB	FAT	0.269		0.049	
15	101	CW	REA	19.214		0.371	
16	34	CW	REA	22.522		0.207	
17	14	CW	REA	10.546		0.156	
21	77	CW	REA	15.945		0.152	
23	27	CW	REA	12.892		0.198	
27	42	CW	REA	16.093		0.234	
29	19	MRB	FAT	0.026		0.170	

Table 2.8. Summary of carcass QTL identified as pleiotropic.

Express 1,2 and LOKI 1,2 are the allele substitution effect from QTL Express and the alternative homozygote effect for trait 1 and 2 respectively.

2
a
s
ŝ
Q
of carcass QTL.
4
0
2
æ
E
Statistical summary
2
_
3
Ĕ
5
H
÷,
S
m.
2.9.
Table 2
-
4
Ě

		Count	rc	LOKI	QTL Express			EPD			Acc >0.05
Trait	QTL	Reference	Freq ¹	Effect ²	Effect ³				Skew	Count ⁴	Count ³
Carcass Weight	36	9	0.44	3.05	16.625			0.5	-0.2	1873	904
Fat Thickness	30	7			0.029				0.0	1873	899
Marbling	29	60	0.86	0.47	0.206	0.21	0.04		0.3	1873	895
Ribeye Area	6	en	0.54	0.33	0.292				0.0	1873	894
1 The average frequency of	001100	at of the ocn	vilcolinou	docirable	allala ac datarm	when hour	INC.				

The average frequency of the economically desirable allele as determined by LOKI.

² The average effect of the economically desirable homozygote as determined by LOKI.

³ The allele substitution effect economically desirable allele as determined by QTL Express.

⁴ Count of animals with an EPD value recorded.

⁵ Count of animals with an EPD accuracy value >0.05.

Statistical information is based the EPDs from the mapping population.

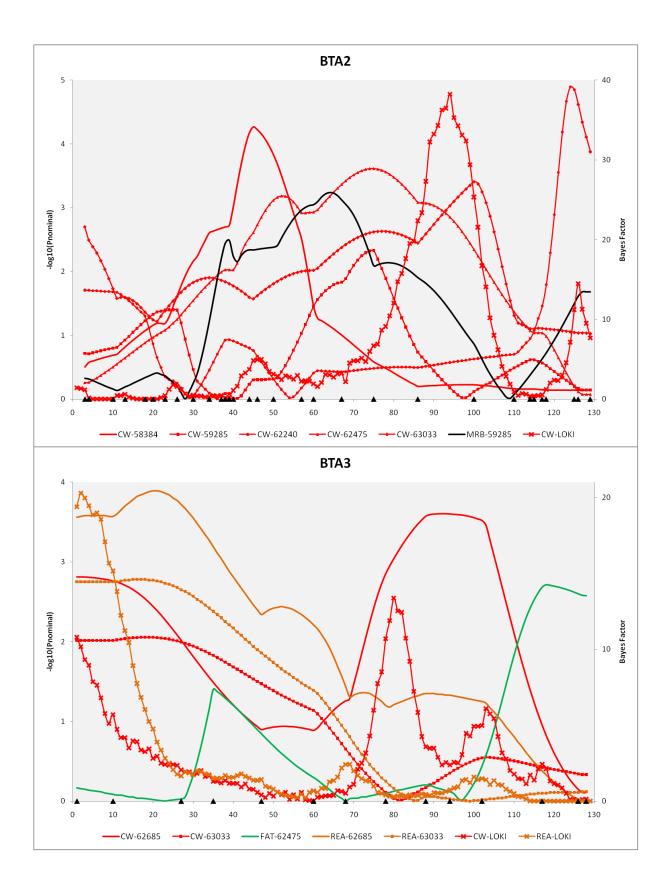
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1191	951831.5	799.187	1.4	<.0001
Error	759	434416.5	572.354		
Corrected Total	1950	1386247.9			
		_			
R-Square	0.6866				
Coeff Var	-736.5561				
Root MSE	23.9239				
Mean	-3.2481				

Table 2.10. Analysis of variance results for carcass weight QTL.

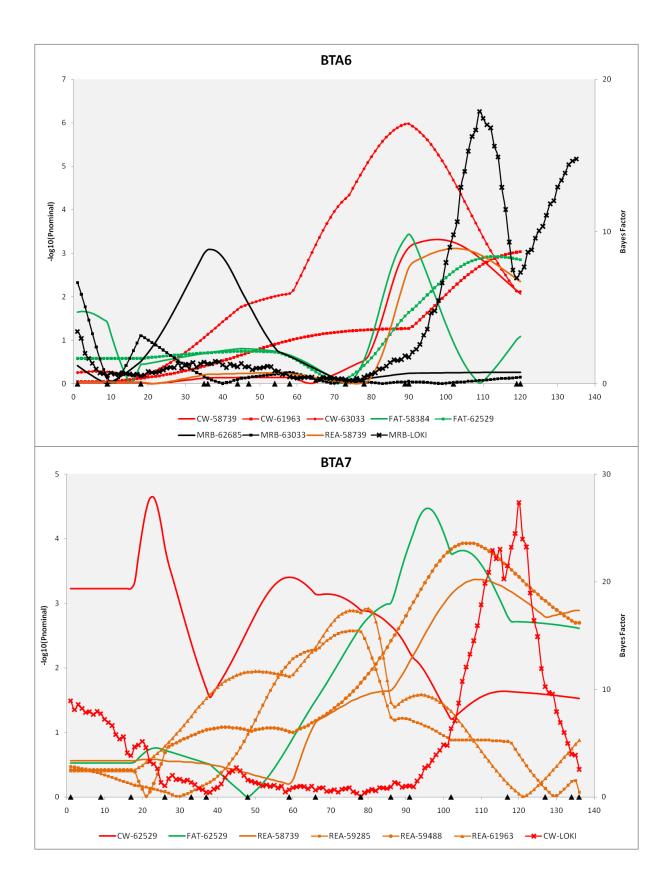
Table 2.11. Analysis of variance results for fat thickness QTL.

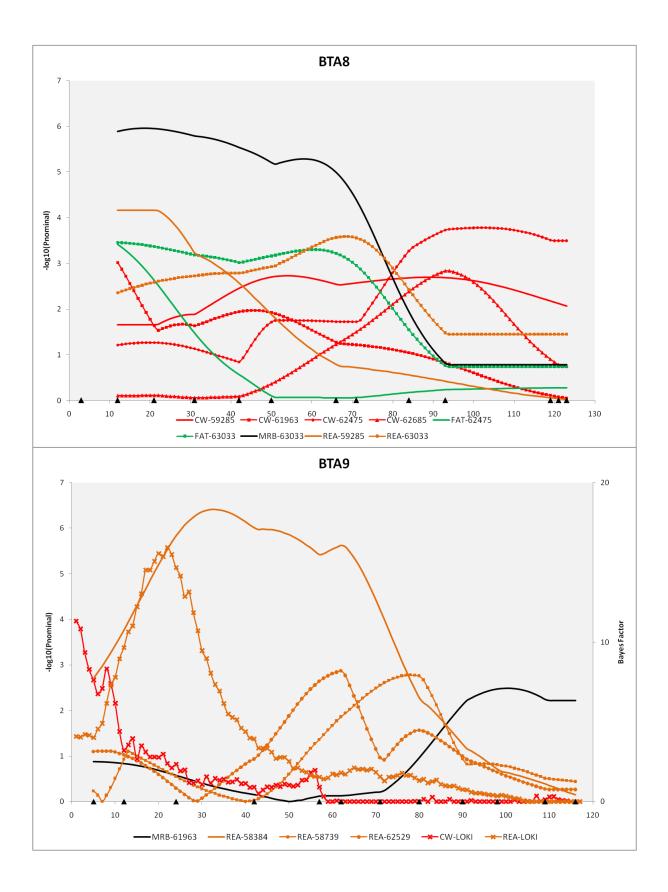
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1102	669147.9	607.212	1.16	0.0105
Error	848	443278.4	522.734		
Corrected Total	1950	1112426.2			
		_			
R-Square	0.6015				
Coeff Var	-372.5101				
Root MSE	22.8634				
Mean	-6.1377				

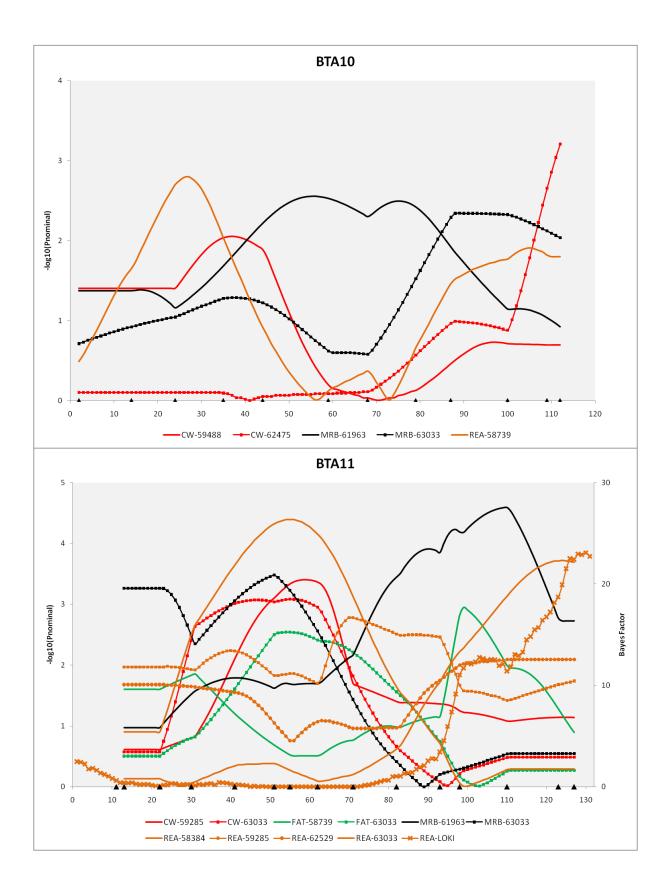
Table 2.12. Analysis of variance results for marbling score QTL.

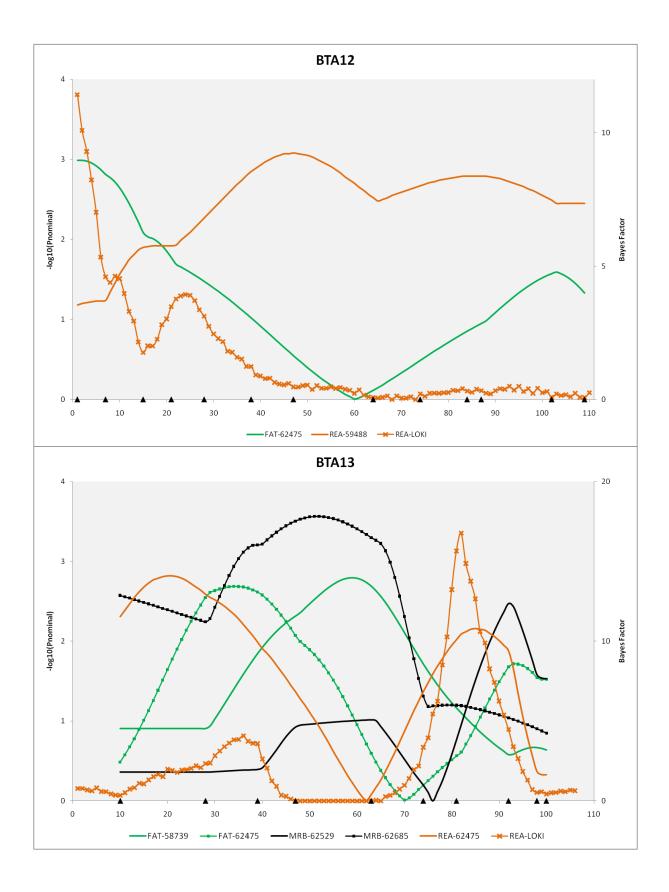

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	904	614824.0	680.115	1.42	<.0001
Error	1046	499904.3	477.920		
Corrected Total	1950	1114728.4			
		_			
R-Square	0.5515				
Coeff Var	-361.7042				
Root MSE	21.8614				
Mean	-6.0440				

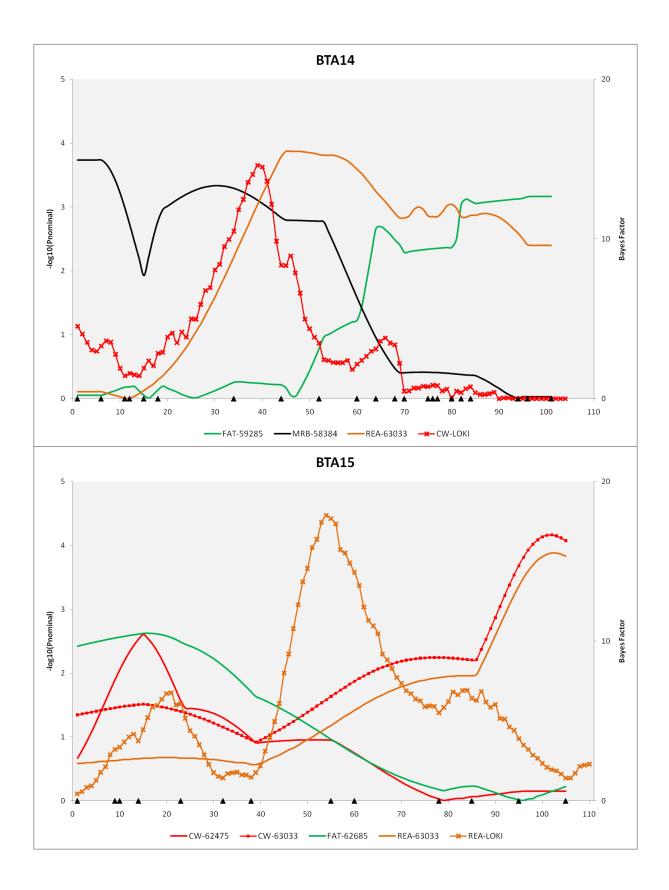

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1438	843684	586.707	1.11	0.0798
Error	512	270692.3	528.696		
Corrected Total	1950	1114376			
R-Square	0.757091				
Coeff Var	-379.502				
Root MSE	22.99339				
Mean	-6.05884				

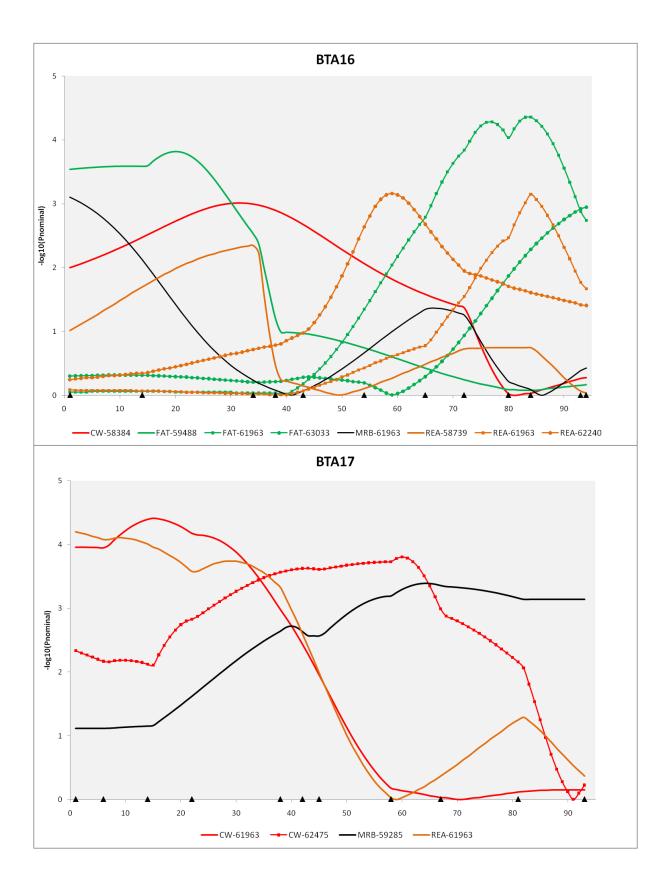

Table 2.13. Analysis of variance results for ribeye area QTL.

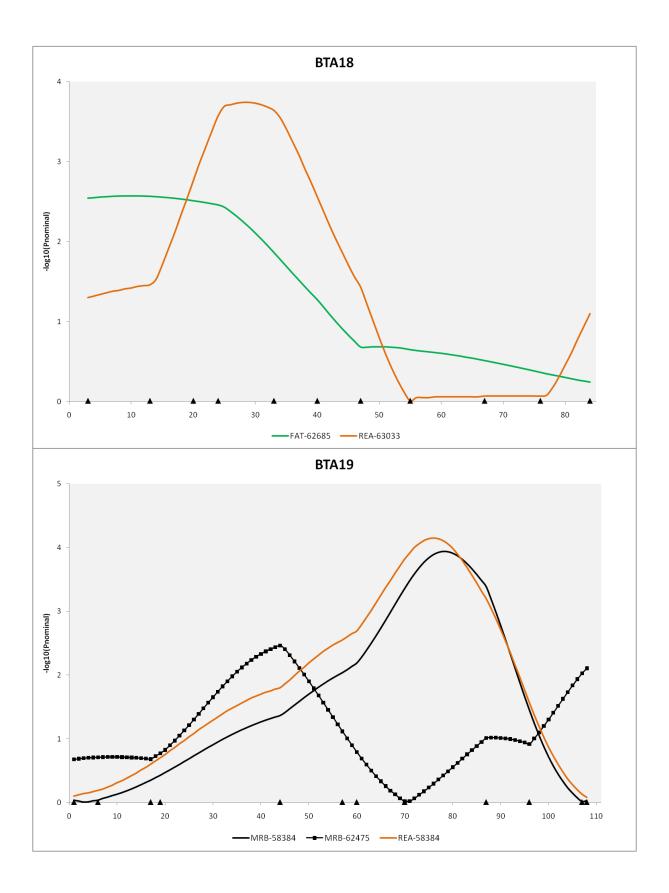

Figure 2.1. Carcass QTL graphs for each *B. taurus* autosome. Plots are for half-sib data analyzed from American Angus sire linage by QTL Express, unless indicated from LOKI. QTL Express data are expressed in $-\log_{10}P_{nominal}$ values units while LOKI data are express as Bayes Factors. Colored lines represent different traits as follows: red=CW; green=FAT; black=MRB; and gold=REA. Significance levels for QTL Express are as follows: chromosome-wide P<0.01 = 2.8, genome-wide P<0.05 = 3.3, genome-wide P<0.01 =4.1. Significance levels for LOKI are >10. All X-axis values are in cM, represent genomic markers

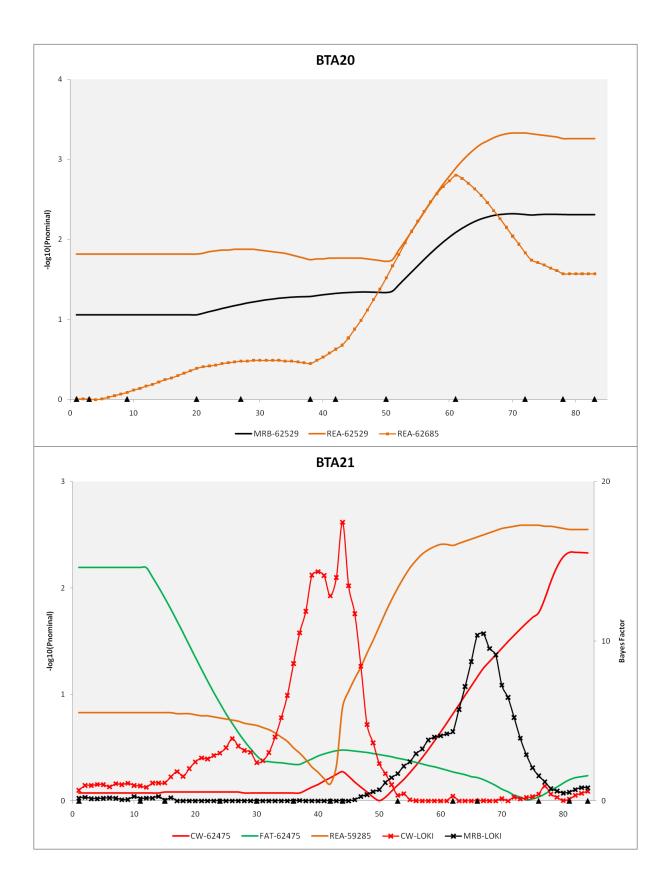


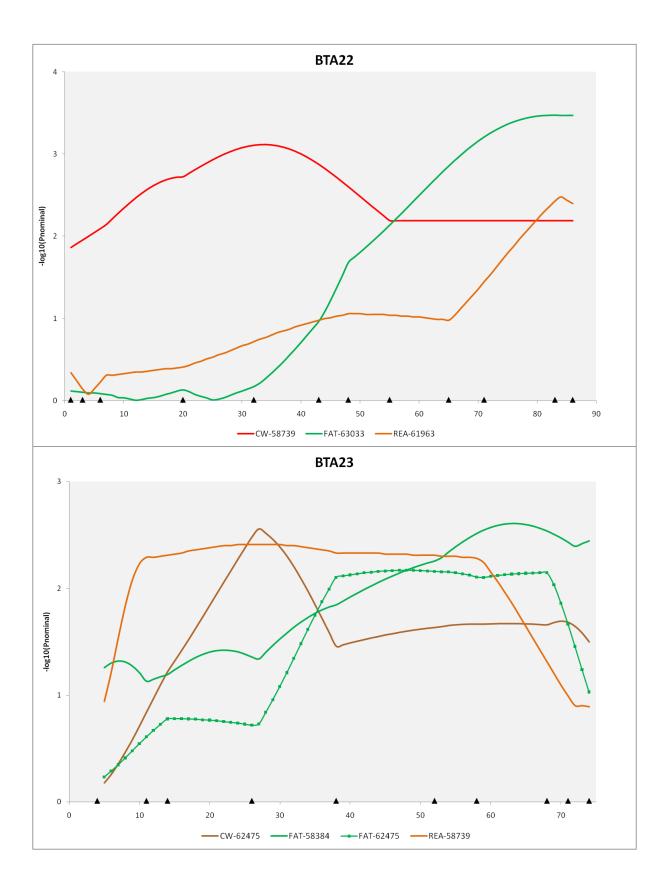


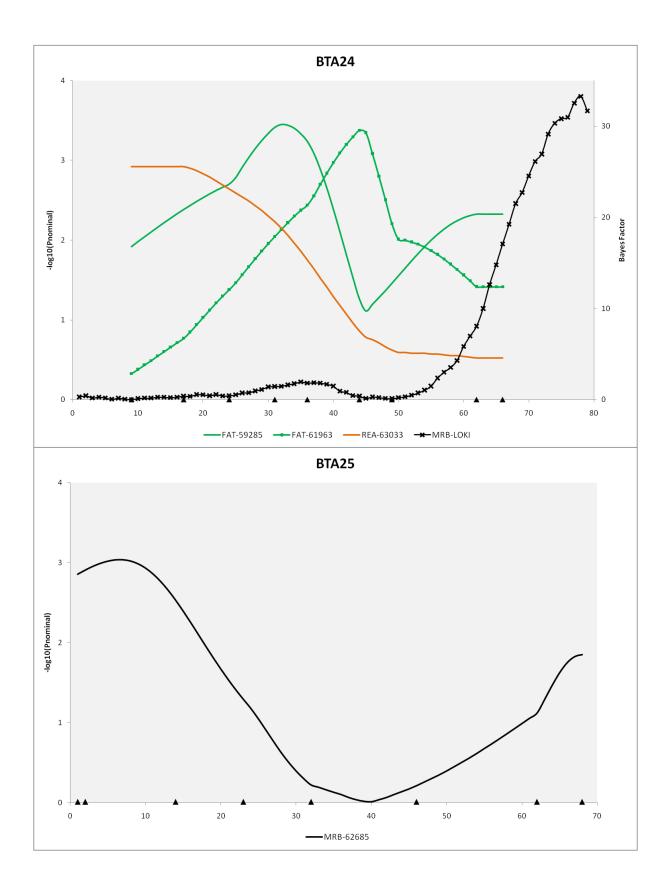


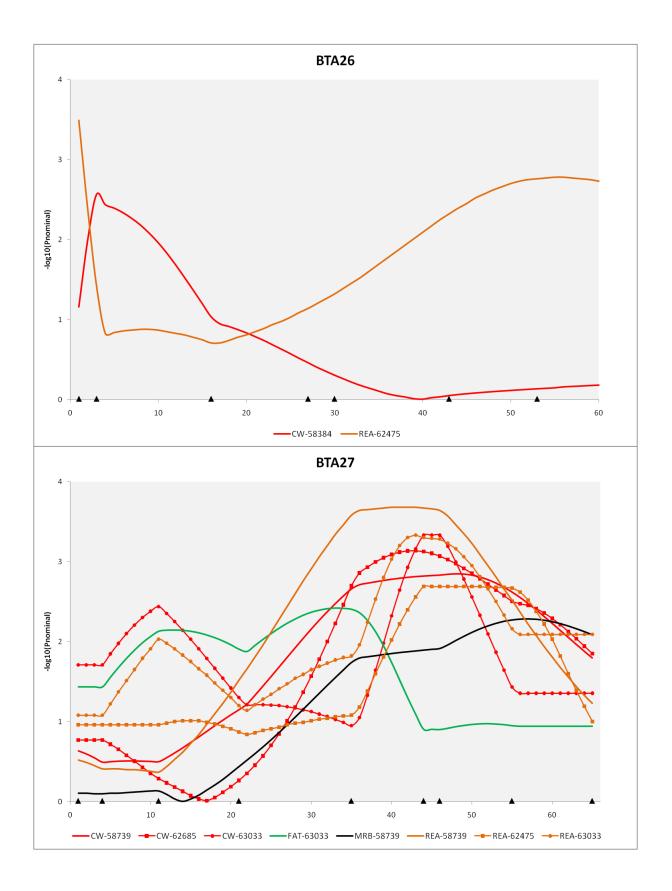


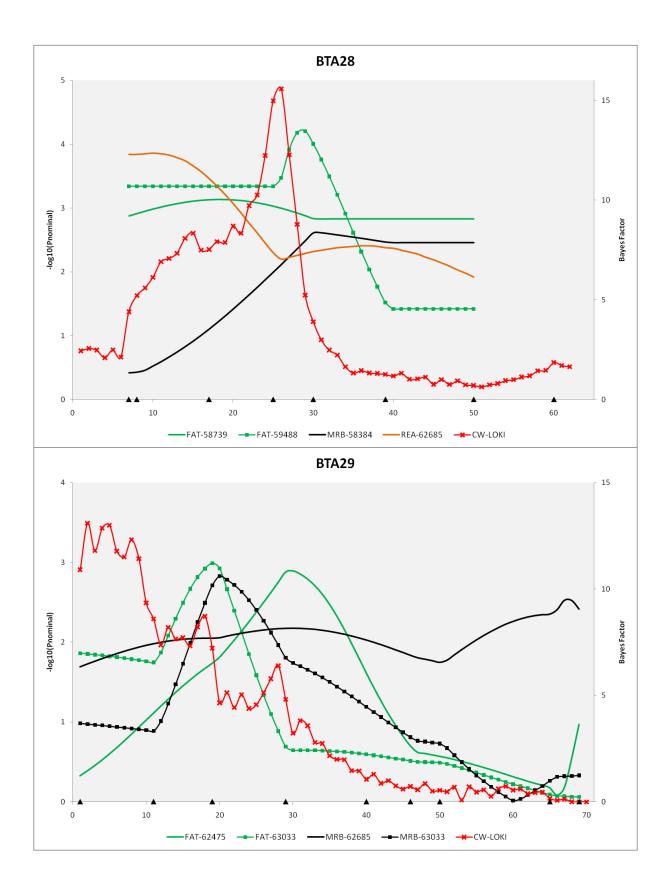












CHAPTER 3

Genome Scan in Commercial Angus Cattle for Quantitative Trait Loci Influencing Postnatal Growth Traits

Abstract

To gain insight into the number of quantitative trait loci (QTL) that impact an animal's growth potential, a genome-wide QTL scan was conducted on a twenty-nine generation commercial American Angus population. Expected progeny differences (EPD) for mature height (MH), mature weight (MW), weaning weight (WW), yearling height (YH), and yearling weight (YW) produced for the Spring 2005 evaluation by the American Angus Association were analyzed. Two separate analytical methods were employed: half-sib least squares regression and Bayesian Monte Carlo Markov Chain modeling linkage analysis, allowing EPDs to be analyzed for both across pedigree and within family genetic variation. These analyses resulted in the identification of 173 growth QTL.: 30 MH QTL, 44 MW QTL, 28 WW QTL, 19 YH QTL, and 52 YW QTL. For each trait, between 40 and 89% of the total genetic variance was explained by the QTL detected within this population.

Introduction

In the past 60 years producers have made striking changes in the physical size of American Angus cattle (Northcutt & Wilson 1993). The power of selection is especially evident when considering that the average height of the American grand champion Angus bull has ranged in height from 3 feet in the 1950's to 6 feet in the 1990's, with a rapid return to the

current moderate size (Figure 1.4). Through the use of evolving management practices and expected progeny differences (EPD), American Angus breeders continue to alter the growth potential of cattle. To aid livestock producers with selection of superior breeding stock, researchers have identified QTL for numerous economically important traits to identify the alleles responsible for creating genetic variation within a trait. Ideally, breeding stock possessing the most beneficial QTL alleles can be identified and utilized for breeding via marker assisted selection (MAS) programs.

While MAS can be a powerful management tool, it has been limited to date by the small number of QTL that have been identified for any one trait. Many experimental designs used for QTL mapping in cattle have analyzed a limited number of parental chromosomes and therefore have detected only the few QTL that were heterozygous within these parents (Casas *et al.* 2003; Mizoshita *et al.* 2004; Alexander *et al.* 2007). Consequently, most genome scans performed in cattle have identified only a small number of QTL as influencing any one trait (Allan & Smith 2008). While over 1,375 QTL have been identified in cattle, only 4 have been reported for hip height, 4 for weaning weight, 7 for yearling weight, 12 for slaughter weight, and 28 for carcass weight (http://www.animalgenome.org/QTLdb/cattle.html, last accessed June 13, 2009). Consequently, genetic improvement in the growth rate of cattle via MAS has been hindered by a lack of sufficient numbers of QTL to explain significant amounts of the genetic variation in growth. By assembling the largest commercial beef mapping population (N=1,769) to date and by using the major American Angus bloodlines, this study analyzed the majority of the chromosomes found in the US breed for QTL that affect growth traits used by the industry. The

study's design also maximized the potential for identifying QTL of large effect that segregate within American Angus cattle.

Material and Methods

Material and methods for this study were described in Chapter 2: Genome Scan in Commercial Angus Cattle for Quantitative Trait Loci Influencing Carcass Traits.

Results

By analyzing both the within-family and across-pedigree variations, 173 QTL influencing growth were discovered: 30 MH QTL, 44 MW QTL, 28 WW QTL, 19 YH QTL, and 52 YW QTL (Table 3.1). At a chromosome-wide P≤0.01 significance level or ≥10 Bayes Factor (Jefferys 1961), every autosome was found to harbor multiple growth QTL (Table 3.2). Fourteen of these QTL have previously been reported in the literature: two for MH, six for MW, one for WW, one for YH, and four for YW (Table 3.1). Of the 173 possible QTL, 20 appear to be pleiotropic (Table 3.3), indicating that 153 independent growth trait QTL were identified in this study.

Each chromosome contained an average of 5 QTL, and approximately 1.2 QTL for each trait (range of 0 to 6). While an average of 9 chromosomes did not contain a QTL for an individual trait, 25 chromosomes harbored multiple QTL for a trait (Figure 3.1 and Table 3.3). The average allele substitution effect from QTL Express for MH was 0.58 in, 36.63 lb for MW, 11.11 lb for WW, 0.34 in for YH, and 17.11 lb for YW. The difference between alternate homozygote for QTL detected by LOKI were 0.13 in for MH, 20.07 lb for MW, 1.86 lb for WW, 0.03 in for YH, and 3.70 lb for YW (Table 3.4). A general linear model analysis (SAS, v9.1) revealed that the QTL detected in this study explain a substantial amount of the genetic variation in each trait within our population (Tables 3.5, 3.6, 3.7, 3.8, and 3.9). When all QTL for a trait were included in the model, 67.33 % of the genetic variance in WW was explained, 65.62 % for MH, 80.71 % for MW, 40.46 % for YH, and 89.46 % for YW. On average a single QTL explained 2.1% of the genetic variation within a trait.

Discussion

A recent survey of the Mouse Genome Database revealed that 34% of viable knockout mice had a body weight change when compared to control mice (Reed *et al.* 2008). Although the total number of naturally occurring alleles that affect murine body weight is unknown this survey suggests that a large number of genes affect variation in growth. The results reported here imply that a large number of loci also influence the growth potential of cattle. Even though there has been considerable selection pressure on the mature size of American Angus cattle over the past 60 years a wide range in the allele frequency of economically beneficial traits remains, with the estimated average allele frequency of growth enhancing QTL alleles estimated to be 0.441 for CW, 0.488 for MH, 0.501 for MW, 0.708 for YH, and 0.488 for YW (Table 3.4). Chamberlain *et al.* (2007) found similar frequencies for milk production enhancing QTL alleles in dairy cattle.

While the amount of genetic variation explained by the QTL ranged from 40% to almost 90% these estimates are biased as they were determined in the discovery population (Lou *et* al. 2003; Xu, 1998). The allele substitution effects estimated by QTL Express in the smaller half-sib

families are likely to be overestimated (Lou *et al.* 2003). A separate population is needed to better assess the true genetic variation explained by these QTL (Van Eenennaam *et al.* 2007)

Although 20 putatively pleiotropic QTL were identified (Table 3.3), we do not have sufficient resolution to determine whether a single or multiple QTNs underlie the QTL peaks influencing both traits. The phase relationship between potentially distinct QTN cannot be identified from our analysis and because LD extends for 500 kb in cattle (McKay *et al.* 2007), therefore it is possible that selection on these pleiotropic QTL could result in divergent economic responses in both traits.

The majority of QTL individually explain small amounts of a trait's genetic variation, consequently genetic improvement programs that implement information from one, or a few economically important QTL will have little value in beef cattle. Genetic improvement decisions based on a suite of genetic markers that explain significant amounts of genetic variance in several traits are required to maximize economic gain. Integrating QTL information with available phenotypic data for the estimation of EPDs will allow producers to accurately select genetically superior animals.

Reference ⁴		HH (1), WH (6)																
	Effect 22			2.088	1.5376	3.1655		-2.85				25.32		0.0031	0.0454	2.4389	-19.29	-5.134
LOKI	Effect 12			-0.079	-0.002	0.0134		-0.008				0.0693		-0.001	0.0004	-0.019	0.0422	0.0738
3	Freq 1			0.82	0.84	0.85		0.81	•			0.67		0.84	0.84	0.83	0.75	0.85
	Bayes Factor			19.64	22.35	14.92		22.62				58.25		11.7	15.76	12.45	11.88	28.19
press ²	QTL Effect	3.77••	3.305*		2.892*		3.537**	3.359***	2.552*	3.263	3.294**		2.466*					
QTL Express ²	-log ₁₀ (P _{nominal})	0.536	32.612		13.774		13.11	23.644	0.304	20.76	33.597		0.884					
	Hanking Markers	BMS4017	TGLA57	BMS4040	BMS599	BMS599	BMS4014	URB014	CSSM50	SRC23	FCB11	BMS2904	BM723	INRA003	HUJ246	BMS1266	BMS1266	RM309
QTL Peak ¹	Flanking	BMS574	BMS4017	BM864	BM1824	BM1824	BMS599	BMS4014	DIK1172	TGLA377	IDVGA2	URB006	BMS482	BM723	INRA003	HUJ246	HUJ246	BMC4214
Ę	Position	36.78	44.78	103.5	123.5	125.5	144.5	153.5	18.78	30.78	128.78	20.5	46	55.5	59.5	71.5	76.5	127.5
	BTA	1	-	-	-	۲	-	1	2	2	2	°	ŝ	ŝ	ŝ	ŝ	ŝ	۳.
	Trait	HW	MM	M	M	¥	M	Ŵ	HW	MM	MM	MM	НМ	¥	HW	¥	MM	¥

summary.
data
Ę
Srowth
3.1.
Table

aki	QTL Peak ¹	- 1		QTL Express ²	press ²		NO.	X		Reference ⁴
Hanking Markers	Hanking Markers	ig Markers		-log10 (Pnominal)	QTL Effect	Bayes Factor	Freq.	Effect 12	Effect 22	
DIK2956 BMS1840	DIK2956 BMS1840	BMS1840				31.75	0.82	0.0428	3.9715	
3MS1840 BMS885	BMS1840 BMS885	BMS885				14.71	0.8	-0.015	0.9595	
3MS1840 BMS885	BMS1840 BMS885	BMS885				10.12	0.85	0.0005	0.0013	
3MS1840 BMS885	BMS1840 BMS885	BMS885				38.16	0.84	-0.014	4.4641	
3MS2809 UASMS2	BMS2809 UASMS2	UASMS2				39.6	0.84	-5E-04	-7.09	
Lep_Ex2 RM088	Lep_Ex2 RM088	RM088				199.8	0.58	-0.014	-33.5	
BR6303 AGLA227		AGLA227	•			18.24	0.82	0.0487	-3.063	
4GLA227 DIK4542	AGLA227 DIK4542	DIK4542	- I			18.29	0.82	-0.047	-0.833	
RM029 BMS1248		BMS1248				29.96	0.8	-0.102	-4.269	YW (3,4)
3MS1248 BM315	BMS1248 BM315	BM315				10.33	0.82	0.0121	-2.412	
3MS1248 BM315	BMS1248 BM315	BM315		38.105	4.182	13.24	0.78	-0.015	26.081	
3MS1248 BM315	BMS1248 BM315	BM315				32.5	0.8	-0.047	-4.403	YW (3)
RM029 BM2830		BM2830		0.515	2.822					HH (1)
3MS1658 BM2830	BMS1658 BM2830	BM2830	- 1			220.77	0.63	0.0599	33.039	
BM143 DIK082		DIK082		0.283	2.08*					HH (1)
DIK082 BMS360		BMS360		8.032	2.795					
DIK082 BMS360		BMS360		36.041	3.631					
CSN3 BM8124		RM8124		0.433	2.917					

		ID	QTL Peak ¹		QILE	QTL Express ²		S	LOKI		Reference ⁴
Trait	BTA	Position	Flanking Markers	Aarkers	-log10 (Pnominal)	QTL Effect	Bayes	Freq 1	Effect 12	Effect	
W	2	9.5	RM012	DIK4378			38.7	0.85	0.0241	5	
ww	2	11.5	RM012	DIK4378			11.46	0.8	0.002	1.3714	
W	1	17.5	DIK4378	RM006			31.34	0.83	-0.021	-6.658	
MM	2	18.5	DIK4378	RM006			11.54	0.8	-0.017	-0.018	
HW	2	19.5	DIK4378	RM006			10.91	0.87	0.0085	-0.144	
WW	1	25.5	RM006	114			31.57	0.85	-0.019	1.9948	
HW	2	36.5	114	BM6105			29.88	0.89	0.0073	-0.2	
W	2	54.5	DIK2819	UWCA20			48.34	0.86	0.0524	-9.504	
W	2	73.5	BMS2840	BMS2258			12.72	0.81	0.0069	2.2861	
MM	2	11	BMS2840	BMS2258	40.968	3.314**					
W	2	107.5	BM9065	11575006			12.47	0.84	0.0855	-6.662	
MM	2	134	BMS1247	BL1043	42.117	2.968*					
HW	2	135	BMS1247	BL1043	0.372	3.724.					
W	2	135.3	BMS1247	BL1043	2		10.81	0.83		0.0693 1.1046	10
HW	00	7.5	Centromeric	IDVGA11			21.06	0.89	0.0026	-0.182	
MM	00	10.5	Centromeric	IDV6A11			27.89	0.85	0.0271	-5.38	
MM	00	39.5	BP2	BMS678			19.3	0.82	0.0568	22.974	
MM	00	49.5	BMS678	BM4006			55.8	0.7	-0.04	31.97	
ΗY	00	74.34	MCM64	DIK2868	0.349	3.812**					
MM	00	97.5	BM711	CSSM047			14.07	0.84	-0.011	-1.779	
MM	00	120.5	CSSM047	BMS836			15.33	0.83	0.046	1.8541	
W	80	121.5	CSSM047	BMS836			14.98	0.8	-0.139	3.0526	

		UD	QTL Peak ¹		QILE	QTL Express ²		L L	ROKI		Reference*
Trait	BTA	Position	Hanking	ng Markers	-log10 (Pnominal)	QTL Effect	Bayes	Freq 1	Effect 12	Effect	
W	6	9.5	BM757	ETH225		•	16.81	0.82	0.0775	2.7391	
WM	6	11.5	BM757	ETH225			15.1	0.81	0.0144	0.5289	
W	6	25.5	BM1227	BMS817			12.51	0.82	-0.098	4.2753	
MM	6	58.5	BMS434	BMC701			45.89	0.79	0.0038	-28.05	LW (5)
MM	6	71.5	BMS2377	BMS1724			91.64	0.64	-0.006	-19.41	
MM	6	90.89	BM4208	BMS2295	28.591	2.857*	5				
MH	9	34.86	BMS528	BRN	0.515	3.72**					-
MM	10	34.86	BMS528	BRN	30.721	3.592*					
W	Ħ	17.5	INRA044	BMS2325			12.13	0.79	0.0447	2.1125	YW (3)
MM	11	20.5	INRA044	BMS2325			17.43	0.81	9600.0	-2.984	YW (3)
MM	11	66.5	1LSTS036	RM150			11.76	0.81	-0.053	1.5359	
W	11	67.5	ILSTS036	RM150			14.19	0.84	-0.022	2.2486	
W	11	75.5	RM150	IDVGA3			29.17	0.84	0.0597	4.2935	
W	11	94.5	BMS989	BL1103	2		60.2	0.79	0.007	-6.101	
HW	12	1	BMS410	TGLA36	0.37	3.519**					
ΥH	12	12	TGLA36	BMS2252	0.383	2.731.					
HW	12	54	BM1827	BMS975	0.542	3.234*					
W	12	54.5	BM1827	BMS975			15.9	0.83	0.0245	2.0793	
MM	12	59.5	BM1827	BMS975			20.96	0.89	-0.17	-32.45	
W	12	67.5	BMS975	BM4028			15.97	0.82	-0.095	-11	
MM	12	80.5	BMS975	BM4028	59.836	4.466***	53.54	0.94	-1E-04	10.688	LW (5)
MM	12	93.5	INRAS	BMS1316			46.87	0.96	0.0661	17.438	
MM	12	104.5	BMS1316	BMS2724	33.618	3.44.					
W	12	107.5	BMS1316	BMS2724			24.33	0.81	-0.03	4.0058	

Reference ⁴																			LW (5)				LW (5)		
	Effect 22	-2.223	1.1178			-3.328			5.6285	-8.714	2.4354	2.3655								-4.339	-3.751		19.811		-5.506
LOKI	Effect 12	-0.036	9600.0			0.0488			0.0186	0.0204	-0.044	0.0136								0.0171	0.0356		-2E-04		0.0219
3	Freq 1	0.79	0.74			0.82			0.71	0.65	0.85	0.85								0.82	0.8		0.97		0.8
	Bayes Factor	13.66	10.05			21.15			13.07	22.53	14.98	18.49					•			17.42	13.25		16.64		18.38
press ²	QTL Effect	-		2.469•	2.684*		3.177.	2.438*					3.17•	3.589**	3.445**	2.586*	2.227**	2.559•	2.565*			2.671		3.105*	
QTL Express ²	-log10 (Pnominal)			0.438	0.618		0.642	17.497					1.155	0.67	0.737	30.387	0.458	0.25	42.528			10.792		26.65	
	Hanking Markers	BMC1222	CSSM66	CSSM66	RM011	NRKM020	DIK2742	BL1036	BL1036	Telomeric	MGTG13B	ADCY2	MB076	DIK2768	BL1095	BL1095	BMS1348	BY22	BY22	TGLA53	BMS462	DIK5379	BM8125	BM1233	Telomeric
QTL Peak ¹	Flanking	TGLA23	DGAT	DGAT	RM180	BMS947	NRKM020	BM6425	BM6425	BL1036	DIK2777	BR3510	HELI	INRA046	BMS812	BMS812	TGLA245	BMS1348	BMS1348	BY22	DIK4437	BMS1825	DIK2668	BM1862	BM1233
Ę	Position	27.5	4.5	s	41	70.5	76	3 6	97.5	103.5	5.5	12.5	46	76	85	85	6.91	16.91	18.91	36.5	94.25	8	61.5	85	92.5
	BTA	ដ	14	14	14	14	14	14	14	14	15	15	15	15	15	15	16	16	16	16	16	17	17	17	5
	Trait	M	ww	HW	HW	¥	HM	¥	MM	MM	ww	M	HM	HM	HW	MM	HW	H	MM	¥	Ŵ	Ŵ	MM	MM	₹

		D	QTL Peak ¹		QILE	QTL Express ²		3	LOKI		Reference ⁴
Trait	BTA	BTA Position	Flanking Markers	Markers	-log10 (Pnominal)	QTL Effect	Bayes	Freq 1	Effect 12	Effect	
MM	18	0.5	Centromeric	BMS1355			114.64	0.92	-0.127	-16.3	24
MM	18	18.5	BMS1322	BMS2213	36.874	3.819**	13.47	0.91	-0.101	-7.594	
MM	18	40.5	BR4406	BM7109	11.258	2.937•					
ΗX	18	81.86	BM2078	TGLA227	0.223	3.402.					
MM	19	0	BM9202	BM6000	27.34	3.586*	•				
ww	19	5.5	BM6000	BMS745			17.96	0.83	0.0158	-2.79	
W	19	15.5	BM6000	BMS745			17.56	0.81	-0.039	-2.197	
W	19	26.5	X82261	BMS2142			11.59	0.82	-0.058	-0.854	
ww	19	56.5	BMS2142	BMS650			21.81	0.81	0.0437	1.7462	
MM	19	75.5	CSSM065	IDVGA44			16.47	0.65	-0.181	-32.04	
YH	19	80	CSSM065	IDVGA44	0.29	3.748**					
W	19	95.5	RM388	BMC1013			10.76	0.84	-0.031	4.6752	
W	20	10.5	BM1225	BMS1282		•2	25.03	0.79	1600.0	-4.454	
ww	20	15.5	BM1225	BMS1282			24.91	0.79	-0.02	-2.721	
W	20	25.5	BMS1282	DIK2467			16.88	0.8	0.0062	-2.42	
MM	20	26.5	DIK2467	DIK5354			24.94	0.81	0.0352	-2.964	
MM	20	47.5	GHR	BMS703	41.269	2.947	24.9	0.55	-0.021	-6.687	

		ЦÖ	QTL Peak ¹		QTL Express ²	press ²		2	LOKI		Reference ⁴
Trait	BTA	Position	Flanking Markers	Markers	-log10 (Pnominal)	QTL Effect	Bayes Factor	Freq 1	Effect 12	Effect 22	
MM	21	26.5	ILSTS095	BM103			10.94	0.81	-0.045	2.09	
W	21	35.5	BM103	BMS2557			10.08	0.79	0.1162	-4.374	
YH	21	36	BMS2557	RM222	0.224	2.65*					
MM	21	36.5	BMS2557	RM222			15.77	0.89	-0.085	6.2397	
HW	21	40	BMS2557	RM222	0.548	3.104					
W	21	61.5	BM846	ILSTS054			43.54	0.87	0.008	3.7013	
HW	21	74.5	ILSTS054	BMS743			12.99	6.0	-0.001	0.1388	
H	21	74.5	ILSTS054	BMS743			16.73	0.86	-0.002	0.0514	
W	22	19.5	BM1558	DIK2694			11.21	0.81	0.1324	-3.501	
YH	22	27	BM1558	DIK2694	0.307	2.453*					
HM	22	48	BM3628	BM2613	0.316	3.116*					
W	22	68	BMS875	OARFCB304	22.153	3.59***					
YH	22	76	OARFCB304	BM4102	0.216	2.685					
MM	22	78	OARFCB304	BM4102	26.213	4.289***					
ΥH	22	85	BM4102	DIKI15	0.213	2.58*					
MH	23	5.7	INRA132	SRC119	0.382	4.056**					
MM	23	16.7	BM47	UWCAI	23.098	4.062**					LW (2), SW (3)
W	23	26.7	UWCAI	BOLADRB1	17.793	2.992*					
MM	23	73.7	BM1905	BM1443	33.989	3.731	8	3			
W	24	7.5	Centromeric	BMS2526			10.59	0.81	0.0167	-0.439	
YH	24	49.15	BMS466	BMS1926	0.186	2.516*					
W	24	51.5	BMS466	BMS1926			20.93	0.85	0.0087	4.9852	
MM	24	61.5	BMS1926	BMS3024	46.99	2.572*	54.34	0.93	0.1729	-11.89	

		UT OT	QTL Peak ¹		QUE	QTL Express ²		2	LOKI		Reference ⁴
Trait	BTA	Position	Hanking	g Markers	-log10 (Pnominal)	QTL Effect	Bayes	Freq 1	Effect 12	Effect	
W	25	9.5	RM074	BMS130			19.35	0.84	0.0311	4.7212	YW (3)
ww	25	14.5	BMS130	BMS2843			19.7	0.83	0.0329	-1.744	
W	25	28.5	BMS2843	BM737			20.11	0.87	-0.006	3.6484	
ww	25	37.5	BM737	BMS1353			10.42	0.82	0.0236	-0.01	
W	25	41.5	BM737	BMS1353			14.35	0.86	0.0085	3.0863	
ww	25	52.59	BMS1353	AFS	9.369	1.94*					
W	25	62.59	AFS	BM1864	16.57	3.131.					
HW	25	66.59	AFS	BM1864	0.471	3.744.					
HW	26	15.5	BMS651	FASMC2			19.76	0.87	0.0009	-0.138	1. 1
YH	26	15.5	BMS651	FASMC2			13.28	0.84	0.0004	-0.06	
YH	26	25	FASMC2	INRA081	0.565	2.784*					
HW	26	28	FASMC2	INRA081	0.889	7.486***					
MM	26	29	BM1314	INRA081	50.981	4.168***					
W	26	42.5	INRA081	BMS2567	11.328	2.6*	14.98	0.81	-0.046	-4.818	
MM	26	60	BMS2567	BM804	35.243	3.427*	1				
MM	27	5.5	BMS2168	BM6526			35.1	0.71	0.0372	16.114	
MM	27	22.5	BMS2137	CSSM043			47.67	0.78	-0.125	15.626	
HW	27	34	BMS2137	CSSM043	0.347	2.557*					
HY	27	39	CSSM043	CSSM36	0.351	4.779***		8			2.5 2.5
HW	28	24.5	IDVGA29	BMS510	0.832	3.047*	11.5	0.82	-0.003	0.0918	
MM	28	24.5	IDVGA29	BMS510	39.207	2.567*					
HY	28	29.5	BL25	BMS2608	0.616	2.96*		0			

		QTL Peak	eak ¹		QILE	QTL Express ²		ROKI	¥		Reference ⁴
rait	BTA	Position	Flanking	Markers	-log10 (Prominal)	QTL Effect	Bayes	Freq 1	I Effect E	Effect	2
M	29	18.92	BMS764	BMS1787	38.496	2.435*	•	3			2
H	29	25.92	BMS1787	BMS1600	1.068	3.343**					
M	29	32.92	BMS1600	RM040	56.116	3.366**					LW (5)
н	29	33.92	BMS1600	RM040	0.681	3.827					
3	29	34.5	BMS1600	RM040			12.25	0.84	-0.025	4.2452	
3	29	53.5	BL1100	BMS1948			14.82	0.84	-0.001	4.391	

¹ Listed iare each QTL's most likely location in cM, flanking markers, associated information from QTL Express and LOKI, and whether the QTL has previously been identified. ² Significance levels for QTL Express: *=P < chromosome-wide 0.01, **=P < genome-wide 0.05, ***=P < genome-wide 0.01. Freq_1 is the frequency of the 1 allele; effect values estimated in LOKI assume that the 11 genotype has an effect of 0.

³ Abbreviations: weaning weight (WW); mature height (MH); mature weight (MW); yearling height (YH), yearling weight (YW); hip height (HH); withers height (WH); live weight (LW); slaughter weight (SW). ⁴ References: 1= (Boichard *et al.* 2003) 2=(Elo *et al.* 1999); 3=(Kim *et al.* 2003); 4=(Machado *et al.* 2003); 5=(MacNeil & Grosz 2002); 6=(Malau-Aduli et al. 2005).

Table 3.2. Count of growth QTL by ch	to	S ^{rc}	M	g	2	V C	chromos(Sou	š																				
														Bos t	Bos taurus autosome	s aut	uoso	ي د				1	1		1				
Trait	-	~	123456	4	s	9	2	60	9	0	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	2	5	14	15	16	17	18	19	20	21	2	23	24	25	26	27	28	29
Mature Height	7	-	~		1 1	-	•	-		-		2		•	•	-					2	-	-		-	2	7		-
Mature Weight	-	2	2	-	2		2	2	m					2	-	-	2	2	2	-	-	-	2	-		2	2	-	8
Weaning Weight	m			-	-	-	m	m	-		2		-	-	2			-	2	2	-				m				
Yearling Height			-	-		-										-		-			2	m		-		2	-		-
Yearling Weight	2		2	5	2		9		2		4	m		2		2	2		m	2	2	2	-	2	4	-			2
Pleiotropic	7		-	2 2	~	1	~	-	1,1,1,1	-	1	•			1	-	1	1	1	-	-	-	1	•	-	~		-	1
Total	9	•	9	9	4	4	12	~	5	-	63664412751561854448476447542	9	-		5	4	4	4		4	~	9	4	4	1	5	4	2	s
				ľ			ŀ											ŀ			ŀ								[

_	٠
	J
2	2
- 5-	-
- C)
Ū	'n
~	s
5	2
- 5	-
C)
•	1
-	-
-	1
<u>د</u>	,
	_
2	2
_	2
	1
_	J
FC FC	
-	
C	J
_	•
-	
-	3
τ.	1
-	5
7	5
- 54	,
-	-
	V
t of growth	1
-	t
C)
+	2
<u>د</u>	1
-	2
-	ť
C	ξ
č	3
-	1
_	٠
0	J
-	1
2 2	٦
	٢
a	1
٥	2
9	5
ald	

		Trait	Trait	Trait	Express	LOKI	Express	LOKI	Express	LOKI
BTA	Position	1	2	3	1	1	2	2	3	3
1	124.00	WW	YW		13.774	1.538		3.166		
3	57.50	YH	MH			0.003		0.045		
4	48.00	WW	YW	YH		0.960		4.464		0.001
4	87.00	YW	MW			-7.090		-33.497		
6	61.50	WW	MW		8.032		36.041			
7	18.50	WW	YW	MH		-0.018		-6.658		-0.144
7	135.00	YW	MW	MH		1.105		42.117		0.372
8	121.00	WW	YW			1.854		3.053		
9	10.00	WW	YW			0.529		2.739		
10	34.86	MW	MH		30.721		0.515			
11	67.00	WW	YW			1.536		2.249		
15	85.00	MW	MH		30.387		0.737			
16	17.50	YH	MW		0.250		42.528			
20	26.00	WW	YW			-2.963		-2.420		
21	74.50	YH	MH			0.051		0.139		
22	77.00	YH	MW		0.216		26.213			
25	64.50	YW	MH		16.570		0.471			
26	15.50	YH	MH			-0.060		-0.138		
26	28.00	YH	MW	MH	0.565		50.981		0.889	
28	25.00	YH	MH	MW	0.616		0.832	0.092	39.207	
29	34.00	YH	MW		0.681		56.116			

Table 3.3. Summary of growth QTL identified as pleiotropic.

Express 1, 2, 3 and LOKI 1, 2, 3 are the allele substitution effect from QTL Express and the difference between alternate homozygotes for traits 1, 2, and 3 respectively.

	OTL	Reference	LOKI	KI	QTL Express			EPD			Acc >0.05
Trait	Count	Count	Freq ¹	Freq ¹ Effect ²	Effect ³	StDev	Var	Kurt	Skew	Count ⁴	Count ³
Mature Height	30	2	0.488	0.130	0.577	0.650	0.4	0.6	0.1	1830	1325
Mature Weight	4	9	0.501	20.069	36.629	37.52	1407.7 0.6 -0.2 1	0.6	-0.2	1830	1325
Weaning Weight	28	1	0.558	1.861	11.109	14.41	207.7	0.0	-0.4	1998	1992
Yearling Height	19	1	0.708	0.033	0.342	0.420	0.2	0.9	0.3	1956	1630
Yearling Weight	52	4	0.488	3.694	17.111	26.48	701.3	0.0	-0.5	1998	1991
¹ The average frequ	iency of t	quency of the economical	ly desirable	allele as d	etermined by LOKI						

² The average effect of the economically desirable homozygote as determined by LOKI.

³ The allele substitution effect economically desirable allele as determined by QTL Express.

⁵ Count of animals with an EPD accuracy value >0.05. ⁴ Count of animals with an EPD value recorded.

Statistical information is based the EPDs from the mapping population.

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	792	277245	350.056	3.01	<.0001
Error	1158	134509	116.156		
Corrected Total	1950	411753			
R-Square	0.6733				
Coeff Var	32.3912				
Root MSE	10.7776				
Mean	33.2732				

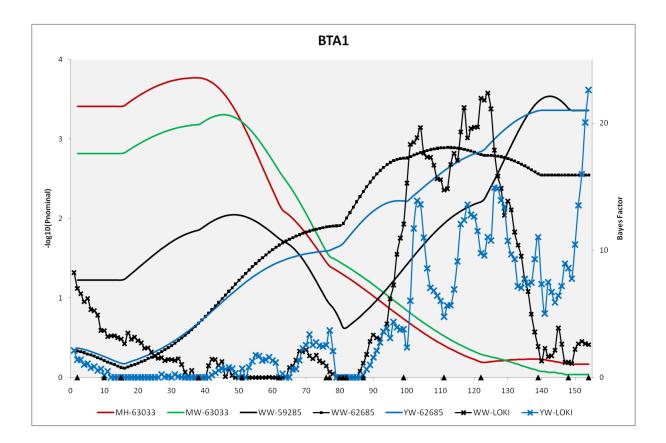
Table 3.5. Analysis of variance results for weaning weight QTL.

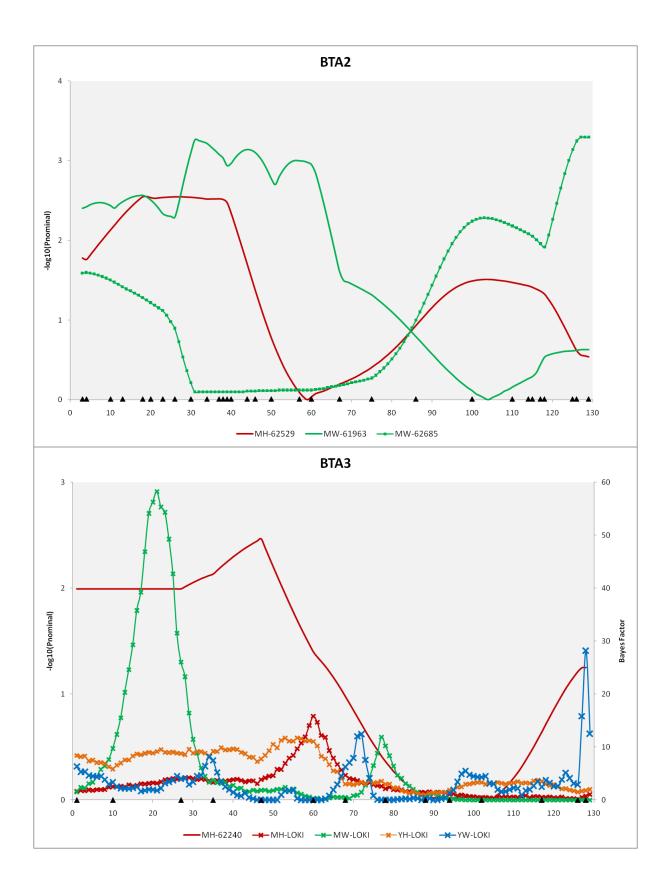
Table 3.6. Analysis of variance results for mature height QTL.

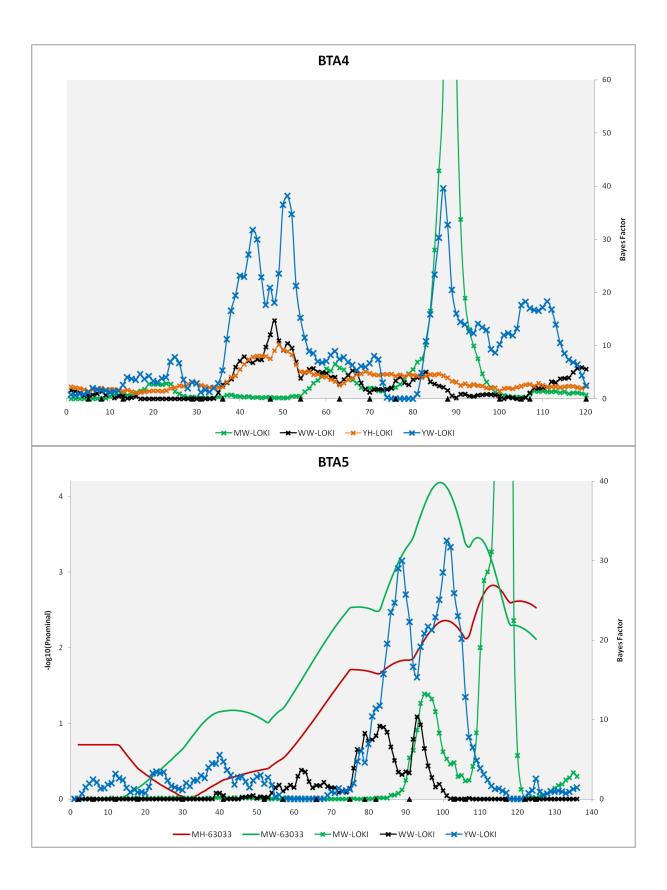
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1118	991891	887.20	1.42	<.0001
Error	832	519617	624.54		
Corrected Total	1950	1511508			
R-Square	0.6562				
Coeff Var	-310.4931				
Root MSE	24.9908				
Mean	-8.0487				

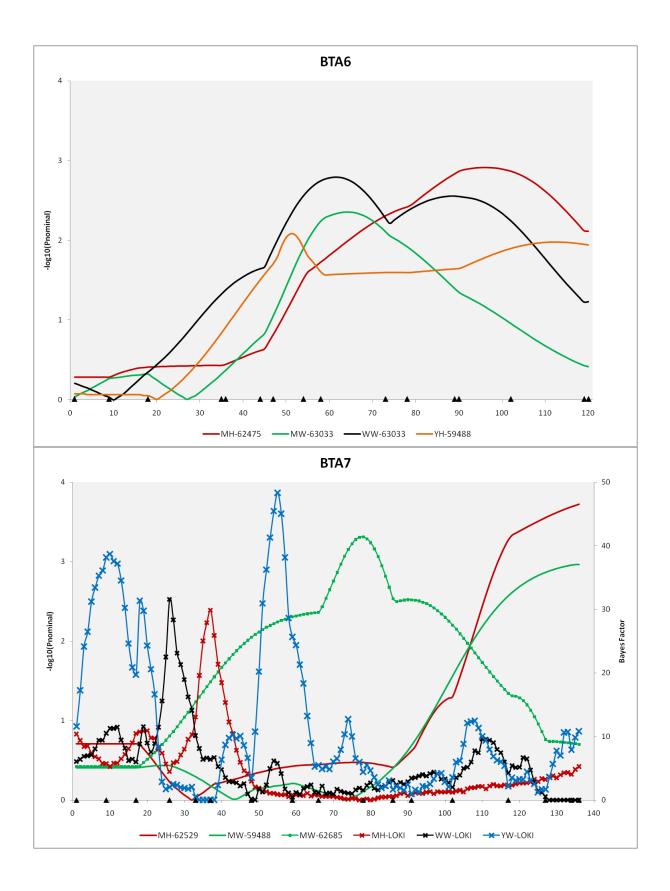
Table 3.7. Analysis of variance results for mature weight QTL.

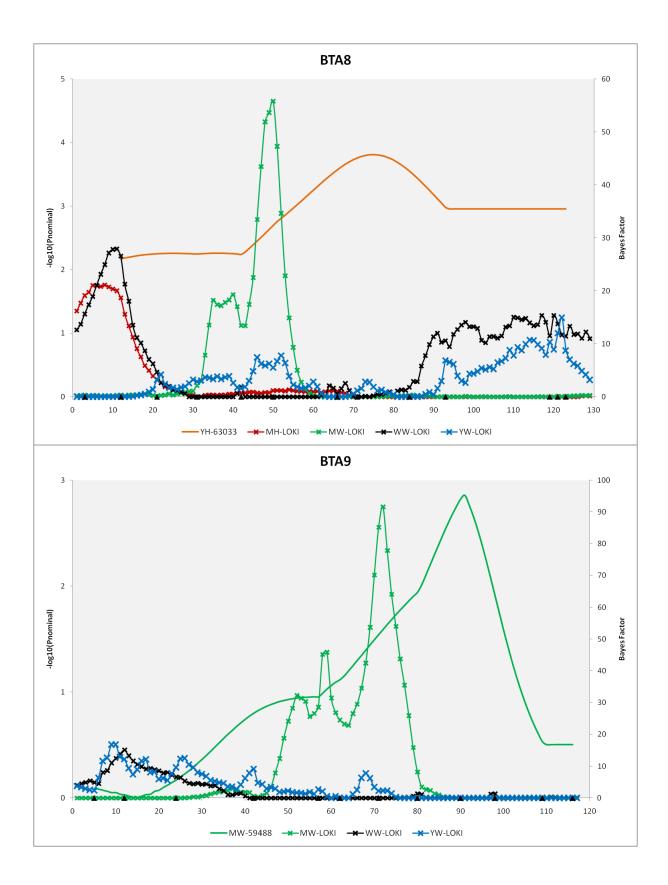
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1311	4055926	3093.77	2.04	<.0001
Error	639	969389	1517.04		
Corrected Total	1950	5025315			
		_			
R-Square	0.8071				
Coeff Var	213.1793				
Root MSE	38.9492				
Mean	18.2706				

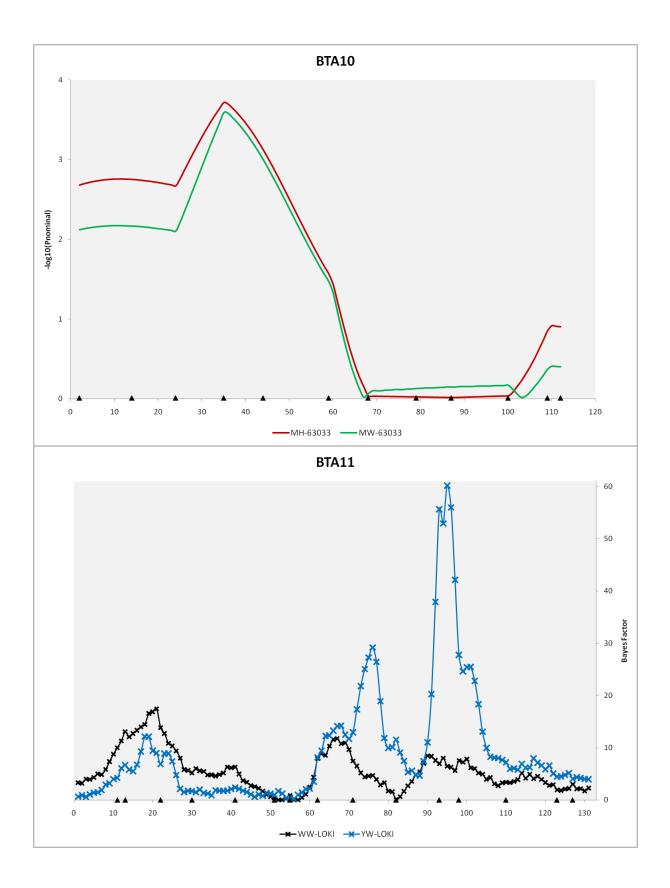

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	636	160300	252.044	1.4	<.0001
Error	1314	235883	179.515		
Corrected Total	1950	396183			
R-Square	0.4046				
Coeff Var	-752.4813				
Root MSE	13.3983				
Mean	-1.7806				

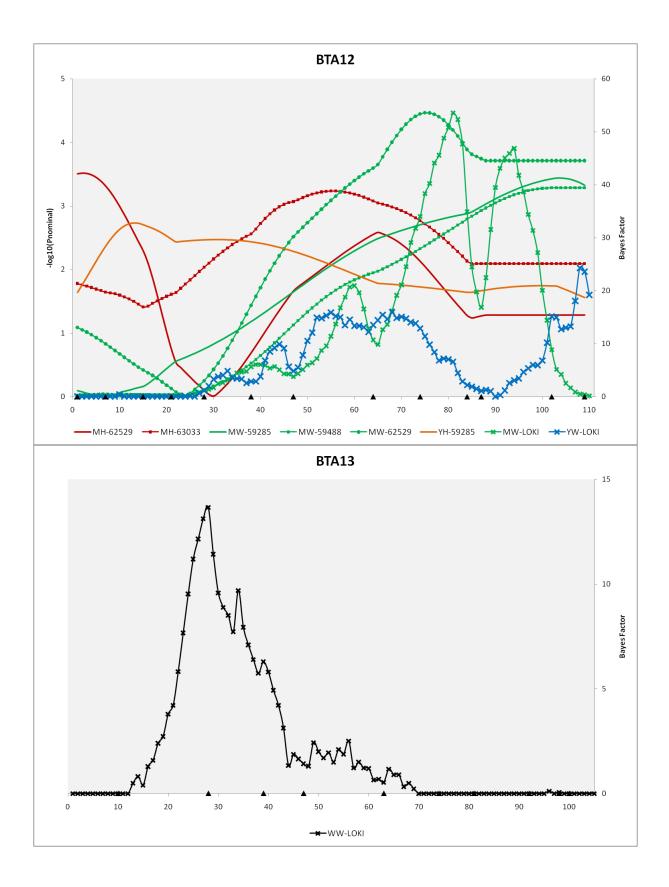

Table 3.8. Analysis of variance results for yearling height QT.

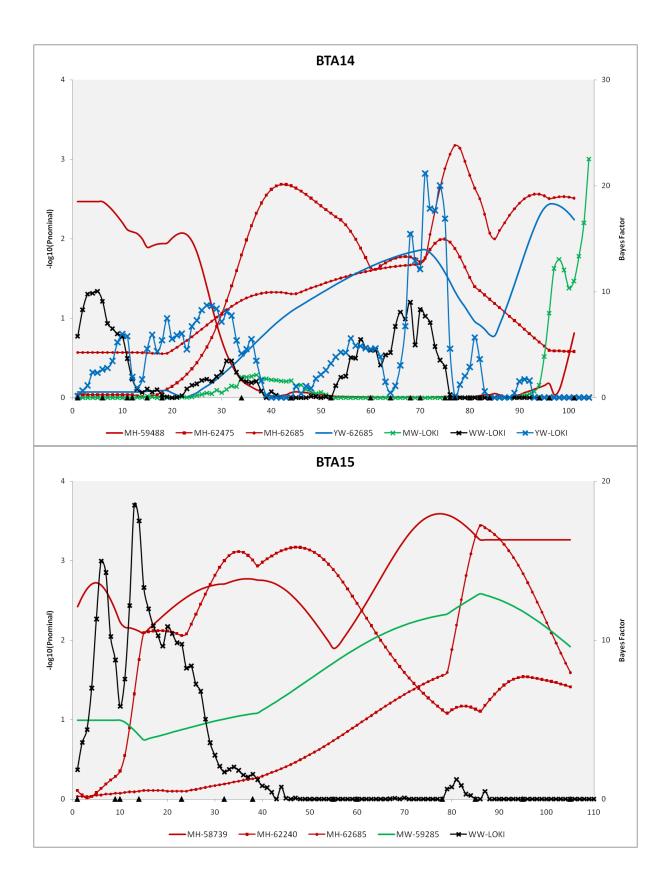

Table 3.9. Analysis of variance results for yearling weight QTL.

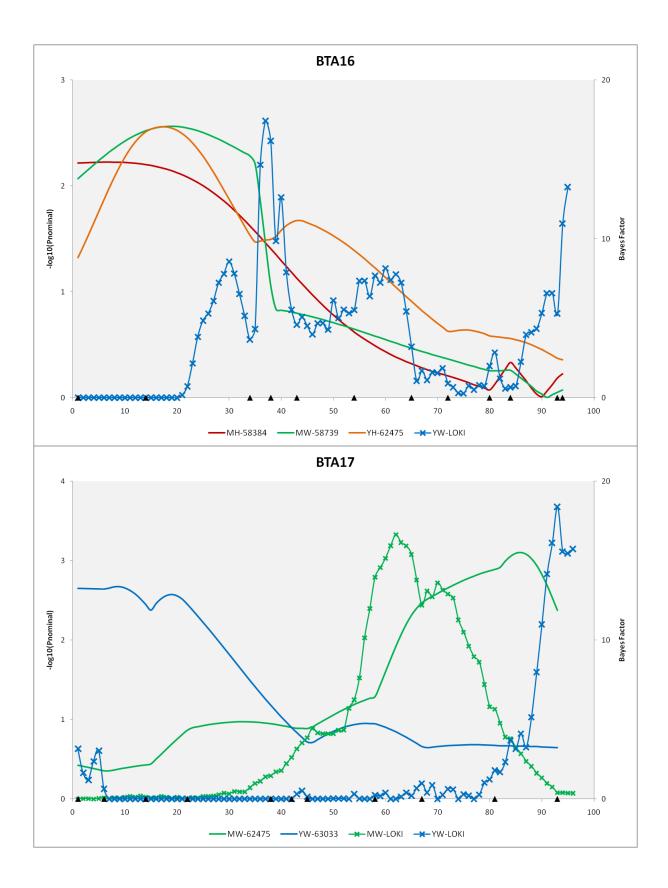

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1495	1255183	839.587	2.58	<.0001
Error	455	147929	325.118		
Corrected Total	1950	1403112			
R-Square	0.8946				
Coeff Var	29.3531				
Root MSE	18.0310				
Mean	61.4280				

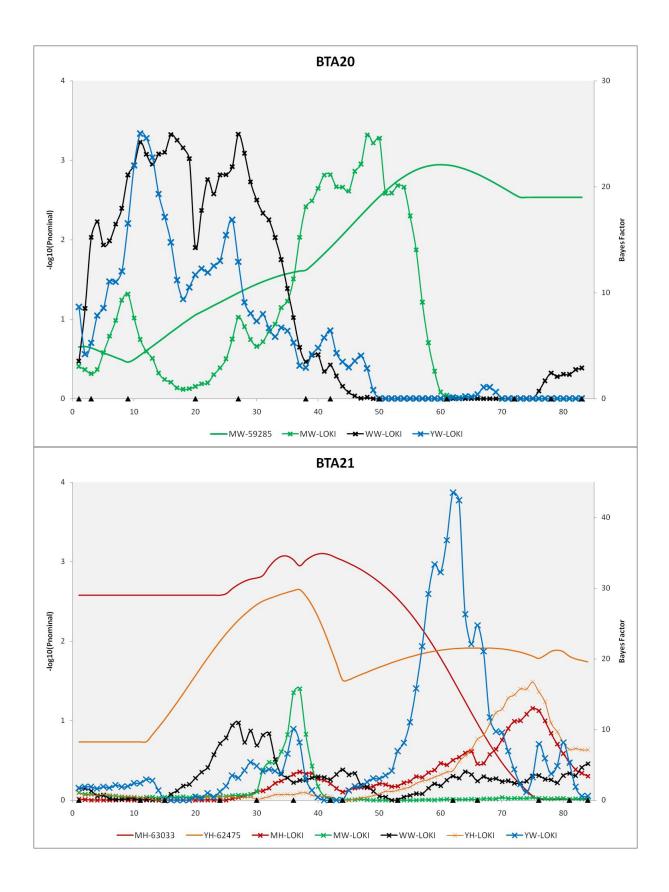

Figure 3.1. Growth QTL graphs for each *B. taurus* autosome. Plots are for half-sib data analyzed from American Angus sire linage by QTL Express, unless indicated from LOKI. QTL Express data are expressed in $-\log_{10}P_{nominal}$ values units while LOKI data are express as Bayes Factors. Colored lines represent different traits as follows: red = MH; green = MW; black = WW; gold = YH; and blue = YW. Significance levels for QTL Express are as follows: chromosome-wide $P \le 0.01 = 2.8$, genome-wide $P \le 0.05 = 3.3$, genome-wide $P \le 0.01 = 4.1$. Significance levels for LOKI are ≥ 10 . All X-axis values are in cM, \checkmark represent genomic markers.

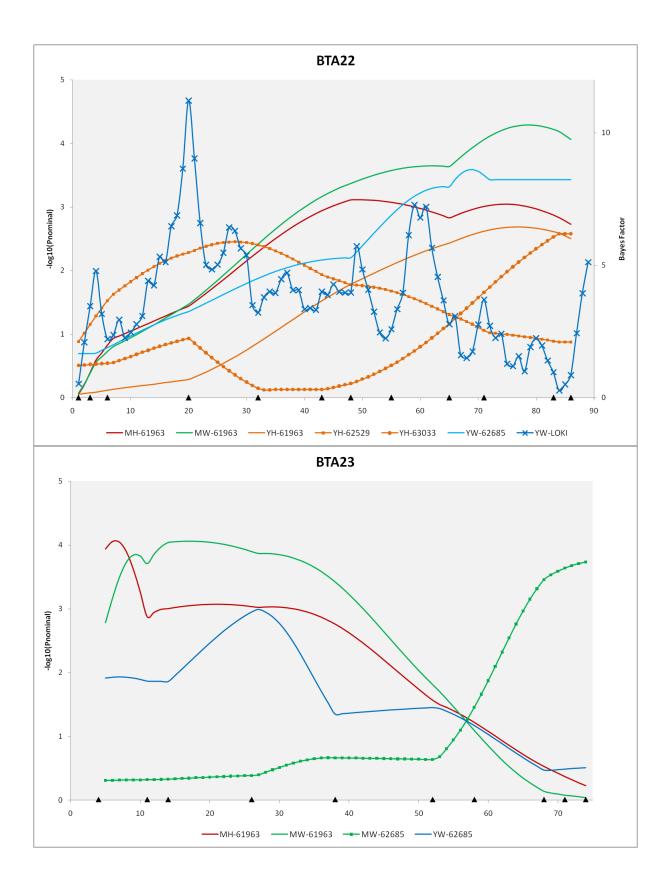


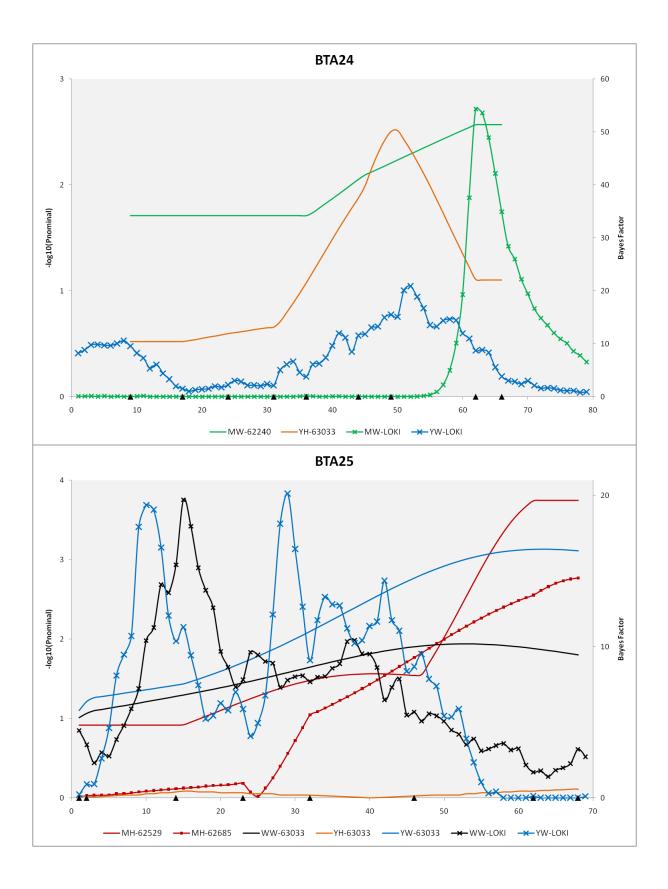


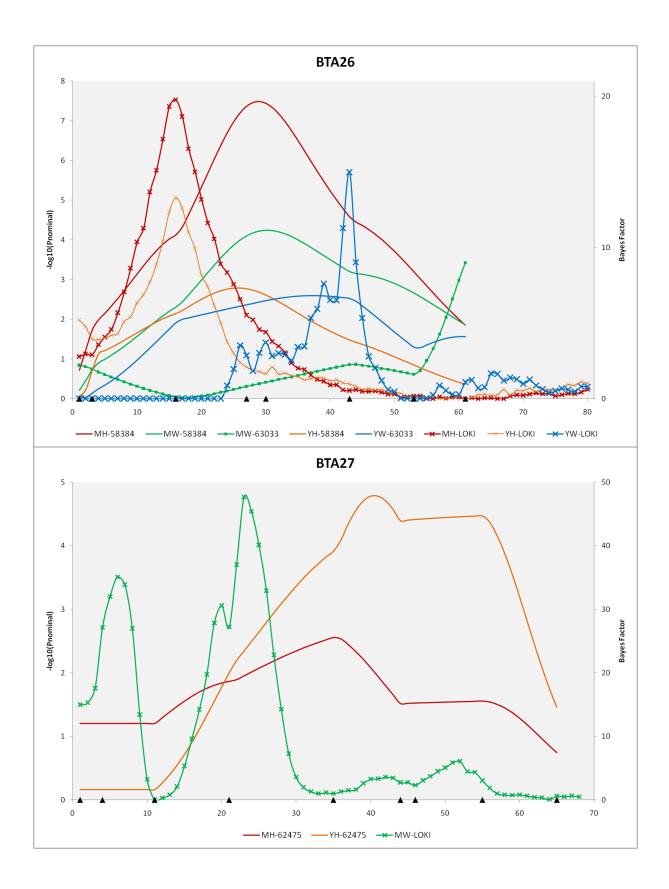


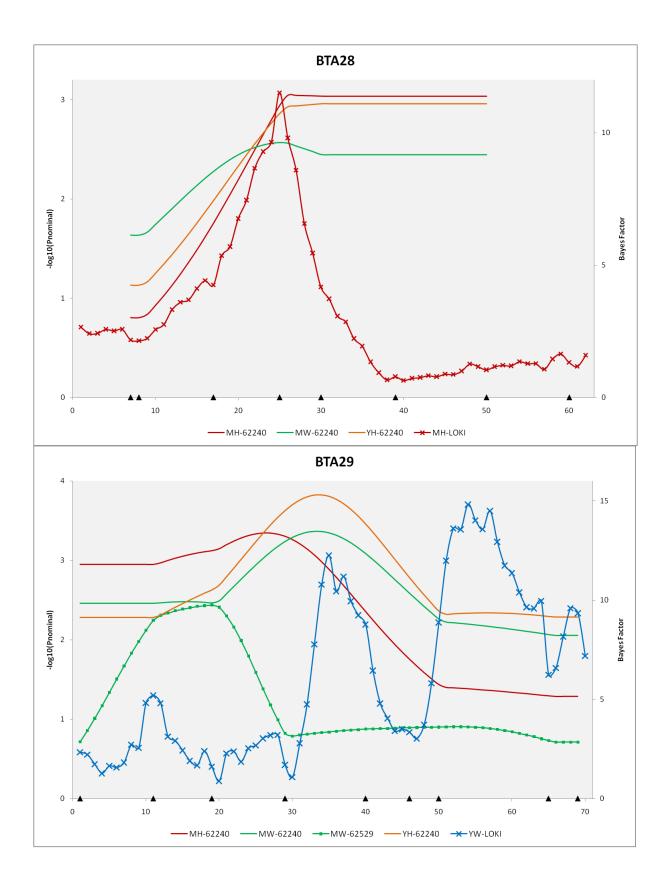












CHAPTER 4

Genome Scan in Commercial Angus Cattle for Quantitative Trait Loci Influencing Reproductive Traits

Abstract

A genome scan performed in a commercial Angus mapping population resulted in the identification of 135 quantitative trait loci (QTL) associated with reproductive traits. Expected progeny differences for birth weight (BW), calving ease direct (CED), calving ease maternal (CEM), maternal milk (MILK), and scrotal circumference (SC) were analyzed in a 29 generation pedigree comprised of 1,769 registered sires. Two separate analytical methods were used; half-sib least squares regression and Bayesian Monte Carlo Markov Chain modeling linkage analysis. Multiple QTL for each trait were found across the genome: 24 BW QTL, 18 CED QTL, 18 CEM QTL, 44 MILK QTL, and 31 SC QTL. Thirty-nine to 82 % of a trait's total genetic variance in this population was explained by these QTL. This is the first report of QTL for maternal milk and the second report of QTL for scrotal circumference in beef cattle.

Introduction

Since their inception and promotion in the beef industry, EPDs have been used by producers to increase the rate of genetic progress and propagate livestock that meet industry expectations. In an effort to identify the alleles responsible for the wide range of genetic variation in a trait, researchers have performed numerous QTL mapping studies. The ultimate goal of this research is to enable producers to be able to identify breeding stock with the best genes for utilization in marker assisted selection (MAS). MAS is expected to be especially beneficial for improving traits that are determined postmortem, occur late in life, or are difficult and (or) expensive to accurately measure. Unfortunately many of the experimental designs used for QTL mapping in cattle have captured a limited number of parental chromosomes and therefore have only detected the few QTL that were heterozygous within these parents (Casas *et al.* 2003; Mizoshita *et al.* 2004; Alexander *et al.* 2007). Therefore, most genome scans performed in beef cattle have identified a small number of QTL influencing any one trait (Allan & Smith 2008). While 326 reproductive-related QTL have been reported in cattle, only 82 of these are for fertility based traits and a few affect male reproductive traits (http://www.animalgenome.org/QTLdb/cattle.html, last accessed June 13, 2009).

Using sires from the major American Angus bloodlines and assembling the largest commercial beef cattle mapping population to date (N=1,769), we were able to analyze the majority of the chromosomes found in the US Angus population for economically important QTL. The analytical flexibility permitted by this experimental design allows the detection of variations segregating within a family and within the complete pedigree using alternative analytical approaches.

Material and Methods

Material and methods for this study are described in Chapter 2: Genome Scan in Commercial Angus Cattle for Quantitative Trait Loci Influencing Carcass Traits.

Results

Analysis to detect QTL influencing birth weight (BW), calving ease direct (CED), calving ease maternal (CEM), maternal milk (MILK), and scrotal circumference (SC), resulted in the detection of QTL on every autosome (Table 4.1). At a chromosome-wide P≤0.01 significance level or ≥10 Bayes Factor (Jefferys 1961), 135 reproductive related QTL were identified: 24 BW, 18 CED, 18 CEM, 44 MILK, 31 SC QTL. Of these only 9 BW, 5 CED, and 5 CEM QTL had previously been identified (Table 4.2). While this is the first report of MILK QTL in beef cattle, milk yield QTL have previously been reported in dairy cattle within the confidence intervals for 16 of those detected here (Table 4.2). Of the 135 possible QTL, 3 appear to be pleiotropic (Table S2), leaving 132 independent reproductive trait QTL identified in this study.

On average each chromosome contains 4 reproductive QTL, and approximately 0.93 QTL per trait (range of 0 to 5). While significant numbers of QTL for reproductive traits were found on every chromosome, on average 11 chromosomes did not contain a QTL for a given trait. Twenty chromosomes contained multiple QTL for at least one trait (Figure 4.1 and Table 4.1). The average allele substitution effect from QTL Express for BW was 2.722 lb, 7.344 units for CED, 4.866 units for CEM, 9.419 lbs of calf weaning weight for MILK, and 0.732 cm for SC. Alternate homozygote effects from LOKI for the economically beneficial alleles were 0.285 lb for BW, 0.864 units for CED, 0.585 units for CEM, 2.368 lbs of calf weaning weight for MILK, and 0.078 cm for SC (Table 4.3).

A general linear model analysis (SAS, v9.1) indicates that the detected QTL explain a substantial amount of the genetic variation in each trait within our population. With all QTL

included in the model 51.61% of the genetic variance was explained for BW, 39.31% for CED, 50.27% for CEM, 82.45% for MILK, and 59.94% for SC (Tables 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9). The mean genetic variation explained by an individual QTL was 2.2%.

Discussion

One hundred and twenty five QTL distributed across the genome were detected to influence reproductive traits in American Angus cattle. With an average QTL allele frequency of 0.770 for BW, 0.824 for CED, 0.827 for CEM, 0.421 for MILK, and 0.510 for SC (Table 4.3), the chance that any one sire or dam will have all of the beneficial alleles at all QTL for even one trait is extremely low. This allele frequency for highly selected, economically important traits is similar to the frequency of milk production QTL in dairy cattle (Chamberlain *et al.* 2007). While the amount of genetic variation explained by the QTL ranged from almost 40% to 82% these genetic variance estimates are biased as they were determined in the discovery population (Lou *et al.* 2003; Xu, 1998). The allele substitution effects estimated by QTL Express in the smaller half-sib families are likely to be overestimated (Lou *et al.* 2003). A separate population is needed to better assess the true genetic variation explained by these QTL (Van Eenennaam *et al.* 2007). While many of these are newly identified reproductive QTL, it is likely that the majority segregate within all *B. taurus* breeds.

For the 3 pleiotropic QTL (Table 4.9) identified in this analysis, the low marker resolution means that we cannot statistically determine if a single quantitative trait nucleotide (QTN) influences both traits or if a separate QTN for each trait lies within the QTL. As the phase relation between potentially separate QTN could not be identified from our analysis and LD in

cattle extends for 500 kb (McKay *et al.* 2007) it is possible that use of these potentially pleiotropic QTL in a MAS program could result in divergent selection in each trait.

As the majority of QTL explain only a small amount of a trait's genetic variation, genetic improvement programs that implement information from one, or a few economically important QTL will have little value in beef cattle. Genetic improvement decisions based on a multitude of genetic markers will maximize ones economic gain. Integrating QTL information with available phenotypic data for the estimation of EPDs will allow producers to select for genetically superior animals.

Table 4.1. Count of reproductive QTLs by chromosome.

	L												Bos	taur	IND SI	noso	ų											Γ
Trait	-	2 3 4 5	4	~	•	~	••	6	9	=	12	1	14	15	16	5	18	9	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29		2	2	5	25	56	52	38	2
Birth Weight	-	2	1	-	~		[ł	-	-	-	ŀ	ŀ	-	-	ł	ł	-	~	-	-	-	ŀ	ŀ	~	ŀ	m	Γ
Calving Ease Direct	2				~		-		-				-		-			-		-		-		2	m		2	
Calving Ease Maternal	-	2	2	٦		-	-						-		2			-			-	-	-	-				
Maternal Milk	2		7		-	ŝ			2	m	m	2	-	s	4		2					-		2			m	-
Scrotal Circumference			-	~	-	-	-	2	2	2	-	-	-		-	-	-	2		-	2	-		-	-	-	2	-
Pleiotropic	1						F																					
Total	2	4 2 5 4	2	4	۰.	~	"	"	2	9	5	•	4	9	6	2	•	5	•	"	4	<mark>،</mark>	2	9	2	~	9	2

		Ŋ	QTL Peak ¹		QTL Express ²	press ²		LOKI	N		Reference ⁴
Trait	BTA	Position	Flanking Markers	Markers	-log ₁₀ (P _{nominal})	Effect	Bayes	Freq 1	Effect 12	Effect 22	
MILK	1	0.5	Centromeric	BM6438_29			40.64	0.845	-0.0061	-2.564	MY (15)
CED	1	15.5	BMS574	BMS4017			30.7	0.84	0.0093	-1.0949	
CEM	1	15.5	BMS574	BMS4017			20.76	0.83	0.0164	-0.5983	
BW	1	17.5	BMS574	BMS4017			31.07	0.791	0.0001	0.0868	
MILK	1	50.5	BMS4017	BMS527	6.9616	3.172*	38.26	0.838	-0.0017	-2.1089	MY (15)
CED	1	106.78	BM864	BMS4040	8.2877	2.334.					
BW	2	19.5	DIK1172	CSSM50	2		27.08	0.792	-0.0014	0.179	BW (13)
BW	2	41.5	BMC9002	BMS803			33.91	0.81	-0.0017	0.215	BW (6)
CEM	2	60.5	BM4440	BY32			13.75	0.827	0.0194	-0.587	CE (19)
CEM	2	95.78	TGLA226	BM1223	5.1114	3.272.					
BW	3	20.5	URB006	BMS2904			15.63	0.788	-0.0016	0.2083	BW (6)
MILK	3	66.5	INRA003	HUJ246			20.22	0.788	-0.0398	-2.6769	MY (22)
CEM	4	3.5	Centromeric	BMC1410	7.8209	2.884*	12.93	0.828	0.0626	-0.649	•
MILK	4	52.5	BMS1840	BMS885			76.86	0.785	-0.0043	-2.414	
CEM	4	69.5	INRA072	BMS2571			15.6	0.834	0.045	-0.6874	
MILK	4	72.5	BMS2571	BMS2809			19.39	0.767	-0.0133	-2.1525	
SC	4	88.5	Lep Ex2	RM088	0.7743	3.175*					
SC	5	1.17	BMS695	BM6026	0.7653	3.085*					÷
CEM	5	73.5	BR2936	CSSM22			11.39	0.818	0.0141	-0.4178	
BW	2	105.5	BM315	BMS1658			39.63	0.775	-0.0041	0.4628	
SC	2	126.5	BMS597	Telomeric			14.73	0.807	-0.0017	0.0351	

Table 4.2. Reproductive QTL data summary.

		ШÖ	QTL Peak ¹		QILEY	QTL Express ²		LOKI	¥		Reference ⁴
Trait	BTA	Position	Flanking	Markers	-log10 (Pnominal)	Effect	Bayes	Freq 1	Effect 12	Effect	
CED	9	32.5	BMIS5006	URB016			14.1	0.796	0.0005	-0.6977	CE (9)
MILK	9	33	BMS5006	URB016	12.4132	2.492*					MY (18)
BW	9	33.5	BMS5006	URB016			11.76	0.783	-0.001	0.2888	BW (13)
CED	9	47.5	OPN3907	BM143			14.31	0.804	-0.0103	-0.8372	CE (9)
BW	9	57.5	OPN3907	DIK082			34.13	0.804	0.0036	0.4313	BW (4,13)
SC	9	06	CSN3	BM8124	0.7889	3.151*		3		8	
MILK	7	0.5	BM7160	RM012	•2		71.1	0.795	0.0205	-2.6079	83
SC	2	27.5	RM006	114			12.38	0.803	-0.0011	0.0604	
MILK	2	37.5	BM6105	DIK2819			13.04	0.732	0.0121	0.0346	MY (1)
MILK	2	59.5	UWCA20	BMS2840	8.889	4.519***	10.71	0.821	-0.0089	1.122	MY (17)
MILK	2	74.5	BMS2840	BMS2258			31.89	0.833	-0.0184	2.7192	MY (3)
MILK	2	91.5	BMS1331	BM9065			15.6	0.779	-0.0153	-2.4636	
CEM	2	125.5	1LST5006	BMS1979	4.8655	3.451**					
SC	80	11.5	IDVGA11	RM372			17.7	0.798	-0.0002	-0.0654	-
CEM	00	113.5	BM711	CSSM047			18.46	0.833	0.0276	-0.6525	CE (2)
CED	00	118.5	BM711	CSSM047			12.44	0.807	-0.0023	-0.8398	CE (2)
BW	8	126.5	BMS836	Telomeric			10.45	0.805	-0.0002	-0.0593	
CEM	6	12.5	BMS836	ETH225	4.1567	2.728*	10.5	0.832	0.0204	-0.5728	
SC	6	42.5	BMS817	BMS434			12.22	0.814	0.0042	-0.0844	
SC	6	109.5	BMS1967	BMS2094			31.24	0.815	-0.0011	0.0596	

Inditing Markers -login stret Fifter Fifter <t< th=""><th>1</th><th>1</th><th>цр</th><th>QTL Peak¹</th><th></th><th>QTL Express²</th><th>press²</th><th></th><th>LOKI</th><th>R</th><th></th><th>Reference⁴</th></t<>	1	1	цр	QTL Peak ¹		QTL Express ²	press ²		LOKI	R		Reference ⁴
Position Hanking Markers (P_monian) Effect Hactor 1 12 32.86 BMS5283 BRN 2.8637 2.91* 1 0.829 0.0355 40.86 SPS113 BMS2742 5.634 3.114* 10.14 0.829 0.0355 87.5 INRA037 BMS514 10.5487 4.416*** 11.71 0.795 0.0017 98.5 BMS5641 BMS5614 10.5487 4.416*** 11.71 0.795 0.0017 99.5 BMS2641 BMS5614 10.5487 4.416*** 11.71 0.795 0.0017 99.5 BMS2641 BMS5614 10.5487 4.416*** 11.71 0.795 0.0017 99.5 BMS2614 10.5487 4.416*** 11.71 0.795 0.0017 18.45 BMS2614 BMS2614 2.775* 20.67 0.817 0.0014 23.5 BMS2325 BMS2818 0.6664 2.775* 20.67 0.807 0.0014				:		-log10		Bayes	Freq	Effect	Effect	
32.86 BMS528 BRV 2.8637 2.91* 40.86 SPS113 BMS2742 5.634 3.114* 43.5 SPS113 BMS2742 5.634 3.114* 43.5 SPS113 BMS2742 5.634 3.114* 95.5 BMS614 10.5487 4.416*** 10.712 0.827 98.5 BMS2614 BMS514 10.5487 4.416*** 11.71 0.795 0.0017 98.5 BMS2641 BMS514 10.5487 4.416*** 11.71 0.795 0.0017 99.5 BMS2641 BMS516 10.5487 4.416*** 11.71 0.795 0.0017 99.5 BMS2644 BMS2644 10.5487 2.775* 20.67 0.832 0.0017 23.5 BMS2176 IL575036 BM7169 1.575036 0.8871 0.0014 45.5 BMS410 T6LA36 0.8914 2.775* 20.67 0.812 0.0014 66.5 BMS410 T6LA36 0.89		BIA	- 1	Flanking	Markers	(Pnominal)	Effect	Factor	-	17	z	
40.86 SPS113 BMSZ742 5.634 3.114* 43.5 SPS113 BMSZ742 5.634 3.114* 0.829 0.0355 87.5 INRA037 BMS614 10.5487 4.416*** 11.71 0.829 0.0035 98.5 BMS2641 BMS614 10.5487 4.416*** 11.71 0.827 0.0013 99.5 BMS2641 BMS614 20.548 BMS2641 0.0548 2.775 0.013 99.5 BMS2641 BMS2644 10.5487 4.416*** 42.13 0.857 0.0013 99.5 BMS2641 BMS2644 10.5487 2.775* 20.67 0.832 0.0017 23.5 BMS2056 BMZ169 2.775* 20.67 0.812 0.0014 45.5 BMS21716 IL575036 BMT169 2.775* 20.67 0.812 0.0014 56.5 BMS21716 IL575036 RM1169 2.775* 20.67 0.812 0.0014 68.5 IL575036		9	32.86	BMS528	BRN	2.8637	2.91•					
43.5 SP5113 BMS2742 10.14 0.829 0.0355 87.5 INRA037 BMS614 10.5487 4416*** 11.71 0.795 0.0013 98.5 BMS2641 BMS614 10.5487 4416*** 11.71 0.795 0.0013 98.5 BMS2641 BMS614 10.5487 4416*** 11.71 0.795 0.0013 99.5 BMS2641 BMS2644 10.5487 4.416*** 42.13 0.857 0.0013 91.8 BH1134 Telomeric A 20.565 BMS2169 0.0017 0.037 23.5 BMS2641 BMS2169 0.6664 2.775* 20.67 0.812 0.0014 45.5 BMS1716 ILSTS036 BM7169 17.18 0.697 0.0014 56.5 BMS1716 ILSTS036 BM1103 0.4821 2.75* 20.67 0.812 0.0014 56.5 BMS1716 ILSTS036 BM5126 BM5126 BM1103 0.4821 2.75*		9	40.86	SPS113	BMS2742	5.634	3.114*					
87.5 INRA037 BMS614 10.5487 4.416*** 98.5 BMS2641 BMS614 10.5487 4.416*** 99.5 BMS2641 BMS614 10.5487 4.416*** 99.5 BMS2641 BMS614 2.775 0.857 0.0013 91.6 BMS2641 BMS2614 2.775* 0.832 0.0017 23.5 BMS2642 BMS2818 0.6664 2.775* 20.67 0.812 0.0017 23.5 BMS2716 ILS75036 BM7169 1.1.8 0.697 0.0214 45.5 RM096 BM7169 1.657 20.67 0.812 0.0214 56.5 BMS1716 ILS75036 0.4821 2.657* 20.67 0.812 0.0214 56.5 BMS1716 ILS75036 0.4821 2.657* 20.67 0.813 0.0214 56.5 BMS1716 ILS75036 0.4821 2.775* 20.67 0.813 0.0214 68.5 BMS267 ILS78 0.8		9	43.5	SPS113	BMS2742			10.14	0.829	0.0355	-0.5892	
98.5 BMS2641 BMS614 11.71 0.795 0.001 99.5 BMS2641 BMS2614 BMS2614 0.832 0.0013 99.5 BMS2641 BMS2614 Telomeric 42.13 0.857 -0.0133 118.45 BL1134 Telomeric 36.68 0.832 0.001 23.5 BMS2616 BMS2618 0.6664 2.775* 20.67 0.812 0.0014 28.5 BMS1716 ILSTS036 BM7169 1.575036 11.18 0.697 -0.0214 56.5 BMS1716 ILSTS036 SM150 2.4821 2.657* 20.67 0.811 0.0265 93.08 BMS410 TGLA36 0.8914 2.75* 26.99 0.772 0.0216 93.08 BMS2057 BMS2057 BMS2057 BMS2057 0.8031 0.0265 0.0025 93.08 BMS2057 BMS2057 0.8914 2.75* 26.99 0.772 0.0216 16.5 BMS2057 BMS2057		9	87.5	INRA037	BMS614	10.5487	4.416***					
995 BMS2641 BMS2614 BMS2614 BMS2614 BMS2614 C0133 C0017 118.45 BL1134 Telomeric 36.68 0.832 0.0017 23.5 BMS2325 BMS218 0.6664 2.775* 20.67 0.812 0.0017 28.5 INRA044 BM2818 0.6664 2.775* 20.67 0.812 0.0014 45.5 RM096 BM7169 I.575036 RM7169 0.6664 2.775* 20.67 0.812 0.0014 56.5 BMS1716 I.575036 RM7169 17.13 0.803 0.0017 68.5 I.577036 RM150 2.482 2.75* 20.63 0.0263 0.0017 93.08 BMS2057 BM1103 0.4821 2.75* 2.659 0.742 0.0264 1 BMS410 T6LA36 0.8914 2.75* 2.659 0.792 0.0265 16.5 BMS2057 BMS2057 BM52057 2.6599 0.792 0.0265 <t< td=""><td></td><td>9</td><td>98.5</td><td>BMS2641</td><td>BMS614</td><td></td><td></td><td>11.71</td><td>0.795</td><td>0.0001</td><td>-0.0172</td><td></td></t<>		9	98.5	BMS2641	BMS614			11.71	0.795	0.0001	-0.0172	
118.45BL1134Telomeric 36.68 0.832 -0.0017 23.5BMS2325BMZ818 0.6664 2.775° 20.67 0.812 0.0317 28.5INRA044BMZ818 0.6664 2.775° 20.67 0.812 0.0014 45.5RM096BM7169 0.6664 2.775° 20.67 0.812 0.0014 56.5BMS1716 1.575036 $RM150$ 0.4821 2.657° 0.812 0.0014 56.5BMS3716 1.575036 $RM150$ 0.4821 2.657° 0.831 0.0265 93.08BMS929BL1103 0.4821 2.75° 10.12 0.631 0.0265 93.08BMS2252BMS2057 0.8914 2.75° 26.99 0.792 0.026 16.5BMS2252BMS2057 0.8914 2.75° 26.99 0.792 0.026 16.5BMS2252BMS2356 0.8914 2.75° 26.99 0.792 0.026 16.5BMS2252BMS2356 0.8914 2.75° 26.99 0.792 0.026 16.5BMS2252BMS2356 0.8914 2.75° 26.99 0.792 0.026 16.5BMS2252BMS2356 0.8914 2.75° 21.88 0.877 0.026 109.5BMS2724Telomeric 10.22 0.9648 2.701° 0.791 0.791 0.026 29.5BMS2222BMS2352 0.9648 2.701° 0.722 <t< td=""><td></td><td>9</td><td><u> 99.5</u></td><td>BMS2641</td><td>BMS2614</td><td></td><td></td><td>42.13</td><td>0.857</td><td>-0.0133</td><td>2.1501</td><td>MY (1)</td></t<>		9	<u> 99.5</u>	BMS2641	BMS2614			42.13	0.857	-0.0133	2.1501	MY (1)
23.5 BMS2325 BM2818 13.18 0.744 -0.0371 28.5 INRA044 BM2818 0.6664 2.775* 20.67 0.812 0.0014 45.5 RM096 BM7169 LST5036 BM7169 0.6564 2.775* 20.67 0.812 0.0014 56.5 BMS1716 ILST5036 RM150 11.8 0.693 0.0014 56.5 BMS1716 ILST5036 RM150 2.557* 20.67 0.813 0.0265 93.08 BM52106 TGLA36 0.8914 2.75* 10.12 0.631 0.0265 16.5 BM52152 BM52057 BM52057 0.8914 2.75* 26.99 0.792 0.035 16.5 BM52154 TGLA36 0.8914 2.75* 26.99 0.792 0.035 16.5 BM52152 BM52154 TGLA36 0.8914 2.75* 21.88 0.035 0.035 109.5 BM52154 TGLA36 0.8914 2.75* 21.88 0.871 0.035 109.5 BM52724 Telomeric 2.6599<		10	118.45	BL1134	Telomeric			36.68	0.832	-0.0017	0.1255	
28.5 INRA044 BM2818 0.6664 2.775* 20.67 0.812 0.0014 45.5 <i>RM096 BM7169 I</i> .575036 <i>I</i> .17.13 0.697 -0.0214 56.5 <i>BMS1716 I</i> .575036 <i>RM150 I</i> .17.13 0.803 0.0017 56.5 <i>BMS1716 I</i> .575036 <i>RM150 I</i> .575036 <i>RM150 I</i> .575036 0.4821 2.657* 0.631 0.0214 93.08 <i>BM5410 TGLA36</i> 0.8914 2.75* <i>I</i> .0.12 0.631 0.0265 93.08 <i>BM52052 BM52057</i> 0.8914 2.75* <i>I</i> . <i>I</i> . 16.5 <i>BM52057 BM52057</i> 0.8914 2.75* <i>I</i> . <i>I</i> . 16.5 <i>BM52057 BM52057 BM52057 BM52057 BM52057 I</i> .77 <i>I</i> . <i>I</i> .71 <i>I</i> .0.12 <i>I</i> .0.026 <i>I</i> .0.026 92.5 <i>I</i> .0.868 <i>BM52057 I</i> .0.8914 <i>I</i> .77 <i>I</i> .776 <i>I</i> .0.026 <i>I</i> .0.026	ł	Ħ	23.5	BMS2325	BM2818	×		13.18	0.744	-0.0377	1.6429	×
45.5 <i>RM096 BM7169</i> 11.8 0.697 -0.0214 56.5 <i>BM51716 IL575036</i> 17.13 0.803 0.0017 68.5 <i>IL575036 RM150</i> 17.13 0.803 0.0017 68.5 <i>IL575036 RM150</i> 0.4821 2.657* 0.631 0.0265 93.08 <i>BM5410 TGL436</i> 0.8914 2.75* 0.631 0.0265 16.5 <i>BM52057 BM52057</i> 0.8914 2.75* 26.99 0.792 -0.0265 16.5 <i>BM52057 BM52057</i> 0.8914 2.75* 26.99 0.792 -0.026 16.5 <i>BM52057 BM52057</i> 0.8914 2.75* 26.99 0.792 -0.026 16.5 <i>BM52057 BM52057 BM52057</i> 26.99 0.776 0.035 -0.026 109.5 <i>BM52054 Telometic A1.76</i> 0.801 -0.026 -0.026 109.5 <i>BM52122 BM51352</i> 0.9648 2.701* -0.772 0.031 -0.026 37.9 <i>BM5248</i> <td< td=""><td></td><td>Ħ</td><td>28.5</td><td>INRA044</td><td>BM2818</td><td>0.6664</td><td>2.775*</td><td>20.67</td><td>0.812</td><td>0.0014</td><td>-0.0683</td><td></td></td<>		Ħ	28.5	INRA044	BM2818	0.6664	2.775*	20.67	0.812	0.0014	-0.0683	
56.5 BMS37716 ILSTS036 ILSTS036 ILSTS036 RM150 0.803 0.0017 68.5 ILSTS036 RM150 0.4821 2.657* 0.631 0.0265 93.08 BMS9410 TGL436 0.8914 2.75* 0.631 0.0265 1 BMS410 TGL436 0.8914 2.75* 0.631 0.0265 16.5 BMS2252 BMS2057 BM52057 0.8914 2.75* 26.99 0.792 0.0026 16.5 BMS2252 BMS2057 BM52057 26.99 0.792 0.0026 16.5 BMS2252 BM52057 26.99 0.792 0.0026 16.5 BMS2057 BM52057 26.99 0.792 0.0026 92.5 INRA5 BM51316 2.701 21.88 0.871 0.0265 109.5 BMS2724 Telomeric 21.88 0.871 0.0265 0.0265 37.99 BMC1222 BM51352 0.9648 2.701* 1.023 0.772 0.012 37.5 BM9248 RM327 0.9648 2.7		Ħ	45.5	RM096	BM7169			11.8	0.697	-0.0214	-0.7057	
68.5 ILSTS036 RM150 10.12 0.631 0.0265 93.08 BMS410 76L436 0.4821 2.657* 0.631 0.0265 1 BMS410 76L436 0.8914 2.75* 0.639 0.0302 16.5 BMS2722 BMS2057 0.8914 2.75* 26.99 0.792 -0.0026 16.5 BMS272 BMS2057 BMS2057 0.8914 2.75* 26.99 0.792 -0.0026 92.5 BMS272 BMS272 BMS1316 2.15* 21.88 0.875 -0.0265 109.5 BMS2724 Telomeric 21.88 0.877 -0.026 -0.0265 109.5 BMS2724 Telomeric 21.88 0.871 -0.026 -0.0265 37.99 BMC1222 BMS1352 0.9648 2.701* 10.27 0.791 0.791 0.0166 37.9 BMS248 RM327 0.9648 2.701* 11.93 0.772 0.0389		Ħ	56.5	BMS1716	1LSTS036			17.13	0.803	0.0017	0.4355	
93.08 BMS989 BL1103 0.4821 2.657* 1 BMS410 TGLA36 0.8914 2.75*		Ħ	68.5	1LSTS036	RM150			10.12	0.631	0.0265	4.2987	MY (14)
1 BMS410 TGLA36 0.8914 2.75* 16.5 BMS2252 BMS2057 0.8914 2.75* 16.5 BMS2722 BMS2057 0.8914 2.75* 65.5 BMS2722 BMS2057 0.8914 2.75* 92.5 BMS272 BMS1316 34.98 0.875 -0.0026 92.5 INRA5 BMS1316 21.88 0.877 -0.0265 109.5 BMS2724 Telomeric 47.76 0.803 -0.012 295.5 BMC1222 BMS1352 0.9648 2.701* 10.277 0.791 0.0166 71.5 BM9248 RM327 0.9648 2.701* 11.93 0.772 0.0389		Ħ	93.08	BMS989	BL1103	0.4821	2.657•					
16.5 BMS2252 BMS2057 26.99 0.792 -0.0026 65.5 BMS975 BM4028 34.98 0.875 -0.0055 92.5 INRA5 BMS1316 34.98 0.871 -0.0265 92.5 INRA5 BMS1316 21.88 0.871 -0.0265 109.5 BMS2724 Telomeric 47.76 0.803 -0.012 29.5 BMS1352 0.9648 2.701* 10.27 0.791 0.0166 37.99 BMC1222 BMS1352 0.9648 2.701* 11.93 0.772 0.0389 71.5 BM9248 RM327 0.9648 2.701* 11.93 0.772 0.0389		11	-	BMS410	TGLA36	0.8914	2.75*					
65.5 BMS975 BM4028 34.98 0.875 -0.035 92.5 INRA5 BMS1316 21.88 0.871 -0.0265 92.5 INRA5 BMS1316 21.88 0.871 -0.0265 109.5 BMS2724 Telomeric 47.76 0.803 -0.012 29.5 BMC1222 BMS1352 0.9648 2.701* 10.27 0.791 0.0166 37.99 BMC1222 BMS1352 0.9648 2.701* 11.93 0.772 0.0389 71.5 BM9248 RM327 0.9648 2.701* 11.93 0.772 0.0389		12	16.5	BMS2252	BMS2057			26.99	0.792	-0.0026	0.0348	
92.5 INRAS BMS1316 21.88 0.871 -0.0265 109.5 BMS2724 Telomeric 47.76 0.803 -0.012 29.5 BMC1222 BMS1352 0.9648 2.701* 10.27 0.791 0.0166 37.99 BMC1222 BMS1352 0.9648 2.701* 11.93 0.772 0.0389 71.5 BM9248 RM327 0.9648 2.701* 11.93 0.772 0.0389		12	65.5	BMS975	BM4028			34.98	0.875	-0.035	-2.1666	
109.5 BMS2724 Telomeric 47.76 0.803 -0.012 29.5 BMC1222 BMS1352 10.27 0.791 0.0166 37.99 BMC1222 BMS1352 0.9648 2.701* 11.93 0.772 0.0389 71.5 BM9248 RM327 0.9648 2.701* 11.93 0.772 0.0389		12	92.5	INRAS	BMS1316			21.88	0.871	-0.0265	-1.9175	
29.5 BMC1222 BMS1352 10.27 0.791 0.0166 37.99 BMC1222 BMS1352 0.9648 2.701* 11.93 0.772 0.0389 71.5 BM9248 RM327	- 1	12	109.5	BMS2724	Telomeric			47.76	0.803	-0.012	-2.8054	
37.99 BMC1222 BMS1352 0.9648 2.701* 71.5 BM9248 RM327 0.0389		13	29.5	BMC1222	BMS1352			10.27	0.791	0.0166	-1.7596	
71.5 BM9248 RM327 0.0389		13	37.99	BMC1222	BMS1352	0.9648	2.701					
		13	71.5	BM9248	RM327			11.93	0.772	0.0389	2.5519	MY (1)

QTL Peak ¹	QTL Peak ¹	. Peak ¹		d	QTL Express ²	press ²		LOKI	¥		Reference ⁴
BTA Position Flanking Markers (Promined)	Flanking Markers	Markers	Markers	-lo Pnos	-logio	Effect	Bayes	Freq 1	Effect 12	Effect	
14 12.5 TG DIK4438	16		DIK4438				38.31	0.851	0.0063	-1.2814	
14 33.5 RM180 RM011	RM180		RMOII				23	0.841	0.0535	-0.7892	CE (10)
14 40 RM180 RM011 7.3373	RM180 RM011	RM011		7.337	ŝ	3.441.					(11) YM
14 95.5 BM6425 BL1036 0.5999	BM6425 BL1036	BL1036		0.599	0	2.988•	18.47	0.822	-0.0039	0.1048	
15 6.5 DIK2777 MGTG13B	DIK2777		MGTG13B				25.62	0.827	-0.0635	3.0593	
15 20.5 BMS2533 ADCY2	BMS2533		ADCY2				17.18	0.788	-0.0016	0.2083	
15 20.5 BMS2533 ADCY2	BMS2533		ADCY2				31.12	0.781	0.0069	3.3809	
15 29.5 ADCY2 JAB8	ADCY2		JAB8				42.99	0.784	0.0002	2.9	
15 94.5 BMS812 BL1095	BMS812		BL1095				29.48	0.754	-0.0058	-2.6981	
15 102.5 BL1095 BMS927	BL1095		BMS927				21.44	0.748	0.0166	-2.8803	
16 11.5 TGLA245 BMS1348	TGLA245		BMS1348	•2			11.28	0.836	0.0109	1.2539	c
16 20.5 BMS1348 BY22 5.7414	BMS1348 BY22	BY22		5.7414		3.523**					
16 42.5 TGLA53 BMS1907	TGLAS3		2061SW8				20.88	0.84	0.0066	-3.1361	
16 53.5 BMS1907 IDVGA49	BMS1907		IDVGA49				10.29	0.83	-0.0493	-2.1711	
16 54.5 IDVGA49 IDVGA69	IDVGA49		IDVGA69				11.04	0.824	0.0274	-0.5453	CE (19)
16 56.5 IDVGA49 IDVGA69	IDVGA49		IDVGA69				10.57	0.803	0.0017	0.4355	
16 61.91 IDVGA49 IDVGA69 0.7809	IDVGA49 IDVGA69	IDVGA69		0.7809		2.487*					
16 68.5 IDVGA69 INRA048	IDVGA69		INRA048				15.2	0.85	0.0138	-2.627	
16 71.5 IDVGA69 INRA048	IDVGA69		INRA048	2		2	15.4	0.832	0.0026	-0.6307	2
17 26.5 DIK4665 BMS941 10.8008	DIK4665 BMS941	BMS941		10.8008		3.059*	33.14	0.857	0.0081	-2.5299	
17 82 BM1862 BM1233 0.6359	BM1862 BM1233	BM1233		0.6359	-	3.253**					

Reference ⁴			MY (8)				BW (21)				BW (5,7)			BW (12)							MY (16)		BW (13)	
	Effect 22	•	-3.2645	-0.0386		-0.9903	0.4543		-0.5696	-0.0775	0.2083		0.1627	0.4543	-0.9958					-0.8384	-2.6769		0.0665	
₽	Effect 12	•	0.0425	0.0022		0.0115	0.0005		0.0176	0.001	-0.0016		-0.0037	0.0005	-0.0064					-0.0246	-0.012		-0.0039	
LOKI	Freq 1		0.868	0.788		0.829	0.81		0.826	0.806	0.788		0.854	0.81	0.841					0.829	0.848		0.797	
	Bayes Factor		58.44	22.65		28.12	25.54		27.5	11.66	38.55		84.57	20.26	14.42					11.04	52.22		28.27	
press ²	Effect	2.636*			3.059*			2.349*				3.206*				2.763*	2.601*	3.012**	2.729*		5.447***	3.214*		3.232•
QTL Express ²	-log10 (P _{nominal})	8.4841			0.7463			0.7115				2.3351				0.8718	3.2798	0.783	3.8175		9.7899	4.2915		0.5702
	Markers	BMS1322	BM2078	BM2078	BM6000	CSSM065	IDVGA44	IDVGA44	BMC1013	RM106	DIK2467	BMS703	BM103	BMS743	BMS743	BM1558	BM1558	BM2613	BMS875	INRA132	UWCAI	BOLADRB1	BOLADRB1	RM185
QTL Peak ¹	Flanking	BMS1355	IDVGASS	IDVGA55	BM9202	BM17132	CSSM065	CSSM065	RM388	BM3517	BMS1282	BMS2361	11575095	ILSTS054	ILSTS054	BMS672	BMS672	BM3628	BM2613	Centromeric	INRA132	BM47	UWCAI	BOLADRB1
Q	Position	9.86	76.5	76.5	19	69.5	70.5	86	103.5	0.5	20.5	50.5	29.5	70.5	73.5	15	19	23	58	0.5	22.5	24.5	37.5	38.7
	BTA	18	18	18	19	<mark>1</mark>	<mark>61</mark>	10	19	20	<mark>3</mark> 0	20	21	21	21	22	22	22	22	23	23	33	33	33
	Trait	MILK	MILK	S	SC	CED	BW	S	CEM	Sc	BW	BW	S	BW	CED	Sc	BW	S	CEM	CED	MILK	CEM	BW	S

Reference ⁴		CE (2)							MY (22)	CE (19)		CE (19)		MY (16)				
	Effect 22	-0.6686	2.9702	-0.5024	-0.9841	-1.0424			-1.8203	-0.9123		-0.5415	0.3935	0.3089	-0.8925	0.2869		2.4811
2	Effect 12	0.0135	0.0056 2.9702	0.0276	-0.0211	-0.0003			0.798 0.0215 -1.8203	-0.0076		0.0211	-0.0014	0.0033	-0.0122	-0.001	*	0.746 -0.0279 2.4811
LOKI	Freq 1	0.829	0.782	0.818	0.823	0.827			0.798	0.837		0.824	0.777	0.709	0.821	0.803		0.746
	Bayes Factor	19.64	104.09	16.95	16.89	37.52			15.72	10.71		44.17	11.08	16.11	13.14	12.96		11.42
ress ²	Effect	-	2.544*	3.008*			2.759*	3.148**			2.938*	4.074.	2.766•				2.465*	
QTL Express ²	-log10 (P _{nominal})		5.4578	3.996			11.6938	0.8465			0.6062	9.7138	3.5671				0.6785	
	Markers	AGLA269	BMS1743	BMS2843	BMS2843	BM737	BMS1353	MB063	AFS	BMS651	FASMC2	BM188	BM188	BMS2567	Telomeric	Telomeric	BMS2116	Telomeric
QTL Peak ¹	Flanking	BMS2270	BMS1862	BMS130	BMS130	BMS2843	BM737	BMS1353	BMS1353	RM169	BMS651	BM1314	INRA081	BM188	BM804	BM804	INRA134	BM203
Ę	Irait ³ BTA Position	30.5	36.5	14.5	20.5	31.5	35.59	48.59	60.5	0.5	ŝ	27.5	30.5	45.5	68.5	79.2	49	67.2
]	BTA	24	24	25	25	25	22	25	25	26	26	26	26	26	26	26	27	21
	Trait	CEM	MILK	CEM	CED	CED	MILK	S	MILK	CED	S	CED	BW	MILK	CED	BW	S	MILK

		цр	QTL Peak ¹		QTL Express ²	press ²		LOKI	N		Reference ⁴
rait	BTA	Trait ³ BTA Position	Flanking	Flanking Markers	-log10 (Pnominal)	Effect	Bayes Factor	Freq 1	Effect 12	Effect	
MILK	28	18.04	IDVGA29	BL25	11.2346	3.507**		•	•		• •
3	28	29.5	BL25	BMS2608	1.5621	2.128*	17.43	0.774	0.774 0.0002	0.4163	
8	28	29.5	BL25	BMS2608			43.52	0.849	0.0127	-1.0826	
SC	28	29.5	BMS510	BMS2608	0.9593	3.785***					
AILK	28	31.5	BMS510	BMS2608			12.23	0.808	0.808 -0.0282	-2.8895	MY(1)
U	28	43.04	BMS2608	BMS1714	0.525	2.493*					
3	28	44.5	BMS2608	BMS1714			18.8	0.808	-0.0015	0.1378	
3	28	54.5	BMS1714	Telomeric			16.5	0.805	-0.0013	0.3932	
CED	28	57.5	BMS1714	Telomeric			12.55	0.83	0.0144	-0.8383	
AILK	28	61.35	BMS1714	Telomeric	0		22.47	0.775	-0.0036 -2.7136	-2.7136	U I
U	29	12.5	BMS764	BMS1787	•		25.65	0.824	0.824 -0.0004	0.1135	•35
AILK	29	32.5	BMS1600	RM040			42.03	0.875	0.875 0.0197 2.6661	2.6661	

'L has previously been identified.

¹ Significance levels for QTL Express: *=P < chromosome-wide 0.01, **=P < genome-wide 0.05, ***=P < genome-wide 0.01. Freq_1 is the frequency of the 1 allele; effect values estimated in LOKI assume that the 11 genotype has an effect of 0.

³ Abbreviations: birth weight (BW), calving ease (CE), calving ease direct (CED), calving ease maternal (CEM), maternal milk (MILK), milk yield (MY), scrotal circumference (SC).

12=(Kneeland et al. 2004), 13=(Kucerova et al. 2006), 14=(Nadesalingam et al. 2001), 15=(Plante et al. 2001), 16=(Ron et al. 2001), 17=(Ron et al. al. 2004a), 7=(Casas et al. 2004b), 8=(Harder et al. 2006), 9=(Holmberg & Andersson-Eklund 2006), 10=(Kaupe et al. 2007), 11=(Kim et al. 2003), ⁴ References: 1=(Ashwell et al. 2004), 2=(Ashwell et al. 2005), 3=(Boichard et al. 2003), 4=(Casas et al. 2000), 5=(Casas et al. 2003), 6=(Casas et al. 2003), 2004), 18=(Schnabel et al. 2005), 19=(Taylor et al. 1998), 20=(Viitala et al. 2003)

		Count	3	LOKI	QTL Express		1		EPD		Acc >0.05
Trait	ЦŬ	QTL Reference	Freq ¹	Effect ²	Effect ³	StDev	Var	Kurt	Skew	Count ⁴	Count
Birth Weight	24	6	0.77	0.29	2.722	2.4	5.7	•	•	1998	1989
Calving Ease Direct	18	s	0.82	0.86	7.344	5.6	31	1	7	1998	1997
Calving Ease Maternal	18	S	0.83	0.59	4.866	4.9	24	2	7	1998	1997
Maternal Milk	4	16	0.42	2.37	9.419	9.4	8	0	0	1998	1990
Scrotal Circumference	31	0	0.51	0.08	0.732	0.6	0.3	0	0.1	1967	1704

Table 4.3. Statistical summary of reproductive QTL.

¹ The average frequency of the economically desirable allele as determined by LOKI.

² The average effect of the economically desirable homozygote as determined by LOKI.

³ The allele substitution effect economically desirable allele as determined by QTL Express.

⁴ Count of animals with an EPD value recorded.

⁵ Count of animals with an EPD accuracy value >0.05.

Statistical information is based the EPDs from the mapping population.

DF	Sum of Squares	Mean Square	F Value	Pr > F
652	6045.1496	9.2717	2.12	<.0001
1298	5666.9868	4.3659		
1950	11712.1365			
	652 1298	DF Squares 652 6045.1496 1298 5666.9868	DFSquaresSquare6526045.14969.271712985666.98684.3659	DF Squares Square F Value 652 6045.1496 9.2717 2.12 1298 5666.9868 4.3659

Table 4.4. Analysis of variance results for birth weight QTL.

R-Square	0.5161
Coeff Var	92.8439
Root MSE	2.0895
Mean	2.2505

Table 4.5. Analysis of variance results for calving ease direct QTL.

					1
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	458	23265.1545	50.79728	2.11	<.0001
Error	1492	35908.826	24.06758		
Corrected Total	1950	59173.9805			
R-Square	0.393165				
Coeff Var	148.7621				
Root MSE	4.905872				
Mean	3.297796				

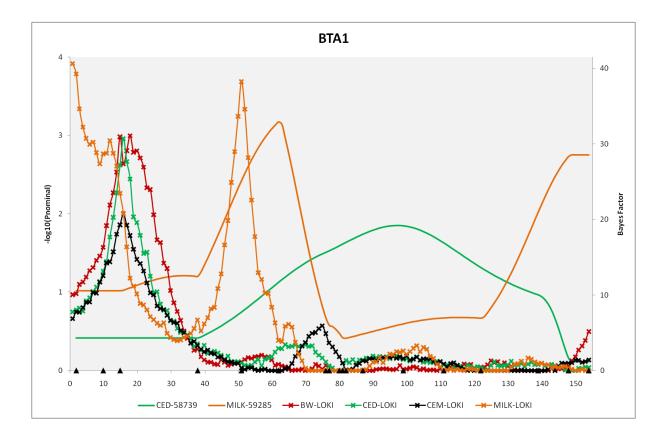
Table 4.6 Analysis of variance results for calving ease maternal QTL.

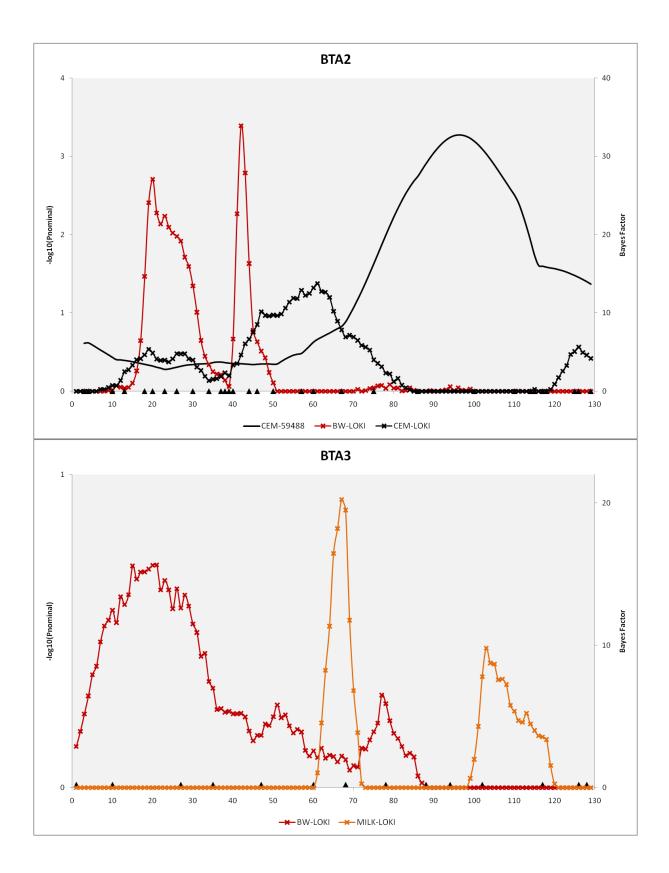
Courses	05	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	644	22203.5368	34.47754	2.05	<.0001
Error	1306	21966.6139	16.81977		
Corrected Total	1950	44170.1507			
		_			
R-Square	0.502682				
Coeff Var	85.32121				
Root MSE	4.101191				
Mean	4.806766				

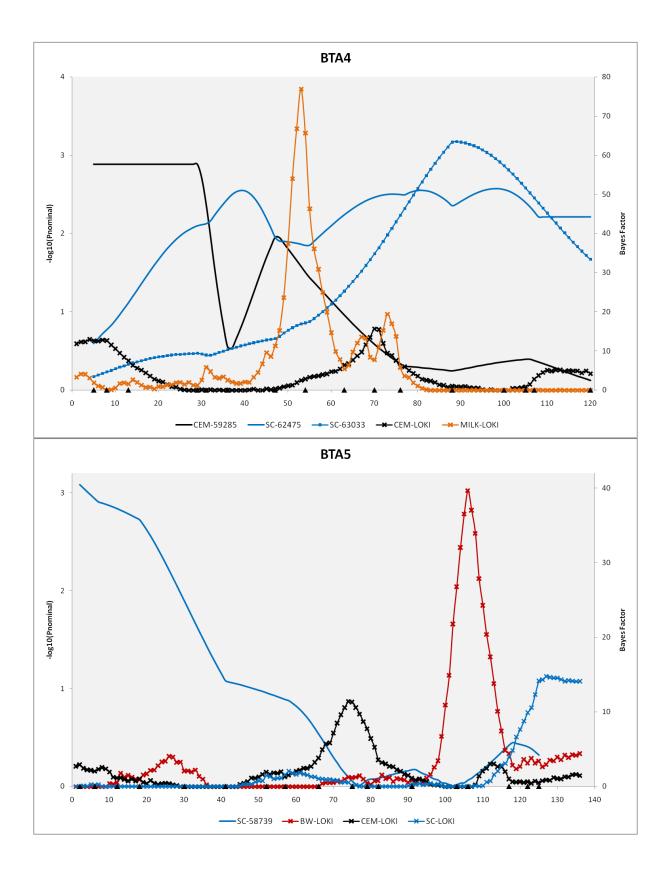
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1365	147572.966	108.1121	2.01	<.0001
Error	585	31405.6758	53.6849		
Corrected Total	1950	178978.642			
R-Square	0.824528				
Coeff Var	47.19839				
Root MSE	7.326999				
Mean	15.52383				

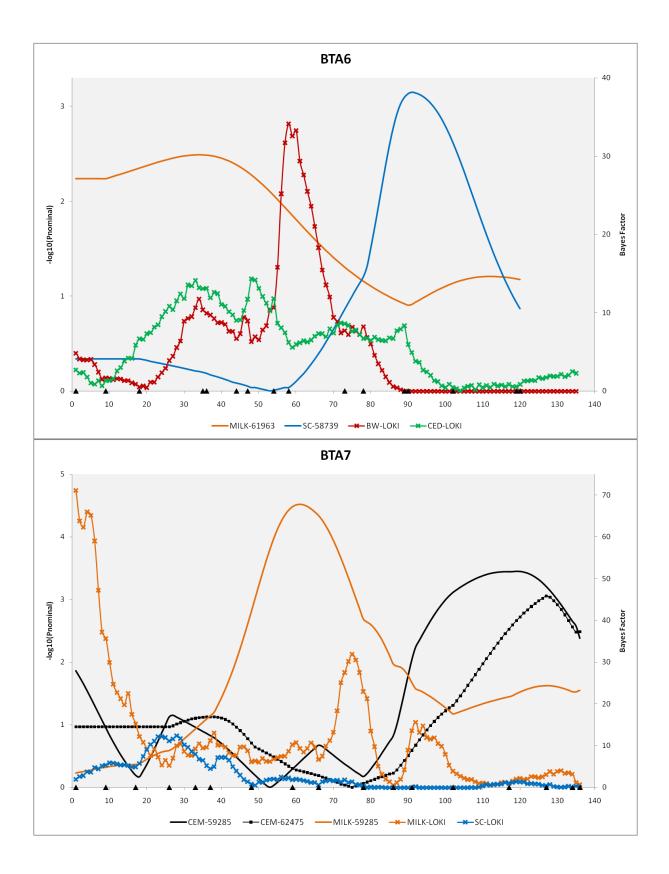
Table 4.7 Analysis of variance results for maternal milk QTL.

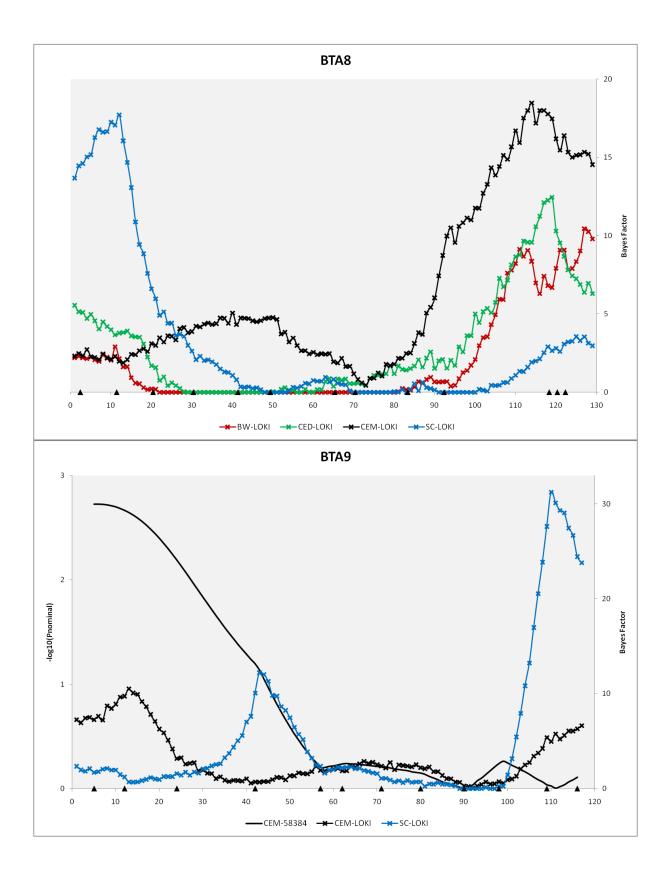
Table 4.8 Analysis of variance results for scrotal circumference QTL.

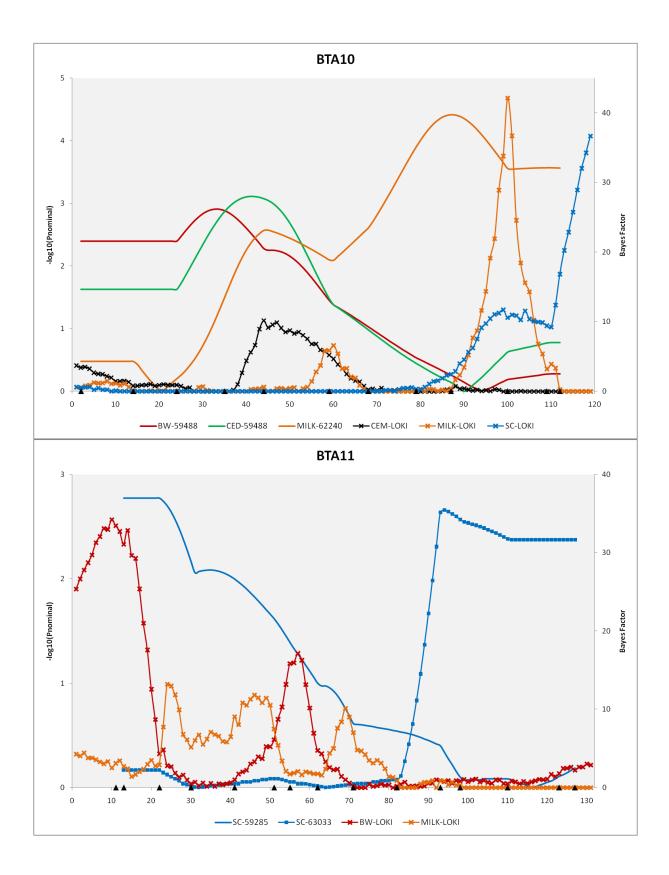

	55	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1022	174366.66	170.61	1.36	<.0001
Error	928	116531.84	125.57		
Corrected Total	1950	290898.50			
R-Square	0.5994				
Coeff Var	-805.7852				
Root MSE	11.2059				
Mean	-1.3907				

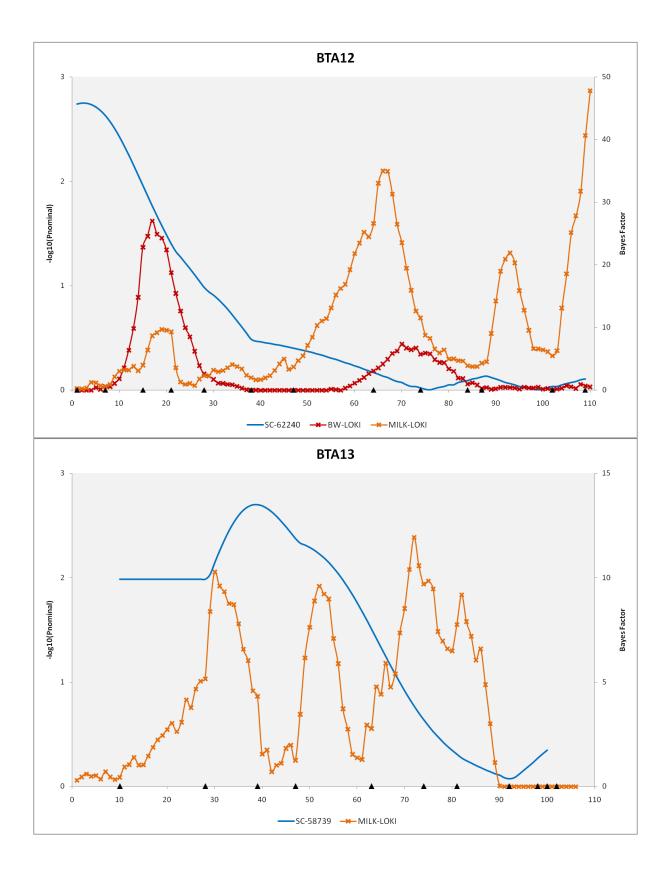

Table 4.9. Summary of reproductive QTL identified as pleiotropic.

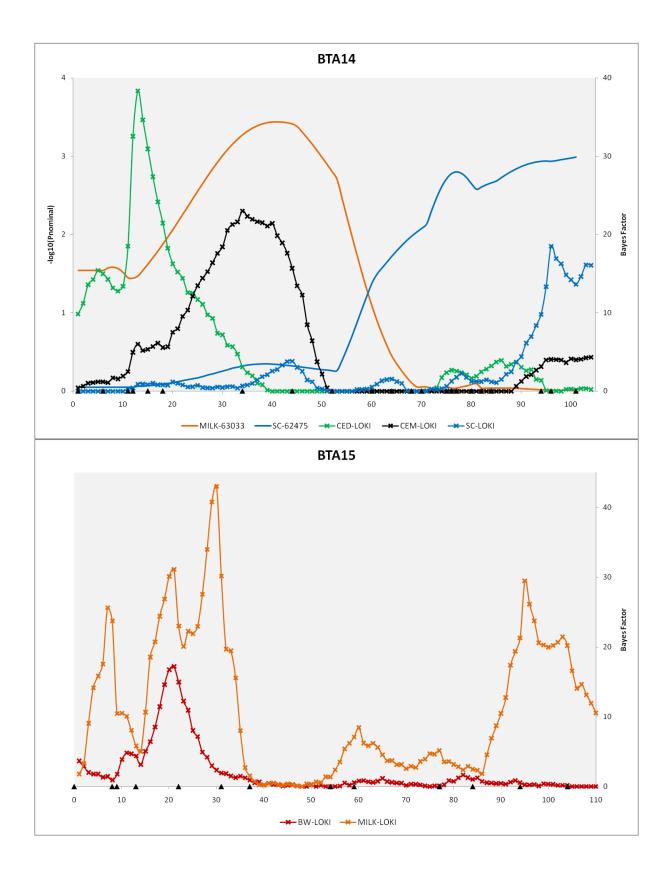

		Trait	Trait	Express	LOKI	Express	LOKI
BTA	Position	1	2	1	1	2	2
1	16.0	CED	CEM		-1.095		-0.598
8	115.5	CED	CEM		-0.840		-0.652
25	17.0	CED	CEM		-0.984	3.996	-0.502

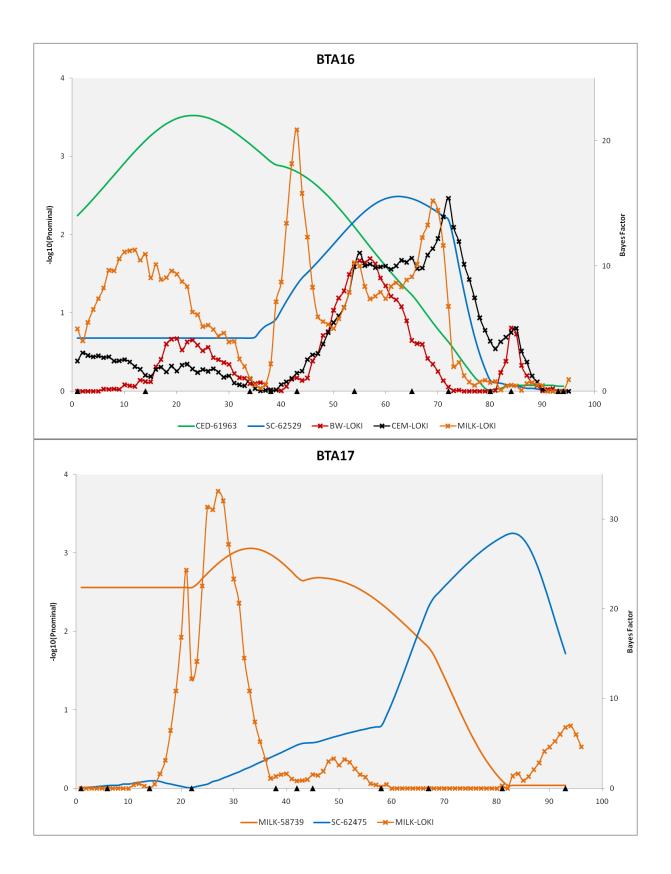

Express 1, 2 and LOKI 1, 2 are the allele substitution effects from QTL Express and the difference between alternative homozygotes effect for traits 1 and 2 respectively.

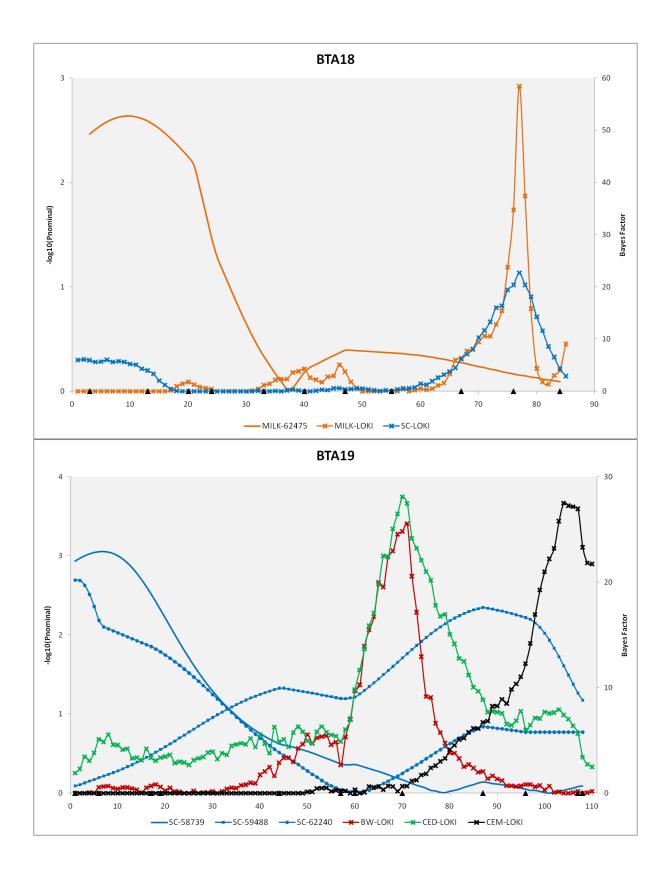

Figure 4.1. Statistical support profiles for reproductive QTL for each *Bos taurus* autosome. Plots are for half-sib data analyzed for an American Angus sire lineage by QTL Express, unless otherwise indicated as being from LOKI. QTL Express data are expressed in $-\log_{10}P_{nominal}$ values units while for LOKI are expressed as Bayes Factors. Colored lines represent different traits as follows: red = BW; green = CED; black = CEM; gold = MILK, and blue = SC. Significance levels for QTL Express are as follows: chromosome-wide P \leq 0.01=2.8, genome-wide P \leq 0.05=3.3, genomewide P \leq 0.01=4.1. Significance levels for LOKI are \geq 10 Bayes Factor. All X-axis values are in cM, represent genetic markers

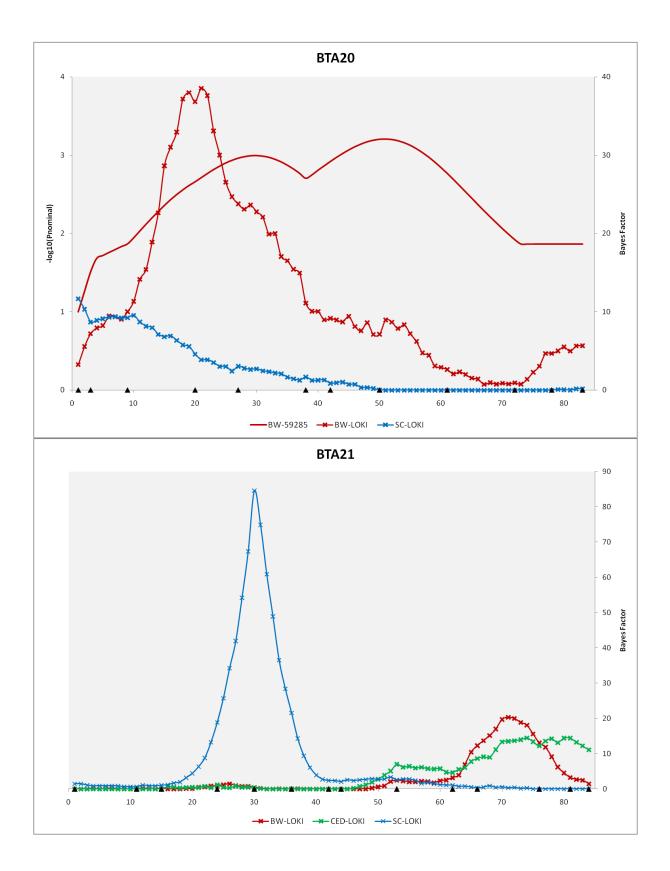


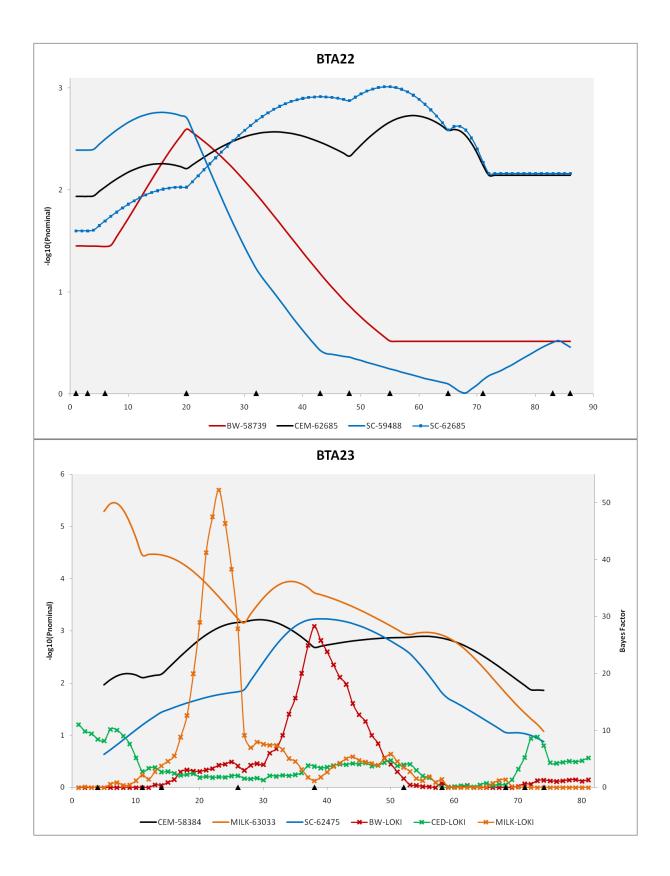


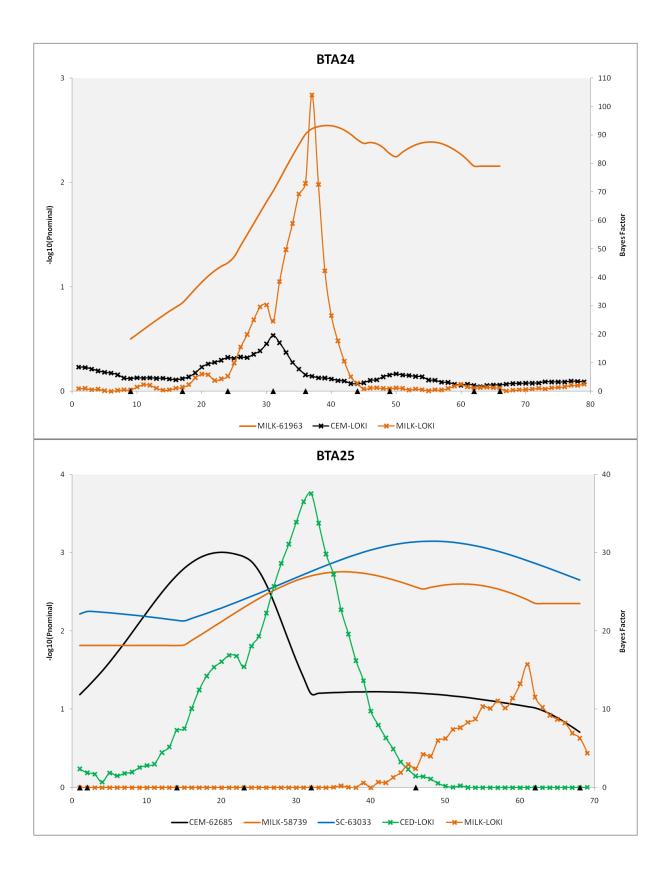


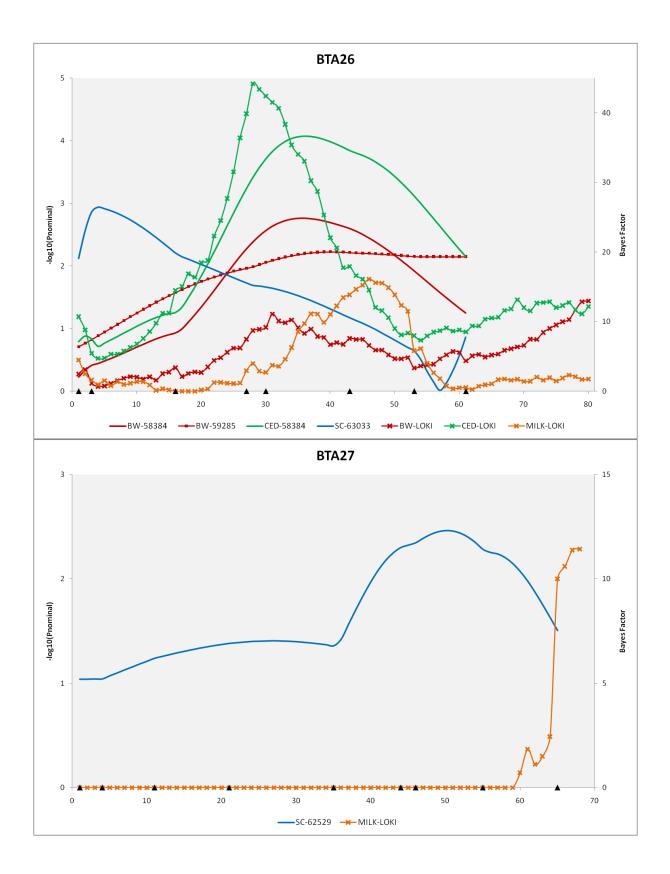


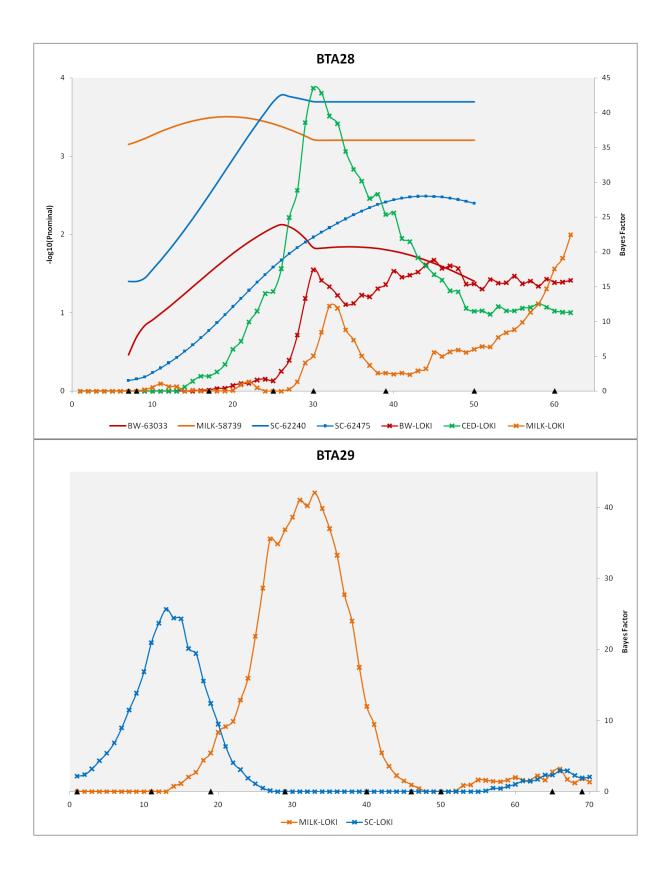












CHAPTER 5

Assessment of DNA extracted from FTA[®] cards for use on the Illumina iSelect BeadChip

Abstract

Background

FTA® cards provide an ideal medium for the field collection of DNA, therefore we sought to assess the quality of genomic DNA extracted from this source for use on the Illumina BovineSNP50 iSelect BeadChip which requires unbound, relatively intact (fragment sizes ≥2 kb), and high-quality DNA. Bovine blood and nasal swab samples collected on FTA cards were extracted using the commercially available GenSolve kit from GenVault Corp or the FTA Elute protocol from Whatman Inc, both with minor modification. The call rate and concordance of genotypes from each sample were compared to those obtained from whole blood samples extracted by standard PCI extraction.

Findings

An ANOVA on the BovineSNP50 genotype call rate indicated a significant difference (P<0.0003) between DNA extracted by FTA Elute, GenSolve, and PCI extraction methods. Two sample t-tests demonstrated that the DNA extracted from the FTA cards produced genotype call and concordance rates that were not different to those produced by assaying DNA samples

extracted by proteinase K treatment, Phenol:Chloroform:Isoamyl alcohol extraction, and ethanol precipitation from whole blood, while FTA Elute samples were statistically different (P<u><</u>0.05).

Conclusions

We conclude that DNA extracted from FTA cards by the GenSolve kit is of sufficiently high quality to produce results comparable to those obtained from DNA extracted from whole blood when assayed by the Illumina iSelect technology. Additionally, we validate the use of nasal swabs as an alternative to venous blood or buccal samples from animal subjects for reliably producing high quality genotypes on this platform.

Background

The advent of high-throughput SNP genotyping has revolutionized our ability to obtain high density genotypes, however, a key issue remains; the need to access, store, and extract DNA from each individual. While DNA collected for SNP analysis needs to be of sufficient quality to ensure high genotype call rates, the method of collection used in the field needs to be straightforward. FTA filter paper cards (Whatman Inc, Part of GE Healthcare, Florham Park, NJ, USA) simplify the harvesting and storing of samples, and once properly dried they can be stored at room temperature for years without DNA deterioration (Ledray & Netzel 1997). While the chemically infused paper kills microorganisms and prevents degradation of the matrix-bound DNA (Smith & Burgoyne 2004), the bound DNA must be extracted and

resuspended in an aqueous solution before it can be genotyped by high-throughput SNP genotyping platforms, such as the Illumina iSelect BeadChip (San Diego, CA, USA).

Previous research has shown that multiple genomic sources, including lymphocytes, buccal cells, whole genome amplified samples, and fingernails can be used to generate highdensity SNP data provided the DNA sample is of adequate quality and quantity (Montgomery *et al.* 2005; Feigelson *et al.* 2007; Woo *et al.* 2007; Nakashima *et al.* 2008). While venous blood is often considered an optimal source for DNA, the invasiveness and cost of obtaining venous blood samples can be prohibitive (Saab *et al.* 2007; Woo *et al.* 2007), especially for large-scale studies or those that deal with livestock and wild animals. Additionally, fresh samples collected in the field may experience degradation before they can be processed (Smith & Burgoyne 2004). The ease of collection, transportation, storage, and protection from degradation of samples stored on FTA cards alleviates many of these issues (Vidal-Taboada *et al.* 2006).

While previous studies have shown that DNA harvested from FTA cards is suitable for genotyping 1,536 SNP on the Illumina GoldenGate platform and 10,000 SNP on the Affymetrix 10K GeneChip Human Mapping 10K Array XBA 142 2.0 (Whatman Inc), it is not known if these samples are appropriate for high-throughput genotyping on the Illumina iSelect platform, which currently assays up to 200,000 SNP (Illumina 2009). To determine the utility of FTA cards as a collection and storage media for DNA analyzed by iSelect BeadChips which requires unbound, relatively intact (fragment sizes \geq 2 kb), and high-quality DNA (Steemers *et al.* 2006), we analyzed the call rate and concordance of 54,122 SNP genotypes produced by the BovineSNP50 BeadChip (Illumina). Whole blood and nasal swabs were collected on FTA and FTA Elute cards and DNA was harvested from the cards using either a minimally modified GenSolve protocol

(GenVault Corp, Carlsbad, CA, USA), or a minimally modified FTA Elute protocol from Whatman. Genotypes produced from these samples were benchmarked against genotypes produced from DNA extracted directly from buffy coats by proteinase K treatment, PCI extraction, and ethanol precipitation (Sambrook *et al.* 1989).

Materials and Methods

The following samples were collected from two Angus (*B. taurus*) bulls: 10 ml of whole blood (WB) collected and stored in vacuum tubes with 15 mg of EDTA (Covidien, Mansfield, MA, USA), WB was also collected from ear veins and applied to FTA and FTA Elute cards(McClure *et al.*2005 ; Whatman Inc), and nasal swab samples were collected using a sterile foam tipped applicator (Whatman Inc) which was rubbed for 10 seconds against the inside of the bull's nose and then pressed against an FTA Elute card to transfer cells to the card.

Buffy coats were isolated from each of the 10 ml WB samples and DNA was extracted by proteinase K treatment followed by PCI extraction and ethanol precipitation (Sambrook *et al.* 1989). Genotypes produced from these DNA samples were used as the standards against which genotypes produced from samples harvested from the FTA cards were compared. DNA was extracted from 3 mm punches obtained from each FTA and FTA Elute card using a GenSolve kit (GenVault Corp). We minimally modified the manufacturer's protocol by using a PCI extraction and ethanol precipitation instead of a Qiagen kit for DNA cleanup. A modified Whatman FTA Elute protocol was also used to extract DNA from 3 mm punches obtained from each FTA endified from each FTA Elute protocol was also used to extract DNA from 3 mm punches obtained from each FTA Elute protocol was modified via the addition of a PCI extraction and ethanol precipitation for DNA cleanup. Three hundred nanograms of DNA from each extraction was

used as template for the BovineSNP50 BeadChip, which was processed and analyzed according to Illumina's protocol for the iSelect single base extension reaction (Steemers *et al.* 2006).

A one-way ANOVA was performed on BovineSNP50 BeadChip call rates from FTA extracted samples and those achieved from assaying 7,737 *B. taurus* samples extracted from WB or cryopreserved semen by PCI extraction in our laboratory (Tables 5.1, 5.2, 5.3). Thirtyfive of these samples had two aliquots individually genotyped on the BovineSNP50 BeadChip which generated technical replicates that we used to calculate baseline concordance values. Genotypes produced from each FTA extracted DNA sample were compared for concordance to those obtained from WB for each animal. Call and concordance rates were analyzed with a two sample t-test assuming equal within-treatment variances (Table 5.4).

Results

The ANOVA indicated a statistical difference in call rate (P<0.0003) due to method of DNA extraction (Table 5.1). ANOVA on call rate between PCI extracted and GenSolve extracted indicated no statistical difference (P>0.72) due to use of the GenSolve kit, FTA card type or sample type (Table 5.2). While an ANOVA on call rate between PCI extracted and FTA Elute extracted samples indicated a significant difference (P<0.0003) (Table 5.3). We were concerned whether genotypes obtained from DNA harvested from FTA cards would yield reproducible genotypes that were highly concordant with those produced from DNA extracted from WB. Table 5.4 shows that >99% of called genotypes were concordant for every sample type and that discordances were primarily between the homozygous vs. heterozygous

genotype classes. In every concordance comparison, genotypes from DNA samples harvested from FTA cards were not different from those produced from the standard samples ($P \ge 0.39$).

Conclusion

This report shows that blood and nasal swab samples stored on FTA cards can be processed in a manner that results in high-quality DNA capable of producing robust results on Illumina's iSelect BeadChips. Samples extracted by the modified FTA Elute protocol produced lower call rates that those extracted by PCI, but for the called SNPs their concordance rate was similar. While the DNA extracted by the FTA Elute protocol will provide a high-quality data when analyzed using the Illumina BeadChip, we recommend using the modified GenSolve kit due to its higher call rate when analyzed by this platform. While only the BovineSNP50 BeadChip was tested, similar results should be obtainable on other iSelect BeadChips such as the CanineSNP20, EquineSNP50, OvineSNP50, and PorcineSNP60. DNA yields from individual FTA card punches vary between samples (Harty et al. 2000; Vidal-Taboada et al. 2006), and our FTA samples ranged in yield from 101 to 405 nanograms of DNA per punch, therefore we recommend that at least six 3 mm punches be extracted per sample to ensure sufficient DNA for genotyping. Assuming sufficient quantities are obtained, we speculate that DNA extracted from FTA cards by the GenSolve kit will also produce quality genotypes on other high-density SNP platforms such as Affymetrix Genome-Wide Human SNP Array 6.0 genechip and the Illumina Human1M-Duo BeadChip which both assay over 1 million SNP, although further studies are needed for confirmation due to the different chemistries used on each platform (Affymetrix Inc; Illumina Inc).

We conclude that FTA cards provide an excellent medium for harvesting DNA from multiple tissue types, and that when assayed using the Illumina iSelect technology, yield high genotype call rates and reproducibility, particularly when the DNA is extracted using the GenSolve kit. By demonstrating that high quality and repeatable genotypes can be obtained from DNA stored on FTA cards, we alert the community to the utility of this sample storage medium for DNA intended for high-throughput SNP genotyping. Table 5.1. One-way ANOVA comparing call rates for BovineSNP50 genotypes produced from DNA extracted by the FTA Elute protocol and the GenSolve kit from blood and nasal swabs harvested on FTA cards to 7,737 samples extracted from whole blood or cryopreserved semen extracted by proteinase K treatment, Phenol:Chloroform:Isoamyl alcohol extraction, and ethanol precipitation.

SUMMARY						
Groups	Count	Sum	Average	Variance	_	
PCI	7737	7648.816	0.988602	0.001462		
FTA Elute	4	3.647186	0.911797	0.00322		
GenSolve	6	5.865101	0.977517	0.000652		
					-	
ANOVA						
Source of						
Source of Variation	SS	df	MS	F	P-value	F crit
•	SS	df	MS	F	P-value	F crit
Variation	<i>SS</i> 0.024316	<i>df</i> 2	<i>MS</i> 0.012158	F 8.314988	<i>P-value</i> 0.000247	<i>F crit</i> 2.996891
Variation Between						

Table 5.2. One-way ANOVA comparing call rates for BovineSNP50 genotypes produced from DNA on FTA cards extracted by the GenSolve kit to 7,737 samples extracted by proteinase K treatment, Phenol:Chloroform:Isoamyl alcohol extraction, and ethanol precipitation.

SUMMARY						
Groups	Count	Sum	Average	Variance		
PCI	7737	7648.8155	0.9886	0.0015	_	
Blood FTA	2	1.9807	0.9904	5.17E-06		
Blood FTA Elute	2	1.9687	0.9844	6.97E-06		
Nasal FTA Elute	2	1.9157	0.9578	0.0020	_	
					_	
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.0019	3	0.0006	0.4414	0.7234	2.6061
Within Groups	11.3121	7739	0.0015			
Total	11.3141	7742				

Table 5.3. One-way ANOVA comparing call rates for BovineSNP50 genotypes produced from DNA on FTA elute extracted by the FTA Elute protocol to 7,737 samples extracted proteinase K treatment, Phenol:Chloroform:Isoamyl alcohol extraction, and ethanol precipitation.

SUMMARY						
Groups	Count	Sum	Average	Variance		
7737-STD	7737	7648.816	0.988602	0.001462		
Blood Elute	2	1.739053	0.869526	0.000153		
Nasal Swab Elute	2	1.908134	0.954067	0.00236		
ANOVA						
Source of						
Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.030731	2	0.015366	10.51038	0.0000276	2.996892
Within Groups	11.3126	7738	0.001462			
Total	11.34333	7740				

Extraction Method	PCI		GenSolve	5	FTA	A Elute
Sample Type	Standard	Blood FTA	Blood FTA Elute	Nasal Swab FTA Elute	Blood FTA Elute	Nasal Swab FTA Elute
Call Rate %	98.860	99.036 (0.07)	98.437 (0.44)	95.780 (0.25)	86.953 (<0.001)	95.407 (0.10)
Concordance Rate %	99.006	99.817 (0.40)	99.786 (0.40)	99.573 (0.43)	99.124 (0.48)	99.883 (0.39)
Alternative Homozygous Rate %	0.006	0.000 (0.40)	0.000 (0.40)	0.002 (0.43)	0.001 (0.42)	0.000 (0.40)
Homozygous vs. Heterozygous Rate %	0.988	0.183 (0.40)	0.214 (0.40)	0.425 (0.43)	0.875 (0.49)	0.117 (0.39)

Table 5.4. Genotype call and concordance percentage rates for DNA samples extracted from FTA cards, by sample type.

Two sample t-tests assuming equal within-treatment variances, the numbers in parentheses are the P-value corresponding to the comparison of that sample to the standard. Two samples from each FTA type were compared to 7,737 samples extracted by PCI for call rate and to 35 samples extracted for which dual aliquots were genotyped on the Bovine SNP50 BeadChip for concordance, alternative homozygous, and homozygous vs. heterozygous rate.

CHAPTER 6

CONCLUSIONS

The identification of QTL is the first step towards the identification of the genes involved in the regulation of a quantitative trait. This study's primary objective was to identify genomic intervals that harbor genes affecting carcass, growth, and reproductive traits in the American Angus population. Use of a large, multigenerational pedigree increased our power to detect QTLs segregating within sire families and within the full pedigree by linkage analysis. Since LOKI and QTL Express analysis methods both have their own strengths and weakness for detecting QTL their combined use allows the identification of QTL that may have been missed by one or the other (de Koning *et al.* 2003). QTL identified by both forms of analysis may be screened to identify suitable candidates for fine mapping and targeted sequencing to identify the causal polymorphisms.

Several economically important QTL (N=439) spread throughout the genome (Table 6.1), were discovered in this study. On average each chromosome contained 0.7 to 1.8 QTL per trait, with a range of 0 to 6 QTL. For every analyzed trait, except CEM, over 50% of the chromosomes contained at least one QTL. While the majority of these QTL are novel, with only 73 QTL having been previously reported, this list clearly is not definitive, even within the American Angus genome. When these QTL were simultaneously incorporated into a linear model in SAS to estimate the amount of genetic variation explained by the QTL, the R² values ranged from 39.3% with 18 QTL for CED to 89.5% with 52 QTL for YW (Table 6.2). There are two conclusions to be drawn for this. The first is simply that as more QTL are discovered, a greater amount of a

Table 6.1. QTL count by trait and chromosome	1. Q	1100	unt	by tr	ait a	nd c	hron	noso	Be																			
												-	30s t	auru	Bos taurus autosome	loso	e											
Trait	-	2	ŝ	4	S	9	2	∞	ه	9	Ħ	12	13	14	51	16	17	18	19 2	20 2	21 2	22 2	23 2	24 2	25 2	26 27	7 28	29
BW	-	2	-	•	-	5	•	-	•	-	-	-	•	•	1	,	0	0	-	2			1	0	0 2	0	°	•
CED	2	•	•	•	•	2	•	-	•	-	0	0	•	-	0	1	0	0	1	0	1	0	1	0	2 3	0	2	•
CEM	-	2	0	2	-	•	-	-	-	-	0	•	•	-	0	2	0	0	-	0	0				0	0	0	•
CW	2	4	4	0	-	2	2	8	-	2	1	0	0	-	2	1	2	0	0	0	2	-	1	0	0		-	1
FAT	1	0	1	1		2	1	1	0	0	2	1	2	1	1	3	0	1	0	0		-	2 2	2 0	0	0	2	2
MARB	1	-	•	0	1	4	•	-	1	2	2	0	2	1	0	1	1	0	2	1	1	0	0	1	1 0	2	1	2
ΗМ	1	1	2	0	1	1	3	1	0	1	0	2	0	3	3	1	0	0	0	0	2	1	1.0	. 0	1 2	1	1	1
MILK	2	0		2	0	-	s	0	0	2	3	3	2	1	5	4	1	2	0	0	0	0	1	1 2	2 1	1	3	-
MM	-	2	2	-	2	-	2	7	ŝ	-	•	•	•	2	-	-	2	2	5				2		0 2	2	-	3
RIB	2	•	2	0	0	-	2	2	4	1	4	2	2	1	2	3	1	1	1	2	1	1	1	1.0	0	1 1	-	•
SC	0	0	0	1	2	1	1	1	2	2	2	1	1	1	0	1	1	1	2	1	1	2	1	0	1 1	_	2	1
WM	ß	•	•				ŝ	ŝ	-	•	2	•	-	-	2	0	0		5	2	-	0	0	。 0	3	0	0	•
ΥH	0	•	-	1	•	-	•	-	0	0	0	1	•	0	0	1	0	1	1	0	2	3.(0	1.0	0 2	_	-	-
Ŵ	2	•	2	s	2	•	9		2	•	4	ŝ	•	2	0	2	2	0	8	2	2	2	1	2	4 1	0	0	2
Total	19	12	16	14	13	19	26	19	15	14	21	14	10	16	17	22	10	6	16_1	11 1	16 1	14_1	13 1	10	15_1	16 11	1 18	13

	0
	λ
	0
	2
	=
-	
_	-
	0
	τ
4	-
	P
	U
4	
	-
	5
	=
	2
	-
	Ŭ
1	ŭ
F	
Ē	
Ę	
Ę	
Ē	
EC FO	
C I OTI	
- ITO - 1 - 1	1.0
LICE TOTIC	1.0
CHICE 1 OTI 2	able o.T. ULC

trait's genetic variation can be explained, the other is that even with 52 QTL discovered less than 90% of the genetic variation in YW was explained. In reality the amount of genetic variation explained in commercial herds by these QTL will be less due to the inherent bias in QTL analyses when the same data are used to detect QTL and to estimate their effect size (Xu, 1998; Otto & Jones 2000; Allison *et al.* 2002). Additionally an individual QTL's effect within a herd may depend on the herd's overall genetic variation (architecture) and management conditions.

	QTL	Reference	Total		Largest single n	narker
Trait	count	count	R ²	R ²	Marker	% of total R^2
BW	24	9	0.516	0.077	BMS574	14.89%
CED	18	5	0.393	0.071	BMS2742	18.08%
CEM	18	5	0.503	0.078	BMS574	15.54%
CW	36	6	0.687	0.081	BMS2533	11.74%
FAT	30	7	0.602	0.061	BMS1743	10.12%
MARB	29	8	0.552	0.056	AGLA232	10.12%
MH	30	2	0.656	0.047	BMS410	7.21%
MILK	44	16	0.825	0.121	BM6438_29	14.67%
MW	40	6	0.807	0.056	FCB11	6.97%
RIB	40	3	0.757	0.064	BM3509	8.43%
SC	31		0.599	0.078	BM103	13.05%
WW	28	1	0.673	0.159	BM864	23.67%
YH	19	1	0.405	0.031	BMS2252	7.70%
YW	52	4	0.895	0.184	BM1824	20.55%

Table 6.2. Total QTL count for each trait, total R^2 explained by QTL for each trait and the marker with the largest R^2 value.

A search performed at the Entrez Gene website

(http://www.ncbi.nlm.nih.gov/sites/entrez) for human genes known to be responsible for variation in quantitative traits revealed 188, 301, and 270 that influence height, weight, and obesity, respectively. It has been estimated that up to 6,000 genes have an effect on the size of a mouse (Reed *et al.* 2008) and it appears reasonable to predict that a similar number of genes will eventually be found in cattle for growth and developmental traits. While many allelic variations have a small effect on a trait's phenotypic variance their combined effects could explain significant proportions of the variation in genetic potential among animals.

Phenotypic selection of cattle has been practiced since domestication, and in recent decades focused selection on many economically important traits has been achieved through the use of EPDs. Even with this strong selection on phenotypes and EPDs there remains large variation in the frequency of trait-enhancing alleles in American Angus (Table 6.3). Even among traits that have been strongly selected a large number of moderate-to large-effect QTL remain segregating in American Angus (Tables 2.7, 3.4, 4.3)

		QTL Allelic	Frequency	
Trait	Average	Minimum	Maximum	Count ¹
Birth Weight	0.770	0.195	0.810	23
Calving Ease Direct	0.824	0.796	0.851	17
Calving Ease Maternal	0.827	0.812	0.841	16
Carcass Weight	0.441	0.128	0.877	14
Marbling	0.856	0.810	0.895	8
Maternal Milk	0.421	0.125	0.875	29
Mature Height	0.488	0.109	0.903	8
Mature Weight	0.501	0.067	0.966	26
Ribeye Area	0.542	0.140	0.880	7
Scrotal Circumference	0.510	0.186	0.854	14
Weaning Weight	0.558	0.150	0.846	32
Yearling Height	0.708	0.160	0.855	5
Yearling Weight	0.488	0.138	0.867	51

Table 6.3. Average frequency of economically desirable QTL by trait in the mapping population
based upon LOKI analysis.

¹ Number of QTL included in frequency calculation

For MAS to have the greatest effect genetic tests will need to be developed that can evaluate a large number of genetic markers while remaining cost-effective. While this study did not attempt to estimate the expected return on using genetic tests that explain varying amounts of genetic variation, it is clear that effective tests cannot be based upon microsatellite loci even though phase relationships may be established within the Angus breed. Strategies must quickly be devised to simultaneously test for multiple QTL and for multiple traits for MAS to be economically viable. It is clear that these strategies will be based upon the highthroughput SNP genotyping platforms which can genotype large numbers of SNP a relatively low cost per locus.

As FTA cards can be stored at room temperature for years without the need for specialized equipment (Ledray & Netzel 1997; Vidal-Taboada *et al.* 2006) DNA can be collected long before a producer decides which animals are to be tested. Furthermore, as testing technologies evolve, this method of sample capture allows testing organizations to return to a sample in the future as testing technologies are improved. The DNA extracted from tissues harvested onto these cards will provide genotypes with similar call and concordance rates as for DNA extracted from whole blood, but with the added benefit of decreased storage and shipping costs.

LITERATURE CITED

- Affymetrix Inc.: Data Sheet: Affymetrix[®] Genome-Wide Human SNP Array 6.0. URL <u>http://www.affymetrix.com/products_services/arrays/specific/genome_wide_snp6/genome_wide_snp6.affx</u>
- Alexander L.J., Geary T.W., Snelling W.M. & Macneil M.D. (2007) Quantitative trait loci with additive effects on growth and carcass traits in a Wagyu-Limousin F2 population. *Anim Genet* **38**, 413-6.
- Allan M.F. & Smith T.P.L. (2008) Review: Present and future application of DNA technologies to improve beef production. *Meat Science* **80**, 79-85.
- Allison D.B., Fernandez J.R., Heo M., Zhu S., Etzel C., Beasley T.M. & Amos C.I. (2002) Bias in estimates of quantitative-trait-locus effect in genome scans: demonstration of the phenomenon and a method-of-moments procedure for reducing bias. *Am J Hum Genet* 70, 575-85.
- Andersson L. (2001) Genetic dissection of phenotypic diversity in farm animals. *Nat Rev Genet* **2**, 130-8.

Animal Genome. URL http://www.animalgenome.org/QTLdb/cattle.html.

- Ashwell M.S., Heyen D.W., Sonstegard T.S., Van Tassell C.P., Da Y., VanRaden P.M., Ron M., Weller J.I. & Lewin H.A. (2004) Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. *J Dairy Sci* **87**, 468-75.
- Ashwell M.S., Heyen D.W., Weller J.I., Ron M., Sonstegard T.S., Van Tassell C.P. & Lewin H.A. (2005) Detection of quantitative trait loci influencing conformation traits and calving ease in Holstein-Friesian cattle. *J Dairy Sci* **88**, 4111-9.
- Barendse W., Vaiman D., Kemp S.J., Sugimoto Y., Armitage S.M., Williams J.L., Sun H.S., Eggen A., Agaba M., Aleyasin S.A., Band M., Bishop M.D., Buitkamp J., Byrne K., Collins F., Cooper L., Coppettiers W., Denys B., Drinkwater R.D., Easterday K., Elduque C., Ennis S., Erhardt G., Li L. & et al. (1997) A medium-density genetic linkage map of the bovine genome. *Mamm Genome* 8, 21-8.

- Beavis, W.D. (1998) QTL analysis: power, precision, and accuracy, pp. 145–162 in Molecular Dissection of Complex Traits, edited by A.H. Paterson. CRC Press, New York.
- Bogdan M. & Doerge R.W. (2005) Biased estimators of quantitative trait locus heritability and location in interval mapping. *Heredity* **95**, 476-84.
- Boichard D., Grohs C., Bourgeois F., Cerqueira F., Faugeras R., Neau A., Rupp R., Amigues Y., Boscher M.Y. & Leveziel H. (2003) Detection of genes influencing economic traits in three French dairy cattle breeds. *Genet Sel Evol* 35, 77-101.
- Casas E., Shackelford S.D., Keele J.W., Stone R.T., Kappes S.M. & Koohmaraie M. (2000) Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. *J Anim Sci* **78**, 560-9.
- Casas E., Stone R.T., Keele J.W., Shackelford S.D., Kappes S.M. & Koohmaraie M. (2001) A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. *J Anim Sci* **79**, 854-60.
- Casas E., Shackelford S.D., Keele J.W., Koohmaraie M., Smith T.P. & Stone R.T. (2003) Detection of quantitative trait loci for growth and carcass composition in cattle. *J Anim Sci* **81**, 2976-83.
- Casas E., Keele J.W., Shackelford S.D., Koohmaraie M. & Stone R.T. (2004a) Identification of quantitative trait loci for growth and carcass composition in cattle. *Anim Genet* **35**, 2-6.
- Casas E., Lunstra D.D. & Stone R.T. (2004b) Quantitative trait loci for male reproductive traits in beef cattle. *Anim Genet* **35**, 451-3.
- Chamberlain A.J., McPartlan H.C. & Goddard M.E. (2007) The number of loci that affect milk production traits in dairy cattle. *Genetics* **177**, 1117-23.
- Churchill G.A. & Doerge R.W. (1994) Empirical threshold values for quantitative trait mapping. *Genetics* **138**, 963-71.
- Davis G.P. & DeNise S.K. (1998) The impact of genetic markers on selection. *J Anim Sci* **76**, 2331-9.

- de Koning D.J., Pong-Wong R., Varona L., Evans G.J., Giuffra E., Sanchez A., Plastow G., Noguera J.L., Andersson L. & Haley C.S. (2003) Full pedigree quantitative trait locus analysis in commercial pigs using variance components. *J Anim Sci* **81**, 2155-63.
- Elo K.T., Vilkki J., de Koning D.J., Velmala R.J. & Maki-Tanila A.V. (1999) A quantitative trait locus for live weight maps to bovine chromosome 23. *Mamm Genome* **10**, 831-5.
- Feigelson H.S., Rodriguez C., Welch R., Hutchinson A., Shao W., Jacobs K., Diver W.R., Calle E.E., Thun M.J., Hunter D.J., Thomas G. & Chanock S.J. (2007) Successful genome-wide scan in paired blood and buccal samples. *Cancer Epidemiol Biomarkers Prev* 16, 1023-5.
- Grisart B., Coppieters W., Farnir F., Karim L., Ford C., Berzi P., Cambisano N., Mni M., Reid S.,
 Simon P., Spelman R., Georges M. & Snell R. (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. *Genome Res* 12, 222-31.
- Grisart B., Farnir F., Karim L., Cambisano N., Kim J.J., Kvasz A., Mni M., Simon P., Frere J.M., Coppieters W. & Georges M. (2004) Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. *Proc Natl Acad Sci U S A* **101**, 2398-403.
- Harder B., Bennewitz J., Reinsch N., Thaller G., Thomsen H., Kuhn C., Schwerin M., Erhardt G.,
 Forster M., Reinhardt F. & Kalm E. (2006) Mapping of quantitative trait loci for lactation
 persistency traits in German Holstein dairy cattle. J Anim Breed Genet 123, 89-96.
- Harty L.C., Garcia-Closas M., Rothman N., Reid Y.A., Tucker M.A. & Hartge P. (2000) Collection of buccal cell DNA using treated cards. *Cancer Epidemiol Biomarkers Prev* **9**, 501-6.
- Heath S.C. (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. *Am J Hum Genet* **61**, 748-60.
- Holmberg M. & Andersson-Eklund L. (2006) Quantitative trait loci affecting fertility and calving traits in Swedish dairy cattle. *J Dairy Sci* **89**, 3664-71.
- Illumina Inc.: Genome-Wide DNA Analysis BeadChips. URL http://www.illumina.com/downloads/InfiniumHD_DataSheet.pdf

- Illumina (2009) News Release: Illumina Announces High Density Expansion to iSelect(R) Custom Genotyping Platform.
- Jefferys H. (1961) The Theory of Probability, Oxford.
- Kappes S.M., Keele J.W., Stone R.T., McGraw R.A., Sonstegard T.S., Smith T.P., Lopez-Corrales
 N.L. & Beattie C.W. (1997) A second-generation linkage map of the bovine genome.
 Genome Res 7, 235-49.
- Kaupe B., Brandt H., Prinzenberg E.M. & Erhardt G. (2007) Joint analysis of the influence of CYP11B1 and DGAT1 genetic variation on milk production, somatic cell score, conformation, reproduction, and productive lifespan in German Holstein cattle. J Anim Sci 85, 11-21.
- Kim J.J., Farnir F., Savell J. & Taylor J.F. (2003) Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. J Anim Sci 81, 1933-42.
- Kneeland J., Li C., Basarab J., Snelling W.M., Benkel B., Murdoch B., Hansen C. & Moore S.S.
 (2004) Identification and fine mapping of quantitative trait loci for growth traits on bovine chromosomes 2, 6, 14, 19, 21, and 23 within one commercial line of Bos taurus. J Anim Sci 82, 3405-14.
- Kucerova J., Lund M.S., Sorensen P., Sahana G., Guldbrandtsen B., Nielsen V.H., Thomsen B. & Bendixen C. (2006) Multitrait quantitative trait Loci mapping for milk production traits in danish Holstein cattle. J Dairy Sci 89, 2245-56.

Ledray L.E. & Netzel L. (1997) DNA evidence collection. J Emerg Nurs 23, 156-8.

- Li C., Basarab J., Snelling W.M., Benkel B., Kneeland J., Murdoch B., Hansen C. & Moore S.S. (2004) Identification and fine mapping of quantitative trait loci for backfat on bovine chromosomes 2, 5, 6, 19, 21, and 23 in a commercial line of Bos taurus. *J Anim Sci* **82**, 967-72.
- MacNeil M.D. & Grosz M.D. (2002) Genome-wide scans for QTL affecting carcass traits in Hereford x composite double backcross populations. *J Anim Sci* **80**, 2316-24.

- Machado M.B.B., Alencar M.M., Pereira A.P. & Olivera H.H. (2003) QTL affecting body weight in a candidate region of cattle chromosome 5. *Genetics and Molecular Biology* **3**, 259-65.
- MacNeil M.D. & Grosz M.D. (2002) Genome-wide scans for QTL affecting carcass traits in Hereford x composite double backcross populations. *J Anim Sci* **80**, 2316-24.
- Malau-Aduli A.E.O., Niibayashi T., Kojima T., Mizoguchi Y. & Komatsu M. (2005) Mapping the Quantitative Trait Loci (QTL) for the Body Shape and Conformation Measurements on BTA1 in Japanese Black Cattle. *Animal Science Journal* **76**, 19-27.
- Matukumalli L.K., Lawley C.T., Schnabel R.D., Taylor J.F., Allan M.F., Heaton M.P., O'Connell J., Moore S.S., Smith T.P., Sonstegard T.S. & Van Tassell C.P. (2009) Development and characterization of a high density SNP genotyping assay for cattle. *PLoS ONE* **4**, e5350.
- McClure MC, Weaber R, Olson KC. (2005) Collecting Genetic Material from Beef Cattle, Guidesheet G2140. University of Missouri, Columbia.
- McKay S.D., Schnabel R.D., Murdoch B.M., Matukumalli L.K., Aerts J., Coppieters W., Crews D., Dias Neto E., Gill C.A., Gao C., Mannen H., Stothard P., Wang Z., Van Tassell C.P., Williams J.L., Taylor J.F. & Moore S.S. (2007) Whole genome linkage disequilibrium maps in cattle. *BMC Genet* 8, 74.
- Miretti M.M., Pereira H.A., Jr., Poli M.A., Contel E.P. & Ferro J.A. (2002) African-derived mitochondria in South American native cattle breeds (Bos taurus): evidence of a new taurine mitochondrial lineage. *J Hered* **93**, 323-30.
- Mizoshita K., Watanabe T., Hayashi H., Kubota C., Yamakuchi H., Todoroki J. & Sugimoto Y. (2004) Quantitative trait loci analysis for growth and carcass traits in a half-sib family of purebred Japanese Black (Wagyu) cattle. *J Anim Sci* **82**, 3415-20.
- Mizoshita K., Takano A., Watanabe T., Takasuga A. & Sugimoto Y. (2005) Identification of a 1.1-Mb region for a carcass weight QTL onbovine Chromosome 14. *Mamm Genome* **16**, 532-7.
- Montgomery G.W., Campbell M.J., Dickson P., Herbert S., Siemering K., Ewen-White K.R., Visscher P.M. & Martin N.G. (2005) Estimation of the rate of SNP genotyping errors from DNA extracted from different tissues. *Twin Res Hum Genet* **8**, 346-52.

- Nadesalingam J., Plante Y. & Gibson J.P. (2001) Detection of QTL for milk production on Chromosomes 1 and 6 of Holstein cattle. *Mamm Genome* **12**, 27-31.
- Nakashima M., Tsuda M., Kinoshita A., Kishino T., Kondo S., Shimokawa O., Niikawa N. & Yoshiura K. (2008) Precision of high-throughput single-nucleotide polymorphism genotyping with fingernail DNA: comparison with blood DNA. *Clin Chem* **54**, 1746-8.
- Northcutt S.L. & Wilson D.E. (1993) Genetic parameter estimates and expected progeny differences for mature size in Angus cattle. *J Anim Sci* **71**, 1148-53.
- Otto S.P. & Jones C.D. (2000) Detecting the undetected: estimating the total number of loci underlying a quantitative trait. *Genetics* **156**, 2093-107.
- Plante Y., Gibson J.P., Nadesalingam J., Mehrabani-Yeganeh H., Lefebvre S., Vandervoort G. & Jansen G.B. (2001) Detection of quantitative trait loci affecting milk production traits on 10 chromosomes in Holstein cattle. *J Dairy Sci* **84**, 1516-24.
- Reed D.R., Lawler M.P. & Tordoff M.G. (2008) Reduced body weight is a common effect of gene knockout in mice. *BMC Genet* **9**, 4.
- Ron M., Kliger D., Feldmesser E., Seroussi E., Ezra E. & Weller J.I. (2001) Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. *Genetics* **159**, 727-35.
- Ron M., Feldmesser E., Golik M., Tager-Cohen I., Kliger D., Reiss V., Domochovsky R., Alus O., Seroussi E., Ezra E. & Weller J.I. (2004) A complete genome scan of the Israeli Holstein population for quantitative trait loci by a daughter design. *J Dairy Sci* **87**, 476-90.
- Saab Y.B., Kabbara W., Chbib C. & Gard P.R. (2007) Buccal cell DNA extraction: yield, purity, and cost: a comparison of two methods. *Genet Test* **11**, 413-6.
- Sambrook J., E.F. Fritsch, and T. Maniatis (1989) *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor Laboratory Press, Plainview.
- Schnabel R.D., Taylor J.F. & Derr J.N. (2003) Development of a linkage map and QTL scan for growth traits in North American bison. *Cytogenet Genome Res* **102**, 59-64.

- Schnabel R.D., Sonstegard T.S., Taylor J.F. & Ashwell M.S. (2005) Whole-genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families. *Anim Genet* **36**, 408-16.
- Seaton G., Haley C.S., Knott S.A., Kearsey M. & Visscher P.M. (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. *Bioinformatics* **18**, 339-40.
- Sellner E.M., Kim J.W., McClure M.C., Taylor K.H., Schnabel R.D. & Taylor J.F. (2007) Boardinvited review: Applications of genomic information in livestock. *J Anim Sci* **85**, 3148-58.
- Seaton G., Haley C.S., Knott S.A., Kearsey M. & Visscher P.M. (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. *Bioinformatics* **18**, 339-40.
- Smith T.P.L., Thallman R.M., Casas E., Shackelford S.D., Wheeler T.L. & Koohmaraie M. (2003) Theory and application of genome-based approaches to improve the quality and value of beef. *Outlook on Agriculture* **32**, 253-65.
- Stone R.T., Keele J.W., Shackelford S.D., Kappes S.M. & Koohmaraie M. (1999) A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. *J Anim Sci* **77**, 1379-84.
- Smith L.M. & Burgoyne L.A. (2004) Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. *BMC Ecol* **4**, 4.
- Steemers F.J., Chang W., Lee G., Barker D.L., Shen R. & Gunderson K.L. (2006) Whole-genome genotyping with the single-base extension assay. *Nat Methods* **3**, 31-3.
- Taylor J.F., Coutinho L.L., Herring K.L., Gallagher D.S., Jr., Brenneman R.A., Burney N., Sanders J.O., Turner J.W., Smith S.B., Miller R.K., Savell J.W. & Davis S.K. (1998) Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle. *Anim Genet* 29, 194-201.
- Taylor K.H., Taylor J.F., White S.N. & Womack J.E. (2006) Identification of genetic variation and putative regulatory regions in bovine CARD15. *Mamm Genome* **17**, 892-901.
- Thallman R.M., Bennett G.L., Keele J.W. & Kappes S.M. (2001a) Efficient computation of genotype probabilities for loci with many alleles: I. Allelic peeling. *J Anim Sci* **79**, 26-33.

- Thallman R.M., Bennett G.L., Keele J.W. & Kappes S.M. (2001b) Efficient computation of genotype probabilities for loci with many alleles: II. Iterative method for large, complex pedigrees. *J Anim Sci* **79**, 34-44.
- Van Eenennaam A.L., Li J., Thallman R.M., Quaas R.L., Dikeman M.E., Gill C.A., Franke D.E. & Thomas M.G. (2007) Validation of commercial DNA tests for quantitative beef quality traits. *J Anim Sci* **85**, 891-900.
- VanRaden P.M., Van Tassell C.P., Wiggans G.R., Sonstegard T.S., Schnabel R.D., Taylor J.F. & Schenkel F.S. (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. *J Dairy Sci* **92**, 16-24.
- Vidal-Taboada J.M., Cucala M., Mas Herrero S., Lafuente A. & Cobos A. (2006) Satisfaction survey with DNA cards method to collect genetic samples for pharmacogenetics studies. *BMC Med Genet* **7**, 45.
- Viitala S.M., Schulman N.F., de Koning D.J., Elo K., Kinos R., Virta A., Virta J., Maki-Tanila A. & Vilkki J.H. (2003) Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. *J Dairy Sci* **86**, 1828-36.
- Whatman Inc FTA Elute Data Sheet. URL http://www.whatman.com/References/FTA%20Elute%20Data%20Sheet(1).pdf.
- Whatman Inc DNA Extraction from FTA Cards Using the GenSolve DNA Recovery Kit. . URL http://www.whatman.com/References/GenSolveDataSellSheetLR.pdf.
- Whatman Inc FTA for Collecting Cattle DNA. URL http://www.whatman.com/References/51668.pdf.
- Woo J.G., Sun G., Haverbusch M., Indugula S., Martin L.J., Broderick J.P., Deka R. & Woo D.
 (2007) Quality assessment of buccal versus blood genomic DNA using the Affymetrix 500
 K GeneChip. *BMC Genet* 8, 79.

VITA

Matthew McClure was born in Russellville Arkansas in 1977. In 1980 his family moved back to the family farm in Sedalia, Missouri where they implemented a diversified production system of corn, wheat, soybean, swine, and beef. He attended Green Ridge High School before obtaining a Bachelor of Science degree in Biochemistry at the University of Missouri-Columbia in 2001. In August, 2005 he was married to Jennifer Fessler. After working both in industry and in academic labs he joined Dr. Taylor's lab in January, 2004 to begin a Master's in Animal Science before switching in 2006 to the Genetics Area Program for his PhD.