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ABSTRACT

This thesis considers the problem of treatment comparisons when only interval-

censored failure time data are available. This type of data occurs frequently in clinical

trials and other follow-up studies. We study several nonparametric procedures devel-

oped previously and compare them under different situations. In particular, we study

the situation where the difference between the groups occurs at an early or late time pe-

riod. For this problem, we generalize the log-rank tests developed for interval-censored

data in Zhao and Sun (2004) and the weighted log-rank test presented in Kalbfleisch

(2002). Numerical studies are conducted to evaluate the proposed test and compare

it with the unweighted log-rank test, which indicate that the proposed method works

well.

This thesis also considerers the problem of finding an appropriate sample size to

achieve a desired power. We present a simple-to-use formula to find the sample size

for a prespecified power and level of significance for the case of interval-censored data.
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Since many researchers use missing data techniques such as imputation along with

right censored methods to analyze interval-censored data, we also compare an imputed

Kaplan-Meier Estimate of the survival function to Turnbull’s Self Consistent Estimate.

We present a large numerical study to show that these estimates often disagree at late

time points when the mean survival time is large.
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Chapter 1

Introduction

1.1 Interval-Censored Failure Time Data

In recent years, a great deal of attention has been given to the study of interval-

censored failure time data. Many new methods have been developed to analyze this

type of data, but there has not been much work done to compare the different tech-

niques. In this thesis, we are interested in nonparametric estimation of a survival func-

tion and a nonparametric comparison of several survival function estimates. One goal

is to investigate several of these new methods under different situations and to identify

the method that performs better under each circumstance. Eventually, we would like

to be able to decide the method that will yield the most power for a particular set of

data.

What is interval-censored data? It is, simply put, data that has been censored into

an interval. So, instead of seeing an event of interest, such as a patient’s death time, or

the time at which a person is infected with the human immunodeficiency virus (HIV),
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we only see an interval within which the time falls. For example, we have a person who

was screened six months ago for HIV and the results were negative, but when he was

screened again last week his test was positive. We don’t know exactly when he was

infected with the virus only that it occurred sometime between 6 months ago and last

week. This interval of time is where interval censored data get their name.

We usually denote the interval into which an event of interest is censored by (Li, Ri].

So, Li, the left endpoint, was the latest observation time where the event of interest

had not occurred, and Ri, the right endpoint, is the first observation time after the

event of interest has occurred. We have an open left endpoint because we know the

event had not occurred at time L, but only after that time. Similarly, we don’t know

that the event of interest did not occur in the instant we tested the subject, so we have

a closed right end point.

There are two special cases of interval-censored data that are often of interest.

The first is called right-censored data. A right censored data point is one whose left

endpoint is known, but we do not know the right endpoint, so the subject is censored

into the interval (Li,∞). A right-censored data set is one where the failure times are

either known exactly or right-censored. This type of data occurs frequently in medical

studies where we are not able to follow the subjects for an infinite amount of time.

Suppose, for example, that we are interested in the time at which a laboratory rat

develops a tumor and we have 6 months to perform the experiment. If at the end of

the 6 months a rat did not have a tumor, we can only say that it would develop a

tumor some time after 6 months, so the censoring interval would be (6,∞).
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In the same study, if we were to test the rats for the first time when they were

2 months old, and if we were to observe a 2 month old rat who had a tumor, we do

not know when the rat got the tumor, only that it occurred before 2 months. The

censoring interval for this rat would be (0, 2]. When a subject has experienced the

event of interest before our first observation, we call these types of observations left-

censored times. It is very clear that both left censored data and right censored data

are special cases of interval-censored data.

Finklestein and Wolf (1985) presented a set of interval-censored data from a retro-

spective study to compare two different treatments for breast cancer. The goal was to

compare early breast cancer patients who were treated with primary radiation ther-

apy and adjuvant chemotherapy to women who were treated with radiation therapy

alone. In the study, breast cancer patients were seen at the clinics at intervals of 4 to 6

months, with increased time after the primary radiation treatment or for people living

in rural areas. The variable of interest was the time until the cosmetic deterioration

defined as the appearance of breast retraction. All of the patients were treated at the

Joint Center for Radiation Therapy in Boston between 1976 and 1980.

Since the doctors were not able to constantly monitor the women, they could only

say that the cosmetic deterioration occurred after the previous visit and before the

current one. The data for several women were right censored. This could be the result

of women failing to return because they no longer lived in the Boston area (i.e. they

changed clinics), or they no longer experienced any symptoms of the cancer, or a variety

of other reasons.
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Fischel et al. (1990) presented another set of interval-censored data. Zidovudine

(AZT) is a thymidine analogue that inhibits the replication of HIV. The authors showed

that AZT effectively delayed the onset of acquired immunodeficiency syndrome (AIDS)

and prolonged the survival of patients with the AIDS virus. The study was composed

of people who were diagnosed with mildly symptomatic HIV infections. All the people

were evaluated twice before entering the study, and all subjects were monitored every

two weeks for the first sixteen weeks of the study and then every month thereafter. In

this study, the event that the researchers were interested in was the onset of AIDS or

advanced AIDS-related complexes. An advanced AIDS-related complex is the presence

of two or more symptoms as well as a CD4 count less than 200 cells/mm3.

In order to test for the onset of AIDS, the doctors need to draw a sample of blood.

It is not possible to sample a person’s blood every day, so the doctors could only test

the subjects on a monthly basis and sometimes longer. Also, since the study was

terminated early, many of the subjects did not experience the onset of AIDS. These

subject’s failure time were subject to right censoring.

1.2 Analysis of Failure Time Data

When analyzing failure time data, there are generally three things that are of in-

terest. The first is estimation of the survival function. Often, we need to estimate the

survivor function before we can make any inferences about the population. In addition,

many methods used for treatment comparison also require the survivor function to be

estimated. The second is regression analysis. We use this in order to make inferences
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about the survivor function as well as the effects of various covariates on the survivor

function. The last task is treatment comparison. This is generally performed when we

need to test the effectiveness of several different treatments. An example of treatment

comparison is needed to investigate the effectiveness of a new cold medication. The

doctors can administer a placebo and a newly developed cold remedy to two groups of

patients with colds. Since their goal is to determine if the cold infection’s survival time

is lower for the group receiving the remedy, they would need methods to test this. One

of the goals of this thesis is to analyze methods developed for interval-censored data.

1.2.1 Estimation of a Survival Function

For interval-censored failure time data, many early methods for estimation of a dis-

tribution function used constrained Newton-Raphson methods. Although this method

worked, it was extremely cumbersome. In 1972, Bruce Turnbull developed a simpler

and more straight-forward method for estimating the distribution function in his pa-

per “The empirical Distribution Function with Arbitrarily Grouped, Censored, and

Truncated Data.” In this paper, Turnbull developed the so-called self-consistency al-

gorithm. This algorithm is a special case of the EM algorithm and is used to estimate

the survival function when the data is censored and/or truncated.

Turnbull’s self consistency algorithm is based upon the maximum likelihood esti-

mator (MLE) of the distribution function. It is important to note that the MLE, F̂ ,

of F will put probability mass only at a finite number of points. In other words, it will

be a step-function. This means that we only need to estimate F at the points where
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the jumps occur. To do this, we obtain initial estimates of s = (s1, s2, ..., sm), where

sj = F (pj+)− F (qj−). We can use these initial estimates to find the probability that

the ith observation lies in [qj, pj] and the expected number in the group correspond-

ing to the ith observation which have values in [qj, pj]. We can then obtain improved

estimates of s. We repeat this process until the convergence is achieved. The main

advantage of this algorithm is the fact that it is “automatic, simple to implement, and

is intuitively appealing” (Trunbull, 1976).

Although it is a very powerful technique, the self-consistency algorithm is often

very slow to converge. Gentleman and Geyer (1990) developed an improved method

for estimating a survivor function in which the standard convex optimization technique

is applied. They also provide easily verifiable conditions for the self-consistent estimator

proposed by Turnbull to be the maximum likelihood estimator and for checking whether

the MLE is unique. A sufficient condition is given for almost sure convergence of the

MLE to the true underlying distribution function.

The method proposed by Gentleman and Geyer requires two assumptions: the

censoring must be noninformative and failures cannot coincide with observation times.

The assumptions are required in order for the probability of the observation times to

not involve any of the parameters of interest. We need this so that we can consider

the likelihood conditional upon the observed intervals. Gentleman and Geyer then

considered the problem of estimating s, where sj = F0(pj−) − F0(pj−1). In order to

find the MLE of p, five conditions called the Kuhn-Tucker conditions must hold. The

MLE of s, ŝ, will be the solution to the Kuhn-Tucker equations.
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These methods of estimating the survival function can be difficult to compute.

However, in the case of right-censored data, the MLE is given by the Kaplan-Meier or

Product Limit Estimator (Kalbfleisch 2002). The Kaplan-Meier estimate is a gener-

alization of the empirical distribution function for complete data. The Kaplan-Meier

estimate is such that the estimated probability of failure agrees exactly with the ob-

served proportion of deaths at a particular time and the number of individuals still in

the study at that time.

Since this method is relatively easy to calculate, many researchers also use this

method when the data are interval-censored. However, this requires using a missing

data technique such as imputation. Sun (2006) suggests a simple imputation scheme.

He pointed out that a common way to perform this imputation is to simply use the

right endpoint or the left endpoint of the interval. Sun also pointed out that a major

advantage of the single imputation methods is they are simple to compute and when

the intervals of observation are narrow the right-imputed estimate and the left-imputed

estimate will be similar.

If a single imputation is not adequate, many multiple imputation methods are also

available. Several of these can be found in Sun (2006).

1.2.2 Regression Analysis of Interval-Censored Data

One of the first papers discussing regression analysis of interval-censored failure

time data was given by Finklestein in “A Proportional Hazard Model for Interval-

Censored Failure Time Data” in 1986. In the paper, she suggested estimating unknown
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parameters by using the maximum likelihood approach. In order to use this approach,

two assumptions are necessary: i) the censoring time is independent of the covariates

and the time of the event of interest, and ii) given an infinite amount of time, each

subject will experience the event of interest. These assumptions are not very difficult

to achieve.

For example, in a follow-up study where scientists only have funding for six months

of follow-up, the censoring time for all subjects would be at the six month mark. This

does not have any effect on the failure time, nor would the covariates such as the

treatment group. The second assumption is also very common in real world applica-

tions. In a study where researchers are interested in the amount of time a patient has

AIDS before he/she dies, we know that all people will eventually die no matter what

treatment they receive.

A drawback of the likelihood approach developed by Finklestein is that it could

involve the inversion of potentially large matrices. To deal with these sorts of situations,

several different types of methods were developed. In 2000, Pan, for example, developed

a method based on the multiple imputation approach. Other methods can be found in

Sun (2006).

1.2.3 Nonparametric Treatment Comparison

Methods like Finklestein’s involve making assumptions about the distribution from

which the failure times occur. For example, she made the assumption that the survival

times follow the Cox model. In many situations, we do not know anything about the
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underlying distribution of survival times. Even when we do not know the shape of the

survival function, we may wish to compare several different treatments to see if the

survival time for one treatment is longer than another. In these cases, we use tests which

do not make any assumptions about the shape of the distribution, or nonparametric

tests. A major advantage of using these tests is that no matter what the underlying

distribution actually is, they will give the correct level of significance.

Peto and Peto (1972) developed a rank-based testing procedure for comparing treat-

ment groups when right-censored data are present. They focus on three tests in par-

ticular: the log-rank test, the probit-rank test, and Wilcoxson’s rank sum test. The

Wilcoxson test proposed is a generalization of the usual version (Wilcoxson 1945). The

scoring system is modified to take into account the censoring of the data. The authors

noted that their generalization is preferred to previous generalizations because under

right-censoring the expectation of their test statistic remains the same as Wilcoxson’s.

The log-rank test is a test which uses the number of patients still in the study

and the number of patients who fail. They simply compute the observed numbers and

the number we would expect to see if the treatment groups were from an identical

distribution. The test is based on the difference between these observed numbers and

the expected ones.

The authors pointed out that the decision to use a particular test is based not

only on the power of the test in question, but also of the power of other tests for the

same situation. They showed that under a normal alternative, the probit-rank test is

the most efficient of the three tests and the log-rank test is the most efficient under
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Lehmann alternatives.

Kalbfleisch and Prentice (2002) pointed out that there are important extensions of

the log-rank test. A stratified log-rank test allows for heterogeneity in the populations

being compared. They also noted that the log-rank test is sensitive when the hazard

ratios are constant over time. There are many cases where this may not hold. They

gave a weighted log-rank test to help handle this type of situation.

Sun (1996) further generalized the log-rank test for the case where interval-censored

data are present. In his paper, Sun suggested a procedure to estimate the number of

patients still at risk and the number of deaths at each time in order to approximate the

log-rank test for right censored data. He also suggested two methods for estimating the

variance. One method is to use the method proposed by Louis (1982) and the other

method is to use a logistic approximation. Sun (2004) developed a further generaliza-

tion of the log-rank test. In his 2004 paper, he proposed a model that would reduce to

the usual log-rank test when right-censored data are present.

1.3 Sample Size Calculations

In many medical studies, it can be costly to follow patients for an extended period

of time. Many researchers would like to ensure they can achieve a desired level of power

for a test of H0 : S1(t) = S2(t) ∀t, while keeping costs low. This involves making sure

enough patients are recruited for the study but not too many. Because of this, a power

analysis is often run before a study begins or after a brief pilot study.

There have been many methods developed to find an appropriate sample size.
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Schoenfeld (1981) presented methods for computing the asymptotic mean and vari-

ance of a generalized version of the log-rank statistic, the modified Wicoxson statistic,

and many other commonly used methods for comparing the survival curve. Using these

results, he also presented a sample size calculation for the log-rank statistic.

Schoenfeld’s methods are good under a specific set of assumptions. Lakatos (1988)

developed a more general method for computing the sample size. As in Schoenfeld’s

paper, Lakatos computed the sample size required to compare two survival functions

using the log-rank test. However, Lakatos’s calculation removed some of the more

restrictive assumptions from the earlier calculations. His method does not require the

proportional hazards assumption. It also has the benefit of allowing for some more

common clinical trial designs such as a trial with staggered entry or stratification.

Lakatos’s method is general and easy enough to use that major software developers

such as PASS use it for their power analysis programs.

1.4 Outline of the Thesis

In recent years many methods have been developed to analyze interval-censored

failure time data. In particular, there has been a great deal of attention given to

treatment comparison. However, not much effort has been put into comparing these

methods. One of the goals of this thesis is to analyze several of the new methods

that have been developed in recent years and decide which approach is best under a

practical, specific situation. Chapter 2 describes several of these methods and presents

the results of a large simulation study for the evaluation of the methods. We also apply

11



the methods to a real-world example.

While these methods perform well in a general setting, in some studies we may

expect that the difference in the survival functions occurs at early or late time points.

Since these methods may not be sensitive to these early or late differences, Chapter

3 introduces a new weighted log-rank test applicable when interval-censored data are

present. This test is more sensitive to early and late differences in the survival function

than previously developed nonparametric tests.

Often, clinical trials can be expensive to run. Researchers would like to keep the

costs of these trials as small as possible while ensuring that the power of the tests

is adequate. This means that they need to recruit enough patients into the study

to achieve their desired power, but not too many. Chapter 4 presents a method for

computing the sample size required for interval-censored data.

In some cases, researchers are unfamiliar with techniques to analyze interval-censored

data, but they are comfortable using techniques developed for right-censored data.

When this situation arises, the researcher may use a missing data technique such as

imputation to approximate a right-censored data set, and then use a method such as

Kaplan-Meier to estimate the survival function. Chapter 5 considers such a situation

and specifically investigates the difference between the imputed Kaplan-Meier estimate

and the self consistency estimate of a survival function.
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Chapter 2

Statistical Methods for Comparing Survival

Functions

2.1 Notation

Consider a survival study involving two treatment groups. Let T denote the

time of the event of interest, S(t) = P (T ≥ t) = 1 − F (t) the survival function,

λ(t) = − d
dt

logS(t) the hazard function of the survival time, and Λ(t) =
∫ t

0
λ(u)du the

cumulative hazard function. Then Sj(t), λj(t), and Λj(t) are the survival function,

hazard function, and cumulative hazard function for treatments j = 1, 2 and Ti is

the event time of interest for subject i. Let n1 and n2 be the number of subjects in

treatment groups 1 and 2, respectively, and n = n1 + n2 the total number of subjects.

Let Ŝ(t) denote the maximum likelihood estimator (MLE) of S(t) and Ŝj(t) the MLE

of Sj(t). Since our overall goal is to test whether the two treatment groups have the

same survival function, we will be testing H0 : S1(t) = S2(t) ∀t.
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2.2 Method 1: A Generalized Log-Rank Test for Interval-

Censored Failure Time Data

This method was developed by Zhao and Sun (2004). It was developed as an

improvement over the method developed by Sun (1996), which could overestimate the

numbers of risks and failures. Thus, when right-censored data are available, the test

may not reduce to the log-rank statistic. The new method overcomes these faults and

reduces to the log-rank statistic when right-censored data are available.

In Zhao and Sun (2004), the authors started by defining δi = 0 if the observation on

the failure time Ti is right censored and δi = 1 otherwise, and ρij = I(δi = 0, Li ≥ sj).

So, ρij is the indicator of the the event that Ti is right-censored and subject i is still

at risk at time sj−. Define αij = I(sj ∈ [Li, Ri]) the indicator of event sj ∈ [Li, Ri].

The authors estimated the total number of failures and the total number of subjects

at risk at time sj by

d′j =
n∑

i=1

δi
αij(Ŝ(sj)− Ŝ(sj+))∑m+1

u=1 αiu(Ŝ(su)− Ŝ(su+)

and

n′j =
m+1∑
r=j

n∑
i=1

δi
αir(Ŝ(sr)− Ŝ(sr+))∑m+1

u=1 αiu(Ŝ(su)− Ŝ(su+))
+

n∑
i=1

ρij ,

and the numbers of failures and subjects at risk in treatment group l at time sj by

d′jl =
l∑
i

δi
αij(Ŝ(sj)− Ŝ(sj+))∑m+1

u=1 αiu(Ŝ(su)− Ŝ(su+))

14



and

n′jl =
m+1∑
r=j

l∑
i

δi
αir(Ŝ(sr)− (̂S)(sr+))∑m+1
u=1 αiu(Ŝ(su)− Ŝ(su+))

+
n∑

i=1

ρij ,

where
∑l

i denotes the summation over all subjects in population l, l = 1, 2, j =

1, . . . , m. If the data were right-censored these would be exactly the numbers of failures

and subjects at risk.

To test H0 the authors use the test statistic U = (U1, U2)
t, where

Ul =
m∑

j=1

d′jl − n′jl
d′j
n′j

.

When the data are right censored this U is exactly the same as the usual log-rank

statistic. Since the usual log-rank statistic is a special case of this test, the authors

called this the generalized log-rank test.

To carry out the test, the authors suggested using U∗ = U tV −U which follows a

χ2
1 distribution asymptotically under the null hypothesis. Here V − is the generalized

inverse of the estimate of the covariance matrix of U . Unfortunately, using the fisher

information matrix to estimate V is extremely complicated, so the authors proposed

using a multiple imputation to estimate it. The idea of the imputation is to impute

the failure times for subjects whose failure times are not right censored. Then the

covariance matrix can be estimated by summing the within-imputation covariance and

the between-imputation covariance. They use a 3-step procedure to accomplish this.

Let M be a pre-specified number of resamplings for the bootstrap. Then for each r

in 1, . . . ,M ,
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Step 1: If δi = 0, then let T r
i = Li and δr

i = 0. Otherwise, δr
i = 1 and T r

i is a

realization from the conditional survival function

fi(s) = P (T r
i = s) = (Ŝ(s)− Ŝ(s+))/(Ŝ(Li)− Ŝ(Ri+)), s ∈ [Li, Ri].

So, the δr
i are always going to be the same. Step 2: Use the new data to find the

number of failures and risks, and estimate U as before, then compute the covariance

estimates V̂ r = V̂ r
1 + V̂ r

m where

(V̂ r
j )ll =

nr
jl(n

r
j − nr

jl)d
r
j(n

r
j − dr

j)

(nr
j)

2(nr
j − 1)

,

(V̂ r
j )l1l2 =

nr
jl1

nr
jl2

dr
j(n

r
j − dr

j)

(nr
j)

2(nr
j − 1)

, l1 6= l2.

Step 3: Repeat steps 1 and 2 for r = 1, . . . , M the number of imputations, and estimate

V by V̂ = V̂1 + V̂2, where

V̂1 =
1

M

M∑
r=1

V̂ r ,

V̂2 = (1 +
1

M
)

∑M
r=1[U

r − Ū ][U r − Ū ]t

(M − 1)
,

and

Ū =
M∑

r=1

U r

M
.

If we had right-censored data, all of the V̂ r’s would be the same, and V̂2 would be 0,
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and V̂ would be the usual estimate for the Log-Rank Statistic.

2.3 Method 2: A Generalized Log-Rank Tests for Interval

Censored Failure Time Data II

This method was developed by Sun, Zhao, and Zhao (2005). To test H0 the authors

proposed using the following test statistic

Uξ =
n∑

i=1

xi
ξ[Ŝ(Li)]− ξ[Ŝ(Ri)]

Ŝ(Li)− Ŝ(Ri)
,

where xi is the 2x1 vector of treatment indicators associated with subject i whose lth

element is equal to 1 if it is from population l and 0 otherwise, and ξ is a known

function over (0, 1). When ξ(t) = tlogt, and the data are right censored, this will give

us the usual log-rank statistic.

In order to establish the asymptotic distribution of Uξ, we first must define several

things. η(x) = 1 − ξ(1 − x) and we assume that limx−>0η(x) = limx−>1η(x) = c0.

Then we let H and h denote the distribution and density functions of (Ui, Vi) , and

F (t) = 1− S(t). So, we can rewrite Uξ as

Uη = δ
η[F (U)]− c0

F (U)
+ Γ

η[F (V )]− η[F (U)]

F (V )− F (U)
+ (1−∆− Γ)

c0 − η[F (V )]

1− F (V )
.

If we let λ2 and ν2 denote the Lebesgue measure on R2 and counting measure on the
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set [(0, 1), (1, 0), (0, 0)] , respectively. Define

qF,H(u, v, δ, γ) = h(u, v)(F (u))δ(F (v)− F (u))γ(1− F (v))1−δ−γ ,

the density function of (Ui, Vi, ∆i, Γi), and define dQ0 = qFHd(λ2 ⊗ ν2)

Qn(u, v, δ, γ) =
1

n

n∑
i=1

I[(Ui, Vi) ≤ (u, v), (∆i, Γi) = (δ, γ)] ,

K0(u, v, δ, γ) = δ
η[F (u)]− c0

F (u)
+ γ

η[F (v)]− η[F (u)]

F (v)− F (u)
+ (1− δ − γ)

c0 − η[F (v)]

1− F (v)
.

Now, if the regularity conditions of Groenboom and Wellner (1992) hold for the strong

consistency of F̂n = 1− Ŝ(t) and F (t) has a support on [0,M] with continuous density

function, then Uξ has an asymptotic distribution given by theorem 1 in Sun et al.

(2005) with k = 2. So, Uη has an asymptotic normal distribution with mean 0 and

covariance matrix Σ = [σlr]2x2, where

σll = pl(1− pl)Q0(K
2
n)

and

σlr = −plprQ0(K
2
n), l 6= r.

So, we can consistently estimate Σ by Σ̂ = [σ̂lr]2x2, where
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σ̂ll =
nl(n− nl)

n2
Qn(K̂2

n)

and

σ̂lr =
−nl(nr)

n2
Qn(K̂2

n) .

It is clear that the sum of the components of Uη will be zero, and Σ̂ will be singular.

So, if we let U0 denote the first component of Uη and Σ̂0 = σ̂11, we can test H0 with

χ0 = U t
0Σ̂

−1
0 U0 which has a χ2

1 asymptotic distribution under the null hypothesis.

For this thesis, we will restrict ourselves to the same class of functions for ξ as

the authors did, namely ξ(x) = (xlogx)xρ(1 − x)γ where ρ and γ are constants. If

ρ = γ = 0 and the data were right censored, then we would have the usual log-rank

test.

As noted by the authors, many methods for comparing survival functions when

data is interval censored do not have known asymptotic properties. A key advantage

of this method is that they derived the asymptotic properties for their test. Here we

know that the results will hold regardless of the distribution of the survival function.

Other methods may work in the situations the authors propose, but when applied to

another situation (i.e. a survival curve that does not follow the proportional hazard

model) the method may fail.
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2.4 Imputed Log-Rank Test: A Log-Rank Test Based on a

Single Imputation

This test utilizes the usual log-rank test. However, since the log-rank test is only

applicable to right-censored data, we must use the interval censored data to simulate

right censored data. We accomplish this task with a single imputation of the failure

time.

We first estimate the common survival function Ŝ(t) under H0 : S1(t) = S2(t) =

S(t), ∀t. Next, we use a single imputation procedure to impute right-censored data.

Let δi = 0 if the ith subject’s failure time is right censored and δi = 1 if it is not right

censored. So, δ is the indicator that the data point is not right censored. Now, the

imputation is two steps.

Step 1: If δi = 0, then let T r
i = Li. Otherwise, when δr

i = 1 and T r
i is a realization

from the conditional survival function

fi(t) = P (T r
i = s) =

Ŝ(s)− Ŝ(s+)

Ŝ(Li)− Ŝ(Ri+)
.

So, the δr
i are always going to be the same.

Step 2: Use the right-censored data to find the numbers of failures and risks at

each time point, ti. We call dlj the number of risks at time tj from the lth population,

rlj the number of subjects at risk at time t−j from the lth population, dj the number

of failures from all populations at time tj, and rj the total number of subjects at risk

at time t−j . Also, define the expected number of failures from population l at time tlj
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ωlj = E[dlj|dj] = rlj
dj

rj
.

So, we let Dl be the total number of failures from population l and El the expected

number of failures from population l. That is,

Dl =
m∑

j=1

dlj

and

El =
m∑

j=1

ωlj .

We can also estimate the variance of dlj|dj by Vj = [Vij], where

V
(ll)
j =

rlj(rj − rlj)dj(rj − dj)

r2
j (rj − 1)

and

V (l1l2) = −rl1rl2dj(rj − dj)

r2
j (rj − 1)

, l1 6= l2.

Then the log-rank statistic is defined as ν = (D1 − E1, D2 − E2)
t.

We estimate the covariance of ν by V = V1 + V2 + . . . + Vm. We can then test H0

with χ2 = νtV −1ν based on a χ2 distribution with 1 degree of freedom. However, since

∑
i νi = 0 we will use χ2∗ = (ν∗)t(V ∗)−1(ν∗) to test H0. Where ν∗ = ν1 and V ∗ = V11.

A major drawback of this log-rank test is that it may not perform well when the

hazard functions cross. This is because we can rewrite Dl − El as
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Dl − El =
m∑

j=1

[rlj(
dlj

rlj

− dj

rj

)] =
m∑

j=1

rlj(λ̂lj − λ̂j) =

∫ ∞

0

ωi(t)[dΛ̃i(t)− dΛ̃(t)] .

So, if the hazards cross, this could integrate out to 0 even if there is a large difference

between the survival functions. However, this is counterbalanced by the fact that if the

survival functions follow the proportional hazards model, the log-rank test is the most

efficient test for right-censored data. Another advantage that this test has is the ease

of use. Many researchers are familiar with the log-rank test, so if a statistician were to

inform the researcher that they were using the log-rank test, the researcher would feel

at ease knowing a powerful and useful tool was implemented.

2.5 The Kolmogorov Approach

Many of the methods developed earlier in this chapter as well as methods not

considered by this thesis perform poorly in the situation when the hazard functions

cross each other. For example, the method proposed in Zhang et al. (2001) involves an

integral of the difference between the survival functions. If the hazards cross, then the

survival functions may also cross and will result in a small test statistic, even though

we may be far from H0 : S1(t) = S2(t) ∀t. Consequently, methods like this typically

have a high probability to cause a type II error.

The Kolmogorov approach is very simple in its design. We use the test statistic

K = supt≥0|S1(t) − S2(t)|. So, we first estimated the survival function using the
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self-consistency algorithm, and used this to find the test statistic K∗ = maxt≥0|Ŝ1(t)−

Ŝ2(t)|. We will reject H0 if K* is large. In order to determine if K∗ is large, a bootstrap

procedure is employed. This is broken down into 3 steps.

Step 1: Re-sample the data. To accomplish this, all the data are placed in a

population and two random samples of sizes n1 and n2 of these combined data are

taken with replacement.

Step 2: Use the new data to estimate the survival functions Ŝr
1 and Ŝr

2 , and find

the test statistic K∗
r with these new data.

Step 3: Repeat steps 1 and 2 for r = 1, 2, ..., M the bootstrap size.

Now, if the regularity conditions from Fang, Sun, and Lee (2002) hold, we can apply

the theorem from that paper, and when M is large the bootstrap samples K∗
1 , ..., K

∗
M

follow a normal distribution. So, the p-value of the test can be calculated to be the

proportion of the K∗
r ’s whose values are greater than K∗.

The main advantage of the Kolmogorov method is that it performs well when the

hazard functions cross. This is due to the fact that this test looks only at the maximum

of the difference between the two estimated survival functions. It is also easy to use. It

does not require any complicated formulas. Unfortunately, it is very computationally

expensive. This is because it requires the estimation of two survival curves for each

bootstrap resample and many algorithms used to estimate the survival function, like

the self-consistency algorithm, are very slow to converge. That is, this method will

take a fairly long time to run when the bootstrap size is large.
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2.6 Method 5: A Simple Nonparametric Two-sample Test

In many studies, patients are examinened several times. The previous methods

only take into consideration the time of the examination before the failure occurred

and the observation after it occurred. Zhang et. al (2003) developed a simple method

for analyzing interval-censored data that takes into account all observation time points

for each patient. The authors note that this type of method is more realistic in its

application.

To construct the test statistic, define α0,i =
∫

(1− S0(t))dGi where Gi is the distri-

bution function of the ith observation time. The authors note that α0,i = P (T ≤ Ti) =

E[I(T ≤ Ti,j)]. So, we can estimate α0,i with the simple empirical estimate

α̂n,i =
∑

[j:Kj≥i]

I(Tj ≤ Ti,j)

n(i)
,

where n(i) =
∑n

j=1 I(Kj ≥ i) is the number of subjects who have at least i observations,

and Kj is the number of observations of the jth subject, and Tij is the ith observation

time for the jth subject (j = 1, . . . , n). Zhang et al. (2003) proved that

√
n(α̂n − α0) →p N(0, A) ,

where α̂n = (α̂n,1, α̂n,2, ...α̂n,K0)
t and α0 = (α0,1, α0,2, ...α0,K0)

t. Let νi = P (K < i)

the probability that a subject drops out by the ith observation. Then we have the

asymptotic covariance matrix A = [ai,j]K0XK0 with
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ai,j = α0,j
1− α0,i

1− νj

.

The authors used the asymptotic results above to construct the nonparametric test

statistic. So, under H0 we have

√
n1(α̂n1

− α0) →p N(0, A)

and

√
n2(α̂n2 − α0) →p N(0, A) ,

where α̂n1
and α̂n2

are empirical estimates of α̂0 for the two samples. Then if n1/n → µ,

the above yields

√
n(α̂n1

− α̂n2
) →d N(0,

A

µ(1− µ)
) .

Now, let ω = (ω1, ω2, . . . , ωK0)
t be the weights, adjusting for attrition in follow-up

studies. So, let ωi be the percentage of subjects in the combined sample who have at

least i observations. Then, we have

√
n

K0∑
i=1

ωi(α̂n1,i − α̂n2,i) →d N(0,
ωtAω

µ(1− µ)
)

and

ωtAω

µ(1− µ)
=

K0∑
i=1

ciω
2
i α0,i(1− α0,i) + 2

K0−1∑
i=1

K0∑
j=i+1

ciωiωjα0,i(1− α0,j) ,
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with ci = 1/[µ(1− µ)(1− νi)] for i = 1, . . . , K0, and we have the test statistic

Z =
n1/2

∑K0

i=1 wi(α̂n1,i − α̂n2,i)

(
∑K0

i=1 cn,iw2
i α̂n,i(1− α̂n,i) + 2

∑K0−1
i=1

∑K0

j=i+1 cn,iwiwjα̂n,i(1− α̂n,i))1/2
.

H0 is rejected when |Z| > Zα/2, where Zα/2 is the upper α/2 point of a standard normal

distribution.

A main advantage of this test is that it is that although “it does not use information

about the actual observation times, it is not a rank-based test.” Also, “although it is

designed for continuous observation data, it is applicable to discrete observational data

as well.” Many methods were created with type II interval censoring strictly in mind.

This method, however, was designed to be used with type k interval censoring. So, it

is applicable no matter how many observations you have for each subject.

2.7 A Simulation Study

2.7.1 Simulation Set-ups

The simulation study analyzed the five different techniques given in the previous

sections. In the study, we compared the methods under both proportional hazard

setups as well as non-proportional hazard setups. For the proportional hazard setup,

we used the Weibull model with shape and scale parameters 1 and a, respectively. So,

S1(t) = exp(−ta) and S2(t) = Sβ
1 , with β = 1.73, 2, and 2.25.

For the non-proportional hazard model, we looked at piecewise exponential func-
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tions, with an early difference between the survival functions, a late difference between

the survival functions, and most importantly a situation where the hazard functions

cross. Specifically, we considered three setups with the following hazard functions and

plots for the corresponding hazard and survival functions.

Early difference: Hazard A

λ1(t) = 0.25It≤0.75 + It>0.75

λ2(t) = 0.75It≤0.75 + It>0.75
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Late Difference: Hazard B

λ1(t) = It≤0.5 + It>0.5

λ2(t) = It≤0.75 + 2It>0.75
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Crossing Hazards: Hazard C

λ1(t) = 0.5It≤0.75 + 1.5I0.75<t≤1.5 + It>1.5

λ2(t) = 1.5It≤0.75 + 0.5I0.75<t≤1.5 + It>1.5
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In addition to the piecewise exponential, We studied the linear hazard functions
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given by λ(t) = α0 + α1x. These hazard functions can give parallel hazard functions,

crossing hazard functions, and neither parallel nor crossing (NPNC) hazard functions.

Parallel Hazards, Hazard D: λ1(t) = 1 and λ2(t) = 2
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Crossing Hazards, Hazard E: λ1(t) = 1 and λ2(t) = 0.2 + t
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NPNC Hazards, Hazard F: λ1(t) = 1 and λ2(t) = 1.2 + .3t
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We also considered two hazards to check the size of the tests.

Exponential(1) Hazards: Hazard S

λ1(t) = λ2(t) = 1

Weibull(2, 2) Hazards: Hazard W

λ1(t) = λ2(t) = 8t

2.7.2 Generation of Interval-Censored Data

We used R to draw a sample of fifty subjects from populations whose survival

functions were described above. We then drew a random sample from a uniform distri-

bution on the interval [0, 5] and found the order statistics of the sample. If the failure

time was between two observations, U and V, then the censoring interval was taken to
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be [U, V). If it was below the lowest observation U, then the interval was [0, U), and

if it was greater than the highest observation V, the censoring interval was taken to be

[V,∞).

While the theory behind many of the methods described above require the censoring

time to be drawn from a continuous distribution, we knew that this assumption was

not practical in many real world applications. So, in addition to the uniform censoring,

we also analyzed the data using a discrete censoring mechanism. To accomplish this,

we assumed that the subject was supposed to be observed at 8 times (0.5, 1, 1.5, 2,

2.5, 3, 3.5, 4). For each subject at each time point we performed a Bernoulli trial

with probability of success 0.5. If the trial was a success, we observed the individual

at that time, and if it was a failure we did not observe the subject at that time.

The censoring interval was then determined to be the observation before the failure

time to the observation after the failure time. If the failure time was before the first

observation, the left endpoint was taken to be 0, and if the failure time was after the

last observation time, the right endpoint was taken to be ∞.

In all situations, we used Turnbull’s self-consistency algorithm to estimate the sur-

vival function S(t).

After collecting our data as described above, we applied the methods to analyze the

data and decide whether or not the test will reject the null hypothesis H0 : S1(t) = S2(t)

using the 0.05 level of significance. This was done for one thousand replications of each

hazard/method combination. The empirical power or size of the test was defined as

the proportion of times we rejected H0.
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2.7.3 Results

When deciding which method is best, we looked at two properties. The first is the

power. The more power a method has the more desirable it is. The second property we

are interested in is robustness. This is important because we will seldomly know exactly

which type of hazard we have. A more robust method will give us more confidence in

the results of a test especially when we know very little about the underlying hazard.

In addition to comparing the methods to each other, we also needed a benchmark to

make sure they performed well in general. In order to accomplish this, we compared

them to the parametric score test.

Tables 1 and 2 give the power and sizes for the discrete censoring case. Here, when

we do not know anything about the shapes of the hazard functions of the two survival

functions, the Kolmogorov approach is the method we would choose. While the power

for the Kolmogorov approach is only the best for hazards C and E, it is the most

robust of all the methods we are considering. All of the other methods do not handle

the crossing hazard cases very well. In the case of hazard F, for example, each method

has a power below .10, with the Kolmogorov approach being the sole exception.

If we knew, however, that the proportional hazards assumption holds, then method

5 would be the clear choice. If we knew that there were an early difference or a late

difference in the hazard functions, we would also choose method 5 since it would yield

the highest power for these cases as well. However, if the hazards cross, we would

want to use the Kolmogorov method since it has the most power of the methods we

are considering when the hazards cross.
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Tables 3 and 4 give the power and sizes for the case where the censoring times were

drawn from the uniform distribution. In this case, with little or no information about

the hazard functions, we would want to use method 2 with γ = 1 and ρ = 1. This

method performs well under all of the hazard setups we proposed, and it performs the

best under the situation where the hazards crossed or there was an early difference in

the hazard functions.

Again, for the continuous hazards case, we would use a different method if we had

more information about the underlying hazard functions. If the proportional hazards

assumption holds, we would want to use method 2 with γ = 0 and ρ = 0. For many

of the proportional-hazards cases we considered, this method has the highest power.

In the few cases where it does not have the highest power, it is relatively close to

the highest. If, however, we had the case where there was a late difference between

the hazard functions, it appears that method 2 with γ = 1 and ρ = 0 would be the

best choice. When the hazard functions cross, we would want to use the Kolmogorov

approach. Although it does not yield the most power for both of our crossing hazard

cases, it is very close to the highest power for Hazard E and it is the best for hazard

C.

We can see from Tables 1 and 3 that the size of some of the tests may be different

from the expected 0.05. For example, method 1 has a size of 0.064 for hazard S. In order

to see if this was a problem, we conducted a test H0 : p = 0.05 against Ha : p 6= 0.05.

The p-value of this test was 0.59. So, at the 0.05 level, there is not sufficient evidence

to conclude that the size is different from 0.05. Therefore, we can conclude that the
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empirical size of these tests is ok.

If we look at our results, we can see that many of the methods we are considering

compare favorably to the score test. For example, if we look at Table 2, the proportional

hazards with discrete censoring time, we can see that the power of method 5, the

method we chose as the best for this case, has at least 86% of the power that the score

test had. For the non-proportional hazard case, the Kolmogorov approach had at least

55% of the power of the score test. When the censoring is continuous, the new methods

did not perform quite as well. When the models follow a Cox model, method 2 with

γ = 0 and ρ = 0 has at least 59% of the power of the score test. Finally, when the

proportional hazards assumption does not hold, method 2 with γ = 0 and ρ = 0 has

at least 37% of the power of the score test.

We also performed the simulation for the sample size n = 200 using the discrete

censoring mechanism. The results of this are given in Tables 5 and 6. This confirms

the results we had seen for the smaller sample size study. When we do not have

any information about the underlying hazard function, we would still wish to use

the Kolmogorov approach. It gives a large power for all of the hazard functions we

considered, especially in hazard E where many of the other tests failed to give adequate

power. If we look at Hazard E, for example, we can see that most Methods still had a

power below .10. The Kolmogorov approach and Method 2 with γ = 1 and ρ = 1 both

had power greater than .10, but the power of the Kolmogorov approach was more than

1.6 times the power of method 2. When we know the proportional hazard assumptions

hold, method 5 would be the best choice. It had the most power of the methods we
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considered. So, the results for our study still hold when the sample size was changed,

but as we expected, the power for all of the tests increased when we doubled the sample

size for each method for each hazard.

2.8 An Illustrative Example

We applied all of the methods we were testing to the data from the breast cosmesis

study given in Section 1.1. Recall that Finklestein and Wolf (1985) presented a set of

interval-censored data from a retrospective study to compare two different treatments

for breast cancer. The goal was to compare early breast cancer patients who were

treated with primary radiation therapy and adjuvant chemotherapy to women who

were treated with radiation therapy alone. The variable of interest was the time until

the cosmetic deterioration occurred, which was determined by the appearance of breast

retraction.

We used Turnbull’s self-consistency algorithm to estimate the survival curves of the

two groups. A plot of the estimated survival functions is given in Figure 1. The p-value

for each method was computed, and they are given in Table 7.

Method 1 yielded a p-value of .0052, which tells us that there is sufficient evi-

dence to conclude that women who received primary radiation therapy and adjuvant

chemotherapy experienced cosmetic deterioration later than women treated with radi-

ation therapy alone.

Method 2 with γ = 0 and ρ = 0 yielded a p-value of .007. When γ = 1 and ρ = 0

the p-value was .002, and when γ = 1 and ρ = 1 the p-value was .0004. So, for all
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three cases at α = 0.05, we would reject H0 and conclude that the time to cosmetic

deterioration was different for the two groups.

The log-rank test yielded a p-value of .0057, so the results from this test agree with

the results from method 1 and method 2. The p-value from method 5 was .0007, so

this also agrees with method 1 and method 5’s results.

However, the Kolmogorov approach gave a p-value of 0.14. So, at α = 0.05, we do

not have sufficient evidence to conclude that the rates of cosmetic deterioration differed

for the two groups. So, the Kolmogorov approach differed from the other four methods

we are considering.

So, why did the Kolmogorov approach differ from the others? If we look at Figure 1,

we can see that the difference between the two survival curves is very small when

t < 20, but when t ≥ 20 the difference is very large. So, it appears we have data that

displayers a late difference in their survival functions. If we look at Table 3, we can

see that the Kolmogorov approach has power = 0.080 for hazard B, which corresponds

to a late difference in the hazards. So, it is probably not a very reliable method in the

circumstances of this example.

2.9 Discussion

This chapter discussed nonparametric comparison of two survival functions when

interval-censored failure time data are available. We looked at five methods that have

been developed in recent years. In order to decide which method was the best, we

considered them under numerous hazard function setups including proportional-hazard
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models as well as nonproportional-hazard models. For each setup, we also considered

the methods when the failure time data was drawn from a continuous distribution or

from a set of discrete time points.

To carry out the comparison, we ran a large simulation study and found the empiri-

cal power and size for each hazard setup. We showed that when the censoring times are

discrete and nothing is known about the underlying hazard functions, the Kolmogorov

approach was the best choice, and method 2 with γ = 1, and ρ = 1 is the best choice

when the censoring was continuous. If the proportional hazards assumptions hold,

method 5 was the best method for discrete censoring and method 2 with γ = 0, and

ρ = 0 was best for the case where the censoring was continuous.

Following the comparison, we illustrated our results using the breast cosmesis data

set. The results for four of the models agreed with Finklestein and Wolf’s (1985)

conclusions: the time to cosmetic deterioration was different for the two groups. The

Kolmogorov approach was unable to detect a difference between since it has a very low

power for the late difference situation.
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Chapter 3

A Weighted Generalized Log-Rank Test for Interval

Censored Failure Time

3.1 Introduction

In Zhao and Sun (2004) the authors developed a GLRT that reduces to the usual

log-rank test. This test performs well, but it may not be sensitive to early and/or late

differences in the survival functions.

To detect such early and late differences in the survival functions, a test statistic

should place greater emphasis on the early or late differences in the survival function.

When right-censored data are present, many researchers utilize a weighted log-rank

test. In this chapter, we will develop a weighted generalized log-rank test (WGLRT)

that is sensitive to either early or late differences in the survival function and is appli-

cable to interval-censored data.

In section 3.2 we will present a test procedure we can use to test to see if two

populations have the same survival time; in section 3.3, we present a large simulation
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study to examine the empirical properties of the model; in section 3.4 we analyze a

real world example; and in section 3.5 we offer some concluding remarks.

3.2 Methods

Consider a survival study involving k treatment groups. Let T denote the time of the

event of interest, S(t) = P (T ≥ t) = 1−F (t), the survival function, λ(t) = − d
dt

logS(t),

the hazard function of the survival time, and Λ(t) =
∫ t

0
λ(u)du the cumulative hazard

function. Then Sj(t), λj(t), and Λj(t) are the survival, hazard, and cumulative hazard

functions, respectively, for subjects in treatment group j = 1, 2, . . . , k. Let Ti denote

the event time of interest for subject i, ni the number of subjects in treatment group

i, and n = n1 + n2 + . . . + nk, the total number of subjects. Also let Ŝ(t) denote

the maximum likelihood estimator (MLE) of S(t) and Ŝj(t) the MLE of Sj(t). Let

t1 < t2 < . . . < tn denote the ordered points of the smallest subset of {Li, Ui : 1 =

1 . . . n}. Our problem focuses on the problem of testing the hypothesis that the survival

functions for each of the groups is the same, H0 : S1(t) = S2(t) = . . . = Sk(t) for all t.

When a data set is right censored, a popular nonparametric test is the weighted

log-rank test given in Kalbfleisch and Prentice (2002)

k∑
j=1

w(tj)

(
dlj − nljdj

nj

)
,

where nlj is the number of subjects at risk in population l at time tj, dlj is the number

of failures in population l at time tj, nj is the total number of subjects still at risk at

39



time sj, dj is the total number of failures at time tj, and w is a weight function.

However, when the data is interval-censored we do not know the exact number of

subjects still at risk nor the number of subjects who experience the event of interest

at a given time point. Zhao and Sun’s (2004) proposed method for estimating these

quantities was given in Chapter 2. In order to detect early and/or late differences in

the survival function, Wu and Gilbert (2002) proposed the weight function

w1(t) =
[
Ŝ(t−)− (aŜ(τ−) + 1− a)

]2

, a ∈ [0, 1]

for the weighted log-rank statistic in the presence of right-censored data. When a = 0.5

this weight function will weight early and late differences equally. As a approaches 0,

the function will put more weight on late differences and less on early differences, and

as it approaches 1 it will put more weight on early differences in the survival functions

and less emphasis on late differences. Another common weight function that is sensitive

to early and late differences is

w2(t) =
[
Ŝ(t)

]b [
1− Ŝ(t)

]1−b

.

When b = 0.5 this weight function will weigh early and late differences equally. As b

approaches 0, the function will put more weight on late differences and less on early

differences, and as it approaches 1 it will put more weight on early differences in the

survival functions and less emphasis on late differences.
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We propose the following test statistic using the weight functions above:

U =
k∑

j=1

w(tj)

[
n′1jn

′
2j

n′1j + n′2j

] [
d′1j

n′1j

− d′2j

n′2j

]
.

Now, as in Zhao and Sun (2004), we need to estimate the covariance matrix. To do this,

we employed the same 3-step bootstrap procedure. Let M be a pre-specified number of

resamplings for the bootstrap. Then for each r in 1, . . . , M , Step 1: If δi = 0, then let

T r
i and δr

i = 0. Otherwise, δr
i = 1 and T r

i is a realization from the conditional survival

function

fi(t) = P (T r
i = t) = (Ŝ(t)− Ŝ(t+))/(Ŝ(Li)− Ŝ(Ri+)), s ∈ [Li, Ri].

Since δi is the right censoring indicator, the δr
i are going to be the same for every r.

Step 2: Use the new data to find the number of failures and risks, and estimate U

as before, then compute the covariance estimates V̂ r = V̂ r
1 + V̂ r

m where

(V̂ r
j )ll = (wj)2

nr
jl(n

r
j − nr

jl)d
r
j(n

r
j − dr

j)

(nr
j)

2(nr
j − 1)

,

(V̂ r
j )l1l2 = (wj)2

nr
jl1

nr
jl2

dr
j(n

r
j − dr

j)

(nr
j)

2(nr
j − 1)

,

and wj is the appropriate weight function at time tj.

Step 3: Repeat steps 1 and 2 for r = 1, . . . , M the number of resamplings, and

estimate V by V̂ = V̂1 + V̂2, where
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V̂1 =
1

M

M∑
r=1

V̂ r ,

V̂2 = (1 +
1

M
)

∑M
r=1[U

r − Ū ][U r − Ū ]t

(M − 1)
,

and

Ū =
M∑

r=1

U r/M .

The test of hypothesis can be carried out using the statistic U∗ = U
′
V −U which follows

a χ2
k−1 distribution under the null hypothesis.

3.3 A Numerical Study

A large scale simulation study was conducted to assess the properties of the pro-

posed WGLRT. We looked at the proposed test under several different hazard function

setups: piecewise exponential functions, with an early difference between the survival

functions, a late difference between the survival functions, and a situation where the

hazard functions cross. Specifically, we considered setups with the following hazard

functions.

Early difference: Set-up A

λ1(t) = 0.25It≤0.75 + It>0.75

λ2(t) = 0.75It≤0.75 + It>0.75
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Late Difference: Set-up B

λ1(t) = It≤0.75 + It>0.75

λ2(t) = It≤0.75 + 2It>0.75

Crossing Hazards: Set-up C

λ1(t) = 0.5It≤0.75 + 1.5I0.75<t≤1.5 + It>1.5

λ2(t) = 1.5It≤0.75 + 0.5I0.75<t≤1.5 + It>1.5

In addition to the piecewise exponential, We studied the linear hazard functions

given by λ(t) = α0 + α1t. These hazard functions can give parallel hazard functions,

crossing hazard functions, and neither parallel nor crossing hazard functions, respec-

tively.

Proportional Hazards: Set-up D

λ1(t) = 1

λ2(t) = 2

Crossing Hazards: Set-up E

λ1(t) = 1
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λ2(t) = 0.2 + t

Set-up F:

λ1(t) = 1

λ2(t) = 1.2 + .3t

We also analyzed several piecewise linear hazard functions.

Early Difference: Set-up G

λ1(t) = (t + 1)It≤1 + 2It>1

λ2(t) = 0.5It≤1 + 2It>1

Late Difference: Set-up H

λ1(t) = 1It≤2 + 1It>2

λ2(t) = 1It≤2 + (t− 1)It>2

Early Difference: Set-up I

λ1(t) = (2− t)It≤1 + 1It>1

λ2(t) = tIt≤1 + 1It>1
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Late Difference: Set-up J

λ1(t) = 1It≤2 +
t

2
It>2

λ2(t) = 1It≤2 +
1

t− 1
It>2

Crossing Hazards: Set-up K

λ1(t) = (1.2− t)It≤1 + 0.2It>1

λ2(t) = (0.2 + t)It≤1 + 1.2It>1

Both Early and Late Differences: Setup L

λ1(t) = 1

λ2(t) = 0.5It≤1 + 1I1<t≤2 + 0.5It>2

We also considered two set-ups to check the size of the tests.

Set-up S

λ1(t) = λ2(t) = 1

Set-up W

λ1(t) = λ2(t) = 2t
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3.3.1 Generation of Interval-Censored Data

To examine the small sample properties of the proposed statistics, we performed

extensive simulation studies. We drew a sample of fifty subjects from populations whose

survival functions were described above. Each subject was supposed to be observed at

8 times (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). For each subject at each time point we performed

a Bernoulli trial with probability of success 0.5. If the trial was a success, we observed

the individual at that time, and if it was a failure we did not observe the subject at

that time. The censoring interval was then determined to be the observation before

the failure time to the observation after the failure time. If the failure time was before

the first observation, the left endpoint was taken to be 0, and if the failure time was

after the last observation time, the right endpoint was taken to be ∞.

In all situations, we used Turnbull’s self-consistency algorithm (Turnbull 1976) to

estimate the survival function S(t). We applied the WGLRT to the data and decided

whether or not the test will reject the null hypothesis H0 : S1(t) = S2(t) using the 0.05

level of significance. This was done for one thousand replications of each set-up. The

empirical power or size of the test were defined as the proportion of times we rejected

H0.

3.3.2 Numerical Results

Table 8 and Table 9 gives the power and size of the proposed test statistic using

w1(t), Table 10 and Table 11 gives the power and size of the proposed statistic using

w2(t), and Table 12 gives the size and power using the unweighted test statistic. All
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of the tests give the correct approximate size. The WGLRT performs better in most

situations than the unweighted GLRT. The only exception to this is when there are

proportional hazards. This is to be expected however since there is an equal difference

between the hazard functions for all times, a weight of 1 will weight all times the same,

so the unweighted test is superior under the proportional hazards assumption.

The weight function w1(t) performed best when the hazard functions cross each

other and when there was an early difference in the hazard functions. w2(t) performed

best when there was a late difference in the hazard functions, and it performed better

under the proportional hazards setup than w1(t).

In practice we rarely know what type of situation we have. So, in addition to the

powers found earlier, we found the average power given by each test. We found that the

weight function w1(t) had an average power of 0.360 while the weight function w2(t)

had an average power of 0.386. So, while both tests perform well, if we did not know

anything about the underlying hazard functions, w2 is the best among the proposed

statistics.

3.4 An Example

Goggins and Finklestein (2000) discussed a data set arising from an AIDS clinical

trial. During the trial, blood and urine samples were collected from patients and tested

for the presence of cytomegalovirus (CMV). We applied the methods presented in the

previous section to compare the urine shedding times of CMV for patients infected

with HIV. 91 patients with high CD4 counts (CD4 > 75cells/µl) and 121 patients
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with low CD4 count were measured. The time to shedding the virus is of interest.

Since HIV is a progressive disease and CMV is an opportunistic infection caused by

the weakened immune system, the difference between the hazard functions for the

patients are expected to be large for early time periods since those with a low cell

count will be more susceptible to infection.

The hazard functions for both the low CD4 count and the high CD4 count were

estimated using the Gaussian kernel based method presented in Sun (2006) and are

given in Figure 2. At low times, t < 5, we observe a large difference in the two groups.

The hazard rate for the low CD4 group is much larger than that for the high CD4

group.

Table 13 gives the test statistics and p-value for testing whether there is a difference

between the time to urine shedding of CMV in patients with a low CD4 cell count and

those with a non low CD4 count. Since we observed an early difference in the hazard

functions, we will focus on the results for a = 1.0 since this is particularly sensitive

to an early difference. We can see that using w1(t) we have a test statistic of −6.151

and a p-value below 0.001. Using w2(t) we got a test statistic of −7.14 and a p-value

below 0.001. In both cases, we reject the null hypothesis and conclude that the survival

curves are different. From Figure 3, we can tell that the survival time for the low CD4

group is significantly lower than that for the non low CD4 count group.
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3.5 Discussion

Early and late differences occur often in many clinical trial studies. We have pro-

posed a modified weighted log-rank test that offers significant increases in power over

previously proposed statistics. When there is a good reason to expect early or late

differences in the survival curve, the researcher can utilize an appropriate value for a.

We may also plot the estimated hazard functions and survival curves to determine if

there may be an early or late difference, or crossing hazard functions and the researcher

can use an appropriate value of a to see if the difference is statistically significant.

In addition to testing whether there is simply a difference in the survival curves,

it may be of interest to determine where the difference lies. Which group has a lower

survival rate? Is it an early difference, a late difference, both, neither? This is impor-

tant for interpreting the results in terms of a real-world problem. Wu (2002) suggests

that this can be carried out by a secondary analysis. He utilizes a linear combination

of test statistics, and proposes that the secondary analysis can be used to interpret

differences that may be observed among the results of the tests.
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Chapter 4

Sample Size Calculation for Interval-Censored

Failure Time Data

4.1 Introduction

In many medical studies, it can be costly to follow patients for an extended period

of time. Many researchers would like to ensure they can achieve a desired level of

power for a test of H0 : S1(t) = S2(t), while keeping costs low. This involves making

sure enough patients are recruited for the study but not too many. Because of this, a

power analysis is often run before a study begins or after a brief pilot study.

There have been many methods developed to find an appropriate sample size.

Schoenfeld (1981) presented methods for computing the asymptotic mean and variance

of a generalized version of the log-rank statistic, the modified Wiocoxson statistic, and

many other commonly used methods for comparing the survival curve. Using these

results, he presented a sample size calculation formula for the log-rank statistic.

Schoenfeld’s methods are good under a specific set of assumptions. Lakatos (1988)
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developed a more general method for computing the sample size. As in Schoenfeld’s

paper, Lakatos computed the sample size required to compare two survival functions

using the log-rank test. However, Lakatos’s calculation removed some of the more

restrictive assumptions from the earlier calculations. His method does not require the

proportional hazards assumption. It also has the benefit that allows for some more

common clinical trial designs such as a trial with staggered entry or stratification.

Lakatos’s method is general and easy enough to use such that major software de-

velopers such as PASS use it for their power analysis programs. However, the major

drawback to this method and others that have been developed is they are only appro-

priate for computing the sample size when right-censored data are present. There are

not many methods for the case when the data are interval-censored. In this chapter, we

develop an easy-to-use method for computing the sample size for the interval-censored

data case.

4.2 Sample Size Calculation

Assume that we are studying two groups of patients (j = 1, 2) and observe each

patient at l fixed time points, 0 = t0, t1, . . . , tl. Also assume that each group follows an

exponential distribution with hazard functions λ1 and λ2 respectively. Let δi,k be the

indicator that subject i fails after tk−1 but before tk. Then, ∆i,j = (δi,1, δi,2, . . . δi,l)
′

follows a multinomial distribution with probabilities θj = (θj,1, θj,2, . . . , θj,l), where

θj,k = P (tk−1 ≤ T ≤ tk) = e−tk−1λj − e−tkλj
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Since the jth group follows an exponential distribution with hazard λj we have Sj(t) =

e−tλj as the survival function for group j and the likelihood function

Lj =

nj∏
i=1

l∑

k=1

δi,k [Sj(tk−1)− Sj(tk)] =

nj∏
i=1

l∑

k=1

δi,k

[
e−tk−1λj − e−tkλj

]
.

Then, the log-likelihood function is

ηj = log(Lj) =

nj∑
i=1

log

(
l∑

k=1

δi,k

[
e−tk−1λj − e−tkλj

]
)

with first derivative

∂ηj

∂λj

=

nj∑
i=1

∑l
k=1 δi,k

[−tk−1e
−tk−1λj + tke

−tkλj
]

∑l
k=1 δi,k [e−tk−1λj − e−tkλj ]

and second derivative

∂2ηj

∂λ2
j

=

nj∑
i=1

(∑l
k=1 δi,k

[
e−tk−1λj − e−tkλj

]) (∑l
k=1 δi,k

[
t2k−1e

−tk−1λj − t2ke
−tkλj

])

(∑l
k=1 δi,k [e−tk−1λj − e−tkλj ]

)2 −

−

(∑l
k=1 δi,k

[−tk−1e
−tk−1λj + tke

−tkλj
]2

)

(∑l
k=1 δi,k [e−tk−1λj − e−tkλj ]

)2

We want to find the maximum likelihood estimator (MLE) for λ, λ̂, so we set

(
∂ηj

∂λj

)
|λ=λ̂ = 0
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which implies
nj∑
i=1

∑l
k=1 δi,k

[
−tk−1e

−tk−1λ̂j + tke
−tkλ̂j

]

∑l
k=1 δi,k

[
e−tk−1λ̂j − e−tkλ̂j

] = 0

However, there is no analytical solution to this, so we must use a numerical algorithm

such as the Newton-Raphson algorithm to find a solution to this problem.

Once we find the MLE, we need to know its distribution. We know that asymptot-

ically λ̂j ∼ N(λj, I
F
x (λj)

−1), where IF
x (λj) = −E

(
∂2ηj

∂λ2
j

)
. Then let

gj,k =
(
e−tk−1λj − e−tkλj

) (
t2k−1e

−tk−1λj − t2ke
−tkλj

)− (−tk−1e
−tk−1λj + tke

−tkλj
)2

and

∂2ηj

∂λ2
j

=

nj∑
i=1

∑l
k=1 δi,kgj,k∑l
k=1 δi,kθ2

j,k

=

nj∑
i=1

l∑

k=1

δj,k
gi,k

θ2
j,k

.

So, we have

E

(
∂2ηj

∂λ2
j

)
= E

(
nj∑
i=1

l∑

k=1

δj,k
gi,k

θj,k

)

but both gj,k and θj,k are constants, so

E

(
∂2ηj

∂λ2
j

)
=

nj∑
i=1

l∑

k=1

gi,k

θ2
j,k

E(δi,k)

and we know that E(δi,k) is θj,k. Therefore,

E

(
∂2ηj

∂λ2
j

)
=

nj∑
i=1

l∑

k=1

gi,k

θj,k

= nj

l∑

k=1

gi,k

θj,k

.
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Thus,

IF
x (λ̂j) = −nj

l∑

k=1

gi,k

θj,k

and the asymptotic variance of λ̂j is

V ar(λ̂j) =
−1

nj

(
l∑

k=1

gi,k

θj,k

)−1

.

Now, we would like to test H0: λ1 = λ2 versus Ha: λ1 > λ2. Under the null

hypothesis the variable D̂ = λ̂1− λ̂2 has an asymptotic normal distribution with mean

0 and variance V (λ̂1) + V (λ̂2). Call this variance s2. We will reject H0 in favor of Ha

if λ̂1 − λ̂2 is large. So, under H0

P (λ̂1 − λ̂2 > c) = P (D̂ > c) = α

which implies

P (Z > c/s) = α

and

Φ
(c

s

)
= 1− α

where Z is a standard normal random variable and Φ is the the CDF of a standard

normal random variable. Then we know

c

s
= Zα
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c = Zαs

Now, if we would like to have at least power π = 1 − β while being able to detect

a difference λ1 − λ2 = Da then under the alternative we have

P (D̂ > c) = 1− β

which implies

P

(
D̂ −Da

s
>

c−Da

s

)
= P

(
Z >

c−Da

s

)
= 1− β

and

Φ

(
c−Da

s

)
= β

so

c−Da

s
= Z1−β = −Zβ.

Plugging in the previous result we get

Zαs−Da

s
= −Zβ

which implies

s =
Da

Zα + Zβ
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and

s2 =

(
Da

Zα + Zβ

)2

.

Now, if we plug the variance into this equation

− 1

n1

(
l∑

k=1

g1,k

θ1,k

)−1

− 1

n2

(
l∑

k=1

g2,k

θ2,k

)−1

=

(
Da

Zα + Zβ

)2

and if we assume that n1 = n2 = n/2 then we get

− 2

n

(
l∑

k=1

g1,k

θ1,k

)−1

− 2

n

(
l∑

k=1

g2,k

θ2,k

)−1

=

(
Da

Zα + Zβ

)2

or

n = −2

(
Zα + Zβ

Da

)2



(
l∑

k=1

g1,k

θ1,k

)−1

+

(
l∑

k=1

g2,k

θ2,k

)−1

 .

4.3 A Simulation Study

A large scale simulation study was conducted to ensure that the sample size given

in the previous section provides adequate power. In addition, the size of the test must

be assessed to ensure that it is accurate as well. For the simulation, we let λ1 take

values from 0.5 to 2.0 with an increasing increment of 0.1, and λ2 take values from 0.5

to λ1 with an increasing increment of 0.1. For all of the simulations, we let α be 0.05

and we let β be from {0.05, 0.1, 0.2}. The follow-up for the study was a period of 5

years observing each individual every six months.

In each case we took a small pilot sample of 20 individuals, 10 in each group, and
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computed the required sample size based on the MLE found from the pilot study. We

then drew an appropriate sized sample and performed the test to see if there was a

significant difference between the hazards. For each hazard combination, we repeated

this test 1000 times. The empirical size or power of the test is the proportion of the

tests we rejected.

Table 15 gives the power and size of the proposed test statistic using β = 0.2,

Table 16 gives the power and size of the proposed statistic using β = 0.1, and Table 17

gives the size and power using β = 0.05. We can see that in each case where λ1 6= λ2

the power is not significantly different from the true power. When λ1 = λ2 the size is

not significantly different from the true size, 0.05.

Table 18 gives the sample size required to achieve a power of β = 0.05, Table 19

gives the sample size required to achieve a power of β = 0.1, and Table 20 gives the

sample size required to achieve a power of β = 0.2. When λ1 and λ2 are close, the

required sample size can be very large. If we look at Figure 4 and Figure 5, we can see

when the hazards are close to each other, the survival functions are also very close to

each other. The sample size required to be able to detect this difference will be quite

large, and we can see that reflected in these tables. However, when the hazards are far

apart, the difference in the survival function is also large. So, a much smaller sample

can be taken to achieve the same power.
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Chapter 5

A Comparison of the Imputed Kaplan-Meier

Estimate and The Self-Consistency Estimate for

Interval-Censored Failure Time Data

5.1 Introduction

In some cases researchers are unfamiliar with proper techniques needed to analyze

interval-censored data, but they are comfortable using techniques developed for right-

censored data. When this situation arises, the researcher may use a missing data

technique such as imputation in order to use a method appropriate for right-censored

data.

Sun (2006) described several possible ways to perform the imputation for interval-

censored failure time data. Possibly the simplest and most commonly used method is

to simply use the mid-point, the right endpoint, or the left endpoint of the interval as

the failure time. Sun pointed out that if the intervals are narrow then the estimate of
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the survival function using the mid-point, left endpoint, or right endpoint imputation

will be similar. In studies with long follow-up periods or studies where it is not possible

to have narrow intervals, the left-imputed estimate and the right-imputed estimate may

be quite different. Additionally, in studies where the sample size is small, even if the

intervals are narrow, the estimates may be significantly different.

In order to investigate whether this method of imputation is reasonable for analyz-

ing interval-censored data, we compare the right endpoint and left endpoint imputed

estimates of the survival function to the self consistency estimate of the survival func-

tion. As suggested in Sun (2006), with the right endpoint and left endpoint imputation,

we used the Kaplan-Meier (KM) estimate of the survival curve

Ŝ(t) =
∏

j:tj<t

(
1− dj

nj

)
.

If we use the left endpoint in the imputation, we are assuming the patient dies at the

earliest possible time in the interval. This means that the estimated survival function

using this imputation should be a lower bound. Similarly, if we use the right endpoint

we assume that they die at the latest possible time in the interval, so this should

provide an upper bound for the estimated survival function. It would be reasonable

then that any estimated survival function should fall between the left-imputed and the

right-imputed estimates.

Suppose, for example, that we are interested in the time at which a laboratory rat

develops a tumor. The survival function using the left-imputed KM estimate as well as
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the self consistency estimate are given in Figure 6. We can see that at 14 weeks, the self

consistent method drops significantly below the left-imputed KM estimate. For this

case, if we had used the imputed KM estimate we would be significantly overestimating

the survival probability for the rats using the imputed KM estimate.

In this chapter, we are primarily interested in how the right-imputed KM and left-

imputed KM estimates compared to the self consistent estimate of the survival curve,

and if the self consistent estimate crosses over either of these estimates. If the self

consistent estimate crosses one of the imputed KM estimates, then a research study

that uses an imputed method may be underestimating or overestimating the survival

probability.

If the imputed KM estimate crosses the self consistent estimate of the survival

function, we would like to investigate what is causing them to disagree. To study

this, we looked at the probability of the self consistent estimate crossing over either

the left-imputed KM estimate or the right-imputed KM estimate. Do different hazard

functions lead to a different probability of the imputed KM estimates crossing over

the self consistent estimate? If so, what causes this difference? We will look at the

following possibilities:

1. Does the probability of these estimates crossing depend on the average length of

time between the observations?

2. Does the probability of these estimates crossing depend on the percentage of

observations that are right-censored?
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3. Does the probability of these estimates crossing depend on the mean survival

time?

4. Does the probability of these estimates crossing depend on the number of patients

in the study?

5. Does the probability of these estimates crossing depend on the proportion of

visits a patient misses over the course of the study?

5.2 A Numerical Study

We ran a large scale simulation to see how often the self-consistency estimate for

the survival function crosses either the left-imputed KM estimate or the right-imputed

KM estimate under situations with a wide variety of hazard functions.

We used all of the hazard setups A through L from Chapter 3. Since each hazard

setup has two hazard functions, this gave a total of 24 hazards. We sampled 1000

data sets for each hazard using several different interval lengths. The study period

was over the interval [0, 4]. For each setup the patients were scheduled to be observed

4, 8, 10, or 20 times with observations spaced evenly throughout the study period. At

each scheduled observation time, we assumed the patient missed the observation with

probability 0.5. The censoring interval was then determined to be the observation

before the failure time to the observation after the failure time. If the failure time was

before the first observation, the left endpoint was taken to be 0, and if the failure time

was after the last observation time, the right endpoint was taken to be ∞.
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Since we were interested in determining the probability that the self-consistency

estimate for the survival curve crossed the right-imputed or left-imputed KM estimate

of the survival curve, we looked at the proportion of the time these estimates crossed.

The results of this study can be found in Table 21 and Table 23. We can see that there

was very little difference between the 4, 8, 10, and 20 observations intervals. However,

there was a large difference amongst the different hazard functions.

In order to investigate what was causing this difference, we asked, “does the percent

of right censored observations have an effect on the proportion of times self-consistency

estimate crosses one of the imputed KM estimates?” To answer this question, we reran

the simulation. We ran them with an exponential distribution with mean 1, and we

altered the follow-up period to adjust the probability of observations that would be

right-censored. These probabilities were from 0.10, 0.25, 0.50, 0.75, and 0.90.

These results can be found in Table 25. From this table, we can see that there are

no large differences in the proportion of times the estimates cross.

It was also of interest to determine if the average survival time had an effect on

the proportion of times the self-consistency estimate crosses one of the imputed KM

estimates. To explore this, we ran the original simulation using several exponential

distributions with means of 0.5, 1, 2, 3, 5, and 6. The results of this simulation can be

found in Table 27.

We can see that as the mean increases so does the crossing proportion. To determine

what is causing this, we can look at Figure 8 and Figure 11. We can see that for the

mean 5 group, the survival functions cross each other at time point 3.4. This late
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crossing is common when the mean survival time is large relative to the study period.

The average time where the hazards cross for the mean 5 group was 3.62. This late

crossing occurs more often when there are many patients still in the study at large

time points.

Tables 22 and 24 give the average time when the self-consistency estimate first

crosses the KM estimate. We can see from the table that this often occurs at later

time points. This may be due to the fact that if the maximum time where the imputed

KM estimate jumps is greater than the maximum time for the self-consistency estimate,

the KM estimate will continue it’s estimate to infinity and vice versa. This can lead to

situations where the self-consistency estimate crosses the Kaplan-Meier after the last

time where a jump occurs in the KM estimate.

In order to determine if this is causing a problem, we ran another simulation using

the exponential hazards with the same means as before, but we ignored later time

points. If the self-consistency estimate did not cross the imputed KM estimates before

t = 3, we said they didn’t cross. The results of this are given in Table 28. If we compare

the results to those of of Table 27, we can see that there is a significant reduction in

times the estimates crossed between the two simulations.

It seems reasonable that if we were to sample more patients that the left-imputed

and right-imputed KM estimates would be closer to each other. Does the increase in

sample size also mean that the self consistent estimate would cross the imputed KM

estimates less often? To investigate this, we reran the simulation using the exponential

hazards and sample sizes of 10, 100, and 1000 patients.

63



Table 29, Table 30, and Table 31 give the proportion of times the self-consistent

estimate crosses the imputed KM estimates when we have a sample of 10, 100, and 1000

respectively. When the sample size dropped, studies with only four observation times

did not provide enough information to predict the survival curve so it was dropped

from these simulations.

We can see that the proportion of crossings seems to increase as the sample size

increases. For the sample size 10 case, Table 29 shows that the proportion of times the

estimated survival functions cross is below that for the sample size 50 case in table 29

and Tables 30 and 31 are both higher. In fact, Table 31 shows that they cross in almost

every case. If we look at Figure 13 we can see that due to the large sample sizes, at

large time points, the estimated survival functions are very similar. These crossings all

occur at very late time points, with an average crossing time of 3.72.

Again, since the crossings are occurring due to the self consistent estimate jumping

after the largest time point for the imputed KM estimate, we reran this simulation

ignoring any crossings that occur after time 3. The results of these simulations can

be found in Tables 32 and 33. We can see that the proportion of crossings has been

reduced significantly. In fact for the sample size 1000 case, if the mean was greater

than 1 the estimated curves never crossed. There was also a very significant reduction

in crossing from our sample size 50 method of Table 28.

In addition to determining if the size of the sample had such a large impact on the

proportion of times the estimates crossed, we also wanted to determine if the average

length of the interval have an effect on the proportion of times the self consistent
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estimate crossed the imputed KM estimate. In order to investigate this, we modified the

probability that an individual was observed at each time point. We ran the simulation

again using the exponential hazards, but instead of using a 0.5 probability of observing

the patients, we allowed the probability to be from {0.2, 0.9, 1.0}. The higher the

probability of observation, the narrower the average interval was.

Table 34 gives the proportion of times the self consistent estimate crossed the im-

puted KM estimate when the probability of observation was 0.2. Table 35 gives the

proportion of times the self consistent estimate crossed the imputed KM estimate when

the probability of observation was 0.9. Table 36 gives the proportion of times the self

consistent estimate crossed the imputed KM estimate when the probability of obser-

vation was 1.0. When we compare these three tables, we find that as the probability

of observation increases so does the proportion of times the estimates cross. Although

this may seem counter intuitive at first, we are running into the same problem as be-

fore. The self consistent estimate changes after the last jump from the left-imputed

KM estimate.

We reran these simulations again ignoring all of the crossings that occurred at late

time points. The results for these can be found in Tables 37, 38, and 39. Once again,

when we removed the late crossings, we had a significant reduction in the proportion of

times the estimates crossed. We can see that with the wider intervals the self consistent

estimate still crossed the imputed KM estimate fewer times. However, these propor-

tions were not significantly different. So, the probability of observing the patients at

each scheduled observation time did not have a significant effect on the proportion of
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times the KM estimate and the self consistent estimate crossed.

5.3 Two Examples

In order to see the effects of using an imputed Kaplan-Meier estimate versus the

self consistent estimate on a real-world data set, we applied these techniques to the

AIDS study given in Goggins and Finklestein (2000) as well as the breast cosmesis

study given by Finklestein and Wolf (1985).

A plot of the estimated survival curves for the radiation group from the Finklestein

and Wolf (1985) data set is given in Figure 19. We can clearly see that the self-

consistency estimate goes below the left-imputed KM estimate at 40 months. However,

the last jump for the left-imputed KM estimate occurred at 35 months. This is a

similar situation that arose during the simulation study. The estimated survival curves

for the chemotherapy group from the Finklestein and Wolf (1985) data set are given in

Figure 20. At 35 months, the self consistent estimate of the survival function dropped

below the left-imputed KM estimate.

In this example, it would probably not be appropriate to use the imputed KM

estimates because at large time points the imputed KM estimates are probably over

estimating the probability of survival. For a situation such as this, the researchers

should use an interval-censored technique.

Next, we considered the time to shedding in blood from the AIDS study given in

Goggins and Finkelstein (2000). Figure 21 and Figure 22 are plots of the estimated

survival curves for patients with a non-low and a low CD4 count respectively. For the
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non-low CD4 group, we can see that the self consistent estimate does not cross either

of the imputed KM estimates at any time. For the low CD4 group, the self consistent

estimate only crossed the left-imputed KM estimate after the the left-imputed KM

estimates’s final jump.

In studies such as this one, it would be acceptable to use the imputed KM estimates.

The researcher could take a conservative approach by using the left-imputed value

knowing that they would be under estimating the patient’s survival probability.

5.4 Conclusions

In this chapter, we analyzed cases where the self consistent estimate of the survival

curve crossed the left-imputed or the right-imputed Kaplan-Meier estimates of the

survival curve. We found that different hazards lead to different probabilities of these

estimates crossing. We investigated 5 possible causes listed in Section 5.1 above and

found:

1. The probability of these estimates crossing did not depend on the average length

of time between the observations.

2. The probability of these estimates crossing did not depend on the percentage of

observations that are right-censored.

3. The probability of these estimates crossing depended on the mean survival time.

As the survival time increased, so did the proportion of times the self-consistent

estimate crossed the imputed KM estimates.
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4. The probability depended on the number of patients in the study. As the sample

size increased, so did the proportion of times the self consistent estimate crossed

the imputed KM estimated. This effect, however, was due to the fact that at late

time points the self consistent estimate can jump after the last left-imputed time

point. When we controlled for this effect, we discovered that a larger sample size

does lead to a smaller proportion of times the estimated survival curves cross.

5. The probability of the estimates crossing depended on the proportion of visits

a patient misses over the course of the study. As the probability of observation

increased, so did the proportion of times the estimates crossed. As before, this

effect was caused by the self consistent estimate jumping after the last jump from

the left-imputed KM estimate. When we controlled for this, we found that the

probability of the estimates crossing did not depend on the proportion of visits

a patient missed over the course of the study.

It is clear that the Kaplan-Meier right and left imputed estimates of the survival

function do not always contain the self consistent estimate. However, when the self

consistent estimate crosses one of the KM estimates, it usually occurs at a late time

point. Because the KM estimate is constant after the largest failure time, these late

crossings are often a result of the self consistent estimator changing after the largest

imputed time point. So, at late time points the imputed KM estimates can overestimate

the probability of survival. Researchers who wish to use an imputed Kaplan-Meier

estimate to perform an analysis of an interval-censored data set should be cautious of
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these drawbacks. The effect is small in studies where few patients survive until the

end, so if only a small number of patients, relative to the total number in the study,

are remaining researchers can use an imputed method without fear of under estimating

the survival rate by too much.
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Chapter 6

Future Work

This chapter discusses several directions for future work. We will discuss an analysis

of interval-censored data when the times we observe patients depends on the failure

time. We will discuss a more general method for computing the sample size when

interval-censored data are present. We will also propose some general guidelines for

using an imputed Kaplan-Meier estimate for interval-censored data.

6.1 Analysis With Dependent Censoring

Consider a study of patients who suffer from HIV and we are interested in the time

until these patients have AIDS. In many cases, if the patients become more ill they may

go for treatment more often. However, if they get better their trips may become more

infrequent or stop all together. It is clear that in such a situation, the times we observe

the patients and the time when the patients get AIDS, the failure time, are related to

each other. All of the methods we have considered here involve the assumption that
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the censoring times and the time of the event of interest are independent of each other.

In the future we would like to further generalize the GLRTs to allow for situations

where these distributions are not independent of each other.

6.2 Sample Size Calculations

Lakatos (1988) pointed out that in many clinical trials the hazard functions for

the patients are not a constant. This can occur when the treatment may increase or

decrease in effectiveness over time. Even if they are constant, there can be many other

difficulties such as staggered entry, patients dropping out of a study early, or patients

who may miss several follow-up observations. The method for computing the required

sample size presented in Chapter 4 makes many assumptions about the populations

of interest. We would like to further generalize these calculations. Removing the

assumption of proportional hazards is the first step, and we would like to remove

several of the other assumptions as well.

6.3 Comparison of the Kaplan-Meier and Self Consistent Es-

timates

In Chapter 5, we presented some findings to compare the imputed Kaplan-Meier

estimates of the survival function to the self consistency estimate of the survival func-

tion. We showed that under some circumstances using the imputed KM tests was

appropriate while in others the researcher may under estimate or over estimate the
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survival function. We would like to develop some general guidelines that can tell a

researcher when using the imputed KM methods are appropriate and when they are

not appropriate.
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Method p-value
Method 1 0.0052
Method 2 γ = 0 ρ = 0 0.007
Method 2 γ = 1 ρ = 0 0.002
Method 2 γ = 1 ρ = 1 0.0004
Logrank 0.0057
Kolmogorov 0.14
Method 5 0.0007

Table 7: Results

Setup A B C D E F S
Early Late Crossing Parallel Crossing NPNC Same

a = 0.0 0.107 0.482 0.105 0.619 0.212 0.380 0.056
a = 0.5 0.438 0.137 0.343 0.756 0.158 0.237 0.061
a = 1.0 0.532 0.186 0.532 0.753 0.247 0.248 0.051

Table 8: Power and Size using w1(t)

Setup G H I J K L W
Early Late Early Late Crossing Both Same

a = 0.0 0.375 0.107 0.158 0.158 0.148 0.330 0.065
a = 0.5 0.787 0.062 0.975 0.061 0.090 0.566 0.049
a = 1.0 0.861 0.076 0.983 0.062 0.067 0.547 0.055

Table 9: Power and Size using w1(t)
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Setup A B C D E F S
Early Late Crossing Parallel Crossing NPNC Same

b = 0.0 0.130 0.632 0.100 0.801 0.198 0.414 0.062
b = 0.5 0.215 0.569 0.100 0.843 0.094 0.438 0.058
b = 1.0 0.476 0.259 0.432 0.828 0.161 0.251 0.052

Table 10: Power and Size using w2(t)

Setup G H I J K L W
Early Late Early Late Crossing Both Same

b = 0.0 0.527 0.104 0.393 0.138 0.115 0.390 0.052
b = 0.5 0.699 0.081 0.692 0.094 0.086 0.574 0.055
b = 1.0 0.857 0.058 0.980 0.056 0.074 0.574 0.044

Table 11: Power and Size using w2(t)

Setup A B C D E F S
Early Late Crossing Parallel Crossing NPNC Same

GLRT 0.191 0.227 0.087 0.845 0.016 0.184 0.059

Table 12: Power and Size using the GLRT proposed in Sun 2006

Weight w1 Test Stat p-value w2 Test Stat p-value
a = 0.0 -.077 0.034 -.2066 0.000
a = 0.5 -1.305 0.000 -1.310 0.000
a = 1.0 -6.151 0.000 -7.142 0.00

Table 13: Test Statistics and p-values for testing whether there is a difference in time
to shedding for patients with a low CD4 count and those with a non low CD4 count.
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Weight w1 Test Stat p-value w2 Test Stat p-value
a = 0.0 -.077 0.034 -.2066 0.000
a = 0.5 -1.305 0.000 -1.310 0.000
a = 1.0 -6.151 0.000 -7.142 0.00

Table 14: Test Statistics and p-values for testing whether there is a difference in time
to shedding for patients with a low CD4 count and those with a non low CD4 count.

85



λ
1

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

λ
2

=
0.

5
0.

06
1

0.
82

3
0.

83
4

0.
86

2
0.

85
0

0.
80

7
0.

91
2

0.
83

7
0.

86
3

0.
90

2
0.

93
5

0.
95

0
0.

91
4

0.
80

7
1.

00
3

0.
95

2
0.

6
-

0.
04

9
0.

86
6

0.
77

6
0.

86
7

0.
87

0
0.

85
3

0.
84

8
0.

89
2

0.
87

6
0.

89
6

0.
94

6
0.

87
3

0.
92

6
1.

00
5

0.
95

4
0.

7
-

-
0.

04
2

0.
80

5
0.

78
6

0.
79

9
0.

80
7

0.
87

6
0.

80
7

0.
80

6
0.

88
7

0.
88

4
0.

87
2

0.
93

0
0.

89
8

0.
92

5
0.

8
-

-
-

0.
04

4
0.

83
1

0.
73

7
0.

82
9

0.
79

1
0.

85
8

0.
84

5
0.

85
3

0.
85

9
0.

89
7

0.
87

1
0.

89
9

0.
92

7
0.

9
-

-
-

-
0.

05
6

0.
82

5
0.

79
9

0.
76

4
0.

82
8

0.
86

1
0.

81
9

0.
87

4
0.

84
2

0.
82

6
0.

83
6

0.
90

4
1.

0
-

-
-

-
-

0.
04

8
0.

88
3

0.
77

9
0.

81
7

0.
75

7
0.

82
5

0.
77

1
0.

85
2

0.
83

1
0.

87
5

0.
79

9
1.

1
-

-
-

-
-

-
0.

05
6

0.
83

0
0.

79
6

0.
72

9
0.

78
9

0.
79

7
0.

83
1

0.
87

4
0.

80
0

0.
85

5
1.

2
-

-
-

-
-

-
-

0.
06

0
0.

80
7

0.
43

2
0.

80
8

0.
77

0
0.

80
8

0.
84

2
0.

81
8

0.
80

6
1.

3
-

-
-

-
-

-
-

-
0.

06
9

0.
74

2
0.

82
3

0.
80

8
0.

82
1

0.
80

5
0.

83
8

0.
89

6
1.

4
-

-
-

-
-

-
-

-
-

0.
04

6
0.

73
1

0.
81

4
0.

80
4

0.
77

1
0.

82
0

0.
80

4
1.

5
-

-
-

-
-

-
-

-
-

-
0.

06
4

0.
83

9
0.

78
8

0.
85

8
0.

79
8

0.
83

2
1.

6
-

-
-

-
-

-
-

-
-

-
-

0.
05

1
0.

82
8

0.
74

2
0.

80
9

0.
86

4
1.

7
-

-
-

-
-

-
-

-
-

-
-

-
0.

05
1

0.
85

4
0.

76
9

0.
71

1
1.

8
-

-
-

-
-

-
-

-
-

-
-

-
-

0.
05

0
0.

75
4

0.
83

5
1.

9
-

-
-

-
-

-
-

-
-

-
-

-
-

-
0.

05
3

0.
83

2
2.

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

0.
05

3

T
ab

le
15

:
P
ow

er
an

d
S
iz

e
u
si

n
g

β
=

0.
2

86



λ
1

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

λ
2

=
0.

5
0.

04
6

0.
90

5
0.

92
3

0.
92

0
0.

94
0

0.
93

8
0.

92
3

0.
94

5
0.

96
0

0.
95

8
0.

98
5

0.
95

8
0.

97
3

0.
98

3
0.

97
8

0.
99

3
0.

6
-

0.
05

9
0.

90
8

0.
91

5
0.

90
3

0.
91

8
0.

93
0

0.
93

0
0.

93
5

0.
96

5
0.

94
3

0.
96

5
0.

96
8

0.
98

8
0.

98
3

0.
97

8
0.

7
-

-
0.

04
1

0.
89

0
0.

90
5

0.
91

5
0.

92
5

0.
90

5
0.

93
0

0.
93

3
0.

93
0

0.
95

5
0.

97
0

0.
96

3
0.

94
0

0.
95

0
0.

8
-

-
-

0.
05

0
0.

90
0

0.
90

3
0.

92
5

0.
92

3
0.

90
0

0.
94

5
0.

90
3

0.
94

3
0.

92
5

0.
94

8
0.

97
3

0.
96

5
0.

9
-

-
-

-
0.

04
8

0.
92

0
0.

89
5

0.
92

8
0.

88
3

0.
92

0
0.

95
3

0.
93

5
0.

94
5

0.
92

3
0.

92
0

0.
95

8
1.

0
-

-
-

-
-

0.
05

2
0.

91
3

0.
90

8
0.

90
0

0.
93

8
0.

91
8

0.
92

5
0.

93
3

0.
94

0
0.

92
3

0.
92

8
1.

1
-

-
-

-
-

-
0.

04
8

0.
89

3
0.

89
5

0.
91

0
0.

89
5

0.
91

8
0.

93
0

0.
93

8
0.

93
3

0.
93

5
1.

2
-

-
-

-
-

-
-

0.
04

5
0.

91
3

0.
64

0
0.

89
3

0.
91

0
0.

93
0

0.
89

8
0.

92
8

0.
93

5
1.

3
-

-
-

-
-

-
-

-
0.

04
8

0.
91

3
0.

90
3

0.
90

3
0.

92
0

0.
92

3
0.

92
8

0.
90

8
1.

4
-

-
-

-
-

-
-

-
-

0.
04

2
0.

87
8

0.
92

0
0.

91
0

0.
90

3
0.

91
5

0.
91

8
1.

5
-

-
-

-
-

-
-

-
-

-
0.

05
3

0.
89

8
0.

91
8

0.
93

0
0.

87
8

0.
90

0
1.

6
-

-
-

-
-

-
-

-
-

-
-

0.
05

0
0.

92
5

0.
89

0
0.

89
8

0.
91

8
1.

7
-

-
-

-
-

-
-

-
-

-
-

-
0.

05
6

0.
90

3
0.

89
5

0.
90

3
1.

8
-

-
-

-
-

-
-

-
-

-
-

-
-

0.
04

3
0.

87
5

0.
92

3
1.

9
-

-
-

-
-

-
-

-
-

-
-

-
-

-
0.

05
6

0.
91

3
2.

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

0.
04

8

T
ab

le
16

:
P
ow

er
an

d
S
iz

e
u
si

n
g

β
=

0.
1

87



λ
1

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

λ
2

=
0.

5
0.

04
3

0.
94

8
0.

95
3

0.
95

0
0.

96
8

0.
97

3
0.

97
5

0.
96

8
0.

98
5

0.
98

0
0.

98
8

0.
98

8
0.

94
3

0.
98

5
0.

99
3

0.
94

1
0.

6
-

0.
05

4
0.

94
8

0.
95

8
0.

95
8

0.
96

5
0.

97
3

0.
97

8
0.

97
8

0.
98

3
0.

97
8

0.
98

0
0.

98
8

0.
99

0
0.

98
8

0.
98

5
0.

7
-

-
0.

04
5

0.
96

3
0.

98
0

0.
96

3
0.

95
5

0.
96

0
0.

96
0

0.
97

8
0.

98
0

0.
98

8
0.

98
0

0.
98

0
0.

98
5

0.
98

8
0.

8
-

-
-

0.
05

6
0.

93
3

0.
97

0
0.

94
5

0.
95

5
0.

97
0

0.
96

5
0.

96
5

0.
98

5
0.

97
0

0.
97

8
0.

99
3

0.
99

5
0.

9
-

-
-

-
0.

05
8

0.
93

5
0.

95
5

0.
95

5
0.

97
0

0.
96

8
0.

96
3

0.
96

3
0.

97
0

0.
98

0
00

.9
51

0.
96

8
1.

0
-

-
-

-
-

0.
05

5
0.

96
3

0.
93

5
0.

93
5

0.
95

8
0.

95
0

0.
97

3
0.

95
5

0.
97

8
0.

96
8

0.
97

3
1.

1
-

-
-

-
-

-
0.

04
8

0.
95

0
0.

93
0

0.
96

0
0.

95
5

0.
95

8
0.

95
3

0.
96

3
0.

96
3

0.
97

0
1.

2
-

-
-

-
-

-
-

0.
05

3
0.

95
8

0.
70

8
0.

93
8

0.
96

0
0.

96
3

0.
94

5
0.

96
8

0.
95

5
1.

3
-

-
-

-
-

-
-

-
0.

05
8

0.
94

8
0.

93
8

0.
96

3
0.

94
0

0.
96

3
0.

94
8

0.
96

0
1.

4
-

-
-

-
-

-
-

-
-

0.
05

1
0.

96
0

0.
94

8
0.

96
5

0.
94

8
0.

97
3

0.
96

0
1.

5
-

-
-

-
-

-
-

-
-

-
0.

04
5

0.
95

5
0.

94
8

0.
95

3
0.

95
5

0.
95

0
1.

6
-

-
-

-
-

-
-

-
-

-
-

0.
04

7
0.

95
5

0.
92

8
0.

94
0

0.
95

5
1.

7
-

-
-

-
-

-
-

-
-

-
-

-
0.

04
6

0.
96

3
0.

96
5

0.
95

0
1.

8
-

-
-

-
-

-
-

-
-

-
-

-
-

0.
05

1
0.

95
3

0.
95

5
1.

9
-

-
-

-
-

-
-

-
-

-
-

-
-

-
0.

04
8

0.
94

5
2.

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

0.
05

2

T
ab

le
17

:
P
ow

er
an

d
S
iz

e
u
si

n
g

β
=

0.
05

88



λ
1

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

λ
2

=
0.

5
29

6
14

19
42

4
22

5
15

0
11

3
91

78
69

62
57

53
50

48
46

44
0.

6
-

41
3

19
31

56
4

29
2

19
1

14
1

11
2

94
82

73
67

62
58

55
52

0.
7

-
-

55
2

25
35

72
7

37
0

23
8

17
3

13
6

11
3

97
86

77
71

66
62

0.
8

-
-

-
71

5
32

33
91

4
45

9
29

1
20

9
16

3
13

3
11

4
10

0
89

81
75

0.
9

-
-

-
-

90
1

40
28

11
25

55
8

35
0

24
9

19
2

15
6

13
2

11
5

10
2

93
1.

0
-

-
-

-
-

11
12

49
22

13
61

66
9

41
5

29
3

22
4

18
1

15
2

13
1

11
6

1.
1

-
-

-
-

-
-

13
48

59
16

16
23

79
1

48
8

34
2

25
9

20
8

17
4

14
9

1.
2

-
-

-
-

-
-

-
16

09
70

14
84

9
92

5
56

7
39

4
29

8
23

8
19

7
1.

3
-

-
-

-
-

-
-

-
18

97
82

17
22

25
10

71
65

2
45

2
33

9
26

9
1.

4
-

-
-

-
-

-
-

-
-

22
11

95
28

25
67

12
29

74
5

51
4

38
4

1.
5

-
-

-
-

-
-

-
-

-
-

25
52

10
95

0
29

37
14

01
84

5
58

0
1.

6
-

-
-

-
-

-
-

-
-

-
-

29
22

12
48

7
33

36
15

85
95

3
1.

7
-

-
-

-
-

-
-

-
-

-
-

-
33

21
14

14
2

37
66

17
83

1.
8

-
-

-
-

-
-

-
-

-
-

-
-

-
37

50
15

92
0

42
26

1.
9

-
-

-
-

-
-

-
-

-
-

-
-

-
-

42
09

17
82

4
2.

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

47
02

T
ab

le
18

:
S
am

p
le

S
iz

e
R

eq
u
ir

ed
U

si
n
g

α
=

0.
05

an
d

β
=

0.
05

89



λ
1

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

λ
2

=
0.

5
23

4
11

23
33

6
17

8
11

8
89

72
62

54
49

45
42

40
38

36
35

0.
6

-
32

6
15

28
44

6
23

1
15

1
11

2
89

75
65

58
53

49
46

43
41

0.
7

-
-

43
7

20
06

57
5

29
3

18
8

13
7

10
8

89
77

68
61

56
52

49
0.

8
-

-
-

56
5

25
58

72
3

36
3

23
0

16
5

12
9

10
6

90
79

71
64

60
0.

9
-

-
-

-
71

3
31

87
89

0
44

2
27

7
19

7
15

2
12

4
10

4
91

81
73

1.
0

-
-

-
-

-
88

0
38

95
10

77
52

9
32

9
23

2
17

7
14

3
12

0
10

4
92

1.
1

-
-

-
-

-
-

10
66

46
82

12
84

62
6

38
6

27
0

20
5

16
5

13
7

11
8

1.
2

-
-

-
-

-
-

-
01

27
3

55
50

67
2

73
2

44
8

31
2

23
6

18
8

15
6

1.
3

-
-

-
-

-
-

-
-

15
01

65
02

17
61

84
8

51
6

35
7

26
8

21
3

1.
4

-
-

-
-

-
-

-
-

-
17

49
75

40
20

31
97

3
59

0
40

6
30

4
1.

5
-

-
-

-
-

-
-

-
-

-
20

20
86

65
23

24
11

08
66

9
45

9
1.

6
-

-
-

-
-

-
-

-
-

-
-

23
12

98
81

26
40

12
54

75
4

1.
7

-
-

-
-

-
-

-
-

-
-

-
-

26
28

11
19

1
29

80
14

11
1.

8
-

-
-

-
-

-
-

-
-

-
-

-
-

29
67

12
59

8
33

44
1.

9
-

-
-

-
-

-
-

-
-

-
-

-
-

-
33

31
14

10
5

2.
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
37

20

T
ab

le
19

:
S
am

p
le

S
iz

e
R

eq
u
ir

ed
U

si
n
g

α
=

0.
05

an
d

β
=

0.
10

90



λ
1

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

λ
2

=
16

9
0.

05
9

81
1

24
2

12
8

86
64

52
44

39
35

33
30

29
27

26
25

0.
6

-
23

5
11

03
32

2
16

7
10

9
81

64
54

47
42

38
35

33
31

30
0.

7
-

-
31

5
14

48
41

5
21

1
13

6
99

78
64

55
49

44
41

38
36

0.
8

-
-

-
40

8
18

47
52

2
26

2
16

6
11

9
93

76
65

57
51

47
43

0.
9

-
-

-
-

51
5

23
01

64
3

31
9

20
0

14
2

11
0

89
75

66
58

53
1.

0
-

-
-

-
-

63
5

28
12

77
8

38
2

23
7

16
8

12
8

10
3

87
75

66
1.

1
-

-
-

-
-

-
77

0
33

80
92

7
45

2
27

9
19

5
14

8
11

9
99

85
1.

2
-

-
-

-
-

-
-

91
9

40
07

48
5

52
8

32
4

22
5

17
0

13
6

11
3

1.
3

-
-

-
-

-
-

-
-

10
83

46
94

12
71

61
2

37
3

25
8

19
4

15
4

1.
4

-
-

-
-

-
-

-
-

-
12

63
75

44
3

14
66

70
2

42
6

29
3

21
9

1.
5

-
-

-
-

-
-

-
-

-
-

14
58

62
56

16
78

80
0

48
3

33
2

1.
6

-
-

-
-

-
-

-
-

-
-

-
16

69
71

34
19

06
90

5
54

4
1.

7
-

-
-

-
-

-
-

-
-

-
-

-
18

97
80

79
21

51
10

19
1.

8
-

-
-

-
-

-
-

-
-

-
-

-
-

21
42

90
95

24
14

1.
9

-
-

-
-

-
-

-
-

-
-

-
-

-
-

24
05

10
18

3
2.

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

26
86

T
ab

le
20

:
S
am

p
le

S
iz

e
R

eq
u
ir

ed
U

si
n
g

α
=

0.
05

an
d

β
=

0.
20

91



Hazard 4 8 10 20
A 0.682 0.675 0.676 0.684
B 0.563 0.508 0.492 0.507
C 0.565 0.474 0.486 0.539
D 0.566 0.496 0.484 0.506
E 0.582 0.474 0.478 0.499
F 0.570 0.509 0.486 0.503
G 0.127 0.049 0.063 0.126
H 0.533 0.503 0.501 0.465
I 0.458 0.370 0.387 0.426
J 0.365 0.300 0.307 0.323
K 0.370 0.284 0.308 0.320
L 0.931 0.927 0.920 0.896

Table 21: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate (Part 1 of hazards)
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Hazard 4 8 10 20
A 3.356 3.616 3.593 3.490
B 3.246 3.476 3.479 3.221
C 3.171 3.492 3.485 3.343
D 3.192 3.527 3.476 3.284
E 3.216 3.481 3.485 3.327
F 3.201 3.503 3.506 3.270
G 2.387 3.125 2.878 2.318
H 3.189 3.505 3.460 3.258
I 2.848 3.374 3.321 3.137
J 3.051 3.441 3.410 3.066
K 3.049 3.433 3.423 3.071
L 3.185 3.495 3.520 3.419

Table 22: Average time where the Self-Consistency Estimate first crosses either the
right or left-imputed Kaplan-Meier Estimate.Using 1st hazard)

Hazard 4 8 10 20
A 0.601 0.571 0.571 0.576
B 0.000 0.034 0.041 0.095
C 0.579 0.464 0.504 0.527
D 0.986 0.979 0.984 0.959
E 0.099 0.028 0.037 0.091
F 0.155 0.053 0.068 0.117
G 0.197 0.087 0.100 0.134
H 0.271 0.159 0.195 0.225
I 0.700 0.646 0.669 0.660
J 0.829 0.751 0.712 0.688
K 0.802 0.752 0.717 0.641
L 0.563 0.486 0.504 0.505

Table 23: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate (part 2 of hazards)
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Hazard 4 8 10 20
A 3.236 3.556 3.524 3.376
B 2.307 3.163 2.944 2.337
C 3.140 3.489 3.447 3.290
D 3.460 3.549 3.549 3.465
E 2.467 3.110 3.150 2.595
F 2.200 3.025 2.880 2.412
G 2.648 3.374 3.205 3.000
H 2.941 3.313 3.350 2.851
I 3.397 3.587 3.577 3.469
J 3.144 3.447 3.449 3.373
K 3.158 3.452 3.412 3.397
L 3.180 3.500 3.499 3.319

Table 24: Average time where the Self-Consistency Estimate first crosses either the
right or left-imputed Kaplan-Meier Estimate. (Using second hazard)

Percent Right-Censored 4 8 10 20
90.00% 0.980 0.972 0.950 0.831
75.00% 1.000 0.999 0.998 0.979
66.00% 1.000 1.000 0.998 0.997
50.00% 1.000 1.000 1.000 0.992
33.00% 1.000 1.000 1.000 0.993
25.00% 0.999 0.999 1.000 0.984
10.00% 0.945 0.960 0.962 0.932

Table 25: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate to compare different proportions of right-censored observations.

Percent Right-Censored 4 8 10 20
90.00% 0.069 0.067 0.066 0.070
75.00% 0.177 0.206 0.207 0.277
66.00% 0.265 0.305 0.314 0.332
50.00% 0.519 0.583 0.592 0.607
33.00% 0.893 0.943 0.950 0.944
25.00% 1.185 1.230 1.233 1.205
10.00% 1.976 2.057 2.051 1.982

Table 26: Average time the Self-Consistency Estimate first crosses either the right or
left imputed Kaplan-Meier Estimate.
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Mean 4 8 10 20 continuous
0.5 0.000 0.035 0.034 0.075 0.008
1 0.559 0.499 0.497 0.447 0.251
2 0.987 0.982 0.987 0.951 0.882
3 1.000 1.000 0.997 0.991 0.991
5 1.000 1.000 1.000 0.991 1.000
6 1.000 1.000 0.999 0.991 1.000

Table 27: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate (exponential with various means)

Mean 4 8 10 20 continuous
0.5 0.000 0.035 0.031 0.074 0.001
1.0 0.353 0.131 0.085 0.189 0.008
2.0 0.485 0.230 0.091 0.149 0.028
3.0 0.430 0.213 0.095 0.205 0.042
5.0 0.442 0.321 0.175 0.325 0.060
6.0 0.444 0.332 0.202 0.377 0.080

Table 28: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate ignoring all time points greater than 3

Mean 8 10 20 continuous
0.5 0.000 0.000 0.000 0.000
1.0 0.000 0.164 0.228 0.102
2.0 0.579 0.549 0.713 0.501
3.0 0.778 0.721 0.848 0.712
5.0 0.870 0.826 0.804 0.819
6.0 0.867 0.846 0.781 0.846

Table 29: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Sample Size 10
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Mean 8 10 20 continuous
0.5 0.051 0.052 0.094 0.010
1.0 0.718 0.731 0.685 0.375
2.0 1.000 0.998 0.999 0.989
3.0 1.000 1.000 1.000 0.999
5.0 1.000 1.000 0.999 1.000
6.0 1.000 1.000 1.000 1.000

Table 30: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Sample Size 100

Mean 8 10 20 continuous
0.5 0.340 0.250 0.170 0.080
1.0 1.000 1.000 1.000 1.000
2.0 1.000 1.000 1.000 1.000
3.0 1.000 1.000 1.000 1.000
5.0 1.000 1.000 1.000 1.000
6.0 1.000 1.000 1.000 1.000

Table 31: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Sample Size 1000

Mean 8 10 20
0.5 0.016 0.010 0.040
1.0 0.071 0.034 0.057
2.0 0.046 0.015 0.021
3.0 0.036 0.006 0.024
5.0 0.045 0.016 0.039
6.0 0.040 0.018 0.048

Table 32: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Sample Size 100, ignoring all time points greater than 3
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Mean 8 10 20
0.5 0.031 0.009 0.018
1.0 0.001 0.000 0.000
2.0 0.000 0.000 0.000
3.0 0.000 0.000 0.000
5.0 0.000 0.000 0.000
6.0 0.000 0.000 0.000

Table 33: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Sample Size 1000, ignoring all time points greater than 3

Mean 8 10 20
0.5 0.000 0.132 0.017
1.0 0.589 0.373 0.143
2.0 0.841 0.634 0.328
3.0 0.865 0.678 0.395
5.0 0.856 0.697 0.477
6.0 0.838 0.713 0.524

Table 34: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Probability of observation 0.2
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Mean 8 10 20
0.5 0.274 0.269 0.401
1.0 0.338 0.412 0.497
2.0 0.259 0.317 0.521
3.0 0.245 0.325 0.518
5.0 0.284 0.351 0.602
6.0 0.342 0.378 0.634

Table 35: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Probability of observation 0.9

Mean 8 10 20
0.5 0.469 0.448 0.632
1.0 0.368 0.431 0.426
2.0 0.266 0.312 0.519
3.0 0.262 0.299 0.478
5.0 0.300 0.355 0.597
6.0 0.320 0.387 0.637

Table 36: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Probability of observation 1.0

Mean 8 10 20
0.5 0.469 0.134 0.016
1.0 0.594 0.397 0.146
2.0 0.836 0.621 0.311
3.0 0.867 0.706 0.425
5.0 0.864 0.690 0.497
6.0 0.856 0.726 0.494

Table 37: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Probability of observation 0.2, ignoring crossings at time greater than 3.
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Mean 8 10 20
0.5 0.257 0.267 0.432
1.0 0.342 0.418 0.444
2.0 0.258 0.322 0.524
3.0 0.271 0.348 0.516
5.0 0.306 0.345 0.601
6.0 0.312 0.383 0.660

Table 38: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Probability of observation 0.9, ignoring crossings at time greater than 3.

Mean 8 10 20
0.5 0.469 0.448 0.632
1.0 0.368 0.431 0.426
2.0 0.266 0.312 0.519
3.0 0.262 0.299 0.478
5.0 0.300 0.355 0.597
6.0 0.320 0.387 0.637

Table 39: Proportion of Times Self Consistent Estimate Crosses Kaplan-Meier Esti-
mate: Probability of observation 1.0, ignoring crossings at time greater than 3.
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Figure 1: Survival curves by treatment groups in breast cosmesis data.
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Figure 2: Smoothed Hazard functions for the shedding time of CMV in patients with
HIV.
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Figure 3: Estimated survival functions for the shedding time of CMV in patients with
HIV.
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Figure 4: Plot of the survival functions for an exponential with λ = 2.0 and with
λ = 1.9
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Figure 5: Plot of the survival functions for an exponential with λ = 2.0 and with
λ = 0.5
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Figure 6: Plot of the Self Consistency Estimate and the Left-Imputed Kaplan-Meier
Estimate for Rats
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Figure 7: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 0.5
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Figure 8: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 1
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Figure 9: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 2
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Figure 10: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 3
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Figure 11: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 5

110



0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

SC Estimate
KM left
KM right

Figure 12: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 6
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Figure 13: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 2 and sample
size 1000
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Figure 14: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 2 and sample
size 100
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Figure 15: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 2 and sample
size 10
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Figure 16: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 1. This is an
example where they cross
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Figure 17: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 2. This is an
example where they cross
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Figure 18: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates using an Exponential Hazard Function with mean 3. This is an
example where they cross
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Figure 19: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates for the Radiation Group from the Caner Study in Finkelstein and
Wolf
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Figure 20: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates for the Chemotherapy Group from the Caner Study in Finkelstein
and Wolf
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Figure 21: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates for patients with a non-low CD4 count from the AIDS study in
Goggins and Finklestein
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Figure 22: Plot of the Self Consistency Estimate and the Kaplan-Meier Right and Left
Imputed Estimates for patients with a low CD4 count from the AIDS study in Goggins
and Finklestein
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