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A free boundary gas dynamic model as a two-body field theory problem

Michael Thomas Heitzman

Professor Carmen Chicone, Dissertation Supervisor

ABSTRACT

Motivated by the two-body problem in the classical field theories of electrody-

namics and gravitation, in which finite propagation speeds lead to radiation reaction

and runaway solutions, we develop a free boundary problem in gas dynamics to ex-

plore the motion of sources in a medium whose dynamics are governed by hyperbolic,

wave-like equations arising from physical conservation laws. In our linearized acous-

tic model, the fields can be eliminated to yield functional differential equations for

the motion of the sources—delay equations with an infinite dimensional state space.

Expansion and truncation gives rise to runaway solutions, just as in the classical field

theories. We illustrate a scheme for eliminating runaway solutions by reducing to

a finite dimensional, globally attracting, invariant manifold on which effective equa-

tions of motion for the sources can be obtained. The effective equations of motion

approximate the asymptotic behavior of solutions in the full space as they approach

the manifold. We also treat the full nonlinear free boundary problem and show that

unique classical solutions exist locally, for initial fields close enough to their constant

steady state.
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0.1 Introduction

A field theory consists of partial differential equations (PDEs) governing the evo-

lution of the field, with the field sources incorporated either as boundary data or

inhomogeneous source terms. The PDEs are hyperbolic, wave-like equations in which

disturbances in the fields propagate with finite speed. Additionally, the motion of the

sources is determined by ordinary differential equations (ODEs) coupled to the field

at the location of the source. Electrodynamics is a classical example of a field theory.

The PDEs governing the electromagnetic fields are Maxwell’s equations,

1

c

∂B

∂t
= −∇× E

1

c

∂E

∂t
= ∇×B − 1

c
j

∇ · E = ρ

∇ ·B = 0,

where E(x, t), B(x, t) are the electric and magnetic fields, ρ(x, t) and j(x, t) are the

charge and current densities (the sources of the fields), and c is the speed of light.

The ODE that determines the motion of the charged particle is given by the Lorentz

force law, combined with Newton’s 2nd law:

mq̈(t) = e[E(q(t), t) +
1

c
q̇(t)×B(q(t), t)],

where q(t) is the position of the particle and e is its charge.

Typically in electrodynamics, the PDEs and ODEs are treated separately. If the

source trajectories (and hence ρ and j) are given, then the fields can be computed

by solving the PDEs. Or, if the fields are given, then the motion of the sources may

be determined by solving the ODEs. But this separation is unsatisfactory. Rather
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than prescribing either the fields or the source trajectories for all time, one might

wish to give only initial data for fields and sources and then determine how the entire

coupled system evolves. Unfortunately, for point charges in electrodynamics, such

an initial value problem is not well posed. The difficulty occurs because the field

strength due to a point source becomes infinite at the location of the point source.

(Solving Maxwell’s equations for the fields due to a point source gives the Lienard-

Wiechert fields, expressions for E(x, t) and B(x, t) containing a term that diverges as

1/(x− q(tret))
2, where the retarded time tret is delayed by the time it takes a signal

to travel with speed c from the charge location q(tret) to the point x. But evaluation

at x = q(t) gives tret = t, so that E(q(t), t) and B(q(t), t) are singular (cf. [6]).)

One method of attempting to overcome this difficulty is by neglecting the particle’s

own contribution to the field in the PDEs, and then compensating by adding a radia-

tion reaction term (determined indirectly by energy and momentum conservation) in

the ODE to account for the effect of the force that the particle exerts on itself. The

result is the Lorentz-Dirac-Abraham equation

mq̈ = Fext +
2e2

3c3
...
q , (1)

where Fext is the net force due to the fields of all the other charges, and the last term

is the radiation reaction. This 3rd order ODE is non-Newtonian with unphysical,

runaway solutions. Additional constraints must be imposed to reduce this higher

order ODE to an effective 2nd order Newtonian equation of motion with no runaway

solutions (cf. [1]).

An alternate approach is to replace the point charges with extended charges. For

a charged spherical shell of radius r, charge e, and bare mass m0 moving with low
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velocity (v/c << 1) on a line, A. Sommerfeld’s exact representation of the electro-

magnetic fields do not diverge and may be used in the Lorentz force law to give the

equation of motion

d

dt
(m0v) =

e2

3r2c
(v(t− 2r

c
)− v(t)). (2)

(See [1, 5].) This retarded functional differential equation (RFDE) is again non-

Newtonian. It does not have runaway solutions, but expanding in the small delay and

truncating again yields the 3rd order Abraham-Dirac-Lorentz equation (incorporating

an appropriate electromagnetic mass into the total mass), with runaway solutions

which must be eliminated by additional constraints. Unfortunately, singularities still

emerge when taking the point charge limit of the extended charge.

Similar issues arise in gravitational field theory. The difficulties encountered in

the classical field theories of electrodynamics and gravity for point sources provides

motivation to seek a simpler field theory model where the fields due to the point source

remain finite at the location of the source, yet the model still displays issues associated

with finite propagation speed and radiation reaction. Fluid dynamics provides the

setting for such a model (cf. [7]).

0.2 Nonlinear gas dynamic model

Consider a tube containing an isentropic ideal gas confined between two pistons at-

tached to springs at each end. The motion of each piston is determined by an ODE:

Newton’s 2nd law applied to the piston acted on by the spring force, spring damping,

and gas pressure (at the location of the piston). The pressure field in the gas be-

tween the pistons is determined by the PDEs of gas dynamics, with the motion of the
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pistons included as boundary data. The pistons are analogous to charges in electro-

dynamics, with the force due to the gas pressure acting as the Lorentz force law. The

PDEs of gas dynamics are analogous to Maxwell’s equations for the electromagnetic

fields. But, the gas dynamics model has the advantage that even though a piston

behaves as a point charge, the pressure field it produces does not become singular at

the location of the piston. Hence, we may directly couple the motion of the piston to

its own pressure field, and thus immediately ascertain the radiation reaction, without

resorting to the indirect methods required in electrodynamics.

Let us assume the tube lies along the x-axis and the gas flow is one-dimensional

with velocity u(x, t) and positive density ρ(x, t). Assume the gas is isentropic and the

pressure P is only a function of ρ, given by the equation of state

P (ρ) = aργ, (3)

where a > 0 and γ > 1 are constants characterizing the gas. Let the ith piston (for

i=1,2) have mass Mi, area A, and be attached to a spring with spring constant Ki

and spring damping coefficient µi. Let R1 be the displacement of the first piston

from its vacuum equilibrium position of x = 0, and R2 be the displacement from its

vacuum equilibrium position of x = l.

On the state-dependent domain R1(t) < x < l + R2(t), the field equations arise

from conservation of mass and momentum of the gas, taking the form of the continuity

equation and Euler’s equation

ρt = −(ρu)x (4)

ρut = −ρuux − P (ρ)x. (5)

In addition, matching the piston and gas velocity and applying Newton’s 2nd law to
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the pistons imposes the boundary conditions (BCs)

u(R1(t), t) = Ṙ1(t) (6)

u(l +R2, t) = Ṙ2(t) (7)

M1R̈1(t) = −K1R1(t)− µ1Ṙ1(t)− P (ρ(R1(t), t))A (8)

M2R̈2(t) = −K2R2(t)− µ2Ṙ2(t) + P (ρ(l +R2(t), t))A. (9)

Initial data consists of values for R1(0), R2(0), Ṙ1(0), Ṙ2(0), and the initial fields

ρ(x, 0) = F (x), u(x, 0) = G(x), x ∈ [R1(0), l +R2(0)], (10)

for some functions F and G, where F must satisfy the condition

∫ l+R2(0)

R1(0)

F (x) dx = M, (11)

where M is the total mass of gas between the pistons, per cross sectional area, A.

Note that
∫ l+R2(t)

R1(t)
ρ(x, t) dx remains constant in t by the continuity equation (4) and

the BCs (6)–(7).

The usual compatibility conditions imposed by matching initial and boundary data

requires

Ṙ1(0) = G(R1(0)), Ṙ2(0) = G(l +R2(0)). (12)

In addition, if Euler’s equation (5) holds at the boundary, then it may be used with

BCs (6)–(7) (differentiated w.r.t. t) to determine the initial piston accelerations

R̈1(0) = −
(

1

F (x)

∂

∂x
P (F (x))

)∣∣∣∣
x=R1(0)

, R̈2(0) = −
(

1

F (x)

∂

∂x
P (F (x))

)∣∣∣∣
x=l+R2(0)

.
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The BCs (8)–(9) then give rise to the further compatibility conditions

−
(
M1

F (x)

∂

∂x
P (F (x))

)∣∣∣∣
x=R1(0)

= −K1R1(0)− µ1G(R1(0))

−P (F (R1(0))A (13)

−
(
M2

F (x)

∂

∂x
P (F (x))

)∣∣∣∣
x=l+R2(0)

= −K2R2(0)− µ2G(l +R2(0))

+P (F (l +R2(0))A. (14)

Thus the initial fields F and G determine the initial piston velocities Ṙ1(0), Ṙ2(0)

and positions R1(0), R2(0). This implies that the state of the system (3)–(14) at any

time t is completely determined by the field functions ρ(·, t) and u(·, t).

For every solution of (3)–(9), the energy

E(t) := A

∫ l+R2(t)

R1(t)

(
1

2
ρ(x, t)u2(x, t) +

P (ρ(x, t))

γ − 1

)
dx

+
1

2
K1R

2
1(t) +

1

2
K2R

2
2(t) +

1

2
M1Ṙ

2
1(t) +

1

2
M2Ṙ

2
2(t)

satisfies

dE

dt
= −µ1Ṙ

2
1 − µ2Ṙ

2
2.

The linearization of (3)–(14) about a steady state of constant fields, ρ = ρ0 and u = 0,

yields the acoustic problem on which we expound in chapter 1. In chapter 2, we show

the full nonlinear problem is locally well posed for initial data taken close enough to

that constant steady state (in C1 norm).

0.3 Steady state solution

We now show that for a steady state solution (constant in time) of the system (3)–

(14), the field functions ρ and u must be constant in space as well, and these con-
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stants, along with the steady state piston positions, are uniquely determined by the

parameters a, γ, A, M , l, K1 and K2.

By (3) and PDEs (4)–(5), steady state solutions ρ and u must satisfy

ρxu+ ρux = 0

ρuux + γaργ−1ρx = 0,

which together imply

(u2 + γaργ−1)ρx = 0.

Since (u2 + γaργ−1) > 0, we must have ρx = 0. Thus ρ is constant, say ρ = ρ0. Then

(4) further simplifies to become

ρ0ux = 0,

which implies that u is constant, say u = u0.

Let R1 = R10 and R2 = R20 be the steady state piston displacements (which are

constant by the definition of steady state). Then the BCs (6)–(7) imply that in fact,

u0 = 0.

The condition ∫ l+R2(t)

R1(t)

ρ(x, t) dx = M

implies the steady state must satisfy

ρ0(l +R20 −R10) = M.

Furthermore the BCs (8)–(9) along with the equation of state (3) imply

R10 = −aAρ
γ
0

K1

, R20 =
aAργ

0

K2

. (15)

7



Therefore the steady state density ρ0 is uniquely determined by the parameters a, A,

γ, M , l, K1 and K2 through the relation

lρ0 +
K1K2

K1 +K2

aAργ+1
0 = M. (16)

This then uniquely determines R10 and R20 as well, by (15). Note that the values of

ρ0, R10 , and R20 are independent of the piston masses, M1 and M2, as well as initial

data (provided that condition (11) is satisfied).

It is easy to check that ρ = ρ0 and u = 0 (with R1(0) and R2(0) determined by the

compatibility conditions (13)–(14) to be R10 and R20 as given above) are solutions to

(3)–(14).
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Chapter 1

Acoustic model

1.1 Linearized acoustic model

The acoustic model is the linearization about the steady state solution of (3)–(14),

ρ = ρ0, u = 0, R1 = R10 , R2 = R20 , (1.1)

determined in section 0.3 by (15)–(16)

We linearize the system (3)–(14) about the steady state (1.1) by introducing the

change of variables, for i = 1, 2,

ρ(x, t) = ρ0 + ερ̃(x, t), u(x, t) = εũ(x, t), Ri(t) = Ri0 + εR̃i(t),

F (x) = ρ0 + εF̃ (x), G(x) = εG̃(x). (1.2)

Keeping only terms to 1st order in ε (i.e., differentiating all expressions with respect

to ε and then letting ε→ 0), and denoting c20 = P ′(ρ0), we get the linearized system

on the fixed domain R10 < x < l +R20 ,

ρ̃t = −ρ0ũx (1.3)

ρ0ũt = −c20ρ̃x, (1.4)

9



with boundary conditions

ũ(R10 , t) = ˙̃R1(t) (1.5)

ũ(l +R20 , t) = ˙̃R2(t) (1.6)

M1
¨̃R1(t) = −K1R̃1(t)− µ1

˙̃R1(t)− c20ρ̃(R10 , t)A (1.7)

M2
¨̃R2(t) = −K2R̃2(t)− µ2

˙̃R2(t) + c20ρ̃(l +R20 , t)A, (1.8)

initial conditions, for i = 1, 2,

R̃i(0),
˙̃Ri(0) (1.9)

ρ̃(x, 0) = F̃ (x), ũ(x, 0) = G̃(x), x ∈ [R10 , l +R20 ], (1.10)

and compatibility conditions

˙̃R1(0) = G̃(R10)),
˙̃R2(0) = G̃(l +R20). (1.11)

−M1
c20
ρ0

F̃ ′(R10) = −K1R̃1(0)− µ1G̃(R10)− c20F̃ (R10)A, (1.12)

−M2
c20
ρ0

F̃ ′(l +R20) = −K2R̃2(0)− µ2G̃(l +R20) + c20F̃ (l +R20)A, (1.13)

which again determine the initial piston displacements and velocities, R̃i(0),
˙̃Ri(0),

in terms of the initial fields F̃ and G̃.

Formally, the new linearized fields given by the change of variables in (1.2) would

have the same (state dependent) domain as the original functions. However, in the

linearized boundary conditions (1.5)–(1.8), the linearized fields are only evaluated

at the fixed positions x = R10 and x = l + R20 , which may not even be located

within the original state dependent domain. Therefore we define the new linearized

field functions to have the fixed spatial domain [R10 , l + R20 ]. We emphasize that,

in the linearized system, all functions of x are on the fixed domain [R10 , l + R20 ];

10



we no longer have a free boundary. However, the functions R̃1(t) and R̃2(t) are still

unknown (hence the four B.C.s, rather than just the two that would be required if

the R̃’s where prescribed).

The linearization of condition (11) leads to the condition

∫ l+R20

R10

F̃ (x) dx+ ρ0(R̃2(0)− R̃1(0)) = 0. (1.14)

On the fixed domain, the linearized continuity equation (1.3) no longer conserves

mass; combined with BCs (1.5)–(1.6) it yields

d

dt

∫ l+R20

R10

ρ̃(x, t) dx = −ρ0(
˙̃R2(t)− ˙̃R1(t)),

so that the map t 7→
∫ l+R20

R10
ρ̃(x, t) dx+ ρ0(R̃2(t)− R̃1(t)) is a constant of the motion.

The mass of the gas between the pistons would be conserved with the extra condition

˙̃R2(t)− ˙̃R1(t) = 0, (1.15)

but we choose not to impose this extra condition. More will be said about this later,

as this issue comes back to haunt us when we seek a finite dimensional, globally

attracting, invariant manifold whose dynamics capture the asymptotic behavior of

solutions evolving in the full infinite dimensional state space of the linearized sys-

tem (1.3)–(1.14).

It can be seen from PDEs (1.3)–(1.4) that ρ̃ and ũ each satisfy the wave equation

with wave speed c0 (by differentiating one equation in t, the other in x, and canceling

the mixed partials after multiplying by the appropriate constants). We may then

use d’Alembert’s solution to express ρ̃ and ũ as a sum of functions of x + ct and

x − ct, respectively, where the functions can be determined by initial and boundary

11



conditions (yielding a finite series solution for each t, in which the number of terms

increases with t due to successive reflections at the boundaries). Instead, we use the

more geometric method of characteristics, which is equivalent in this case but may

also be applied to more general hyperbolic systems, including the nonlinear system

of the previous section.

First, we note that if the fluid energy term of the previous section is modified by

defining the total energy of the linearized system to be

Ẽ =
1

2
M1

˙̃R2
1 +

1

2
M2

˙̃R2
2 +

1

2
K1R̃

2
1 +

1

2
K2R̃

2
2 + A

∫ l+R20

R10

(
1

2
ρ0ũ

2 +
c20
2ρ0

ρ̃2) dx, (1.16)

then PDEs and BCs (1.3)–(1.8) may be used to show

dẼ

dt
= −µ1

˙̃R2
1 − µ2

˙̃R2
2. (1.17)

This will be used to show that, for positive spring damping coefficients µ1 and µ2, the

displacements R̃1 and R̃2 approach zero as t grows toward +∞, and that the fields

ρ̃ and ũ approach zero as well, uniformly for almost all x ∈ [R10 , l + R20 ]. Although

these results may be expected, they are not obvious. In the next section, we show

that if a steady state is approached, then it must be the trivial solution.

1.2 Linearized steady state solution

For a steady state solution of the linearized system (1.3)–(1.14), the PDEs (1.3)–(1.4)

immediately imply the field functions ρ̃ and ũ must be constant in space as well, say

ρ̃ = ρ̃0 and ũ = ũ0 (not to be confused with ρ0 in (1.1)). By definition of a steady

state, each R̃i is constant, say R̃i = R̃i0 , for i = 1, 2 (not to be confused with Ri0 in

(1.1)). Then the BCs (1.5)–(1.6) imply ũ0 = 0, and BCs (1.7)–(1.8) give

R̃10 = − c20
K1

ρ̃0, R̃20 =
c20
K2

ρ̃0. (1.18)

12



Suppose for now that any solution of the linearized system (1.3)–(1.14) approaches

a steady state (as will later be shown), i.e., assume that for all x ∈ [R10 , l +R20 ], we

have

lim
t→+∞

ρ̃(x, t) = ρ̃0, lim
t→+∞

ũ(x, t) = 0, lim
t→+∞

R̃i(t) = R̃i0 , i = 1, 2.

Then by BCs (1.5)–(1.6), we also have

lim
t→+∞

˙̃Ri(t) = 0, i = 1, 2.

Define

M̃(t) :=

∫ l+R20

R10

ρ̃(x, t) dx. (1.19)

and denote M̃(∞) := limt→+∞ M̃(t). Then by our assumption, we have

M̃(∞) = ρ̃0(l +R20 −R10). (1.20)

Differentiating (1.19) with respect to t, and using PDE (1.3) and BCs (1.5)–(1.6), we

obtain

M̃ ′(t) =

∫ l+R20

R10

ρ̃t(x, t) dx

= −ρ0

∫ l+R20

R10

ũx(x, t) dx

= −ρ0(ũ(l +R20 , t)− ũ(R10 , t))

= −ρ0(
˙̃R2(t)− ˙̃R1(t)).

Now, perhaps surprisingly, we integrate the last expression for M̃ ′(t) from t = 0 to

t = σ, and let σ → +∞, which yields

M̃(∞)− M̃(0) = −ρ0(R̃20 − R̃10) + ρ0(R̃2(0)− R̃1(0)).

13



Using (1.18) and (1.20) in the above equation, and then solving for ρ̃0, we have

ρ̃0 =
M̃(0) + ρ0(R̃2(0)− R̃1(0))

l +R20 −R10 + ρ0c20
K1+K2

K1K2

, (1.21)

where

M̃(0) =

∫ l+R20

R10

F̃ (x) dx.

Thus, combining (1.21) with condition (1.14) gives ρ̃ = 0, so that (1.18) implies

R̃10 = 0 and R̃20 = 0 as well.

Therefore any steady state that is approached by a solution of the linearized system

must be the trivial solution

ρ̃ = 0, ũ = 0, R̃1 = 0, R̃2 = 0.

Before showing that solutions of the linearized system (1.3)–(1.14) approach a con-

stant steady state, we must first introduce the method of characteristics.

1.3 Method of characteristics

The PDEs (1.3)–(1.4) can be written in the form

(
ρ̃
ũ

)
t

=

[
0 −ρ0

− c20
ρ0

0

](
ρ̃
ũ

)
x

,

where the matrix on the right hand side has eigen values ±c0 with corresponding left

eigen vectors (± c0
ρ0
,−1). Left multiplying the above system by each left eigen vector,

respectively, and collecting derivatives, yields the characteristic form of the system

(
∂

∂t
− c0

∂

∂x
)(ũ− c0

ρ0

ρ̃) = 0

(
∂

∂t
+ c0

∂

∂x
)(ũ+

c0
ρ0

ρ̃) = 0,

14



which may be written in the form

wt − c0wx = 0 (1.22)

zt + c0zx = 0, (1.23)

where the Riemann invariant functions, defined by

w(x, t) = ũ(x, t)− c0
ρ0

ρ̃(x, t) (1.24)

z(x, t) = ũ(x, t) +
c0
ρ0

ρ̃(x, t), (1.25)

are constant along the integral curves of dx
dt

= ∓c0, the characteristics, which in this

case are straight lines in the (x, t) plane with slopes ∓1/c0, respectively.

Of course, ũ and ρ̃ may be determined from w and z by adding and subtracting,

respectively. In the next section, we will use the Riemann invariants combined with

the boundary and initial conditions to eliminate the field functions ρ̃ and ũ. Thus we

obtain equations of motion for just the pistons, but these become functional differ-

ential equations (FDEs) involving a time delay rather than ODEs after the pistons

begin to interact.

1.4 Functional differential equations of motion

Here we continue to work formally with the linearized system (1.3)–(1.14). Well-

posedness will be shown in section 1.5. Let l0 = l + R20 − R10 be the steady state

distance between the pistons, which is also the fixed distance between the boundaries

in the linearized system. Then for t ∈ [0, l0/c0], the characteristic line of slope −1/c0

going through the boundary point (R10 , t) will intersect the x-axis at the point (R10 +

c0t, 0), which lies in the fixed domain. Since the Riemann invariant w is constant along
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this line, we have

ũ(R10 , t)−
c0
ρ0

ρ̃(R10 , t) = ũ(R10 + c0t, 0)− c0
ρ0

ρ̃(R10 + c0t, 0).

Using the BCs (1.5) and (1.7) in the left hand side and the ICs (1.10) in the right

hand side of the above equation, we get the ODE

M1
¨̃R1(t) = −(µ1+ρ0c0A) ˙̃R1(t)−K1R̃1(t)−AF̃ (R10 +c0t)+ρ0cAG̃(R10 +c0t). (1.26)

Similarly, again for t ∈ [0, l0/c0], the characteristic line of slope 1/c0 going through

the boundary point (l+R20 , t) will intersect the x-axis at the point (l+R20 − c0t, 0),

which lies in the fixed domain. Since the Riemann invariant z is constant along this

line, we have

ũ(l +R20 , t) +
c0
ρ0

ρ̃(l +R20 , t) = ũ(l +R20 − c0t, 0) +
c0
ρ0

ρ̃(l +R20 − c0t, 0).

Using the BCs (1.6) and (1.8) in the left hand side and the ICs (1.10) in the right

hand side of the above equation, we get the ODE

M2
¨̃R2(t) = −(µ2 + ρ0c0A) ˙̃R2(t)−K2R̃2(t) + AF̃ (l +R20 − c0t)

+ρ0c0AG̃(l +R20 − c0t). (1.27)

From the ODEs (1.26)–(1.27) we see that for t ∈ [0, l0/c0], the pistons behave as

decoupled damped harmonic oscillators with forcing terms given by the initial fields

F̃ and G̃. They are decoupled because l0/c0 is the time required for a signal to

travel from one piston to the other (in the linearized approximation that the distance

between the pistons is their steady state separation of l0). Thus the pistons have not

had time to interact yet. Note that the damping proportional to the piston velocity

has two parts: spring damping with coefficient µi and fluid damping with coefficient
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ρ0c0A. The fluid damping may be associated with the radiation reaction—it arises

from the coupling of the piston’s motion to its own pressure field (the analogous

direct coupling could not be done for point charges in classical electrodynamics).

Some justification for associating the damping term ρ0c0A
˙̃Ri with self-force can be

provided by noting that it is present even for zero initial fields F̃ and G̃, and the

only other field source, namely the other piston, is beyond the range of influence for

t < l0/c0.

Starting at a point on the boundary for t > l0/c (after the pistons have begun to

interact), tracing back in time along a characteristic line will hit the other boundary

before the x−axis. The characteristic line of slope −1/c0 going through the left

boundary point (R10 , t) will intersect the right boundary at the point (l+R20 , t− l0
c0

).

The characteristic line of slope 1/c0 going through the right boundary point (l+R20 , t)

will intersect the left boundary at the point (R10 , t− l0
c0

). Making use of the Riemann

invariants w and z as before, we have

ũ(R10 , t)−
c0
ρ0

ρ̃(R10 , t) = ũ(l +R20 , t−
l0
c0

)− c0
ρ0

ρ̃(l +R20 , t−
l0
c0

)

ũ(l +R20 , t) +
c0
ρ0

ρ̃(l +R20 , t) = ũ(R10 , t−
l0
c0

) +
c0
ρ0

ũ(R10 , t−
l0
c0

).

Applying the BCs (1.5)–(1.8) to eliminate the field functions ρ̃ and ũ yields the neutral

17



functional differential equations (NFDEs)

M1
¨̃R1(t) +M2

¨̃R2(t−
l0
c0

) = −(µ1 + ρ0c0A) ˙̃R1(t)−K1R̃1(t)

+(ρ0c0A− µ2)
˙̃R2(t−

l0
c0

)

−K2R̃2(t−
l0
c0

) (1.28)

M2
¨̃R2(t) +M1

¨̃R1(t−
l0
c0

) = −(µ2 + ρ0c0A) ˙̃R2(t)−K2R̃2(t)

+(ρ0c0A− µ1)
˙̃R1(t−

l0
c0

)

−K1R̃1(t−
l0
c0

). (1.29)

NFDEs are functional differential equations with a delay appearing in the highest

order derivatives (see [15]). By themselves, the NFDEs (1.28) and (1.29) are not

Newtonian: they require initial functions for R̃1 and R̃2 on the interval [0, l0/c0]. On

the other hand, these initial functions are generated by the solutions of ODEs (1.26)–

(1.27), which are Newtonian: they only require the initial data R̃1(0), R̃2(0),
˙̃R1(0),

and ˙̃R2(0) (assuming that the initial fields F̃ and G̃ are given without the compat-

ibility conditions (1.11)–(1.13)). In this way, the ODE/NFDE system (1.26)–(1.29)

may be considered as a Newtonian system.

Unfortunately, viewed in this manner, these equations do not define a dynamical

system; the time t = 0 is special because the initial fields are specified at that time

only. To form a true dynamical system with a flow, the gas density and velocity fields,

ρ̃ and ũ, must be included in the state space (making it infinite dimensional), and

the equations that determine their evolution must be incorporated into the solution

(and the compatibility conditions (1.11)–(1.13) must be included to ensure the fields

remain smooth). The mechanism for determining the evolution of the fields from the

ODE/NFDE system (1.26)–(1.29) may be seen as follows. Given the initial fields F̃
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and G̃ and compatibility conditions (1.11)–(1.13), the ODEs (1.26)–(1.27) determine

R̃1 and R̃2 on the time interval [0, l0/c0], which are then used as initial functions for

the NFDEs (1.28)–(1.29), which in turn determine R̃1 and R̃2 for t > l0/c0. Knowing

R̃1 and R̃2 on any time interval of length l0/c0, the fields at the beginning of the time

interval may be obtained by solving for the initial fields in the ODEs (1.26)–(1.27),

translated in time appropriately. Of course, this translation assumes existence and

uniqueness of solutions of the ODE/NFDE system (1.26)–(1.29).

Alternatively, the fields ρ̃ and ũ may be constructed from R̃1, R̃2, F̃ , and G̃ using

Riemann invariants, as in the next section, where we show well-posedness of the

linearized PDE/ODE system (1.3)–(1.14). First, we state a proposition summarizing

the relationship between the two systems.

Proposition 1. The linearized PDE/ODE system (1.3)–(1.14) is well posed if and

only if the ODE/NFDE system (1.26)–(1.29) with conditions (1.11)–(1.14) is well

posed.

Proof. We have shown that for any solution of the system (1.3)–(1.14), the piston dis-

placements R̃1 and R̃2 must also satisfy the system (1.26)–(1.29). Conversely, given

functions R̃1 and R̃2 which satisfy the ODE/NFDE system (1.26)–(1.29) with con-

ditions (1.11)–(1.14), the procedure that was used to eliminate the fields in deriving

(1.26)–(1.29) can be reversed to construct the fields ρ̃ and ũ from R̃1, R̃2 and the

initial fields F̃ and G̃. This construction can be seen explicitly in the next section,

where in fact the functions R̃1 and R̃2 will be constructed as well, rather than being

assumed given.
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1.5 Existence and uniqueness for the acoustic model

In this section we use characteristics and Riemann invariants to construct (unique)

solutions to the linearized system (1.3)–(1.14), rather than eliminating the fields. Let

F̃ and G̃ be C1 functions with domain [R10 , l + R20 ]. We begin by constructing the

solution on the boundary in terms of F̃ and G̃.

For t ∈ [0, l0/c0], define R̃1(t) and R̃2(t) as the solution of the ODEs (1.26) and

(1.27), respectively, where the initial values R̃1(0),
˙̃R1(0), R̃2(0), and ˙̃R2(0) are de-

termined from F̃ and G̃ by conditions (1.11)–(1.13). Clearly R̃1(t) and R̃2(t) are well

defined by the standard existence, uniqueness, and extension theorems for ODEs. In

fact they are C3 functions of t, and depend smoothly on their initial data. We can

then impose the boundary conditions by defining ũ(R10 , t), ũ(l+R20 , t), ρ̃(R10 , t), and

ρ̃(l +R20 , t) by BCs (1.5)–(1.8), for t ∈ [0, l0/c0].

We now divide the (x, t) plane into four regions on which we will construct the

field solutions separately. The characteristic lines x = R10 + c0t and x = l+R20 − c0t

emanating from the boundary points (R10 , 0) and (l + R20 , 0), respectively, form the

following three regions:

R1 = {(x, t) : R10 + c0t ≤ x ≤ l +R20 − c0t, t ≥ 0}

= {(x, t) : t ≤ x−R10

c0
, t ≤ l +R20 − x

c0
, t ≥ 0},

R2 = {(x, t) : x ≤ R10 + c0t, x ≤ l +R20 − c0t, x ≥ 0}

= {(x, t) :
x−R10

c0
≤ t ≤ l +R20 − x

c0
, t ≥ 0},

R3 = {(x, t) : x ≥ R10 + c0t, x ≥ l +R20 − c0t, x ≤ l +R20}

= {(x, t) :
l +R20 − x

c0
≤ t ≤ x−R10

c0
, x ≤ l +R20}.
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The two additional characteristics x = R10 − l0 + c0t and x = l + R20 + l0 − c0t

emanating from the boundary points (R10 ,
l0
c0

) and (l+R20 ,
l0
c0

), respectively, form the

upper boundary to the fourth region:

R4 = {(x, t) : l +R20 − c0t ≤ x ≤ R10 + c0t,

R10 − l0 + c0t ≤ x ≤ l +R20 + l0 − c0t}

= {(x, t) :
l +R20 − x

c0
≤ t ≤ x−R10 + l0

c0
,

x−R10

c0
≤ t ≤ l +R20 + l0 − x

c0
}.

In region R1, both families of characteristics with slopes ∓1/c0 (on which w and

z must be constant, respectively) can be traced backward in time to the segment

[R10 , l+R20 ]×{t = 0}, where initial data is given. So we impose the initial conditions

by defining, for x ∈ [R10 , l + R20 ], ρ̃(x, 0) = F̃ (x) and ũ(x, 0) = G̃(x). Then for a

point (x, t) ∈ R1, to see how we must define ρ̃(x, t), we express it in terms of w and

z and trace back in time along the appropriate characteristics to t = 0, as follows.

ρ̃(x, t) =
ρ0

2c0

(
z(x, t)− w(x, t)

)
=

ρ0

2c0

(
z(x− c0t, 0)− w(x+ c0t, 0)

)
=

ρ0

2c0

(
ũ(x− c0t, 0) +

c0
ρ0

ρ̃(x− c0t, 0)

−ũ(x+ c0t, 0) +
c0
ρ0

ρ̃(x+ c0t, 0)
)

=
1

2

(
F̃ (x− c0t) + F̃ (x+ c0t)

)
+

ρ0

2c0

(
G̃(x− c0t)− G̃(x+ c0t)

)
.
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Doing the same thing for ũ, we have

ũ(x, t) =
1

2

(
w(x, t) + z(x, t)

)
=

1

2

(
w(x+ c0t, 0) + z(x− c0t, 0)

)
=

1

2

(
ũ(x+ c0t, 0)− c0

ρ0

ρ̃(x+ c0t, 0)

+ũ(x− c0t, 0) +
c0
ρ0

ρ̃(x+ c0t, 0)
)

=
c0
2ρ0

(
F̃ (x− c0t)− F̃ (x+ c0t)

)
+

1

2

(
G̃(x− c0t) + G̃(x+ c0t)

)
.

From a point (x, t) in region R2, characteristics of slope −1/c0 (on which w is

constant) can be traced back to t = 0 as before, but characteristics of slope +1/c0

(on which z is constant) will intersect the boundary at (R10 , t−
x−R10

c0
) before reaching

the x-axis. This will incorporate the solution at the boundary, which we already have

defined above in terms of the function R̃1 by BCs (1.5) and (1.7), and R̃1 itself

has already been defined in terms of the given functions F̃ and G̃. For notational

convenience, let t1(x) =
x−R10

c0
, which physically represents the time it takes for a

signal with speed c0 to travel from the boundary at R10 to the point x. Then, for

(x, t) ∈ R2, we must have

ρ̃(x, t) =
ρ0

2c0

(
z(x, t)− w(x, t)

)
=

ρ0

2c0

(
z(R10 , t− t1(x))− w(x+ c0t, 0)

)
=

ρ0

2c0

(
ũ(R10 , t− t1(x)) +

c0
ρ0

ρ̃(R10 , t− t1(x))

−ũ(x+ c0t, 0) +
c0
ρ0

ρ̃(x+ c0t, 0)
)

=
ρ0

2c0

(
− M1

ρ0c0A
¨̃R(t− t1(x))−

( µ1

ρ0c0A
− 1
) ˙̃R1(t− t1(x))

− K1

ρ0c0A
R̃1(t− t1(x))− G̃(x+ c0t) +

c0
ρ0

F̃ (x+ c0t)

)
.
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Similarly, we see that ũ must satisfy

ũ(x, t) =
1

2

(
w(x, t) + z(x, t)

)
=

1

2

(
w(x+ c0t, 0) + z(R10 , t− t1(x))

)
=

1

2

(
ũ(x+ c0t, 0)− c0

ρ0

ρ̃(x+ c0t, 0)

+ũ(R10 , t− t1(x)) +
c0
ρ0

ρ̃(R10 , t− t1(x))
)

=
1

2

(
− M1

ρ0c0A
¨̃R(t− t1(x))−

( µ1

ρ0c0A
− 1
) ˙̃R1(t− t1(x))

− K1

ρ0c0A
R̃1(t− t1(x)) + G̃(x+ c0t)−

c0
ρ0

F̃ (x+ c0t)

)
.

From a point (x, t) in region R3, characteristics of slope +1/c0 (on which z is

constant) can be traced back to t = 0, but characteristics of slope −1/c0 (on which w

is constant) will intersect the boundary at (l + R20 , t −
l+R20−x

c0
) before reaching the

x-axis. Letting t2(x) =
l+R20−x

c0
, we find by a computation similar to the one above,

that in region R3, ρ̃ must satisfy

ρ̃(x, t) =
ρ0

2c0

(
M2

ρ0c0A
¨̃R2(t− t2(x)) +

( µ2

ρ0c0A
− 1
) ˙̃R2(t− t2(x))

+
K2

ρ0c0A
R̃2(t− t2(x)) + G̃(x+ c0t) +

c0
ρ0

F̃ (x+ c0t)

)
,

and ũ must satisfy

ũ(x, t) =
1

2

(
− M2

ρ0c0A
¨̃R2(t− t2(x))−

( µ2

ρ0c0A
− 1
) ˙̃R2(t− t2(x))

− K2

ρ0c0A
R̃2(t− t2(x)) + G̃(x+ c0t) +

c0
ρ0

F̃ (x+ c0t)

)
.

From a point (x, t) in region R4, neither characteristic can be traced back to t = 0

before intersecting the boundary: the characteristic of slope +1/c0 (on which z is

constant) will intersect the boundary at (R10 , t−
x−R10

c0
) and the characteristic of slope

−1/c0 (on which w is constant) will intersect the boundary at (l +R20 , t−
l+R20−x

c0
).
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Therefore treating z as in region R2 and w as in region R3, we see that in region R4,

ρ̃ and ũ must satisfy

ρ̃(x, t) =
ρ0

2c0

(
− M1

ρ0c0A
¨̃R1(t− t1(x))−

( µ1

ρ0c0A
− 1
) ˙̃R1(t− t1(x))

− K1

ρ0c0A
R̃1(t− t1(x)) +

M2

ρ0c0A
¨̃R2(t− t2(x))

+
( µ2

ρ0c0A
− 1
) ˙̃R2(t− t2(x)) +

K2

ρ0c0A
R̃2(t− t2(x))

)
, (1.30)

ũ(x, t) = −1

2

(
M1

ρ0c0A
¨̃R1(t− t1(x)) +

( µ1

ρ0c0A
− 1
) ˙̃R1(t− t1(x))

+
K1

ρ0c0A
R̃1(t− t1(x)) +

M2

ρ0c0A
¨̃R2(t− t2(x))

+
( µ2

ρ0c0A
− 1
) ˙̃R2(t− t2(x)) +

K2

ρ0c0A
R̃2(t− t2(x))

)
, (1.31)

where we recall that the functions R̃1 and R̃2 on the interval [0, l0/c0] have been

defined in terms of F̃ and G̃.

We have shown that it is necessary to define the field functions ρ̃ and ũ in the

regions
⋃4

i=1Ri as described, in order to both satisfy conditions (1.5)–(1.14) and

ensure that the functions w and z, given in terms of ρ̃ and ũ by (1.24)–(1.25), are

constant along the characteristics of slope ∓1/c0, respectively. The invariance of w

and z on their appropriate characteristics is required by any solution of PDEs (1.22)–

(1.23), and hence by any corresponding solution of PDEs (1.3)–(1.4). Therefore, if

system (1.3)–(1.14) has a solution on the domain
⋃4

i=1Ri, it must be the one we

have constructed. On the other hand, our constructed solution candidate does satisfy

conditions (1.5)–(1.14), by construction. Also, the corresponding w and z are constant

on their appropriate characteristics, again by construction. If w and z corresponding
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to our constructed ρ̃ and ũ were C1 (which would be the case if our constructed ρ̃

and ũ were C1), then they would in fact be C1 solutions of PDEs (1.22)–(1.23), and

hence our constructed ρ̃ and ũ would be C1 solutions of PDEs (1.3)–(1.4). Thus it

remains to check that our constructed ρ̃ and ũ are C1. Since F̃ and G̃ are C1, and

R̃1 and R̃2 are C3, it is clear that our constructed ρ̃ and ũ are C1 in each region

Ri separately. Furthermore, it can be checked that our constructed ρ̃ and ũ are

C1 on the boundaries of each region by using the compatibility conditions (1.11)–

(1.13). Thus our constructed ρ̃ and ũ is the unique C1 solution of the linearized

system (1.3)–(1.14) in the domain ∪4
i=1Ri. In particular, the solution is defined on

[R10 , l+R20 ]× [0, l0/c0]. We can now consider the fields, say, at time t = l0/2c0 to be

the new initial data functions and repeat the entire process from that time forward,

thus yielding a unique C1 solution on the time interval [l0/2c0, 3l0/2c0]. Repeating

this process, and patching these unique solutions together, by induction we have a

unique global C1 solution of the linearized system (1.3)–(1.14). We state this result

in the following theorem.

Theorem 2. Given F̃ , G̃ ∈ C1[R10 , l+R20 ], the linearized system (1.3)–(1.14) has a

unique global C1 solution.

Remark 3. Note that for r ∈ N, if the initial fields F̃ and G̃ are in Cr , then linearized

system (1.3)–(1.14) has a unique global Cr solution, by a similar proof.

Remark 4. If the initial fields F̃ and G̃ merely C0, then the solution constructed in the

previous proof satisfies a weak formulation of the linearized system (1.3)–(1.11) and

(1.14), where (1.3)–(1.4) are replaced with the conditions that the Riemann invari-

ants must remain constant on the appropriate characteristics, and the compatibility
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conditions (1.12)–(1.13) have been dropped. We call such a solution a weak solution.

1.6 Globally attracting steady states

We are now finally prepared to show that, as t → +∞, solutions of the linearized

system (1.3)–(1.14) approach a steady state. As discussed in section 1.2, such a steady

steady state must be the trivial solution

ρ̃ = 0, ũ = 0, R̃1 = 0, R̃2 = 0.

We introduce some more precise notation for clarification. Denote the state space

of the linearized system (1.3)–(1.14) by

B = C1([R10 , l +R20 ])× C1([R10 , l +R20 ]),

where the state at time t is given by the pair of field functions (ρ̃(·, t), ũ(·, t)) ∈ B.

Note that the piston displacements and velocities, R̃1(t), R̃2(t),
˙̃R1(t), and ˙̃R2(t),

are determined by the values of ρ̃(·, t) and ũ(·, t) and their spatial derivatives at the

boundaries, through the compatibility conditions (1.11)–(1.13) evolved to time t, i.e.,

the conditions

˙̃R1(t) = ũ(R10 , t)),
˙̃R2(t) = ũ(l +R20 , t). (1.32)

−M1
c20
ρ0

ρ̃x(R10 , t) = −K1R̃1(t)− µ1ũ(R10 , t)− c20ρ̃(R10 , t)A, (1.33)

−M2
c20
ρ0

ρ̃x(l +R20 , t) = −K2R̃2(t)− µ2ũ(l +R20 , t) + c20ρ̃(l +R20 , t)A. (1.34)

Suppose, for the moment, that ρ̃ and ũ were C2. Then we could differentiate the

PDEs (1.3)–(1.4) in x and differentiate the BCs (1.5)–(1.8) in t, and find that if we
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define the new energy for the spatial derivatives,

Ẽ1 =
1

2
M1

¨̃R2
1 +

1

2
M2

¨̃R2
2 +

1

2
K1

˙̃R2
1 +

1

2
K2

˙̃R2
2 + A

∫ l+R20

R10

(
1

2
ρ0ũ

2
x +

c20
2ρ0

ρ̃2
x) dx, (1.35)

then the new PDEs and BCs may be used to show

dẼ1

dt
= −µ1

¨̃R2
1 − µ2

¨̃R2
2. (1.36)

Thus Ẽ1 is bounded since it is positive and decreasing. This implies the ¨̃Ri are

bounded as well. In fact, (1.35) is well defined even if ρ̃ and ũ are merely C1. Since

in this case, the R̃i will be C3, our only concern is whether we can differentiate the

integral in (1.35) with respect to t. Using the standard procedure of approximating

the functions ρ̃ and ũ by their mollifications (C∞ functions which satisfy the same

linear PDEs as they do), we still obtain (1.36), with ρ̃ and ũ merely assumed to be

C1.

Note that Ẽ and Ẽ1 provide bounds on both the L2 norms of ρ̃ and ũ, and their

derivatives ρ̃x and ũx, so that as they evolve, the solutions ρ̃ and ũ remain bounded

in the Sobolev space H1. Thus by a standard Sobolev embedding theorem, we have

that ρ̃ and ũ remain bounded in the C0 norm as well. This can also be seen from

equations (1.30)–(1.31), since (1.16)–(1.17) and (1.35)–(1.36) imply that R̃i,
˙̃Ri, and

¨̃Ri, for i = 1, 2, are all bounded functions.

By (1.16)–(1.17), we have that Ẽ is decreasing and bounded below, hence it con-

verges to a constant value as t→ +∞. It is tempting to then conclude that dẼ
dt
→ 0,

from which (1.17) would imply ˙̃Ri → 0, for i = 1, 2. However, the fact that Ẽ is de-

creasing to a constant value is not enough to conclude that dẼ
dt
→ 0. It would be true,

however, if d2Ẽ
dt2

were bounded. In fact, we can see that d2Ẽ
dt2

does remain bounded, by
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differentiating (1.17) and recalling that R̃i and ˙̃Ri, for i = 1, 2, are bounded. Thus

we do indeed have dẼ
dt
→ 0, and hence ˙̃Ri → 0 for i = 1, 2, as t → +∞. Even so,

this does not imply R̃i must converge to a steady state (for example, consider the

function sin
√
t). To show that requires more sophisticated analysis.

Let S(t) : B → B be the evolution operator for the linearized system (1.3)–(1.14),

which satisfies the usual group properties: for ξ ∈ B,

S(0)ξ = ξ,

S(t)S(s)ξ = S(t+ s)ξ, t, s ∈ R,

S(t)ξ is jointly continuous in t and ξ.

Note that the energies Ẽ and Ẽ1 as defined by (1.16) and (1.35) provide alternative

norms on the space B. From these we may define yet another norm: Ẽ2 := Ẽ + Ẽ1.

By the Rellich-Kondrachov compactness theorem, H1([R10 , l + R20 ]) is compactly

embedded in L2([R10 , l + R20 ]), from which it can be seen that B equipped with the

Ẽ2 norm is compactly embedded in B equipped with the Ẽ norm (Rellich-Kondrachov

takes care of the integral terms, for the rest of the terms, going from Ẽ2 to Ẽ just

involves projection from a finite dimensional space to one of lower dimension). Thus,

a sequence in B that is bounded in the Ẽ2 norm will have a subsequence that converges

in the Ẽ norm. Given ξ ∈ B, for any t ≥ 0 , we have that ||S(t)ξ||Ẽ2
≤ ||ξ||Ẽ2

(since

Ẽ2 is decreasing along orbits by (1.17) and (1.36)). The aforementioned compact

embedding then implies that, for each s ≥ 0, the set {S(t)ξ : t ≥ s} is compact in the
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Ẽ norm. Thus we have that the omega limit set of ξ, defined by

ω(ξ) =
⋂
s>0

{S(t)ξ : t ≥ s}, (1.37)

is nonempty and compact in the Ẽ norm. We would like to show that ω(ξ) consists

of constant fields by applying the evolution operator S(t) to an arbitrary element of

ω(ξ). Unfortunately, since the closure in (1.37) is only in the Ẽ norm, ω(ξ) may not

be in the domain of S(t).

Now suppose, for the moment, that ξ happens to consist of fields ρ̃ and ũ that are

C2, i.e. let ξ ∈ B2, where

B2 = C2[R10 , l +R20 ]× C2[R10 , l +R20 ].

Then by remark 3 following theorem 2, S(t)ξ will be in B2 as well. Repeating the same

argument that yielded (1.35)–(1.36) for initial data in B1 (including approximation

by mollifications), we now find that the new energy defined by

Ẽ3 =
1

2
M1

...
R̃

2

1 +
1

2
M2

...
R̃

2

2 +
1

2
K1

¨̃R2
1 +

1

2
K2

¨̃R2
2 +A

∫ l+R20

R10

(
1

2
ρ0ũ

2
xx +

c20
2ρ0

ρ̃2
xx) dx, (1.38)

satisfies

dẼ3

dt
= −µ1

...
R̃

2

1 − µ2

...
R̃

2

2, (1.39)

for the solution S(t)ξ in B2.

Let Ẽ4 := Ẽ2 + Ẽ3. We again use the Rellich-Kondrachov compactness theorem,

which implies H2[R10 , l+R20 ] is compactly embedded in H1[R10 , l+R20 ]. Therefore

B2 equipped with the Ẽ4 norm is compactly embedded in B2 equipped with the Ẽ2

norm.

Again, the aforementioned compact embedding then implies that, for each s ≥ 0,

the set {S(t)ξ : t ≥ s} (closure in Ẽ2 norm) is compact in the Ẽ2 norm. Thus we have
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that the omega limit set of ξ, in the Ẽ2 norm, defined by

ω2(ξ) =
⋂
s>0

{S(t)ξ : t ≥ s}, (closure in Ẽ2 norm), (1.40)

is nonempty and compact in the Ẽ2 norm. Due to the closure in Ẽ2 norm, ω2(ξ) may

no longer be contained in B2, but rather is contained in the larger space

H := {ζ ∈ H1([R10 , l +R20 ])×H1([R10 , l +R20 ]) : ||ζ||Ẽ2
< +∞}.

We claim that the norm Ẽ2 is constant on the set ω2(ξ). An alternate expression

for the set ω2(ξ) is

ω2(ξ) = {ζ ∈ H : ∃{tk}∞k=1 ⊂ R, such that tk → +∞, S(tk)ξ → ζ as k → +∞},

where the convergence S(tk)ξ → ζ is with respect to the Ẽ2 norm.

Thus for any ζ ∈ ω(ξ), there is an unbounded, increasing sequence {tk}∞k=1 ⊂ R

such that

||ζ||Ẽ2
= || lim

k→+∞
S(tk)ξ||Ẽ2

= lim
k→+∞

||S(tk)ξ||Ẽ2

= lim
t→+∞

||S(t)ξ||Ẽ2
,

where we have used the fact that the map ξ 7→ ||S(t)ξ||Ẽ2
is continuous. (Since Ẽ2 is

decreasing along orbits, we have ||S(t)ξ1−S(t)ξ2||Ẽ2
≤ ||ξ1−ξ2||Ẽ2

for all ξ1, ξ2 ∈ B2).

Furthermore, the limit in the last equality above exists (and hence is unique) because

the map t 7→ ||S(t)ξ||Ẽ2
is decreasing, continuous, and bounded below. Thus the

norm Ẽ2 is indeed constant on ω(ξ).
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Next we will show that every point in ω2(ξ) is a steady state. Each element of

ω2(ξ) resides in H, and therefore each element is an equivalence class of functions

which has a unique continuous representative. This continuous representative may

be used as initial data for the weak formulation of the linearized system (1.3)–(1.14),

as described in remark 4. In this way, the (weak) evolution operator S(t) is well

defined on H, and in particular, ω2(ξ) is invariant under S(t) by (1.40).

Let ζ ∈ ω2(ξ) be represented by

ζ = (ρ̃(x, 0), ũ(x, 0), R̃1(0), R̃2(0),
˙̃R1(0),

˙̃R2(0)),

which can be considered as initial data for the (weak) solution

S(t)ζ = (ρ̃(x, t), ũ(x, t), R̃1(t), R̃2(t),
˙̃R1(t),

˙̃R2(t)).

We will show that, in fact, S(t)ζ is independent of t, i.e. that S(t)ζ = ζ. The

invariance of ω2(ξ) implies that ||S(t)ζ||Ẽ2
remains constant for all t ≥ 0, from which

we conclude that ˙̃R1 = 0 and ˙̃R2 = 0 by (1.17). Thus R̃1 and R̃2 are constant, say,

R̃1 = r1 and R̃2 = r2. For any point (x, t) for which both families of characteristics,

lines of slopes ±1/c0, can be traced back in time to the boundaries, which will always

be the case for t ≥ l0/c0, the fields ρ̃(x, t) and ũ(x, t) can be expressed in terms of

the R̃i and their derivatives at retarded times (the retardation depending on x) by

(1.30)–(1.31). Thus we find that, at least for t ≥ l0/c0, the fields must be constant in

x and t, with the values

ρ̃ =
1

2c20A
(K2r2 −K1r1), ũ = − 1

ρ0c0A
(K1r1 +K2r2).

Since we already have the ˙̃Ri = 0, the BCs (1.5)–(1.6) imply that the only constant
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ũ could be is zero. We thus obtain, for t ≥ l0/c0,

ρ̃ = − 1

c20A
K1r1 =

1

c20A
K2r2, ũ = 0. (1.41)

But this implies the fields had to have these same constant values for all t ≥ 0; in fact,

for all t ∈ R, since the proof of theorem 2 is equally valid working backward in time,

giving global backward existence and uniqueness as well (of course, going backward

in time the energy norms are increasing rather than decreasing, but these were not

used in proving existence and uniqueness). Thus ζ is in fact a constant steady state.

Therefore, ω2(ξ) consists only of constant steady states of the form (1.41).

Actually, we can conclude more. Different constant values of the steady states

given by (1.41) would have different Ẽ2 norms. But we have shown every point in

ω2(ξ) has the same Ẽ2 norm, namely limt→+∞ ||S(t)ξ||Ẽ2
. Therefore ω2(ξ) consists of

only one point, a constant steady state. And we have that S(t)ξ converges in the Ẽ2

norm to that steady state as t→ +∞. This implies that the fields ρ̃ and ũ converge

to some constant and zero, respectively, in the H1 norm, ˙̃R1 and ˙̃R2 converge to

zero (which we already knew), and R̃1 and R̃2 converge to some constants r1 and r2,

related to ρ̃ by (1.41).

What we haven’t quite shown yet is that this constant steady state must be the

trivial solution, as in section 1.2, where the fields were assumed to converge pointwise

to steady states. However, in that derivation, the only place the assumption that

limt→+∞ ũ(x, t) = 0 was used, was to show that limt→+∞
˙̃Ri(t) = 0. But that is already

known from other arguments. Furthermore, the assumption that limt→+∞ ρ̃(x, t) = ρ̃0

was only used when letting t → +∞ in (1.19) to conclude (1.20). In fact, even if

ρ̃→ ρ̃0 merely in L1 as t→ +∞, we could still conclude that (1.20) holds. Therefore,
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knowing that S(t)ξ converges in the Ẽ2 norm to the constant steady state in ω2(ξ)

as t → +∞, and thus the corresponding field solution ρ̃ converges in H1, and hence

L1 as well, to its constant value, we can run through the derivation of (1.21) again

and conclude that the constant value of the steady state in ω2(ξ) is indeed the trivial

solution.

Now, we remove the assumption that ξ is C2. Let ξ ∈ B (whose fields are merely

C1). Let {ξn} ⊂ B2 be a sequence (with C2 fields), such that ξn → ξ in Ẽ2 norm as

n → +∞. Clearly such a sequence exists. As argued above, ω2(ξn) will consist of

a single point, the equivalence class of functions which has the trivial solution as its

continuous representative. We denote this point by ζn (which is actually independent

of n), for which S(t)ξn → ζn in the Ẽ2 norm as t → +∞. By the continuity of the

operator S(t), we have that limn→+∞ S(t)ξn = S(t)ξ. We would like to argue that

the following limit (in Ẽ2 norm) exists:

lim
t→+∞

S(t)ξ = lim
t→+∞

(
lim

n→+∞
S(t)ξn

)
= lim

n→+∞

(
lim

t→+∞
S(t)ξn

)
= lim

n→+∞
ζn.

The above limit would exist, and the interchange of the limits in t and n would be

justified, if we knew that S(t)ξn → S(t)ξ in the Ẽ2 norm, as n→ +∞, uniformly in

t. But this follows from the fact that S(t) is linear and Ẽ2 decreases along orbits,

which implies

||S(t)ξn − S(t)ξ||Ẽ2
= ||S(t)(ξn − ξ)||Ẽ2

≤ ||ξn − ξ||Ẽ2
.
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Thus, as t→ +∞, S(t)ξ converges in the Ẽ2 norm to a point in ω2(ξ), which therefore

must consist of only one point—the equivalence class of functions which has the

trivial solution as its continuous representative. In particular, as t→ +∞, the piston

displacements and velocities, R̃1(t), R̃2(t),
˙̃R1(t), and ˙̃R2(t), converge to zero, and the

fields ρ̃ and ũ converge to zero in H1 norm. We summarize this result in the following

theorem.

Theorem 5. Let F̃ , G̃ ∈ C1[R10 , l + R20 ]. Then the unique global C1 solution of the

linearized system (1.3)–(1.14) with positive spring damping parameters µ1 and µ2,

(ρ̃(·, t), ũ(·, t), R̃1(t), R̃2(t),
˙̃R1(t),

˙̃R2(t)), converges to the trivial solution (0, 0, 0, 0, 0, 0)

as t→ +∞, where the convergence of ρ̃ and ũ to zero is in the H1 norm.

The trivial steady state, which we have just shown all solutions must approach,

clearly forms a finite dimensional, invariant manifold within the infinite dimensional

state space B. Of course, the dynamics on that manifold are not very interesting.

The next task that naturally arises is to explore how this steady state is approached.

Is there a larger, yet still finite dimensional, invariant manifold which attracts all so-

lutions and captures the effective dynamics of their asymptotic behavior? We explore

this idea in the equivalent ODE/NFDE system (1.26)–(1.29) with conditions (1.11)–

(1.13), although those conditions will be dropped along with the initial fields alto-

gether as we focus our attention on just the NFDEs.

1.7 Identical pistons in dimensionless form

We now return to the ODE/NFDE system (1.26)–(1.29) from section 1.4, without

the compatibility conditions (1.11)–(1.13). For simplicity, we consider the case of
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identical pistons; that is,

M = M1 = M2, K = K1 = K2, µ = µ1 = µ2.

Introducing the dimensionless parameters and variables

ω =

√
K

M
, τ = ωt, Ri(τ) =

1

l0
R̃i(t), α =

ρ0cA

Mω
, β =

µ

Mω
,

γ =
ωl0
c0
, F(τ) =

c20A

Kl0
F̃ (c0t), G(τ) =

ρ0c0A

Kl0
G̃(c0t), δ =

ωR10

c0

and decoupling the system by introducing the new state variables X = R1 +R2 and

Y = R1 −R2, we obtain

X ′′(τ) = −(α+ β)X ′(τ)−X(τ)−F(δ + τ) + F(δ + γ − τ)

+G(δ + τ) + G(δ + γ − τ), τ < γ (1.42)

X ′′(τ) +X ′′(τ − γ) = −(α+ β)X ′(τ)−X(τ)

+(α− β)X ′(τ − γ)−X(τ − γ), τ > γ (1.43)

and

Y ′′(τ) = −(α+ β)Y ′(τ)− Y (τ)−F(δ + τ)−F(δ + γ − τ)

+G(δ + τ)− G(δ + γ − τ), τ < γ (1.44)

Y ′′(τ)− Y ′′(τ − γ) = −(α+ β)Y ′(τ)− Y (τ)

−(α− β)Y ′(τ − γ) + Y (τ − γ), τ > γ (1.45)

which may be considered as two separate Newtonian systems. Indeed, an initial posi-

tion and velocity (X(0), X ′(0)) (respectively, (Y (0), Y ′(0))) given for the ODE (1.42)
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(respectively, (1.44)) produces a solution on the interval [0, γ] that provides the initial

function required for a unique solution of the NFDE (1.43) (respectively, (1.45)). This

viewpoint assumes that specific initial fields F and G are given. On the other hand,

we may consider the NFDEs (1.43) and (1.45) more abstractly with initial data from

the space of all solutions of the ODEs (1.42) and (1.44) given all possible C1 initial

fields F and G. This viewpoint is perhaps more aligned with the electrodynamic ana-

logue. There, the corresponding FDEs do not usually come together with an ODE

whose solution provides the required initial function. Instead, the initial electromag-

netic fields are most often prescribed in the infinite past with a stipulation of fast

enough spatial decay. In a similar manner, if we specify our initial acoustic fields

at t = −∞ instead of t = 0, then we will have only the NFDEs (1.43) and (1.45).

In this case there are no ODEs to determine initial functions, and the initial fields

don’t appear (nor do the compatibility conditions (1.11)–(1.13)). These NFDEs are

non-Newtonian: initial trajectory functions are required to determine their solutions

just as in electrodynamics (for example, (2)). The question then becomes: Can we

approximate the non-Newtonian infinite-dimensional NFDEs with finite-dimensional

Newtonian ODEs? In other words, are there effective equations of motion?

1.8 Expansion in the small delay and runaway so-

lutions

We examine the NFDE (1.43)

X ′′(τ) +X ′′(τ − γ) = −(α+ β)X ′(τ)−X(τ) + (α− β)X ′(τ − γ)−X(τ − γ),
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under the assumption that the delay γ is small. Expanding to zeroth order in γ gives

X ′′(τ) = −βX ′(τ)−X(τ), (1.46)

a damped harmonic oscillator where β is the dimensionless spring damping coefficient.

The characteristic polynomial,

λ2 + βλ+ 1, (1.47)

of this linear system has, for β > 0, two imaginary roots with negative real parts and,

for β = 0, two purely imaginary roots; hence, there are no runaway solutions. In case

the NFDE (1.43) has a two-dimensional invariant submanifold on which the effective

dynamics takes place, we claim that (1.46) gives the zeroth-order approximation of

the dynamics restricted to this manifold.

Expanding (1.43) to first-order in γ gives the third-order ODE

γX ′′′(τ) = [(α− β)γ + 2]X ′′(τ) + (2β − γ)X ′(τ) + 2X(τ), (1.48)

whose characteristic polynomial is

γλ3 − [γ(α− β) + 2]λ2 − (2β − γ)λ− 2.

It can be shown that two of the roots of this polynomial have non-positive real parts

(which continue from the two roots of polynomial (1.47)); but, the new third root

(coming from λ = ∞ in the perturbation) has positive real part. This third root

thus corresponds to a one-dimensional family of runaway solutions– an artifact of

expansion and truncation, similar to the runaway solutions of the Lorentz-Dirac-

Abraham equation (1). The removal of these unphysical solutions is the goal of the

next section.
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1.9 Singular perturbation theory

(1.48) is equivalent to the first-order ODE system

X ′(τ) = V (τ)

V ′(τ) = Q(τ)

γQ′(τ) = 2X(τ) + (2β − γ)V (τ) + [γ(α− β) + 2]Q(τ). (1.49)

This system has a three-dimensional state space and a one-dimensional subspace of

unphysical solutions, which we will eliminate by using geometric singular perturbation

theory. We will restrict the dynamics to a two-dimensional (slow) submanifold that

we claim approximates the effective dynamics of NFDE (1.43).

Introducing a fast time s by the singular change of variables τ = γs, and the new

functions

X̃(s) = X(τ), Ṽ (s) = V (τ), Q̃(s) = Q(τ), (1.50)

the ODE system (1.49) becomes

X̃ ′(s) = γṼ (s)

Ṽ ′(s) = γQ̃(s)

Q̃′(s) = 2X̃(s) + (2β − γ)Ṽ (s) + [2 + γ(α− β)]Q̃(s). (1.51)

The unperturbed system (γ = 0) has a two-dimensional manifold of rest points given

by {(X̃, Ṽ , Q̃) : X̃ +βṼ + Q̃ = 0}. This manifold is normally hyperbolic. Indeed, the

characteristic polynomial for system (1.51) with γ = 0 is λ2(λ − 2). The eigenspace

corresponding to its two zero roots is tangent to the invariant manifold of rest points;

the (one-dimensional) eigenspace corresponding to the nonzero eigenvalue is trans-

verse to the invariant manifold. Since the nonzero eigenvalue has positive real part,
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solutions not on the manifold move away from it exponentially fast. According to a

theorem of Fenichel (see [2, 3, 4]), this two-dimensional normally hyperbolic invariant

manifold persists when γ is perturbed from zero and the perturbed invariant manifold

is the graph of a function

Q̃ = h(X̃, Ṽ ) = −X̃ − βṼ + γh1(X̃, Ṽ ) +O(γ2), (1.52)

where the perturbed function h1 may be determined by equating the tangent vector

(X̃ ′, Ṽ ′, Q̃′) as given by the right hand side of system (1.51) with a linear combination

of the basis vectors (1, 0, hX̃) and (0, 1, hṼ ). By carrying out this procedure, we find

that

h1(X̃, Ṽ ) =
α

2
X̃ +

αβ

2
Ṽ . (1.53)

The fast system (1.51), restricted to the perturbed manifold given by (1.52), is

X̃ ′(s) = γV (s)

Ṽ ′(s) = γ[(
γα

2
− 1)X̃(s) + β(

γα

2
− 1)Ṽ (s)].

(1.54)

It follows that the slow system (1.49), restricted to the corresponding slow manifold,

is

X ′(τ) = V (τ)

V ′(τ) = (
γα

2
− 1)X(τ) + β(

γα

2
− 1)V (τ), (1.55)

which may be rewritten as the single second-order ODE

X ′′(τ) = (
γα

2
− 1)X(τ) + β(

γα

2
− 1)X ′(τ). (1.56)
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This equation, which we will show in the next section agrees to first-order with the

effective dynamics, has no runaway solutions; in fact all of its solutions decay to zero

exponentially fast.

The NFDE (1.45) contains a degeneracy that complicates its analysis. We will

outline the main features of its reduction to an effective equation of motion.

Expanding to zeroth-order in γ, both second derivative terms and the terms with-

out derivatives cancel. This procedure leads to the one-dimensional equation

Y ′(τ) = 0 (1.57)

with no runaways—the solutions are all constant.

After expansion to first-order in γ, the NFDE (1.45) becomes the third-order ODE

γY ′′′(τ) = γ(α− β)Y ′′(τ)− (2α+ γ)Y ′(τ), (1.58)

whose characteristic polynomial has one zero root (persisting in the perturbation

from γ = 0) and two roots with positive real parts (which come from ∞ in the

perturbation). Thus (1.58) has a two-dimensional subspace of runaway solutions,

which we may try to eliminate as before. (1.58) is equivalent to the first-order ODE

system

Y ′(τ) = W (τ)

√
γ W ′(τ) = Z(τ)

√
γ Z ′(τ) = −(2α+ γ)W (τ) +

√
γ (α− β)Z(τ). (1.59)

Introducing a new fast time s by the change of variables τ =
√
γ s and the new

functions

Ỹ (s) = Y (τ), W̃ (s) = W (τ), Z̃(s) = Z(τ), (1.60)
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we transform the the slow system (1.59) to the fast system

Ỹ ′(s) =
√
γ W̃ (s)

W̃ ′(s) = Z̃(s)

Z̃ ′(s) = −(2α+ γ)Ṽ (s) +
√
γ (α− β)Z̃(s). (1.61)

Setting γ = 0 yields a system with a one-dimensional invariant manifold of rest points,

given by {(Ỹ , W̃ , Z̃) : W̃ = Z̃ = 0}. This manifold is not normally hyperbolic because

the nonzero roots of the characteristic polynomial λ(λ2 − 2α) of the unperturbed

system (γ = 0) are pure imaginary. For γ > 0, the characteristic polynomial becomes

λ[λ2−√γ (α−β)λ+2α+γ]. Its nonzero roots have positive real part for β < α (small

spring damping). In this case, nonconstant solutions must spiral out exponentially

fast. Proceeding formally to find the perturbed slow manifold as before, we find that

it remains unchanged (to first-order in γ). We conjecture that the NFDE (1.45) has

a one-dimensional invariant manifold attracting all solutions and equation (1.57) is

(to first order) the corresponding effective equation of motion. Unfortunately, the

existence of the desired manifold does not follow easily from known methods.

In view of the degeneracy of the Y -system, we will restrict our attention to the

nondegenerate X-system. As a physical motivation, note that we may view our model

as a single extended body problem rather than a two-body problem. Thus, we may

wish to analyze the motion of the body as a whole, which X measures, and not

concern ourselves with the body’s internal relative vibrations, which Y measures.

Note that if we had chosen to adopt the condition (1.15), then equation (1.57)

would be an immediate consequence. In that case, (1.57) would not just be an

effective equation of motion, but rather the exact equation of motion (for Y in the
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linearized system).

1.10 Quasi-inertial manifolds

It has been shown (see [10]) that RFDEs of the form

ẋ(t) = f(x(t), x(t− γ)), (1.62)

where γ is a fixed delay and x is an n-dimensional vector, has an n-dimensional

inertial manifold. Similarly, we conjecture that the NFDE (1.43) extended to all

τ has a two-dimensional invariant manifold, determined by a flow η for sufficiently

small γ, which contains the constant steady states that all solutions must approach

exponentially fast. Although, strictly speaking, it may not be an inertial manifold—

there may not be a uniform lower bound on that exponential rate. We will refer to this

conjectured manifold as quasi-inertial, as it does have the main desired properties of

being finite dimensional and globally attracting. If the quasi-inertial manifold exists,

then the formal calculations that produce the effective equation of motion are justified

because the effective equation of motion is exactly the equation that produces the

dynamics on the quasi-inertial manifold. In turn, the equation of motion, obtained

by expansion and truncation in the retarded time and reduction to a slow manifold

of a singular perturbation problem, would be justified because we will show that the

slow vector field agrees with the quasi-inertial vector field. We rewrite the NFDE

(1.43) extended to all τ as the first order system

w′(τ)− Cw′(τ − γ) = f(w(τ), w(τ − γ)),

= Aw(τ) +Bw(τ − γ), (1.63)
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where

w =

(
X
V

)
, V = X ′, A =

[
0 1
−1 −(α+ β)

]
B =

[
0 0
−1 α− β

]
, C =

[
0 0
0 −1

]
.

For ξ = (ξ1, ξ2) ∈ R2, we suppose that there exists a smooth flow η(τ, ξ, γ), which

depends smoothly on the parameter γ and the initial state ξ, that is a global solution

of the NFDE (1.63) and satisfies the usual flow properties

η(0, ξ, γ) = ξ

η(τ, η(s, ξ, γ), γ) = η(τ + s, ξ, γ).

Although solutions of NFDEs do not generally have continuous derivatives, the special

solutions given by the smooth flow η do have continuous derivatives.

The quasi-inertial vector field X is defined to be

X (ξ, γ) = ητ (0, ξ, γ).

We will show that the slow vector field agrees with the quasi-inertial vector field up

to first-order in γ. For simplicity, the continuation of this process to higher order is

not considered here.

The vector field X expanded in powers of γ has the form

X (ξ, γ) = X (ξ, 0) + γXγ(ξ, 0) +O(γ2). (1.64)

Since η is a solution of (1.63), we have

ητ (τ, ξ, γ)− Cητ (τ − γ, ξ, γ) = f(η(τ, ξ, γ), η(τ − γ, ξ, γ)).

Setting τ = 0 gives

X (ξ, γ)− CX (η(−γ, ξ, γ), γ) = f(ξ, η(−γ, ξ, γ)), (1.65)
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where we have used the identity ητ (−γ, ξ, γ) = X (η(−γ, ξ, γ), γ), obtained from the

definition of X and the flow property. Setting γ = 0 in (1.65) gives the zeroth order

quasi-inertial vector field approximation

X (ξ, 0) = (I − C)−1f(ξ, ξ)

=

[
0 1
−1 −β

](
ξ1
ξ2

)
, (1.66)

which corresponds to the ODE system(
X ′

V ′

)
=

[
0 1
−1 −β

](
X
V

)
,

or equivalently the single ODE

X ′′ = −βX ′ −X, (1.67)

in agreement with the zeroth order slow manifold result (1.46).

To determine X (ξ, γ) to first order in γ, we differentiate (1.65) with respect to γ

and evaluate at γ = 0 to obtain the partial derivative

Xγ(ξ, 0) = −(I − C)−1[CXξ(ξ, 0) +D2f(ξ, ξ)]X (ξ, 0)

=
1

2

[
0 0
α αβ

](
ξ1
ξ2

)
. (1.68)

(1.64), (1.67), and (1.68) give the quasi-inertial vector field, to first order in γ

X (ξ, γ) =

[
0 1

a(γ) b(γ)

](
ξ1
ξ2

)
,

where

a(γ) =
αγ

2
− 1, b(γ) = β(

αγ

2
− 1).

It corresponds to the ODE system(
X ′

V ′

)
=

[
0 1

a(γ) b(γ)

](
X
V

)
,
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or equivalently the single ODE

X ′′ = (
αγ

2
− 1)X + β(

αγ

2
− 1)X ′, (1.69)

in agreement with the first-order slow manifold ODEs (1.55) and (1.56).

1.11 Effective dynamics

The ODE (1.69) gives the effective dynamics to first-order in γ of the full system (1.42)

and (1.43), or equivalently the hybrid PDE/ODE system (1.3)–(1.14) (restricted to

looking at the sum R1 +R2 for identical pistons). To be useful, the effective dynamics

must correctly predict long-term behavior. This is indeed the case for our model: the

globally attracting steady state X = 0 predicted by inspection of the ODE (1.69) is

exactly the globally attracting steady state of the full system (a fact that is implied

by (1.18) for identical pistons).

The effective dynamical equation can also be used to predict transient behavior.

The zeroth-order effective dynamics given by ODE (1.46), which is the equation of

a damped harmonic oscillator, is the exact equation of motion for the sum X =

R1 +R2 in case the pistons are completely decoupled and there is no fluid between

them. On the other hand, in case there is fluid between the pistons, the zeroth-order

effective dynamics approximates the motions of the sum. The first-order correction,

i.e. the ODE (1.69), reveals that the effect of the fluid is to decrease both the

natural oscillation frequency and the damping by a factor of 1−αγ/2, where αγ/2 =

ρ0Al/(2M) is the ratio of the total fluid mass to the total mass of the pistons. This

effect is not obvious from inspection of the exact system (1.42)–(1.43), but it can be

confirmed there by numerical calculation.
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1.12 Summary

We have derived a two-body acoustic field theory model with the aim of elucidat-

ing some of the issues that occur in electrodynamic and gravitational field theories,

such as self-force, radiation damping, and runaway solutions— with a focus on dis-

cussing a scheme for elimination of these runaway solutions. Our model is a hybrid

of field equations (PDEs for fluid density and velocity) coupled to mechanical equa-

tions of motion (ODEs for pistons on springs responding to fluid pressure determined

by density). Even though a piston behaves as a point charge, this coupling involves

the action of the field produced by that piston on itself (as well as the other pis-

ton); this is not possible in electrodynamics due to the singularity of the field at

the point charge. Thus our model automatically incorporates the self-force, and the

corresponding radiation reaction is manifested as fluid damping.

The full model combines the nonlinear field equations of gas dynamics (a system

of hyperbolic conservation laws) with state dependent boundary conditions (ODEs

determining the motion of the pistons)– a free boundary value problem. Linearizing

both the PDEs and the ODE boundary conditions about the steady state essentially

yields the wave equation on a fixed domain, but the boundary conditions are still

ODEs for the piston motion which must be determined. This linearization is the

acoustic model.

Our system is infinite-dimensional with a state space consisting of C1 fluid den-

sity and velocity field functions (which determine piston positions and velocities by

compatibility conditions). We have shown global existence and uniqueness of C1

field solutions of the linearized system. Using the solution of the field equations to
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eliminate the field functions from the PDE/ODE system, we arrive at an equivalent

system that starts with ODEs (involving initial fields and fluid damping) before the

pistons interact, and then changes to NFDEs (with no initial fields) after the pistons

begin interacting. This system is also infinite-dimensional because the initial fields

in the initial ODEs must be specified. Alternatively, we may presume the pistons

have always been interacting by prescribing the initial fields in the distant past (as

customary in electrodynamics). In this case, the initial fields and the initial ODEs

play no role, and we are left with only the NFDEs. These NFDEs are still infinite-

dimensional because they require, as initial data, piston trajectories on a time interval

of nonzero length.

In case spring damping is included, we have used several different energy norms

(which decrease along orbits) and Sobolev embeddings to show that all field solutions

of the acoustic PDE/ODE model (and hence the equivalent ODE/NFDE system)

converge to zero (in the H1 norm), and that the piston displacements and velocities

converge to zero as well. This suggests the possibility of an invariant, finite dimen-

sional manifold within the full infinite dimensional state space which contains the

globally attracting steady states, and whose dynamics approximate the behavior of

solutions in the full space as the steady states are approached. The dynamics on this

manifold would be the finite dimensional effective equations of motion.

Taking the case of identical pistons in the linearized system, we convert to dimen-

sionless units and decouple the NFDEs by looking at the sum, X, and difference,

Y , of the piston displacements. To determine finite-dimensional effective equations

of motion, we expand each NFDE in the small delay and truncate. This process re-
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sults in high-order ODEs with extraneous runaway solutions whose presence is due to

the expansion and truncation, similar to those found in the Lorentz-Dirac-Abraham

equation from electrodynamics.

In previous work, a scheme has been developed for the systematic elimination

of the corresponding runaway solutions obtained from expanding and truncating the

class of RFDEs in the form of (1.62). We have applied the scheme (in part) here to our

NFDE and found it to be successful, at least for the sum of the piston displacements,

X. There is a degeneracy in the relative piston displacement Y -system that seems

to be related to the particular way one chooses to linearize the original system. The

scheme consists of three main steps: (1) using singular perturbation theory to reduce

to an appropriate slow manifold of lower dimension where there are no runaways, (2)

a proof of the existence of an inertial manifold in the unreduced equations of motion,

and (3) a computation showing that the reduced dynamics on the slow manifold agree

with the dynamics on the inertial manifold. Without a formal proof of the inertial

manifold, we have carried out steps (1) and (3) of this program (to first-order in the

delay) for our acoustic model. In addition, we have obtained the corresponding first-

order effective dynamics, (1.69). The globally attracting steady state that is predicted

by analyzing the effective equation of motion is exactly the same as that of the hybrid

system, namely the sum of the piston displacements approaches zero. Moreover, the

behavior of the solution of the effective equation agrees with the (numerical) solution

of the exact system as the steady state is approached. In fact, the first-order effective

equation produces the correct amplitude and frequency over time of the sum of the

displacements of the oscillating pistons. Furthermore, the effective equation reveals
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phenomena not obvious in the original model; namely, the interaction with the fluid

has the effect of decreasing the natural frequency and the spring damping (for the

sum of the displacements, X).

The results obtained here suggest further research on the interaction of fluids cou-

pled to vibrating sources. We also emphasize that our acoustic field theory model

provides some evidence that the two-body problems of the more complicated elec-

trodynamic and gravitational field theories might yield effective dynamics by similar

methods. Furthermore, we note that the appearance of NFDEs in our model, rather

than RFDEs, seems to stem from the direct coupling of the body to its own field,

and that NFDEs would arise in other field theory two-body settings were such direct

coupling possible.

In our linearized model, the NFDEs have fixed delays (due to the fixed boundaries).

In the full nonlinear problem, the NFDEs have state dependent delays (due to the

free boundaries). However, even showing existence and uniqueness of solutions to

the full nonlinear PDE/ODE system is not trivial. That is the topic of the next

(somewhat technical) chapter, where we show short time existence and uniqueness of

C1 solutions to the full nonlinear PDE/ODE system.
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Chapter 2

Full nonlinear model

It is well known that the system of hyperbolic conservation laws (4)–(5), when im-

posed on the whole real line, does not in general have global classical solutions due

to the development of shocks (discontinuous generalized solutions whose derivatives

blow up in finite time) (cf. [16]). However, we conjecture that when equations (4)–(5)

are restricted to the finite (state-dependent) spatial interval R1(t) < x < l + R2(t)

coupled with the boundary conditions (6)–(9), which incorporate spring damping,

then shocks may be avoided if the initial data (satisfying appropriate compatibility

conditions) are close enough to the steady state ρ = ρ0, u = 0, R1 = R10 , and

R2 = R20 , determined in section 0.3. (The linearization about this steady state gave

the acoustic approximation that was analyzed in chapter 1.)

A first step in showing this is to convert the free boundary value problem to one

with a fixed boundary. Rather than linearizing as in chapter 1, this may be done

for the full nonlinear system by changing from Eulerian coordinates to a form of

Lagrangian coordinates (transforming the spatial coordinate to a mass coordinate

by integrating the gas density). Having fixed the boundary through this coordinate

transformation, the new problem is still nontrivial due to the nonlinearity. As in

chapter 1, there are again Riemann invariant functions, although the characteristics
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on which they are constant are no longer straight lines—they are now curves whose

slopes are state dependent. That is the crux of the problem. If the characteristics

were known, the solutions could be found trivially with the Riemann invariants. Or,

if the solutions were known, then the characteristics could be ascertained. Obtaining

both at once is the challenge.

We overcome this by first solving a linear version of the problem, not by lineariza-

tion as in chapter 1, but by replacing nonlinear parts of the PDEs and BCs with a

known function. This determines the characteristics, so that the solution of this new

linear problem may be found. Now this solution can be used to form a new known

function that is substituted into the nonlinear parts of the original PDEs and ODEs,

which generates a new solution, and so on. Iteration of this procedure produces a

sequence of differentiable functions which converges. Actually, we form the operator

which acts on the known function and produces the solution of the linear problem,

and we show that this operator has a fixed point by contraction mapping, but that

amounts to the same thing. Finding a complete space that the operator maps back

to itself, and on which it is a contraction, leads to requirements of small time and

initial data close enough to a steady state.

If the limit of this sequence of functions (or the fixed point of the operator) were

C1, than it would be a classical solution of the original nonlinear PDEs and BCs.

Otherwise, it is only a solution in some weak sense. To show this limit function is

C1, we use estimates on the modulus of continuity of the sequence of derivatives to

show that sequence can be made to be equicontinuous, and other estimates show

they are uniformly bounded, so that the Arzela-Ascoli theorem can be applied to
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obtain a subsequence of the derivatives which converges uniformly, so that what they

converge to is the derivative of the limit of the original sequence. Thus, the original

limit function was indeed differentiable and therefore a classical solution of the full

nonlinear problem.

But first, we have to fix the free boundary.

2.1 Lagrangian coordinates

In order to fix the boundary, we change from Eulerian coordinates (x, t) to a form of

Lagrangian coordinates (m, t), where the transformation is given by

m(x, t) =

∫ x

R1(t)

ρ(y, t) dy.

(A similar transformation is used in [18].) Physically, m(x, t) is the mass of gas, per

cross sectional area, A, contained between piston 1 and the point x at time t. Under

this change of coordinates, the state dependent domain R1(t) ≤ x ≤ l + R2(t) is

transformed to the fixed domain 0 ≤ m ≤ M , where M is the total mass of gas

per cross sectional area between the pistons. If ρ > 0, then m(x, t) is an increasing

function of x and the transformation can be inverted to give x(m, t), which satisfies

m =

∫ x(m,t)

R1(t)

ρ(y, t) dy. (2.1)

The Jacobian of the transformation and its inverse are then

∂m

∂x
(x, t) = ρ(x, t),

∂x

∂m
(m, t) =

1

ρ(x(m, t), t)
.

We define the new functions

ρ̃(m, t) = ρ(x(m, t), t), ṽ =
1

ρ̃
, ũ(m, t) = u(x(m, t), t), P̃ (ṽ) = P (1/ṽ),
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F̃ (m) = F (x(m, 0)), G̃(m) = G(x(m, 0)).

Note that the fluid velocity in Lagrangian coordinates is given by

∂x

∂t
(m, t) = ũ(m, t),

which can be verified by differentiating (2.1) w.r.t. t and applying the continuity

equation (4) and the BC (6).

Under this transformation, the free boundary value problem (3)–(11) is equivalent

to the system with fixed domain 0 ≤ m ≤M ,

P̃ (ṽ) = aṽ−γ (2.2)

ṽt(m, t) = ũm(m, t) (2.3)

ũt(m, t) = −P̃ (ṽ(m, t))m, (2.4)

with boundary conditions

ũ(0, t) = Ṙ1(t) (2.5)

ũ(M, t) = Ṙ2(t) (2.6)

M1R̈1(t) = −K1R1(t)− µ1Ṙ1(t)− P̃ (ṽ(0, t))A (2.7)

M2R̈2(t) = −K2R2(t)− µ2Ṙ2(t) + P̃ (ṽ(M, t))A, (2.8)

and initial fields

ṽ(m, 0) = F̃ (m), ũ(m, 0) = G̃(m), (2.9)

where F̃ satisfies ∫ M

0

F̃ (m) dm = l +R2(0)−R1(0). (2.10)

Note that
∫M

0
ṽ(m, t) dm = l+R2(t)−R1(t), as can be verified by change of variables,

from Lagrangian coordinates back to Eulerian coordinates.
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The new compatibility conditions become

Ṙ1(0) = G̃(0) (2.11)

Ṙ2(0) = G̃(M) (2.12)

−
(
M1

∂

∂m
P̃ (F̃ (m))

)∣∣∣∣
m=0

= −K1R1(0)− µ1G̃(0)− P̃ (F̃ (0))A (2.13)

−
(
M2

∂

∂m
P̃ (F̃ (m))

)∣∣∣∣
m=M

= −K2R2(0)− µ2G̃(M) + P̃ (F̃ (M))A. (2.14)

Again the initial fields F̃ and G̃ determine the initial piston velocities Ṙ1(0), Ṙ2(0)

and positions R1(0), R2(0).

The energy in Lagrangian coordinates becomes

E(t) = A

∫ M

0

(
1

2
ρ(x, t)u2(x, t) +

P̃ (ṽ(m, t))ṽ(m, t)

γ − 1

)
dm

+
1

2
K1R

2
1(t) +

1

2
K2R

2
2(t) +

1

2
M1Ṙ

2
1(t) +

1

2
M2Ṙ

2
2(t),

which again, for a solution of (2.2)-(2.8), satisfies

dE

dt
= −µ1Ṙ

2
1 − µ2Ṙ

2
2.

2.2 Riemann invariants

The field equations (2.3)–(2.4) may be expressed in the conservation law form

(
ṽ
ũ

)
t

+

[
0 −1

−c2(ṽ) 0

](
ṽ
ũ

)
m

=

(
0
0

)
, (2.15)

where c(ṽ) :=
√
−P̃ ′(ṽ) = γaṽ−γ−1. Let B denote the matrix in (2.15), whose eigen-

values ±c(ṽ) are real and distinct for ṽ > 0. Thus the conservation law is strictly

hyperbolic (c.f. [16]). The corresponding right eigenvectors are

r± =

(
1

∓c(ṽ)

)
,
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where Br± = ±cr±. Similarly, denote the left eigenvectors l±, where l±B = ±cl±.

The Riemann invariants may be determined by finding functions w(ṽ, ũ) and z(ṽ, ũ)

such that ∇w · r+ = 0 and ∇z · r− = 0 (where ∇ is w.r.t. ṽ and ũ). Note that the

left and right eigenvectors are biorthogonal, i.e. l± · r∓ = 0. Reaping the benefits of

having only two dimensions, we have that ∇w is parallel to l−, and ∇z is parallel to

r+, i.e. ∇w ·B = −c∇w and ∇z ·B = c∇z. Then left multiplying (2.15) by ∇w and

∇z, respectively, and making use of the chain rule yields

∂

∂t
w(ṽ(m, t), ũ(m, t))− c(ṽ(m, t))

∂

∂m
w(ṽ(m, t), ũ(m, t)) = 0

∂

∂t
z(ṽ(m, t), ũ(m, t)) + c(ṽ(m, t))

∂

∂m
z(ṽ(m, t), ũ(m, t)) = 0.

Abusing notation and dropping the composition of w and z with ṽ and ũ, we hence-

forth treat w and z as functions of m and t directly, denoted by w(m, t) and z(m, t).

The field equations then take the characteristic form

wt − c(ṽ)wm = 0

zt + c(ṽ)zm = 0,

from which it can be seen that w and z are constant along the characteristics—the

integral curves of dm
dt

= −c(ṽ(m, t)) and dm
dt

= c(ṽ(m, t)), respectively.

With the choice of functions

w = ũ−
2
√
γa

γ − 1
ṽ(1−γ)/2, z = ũ+

2
√
γa

γ − 1
ṽ(1−γ)/2 (2.16)

P̂ (q) = a

(
γ − 1

4
√
γa
q

) 2γ
γ−1

, ĉ(q) =
√
γa

(
γ − 1

4
√
γa
q

) γ+1
γ−1

f = G̃−
2
√
γa

γ − 1
F̃ (1−γ)/2, g = G̃+

2
√
γa

γ − 1
F̃ (1−γ)/2,
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the initial boundary value problem (2.2)–(2.10) is equivalent to the system of field

equations with domain 0 ≤ m ≤M ,

wt − ĉ(z − w)wm = 0 (2.17)

zt + ĉ(z − w)zm = 0, (2.18)

with boundary conditions

Ṙ1(t) =
1

2
(z(0, t) + w(0, t)) (2.19)

Ṙ2(t) =
1

2
(z(M, t) + w(M, t)) (2.20)

M1R̈1(t) = −K1R1(t)− µ1Ṙ1(t)− P̂ (z(0, t)− w(0, t))A (2.21)

M2R̈2(t) = −K2R2(t)− µ2Ṙ2(t) + P̂ (z(M, t)− w(M, t))A, (2.22)

and initial fields

w(m, 0) = f(m), z(m, 0) = g(m), (2.23)

where f and g satisfy

∫ M

0

(
γ − 1

4
√
γa

(g(m)− f(m))

) 2
1−γ

dm = l +R2(0)−R1(0). (2.24)

The new compatibility conditions become

Ṙ1(0) =
1

2
(f(0) + g(0)) (2.25)

Ṙ2(0) =
1

2
(f(M) + g(M)) (2.26)

−1

2
M1ĉ(g(0)− f(0))(g′(0)− f ′(0)) = −K1R1(0)−

µ1

2
(f(0) + g(0))

−P̂ (g(0)− f(0))A (2.27)

−1

2
M2ĉ(g(M)− f(M))(g′(M)− f ′(M)) = −K2R2(0)−

µ2

2
(f(M) + g(M))

+P̂ (g(M)− f(M))A. (2.28)
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Again the initial fields f and g determine the initial piston velocities Ṙ1(0), Ṙ2(0)

and positions R1(0), R2(0).

The energy in terms of Riemann invariants becomes

E(t) = A

∫ M

0

(
1

8
(z(m, t) + w(m, t))2 +

(γ − 1)2

16γ
(z(m, t)− w(m, t))2

)
dm

+
1

2
K1R

2
1(t) +

1

2
K2R

2
2(t) +

1

2
M1Ṙ

2
1(t) +

1

2
M2Ṙ

2
2(t),

which again, for a solution of (2.17)–(2.22), satisfies

dE

dt
= −µ1Ṙ

2
1 − µ2Ṙ

2
2.

The field equations (2.17)-(2.18) may be expressed as

d

dτ
w(α(τ ;m, t), τ) = 0

d

dτ
z(β(τ ;m, t), τ) = 0,

where α(τ ;m, t) and β(τ ;m, t) denote the characteristic curves (parameterized by τ)

through the point (m, t), defined by

dα

dτ
= −ĉ(z(α, τ)− w(α, τ)), α(t;m, t) = m

dβ

dτ
= ĉ(z(β, τ)− w(β, τ)), β(t;m, t) = m.

Unfortunately, the function z − w must be known to determine the characteristics α

and β.

2.3 Linear problem

Let q(m, t) be a positive function that is Lipshitz in m and continuous in t. Replacing

z(m, t)−w(m, t) with q(m, t) for the argument of ĉ and P̂ in (2.17)–(2.22) results in
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the new linear system

wt − ĉ(q)wm = 0 (2.29)

zt + ĉ(q)zm = 0, (2.30)

with boundary conditions

Ṙ1(t) =
1

2
(z(0, t) + w(0, t)) (2.31)

Ṙ2(t) =
1

2
(z(M, t) + w(M, t)) (2.32)

M1R̈1(t) = −K1R1(t)− µ1Ṙ1(t)− P̂ (q(0, t))A (2.33)

M2R̈2(t) = −K2R2(t)− µ2Ṙ2(t) + P̂ (q(M, t))A, (2.34)

and the same initial fields

w(m, 0) = f(m), z(m, 0) = g(m), (2.35)

where f and g satisfy∫ M

0

(
γ − 1

4
√
γa

(g(m)− f(m))

) 2
1−γ

dm = l +R2(0)−R1(0). (2.36)

If q(m, t) is consistent with initial conditions on z(m, t) − w(m, t), i.e. q(m, 0) =

g(m)− f(m), then the compatibility conditions remain the same,

Ṙ1(0) =
1

2
(f(0) + g(0)) (2.37)

Ṙ2(0) =
1

2
(f(M) + g(M)) (2.38)

−1

2
M1ĉ(g(0)− f(0))(g′(0)− f ′(0)) = −K1R1(0)−

µ1

2
(f(0) + g(0))

−P̂ (g(0)− f(0))A (2.39)

−1

2
M2ĉ(g(M)− f(M))(g′(M)− f ′(M)) = −K2R2(0)−

µ2

2
(f(M) + g(M))

+P̂ (g(M)− f(M))A. (2.40)
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Again the initial fields f and g determine the initial piston velocities Ṙ1(0), Ṙ2(0)

and positions R1(0), R2(0). Again, the field equations may be expressed as

d

dτ
w(αq(τ ;m, t), τ) = 0

d

dτ
z(βq(τ ;m, t), τ) = 0.

where αq and βq are now explicitly determined by the characteristic ODEs

dαq

dτ
= −ĉ(q(αq, τ)), αq(t;m, t) = m (2.41)

dβq

dτ
= ĉ(q(βq, τ)), βq(t;m, t) = m, (2.42)

and the subscript q indicates the dependence of α and β on the function q. If q(·, t) ∈

C1([0,M ]) for each t ≥ 0, and q(m, ·) ∈ C0([0,+∞)) for each m ∈ [0,M ], then

αq(τ ;m, t) and βq(τ ;m, t) are C1 with respect to τ , m, and t.

2.4 Constructing a solution of the linear problem

We will use the method of characteristics to construct a solution to the linear system

(2.29)–(2.40), for q(·, t) ∈ C1([0,M ]) for each t ≥ 0, and q(m, ·) ∈ C0([0,+∞)) for

each m ∈ [0,M ], with certain hypotheses on the initial data f and g. We first assume

g − f > 0. (Note that this assumption is consistent with the notion of taking initial

data close enough to the constant steady state, since by (2.16), w < 0 and z > 0 for

|ũ| and |ṽ − ṽ0| small enough, where ṽ0 > 0 is constant). We further assume that f

and g are differentiable and satisfy (2.24), in which R1(0) and R2(0) are eliminated

by using (2.39)–(2.40). (Physically, this ensures that integrating the initial density

distribution gives M , the total mass of gas between the pistons, per area).

We begin by constructing the solution on the boundary. Define Rq
1(t) and Rq

2(t) as

solutions to the ODEs (2.33) and (2.34), respectively, where the initial values Rq
1(0),
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Rq
2(0), Ṙq

1(0) and Ṙq
2(0) are determined from f and g through the compatibility con-

ditions (2.37)–(2.40), and the superscript q indicates the dependence of the solutions

on the function q. The solutions Rq
1(t) and Rq

2(t) may be written explicitly as

Rq
1(t) = e−

ν1
2

t((cosω1t+
ν1

2ω1

sinω1t)R
q
1(0) +

1

ω1

(sinω1t)Ṙ
q(0))

− A

M1

∫ t

0

e−
ν1
2

(t−s) 1

ω1

sinω1(t− s)P̂ (q(0, t− s)) ds (2.43)

Rq
2(t) = e−

ν2
2

t((cosω2t+
ν2

2ω2

sinω1t)R
q
2(0) +

1

ω2

(sinω2t)Ṙ
q(0))

+
A

M2

∫ t

0

e−
ν2
2

(t−s) 1

ω2

sinω2(t− s)P̂ (q(M, t− s)) ds, (2.44)

with their derivatives

Ṙq
1(t) = e−

ν1
2

t(−(
ν2

1

4ω1

+ ω1)(sinω1t)R
q
1(0) + (− ν1

2ω1

sinω1t+ cosω1t)Ṙ
q
1(0))

+
A

M1

∫ t

0

e−
ν1
2

(t−s)(
ν1

2ω1

sinω1(t− s)− cosω1(t− s))P̂ (q(0, t− s)) ds,

(2.45)

Ṙq
2(t) = e−

ν2
2

t(−(
ν2

2

4ω2

+ ω2)(sinω2t)R
q
2(0) + (− ν2

2ω2

sinω2t+ cosω2t)Ṙ
q
2(0))

− A

M2

∫ t

0

e−
ν2
2

(t−s)(
ν2

2ω2

sinω2(t− s)− cosω2(t− s))P̂ (q(M, t− s)) ds,

(2.46)

where

νi =
µi

Mi

, ωi =
1

2

√
Ki

Mi

− ν2
i , i = 1, 2.

Since ĉ(q) > 0, the characteristics αq(τ ;m, t) and βq(τ ;m, t) defined by (2.41)–

(2.42) have inverses α−1
q (ξ;m, t) and β−1

q (ξ;m, t) where

α−1
q (ξ;m, t) = τ ⇐⇒ αq(τ ;m, t) = ξ

β−1
q (ξ;m, t) = τ ⇐⇒ βq(τ ;m, t) = ξ. (2.47)
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For q ∈ C1 with respect to m and q ∈ C0 with respect to t, the nonautona-

mous vector fields for the characteristic ODEs (2.41)–(2.42) are C1, with C0 time

dependence. Thus the characteristics depend smoothly on initial data. In particular,

αq(τ ;m, t) and βq(τ ;m, t) are C1 with respect to m and t as well as τ . The implicit

function theorem then implies that the inverses of the characteristics, α−1
q (ξ;m, t) and

β−1
q (ξ;m, t), are also C1 with respect to ξ, m, and t.

The two characteristics αq(τ ;M, 0) and βq(τ ; 0, 0), emanating from the points

(M, 0) and (0, 0), respectively, partition the domain [0,M ]× [0,∞) into the following

three regions:

R1 = {(m, t) : βq(t; 0, 0) ≤ m ≤ αq(t;M, 0), t ≥ 0}

= {(m, t) : t ≤ β−1
q (m; 0, 0), t ≤ α−1

q (m;M, 0), t ≥ 0}, (2.48)

R2 = {(m, t) : m ≤ βq(t; 0, 0), m ≤ αq(t;M, 0), m ≥ 0}

= {(m, t) : β−1
q (m; 0, 0) ≤ t ≤ α−1

q (m;M, 0), m ≥ 0}, (2.49)

R3 = {(m, t) : m ≥ βq(t; 0, 0), m ≥ αq(t;M, 0), m ≤M}

= {(m, t) : α−1
q (m;M, 0) ≤ t ≤ β−1

q (m; 0, 0), m ≤M}. (2.50)

The two additional characteristics, αq(τ ;M,β−1
q (M ; 0, 0)) and βq(τ, 0, α

−1
q (0;M, 0)),

provide an upper bound to the fourth region:

R4 = {(m, t) : αq(t;M, 0) ≤ m ≤ βq(t; 0, 0),

βq(t, 0, α
−1
q (0;M, 0)) ≤ m ≤ αq(t;M,β−1

q (M ; 0, 0))}

= {(m, t) : t ≥ β−1
q (m; 0, 0), t ≥ α−1

q (m;M, 0)

t ≤ β−1
q (m; 0, α−1

q (0;M, 0)), t ≤ α−1
q (m;M,β−1(M ; 0, 0))}. (2.51)
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In region R1, both the αq and the βq characteristics (on which w and z must be

constant, respectively) can be traced backwards in time to the segment [0,M ]×{t =

0}, where initial data is given. So we impose the initial conditions wq(m, 0) = f(m)

and zq(m, 0) = g(m), and define, for (m, t) ∈ R1,

wq(m, t) := wq(αq(0;m, t), 0) = f(αq(0;m, t))

zq(m, t) := zq(βq(0;m, t), 0) = g(βq(0;m, t),

where again the superscript q indicates the dependence of the solutions on the func-

tion q. By construction, wq and zq thus defined are classical solutions of the field

equations (2.29)-(2.30) which satisfy the initial conditions (2.35), and the boundary

conditions (2.31)-(2.34) (namely at the points (0, 0) and (M, 0), due to the compati-

bility conditions (2.37)-(2.40)).

In region R2, the αq characteristics (on which w must be constant) can be traced

backwards in time to the segment [0,M ] × {t = 0}, just as in region R1. So for

(m, t) ∈ R2, we again define

wq(m, t) := wq(αq(0;m, t), 0) = f(αq(0;m, t)).

However, the βq characteristics (on which z must be constant) will intersect the

boundary m = 0 before reaching t = 0. The βq characteristic through the point

(m, t) ∈ R2 will intersect the boundary m = 0 at time β−1
q (0;m, t). To ensure the

boundary condition (2.31) holds, we define, for 0 ≤ t ≤ α−1
q (0;M, 0),

zq(0, t) := 2Ṙq
1(t)− wq(0, t).
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We then define for any point (m, t) ∈ R2,

zq(m, t) := zq(0, β−1
q (0;m, t))

= 2Ṙq
1(β

−1
q (0;m, t))− wq(0, β−1

q (0;m, t))

= 2Ṙq
1(β

−1
q (0;m, t))− f(αq(0; 0, β

−1
q (0;m, t))).

By construction, wq and zq are solutions of (2.29)-(2.40) in region R2.

Similarly, in region R3, the βq characteristics (on which z must be constant) can

be traced backwards in time to the segment [0,M ] × {t = 0}, just as in region R1.

So for (m, t) ∈ R3, we again define

zq(m, t) := zq(βq(0;m, t), 0) = g(βq(0;m, t)).

However, the αq characteristics (on which w must be constant) will intersect the

boundary m = M before reaching t = 0. The αq characteristic through the point

(m, t) ∈ R3 will intersect the boundary m = M at time α−1
q (M ;m, t). To ensure the

boundary condition (2.32) holds, we define, for 0 ≤ t ≤ β−1
q (M ; 0, 0),

wq(M, t) := 2Ṙq
2(t)− zq(M, t).

We then define for any point (m, t) ∈ R3,

wq(m, t) := wq(M,α−1
q (M ;m, t))

= 2Ṙq
2(α

−1
q (M ;m, t))− zq(M,α−1

q (M ;m, t))

= 2Ṙq
2(α

−1
q (M ;m, t))− g(βq(0;M,α−1

q (M ;m, t))).

Finally, in region R4, neither αq nor βq characteristics can be traced back to

[0,M ]× {t = 0} before intersecting the boundaries m = M and m = 0, respectively.

So here we define wq as in region R3 and zq as in region R2.
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We then have that

wq(m, t) =

{
f(αq(0,m, t)) (m, t) ∈ R1 ∪R2

2Ṙq
2(α

−1
q (M ;m, t))− g(βq(0;M,α−1

q (M ;m, t))) (m, t) ∈ R3 ∪R4

(2.52)

zq(m, t) =

{
g(βq(0,m, t)) (m, t) ∈ R1 ∪R3

2Ṙq
1(β

−1
q (0;m, t))− f(αq(0; 0, β

−1
q (0;m, t))) (m, t) ∈ R2 ∪R4.

(2.53)

are classical solutions to the linear initial boundary value problem (2.29)–(2.40) in

∪4
i=1Ri.

The solutions wq and zq may be constructed beyond regionR4 in a similar manner,

yielding a solution akin to that of a boundary value problem for the wave equation,

which for each t may be expressed as a finite series where the number of terms in the

series increases with t due to successive reflections at the boundary.

Alternatively, the solution has been defined at least until the time that the char-

acteristics αq(τ ;M, 0) and βq(τ ; 0, 0) intersect, say at time τ = t0 > 0. Then we

can regard wq(m, t0) and zq(m, t0) as new initial conditions and repeat the previous

construction of the solution to extend from time t0 to 2t0 (notice the time t0 is inde-

pendent of initial data and depends only on the fixed function q). By induction we

have a global solution of (2.29)–(2.40).

We summarize this result in the following theorem.

Theorem 6. Let q : [0,M ] × [0,∞) → R+, such that q(·, t) ∈ C1([0,M ]) for each

t ∈ [0,∞), q(m, ·) ∈ C0([0,∞)) for each m ∈ [0,M ], and q(m, 0) = g(m) − f(m),

where f, g ∈ C1([0,M ],R) such that g − f > 0 and∫ M

0

(
γ − 1

4
√
γa

(g(m)− f(m))

) 2
1−γ

dm = l + ψ2(f, g)− ψ1(f, g), (2.54)
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where

ψ1(f, g) =
M1

2K1

ĉ(g(0)− f(0))(g′(0)− f ′(0))− µ1

2K1

(f(0) + g(0))− A

K1

P̂ (g(0)− f(0))

(2.55)

and

ψ2(f, g) =
M2

2K2

ĉ(g(M)− f(M))(g′(M)− f ′(M))− µ2

2K2

(f(M) + g(M))

+
A

K2

P̂ (g(M)− f(M)). (2.56)

Then the linear IBVP (2.29)–(2.40) has a unique, C1, global solution.

In particular, for (m, t) ∈ ∪4
i=1Ri, a formula for the solution is given by (2.52)–

(2.53), where the regions Ri are given by (2.48)-(2.51), αq and βq are determined

by the ODEs (2.41)–(2.42), Rq
1(t) and Rq

2(t) are given by (2.43)–(2.44), in which

Ri(0), Ṙi(0) for i = 1, 2 are determined from f and g by the compatibility conditions

(2.37)–(2.40).

In case q /∈ C1 , if αq, βq, α
−1
q , or β−1

q are not all C1 with respect to m and t, then

we call w and z given by (2.52)–(2.53) a weak solution of the IBVP (2.29)–(2.40).

2.5 Steady state in transformed coordinates

The unique steady state solution of the full nonlinear system (3)–(14) in Eulerian

coordinates was found in section 0.3 to be ρ = ρ0, u = 0, R1 = R10 , and R2 = R20 ,

where ρ0, R10 , and R20 are determined by (15)–(16).

Similarly, the steady states ṽ = ṽ0 and ũ = 0 are solutions to the full nonlin-

ear problem in Lagrangian coordinates, (2.2)–(2.14), where ṽ0 is determined by the

condition

l +
K1K2

K1 +K2

aAṽ−γ
0 = Mṽ0.
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The Riemann invariant formulation of the full nonlinear problem, (2.17)–(2.28),

has the steady state solution w = −1
2
q0 and z = 1

2
q0 where q0 satisfies

l +
K1K2

K1 +K2

aA

(
γ − 1

4
√
γa
q0

) 2γ
1−γ

= M

(
γ − 1

4
√
γa
q0

) 2
1−γ

. (2.57)

Next we will show short time existence and uniqueness of solutions for initial data

taken close enough to this steady state.

2.6 Short time existence and uniqueness of weak

solutions

From now on, we will use the notation ||·|| (without subscripts) to represent sup norm.

Let ε1, δ1, and δ′1 be fixed positive constants. Let T , ε, L, J , δ, and δ′ be positive

constants, to be determined, such that ε ≤ ε1, δ ≤ δ1, and δ′ ≤ δ′1. Let q0 be the

positive constant determined by (2.57) (i.e., q0 is the steady state value of z−w from

the previous section). Let αq0+ε1 and βq0+ε1 be solutions of the characteristic ODEs

(2.41)–(2.42) for q = q0 + ε1. Suppose T ≤ t1, where αq0+ε1(t1;M, 0) = βq0+ε1(t1; 0, 0)

(so that, in particular, [0,M ] × [0, T ] ⊂ ∪3
i=1Ri where the regions Ri are given by

(2.48)–(2.50)).

Let f, g ∈ C1([0,M ]) satisfy (2.54)-(2.56). In addition, suppose

sup
m∈[0,M ]

|f(m) +
1

2
q0| ≤

1

2
δ, sup

m∈[0,M ]

|g(m)− 1

2
q0| ≤

1

2
δ, (2.58)

and

sup
m∈[0,M ]

|f ′(m)| ≤ 1

2
δ′, sup

m∈[0,M ]

|g′(m)| ≤ 1

2
δ′ (2.59)

(i.e. g and f are close to the constant steady state values of z and w, which are 1
2
q0

and −1
2
q0, respectively).
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Let X = [0,M ]× [0, T ], and define

B = {q ∈ C0(X, [q0 − ε, q0 + ε]) : Lipm(q) ≤ L,Lipt(q) ≤ J, q(m, 0) = g(m)− f(m)},

a closed subset of the Banach space C0(X,R), with the C0 norm.

We use the solution of the linear problem given by Theorem 6 to define the non-

linear operator S on B as

S(q)(m, t) =


g(βq(0;m, t))− f(αq(0;m, t)), (m, t) ∈ R1

2Ṙq
1(β

−1
q (0;m, t))− f(αq(0; 0, β

−1
q (0;m, t))

−f(αq(0;m, t)), (m, t) ∈ R2

−2Ṙq
2(α

−1
q (M ;m, t)) + g(βq(0;M,α−1

q (M ;m, t)))
+g(βq(0;m, t)) (m, t) ∈ R3.

(2.60)

We will show that S : B → B is a contraction (in the C0 norm), for appropriate choice

of T , ε, δ, and δ′. This will require use of the fact that the characteristics defined

by (2.41)–(2.42), and their inverses, are Lipshitz with respect to m, t, and q, with

bounds on the Lipshitz constants given by the following lemma.

First, we define a new norm.

Definition 7. Let ĥ be a continuous, real valued function on an interval containing

q0. For σ > 0, we define

||ĥ||σ = sup
|q−q0|≤σ

|ĥ(q)|.

Lemma 8. Let q ∈ B and suppose αq and βq are solutions of (2.41)–(2.42). Then

for (m, t) ∈ X, τ ∈ [0, T ], αq(τ ;m, t) and βq(τ ;m, t) are Lipshitz with respect to m,
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t, and q, with their respective Lipshitz constants satisfying the following bounds:

Lipm(αq), Lipm(βq) ≤ eLip(ĉ)LT

Lipt(αq), Lipt(βq) ≤ ||ĉ||εeLip(ĉ)LT

Lipq(αq), Lipq(βq) ≤ TLip(ĉ)eLip(ĉ)LT .

Furthermore, for ξ ∈ [0,M ], α−1
q (ξ;m, t) and β−1

q (ξ;m, t) are Lipshitz with respect to

m, t, and q, with respective Lipshitz constants satisfying

Lipm(α−1
q ), Lipm(β−1

q ) ≤ ||1/ĉ||εeLip(1/ĉ)JM

Lipt(α
−1
q ), Lipt(β

−1
q ) ≤ eLip(1/ĉ)JM

Lipq(α
−1
q ), Lipq(β

−1
q ) ≤MLip(1/ĉ)eLip(1/ĉ)JM .

Proof. We will prove the results for the αq characteristics. The proof for the βq

characteristics is similar.

For q ∈ B, (m, t) ∈ X and τ ∈ [0, T ], integrating (2.41) from t to τ yields

αq(τ ;m, t) = m−
∫ τ

t

ĉ(q(αq(s;m, t), s)) ds. (2.61)

For m1,m2 ∈ [0,M ], t1, t2 ∈ [0, T ], q1, q2 ∈ B, (2.61) yields, respectively,

|αq(τ ;m1, t)− αq(τ ;m2, t)| ≤ |m1 −m2|

+Lip(ĉ)L

∣∣∣∣∫ τ

t

|αq(s;m1, t)− αq(s,m2, t)| ds
∣∣∣∣

|αq(τ ;m, t1)− αq(τ ;m, t2)| ≤ ||ĉ||ε|t1 − t2|

+Lip(ĉ)L

∣∣∣∣∫ τ

t2

|αq(s;m, t1)− αq(s,m, t2)| ds
∣∣∣∣
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|αq1(τ ;m, t)− αq2(τ ;m, t)| ≤ Lip(ĉ)|τ − t| · ||q1 − q2||

+Lip(ĉ)L

∣∣∣∣∫ τ

t

|αq(s;m1, t)− αq(s,m2, t)| ds
∣∣∣∣ .

In case τ ≥ t, or τ ≥ t2, the absolute values outside of the integrals in the above

inequalities may be removed, allowing for the application of Gronwall’s inequality

(see [12], for example), which gives, respectively,

|αq(τ ;m1, t)− αq(τ ;m2, t)| ≤ |m1 −m2|eLip(ĉ)L|τ−t|

|αq(τ ;m, t1)− αq(τ ;m, t2)| ≤ ||ĉ||ε|t1 − t2|eLip(ĉ)L|τ−t2|

|αq1(τ ;m, t)− αq2(τ ;m, t)| ≤ Lip(ĉ)|τ − t| · ||q1 − q2||eLip(ĉ)L|τ−t|.

(2.62)

In case τ < t or τ < t2, we must reverse the flow before we can apply Gronwall’s

inequality. Define φq(τ ;m, t) := αq(−τ ;m, t) for τ ∈ [−T, 0]. Then by (2.41) we have

dφq

dτ
= ĉ(q(φq,−τ)), φq(−t;m, t) = m.

Integration from τ = −t to τ = σ, for σ ∈ [−T, 0], yields

φq(σ;m, t) = m+

∫ σ

−t

ĉ(q(φq(s;m, t),−s) ds. (2.63)

This implies the corresponding inequalities,

|φq(σ;m1, t)− φq(σ;m2, t)| ≤ |m1 −m2|

+Lip(ĉ)L

∣∣∣∣∫ σ

−t

|φq(s;m1, t)− φq(s;m2, t)| ds
∣∣∣∣

|φq(σ;m, t1)− φq(σ;m, t2)| ≤ ||ĉ||ε|t1 − t2|

+Lip(ĉ)L

∣∣∣∣∫ σ

−t2

|φq(s;m, t1)− φq(s;m, t2)| ds
∣∣∣∣
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|φq1(σ;m, t)− φq2(σ;m, t)| ≤ Lip(ĉ)|σ + t| · ||q1 − q2||

+Lip(ĉ)L

∣∣∣∣∫ σ

−t

|φq1(s;m, t)− φq2(s;m, t)| ds
∣∣∣∣ .

In case σ > −t or σ > −t2, the absolute values outside of the integrals may be

removed and Gronwall’s inequality yields

|φq(σ;m1, t)− φq(σ;m2, t)| ≤ |m1 −m2|eLip(ĉ)L|σ+t|

|φq(σ;m, t1)− φq(σ;m, t2)| ≤ ||ĉ||ε|t1 − t2|eLip(ĉ)L|σ+t2|

|φq1(σ;m, t)− φq2(σ;m, t)| ≤ Lip(ĉ)|σ + t| · ||q1 − q2||eLip(ĉ)L|σ+t|.

We can now reverse the flow back again by setting τ = −σ, so that for τ < t or τ < t2,

we again obtain the inequalities in (2.62). Taking the supremum over all τ ∈ [0, T ]

and m ∈ [0,M ], t ∈ [0, T ], and q ∈ B, in the inequalities in (2.62), yields the desired

bounds for Lipm(αq), Lipt(αq), and Lipq(αq). The proof for Lipm(βq), Lipt(βq), and

Lipq(βq) is similar.

The inverse characteristics α−1
q and β−1

q defined by (2.47) satisfy the inverse char-

acteristic ODEs

dα−1
q

dξ
= −(1/ĉ)(q(ξ, α−1

q )), α−1
q (m;m, t) = t (2.64)

dβ−1
q

dξ
= (1/ĉ)(q(ξ, β−1

q )), β−1
q (m;m, t) = t. (2.65)

Integrating (2.64) from ξ = m to ξ = λ, for λ ∈ [0,M ], yields

α−1
q (λ;m, t) = t−

∫ λ

m

(1/ĉ)(q(ξ, α−1
q (ξ;m, t))) dξ, (2.66)
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from which we obtain the inequalities

|α−1
q (λ;m1, t)− α−1

q (λ;m2, t)| ≤ ||1/ĉ||ε|m1 −m2|

+Lip(1/ĉ)J

∣∣∣∣∫ λ

m2

|α−1
q (ξ;m1, t)− α−1

q (ξ,m2, t)| dξ
∣∣∣∣

|α−1
q (λ;m, t1)− α−1

q (λ;m, t2)| ≤ |t1 − t2|

+Lip(1/ĉ)J

∣∣∣∣∫ λ

m

|α−1
q (ξ;m, t1)− α−1

q (ξ,m, t2)| dξ
∣∣∣∣

|α−1
q1

(λ;m, t)− α−1
q2

(λ;m, t)| ≤ Lip(1/ĉ)|λ−m| · ||q1 − q2||

+Lip(1/ĉ)J

∣∣∣∣∫ λ

m

|α−1
q (ξ;m1, t)− α−1

q (ξ,m2, t)| dξ
∣∣∣∣ .

In case λ ≥ m2 or λ ≥ m, the absolute value outside the integrals may be removed

and Gronwall’s inequality yields

|α−1
q (λ;m1, t)− α−1

q (λ;m2, t)| ≤ ||1/ĉ||ε|m1 −m2|eLip(1/ĉ)J |λ−m2|

|α−1
q (λ;m, t1)− α−1

q (λ;m, t2)| ≤ |t1 − t2|eLip(1/ĉ)J |λ−m|

|α−1
q1

(λ;m, t)− α−1
q2

(λ;m, t)| ≤ Lip(1/ĉ)|λ−m| · ||q1 − q2||eLip(1/ĉ)J |λ−m|.

(2.67)

In case λ < m2 or λ < m, we must again reverse the flow in order to apply

Gronwall’s inequality. Define ψq(ξ;m, t) := α−1
q (−ξ;m, t) for ξ ∈ [−M, 0]. Then by

(2.64), we have

dψq

dξ
= (1/ĉ)(q(−ξ, ψq(ξ;m, t)), ψq(−m,m, t) = t.
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Integration from ξ = −m to ξ = γ, for γ ∈ [−M, 0], yields

ψq(γ;m, t) = t+

∫ γ

−m

(1/ĉ)(q(−ξ, ψq(ξ;m, t))) dξ, (2.68)

from which we obtain the inequalities

|ψq(γ;m1, t)− ψq(γ;m2, t)| ≤ ||1/ĉ||ε|m1 −m2|

+Lip(1/ĉ)J

∣∣∣∣∫ γ

−m2

|ψq(ξ;m1, t)− ψq(ξ,m2, t)| dξ
∣∣∣∣

|ψq(γ;m, t1)− ψ−1
q (γ;m, t2)| ≤ |t1 − t2|

+Lip(1/ĉ)J

∣∣∣∣∫ γ

−m

|ψq(ξ;m, t1)− ψq(ξ,m, t2)| dξ
∣∣∣∣

|ψq1(γ;m, t)− ψq2(γ;m, t)| ≤ Lip(1/ĉ)|γ +m| · ||q1 − q2||

+Lip(1/ĉ)J

∣∣∣∣∫ γ

−m

|ψq1(ξ;m, t)− α−1
q2

(ξ,m, t)| dξ
∣∣∣∣ .

In case γ > −m2 or γ > −m, the absolute values outside of the integrals may be

removed and Gronwall’s inequality gives

|ψq(γ;m1, t)− ψq(γ;m2, t)| ≤ ||1/ĉ||ε|m1 −m2|eLip(1/ĉ)J |γ+m2|

|ψq(γ;m, t1)− ψq(γ;m, t2)| ≤ |t1 − t2|eLip(1/ĉ)J |γ+m|

|ψq1(γ;m, t)− ψq2(γ;m, t)| ≤ Lip(1/ĉ)|γ +m| · ||q1 − q2||eLip(1/ĉ)J |γ+m|.

Reversing the flow back again by letting γ = −λ, for λ < m2 or λ < m, respectively,

we again obtain the inequalities in (2.67). Taking the supremum over all λ ∈ [0,M ]
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and m ∈ [0,M ], t ∈ [0, T ], and q ∈ B, in the inequalities in (2.67), yields the

desired bounds for Lipm(α−1
q ), Lipt(α

−1
q ), and Lipq(α

−1
q ). The proof for Lipm(β−1

q ),

Lipt(β
−1
q ), and Lipq(β

−1
q ) is similar.

We will also need bounds for the Lipshitz constants of the piston velocities Ṙq
i (t),

both with respect to q and t, where the displacements Rq
i (t) are as in Theorem 6.

The former is straightforward; the latter requires more work. To this end, we first

give a bound for Ṙq
i (t).

Lemma 9. Let q ∈ B and Rq
i (t) for i = 1, 2 be as in Theorem 6. Then for t ∈ [0, T ],

|Ṙq
i (t)| ≤ C1i

δ + C2i
T, i = 1, 2,

where C1i
= 1

2

(
ν1

2ω1
+ 1
)

and

C2i
=

(
ν2

1

4
+ ω2

1

)(
Mi

2Ki

||ĉ||δ1δ′1 +
µi

2Ki

δ1 +
A

Ki

||P̂ ||δ1
)

+
A

Mi

(
νi

2ωi

+ 1

)
||P̂ ||ε1 .

Proof. The result follows directly from (2.45)-(2.46), in which Ri(0) and Ṙi(0) are

expressed in terms of f , g, f ′ and g′ through the compatibility conditions (2.37)–

(2.40).

We show the case i = 1. The case i = 2 is similar. From (2.45), we have

|Ṙq
1(t)| ≤

(
ν2

1

4
+ ω2

1

)
|Rq

1(0)|t+
(
ν1

2ω1

+ 1

)
|Ṙq

1(0)|+
A

M1

(
ν1

2ω1

+ 1

)
||P̂ ||ε1t. (2.69)

From the compatibility conditions (2.37) and (2.39) and the bounds on f , g, f ′, and

g′ given by (2.58)–(2.59), we have

|Rq
1(0)| ≤ M1

2K1

||ĉ||δδ′ +
µ1

2K1

δ +
A

K1

||P̂ ||δ, |Ṙq
1(0)| ≤

1

2
δ. (2.70)

Combining the inequalities (2.69)–(2.70) yields the desired bound on |Ṙq
1(t)|.
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We can use this estimate to give a bound for the piston accelerations.

Lemma 10. Let q ∈ B and Rq
i (t) for i = 1, 2 be as in Theorem 6. Then for t ∈ [0, T ],

|R̈q
i (t)| ≤ C4i

δ + C5i
δ′ + C6i

T + C7i
ε, i = 1, 2,

where

C4i
=

µi

Mi

(
C1i

+
1

2

)
, C5i

=
1

2
||ĉ||δ1 , C7i

=
2A

Mi

Lip(P̂ ),

C6i
=

(
νi +

ω2
i

2
t1

)(
1

2
||ĉ||δ1δ′1 +

µi

2Mi

δ1 +
A

Mi

||P̂ ||δ1
)

+
Ki

2Mi

δ1 +
AKi

2M2
i

t1||P̂ ||ε1 +
µi

Mi

C2i

Proof. We show the case i = 1. The case i = 2 is similar. From the BC (2.33), we

have

|R̈q
1(t)| =

∣∣∣∣− µi

M1

Ṙq
1(t)−

K1

M1

Rq
1(t)−

A

M1

P̂ (q(0, t))

∣∣∣∣
≤ µ1

M1

|Ṙq
1(t)|+

K1

M1

|Rq
1(t)−Rq

1(0)|+
∣∣∣∣K1

M1

Rq
1(0) +

A

M1

P̂ (q(0, 0))

∣∣∣∣
+
A

M1

|P̂ (q(0, t))− P̂ (q(0, 0))|. (2.71)

We already have a bound for |Ṙq
1(t)| from Lemma 9. Using the fact that sin x ≤ x,

we note that∣∣∣∣∫ t

0

e
ν1
2

(t−s) 1

ω1

sinω1(t− s)P̂ (q(0, t− s)) ds

∣∣∣∣ ≤ ||P̂ ||ε1
∫ t

0

(t− s) ds

=
1

2
||P̂ ||ε1t2

≤ 1

2
||P̂ ||ε1t1t.

Thus by (2.43), we have

|Rq
1(t)−Rq

1(0)| ≤
∣∣∣e− ν1

2
t cosω1t− 1

∣∣∣ |Rq
1(0)|

+

(
ν1

2
|Rq

1(0)|+ |Ṙq
1(0)|+

A

2M1

||P̂ ||ε1t1
)
t. (2.72)
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Note that

∣∣∣e− ν1
2

t cosω1t− 1
∣∣∣ ≤

∣∣∣e− ν1
2

t − 1
∣∣∣+ | cosω1t− 1|

≤ ν1

2
t+

ω2
1

2
t2, (2.73)

where the last inequality comes from estimating the error in approximating e−
ν1
2

t and

cosω1t with the first term in their Maclaurin series expansion (using the alternating

series error estimate). Combining the inequalities (2.70) and (2.72), we have

|Rq
1(t)−Rq

1(0)| ≤ C31t, (2.74)

where

C3i
=

(
νi +

ω2
i

2
t1

)(
Mi

2Ki

||ĉ||δ1δ′1 +
µi

2Ki

δ1 +
A

Ki

||P̂ ||δ1
)

+
1

2
δ1 +

A

2Mi

||P̂ ||ε1t1. (2.75)

Recalling that q(0, 0) = g(0)−f(0), the compatibility condition (2.39) combined with

the estimates (2.58)–(2.59) gives∣∣∣∣K1

M1

Rq
1(0) +

A

M1

P̂ (q(0, 0))

∣∣∣∣ ≤
∣∣∣∣12 ĉ(q(0, 0))(g′(0)− f ′(0))− µ1

2M1

(f(0) + g(0))

∣∣∣∣
≤ 1

2
||ĉ||δ1δ′ +

µ1

2M1

δ. (2.76)

We also have

|P̂ (q(0, t))− P̂ (q(0, 0))| ≤ 2Lip(P̂ )ε. (2.77)

Finally, combining the result of Lemma 9 and the estimates (2.74), (2.76), and (2.77)

with the estimate (2.71) yields the required estimate of |R̈q
1(t)|.

Now we can give bounds for the Lipshitz constants of the piston velocities.

Lemma 11. Let q ∈ B and Rq
i (t) for i = 1, 2 be as in Theorem 6. Then for t ∈ [0, T ],

Ṙq
i (t) is Lipshitz both with respect to q and t, and the respective Lipshitz constants
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satisfy the following bounds:

Lipq(Ṙ
q
i ) ≤

(
νi

2ωi

+ 1

)
A

Mi

Lip(P̂ )T, i = 1, 2

Lipt(Ṙ
q
i ) ≤ C4i

δ + C5i
δ′ + C6i

T + C7i
ε, i = 1, 2.

Proof. The first estimate uses (2.45)–(2.46). The second estimate follows directly

from Lemma 10.

We are now prepared to show S : B → B is a contraction for δ, δ′, ε and T small

enough. We first provide (in the next three propositions) sufficient conditions for S

to map B to itself.

Proposition 12. Let q ∈ B and S the operator on B defined by (2.60). Suppose

δ ≤ 1
2
(2C1i

+ 1)−1ε and T ≤ 1
4C2i

ε. Then

sup
(m,t)∈X

|S(q)(m, t)− q0| ≤ ε.

Proof. For (m, t) ∈ R1, (2.60), with the condition (2.58) and the hypothesis on δ,

yields

|S(q)(m, t)− q0| = |g(βq(0;m, t))− f(αq(0;m, t))− q0|

≤ sup
ξ∈[0,M ]

∣∣∣∣g(ξ)− 1

2
q0

∣∣∣∣+ sup
ξ∈[0,M ]

∣∣∣∣f(ξ) +
1

2
q0

∣∣∣∣
≤ δ

≤ ε.

For (m, t) ∈ R2, (2.60), with the condition (2.58), Lemma 9 (noting that β−1
q (0;m, t) ∈
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[0, T ]), and the hypotheses on δ and T , yields

|S(q)(m, t)− q0| = |2Ṙq
1(β

−1
q (0;m, t))− f(αq(0; 0, β

−1(0;m, t)))

−f(αq(0;m, t))− q0|

≤ 2|Ṙq
1(β

−1
q (0;m, t))|+ δ

≤ 2(C11δ + C21T ) + δ

= (2C11 + 1)δ + 2C21T

≤ ε.

The case (m, t) ∈ R3 is similar to the case (m, t) ∈ R2. Since X ⊂ ∪3
i=1Ri, we thus

have

sup
(m,t)∈X

|S(q)(m, t)− q0| ≤ ε.

Proposition 13. Let q ∈ B and S be the operator on B defined by (2.60). Suppose

ε ≤ 1
12C8i

L, δ ≤ 1
2
ε, δ′ ≤ 1

12C9i
L and T ≤ 1

12C10i
L, for i = 1, 2, where

C8i
= (C4i

+ 2C7i
)||1/ĉ||ε1eLip(1/ĉ)JM

C9i
= 2C5i

||1/ĉ||ε1eLip(1/ĉ)JM +
1

2
||ĉ||ε1||1/ĉ||ε1eLip(ĉ)Lt1+Lip(1/ĉ)JM +

1

2
eLip(ĉ)Lt1

C10i
= 2C6i

||1/ĉ||ε1eLip(1/ĉ)JM .

Then Lipm(S(q)) ≤ L.

Proof. For (m1, t), (m2, t) ∈ R1, (2.60) with the condition (2.59), Lemma 8, and the

77



hypothesis on δ′ yields

|S(q)(m1, t)− S(q)(m2, t)| = |g(βq(0;m1, t))− f(αq(0;m1, t))

−g(βq(0;m2, t)) + f(αq(0;m2, t))|

≤ (||g′||Lipm(βq) + ||f ′||Lipm(αq))|m1 −m2|

≤ δ′eLip(ĉ)LT |m1 −m2|

≤ 1

4
L|m1 −m2|.

For (m1, t), (m2, t) ∈ R2, (2.60) with the condition (2.59), Lemma 8, Lemma 9,

and the hypotheses on ε, δ, δ′, and T give the following estimate on ∆t
m1,m2

:=

S(q)(m1, t)− S(q)(m2, t),

|∆t
m1,m2

| ≤ |2Ṙq
1(β

−1
q (0;m1, t))− 2Ṙq

1(β
−1
q (0;m2, t))|

+|f(αq(0; 0, β−1
q (0;m1, t)))− f(αq(0; 0, β

−1
q (0;m2, t)))|

+|f(αq(0;m1, t))− f(αq(0;m2, t))|

≤ 2Lipt(Ṙ
q
1)Lipm(β−1

q )|m1 −m2|

+(||f ′||Lipt(αq)Lipm(β−1
q ) + ||f ′||Lipm(αq))|m1 −m2|

≤ 2(C41δ + C51δ
′ + C61T + C71ε)||1/ĉ||ε1eLip(1/ĉ)JM |m1 −m2|

+|1
2
δ′(||ĉ||ε1eLip(ĉ)LT ||1/ĉ||ε1eLip(1/ĉ)JM + eLip(ĉ)LT )|m1 −m2|

≤ (C81ε+ C91δ
′ + C101T )|m1 −m2|

≤ 1

4
L|m1 −m2|.

Similarly, we have |∆t
m1,m2

| ≤ 1
4
L|m1 −m2| for (m1, t), (m2, t) ∈ R3.

Recalling that X ⊂ ∪3
i=1Ri, we have that any two points (m1, t), (m2, t) ∈ X

are separated at most by one region, so by the triangle inequality it is clear that
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|∆t
m1,m2

| ≤ L|m1 −m2|.

Proposition 14. Let q ∈ B and S be the operator on B defined by (2.60). Suppose

ε ≤ 1
6C11i

J , δ ≤ 1
2
ε, δ′ ≤ 1

6C12i
J , and T ≤ 1

6C13i
J , for i = 1, 2, where

C11i
= (2C7i

+ C4i
)eLip(1/ĉ)JM

C12i
= 2C51e

Lip(1/ĉ)JM +
1

2
||ĉ||ε1eLip(ĉ)LT (eLip(1/ĉ)JM + 1)

C13i
= 2C6i

eLip(1/ĉ)JM .

Then Lipt(S(q)) ≤ J .

Proof. For (m, t1), (m, t2) ∈ R1, (2.60) with the condition (2.59), Lemma 8, and the

hypothesis on δ′ yields

|S(q)(m, t1)− S(q)(m, t2)| = |g(βq(0;m, t1))− f(αq(0;m, t1))

−g(βq(0;m, t2)) + f(αq(0;m2, t))|

≤ (||g′||Lipt(βq) + ||f ′||Lipt(αq))|t1 − t2|

≤ δ′||ĉ||ε1eLip(ĉ)LT |t1 − t2|

≤ 1

2
J |t1 − t2|.

For (m, t1), (m, t2) ∈ R2, (2.60) with the condition (2.59), Lemma 8, Lemma 11,

and the hypotheses on ε, δ, δ′, and T give the following estimate on ∆m
t1,t2

:=
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S(q)(m, t1)− S(q)(m, t2),

|∆m
t1,t2

| ≤ |2Ṙq
1(β

−1
q (0;m, t1))− 2Ṙq

1(β
−1
q (0;m, t2))|

+|f(αq(0; 0, β
−1
q (0;m, t1)))− f(αq(0; 0, β

−1
q (0;m, t2)))|

+|f(αq(0;m, t1))− f(αq(0;m, t2))|

≤ 2Lipt(Ṙ
q
1)Lipt(β

−1
q )|t1 − t2|

+(||f ′||Lipt(αq)Lipt(β
−1
q ) + ||f ′||Lipt(αq))|t1 − t2|

≤ 2(C41δ + C51δ
′ + C61T + C71ε)e

Lip(1/ĉ)JM |t1 − t2|

+
1

2
δ′||ĉ||ε1eLip(ĉ)LT (eLip(1/ĉ)JM + 1)|t1 − t2|

≤ (C111ε+ C121δ
′ + C131T )|t1 − t2|

≤ 1

2
J |t1 − t2|.

Recalling that X ⊂ ∪3
i=1Ri, we have that any two points (m, t1), (m, t2) ∈ X must

either be in the same region or adjacent regions. So by the triangle inequality it is

clear that |∆m
t1,t2

| ≤ J |m1 −m2|.

Propositions 12–14 show that the operator S maps B to itself (for the appropri-

ate choice of ε, δ, δ′, and T ). We next provide sufficient conditions for S to be a

contraction mapping.

Proposition 15. Suppose ε ≤ 1
4C14i

, δ ≤ 1
2
ε, δ′ ≤ 1

4C15i
, and T ≤ 1

4C16i
, for i = 1, 2,

where

C14i
= (C4i

+ 2C7i
)MLip(1/ĉ)eLip(1/ĉ)JM

C15i
= (2C5i

+
1

2
||ĉ||ε1eLip(ĉ)Lt1)MLip(1/ĉ)eLip(1/ĉ)JM

C16i
= 2C6i

+ 2(
νi

2ωi

+ 1)
A

Mi

Lip(P̂ ) + δ′1Lip(ĉ)e
Lip(ĉ)Lt1 .
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Then for every q1, q2 ∈ B,

||S(q1)− S(q2)|| ≤
3

4
||q1 − q2||,

where S is the operator on B defined by (2.60).

Proof. Let q1, q2 ∈ B.

For (m, t) ∈ R1, (2.60) with the condition (2.59), Lemma 8, and the hypotheses

on δ′ and T yields

|S(q1)(m, t)− S(q2)(m, t)| = |g(βq1(0;m, t))− f(αq1(0;m, t))

−g(βq2(0;m, t)) + f(αq2(0;m, t))|

≤ (||g′||Lipq(β) + ||f ′||Lipq(α))|q1(m, t)− q2(m, t)|

≤ 1

2
δ′TLip(ĉ)eLip(ĉ)LT |q1(m, t)− q2(m, t)|

≤ 2C161T |q1(m, t)− q2(m, t)|

≤ 1

2
|q1(m, t)− q2(m, t)|

≤ 1

2
||q1 − q2||.

For (m, t) ∈ R2, (2.60) with the condition (2.59), Lemma 8, Lemma 11, and the

hypotheses on ε, δ, δ′, and T give the following estimate on ∆m,t
q1,q2

:= S(q1)(m, t) −

81



S(q2)(m, t),

|∆m,t
q1,q2

| ≤ |2Ṙq1

1 (β−1
q1

(0;m, t))− 2Ṙq2

1 (β−1
q2

(0;m, t))|

+|f(αq1(0; 0, β−1
q1

(0;m, t)))− f(αq2(0; 0, β
−1
q2

(0;m, t)))|

+|f(αq1(0;m, t))− f(αq2(0;m, t))|

≤ 2|Ṙq1

1 (β−1
q1

(0;m, t))− Ṙq1

1 (β−1
q2

(0;m, t))|

+2|Ṙq1

1 (β−1
q2

(0;m, t))− Ṙq2

1 (β−1
q2

(0;m, t))|

+|f(αq1(0; 0, β−1
q1

(0;m, t)))− f(αq1(0; 0, β
−1
q2

(0;m, t)))|

+|f(αq1(0; 0, β−1
q2

(0;m, t)))− f(αq2(0; 0, β
−1
q2

(0;m, t)))|

+|f(αq1(0;m, t))− f(αq2(0;m, t)|

≤ 2(Lipt(Ṙ
q1

1 )Lipq(β
−1
q ) + Lipq(Ṙ

q
1))||q1 − q2||

+||f ′||(Lipt(αq1)Lipq(β
−1
q ) + 2Lipq(αq))||q1 − q2||

≤ 2(C41δ + C51δ
′ + C61T + C71ε)MLip(1/ĉ)eLip(1/ĉ)JM ||q1 − q2||

+2(
ν1

2ω1

+ 1)
A

M1

Lip(P̂ )T ||q1 − q2||

+
δ′

2
eLip(ĉ)LT (MLip(1/ĉ)||ĉ||ε1eLip(1/ĉ)JM + 2TLip(ĉ))||q1 − q2||

≤ (C141ε+ C151δ
′ + C161T )||q1 − q2||

≤ 3

4
||q1 − q2||.

Similarly, for (m, t) ∈ R3, we have

|S(q1)(m, t)− S(q2)(m, t)| ≤
3

4
||q1 − q2||.

Since X ⊂ ∪3
i=1Ri, we therefore have

||S(q1)− S(q2)|| ≤
3

4
||q1 − q2||.
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Propositions 12–15 show that S is a contraction which maps B to itself (for small

enough time and initial data f and g close enough to a constant steady state). Thus

S has a unique fixed point in B, say qf . By construction, the solution to the linear

IBVP (2.29)–(2.40) given by theorem 6, for q = qf , is in fact a solution of the full

nonlinear IBVP (2.17)–(2.28). If qf ∈ C1, then the solution, w and z given by (2.52)–

(2.53), is classical. In case qf /∈ C1, if w or z is not C1, then we call the solution a

weak solution. We summarize this result in the following theorem.

Theorem 16. Let ε1, δ1, δ
′
1, L, and J be fixed positive constants. Let q0 be the positive

constant determined by (2.57), and let αq0+ε1 and βq0+ε1 be solutions of the characteris-

tic ODEs (2.41)–(2.42) for q = q0+ε1. Let t1 satisfy αq0+ε1(t1;M, 0) = βq0+ε1(t1; 0, 0).

Suppose ε ≤ min{ L
12C8i

, J
6C13i

, 1
4C14i

}, δ ≤ ε
2(2C1i

+1)
, δ′ ≤ min{ L

12C9i
, J

6C12i
, 1

4C15i
}, and

T ≤ 1
4C16i

. Let f, g ∈ C1([0,M ],R) such that g − f > 0, and suppose f and g satisfy

(2.54)–(2.56) and (2.58)–(2.59). Then the nonlinear IBVP (2.17)–(2.28) has a unique

solution, w and z, defined on [0,M ]× [0, T ] by (2.52)–(2.53), where q is taken to be

qf , the unique fixed point of the operator S defined by (2.60).

If qf ∈ C1, then the solution w and z is classical. In case qf /∈ C1, if w or z is not

C1, then we call the solution a weak solution of the IBVP (2.17)–(2.28) .

2.7 Short time existence and uniqueness of classi-

cal solutions

We next show that, for initial conditions f and g close enough to the constant steady

state and satisfying appropriate compatibility conditions (as in the hypotheses for

theorem 16), the nonlinear IBVP (2.17)–(2.28) has a unique classical solution for small

enough time. Through iteration of the operator S defined by (2.60), we construct
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a sequence of C1 functions {qn}∞n=1 ⊂ B which converges uniformly to the function

qf , the fixed point of S. To ensure that qf itself is C1, it is enough to show that

the sequence of derivatives of qn (or at least a subsequence) converges uniformly. In

fact, it is sufficient to do this for the derivatives with respect to m only, for each

fixed t, since it can be seen that, as a fixed point of S, if qf is C1 with respect to

m, then it must also be C1 with respect to t. We will show that for each fixed t, the

sequence {∂qn

∂m
}∞n=1 has a uniformly (in m) convergent subsequence by showing that

it is equicontinuous (in m) and uniformly bounded, and invoking the Arzela-Ascoli

theorem. As in [17], we employ the notion of modulus of continuity as a device to

show equicontinuity.

Definition 17. For a bounded subset D ∈ R and a map φ : D → R, define the

modulus of continuity of φ to be the map ω(·|φ) : [0,∞) → [0,∞) defined by

ω(η|φ) = sup{|φ(x1)− φ(x2)| : x1, x2 ∈ D, |x1 − x2| ≤ η}.

We will make use of some of the properties of the modulus of continuity given in

the following lemmas (see [17]).

Lemma 18. Suppose f is a real valued function on a bounded domain. Then

1. f is continuous if and only if lim
η→0+

ω(η|f) = 0,

2. if f is Lipshitz with Lipshitz constant L, then ω(η|f) ≤ Lη,

3. if f is differentiable, then ω(η|f) ≤ ||f ′||η,

4. ω(η1|f) ≤ ω(η2|f) for 0 ≤ η1 ≤ η2,

5. ω(η1 + η2|f) ≤ ω(η1|f) + ω(η2|f),
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6. for any natural number n, ω(nη|f) ≤ nω(η|f),

7. for any positive constant C, ω(Cη|f) ≤ dCeω(η|f), where dCe is the smallest

integer greater than or equal to C.

Lemma 19. Suppose f and g are real valued functions on a bounded domain. Then

1. ω(η|f ± g) ≤ ω(η|f) + ω(η|g),

2. ω(η|fg) ≤ ||f ||ω(η|g) + ||g||ω(η|f),

3. if |g| ≥ a > 0, then ω(η|f/g) ≤ ||f ||
a2 ω(η|g) + 1

a
ω(η|f),

4. ω(η|f ◦ g) ≤ ω(ω(η|g)|f).

The following lemma conveys the utility of the notion of modulus of continuity in

showing equicontinuity of a family of functions.

Lemma 20. Suppose F is a family of real valued functions on a bounded domain. If

ω(η|f) ≤ Ω(η) for each f ∈ F , where Ω is a nonnegative function (independent of f)

such that limη→0+ Ω(η) = 0, then the family of functions F is equicontinuous.

We construct the sequence {qn}∞n=1 inductively by defining

q1(m, t) = g(m)− f(m)

qn+1(m, t) = S(qn)(m, t), n ∈ N, (2.78)

where the initial data functions f and g, and the operator S, are as in Theorem 16.

Clearly q1 ∈ B ∩ C1([0,M ] × [0, T ]). Now suppose qn ∈ B ∩ C1([0,M ] × [0, T ])

for some fixed n ∈ N. Then qn+1 ∈ B, since S maps B onto itself. Furthermore,

the characteristics αqn , βqn , and their inverses are C1 with respect to m and t, as a
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consequence of the smoothness of qn with respect to m (and hence that of the vector

fields in the characteristic ODEs (2.41)–(2.42)). Therefore by the definition of S, qn+1

is C1 with respect to m and t. Thus, by induction, {qn}∞n=1 ⊂ B∩C1([0,M ]× [0, T ]).

Because S is a contraction, the sequence {qn}∞n=1 converges uniformly to qf ∈ B, the

unique fixed point of S. As an element of B, we already know qf is Lipshitz with

respect to both m and t. The task at hand is to show that qf is C1 with respect to

m.

We will show that for each fixed t, the sequence {∂qn

∂m
}∞n=1 has a subsequence which

converges uniformly in m. We already know that {∂qn

∂m
}∞n=1 is uniformly bounded,

since qn ∈ B implies that Lipm(qn) ≤ L, and hence ||∂qn

∂m
|| ≤ L. In order to extract

a uniformly convergent subsequence by applying the theorem of Arzela-Ascoli, it

remains to show that, for fixed t, {∂qn

∂m
}∞n=1 is equicontinuous in m.

Applying the notion of modulus of continuity to functions of two independent

variables by treating each variable separately, and restricting the domain to the var-

ious regions Ri defined in (2.48)–(2.50) in order to facilitate the estimates that are

required to make use of lemma 20, we make the following definition.

Definition 21. Let X = [0,M ]× [0, T ]. For a function ψ : X → R, let the modulus

of continuity of ψ with respect to m, restricted to region Ri (for i = 1, 2, 3), be given

by

ωRi
m (η|ψ) := sup{|ψ(m1, t)− ψ(m2, t)| : (m1, t), (m2, t) ∈ Ri ∩X, |m1 −m2| ≤ η}.

Similarly, let the modulus of continuity of ψ with respect to t, restricted to region

Ri, i = 1, 2, 3, be given by

ωRi
t (η|ψ) := sup{|ψ(m, t1)− ψ(m, t2)| : (m, t1), (m, t2) ∈ Ri ∩X, |t1 − t2| ≤ η}.
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We will show equicontinuity (in m) of the sequence {∂qn

∂m
}∞n=1 in each region sepa-

rately by estimating ωRi
m (η|∂qn

∂m
) and applying Lemma 20. But first, it will be useful

to have estimates of ωX
m(η|∂αq

∂m
) and ωX

m(η|∂βq

∂m
) in terms of ωX

m(η| ∂q
∂m

), provided by the

next lemma.

Lemma 22. Assume the hypotheses of Theorem 16, and let q ∈ B be C1 with respect

to m. Then

ωX
m(η|∂αq

∂m
), ωX

m(η|∂βq

∂m
) ≤ B2Tω

X
m(η| ∂q

∂m
) +B3η,

where B1 = e||ĉ
′||ε1Lt1, B2 = ||ĉ′||ε1B1(B1 + 1), and B3 = L2B2

1t1||ĉ′′||ε1.

Proof. We will show the result for ∂αq

∂m
. The proof for ∂βq

∂m
is similar. For q ∈ B

and C1 in m, the characteristic ODE (2.41) has a nonautonomous C1 vector field

which is continuous in time. Hence the characteristic αq(τ ;m, t) is C1 in τ , m, and t.

Differentiating (2.41) with respect to m and interchanging the order of the m and τ

derivatives yields the following ODE initial value problem for ∂αq

∂m
,

d

dτ

∂αq

∂m
= −ĉ′(q(αq, τ))

∂q

∂m

∂αq

∂m
,
∂αq

∂m
(t;m, t) = 1, (2.79)

the solution of which is

∂αq

∂m
(τ ;m, t) = exp

(∫ t

τ

ĉ′(q(αq(s;m, t), s))
∂q

∂m
(αq(s;m, t), s) ds

)
. (2.80)

Noting that Lemma 8 implies Lipm(αq), and hence ∂αq

∂m
, is bounded by B1, we use
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Lemmas 18–19 with (2.80) to obtain the following estimate.

ωX
m(η|∂αq

∂m
) ≤ e||ĉ

′||ε1Lt1TωX
m(η|(ĉ′ ◦ q ◦ αq)(

∂q

∂m
◦ αq))

≤ B1

(
||ĉ′||ε1Tωm(η| ∂q

∂m
◦ αq) + TLωX

m(η|ĉ′ ◦ q ◦ αq)

)
≤ B1

(
||ĉ′||ε1Tωm(B1η|

∂q

∂m
) + t1L

2||ĉ′′||ε1Lipm(αq)η

)
≤ B1

(
||ĉ′||ε1T (B1 + 1)ωm(η| ∂q

∂m
) + t1L

2||ĉ′′||ε1B1η

)
≤ B2Tω

X
m(η| ∂q

∂m
) +B3η.

We can now show equicontinuity of {∂qn

∂m
}∞n=1 with respect to m in region R1.

Proposition 23. Assume the hypotheses of Theorem 16, and let the sequence {qn}∞n=1

be as defined by (2.78). Suppose T ≤ 1
2δ′B2

, where B1 = eLip(ĉ)Lt1 and B2 = ||ĉ′||ε1B1(B1+

1). Then for each fixed t ∈ [0, T ], the sequence {∂qn

∂m
}∞n=1, restricted to the domain

R1 ∩X, is equicontinuous in m.

Proof. For (m, t) ∈ R1 ∩X, by (2.60) and (2.78), we have

qn(m, t) = g(βqn−1(0;m, t))− f(αqn−1(0;m, t)).

Differentiating with respect to m gives

∂qn
∂m

(m, t) = g′(βqn−1(0;m, t))
∂βqn−1

∂m
(0;m, t)− f ′(αqn−1(0;m, t))

∂αqn−1

∂m
(0;m, t).

By Lemma 8, whenever they exist, ∂αq

∂m
and ∂βq

∂m
are uniformly bounded by B1 for all

q ∈ B. Using Lemmas 8, 18–19, the bounds on f ′ and g′ assumed in Theorem 16, and

finally, Lemma 22 (combined with the obvious fact that ωR1
m (η| ∂q

∂m
) ≤ ωX

m(η| ∂q
∂m

)), we
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have the following estimate.

ωR1
m (η|∂qn

∂m
) ≤ ωR1

m (η|(g′ ◦ βqn−1)
∂βqn−1

∂m
) + ωR1

m (η|(f ′ ◦ αqn−1)
∂αqn−1

∂m
)

≤ ||g′||ωR1
m (η|

∂βqn−1

∂m
) +

∣∣∣∣∣∣∣∣∂βqn−1

∂m

∣∣∣∣∣∣∣∣ωR1
m (η|g′ ◦ βqn−1)

+||f ′||ωR1
m (η|

∂αqn−1

∂m
) +

∣∣∣∣∣∣∣∣∂αqn−1

∂m

∣∣∣∣∣∣∣∣ωR1
m (η|f ′ ◦ αqn−1)

≤ 1

2
δ′ωR1

m (η|
∂βqn−1

∂m
) +B1ω(ωR1

m (η|βqn−1)|g′)

+
1

2
δ′ωR1

m (η|
∂αqn−1

∂m
) +B1ω(ωR1

m (η|αqn−1)|f ′)

≤ 1

2
δ′ωR1

m (η|
∂βqn−1

∂m
) +B1ω(B1η|g′)

+
1

2
δ′ωR1

m (η|
∂αqn−1

∂m
) +B1ω(B1η|f ′)

≤ 1

2
δ′ωR1

m (η|
∂βqn−1

∂m
) +B1(B1 + 1)ω(η|g′)

+
1

2
δ′ωR1

m (η|
∂αqn−1

∂m
) +B1(B1 + 1)ω(η|f ′)

≤ δ′B2Tω
R1
m (η|∂qn−1

∂m
) + δ′B3η

+B1(B1 + 1)(ω(η|f ′) + ω(η|g′)). (2.81)

We will next use induction on n. Let

Ω1(η) := 2δ′B3η + 2B1(B1 + 1)(ω(η|f ′) + ω(η|g′)).

Since B1 ≥ 1, we have, using Lemma 19,

ωm(η|∂q1
∂m

) = ωm(η|g′ − f ′)

≤ ωm(η|f ′) + ωm(η|g′)

≤ Ω1(η).
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Suppose ωm(η|∂qk

∂m
) ≤ Ω1(η) for some k ∈ N. Then by the estimate in (2.81), we have

ωR1
m (η|∂qk+1

∂m
) ≤ δ′B2Tω

R1
m (η|∂qk

∂m
) + δ′B3η +B1(B1 + 1)(ω(η|f ′) + ω(η|g′))

≤ δ′B2TΩ1(η) +
1

2
Ω1(η)

≤ Ω1(η),

for T ≤ 1
2δ′B2

. Thus, by induction, we have ωm(η|∂qn

∂m
) ≤ Ω1(η) for all n ∈ N.

Since f ′ and g′ are continuous, Lemma 18 implies limη→0+ Ω1(η) = 0. Therefore

by Lemma 20, the sequence of functions {∂qn

∂m
}∞n=1 restricted to the domain R1 ∩X is

equicontinuous in m, for each fixed t ∈ [0, T ].

Before extending this result to regions R2 and R3, we present some preliminary

estimates in the following lemmas.

Lemma 24. Assume the hypotheses of Theorem 16. Then for all q ∈ B,

Lip(R̈q
i ) ≤ B4i

, i = 1, 2,

where Rq
i are given by (2.43)–(2.44) and

B4i
=
Ki

Mi

(C1i
δ1 + C2i

t1) +
µi

Mi

(C4i
δ1 + C5i

δ′1 + C6i
t1 + C7i

ε1) +
A

Mi

||P̂ ′||ε1 .

Proof. Since Rq
i satisfy the BCs (2.33)–(2.34), we have

|R̈i(t)| ≤
Ki

Mi

|Ri(t)|+
µi

Mi

|Ṙi(t)|+
A

Mi

|P̂ (q(0, t))|.

Therefore

Lip(R̈q
i ) ≤

Ki

Mi

||Ṙi||+
µi

Mi

||R̈i||+
A

Mi

J ||P̂ ′||ε1 .

The result then follows from Lemmas 9–10.
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Lemma 25. Assume the hypotheses of Theorem 16. Then for all q ∈ B,

ωX
m(η|

∂α−1
q

∂m
), ωX

m(η|
∂β−1

q

∂m
) ≤ B6Tω

X
m(η| ∂q

∂m
) +B7η,

where

B5 = ||1/ĉ||ε1e||(1/ĉ)′||ε1JM , B6 = ||1/ĉ||ε1B2,

B7 = ||1/ĉ||ε1(B3 + ||ĉ′||ε1LB1B5) +B1Lip(1/ĉ)JB5.

Proof. We prove the result for
∂β−1

q

∂m
. The proof for

∂α−1
q

∂m
is similar. Let (m, t) ∈ X.

Then for any ξ ∈ [0,M ], (2.47) implies

βq(β
−1
q (ξ;m, t),m, t) = ξ. (2.82)

Differentiating both sides of (2.82) with respect to m gives

dβq

dτ
(β−1

q (ξ;m, t);m, t)
∂β−1

q

∂m
(ξ;m, t) +

∂βq

∂m
(β−1

q (ξ;m, t),m, t) = 0.

Recalling from (2.42) that d
dτ
β(τ ;m, t) = ĉ(q(β(τ ;m, t), τ)), solving for

∂β−1
q

∂m
, and

making use of (2.82) yields

∂β−1
q

∂m
(ξ;m, t) = −

∂βq

∂m
(β−1

q (ξ;m, t),m, t)

ĉ(q(ξ, β−1
q (ξ;m, t)))

. (2.83)

Let ψ(m, t) = ∂βq

∂m
(β−1

q (ξ;m, t),m, t) and for η ≥ 0 and |m1 −m2| ≤ η, denote

∆ψ :=
∂βq

∂m
(β−1

q (ξ;m1, t);m1, t)−
∂βq

∂m
(β−1

q (ξ;m2, t),m2, t).
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Then using Lemmas 18–19 and 8 yields

|∆ψ| ≤
∣∣∣∣∂βq

∂m
(β−1

q (ξ;m1, t);m1, t)−
∂βq

∂m
(β−1

q (ξ;m1, t),m2, t)

∣∣∣∣
+

∣∣∣∣∂βq

∂m
(β−1

q (ξ;m1, t);m2, t)−
∂βq

∂m
(β−1

q (ξ;m2, t),m2, t)

∣∣∣∣
≤ ωX

m(η|∂βq

∂m
) + ωX

m(η|∂βq

∂m
(β−1

q ;m2, t))

≤ ωX
m(η|∂βq

∂m
) + ωτ (ω

X
m(η|(β−1

q ;m2, t)|
∂βq

∂m
)

≤ ωX
m(η|∂βq

∂m
) + ωτ (B5η|

∂βq

∂m
)

≤ ωX
m(η|∂βq

∂m
) +

∣∣∣∣∣∣∣∣ ddτ ∂βq

∂m

∣∣∣∣∣∣∣∣B5η

≤ ωX
m(η|∂βq

∂m
) + ||ĉ′||ε1LB1B5η

≤ B2Tω
X
m(η| ∂q

∂m
) + (B3 + ||ĉ′||ε1LB1B5)η,

where we have used the equation

d

dτ

∂βq

∂m
= ĉ′(q(βq, τ))

∂q

∂m

∂βq

∂m
,

whose derivation is similar to that of (2.79). Taking the supremum over all |m1−m2| ≤

η, ξ ∈ [0,M ], and t ∈ [0, T ] in the expression ∆ψ then yields

ωX
m(η|ψ) ≤ B2Tω

X
m(η| ∂q

∂m
) + (B3 + ||ĉ′||ε1LB1B5)η.

We can now use Lemmas 18–19 with (2.83) and the above estimate to obtain

ωX
m(η|

∂β−1
q

∂m
) ≤ ||1/ĉ||ε1ωX

m(η|ψ) +

∣∣∣∣∣∣∣∣∂βq

∂m

∣∣∣∣∣∣∣∣
ε1

ωX
m(η|1

ĉ
◦ q ◦ β−1

q )

≤ ||1/ĉ||ε1
(
B2Tω

X
m(η| ∂q

∂m
) + (B3 + ||ĉ′||ε1LB1B5)η

)
+B1Lip(1/ĉ)Lipt(q)Lipm(β−1

q )η

≤ ||1/ĉ||ε1B2Tω
X
m(η| ∂q

∂m
)

+(||1/ĉ||ε1(B3 + ||ĉ′||ε1LB1B5) +B1Lip(1/ĉ)JB5)η

≤ B6Tω
X
m(η| ∂q

∂m
) +B7η.
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Lemma 26. Assume the hypotheses of Theorem 16 and let q ∈ B be C1 in m. Then

ωX
t (η|∂αq

∂t
), ωX

t (η|∂βq

∂t
) ≤ B9Tω

X
m(η| ∂q

∂m
) +B11η,

where

B8 = ||ĉ||ε1eLip(ĉ)Lt1 , B9 = ||ĉ′||ε1dB8eB8,

B10 = ||ĉ′||ε1 + t1L
2Lip(ĉ′)B8, B11 = B8B10 + Lip(ĉ)Je||ĉ

′||ε1Lt1 .

Proof. We prove the result for ∂αq

∂t
. The proof for ∂βq

∂t
is similar. For q ∈ B and

C1 in m, the characteristic ODE (2.41) has a nonautonomous C1 vector field which

is continuous in time. Hence the characteristic αq(τ ;m, t) is C1 in τ , m, and t.

Differentiating (2.41) with respect to t and interchanging the order of the t and τ

derivatives yields the following ODE initial value problem for ∂αq

∂t
,

d

dτ

∂αq

∂t
= −ĉ′(q(αq, τ))

∂q

∂m

∂αq

∂t
,
∂αq

∂t
(t;m, t) = ĉ(q(m, t)), (2.84)

the solution of which is

∂αq

∂t
(τ ;m, t) = ĉ(q(m, t))e

R t
τ ĉ′(q(αq(s;m,t),s)) ∂q

∂m
(αq(s;m,t),s) ds. (2.85)

For (m, t) ∈ X and τ ∈ [0, T ], define

φ(m, t) =

∫ t

τ

ĉ′(q(αq(s;m, t), s))
∂q

∂m
(αq(s;m, t, s) ds,
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and for η ≥ 0, |t1 − t2| ≤ η, denote ∆φ := φ(m, t1)− φ(m, t2). Then

|∆φ| ≤
∣∣∣∣∫ t1

t2

ĉ′(q(αq(s;m, t1), s))
∂q

∂m
(αq(s;m, t1, s) ds

∣∣∣∣
+

∣∣∣∣∫ t2

τ

(ĉ′ ◦ q) ∂q
∂m

(αq(s;m, t1), s)− (ĉ′ ◦ q) ∂q
∂m

(αq(s;m, t2), s) ds

∣∣∣∣
≤ ||ĉ′||ε1L|t1 − t2|

+L

∣∣∣∣∫ t2

τ

(ĉ′ ◦ q)(αq(s;m, t1), s)− (ĉ′ ◦ q)(αq(s;m, t2), s) ds

∣∣∣∣
+||ĉ′||ε1

∣∣∣∣∫ t2

τ

∂q

∂m
(αq(s;m, t1), s)−

∂q

∂m
(αq(s;m, t2), s) ds

∣∣∣∣
≤ ||ĉ′||ε1L|t1 − t2|+ |t2 − τ |L2Lip(ĉ′)Lipt(αq)|t1 − t2|

+||ĉ′||ε1|t2 − τ | sup
s∈[0,T ]

∣∣∣∣ ∂q∂m(αq(s;m, t1), s)−
∂q

∂m
(αq(s;m, t2), s)

∣∣∣∣
≤ (||ĉ′||ε1L+ t1L

2Lip(ĉ′)B8)|t1 − t2|

+||ĉ′||ε1T sup
s∈[0,T ]

∣∣∣∣ ∂q∂m(αq(s;m, t1), s)−
∂q

∂m
(αq(s;m, t2), s)

∣∣∣∣ .

Taking the supremum over |t1 − t2| ≤ η and using Lemmas 18–19 and 8 then gives

ωX
t (η|φ) ≤ B10η + ||ĉ′||ε1TωX

t (η| ∂q
∂m

◦ αq)

≤ B10η + ||ĉ′||ε1TωX
m(Lipt(αq)η|

∂q

∂m
)

≤ B10η + ||ĉ′||ε1T dB8eωX
m(η| ∂q

∂m
).

Using (2.85), Lemmas 18–19, and the above inequality, we obtain

ωX
t (η|∂αq

∂t
) ≤ ||ĉ||ε1ωX

t (η|eφ) + e||ĉ
′||ε1Lt1ωX

t (η|ĉ ◦ q)

≤ ||ĉ||ε1e||ĉ
′||ε1Lt1ωX

t (η|φ) + Lip(ĉ)Je||ĉ
′||ε1Lt1η

≤ B9Tω
X
m(η| ∂q

∂m
) +B11η.

The proof for ωX
t (η|∂βq

∂t
) is similar.
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In the next proposition we use the preceding lemmas to show that, for T small

enough, { ∂q
∂m
}∞n=1 is equicontinuous in m, in regions R2 and R3.

Proposition 27. Assume the hypotheses of Theorem 16, and let the sequence {qn}∞n=1

be as defined by (2.78). Suppose T ≤ mini=1,2{ 1
2B13i

}, where

B12i
= C4i

δ1 + C5i
δ′1 + C6i

t1 + C7i
ε1,

B13i
= 2B12i

B6 +
1

2
δ′1(B6B8 +B5dB5eB9 +B2),

Then for each fixed t ∈ [0, T ], the sequence {∂qn

∂m
}∞n=1, restricted to the domains R2∩X,

and R3 ∩X, respectively, is equicontinuous in m.

Proof. We prove the result for region R2. The proof for region R3 is similar. For

(m, t) ∈ R2 ∩X, by (2.60) and (2.78), we have

qn(m, t) = 2Ṙ
qn−1

1 (β−1
qn−1

(0;m, t))− f(αqn−1(0; 0, β
−1
qn−1

(0;m, t))

−f(αqn−1(0;m, t)).

Differentiating with respect to m and denoting θ := (0;m, t), gives

∂qn
∂m

(m, t) = 2R̈
qn−1

1 (β−1
qn−1

(θ))
∂β−1

qn−1

∂m
(θ)

−f ′(αqn−1(0; 0, β
−1
qn−1

(θ)))
∂αqn−1

∂t
(0; 0, β−1

qn−1
(θ))

∂β−1
qn−1

∂m
(θ)

−f ′(αqn−1(θ))
∂αqn−1

∂m
(θ).

(2.86)

Recall that for all q ∈ B, Lemma 10 implies ||R̈q
1|| ≤ B121 , and Lemma 8 implies∣∣∣∣∣∣∂β−1

q

∂m

∣∣∣∣∣∣ ≤ B5,
∣∣∣∣∣∣∂αq

∂t

∣∣∣∣∣∣ ≤ B8, and
∣∣∣∣∣∣∂αq

∂m

∣∣∣∣∣∣ ≤ B1 (whenever they exist). Using these
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bounds and Lemmas 18–19 with (2.86) , we then have

ωR2
m (η|∂qn

∂m
) ≤ 2B12ω

R2
m (η|

∂β−1
qn−1

∂m
) + 2B5ω

R2
m (η|R̈qn−1

1 ◦ β−1
qn−1

)

+||f ′||B5ω
R2
m (η|

∂αqn−1

∂t
◦ β−1

qn−1
)

+B5B8ω
R2
m (η|f ′ ◦ αqn−1 ◦ β−1

qn−1
)

+||f ′||B8ω
R2
m (η|

∂β−1
qn−1

∂m
) + ||f ′||ωR2

m (η|
∂αqn−1

∂m
)

+B1ω
R2
m (η|f ′ ◦ αqn−1)

≤ (2B12 + ||f ′||B8)ω
R2
m (η|

∂β−1
qn−1

∂m
) + 2B5dB5eω(η|R̈qn−1

1 )

+||f ′||B5dB5eωR2
t (η|

∂αqn−1

∂t
) +B5B8dB5B8eω(η|f ′)

+||f ′||ωR2
m (η|

∂αqn−1

∂m
) +B1dB1eω(η|f ′).

Then Lemmas 22 and 24–26 yield

ωR2
m (η|∂qn

∂m
) ≤ B131Tω

R2
m (η|∂qn−1

∂m
) +B141η +B15ω(η|f ′), (2.87)

where

B14i
= 2B12i

B7 + 2B5dB5eB4i
+

1

2
δ′1(B7B8 +B5dB5eB11 +B3), i = 1, 2,

and

B15 = B5B8dB5B8e+B1dB1e.

We will again use induction on n. Let

Ω2(η) := 2B141η + 2B15ω(η|f ′) + ω(η|g′).

Note that since B15 ≥ 1, we clearly have ωR2
m (η|∂q1

∂m
) ≤ Ω2(η). Suppose ωR2

m (η|∂qk

∂m
) ≤
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Ω2(η) for some k ∈ N. Then by the inequality in (2.87), we have

ωR2
m (η|∂qk+1

∂m
) ≤ B131TΩ2(η) +

1

2
Ω2(η)

≤ Ω2(η),

for T ≤ 1
2B13i

. Thus by induction, ωR2
m (η|∂qn

∂m
) ≤ Ω2(η) for all n ∈ N. Since f ′ and g′

are continuous, we have limη→0+ Ω(η) = 0. Therefore by Lemma 20, the sequence of

functions {∂qn

∂m
}∞n=1 restricted to the domain R2 ∩X is equicontinuous in m, for each

fixed t ∈ [0, T ]. The proof for the domain R3 ∩X is similar.

We combine Propositions 23 and 27 in the following corollary.

Corollary 28. Assume the hypotheses of Theorem 16. Then for

T ≤ min{ 1

2δ′1B2

,
1

2B13i

, i = 1, 2},

the sequence of functions {∂qn

∂m
}∞n=1 on the entire domain X = [0,M ]×[0, T ] is equicon-

tinuous in m, for each fixed t ∈ [0, T ].

Proof. This follows from Propositions 23 and 27 combined with a simple application

of the triangle inequality.

This provides sufficient conditions for the solution in Theorem 16 to be C1, which

we state in the next theorem.

Theorem 29. Assume the hypotheses of Theorem 16 and suppose T ≤ min{ 1
2δ′1B2

, 1
2B13i

}.

Then the solution in Theorem 16 is C1.

Proof. Let the sequence of functions {qn}∞n=1 be as defined by (2.78), and let t ∈

[0, T ]. Then {∂qn

∂m
(·, t)}∞n=1 is equicontinuous in m (by Corollary 28) and uniformly
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bounded, since
∣∣∣∣∂qn

∂m

∣∣∣∣ ≤ L by the definition of B. Thus, by Arzela-Ascoli’s Theorem,

for each t ∈ [0, T ], there exists a subsequence, say {∂qnj

∂m
(·, t)}∞j=1, which converges

uniformly (in m) to some function Q(·, t) as j →∞. Note that the original sequence

{qn}∞n=1 converges uniformly (in both m and t) to qf , the unique fixed point of the

operator S. In particular, for fixed t, the subsequence {qnj
(·, t)}∞j=1 converges to qf (·, t)

as j → ∞. Therefore, qf (·, t) is continuously differentiable (in m) and
∂qf

∂m
(·, t) =

Q(·, t). Thus qf is C1 in m. We also have that qf is continuous in t, since qf ∈ B.

Thus, as we have argued before, the nonautonamous vector fields in the characteristic

ODEs (2.41)–(2.42) for q = qf are C1 and continuous in time, which implies that the

characteristics αqf
, βqf

, and their inverses are C1 in both m and t (the “initial data”

for the characteristics). But then, by the definition of the operator S in (2.60), S(qf )

must be C1 in both m and t. Since S(qf ) = qf , this implies that qf is C1 in both m

and t as well. As stated in Theorem 16, this is sufficient for the solution given there

to be C1.
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