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ABSTRACT 
 

Monitoring of ground deformation is a critical component of geotechnical 

engineering practice. This study investigated the application of synthetic aperture 

radar interferometry (InSAR) using point target analysis (IPTA) for detecting and 

characterizing localized deformation features that are often associated with 

geotechnical engineering activities. In contrast to discrete point in-situ 

deformation measurement techniques, InSAR can be used to obtain a broader 

view of deformation processes at a site.  

The objectives of this research were to (1) evaluate the feasibility of using 

IPTA to detect localized deformation features, (2) investigate the influence of 

SAR data characteristics on the ability to successfully apply IPTA processing and 

(3) quantify the dependence of the IPTA-derived deformation estimates on the 

number of SAR acquisitions used to constrain the analysis. To address these 

objectives, 52 SAR scenes acquired over Los Angeles, CA, during construction 

of the Los Angeles Metro Rail Red Line between 1992 and 2000 were used. This 

site was chosen due to the availability of extensive SAR data and the known 

occurrence of localized settlements along the Red Line alignment during 

construction.  

Results from IPTA processing of the complete dataset successfully 

demonstrated the ability to detect the localized deformations associated with the 

subway construction. Deformation time histories for points along the Red Line 

alignment exhibited episodic settlements that were not observed for points 

located away from the alignment.  



 xvii

To address the second objective of this study, IPTA processing was 

applied to subsets of the 52 SAR acquisitions available for the site. The number 

of interferometric pairs required for successfully applying point target analysis 

without patch errors was found to range between 20 and 25. The average 

baseline of interferograms constituting a dataset was hypothesized to have a 

dominant influence on the ability to successfully apply IPTA processing to a 

dataset. However, no clear baseline dependence was identified.  

To address the third objective, the variability of the estimated rate of 

deformation was estimated using the standard deviation from one thousand runs 

of the IPTA analysis as applied to datasets of varying sizes. Irrespective of the 

deformation rate of a point target, the variability of the estimated deformation 

rates was found to vary inversely with the size of the dataset used to constrain 

the analysis. In addition, the coefficient of variation of deformation rates was 

observed to decrease with an increase in the size of the dataset used for 

analysis. Irrespective of the deformation rate of a point target, both the mean and 

the standard deviation of the associated uncertainty (UG) was observed to 

decrease with an increase in the size of the dataset used for IPTA analysis. 

 



 1

1. INTRODUCTION 
 
 

1.1 Introduction 
 

Monitoring of ground deformation is a critical component of geotechnical 

engineering practice. Examples of ground deformation problems include 

deformation induced by earth pressure on retaining structures, settlement due to 

consolidation of soil, and settlements during construction of underground 

facilities.  

Current in-situ deformation measuring techniques are performed at 

discrete points of interest at a site. Although this method provides the ability to 

monitor specific points of interest at a site, supplementing such information with a 

broader image of the overall deformation process, affecting the site as a whole 

would be extremely valuable. However, doing this with current in-situ monitoring 

techniques would prove to be strategically as well as economically unfeasible. 

Initially used to infer earthquake induced deformation, Synthetic Aperture 

Radar interferometry (InSAR) is a remote sensing technique that enables the 

derivation of spatially continuous deformation fields. Satellite imagery acquired 

before and after a deformation event can be quantitatively manipulated to discern 

regions in the satellite image that deformed between the two acquisitions. The 

resolution of the satellite imagery used in deriving such deformation fields 

controls the fineness of detail achievable from InSAR. In addition, the technique 

is attractive since it provides the option of using satellite imagery acquired in the 

past for interferometric calculations. This enables the assessment of the 
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deformation history for a site despite not having in-situ instrument monitoring 

deformations during the time of interest. The spatial separation between the 

satellite positions during the times of the before and after image acquisitions, 

referred to as the baseline, combined with the prevailing topographic relief, 

dictates the quality of the computed deformation field for a site of interest. The 

use of large baseline acquisitions to perform interferometry, results in low quality 

deformation fields that can be difficult to interpret.   

To overcome these short-comings, an approach called Interferometric 

Point Target Analysis (IPTA), confines the computational processing 

characteristic of InSAR to only those pixels in the satellite imagery with scattering 

properties that are temporally stable. Point target information can be used to 

discern deformation fields even for image pairs acquired from spatial positions of 

the satellite defining large baselines.  Temporal stability of scattering properties 

ensures the quality of information derived from the stable scattering pixels over 

time and enables the computation of a reliable temporal deformation history.  

1.2 Motivation 
 

The IPTA method has not been extensively studied for application to 

detect small spatial-scale deformation features that are common in civil 

engineering practice. The advantages provided by IPTA over conventional 

InSAR, make it an attractive option to quantify the deformation history of a site. 

IPTA analysis relies on having sufficient information in terms of the number of 

satellite images available for analysis. However, the number of satellite 

acquisitions available for a study area can be variable depending on factors 
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beyond the control of the user. In circumstances where IPTA is useful to infer 

important deformation information, knowledge of the affect of the number of 

images used in the analysis on the reliability of the derived deformation estimates 

is crucial. One way to study such dependencies is to analyze a site for which 

plenty of satellite imagery is available. Comparison of deformation histories 

obtained by processing subsets of data having varying numbers of the available 

satellite imagery can provide useful insights into the influence of the number of 

images used in the analysis on the deformation estimates derived using IPTA. 

The availability of fifty-two satellite images, acquired between 1992 and 2000, 

which bracket the construction period of underground tunnels for the Los Angeles 

Redline, made this an ideal site for this study. 

1.3 Objectives 
 

The following three research objectives were identified for this study: 

1. Evaluate the feasibility of using IPTA to detect small spatial-scale 

deformation features by computing the deformation time histories 

resulting from the construction of the Red Line in Los Angeles,   

2. Investigate the influence of dataset characteristics on the 

application of the conventional IPTA processing flow, and 

3. Quantify the dependence of the IPTA-derived deformation time 

history on the number of satellite acquisitions used to constrain the 

analysis.   
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With respect to the second objective, it was hypothesized that the average 

perpendicular baseline calculated from all interferograms constituting a dataset, 

would influence the ability to successfully apply the IPTA processing flow. 

1.4 Organization of Thesis 

This manuscript is divided into a total of six chapters inclusive of the 

current chapter. Details of the adopted technique and specifics of the study 

designed to achieve the objectives are presented in the five chapters that follow. 

The concept of the Synthetic Aperture Radar (SAR) and details pertaining 

to how ground deformation can be determined using SAR data are presented in 

the second chapter. In addition, a brief history of the development of the 

technique and a summary of currently operating SAR systems is provided. 

Mathematical expressions relating important SAR parameters are presented to 

enhance understanding of the technique. 

The third chapter builds on the information provided in the second chapter 

and presents details pertaining to the Interferometric Point Target Analysis 

(IPTA). A literature review summarizing the development of the technique and its 

applications to non-tectonic problems is presented.  

The fourth chapter provides the data and methods adopted to accomplish 

the three objectives of this study. Specifics regarding the satellite imagery used 

and IPTA processing flow adopted are provided. 

Results obtained from the study and a detailed discussion of the results is 

presented in the fifth chapter. The sixth chapter presents conclusions derived 

from this study and recommendations for future work. 



 5

2. BACKGROUND 
 
 

2.1 Introduction 
 

This chapter introduces the concepts relating to Synthetic Aperture Radar 

(SAR) and the technique of interferometry as applied to SAR data. A brief history 

pertaining to the development of SAR is presented. The general processing flow 

used to perform interferometric calculations, with details pertaining to each step 

as reviewed from relevant literature, is also presented. 

2.2 Overview of Synthetic Aperture Radar 

The synthetic aperture radar concept, initially referred to as Doppler beam 

sharpening, is attributed to Carl Wiley who in 1951 made the observation that it 

was possible to use the difference in Doppler frequency shift induced by two 

distinct targets within a radar beam to improve the resolving power of the moving 

radar in the direction of its flight (Curlander and McDonough, 1991). The 

synthetic aperture radar, as it is known today, is a pulsed-radar that uses the 

forward motion of the platform carrying it in order to simulate an antenna with a 

larger aperture.  

The antenna aperture can be defined as “the physical area of the antenna 

projected onto a plane perpendicular to the direction of the antenna beam” (Maini 

and Agrawal, 2007). The antenna beam is a channel of electromagnetic energy 

radiated by the antenna (Skolnik, 1962). Large apertures are necessary to 

achieve measurements characterized by high spatial resolution. A very large and 
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impractical real aperture antenna (RAR) would be required to match the 

resolution achievable using a SAR. Using SAR, the infeasibility of mounting a 

large real aperture radar on a moving platform (like aircrafts or satellites) is 

overcome by synthesizing a large antenna length from the forward motion of the 

antenna during imaging. In other words, during SAR data acquisition, an object 

on the ground is imaged from many different locations on the satellite’s flight 

track.   

During imaging, the component of electromagnetic energy reflected by 

objects on the ground back towards the antenna is called backscatter. The 

redundancy in information, obtained by recording the backscatter from the object 

when imaged from different perspectives, is then used to generate high 

resolution digital imagery.  The resolution in a direction parallel to the motion of 

the SAR also referred to as the azimuth, is independent of the altitude of the 

sensor during imaging and can be expressed as approximately one-half the 

length of the imaging antenna (Jensen, 2000). A detailed derivation of the 

azimuth resolution as provided in Curlander and McDonough (1991) is presented 

in Section 2.2.4.2. As an illustration, an azimuth resolution of approximately 4 m 

can be achieved when data acquired by the 10-m long antenna mounted on 

board the European Remote Sensing satellites (ERS-1 and ERS-2) is processed. 

Synthetic aperture radar interferometry (InSAR) is a remote sensing 

technique that can be used to derive high resolution deformation maps as well as 

topographic maps of an imaged area (Burgmann et al., 2000). In this study, the 

technique was used for deformation mapping. The technique can be applied 
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when at least two synthetic aperture radar (SAR) images of the same area on the 

ground, acquired from slightly different look angles, are available for analysis.     

Electromagnetic radiations with frequencies ranging from 1-GHz to 300-

GHz define the microwave region of the electromagnetic spectrum. Satellite-

borne SAR systems operate in the 1-GHz to 10-GHz range of microwave 

frequencies and are classified according to the specific frequency bands they 

adopt for imaging. All SAR systems are active microwave remote sensing 

systems, meaning that the radar illuminates the target to be imaged with 

electromagnetic radiation with frequencies in the microwave region of the 

electromagnetic spectrum (Figure 2.1).  

 

Figure 2.1 The electromagnetic spectrum (Curlander and McDonough, 1991) 
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Active remote sensing enables night-time data acquisition. In addition, the 

long wavelengths characteristic of microwave frequencies enable cloud 

penetration. Besides SAR system design issues, the primary factors influencing 

the choice of radar wavelengths employed by SAR systems include: 

1. Atmospheric transmission: Figure 2.2, illustrates the capability of different 

wavelengths in the electromagnetic spectrum to penetrate the Earth’s 

atmosphere. Higher transmission percentages represent greater penetration 

abilities. As can be inferred from Figure 2.2, radiation with wavelengths 

greater than that represented by the X-band (3 cm) can completely penetrate 

the earth’s atmosphere. 

2. Scattering behavior induced by the radiation: The amplitude of 

backscatter received from any imaged surface is a function of the wavelength 

of the incident electromagnetic energy. This will be explained in more detail in 

Section 2.2.3.  

3. Sensitivity to imaged topography and deformation: In the case of 

interferometric applications, greater sensitivity to imaged topography can be 

achieved by using shorter wavelengths or by ensuring a bigger imaging 

baseline. This will be explained in more detail in Section 2.3.1.  

Currently operational satellite-borne SAR systems operate in one of the following 

microwave frequency bands: 

1. X band – with a wavelength of 3 cm or a frequency of 10 GHz, 

2. C band – with a wavelength of 5.6 cm or a frequency of 5.3 GHz, and 

3. L band – with a wavelength of 24 cm or a frequency of 1.3 GHz.  
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Short wavelengths (X-band and C-band) induce a higher sensitivity to 

deformation but cannot penetrate vegetation and snow cover. On the other hand, 

SAR systems imaging with larger wavelengths (L-band) are relatively less 

 

Figure 2.2 Atmospheric transmission as a function of radiation wavelength 
(Curlander and McDonough, 1991)  

 

sensitive to deformation but have the ability to penetrate vegetation and snow 

cover. 

2.2.1 SAR Imaging modes 
 

SAR systems are capable of imaging in different modes. Some of the 

common imaging modes include: 
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1. Strip-map mode,  

2. Burst mode,  

3. Scan SAR mode,  

4.  Spot light mode, and  

5.  Polarimetric mode. 

Strip-map mode: Imagery in this mode of operation is obtained by an antenna 

that maintains a constant inclination of its look vector relative to the direction of 

flight. The vector defining the slant range direction, as shown in Figure 2.3, is 

known as the look vector. High-resolution imagery can be processed from raw 

data acquired from the strip map mode by using backscatter information of an 

object that is available for the time period during which the object remained in the 

field of illumination of the radar (Chang et al., 1996). 

Burst mode: Imagery in this mode of operation is acquired by recording the 

backscatter of a group of pulses that are transmitted in regular bursts. Imagery 

obtained in this mode has lower azimuth resolutions than are achievable from the 

strip-map mode. The burst mode was used by Magellan to image the surface of 

Venus (Chang et al., 1996).  

Scan SAR mode: This mode of operation enables wide swath data acquisition. 

The swath is illustrated in Figure 2.3 and defines the width of the footprint imaged 

by the SAR. Data for each sub-swath is obtained in the burst mode thus resulting 

in lower azimuth resolution (Chang et al., 1996). 

Spotlight mode: Data acquired in this mode of operation is characterized by an 

azimuth resolution greater than that attainable from the strip map imaging mode. 
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The higher resolution is a result of longer object illumination times made possible 

by electronically steering the radar beam in the direction of the area of interest. In 

other words, increasing the illumination time for a target synthesizes an antenna 

length that is longer than that which can be synthesized in the strip-map mode. It 

should, however, be noted that increased azimuth resolution achievable in this 

mode comes at the cost of spatial coverage since extended illumination time can 

be achieved for only specific sections of the traditional SAR data frame (Canada 

Center for Remote Sensing, 2005). 

Polarimetric mode:  In this mode of operation, data is acquired by emitting and 

receiving electromagnetic radiation that is polarized in either the horizontal or the 

vertical plane or both. A fully polarimetric system emits and receives radiation 

polarized in both directions hence making it possible to obtain full polarimetric 

information about the imaged surface hence enabling comprehensive 

quantification of its scattering properties. On the other hand, dual polarization 

systems are those in which the transmitted radiation is polarized in one direction 

whereas radiation polarized in both orthogonal components are received. The 

dual polarization imaging mode is also referred to as the compact imaging mode 

(Ainsworth et al., 2007). Complete polarization information of the imaged surface 

cannot be acquired from dual polarization data. 

2.2.2 Satellite-based SAR Systems 
 
 Synthetic Aperture Radars (SAR’s) used to acquire data for interferometry are 

usually mounted on either satellite or airborne platforms. Data used in this study 
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was acquired by satellite-based SAR systems, a brief overview of which is 

provided in this section. Some examples of satellite borne SAR systems include 

 

Figure 2.3 SAR imaging geometry (Hanssen, 2001). 
 

Seasat, SIR-A/B/C, X-SAR, ERS-1/2, Envisat, JERS-1, RADARSAT-1/2, and 

TerraSAR-X.  

The Seasat system, operating in the L-band of microwave frequencies 

was launched by the United States of America (USA) in 1978 to facilitate ocean 
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studies (Curlander and McDonough, 1991; Hanssen, 2001). Operations of the 

Seasat system were managed by the National Aeronautics and Space 

Administration’s (NASA) Jet Propulsion Lab (JPL). Launching of the Shuttle 

Imaging Radar–A (SIR-A) in 1981 was followed by SIR-B that was launched in 

1984. Both the SIR satellites were launched by the USA and operated in the L-

band. While data acquired from the SIR-A was optically processed, the data 

acquired from SIR-B was subjected to digital processing (Curlander and 

McDonough, 1991). Polarimetric data was made available following the launch of 

the SIR-C and X-SAR missions in 1994 with the uniqueness that data were 

available in three frequency bands namely, L-band, C-band, and X–band 

respectively (Curlander and McDonough, 1991; Hanssen, 2001).  

The European Remote Sensing Satellite (ERS-1) was launched by the 

European Space Agency in 1991 and remained in orbit until March 2000. The 

ERS-2 was launched in April, 1995 and was similar to the ERS-1. From August 

1995 to May 1996, the ERS-2 followed the ERS-1 on the same orbit making it 

possible to acquire imagery temporally spaced one day apart (Ferretti et al., 

2007). Such image pairs are also referred to as tandem pairs. Both ERS 

satellites operate in the C band. The launch of ERS-1 was followed by the launch 

of Japanese Earth Resources satellite (JERS-1) in 1992 which remained in orbit 

until October 1998 and operated in the L-band (Hanssen, 2001). RADARSAT-1 

was developed and launched by Canada on November 4, 1995 and was 

primarily intended for earth observation. The Envisat system was launched by 

the European Space Agency (ESA) in 2002 and carried an Advanced Synthetic 
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Aperture Radar (ASAR) operating in the C-band. The ASAR is a versatile 

instrument that is capable of operating in different image acquisition modes 

besides being capable of acquiring imagery in different polarizations and steering 

the radar beam over a range of off-nadir angles (Ferretti et al., 2007).  

The TerraSAR–X, launched on June 15, 2007 carries a SAR operating in 

the X-band. The TerraSAR-X was developed jointly by the German Aerospace 

Center and European Aeronautic Defence and Space Company. The satellite is 

capable of operating in Spotlight (1-m resolution), Strip map (3-m resolution) and 

ScanSAR (16-m resolution) modes (Infoterra, 2007).  Specifications of some 

satellite-borne SAR systems are provided in Table 2.1. The repeat cycle defines 

the time period between successive visits by the satellite to image the same site 

on the ground. The operating frequency defining a mission is directly related to 

the wavelength of microwave radiation used for imaging. 

Table 2.1 Specifications of some satellite-borne SAR systems 
  

Mission Launched 
Repeat 
Cycle 

 Satellite
Altitude  Frequency Bandwidth  

Look 
Angle 

  (year) (days) (km) (GHz) (MHz) (degrees) 

ERS-1 1991 35 790 5.3 15.55 23 
ERS-2 1995 35 790 5.3 15.55 23 
JERS-1 1992 44 568 1.275 15 39 

Radarsat-1 1995 24 792 5.3 11-30 20-49 
ENVISAT 2001 35 800 5.3 14 20-50 

ALOS 2002 45 700 1.27 28 8-60 

TerraSAR-X 2007 11 514 10 150 ~35 
(Hanssen, 2001 and Eineder et al., 2004)  

A detailed description of the relationship between the bandwidth and range 

resolution is provided in Section 2.2.4.1. The look angle (θ ) in Table 2.1 is the 
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look angle at the center of the swath. The look angle and swath width are 

illustrated in Figure 2.3.  

2.2.3 SAR Data Acquisition 
 

During data acquisition, the SAR transmits electromagnetic waves with 

microwave frequencies ranging from 1 GHz – 10 GHz towards the earth and 

records the magnitude and phase of the fraction of the incident energy reflected 

back towards the satellite. Such systems recording both the amplitude and phase 

of the reflected energy or echoes are known as coherent imaging systems 

(Curlander and McDonough, 1991). During data acquisition, the SAR is pointed 

towards the earth in a plane that is orthogonal to the direction of flight of the 

platform carrying it. The angle made by the radar look vector with respect to the 

vertical is known as the off-nadir angle or the look angle and gives rise to the 

side looking geometry of the SAR during data acquisition, as illustrated in Figure 

2.3. 

The SAR images a particular object on the ground from several different 

locations during the satellite’s orbit. For example, an object on the ground is 

typically imaged from around 1000 different locations in the orbit of the ERS-1 

(ESA, 2007). These various responses are then digitally processed in order to 

assign the object a distinct amplitude and phase. The distance on the satellite’s 

trajectory defining the time period during which an object on the ground begins 

and stops being imaged or detected by the SAR is known as the length of the 

synthesized aperture. As an example, the 10-m long imaging radar mounted on 

the ERS-1 images objects on the ground for a distance of 4 km during its orbit. In 
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other words, the ERS-1 synthesizes the resolution achievable with a 4-km long 

antenna using an antenna that is only 10-m long (ESA, 2007). As mentioned 

before, this results in an azimuth resolution of approximately 4 m.   

An image of the radar footprint in side-looking geometry can be 

constructed by similar processing of the acquired raw data. The processed SAR 

image is composed of several evenly spaced pixels. Each pixel denotes the 

information corresponding to a ground resolution cell (Hanssen, 2001). A ground 

resolution cell, whose dimensions are defined by the ground range resolution and 

ground azimuth resolution of a SAR system, can be defined as the area on the 

ground that corresponds to a single pixel as mapped in a SAR image. The 

electromagnetic radiation reflected towards the SAR system from all elements 

located within a ground resolution cell (e.g. buildings, roads, etc.), contributes to 

the backscatter that is associated with the pixel representing the ground 

resolution cell in the SAR image. SAR data resolution is discussed in more detail 

in Section 2.2.4.  

The data corresponding to each pixel in a SAR image can be represented 

as a complex number having amplitude and phase. Resolution cells 

characterized with high amplitudes of backscatter show up as bright pixels on the 

processed SAR image whereas those with low backscatter are characterized by 

darker colors. Due to details pertaining to the process in which raw SAR data are 

processed into a SAR image and owing to the complex number representation of 

data for each pixel in the SAR image, the processed SAR image is often referred 

to as a Single Look Complex (SLC) image.  
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The amplitude of a pixel is a function of its overall “roughness”. Rough 

surfaces reflect more of the incident electromagnetic energy back to the radar 

resulting in high amplitudes whereas smooth surfaces reflect the incident energy 

in a direction away from the satellite and result in low amplitudes. The perception 

of roughness by a satellite depends on the relation between the wavelength of 

the radiation used by the radar and the root-mean-square (RMS) height of the 

surface being imaged. Surfaces having a RMS height of the same order as the 

radar wavelength reflect most of the incident energy back in the direction of the 

radar and are hence perceived as rough surfaces. On the other hand, surfaces 

having RMS heights less than the wavelength of the incident radiation behave as 

smooth surfaces.  

Besides roughness, the backscatter corresponding to a pixel is also 

influenced by the angle of incidence of the radar beam. The relationship between 

the backscattering coefficient and the angle of incidence of the radar beam for 

different frequencies in the microwave region of the electromagnetic spectrum is 

shown in Figure 2.4 (Curlander and McDonough, 1991).  

The differential path delay phase of a scattering element in a SAR image 

resolution cell represents the change in phase between the transmitted and 

received signals due to the time taken by the signal to traverse the two-way 

distance between the satellite and the element on the ground.  The mathematical 

expression for the differential path delay phase (φ ) of an elemental scatterer 

within a resolution cell is: 

( ) RR
λ
π

λ
πφ 422

−=−= ,        (2.1) 
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where, 2R represents the round trip distance traversed by the pulse emitted by 

the SAR (with R denoting the slant range) and λ represents the wavelength of the 

radiation. The negative sign accounts for the change in phase of echoes received 

from a scatterer being inversely related to the change in range to the scatterer 

 

Figure 2.4 Relationship between backscatter coefficient, angle of incidence and 
frequency of electromagnetic radiation (Curlander and McDonough, 1991). 
  

 (Hanssen, 2001). In other words, during imaging, a decreasing range to a 

scatterer on the ground results in a positive frequency shift of the echoes 

received from the target, whereas an increasing range to a scatterer results in a 

negative frequency shift. This principle known as the Doppler frequency shift is 

exploited to increase the azimuth resolution in SAR images. More details on this 

principle and how it is applied are provided in Section 2.2.4.2. It can be inferred 
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from Eq. 2.1, that the propagation phase of a scatterer within a pixel is directly 

proportional to its slant range distance. 

However, due to the periodic nature of the emitted pulse, similar phase 

values are recorded for all scatterers located at distances of integer multiples of 

the wavelength from the satellite. Hence, the true phase representing a scatterer 

is encrypted within the range of phase values representing one whole 

wavelength of the emitted pulse. In other words the phase is wrapped between –

π and +π. The amplitude and phase recorded for a scatterer during SAR data 

acquisition can be represented as a phasor. A phasor is a vector representation 

of a complex number where the length of the vector represents the amplitude 

and the angle describing the vectors orientation represents the phase. The 

complex phasor representing each element within the cell has components 

corresponding to backscatter phase and differential path delay phase. The 

scattering mechanism of each elemental scatterer contributes to the backscatter 

phase associated with it (Hanssen, 2001). The slant-range distance, which 

defines the differential path delay phase, is measured with respect to a reference 

surface oriented in a direction normal to the radar look direction (Rosen et al., 

2000).   

A ground resolution cell, whose dimension depends on the imaging radar 

specifications, is composed of several elemental scatterers. During SAR image 

acquisition, each elemental scatterer located within a ground resolution cell, 

reflects some of the incident electromagnetic signal back towards the SAR 

antenna. Hence, each elemental scatterer can be associated with backscatter 
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phase and differential path delay phase components in addition to amplitude. 

The complex phasor corresponding to the pixel representing such a ground 

resolution cell in a SAR image is derived by the coherent summation of complex 

phasors representing each elemental scatterer within that cell. Coherent 

summation is a vector summation operation where each individual vector being 

summed represents the complex phasor corresponding to the respective 

elemental scatterer within the ground resolution cell under consideration (ESA, 

2007).   

2.2.4 SAR Data Resolution 
 

The resolution of conventional real aperture radar (RAR) systems is a 

function of the angular resolution of the radar beam and its altitude of operation. 

The angular resolution is inversely proportional to the length of the antenna 

aperture. Hence, high operating altitudes will need to be compensated by long 

antenna apertures to preserve the resolution of such systems. However, desired 

resolutions would entail impractically long antennas (several kilometers) to be 

mounted on imaging platforms. As previously mentioned, this shortcoming is 

overcome by synthesizing a long antenna aperture by moving the imaging radar 

in the along-track or flight direction while simultaneously imaging in the range. 

SAR systems resolve objects in two directions, namely the range and the 

azimuth. The direction perpendicular to the along-track/flight direction and 

parallel to the radar look direction is called the range. The along-track/flight 

direction determines the azimuth (Figure 2.3). Factors governing SAR image 

resolutions in both these directions are discussed in the following sections.  
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2.2.4.1 Range Resolution 
 

Pulse travel times to and from points on the ground are used to resolve 

their location in the range direction. In addition, range resolution is a function of 

pulse width or the time period of the pulse. Shorter pulse widths result in 

increased range resolution. The slant range resolution ( r∆ ) of a SAR can be 

expressed as:  

2
τcr =∆ ,           (2.2)        

where c is the velocity of light (3 x 108 m/sec) and τ is the pulse width. The pulse 

width is inversely proportional to the radar bandwidth and can be expressed as:  

B
1

=τ  ,                                                                                        (2.3) 

where B is the radar bandwidth. From Eq. 2.2, it is evident that the slant range 

resolution is independent of the altitude of the satellite during data acquisition. 

However, shortening of pulse widths results in a decrease in its energy thus 

affecting the strength of backscatter or amplitude. Therefore, it is not feasible to 

reduce pulse widths below typical lower-bounds. Pulse or chirp compression is a 

procedure that is used to reduce the effective pulse width, thus increasing the 

resolution of SAR data. For an ERS sensor, pulse compression is used to reduce 

the pulse width from from 37.1 µs to 64 ns, thereby increasing the ground range 

resolution from 5.5 km to approximately 25 m (Curlander and McDonough, 1991; 

Hanssen, 2001).  
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2.2.4.2 Azimuth Resolution 
 

Typically, the ability to resolve any two targets in the azimuth direction 

depends on the fineness of the beam in the horizontal direction. The angular 

resolution of the beam in the horizontal direction ( hθ ) can be expressed as  

a
h L

λθ = ,                                                                                      (2.4) 

where λ is the wavelength of the radiation and La is the length of the radar 

antenna. Conventionally, the locations of any two targets located within the radar 

beam cannot be resolved by the radar hence limiting the achievable azimuth 

resolution. The azimuth resolution ( x∆ ) in such cases can be expressed as:  

aL
Rx λ

=∆ ,                                                                                     (2.5) 

where R denotes the slant range to the target. SAR systems overcome this 

limitation by using the Doppler frequency shift principle to resolve the locations of 

targets even when they are illuminated by the radar beam simultaneously.  

The Doppler shift technique, first proposed by Carl Wiley and referred to 

as Doppler beam sharpening, forms the basis for high azimuth resolution that 

can be synthesized from SAR data (Curlander and McDonough, 1991).  Due to 

the fineness of the radar beam, any two targets illuminated by the radar beam 

simultaneously can be assumed to be located at the same slant range. The 

degree of fineness of radar beams is representative of the angular resolution that 

can be achieved. Greater fineness makes greater angular resolution achievable. 

The Doppler Effect is the phenomena that results in the observation of an 

increase or decrease in frequency of radar echoes received from targets 
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illuminated by the radar beam. This frequency change results from the relative 

motion between the satellite and the target and can be observed for the time 

period during which a target is illuminated by the radar. 

                         
 
Figure 2.5 Plan view of SAR imaging geometry (modified from Curlander and 
McDonough, 1991) 
 

With reference to Figure 2.5, the Doppler frequency shift ( df ) can be expressed 

as:  

λ
θ ds

d
V

f
sin2

=   ,                                                                          (2.6) 

where Vs is the relative velocity of the satellite with respect to the earth, θd is the 

angle made by the look vector to the target with respect to a plane perpendicular 

to the satellite flight direction and λ is the wavelength used for imaging. Since θd 

is small, fd can be approximated as:  

R
xV

f s
d λ

2
= ,                                                                                   (2.7) 
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where x is the distance between the target and the plane perpendicular to the 

satellite flight direction measured in the direction of flight and R is the slant range 

to the target. Rearranging Eq. 2.7, the azimuth resolution (∆x) can be expressed 

as:  

          
s

d

V
fR

x
2
∆

=∆
λ                                                                        (2.8) 

As can be seen from Eq. 2.8, the azimuth resolution is a function of the resolution 

with which the Doppler frequency (∆fd) can be measured. If the resolution of 

measuring the Doppler frequency is considered to be the reciprocal of the time 

span defining the length of time a particular target is illuminated by the radar 

beam, Eq. 2.8 can be rearranged as:  
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where La denotes the length of the radar antenna measured in a direction along 

the satellite flight direction (Curlander and McDonough, 1991).  

It is evident from Eq. 2.9 that the azimuth resolution of SAR data, just like 

the range resolution of SAR data, is independent of the altitude of the satellite 

during image acquisition. This is in contrast to the resolution of data acquired by 

conventional RAR systems, where the achievable resolution is a function of the 

altitude of operation of the satellite system. Azimuth compression is the 

procedure that is adopted in order to realize the full azimuth resolution (Hanssen, 

2001). Figure 2.6 illustrates the radar viewing geometry in a plane perpendicular 

to the along-track direction. Points on the ground in the near-range are 

illuminated by the radar beam for time periods shorter than that for points in the 
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far-range. This redundancy provides useful information needed to offset the loss 

of resolution in the far-range resulting from an oblique look vector. It should, 

however, be noted that the look angle varies as a function of the range at which 

an object is imaged with farther ranges requiring greater look angles. Typically 

the look angle for ERS-1/2 varies between 18° at the near range to 24° at the far 

range.   

 

 

Figure 2.6 Radar viewing geometry in a plane perpendicular to flight track 
(Rosen et al., 2000). A1 and A2 are the two sensors separated by baseline B. re is 
the radius of the Earth, hp is the elevation of the reference satellite position from 
Earth’ s surface, τc represents the terrain slope in the cross-track direction, ho is 
the elevation of the constant elevation reference surface used for interferogram 
flattening. ρ1 and ρ2 are the ranges to the imaged point from sensor positions A1 
and A2 respectively. δρ represents the range change that occurred between the 
two acquisitions. θ is the satellite look angle. 
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2.2.5 Pulse Repetition Frequency 
 

As discussed in Section 2.2.4.1 and 2.2.4.2, the effective pulse width 

directly influences the achievable slant range resolution whereas the azimuth 

resolution depends only on the length of the antenna (La) used in data 

acquisition. As shown in Section 2.2.4.2, the azimuth resolution is a function of 

the resolution with which the Doppler frequency shift can be determined. For any 

target, the variation of Doppler frequency shift can be represented by a waveform 

having a spread about a central frequency. The central frequency is called the 

Doppler centroid frequency and the spread about the central frequency is 

referred to as the Doppler bandwidth. The Doppler bandwidth can be expressed 

as:  

λ
θ hs

dop
V

B
2

= ,                                                              (2.10) 

Since SAR systems are pulsed in nature, the pulse repetition frequency (PRF) 

should be chosen such that the Doppler bandwidth is sampled adequately in 

order to facilitate its correct reconstruction during data processing. More 

specifically, the PRF should be greater than the Doppler bandwidth being 

sampled (Hanssen, 2001). Substituting Eq. (2.4) in Eq. (2.10), the Doppler 

bandwidth can be expressed as:  

a

s
dop L

V
B

2
= ,                 (2.11)  

The requirement that the PRF be greater than the Doppler bandwidth can 

therefore be mathematically expressed as 
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a

s

L
V

PRF
2

> ,                    (2.12) 

where Vs denotes the satellite velocity relative to the earth and La denotes the 

antenna length. Hence, in order to ensure adequate sampling of the Doppler 

bandwidth, it is necessary for the SAR system to emit a pulse for every distance 

of L/2 traveled by the satellite along its track.   

This condition sets the lower bound for the PRF that can be employed 

during SAR data acquisition. The upper bound is defined by the pulse width that 

ensures that the radar can distinguish between pulse returns originating from the 

near-range and the far-range. The upper bound for the PRF can be expressed as 

12
max

1
tt

PRF
−

= ,                                                                        (2.13) 

where t1 and t2 are the times taken by the radar echoes to travel to the satellite 

from the near-range and the far-range respectively. If θ1 and θ2 represent the 

inclination of the look vector to the near-range and far-range respectively, the 

upper bound for the PRF can be expressed as:  
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2 12

max θθH
cPRF ,                                                (2.14) 

where H denotes the altitude of the satellite during image acquisition. 

 

2.2.6 Effect of Topography on Resolution 

On flat ground, the ground resolution cell dimension (R) can be related to 

the slant range resolution as: 
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θsin
rR ∆

= ,                                                                                  (2.15) 

where ∆r denotes the slant range resolution and θ denotes the SAR look angle. 

However, as the local terrain slope deviates from a flat relief, the dimension of 

the ground resolution cell imaged within a single slant range resolution cell 

changes, as shown in Figure 2.7. An increase in the local terrain slope results in 

an increase in the magnitude of the ground resolution cell imaged. This is known 

as foreshortening. As the local terrain slope approaches the off-nadir angle in 

magnitude, the ground resolution cell approaches infinity and translates into a 

complete loss of ground range resolution.  

A limiting case of foreshortening is known as layover which causes 

scatterers in a ground resolution cell located on terrain sloped greater than the 

off-nadir angle to be imaged in reverse order. A decrease in the local terrain 

slope results in the opposite effect of a decrease in the magnitude of the imaged 

ground resolution cell.  When the negative local terrain slope equals the off-nadir 

angle in magnitude, the ground range resolution becomes equal to the slant 

range resolution. Any further decrease in the local terrain slope translates in an 

inability to image scatterers on such slopes. Such regions that cannot be imaged 

owing to their location on excessively negative terrain slopes are known as radar 

shadow regions (Ferretti et al., 2007).  
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Figure 2.7 Foreshortening, Layover and Shadow effects (Jensen, 2000).
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2.3 Interferometry 
 

As explained before, interferometry can be performed when at least two 

SAR images acquired from slightly varying positions in space are available for 

analysis. The necessity for at least two acquisitions can be illustrated with the 

help of Figure 2.8.  

 

Figure 2.8 (A) Inherent nature of radar to discern objects based only on their 
range from the radar and the resulting insensitivity to terrain variation. (B) 
Sensitivity to height variations is obtained by imaging the terrain with two radars 
separated by a baseline (Hanssen, 2001). 
 

Due to the inherent ranging nature of the imaging radar, a single acquisition 

gives information relating only to the relative range distance between two targets. 

Hence, irrespective of their relative angular separation, any two targets located at 

the same range from the imaging radar are mapped into the same slant range 

resolution cell. The image does not provide any information about the angular 

separation between mapped targets. 

However, if the same two targets are imaged from another radar located 

at a slightly different position in space, it is possible to geometrically relate the 
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elevation difference between the two imaged targets to the spatial separation of 

the points of acquisition of the two images and the slant range distance of each 

of the two targets from the two imaging positions. In other words, acquiring 

imagery from slightly different imaging positions facilitates depth perception 

(Hanssen, 2001).  

The two SAR images may be acquired simultaneously or may be 

separated in time. If the two acquisitions are separated in time, any surface 

deformation that may have occurred during that time period can be derived by 

multiplying the complex phasors of all pixels in one acquisition by the conjugate 

of the complex phasors of all corresponding pixels in the other. This operation 

yields an image known as an interferogram. The complex multiplication on a pixel 

by pixel basis is equivalent to differencing the phases representing each pixel in 

both the acquisitions while multiplying their respective amplitudes (Burgmann et 

al., 2000).  

With reference to the imaging geometry depicted in Figure 2.6, the 

interferometric phase for the imaged point on the ground derived from the two 

acquisitions- A1 (at time 1) and A2 (at time 2), can be expressed as:  

( )21
4 ρρ
λ
πφ −−=             (2.16) 

where  1ρ  and 2ρ  represent the slant range distance from satellite positions A1 

and A2 respectively, to the point imaged on the ground. The interferometric 

phase component, which is proportional to differential path delay, enables 

resolution of image pixels in the third dimension. The procedure of relating 

differential path delay phase to elevation changes is analogous to the 
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phenomenon of parallax that relates the observed angular separation between 

resolution elements in a stereo pair to their relative elevation differences.  

However, it should be noted that the sensitivity of stereo-pairs to elevation 

changes is of the order of several meters as compared to millimeter or centimeter 

level accuracy that is achievable with InSAR.  

For baseline (B) values significantly smaller than the slant ranges from the 

two satellite positions to a target on the ground, the two look vectors can be 

approximated to be parallel to each other (Zebker and Goldstein, 1986) and Eq. 

2.16 can be expressed as: 

)sin(4 αθ
λ
πφ −−= B ,                     (2.17) 

where, )sin( αθ −B  denotes ( )21 ρρ − . Physical quantities denoted by all symbols 

used in Eq. (2.16) and Eq. (2.17) are evident from Figure 2.6. The resolution of 

an interferogram equals that of the two images used in its derivation.  

All pixels in an interferogram representing corresponding ground 

resolution cells can be represented as complex numbers. As mentioned in 

Section 2.2.3, the phase representing any imaged target is directly proportional 

to its slant range distance from the satellite. Two acquisitions being separated in 

time requires that the same area be imaged during a satellite revisit. This kind of 

interferometry is referred to as repeat pass interferometry. It is desired that the 

repeat orbit be as close as possible to that followed during the initial acquisition. 

This is, however, not possible in practice thus giving rise to the same area being 

imaged from two slightly different look angles.   
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SAR images acquired from slightly different radar look angles have pixels 

representing the same ground resolution cells with nearly the same backscatter 

phase but with different path delay phase. During interferogram formation, the 

common backscatter phase corresponding to the same ground resolution cells is 

cancelled, thus yielding a phase term that is related to the differential path delay 

phase. The following sections introduce and discuss important InSAR concepts 

with emphasis on processing steps and parameters.  

2.3.1 Baseline Dependence 
 

The spatial separation between satellites during any two passes for 

acquisition of the same frame of raw data is known as the baseline between the 

two acquisitions. The baseline can be represented by the normal baseline and 

cross-track baseline components or the parallel baseline and perpendicular 

baseline components.  These baseline components are illustrated in Figure 2.9. 

Interferograms generated using two acquisitions separated by perpendicular 

baselines other than zero will have phase contributions due to topography of the 

area imaged by the two acquisitions, in addition to earth curvature and 

deformation phase.  

The topographic phase contribution in an interferogram is induced by the 

difference in slant range distances from the two satellite positions, during image 

acquisition, to the same point on the ground. Greater perpendicular baselines are 

more sensitive to topographic phase than smaller ones. The sensitivity of an 

interferogram to deformation is a function of the wavelength of radiation used for 
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imaging whereas the sensitivity to topography is a function of the perpendicular 

baseline. 

 

Figure 2.9 Interferometric baseline and its components. AE and BE are the look 
vectors from satellites A and B to a point E on the ground. BC represents the 
perpendicular baseline, AC represents the parallel baseline, BD represents the 
normal baseline and AD represents the across-track baseline. 

 

The sensitivity to topography can be inferred from the ambiguity height. 

This quantity defines the topographic elevation change that induces an 

interferometric phase change of one cycle or 2π radians. With reference to the 

geometry shown in Figure 2.6, the ambiguity height can be expressed as: 

⊥

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

B
hhambig 2

sin2 1 θλρ
δφ
δπ ,                                                       (2.18) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δφ
δh  represents the change in topographic height with respect to the 

interferometric phase, 1ρ  is the slant range distance from the satellite in the 

reference image, θ is the look angle and ⊥B  is the perpendicular baseline 
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(Burgmann et al., 2000). With reference to Figure 2.6, the perpendicular baseline 

can be expressed as: 

)cos( αθ −=⊥ BB ,                                                                      (2.19) 

On the other hand, a surface deformation component equal to half the imaging 

wavelength measured along the satellite look vector and occurring between two 

SAR acquisitions induces one whole phase cycle in the interferogram calculated 

from those two acquisitions.  

The process of simulating the topographic phase contribution from 

baseline information and subtraction from the interferogram is known as 

Differential Interferometry or DInSAR. The topography for a frame can be 

obtained from existing Digital Elevation Models (DEM) for the region in the case 

of two-pass interferometry or from multiple-pass interferometry. In order to be 

able to perform two-pass differential interferometry, it is necessary to coregister 

the DEM to the geometry of the master SLC prior to simulating the topographic 

phase contribution from it. Multiple-pass interferometry consists of using more 

than two acquisitions such that at least one pair brackets the period when no 

surface deformation is recorded. An interferogram calculated between such pairs 

contains only topographic phase which after simulating and scaling to the 

baseline defining the pair bracketing the deformation of interest, can be 

subtracted to obtain a differential interferogram (Rosen et al., 2000). 

2.4 InSAR Processing Flow 
 

The flow chart shown in Figure 2.10 illustrates the conventional 

processing steps related to differential interferometry in sequential order. A 
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detailed description of each processing step is provided in this section. 

. 

Figure 2.10 Processing flow for generation of differential interferogram. 
 

A detailed description of each of the steps mentioned in the flowchart above 

follows. 

2.4.1 Offset Estimation and Coregistration 
 

The accuracy of topographic elevations or displacements derived from 

satellite interferometry is highly dependent on this step in the processing flow.  

MASTER SLC SLAVE SLC 

OFFSET ESTIMATION 

COREGISTRATION    
& RESAMPLING 

PRELIMINARY BASELINE 
ESTIMATION 

INTERFEROGRAM 
CALCULATION 

TOPOGRAPHY AND EARTH 
CURVATURE PHASE SUBTRACTION  

PHASE UNWRAPPING 

BASELINE 
IMPROVEMENT 

DIFFERENTIAL INTERFEROGRAM 
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Acquisition of SAR data from two satellite geometries results in a relative shift or 

offset in the positioning of pixels between the two SAR images used for 

interferometry. The shift between images in the range direction is a function of 

the baseline separating the two imaging geometries, whereas, a relative shift in 

the azimuth direction results due to differing relative times of imaging the same 

area during the two data takes (Hanssen, 2001). The relative shift between the 

images results in the same ground resolution cell being assigned different pixel 

locations in the two images.  

Coregistration is the process of aligning the pixels corresponding to the 

same ground resolution cell in two different SAR images. The two SAR images 

used for interferogram calculation must be coregistered in order to ensure that 

phases used for interferometric calculations correspond only to those pixels, in 

the two SAR images, that represent the same ground resolution cell. Among the 

two SLC’s used in interferogram calculation, pixel locations corresponding to one 

SLC are used as a reference for coregistration. The reference SLC is referred to 

as the master, whereas the image(s) being coregistered into the reference 

geometry is referred to as the slave. Coregistration accuracies equivalent to 1/8th 

to 1/10th of a pixel are recommended for interferometry. The coherence (γ ) of an 

interferogram depends on the accuracy of coregistration. Coherence is defined 

as the “normalized complex correlation coefficient of the complex backscatter 

intensities” corresponding to the master and slave SLC’s (Werner et al., 2002). 

Coherence, as shown in Eq. 2.20, is calculated as an average over a specified 
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number of pixels defined by a range and azimuth window and is expressed as a 

number between 0 and 1 with higher numbers indicating better coherence.  

 
*
22

*
11

*
12

ssss

ss
=γ ,                 (2.20)                            

where s1 and s2 represent the backscatter intensities of corresponding pixels in 

the master and slave images respectively. As mentioned in Hanssen (2001), it 

has been shown that a coregistration accuracy of 1/8th of a pixel preserves 96% 

of the coherence in interferograms derived from SAR acquisitions characterized 

by small Doppler centroids (Just and Bamler, 1994). Usually, one of the image 

geometries is chosen as the reference for coregistration.  

Coregistration is usually achieved by estimating coefficients that can be 

used to interpolate every pixel in the slave to the appropriate positions relative to 

the master. This is achieved by dividing the images into small tiles after which the 

coregistration coefficient for each tile is calculated based on the cross-correlation 

of the amplitudes of each tile (Ferretti et al., 2007).  

During cross correlation, amplitude signatures from the image tiles are 

compared for similarity. Threshold values of signal-to-noise ratio representing the 

ratio of the peak to the mean of the calculated cross-correlation function are used 

as measures to accept or reject the offset vectors computed for each tile.  The 

estimated coregistration coefficients are then used to estimate a polynomial so 

that the slave image can be interpolated into the geometry of the master.  

Due to different imaging geometries, similar areas on the ground are 

represented in slightly shifted grids representing the different SAR images, 
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although the grid spacing in both images remains the same. Hence a ground 

resolution cell contributing to a single pixel in the slave may be contributing only 

to a part of a pixel in the master. In order to be able to perform interferometric 

calculations, the complex phase values of the slave image need to be calculated 

for the pixel locations of the master as implied by the coregistration coefficients.  

As mentioned in Hanssen and Bamler (1999), the phase values at the new 

pixel locations can be obtained by reconstructing the continuous phase field from 

the sampled data corresponding to the slave and then resampling the 

reconstructed phase field at the inherent sampling rate of the master.  

Reconstruction of the continuous phase field from sampled data entails 

interpolation. Choice of appropriate interpolation kernels warrants careful 

consideration due to their direct influence on interferogram coherence and 

processing time (Bamler and Hanssen, 1997). The nearest neighbor, piece-wise 

linear, 4-point cubic and 6-point cubic interpolation kernels were evaluated by 

Hanssen and Bamler (1999). Lower phase errors and higher mean total 

coherence were found to be characteristic of the 6-point cubic interpolation 

kernels as compared to other kernels analyzed in their study. 

2.4.2 Interferogram Calculation 

Image coregistration and resampling is followed by interferogram 

calculation. As mentioned in Section 2.3, an interferogram is computed on a 

pixel-by-pixel basis by multiplying the complex phasor of a pixel in the master by 

the complex conjugate of the corresponding pixel in the slave. Corresponding 

pixels are those that represent the complex contribution from the same ground 
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resolution cell. Hence, accurate coregistration is critical in ensuring accurate 

interferogram calculation. Following the notation used in Hanssen (2001), 

interferogram calculation can be expressed as: 

( ) ( ) ( )( )21212211
*
21 expexpexp ψψψψ −=−= jyyjyjyyy ,           (2.21) 

where 1y  and 2y  depict the complex phasors of corresponding pixels in both the 

images used in interferogram calculation, *
2y  depicts the conjugate of the 

complex phasor for the pixel in the slave image, and 1ψ  and 2ψ represent the 

phase of corresponding pixels in the master and slave images. 

2.4.3 Baseline Estimation 
 

In deformation mapping applications, accuracy in simulating the phase 

contribution from topography and the curvature of the earth dictate the accuracy 

in the relative deformation estimated using differential interferometry. When the 

phase contribution due to earth curvature is subtracted from an interferogram, 

the resulting phase image contains phase contributions due only to the 

topography of the imaged area and any deformation bracketed by the two 

images used in interferogram calculation. This operation of subtracting the earth- 

curvature phase contribution is known as interferogram flattening. Accuracy in 

these operations is dictated by the accuracy of baseline estimation.  

As can be inferred from Eq. 2.18 in Section 2.3.1, the accuracy of the 

perpendicular baseline estimate has a direct bearing on the inferred ambiguity 

height and hence the accuracy of topographic maps derived using interferometric 

calculations. During the course of a satellite orbit, the spatial location of the 
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satellite is expressed in the form of state vectors which constrain the satellite 

location in terms of position, velocity and time. The state vectors are determined 

from satellite tracking data, gravity models and estimated atmospheric drag 

effects from dynamic models (Hanssen, 2001). Tracking data are obtained 

through satellite laser ranging (SLR) in which the travel time of a laser emitted 

from a network of ground stations is used to estimate the distance from the 

network stations to the satellite at various points during its orbit.  Due to the 

inability of the laser to penetrate clouds, the availability of SLR tracking data is 

dependent on local weather conditions prevalent during the satellite orbit. In 

addition, the measured range between the satellite and the ground stations need 

to be corrected for path delay effects induced due to local tropospheric and 

atmospheric conditions.  

The accuracy of SLR tracking data is reported to range from 1 cm to 20 

cm. The distribution of SLR tracking system ground stations is so sparse that an 

ERS satellite in orbit cannot be tracked by three satellites simultaneously 

(Scharroo et al., 2000). Since the number of SLR ground stations is limited, the 

state vectors in the intermediate positions need to be interpolated using 

information from the gravity and dynamic models. Hence the accuracy of these 

intermediate state vectors is a function of the accuracy of gravity and dynamic 

models used in their derivation.  

Other ways of tracking the satellite position during its orbit are by 

measuring the Doppler frequency shift between transmitted and received 

microwave signals emitted from the satellite. This principle is used in conjunction 
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with round-trip travel time measurements to track the satellite velocity and 

location by Precise Range and Range-Rate Equipment (PRARE) and Doppler 

Orbitography and Radiopositioning Integrated by Satellite (DORIS) systems. In 

both systems, microwave radiations in the C and X band are emitted where the C 

band frequency is utilized to estimate and compensate for the ionospheric 

influence on measurements. In contrast to the 1 cm – 20 cm positioning accuracy 

range characteristic of SLR tracking systems, positioning accuracies of around 

4.5 cm by PRARE systems and 5 cm by DORIS systems are achievable (ESA, 

2007). ERS-1 orbits were mainly derived from SLR tracking data whereas the 

ERS-2 uses a combination of SLR and PRARE tracking data to constrain the 

satellite’s orbit.  

As explained in Section 2.3.1, the baseline vector can be represented by 

its perpendicular and parallel components or by its cross-track and normal 

components. Several algorithms have been proposed for accurate interferometric 

baseline estimation According to Ren et al. (2003), all baseline estimation 

methods can be broadly classified as belonging to one of three methods, namely: 

1. Orbit method, 

2. Tie point method, and 

3. Frequency method. 

Orbit methods use the precise state vectors to derive interferometric baseline 

estimates. In such cases, the phase contribution due to earth curvature and the 

topography of the region imaged can be estimated accurately. This entails a 

state vector positioning accuracy of about 1 mm whereas the current positioning 
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accuracy for ERS state vectors is of the order a few centimeters (Hanssen, 

2001).  

In cases where satellite orbits of the required precision are unavailable, 

the interferometric baseline is estimated from the unwrapped phase data. The tie 

point methods use unwrapped phase values corresponding to ground control 

points with predetermined geographic position and elevation to solve for the 

baseline. Small et al. (1993) verify the accuracy of baseline estimates derived 

iteratively using a non-linear least squares procedure and ground control point 

phase data. Seymour and Cumming (1996) present a method that iteratively 

solves for the interferometric baseline by using two coregistered tandem SAR 

images and an available DEM of the imaged area coregistered to the master 

SAR image. The advantage of this method is that it does not use unwrapped 

phase data for baseline estimation. Frequency methods derive baseline 

estimates by relating the baseline to the observed fringe frequency in flat areas 

of the unwrapped interferogram. The fringe frequency, expressed in cycles-per-

meter (cycles/m), is the number of cycles of phase present in one meter of an 

interferogram.  

Goyal and Verma (1996) have shown that the cross-track and normal 

baseline components can be estimated from geometrical calculations performed 

on three points each spaced one fringe apart from each other. The derivation is 

made based on the assumption that the distance between two consecutive 

fringes is small hence making it feasible to neglect earth curvature from the 

formulation. Fang et al. (2004) formulate a method of baseline estimation by 
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relating the baseline to the periodicity of interferometric fringes in regions of the 

interferogram characterized by flat terrain. Despite the reduced accuracy of orbit 

information derived from available state vectors, the topographic and earth 

curvature phase contributions estimated from the same can be used to reduce 

the fringe gradient of the complex interferogram hence making phase 

unwrapping easy and less error prone.   

2.4.4 Phase Unwrapping 
 

As explained in Section 2.2.3, a complex interferogram represents 

differential path delay phase for each pixel by phase values wrapped in the range 

(-π, π). Determination of the absolute phase value for these pixels entails the 

addition of an integer number of whole cycles of phase or integer multiples of 2π 

radians to the complex phase of each pixel. The absolute phase representing the 

displacement or range change for each pixel is determined in two steps.  

The first step is performed to find the integer number of whole cycles that 

need to be added in order to achieve the correct relative phase difference of all 

pixels relative to a reference pixel. This procedure is known as phase 

unwrapping. Once the complex phase of all pixels is unwrapped with respect to 

the phase of a reference point in the interferogram, the absolute unwrapped 

phase determination step consists of determining the constant multiple of 2π that 

should be added to the relative phase of all pixels as determined from the phase 

unwrapping step (Rosen at al., 2000).   

The phase unwrapping stage is the most critical step in interferometry and 

is often very difficult. Various algorithms have been proposed to achieve reliable 
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phase unwrapping. Phase unwrapping is an under-constrained inverse problem. 

Its solution, hence, entails some assumptions, the validity of which dictates the 

correctness of the solution obtained. The common assumptions made are: 

1. The wrapped phase gradients equal the unwrapped phase gradients, 

and 

2. The unwrapped phase field is smoothly varying with the absolute 

phase difference between adjacent pixels in the interferogram not 

exceeding half a cycle (Hanssen, 2001). 

These assumptions are valid when the interferograms in question are 

characterized by good coherence and when the relief of the area represented in 

the interferograms varies gradually. Given the two dimensional nature of SAR 

data, the addition of integer multiples of 2π needs to be accomplished in a 

sequential fashion starting from a chosen reference point. This step is usually 

referred to as phase gradient integration. When the assumptions are valid, the 

same unwrapped phase field will result irrespective of the direction chosen for 

phase gradient integration. However, when the assumptions are not valid, 

different solutions can be obtained based on the direction chosen for phase 

gradient integration. This can be explained with the help of Figure 2.11(a) and 

Figure 2.11 (b) that were adopted directly from Madsen and Zebker (1999). 

0.2 0.2 0.2 0.2  0.2 0.2 0.2 0.2 
0.4 0.2 0.2 0.4  0.4 0.2 0.2 0.4 
0.6 0.8 0.8 0.6  0.6 -0.2 -0.2 0.6 
0.8 0.8 0.8 0.8  0.8 -0.2 -0.2 0.8 

(a)                                                    (b) 

Figure 2.11 Effect of residue points on phase unwrapping. 
 



 

 46

If every cell shown in Figure 2.11 (a) represents a pixel in a wrapped 

interferogram, the values denoted in each cell represent the wrapped phase 

value of the corresponding pixel normalized by 2π . Unwrapping these values 

would entail adding an integer number of cycles normalized by 2π , to the 

normalized wrapped phase values represented in each cell in Figure 2.11 (a), 

such that the difference between the unwrapped values corresponding to 

neighboring pixels do not exceed 0.5. If the difference between the wrapped 

values of neighboring pixels in Figure 2.11(a) does not exceed 0.5, no operation 

would be necessary. Since the phase values are laid out in a two-dimensional 

matrix, unwrapping can be accomplished in one of the following two ways: 

1. By unwrapping the first column and then using the unwrapped values 

in each cell of the first column to unwrap each row, or 

2. By unwrapping the first row and then using the unwrapped values in 

each cell of the first row to unwrap each column. 

Using either of the two approaches must necessarily yield the same result. 

Unwrapping the values shown in Figure 2.11 (a) by adopting the first approach 

yields a matrix that is identical to the wrapped phase matrix shown in Figure 2.11 

(a). However, unwrapping the values shown in Figure 2.11 (a) by adopting the 

second approach yields the unwrapped matrix shown in Figure 2.11(b). 

Obviously, the solutions adopted by the two approaches are not the same. The 

different solutions result due to unwrapping errors that propagate from a group of 

four neighboring pixels whose wrapped phase differences add up to a non-zero 

value (Figure 2.12).  
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Figure 2.12 Residue calculation. i and j depict the range and azimuth 
respectively and the circles depict the centers of pixels. The arrows show the 
direction of phase difference summation (Hanssen, 2001). 
 

These pixels are known as residue points (Madsen and Zebker, 1999). Residues 

can be either negative or positive and their detection indicates the presence of 

discontinuities in the phase field. Unwrapping errors hence result from the 

addition of incorrect multiples of 2π. Therefore, unwrapping errors in 

interferograms can be identified by looking for discontinuities in the unwrapped 

phase field which are characterized by phase jumps or cycle skips.  

Hence, inherent fringe gradients, expressed in phase cycles per pixel, 

dictate the difficulty in unwrapping an interferogram correctly. High fringe 

gradients increase the difficulty in phase unwrapping. Fringe gradients in an 

interferogram depend on three main parameters, namely:  

1. Perpendicular baseline, 

2. Terrain slope with respect to look vector, and  
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3. Wavelength used for imagery (Rosen et al., 2000).   

Fringe gradients increase with increase in baselines. Terrains sloping toward the 

sensor induce greater fringe gradients than those sloping away. Fringe gradients 

are inversely proportional to wavelength with short wavelengths yielding high 

fringe gradients. As mentioned in Gens (2003), most of the techniques proposed 

to accomplish phase unwrapping can be broadly classified under two methods, 

namely:  

1. Path following methods, and 

2. Minimum norm methods. 

Path following methods operate by identifying and delineating branch cuts and 

restricting the unwrapping direction to regions bounded by them. Branch cuts are 

lines joining a pair of oppositely polarized residues. Hence regions bounded by 

branch cuts are zones characterized by smoothly varying phase fields which can 

be unwrapped using the traditional assumptions.  

As mentioned in Gens (2003), the branch-cut algorithm (Goldstein, et al., 

1988), Flynn’s  minimum discontinuity algorithm (Flynn, 1997), minimum cost 

flow networks (Constantini, 1998) and minimum spanning tree algorithm (Chen 

and Zebker 2000) are some path following methods proposed to achieve two 

dimensional phase unwrapping. The minimum cost flow algorithm formulates the 

unwrapping problem as a network flow problem (Gens, 2003) and positions 

branch cuts by solving for the optimum flow required in a network of arcs to yield 

a minimum total cost for the network (Werner et al., 2002) so that the 

interferometric phase can be unwrapped.  
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Minimum-norm methods solve the problem mathematically and achieve 

unwrapping by solving for the integer multiples of 2π that mimimize the difference 

between the wrapped and unwrapped phase gradients in the range and azimuth 

directions (Gens, 2003; Feretti et al., 2007). Both weighted and unweighted least 

squares phase unwrapping methods have been proposed to achieve phase 

unwrapping in the minimum norm sense (Ghiglia and Romero, 1994; Fornaro et 

al., 1996a Fornaro et al., 1996b). More details on the topic can be found in 

Ghiglia and Pritt (1998). 

 

                    (a)                                        (b)                                                (c) 
Figure 2.13 (a) Interferogram between March 1996 ERS1 and March 2000 ERS2 
acquisitions over Mejillones peninsula, (b) the interferogram with earth curvature 
removed and (c) the unwrapped differential interferogram. The acquisitions are 
separated by a 20 m baseline. All figures above are in descending satellite look 
geometry. 
 



 

 50

2.4.5 Preprocessing for Unwrapping 
 

Preprocessing involves steps to reduce phase noise and phase 

complexity to aid in phase unwrapping.  Multi-looking and filtering are two 

commonly adopted preprocessing steps.  

Multi-looking is a process by which phase values of a specified number of 

interferogram pixels are averaged in order to reduce noise (Hanssen, 2001). 

Multi-looking results in loss of resolution or low sampling rates which can be 

disadvantageous when applied to interferograms with high fringe gradients. 

However, multi-looking can be effectively applied to datasets with smooth phase 

fields and low fringe gradients. In addition, multi-looking helps reduce processing 

time by reducing data set sizes.  

Filtering on the other hand, aids in reducing phase noise while maintaining 

the data set resolution. Care should be taken while adopting filter parameters in 

order to avoid generation of filtering artifacts in regions of non-uniform phase 

fields or loss of whole phase cycles owing to over filtering. Both these effects 

induce errors during phase unwrapping (Werner et al., 2002).   

2.5 Summary 
 

An introduction to Synthetic Aperture Radar and the technique of 

interferometry were provided in this chapter. The concepts introduced in this 

chapter are fundamental to the point target interferometry technique, which was 

adopted for deformation history analysis of the study area. The fundamentals of 

point target interferometry and its applications are presented in the next chapter.  
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3. INTERFEROMETRIC POINT TARGET ANALYSIS 
 

 

3.1 Introduction 
 

Details pertaining to the use of conventional InSAR techniques to infer 

ground deformation details were provided in Chapter 2. This chapter introduces 

the concept of point target interferometry or interferometric point target analysis 

(IPTA) which was used for analyzing data in this study. All principles introduced 

in the previous chapter apply to point target interferometry, except that the 

interferometric calculations are applied to only those pixels that demonstrate 

stable scattering properties. These pixels are stable in the sense that their phase 

values do not decorrelate over long baselines or long time periods. Such stable 

behavior renders long-baseline, long-time-period interferograms useful for 

deformation inference.  

In contrast, conventional InSAR can be used to derive deformation 

information from only relatively short-baseline, short-time-span interferometric 

pairs. The increased utilization of available data for a site of interest, resulting 

from the increased number of acquisitions that can be used to derive coherent 

interferograms, makes it possible to model the phase contributions to 

interferometric phase and to derive deformation time history estimates for these 

stable scattering pixels. The phase model is constrained with multiple 

interferograms spanning different time intervals and different baselines.   

A detailed description of the approach including the conventional 

processing flow adopted for this study is presented. In addition, a literature 
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review outlining the application of point target interferometry to derive non-

tectonic deformation estimates with an emphasis on civil engineering applications 

is provided. 

3.2 Contributions to Interferometric Phase 

3.2.1 Unwrapped Phase Components 
 

Interferometric phase is composed of differential path delay components 

resulting due to the topography of the imaged area, deformation occurring 

between acquisitions, water vapor inhomogeneities in the troposphere, and 

noise.  Deformation of a given pixel, when expressed as a function of time, is 

composed of both time linear and non-linear components. Time linear 

deformation represents the component of deformation that varies linearly as a 

function of time, whereas non-linear deformation represents the component that 

does not vary linearly with time.  Phase contributions due to errors in Digital 

Elevation Models (DEM) used to derive topographic phase, baseline estimation 

errors and atmospheric path delay can sometimes obscure phase contribution 

due to small deformations. In such cases, resolving interferometric phase into its 

constituent components becomes critical. The IPTA, which is a multi-temporal 

statistical approach, aims at resolving interferometric phase into its components 

in order to derive reliable estimates of deformation phase and associated 

uncertainties. Statistical robustness is achieved by constraining the phase model 

with multiple interferograms computed from a stack of complex images 

bracketing the time period of interest.  The unwrapped interferometric phase can 

be represented by the summation of phase contributions from linear deformation 
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( deflin−φ ), topography ( topoφ ) and residual phase ( resφ ) as shown in Eq. 3.1. As 

shown in Eq. 3.2, the residual phase is composed of phase contributions due to 

atmospheric path delay ( atmφ ), non-linear deformation ( deflinnon −−φ ) and noise 

( noiseφ ).  

restopodeflinunw φφφφ ++= −                                                                             (3.1) 
                       
                      where, 

 
noisedeflinnonatmres φφφφ ++= −−                                                                       (3.2) 

 

3.2.2 Residual Phase Components 
 

Variation of spectral characteristics of the residual phase in spatial and 

temporal domains is used to characterize phase contributions from its constituent 

components. The accuracy of the estimates of atmospheric phase, non-linear 

deformation phase and phase noise is a function of the accuracy of inherent 

assumptions with respect to the spatial and temporal variation of spectral 

characteristics made to constrain their solution (Werner et al., 2003).  

Water vapor in the troposphere increases the travel time of microwave 

frequency electromagnetic radiation. Thus, the phase value assigned to a point 

on the ground (given by difference in the phase values recorded at the beginning 

and end of the two-way transit of microwaves to a point on the ground) that is 

imaged during such tropospheric conditions will be representative of the slant 

range distance between the satellite and the point on the ground in addition to 

atmospheric path delay induced phase difference. The lack of knowledge of 

tropospheric conditions during image acquisition or the inability to account for 
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such induced path delay, can lead to erroneously considering the entire phase 

contribution for an imaged point as resulting due only to the slant range distance 

between the imaged point and the satellite.    

The tropospheric condition prevailing at the time of acquisition of a 

satellite image (SLC), controls whether the image is characterized by 

atmospheric path delay phase or not. An interferogram calculated using two 

SLCs with either one characterized by atmospheric path delay, will have phase 

contributions resulting due to atmospheric path delay. On the other hand, an 

interferogram calculated between two SLCs acquired during exactly similar 

tropospheric conditions will not contain atmospheric path delay phase.  

Figure 3.1 compares two differential interferograms to illustrate the spatial 

expression of atmospheric path delay phase. The interferograms were computed 

from SLCs processed by concatenating raw data that was acquired for two SLC 

frames (4023 and 4041) along ERS Track 368 over Northern Chile. Each frame 

of data acquired by the ERS contains data corresponding to a 100 km by 100 km 

area on the ground. Hence, concatenation of data corresponding to two 

consecutive frames, results in an SLC containing data for a 100 km by 200 km 

area on the ground.  The interferogram shown on the left is characterized by 

phase signature that is characteristic of small deformation while the interferogram 

on the right has a pronounced atmospheric path delay signature. 
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                                              (a)                                                                              (b) 
 
Figure 3.1 (a) Differential interferogram without atmospheric path delay phase and (b) Differential interferogram with 
atmospheric path delay phase. Both interferograms are shown in satellite viewing geometry. One color cycle corresponds 
with 2π radians of phase or 28 mm of displacement in the satellite line-of-sight direction. 
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As stated in Werner et al. (2003), the expected spatial and temporal signatures of 

the residual phase components can be summarized as follows: 

1. The atmospheric path delay phase can be spatially correlated while being 

uncorrelated or random in the temporal domain. 

2. The non-linear component of deformation can vary from being spatially 

and temporally correlated to being uncorrelated in both domains. 

3. Baseline errors correlate spatially but can be uncorrelated in time.  

4. Phase noise is random in both spatial and temporal domains.  

Among the components that constitute residual phase, non-linear deformation is 

the only parameter that is desired in deformation mapping. The spatial and 

temporal characteristics of the different phase components constituting the 

residual phase are used to estimate and filter the undesirable phase components 

so that an accurate estimate of non-linear deformation can be obtained.  

3.3 Point Targets for Statistical Analysis 

3.3.1 Point Target Attributes 
 

 Temporal decorrelation and geometric decorrelation result in loss of 

phase data due to the loss of coherence and limits the use of SAR acquisitions in 

constraining reliable phase models. Temporal decorrelation results from varying 

scattering properties of radar pulse reflectors on the ground and is particularly 

evident in interferograms derived from SLCs acquired on dates separated by 

long time periods. Geometric decorrelation is characterized by loss of coherence 

in interferograms derived from long-baseline SAR acquisitions.  
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The permanent scatterer (PS) technique (Ferretti et al., 2000, 2001) 

developed at the Politecnico di Milano (POLIMI), Italy is a multi-temporal, multi-

baseline statistical approach that limits analysis of phase history to those SAR 

image pixels known to possess stable scattering behavior. Such permanent 

scatterer pixels represent ground resolution cells that are composed of elemental 

reflectors that dominate the backscatter of the resolution element in which they 

are located. Such reflecting abilities induce stable behavior, in the sense that the 

phase values of permanent scattering pixels do not decorrelate over long spatial 

and temporal baseline acquisitions (Ferretti et al., 2001). Such stable behavior 

enables the complete use of data stacks available for a particular site of interest 

since interferometric processing need not be restricted to only short spatial and 

temporal baseline pairs. 

Permanent scatterers are also referred to as coherent scatterers 

(Schnieder et al., 2006), coherent pixels (Mallorqui et al., 2006), and point targets 

(Werner et al., 2003). Since all data processing for the work presented in this 

document was accomplished using the Interferometric Point Target Analysis 

(IPTA) package developed by Gamma Remote Sensing, future references to the 

above described stable scatterers will be made using the term point targets. 

Details on criterion used in point target identification can be found in the Section 

3.3.2.  

From the above explanation, it is evident that phase history of point 

targets can be exploited over only those time periods that define stable behavior. 

Accurate identification of such point targets is critical in ensuring complete use of 
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phase data and deriving a robust phase model. Corner reflectors possessing 

dihedral and trihedral shapes, high radar cross section, and oriented in the look 

direction of the satellite are good examples of reflectors that exhibit stable 

behavior.  

Radar cross section (RCS) of a target is defined as “the area intercepting 

that amount of power which, when scattered equally in all directions, produces an 

echo at the radar equal to that from the target” (Skolink, 1962). In other words, 

the radar cross section is proportional to the ratio of the power reflected by a 

radar target towards the radar to the power density incident on the target. Hence, 

larger targets tend to have larger values of RCS. Metallic edges on building roof-

tops and guard-rails along highways and bridges are some examples of man-

made stable reflectors.  

The density of SAR acquisitions in the temporal domain dictates the 

accuracy in identification of point targets. A dense stack of SLCs assures good 

sampling of phase histories of candidate points, based on which appropriate 

quality control procedures can be adopted to monitor the deviation of point 

phases with respect to a general fit. All points with characteristic phase values 

within the acceptable deviation from a general fit are considered point targets for 

statistical analysis. Ferretti et al. (2000) report that urban areas are characterized 

by a minimum persistent scattered density of at least 100 per km2 with a phase 

variance of less than 0.25 radians with respect to a best fitting phase model.  
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3.3.2 Criteria for Point Target Identification 
 

The IPTA reference manual lists the following primary criteria that should 

be met by the complex data stack selected for point target identification and 

analysis: 

1. Accurate focusing, 

2.  Accurate co-registration, and 

3. Accurate radiometric calibration. 

The process of forming a SAR image or an SLC by processing pulse returns as 

received by the SAR is known as “SAR focusing” or “synthetic aperture 

processing”(Hanssen, 2001). Radiometric calibration can be defined as “the 

process of characterizing the performance of the end-to-end SAR system, in 

terms of its ability to measure the amplitude and phase of the backscattered 

signal” (Curlander and McDonough, 1991). 

In the IPTA package, temporal variability and spectral diversity of the 

radar backscatter are two criteria used to identify point targets in a data stack 

containing acquisitions satisfying the above mentioned primary criteria.  

3.3.2.1 Temporal Variability 
 

Temporal variability can be defined as the ratio of the mean to the 

standard deviation (MSR) of backscatter from a pixel. The IPTA reference 

manual recommends using MSR values of about 1.5 in order to identify point 

targets. The MSR as defined in the IPTA manual is the reciprocal of the 

parameter referred to as amplitude dispersion or dispersion index in Ferretti et al. 

(2000). In other words, the amplitude dispersion or dispersion index is the ratio of 
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the standard deviation to the mean of backscatter received from a pixel. As 

explained in Ferretti et al. (2000), the rationale behind using the amplitude 

dispersion for persistent scatterer identification is that the parameter serves as a 

good approximation of phase dispersion for scatterers characterized by a high 

signal-to-noise ratio (SNR). According to the IPTA reference manual, identifying 

point targets from MSR values is reliable for data stacks containing more than 

25-30 acquisitions due to the better estimate of MSR that can be inferred from 

more samples.   

 

 Figure 3.2 Correlation between phase standard deviation and dispersion index 
(Ferretti et al., 2000). 
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      Figure 3.3 Dispersion index- phase dispersion relation (Ferretti et al., 2001). 
 

A correlation between phase standard deviation and dispersion index is 

shown in  Figure 3.2 (Ferretti et al., 2000). Numerical simulation results shown in 

Figure 3.3 show that dispersion index values lower than 0.25 approximate the 

phase standard deviation better than higher values (Ferretti et al., 2001).  As per 

the IPTA reference manual, identification of pixels located in radar shadow 

regions as potential point targets can be avoided by restricting point target 

selection to only those pixels characterized with a backscatter greater than the 

spatial average.  

 

 

D
is

pe
rs

io
n 

In
de

x 



 

 62

3.3.2.2 Spectral Diversity 
 

For data stacks containing less than 25 acquisitions, the IPTA reference 

manual recommends the use of the spectral diversity criterion for point target 

identification. As mentioned in Chapter 2, an object on the ground is imaged 

approximately 1000 times during image acquisition by an ERS platform. The 

forward motion of the satellite enables the observation of the object from different 

perspectives. The amount of incident electromagnetic radiation reflected back to 

the satellite is recorded while observing the object from each of these different 

perspectives. Point targets identified using the spectral diversity criteria 

correspond to those pixels exhibiting a very low variation in backscatter 

intensities when imaged from different vantage points in the trajectory followed 

by the satellite during image acquisition. In contrast to the temporal variability 

approach, which is applied to the entire data stack, the spectral diversity 

approach can be applied to a single acquisition.  

In this method, point targets are identified as those pixels that maintain a 

constant intensity of backscatter irrespective of the fractions of range and 

azimuth bandwidth used to process the selected SLC. Processing an SLC with 

fractions of the range and azimuth bandwidths translates into a reduced 

resolution of the resulting SLC. Hence, point targets detected using the spectral 

diversity criteria are those that correspond to high backscatter irrespective of the 

resolution of the processed SLC.  

A fraction of the azimuth bandwidth can be realized by utilizing only a 

fraction of the 1000 returns from scatterers in a ground resolution cell during for 
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SLC formation. While utilizing all the 1000 returns in processing raw data into an 

SLC results in high azimuth resolution, using only one-fifth of the total number of 

returns results in a degraded resolution. Hence five SLCs of the same area can 

be made by utilizing one-fifth of the number of returns available for each scatterer 

located in the imaged area. In other words, this operation corresponds to taking 

five spectral looks in the azimuth direction with the resolution of the SLC formed 

using each spectral look equaling that which can be realized by one-fifth of the 

azimuth bandwidth. 

In order to achieve robustness in the identification of point targets, the 

spectral diversity criterion can also be applied to all scenes in a given data stack 

(say all 25 scenes covering the same study area) and the degree of correlation 

between the spectral diversity estimates derived for a particular pixel in all SLCs 

in a data stack can be used for point target identification. 

Candidate points identified using the two criteria are combined into one 

single point list that is subjected to quality control for point target identification. 

Details on the quality control procedure used in this study will be provided in the 

Chapter 4, in which the IPTA processing flow adopted for this study will be 

discussed in detail. On applying the persistent scatterer approach adopted for 

ERS -1/2 data to RADARSAT-1 and JERS-1 SAR data, Colesanti et al. (2003b), 

concluded that permanent scatterer distribution depends on the operating 

frequency of the SAR system, the imaging geometry of the platform, and the 

polarization of the electromagnetic radiation used during imaging. 
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In a study performed by Ferretti et al. (2004) and aimed at evaluating the 

effect of satellite repeat cycle on the density of point targets detected, higher 

persistent scatterer densities were inferred from an ERS dataset containing 26 

acquisitions over Rome and defined by a 3-day repeat cycle when compared to 

the density inferred from a similar ERS dataset consisting of 26 scenes but 

defined by a 35-day repeat cycle. In addition, Ferretti et al. (2004) define semi-

permanent scatterers (SPS) and temporary permanent scatterers (TPS) and list 

approaches that can be adopted in their identification. SPS are defined as those 

that exhibit persistent-scatterer-like behavior over temporal baselines less than or 

greater than a particular threshold value whereas TPS are defined as those that 

exhibit persistent-scatterer-like behavior over temporal baselines bracketed by 

specific lower and upper bounds. Ten percent of the total permanent scatterers in 

ERS acquisitions over urban settings are reported to be SPS while the ratio of 

TPS is reported to be 1% over similar settings. 

3.4 Differential Interferogram Calculation 
 

The conventional processing flow involved in point target analysis using 

the IPTA module of the GAMMA Remote Sensing software is shown in Figure 

3.4. Successful identification of point targets using methods outlined in Section 

3.3.2 is followed by combining complex values at the point target locations for all 

SLCs in the data stack to generate complex interferograms. It is important to note 

that interferograms can be computed using a single SLC as the master or by 

considering all possible interferometric combinations. The basis for choice 

between the two possibilities depends on the degree of robustness that can be 
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associated with the derived phase model.  Generally, a single master is adopted 

when large SLC data stacks ( > 40 SLCs) are available for analysis. In such 

cases, a data stack with (n) complex acquisitions yields (n-1) differential 

interferograms. On the other hand, when dealing with small data stacks 

(approximately 10 to 15 SLCs), improved statistical robustness can be achieved 

by considering all possible interferometric combinations. In such cases, a data 

stack with (n) complex acquisitions yields ( )
2

1−nn  differential interferograms. 

Every interferogram in the stack is characterized by an interferometric 

baseline. As can be recalled from Chapter 2, the baseline is the distance 

between the satellites when the two acquisitions used to calculate an 

interferogram were acquired. Therefore, a stack containing 40 interferograms, for 

example, can be associated with 40 different baselines. As mentioned in Chapter 

2, the phase contribution in an interferogram that results due to the topography in 

the area for which the interferogram is calculated is a function of the baseline 

defining the two SLCs used to calculate the interferogram. Hence, the baseline 

can be perceived as the scaling factor that controls the phase contribution 

resulting from topography in an interferogram. As mentioned in Chapter 2, an 

important step in deformation studies involves the simulation of the topographic 

phase contribution using estimates of the interferometric baseline.  Hence, for 

each interferogram in the stack, the topographic phase corresponding to the 

baselines characterizing the SLC-pair used to calculate the interferogram is 

simulated, from initial baseline estimates. 
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Figure 3.4 IPTA processing flow  

The initial baseline estimates are derived based on satellite orbit 

information. The number of topographic phase estimates will correspond with the 

number of interferograms calculated.  The topographic phase estimates are then 

subtracted from the corresponding interferograms to obtain a stack of differential 

interferograms.  
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Any residual topographic phase contribution that may be present in the 

differential interferograms due to inaccurate baseline estimates used for 

topographic phase simulation are compensated for at a later stage of the 

analysis when a least-squares improvement of the baseline is performed using 

the unwrapped interferometric phase ( Step 8 in Figure 3.4).  

3.4.1 Patch Unwrapping 
 

As can be seen from the flowchart in Figure 3.4, correct unwrapping of the 

interferometric phase must be achieved before baseline improvement can be 

performed and is hence a very critical step. As mentioned in Section 3.4, the 

interferograms to be unwrapped are formed by utilizing complex values at the 

point target locations for interferogram calculations. The IPTA package 

accomplishes unwrapping of such point-wise interferograms by adopting a patch 

unwrapping technique and spatial smoothness of the unwrapped surface is 

accomplished by means of a region growing algorithm. The patch unwrapping 

step forms an integral part of the regression step where the regression solves for 

the integer number of whole cycles of phase that need to be added to the 

wrapped phase of a point target in all interferograms comprising the stack of 

interferograms available for analysis while simultaneously solving for the baseline 

and time dependence of the phase.  

The patch unwrapping step in the IPTA command flow is critical in 

ensuring robustness of the two-dimensional regression analysis that follows. The 

patch unwrapping step in IPTA is sought to negate spatial sampling issues that 

arise from the irregular distribution of point targets in a given study area. This 
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irregular spatial distribution of point targets makes the conventional phase 

unwrapping techniques based on assumptions of adequate spatial sampling of 

the inherent unwrapped phase surface susceptible to unwrapping errors in the 

form of skipped cycles. Regression analyses performed with such erroneous 

unwrapped phase values can lead to incorrect phase dependence inferences. 

The patch unwrapping approach used in IPTA relies on the available 

temporal phase history of a particular point target to achieve phase unwrapping 

in the temporal domain or, in other words, through the data stack adopted for 

IPTA analysis. The multi_def_pt command within the IPTA module 

simultaneously solves for the unwrapping problem and the baseline and time 

dependence of the resulting unwrapped phase of a point target with respect to a 

user specified reference point.  

More specifically, the command divides the study area into several user-

specified patch sizes. Point targets within each patch are analyzed for feasibility 

to serve as a local patch reference. Once a reference point is chosen within each 

patch, the regression analysis is performed for all point targets within each patch 

with respect to the local reference point for that patch. The unwrapped phase, 

height corrections and linear deformation rates inferred for all point targets within 

a patch with respect to the local patch reference are then referenced to the global 

user specified reference point.  

As mentioned in the IPTA reference manual, the deviation of the point 

target phase values from the best fit 2-D linear regression solution increases with 

increasing distance of the point targets from the chosen global reference point. 
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This deviation is attributed to baseline errors and atmospheric path delay phase, 

both of which vary as a function of distance between two points. Therefore, the 

reliability of the regression is lower for points located farther from the reference 

point than for points located closer to the reference point. The patch-wise 

approach to the accomplishment of phase unwrapping ensures the reliability of 

the solution by using local patch references in order to  maintain short distances 

between the local reference and other points within the patch.  

Unreliable solution of the 2-D regression for some interferograms in the 

stack results in erroneous unwrapping which translates into “patchy” looking 

unwrapped surfaces like those shown in Figure 3.5. It is very critical to ensure 

the proper unwrapping of all interferograms included in the IPTA analysis in order 

to ensure correctness of the final deformation rates obtained from IPTA.  

3.5 Unwrapped Phase Analysis 
 

After accomplishment of unwrapping all differential interferograms in the 

differential interferogram stack without patch errors, the topographic phase 

contribution in each interferogram that was calculated using the initial baseline 

estimates corresponding to each interferogram, is added back to the now 

unwrapped differential interferogram stack to obtain an unwrapped interferogram 

stack. Each interferogram in this unwrapped interferogram stack, now contains 

phase contributions from all components outlined in Eq. 3.1 and Eq. 3.2.
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                                      (a)                                                                                               (b)  
Figure 3.5 Patch unwrapping errors in two unwrapped differential interferograms for a section of Los Angeles. The square 
patches outline the size of the patches into which the area represented in the interferograms were divided into for patch 
unwrapping. Each patch measures 100 pixels x 100 pixels. In the two examples shown, the unwrapped phases for the 
some patches did not fit well with the unwrapped phases for other patches in the interferogram. These erroneous patches 
are clearly visible in (a) and (b).    

70 
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In other words, this unwrapped interferogram stack represents an 

unwrapped version of the complex interferogram calculated in Step 2 of the 

flowchart shown in Figure 3.4. This unwrapped interferogram stack representing 

the unwrapped version of the complex interferogram calculated in Step 2, is then 

used for baseline improvement. The least-squares baseline improvement 

approach mentioned in Chapter 2 is used to accomplish baseline improvement. 

After least-squares baseline improvement, a precise baseline estimate is 

available for each interferogram in the unwrapped interferogram stack. These 

improved baseline estimates are then used to re-estimate the topographic phase 

contribution in each interferogram. The improved topographic phase contribution 

estimates corresponding to each interferogram that is derived from the improved 

baseline estimates are then subtracted from the corresponding unwrapped 

interferograms in the unwrapped interferogram stack to derive an unwrapped 

differential interferogram stack.  

3.5.1 Two-Dimensional Regression  
 

Since the interferometric phases are now unwrapped, the remainder of the 

IPTA processing flow focuses on performing statistical analysis of the unwrapped 

phase associated with all point targets. The statistical analysis accomplishes 

iterative improvement of the estimates of sources of interferometric phase 

contribution until all phase in the unwrapped differential interferograms is 

attributed to its components, namely, linear deformation, non-linear deformation, 

DEM height corrections, atmospheric path delay phase, or phase noise. Each 
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interferogram in the unwrapped differential interferogram stack that is used for 

regression analysis is characterized by  

1. a baseline, and 

2.   a time period.  

The baseline, as mentioned before, is the distance between the satellites when 

the two acquisitions used to calculate an interferogram were acquired. As 

mentioned in Chapter 2, the interferometric baseline can be defined by its 

perpendicular and parallel components or by its across-track and parallel 

components. The time period is defined by the time separating the acquisition 

times of the two SLCs used to calculate the interferogram.  In the IPTA 

regression analysis, the unwrapped phase is analyzed for dependence on two 

parameters, namely, perpendicular baseline and time (Figure 3.6). The statistical 

approach is hence two-dimensional in nature. It should be noted that since point 

targets are detected by using information from all SLCs available to perform 

IPTA, the point target locations will be the same for all SLCs and all 

interferograms calculated from the SLCs. It is important to note that although the 

two dimensional regression is performed on the unwrapped phase data, the two 

dimensional regression plots generated by GAMMA show the result of the 

regression in terms of phase data that has been re-wrapped after being 

unwrapped. This is reason for the phase axis in Figure 3.6 showing values 

ranging between -π and +π.  

As mentioned in Section 3.4.1, temporal unwrapping of the complex 

differential interferogram stack is accomplished for point target locations in all 
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interferograms with respect to a user-defined point target reference. As 

mentioned in Section 3.4.1, point target analysis is performed with respect to a 

reference point in order to ensure the reliability of the solution as derived from 

two-dimensional regression. Robustness of the regression is a function of 

distance between a point target and the reference point target with smaller 

distances resulting in greater robustness.  

 

Figure 3.6 Baseline and temporal dependence of differential interferogram phase  
(Gamma Remote Sensing, 2003).  
 

Each data point in the plots in Figure 3.6 represents the rewrapped 

differential interferogram phase value at a specific point target location (at 

different times) with respect to the reference point target location. The number of 
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data points in the plots, shown by cross marks in Figure 3.6, reflects the number 

of interferometric combinations used to constrain the phase model. In other 

words, the number of cross marks defines the number of interferograms in the 

differential interferogram stack used for statistical analysis. More specifically, in a 

stack of 40 unwrapped differential interferograms, for example, every point target 

can be associated with 40 values of unwrapped phase which were calculated 

with respect to the user-defined reference point.  Since the phases are 

unwrapped with respect to the reference-point, it follows that the height 

corrections and linear deformation rate estimates inferred from the two-

dimensional regression, shown by Steps 9 through 11 of the IPTA processing 

flowchart (Figure 3.4), are referenced to the user-defined reference point.   

For example, if there are 60,000 point targets in a study site, the choice of 

a reference point among the 60,000 available point target locations, will mean 

that in steps 9 through 11, the unwrapped phase of all other 59,999 point targets 

will be analyzed with respect to the user-defined reference point, to infer baseline 

and time dependence. This is depicted with the help of an illustration in Figure 

3.7. The pixel sizes are exaggerated to enhance visualization. Figure 3.6 shows 

the two-dimensional regression for one such point target when analyzed with 

respect to a user-defined reference point. The baseline dependence of the 

unwrapped differential interferometric phase for a given point target with respect 

to a reference point, as can be inferred from the Phase vs. Baseline plot shown 

in Figure 3.6(a), translates into a height correction. This height correction is 
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applied to the given point target assuming that the DEM-derived height of the 

reference point target is correct. 

 

Figure 3.7 Illustration of point target pairs for which regression is conducted. 
Squares denote individual pixels. The numbers at the top right of each square 
represent pixel numbers. Pixels with circles in them depict point targets. Pixel 
number 15 with a solid circle depicts the reference point target. The arrows 
illustrate that regression is conducted for all point targets relative to the reference 
point target.  

 

Time dependence of the unwrapped differential interferometric phase for a 

given point target with respect to a reference point, as can be inferred from the 

Phase vs. Time plot shown in Figure 3.6(b), translates into the linear deformation 

rate for a given point target with respect to the reference point. 

3.5.2 Phase Model Improvement 
 

As can be seen from Figure 3.6, the baseline and time dependence of 

unwrapped phase is modeled by linear regression. The difference between the 

original unwrapped phase values and the phase values modeled by the two 
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trends shown in Figure 3.6, defines the deviation of the unwrapped phase values 

from the two linear trends. In order to ensure that all baseline and time 

dependence of the unwrapped phase is modeled, any such deviation of phase 

values from the linear regression is subjected to additional iterations of Steps 9 

through 11 shown in Figure 3.4. Any height corrections and linear deformation 

rates derived from these successive iterations are added to the original estimates 

derived from the first iteration of Steps 9 through 11. 

As can be seen from the IPTA processing flowchart (Figure 3.4), the 

iterative loop formed by Steps 9 through 11 terminates when the baseline and 

time dependence plots for all point targets, with respect to the user-defined 

reference point, are characterized by a linear regression trend having zero slope. 

The zero slope indicates that all baseline and time dependence inherent in the 

unwrapped phase values has been modeled. This iterative process defines the 

phase model improvement stage wherein estimates of DEM height corrections 

and linear deformation rates are continually appended until estimated 

incremental corrections become negligible, as can be perceived from the slope of 

the baseline and time dependence plots. 

3.5.3 Residual Phase Decomposition 
 

Any deviation of the unwrapped phase values from the zero slope linear 

regression trends obtained at the end of the phase model improvement step is 

termed residual phase. The components constituting the residual phase are 

outlined in Eq. 3.2. Spatial and temporal filtering techniques are used to 

decompose residual phase into atmospheric phase, non-linear deformation 
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phase and phase noise. Residual phase decomposition is comprised of the 

following steps: 

1. Spatial filtering of the residual phase to reduce phase noise.  

2. Temporal filtering of the spatially filtered residual phase to identify 

phase contributions correlating with time periods associated with the 

temporal window chosen for filtering. Phase values identified during 

the temporal filtering stage are associated with non-linear deformation. 

3. The non-linear deformation phase is subtracted from the spatially 

filtered residual phase obtained in Step 1 above.   

4. This is followed by appropriate spatial filtering to reduce any remaining 

noise to obtain phase contribution induced by atmospheric path delay.  

The non-linear deformation estimate for each point target is added to the 

corresponding linear deformation estimates to obtain the final deformation history 

for each point target with respect to the user-defined reference point.  Figure 3.8 

illustrates the results obtained from IPTA processing as applied to a differential 

interferogram stack calculated by SLCs acquired by the ERS platform on Track 

368 over Northern Chile. Figure 3.8(a) shows one unwrapped differential 

interferogram. Figure 3.8(b) shows the linear deformation component of Figure 

3.8(a) as estimated from IPTA. Figure 3.8(c) shows the height corrections that 

were inferred for all points in the interferogram at the end of the IPTA analysis. 

Figure 3.8(d) shows a map of the residual phase component present in the 

unwrapped differential interferogram shown in Figure 3.8(a). 
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(a) Unwrapped Differential Interferogram 

                   

(b) Linear Deformation           (c) Height Correction         (d) Residual Phase 

Figure 3.8 Unwrapped differential interferogram phase resolved into its 
components using IPTA. All images are in satellite viewing geometry. One color 
cycle in (a) corresponds to 2π radians of phase. 
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Recall that the residual phase is composed of non-linear deformation, 

atmospheric phase and phase noise whose maps have not been shown in Figure 

3.8. 

As can be inferred from the processing flow described above, the final 

deformation rates are obtained by the summation of deformation trends derived 

by means of linear regression of updated differential interferogram phases in 

each of the iterations, while atmospheric phase and non-linear deformation 

regimes are derived by making use of their spatial and temporal spectral 

signatures.  

Other advanced methods that use non-linear models to derive deformation 

estimates is provided in Ferretti et al. (2000) with illustrations relating to non-

linear temporal deformation signature resulting from ground water pumping in 

Pomona, California.   

3.6 Accuracy of Method 
 

Sub-millimeter accuracy of deformation inferred from InSAR time series 

was verified by Ferretti et al. (2007) by means of a “blind experiment” in which 

line-of-sight (LOS) motion of one dihedral reflector which was moved with respect 

to another which was kept motionless, was derived using interferometric methods 

and compared to ground truth data. The two pairs of man-made dihedral 

reflectors were placed 50 m apart and designed to dominate the backscatter of 

the resolution element they were placed in. In addition, the two pairs of reflectors 

were oriented such that they could be imaged by both ascending and descending 

Radarsat-1 and Envisat orbits with the purpose of being able to derive the 
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components of LOS motion projected in all three dimensions for comparison with 

ground truth. Standard deviations of error of 0.58 mm and 0.75 mm were 

reported for the East-West and vertical components.  

Colesanti et al. (2001) compare the persistent scatterer technique to 

Global Positioning System (GPS) and optical leveling techniques of measuring 

displacements. Very good agreement of line of sight deformation estimates 

inferred from persistent scatterers are reported for targets identified in the vicinity 

of optical leveling benchmarks that are reported to have been used during 

surveying operations performed in South-West Ancona, Italy. The region is 

characterized by gradual landslide induced ground deformation. Also, similarity in 

deformation rates inferred from persistent scatterer and GPS techniques is 

reported with reference to deformation recorded in the Los Angeles basin using 

the Southern California Integrated GPS Network (SCIGN).  In their study, 

Colesanti et al.(2001), projected the deformation estimates inferred from optical 

leveling and GPS onto the satellite line of sight (LOS) to facilitate comparison.  

In their effort to investigate the effect of the 30 MHz operating frequency 

shift between ERS and Envisat SAR’s, on the feasibility of extending an ERS-1/2 

persistent scatterer time series by means of cross platform interferograms 

between ERS-2 and Envisat acquisitions, Colesanti et al. (2003c) conclude that 

persistent scatterers in ERS acquisitions having coherence values above 0.95 

exhibit persistent scatter like behavior in Envisat acquisitions despite the 

discrepancy in the carrier frequencies of the two platforms. Moreover, it has been 

shown that the phase shift resulting in ERS-Envisat interferograms, that varies as 
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a function of slant range location of the targets, can be used to obtain high 

precision location of the scatterers.  

Perissin et al. (2004) show that 60-70% of the points identified as point 

scatterers using ERS acquisitions are detected as persistent scatterers in Envisat 

acquisitions and can thus be used to extend the temporal extent of the time 

series by means of computing ERS-Envisat interferograms for the points 

identified as persistent scatterer by both platforms.   

3.7 Applications to Non-Tectonic Problems 
 

Due to the achievable precision associated with point target time series 

approaches, the method has found use in inferring both spatial and temporal 

deformation signatures resulting from various tectonic and non-tectonic 

processes. A brief overview related to the monitoring of ground deformation due 

to various non-tectonic processes using point target or persistent scatterer time 

series as reported in the literature is presented. Persistent scatterers are referred 

to by different names by different authors. In the literature review presented in 

the following section, these stable scatterers are referred to by the naming 

convention chosen by the respective authors. 

3.7.1 Landslide Monitoring 
 

Farina et al. (2006) report the use of the “permanent scatterer” technique 

to facilitate landslide inventory mapping and monitoring slopes known to exhibit 

movements related to instability in the Arno river basin in Italy.  Colesanti and 

Wasowski (2006) present a case study where the permanent scatterers 
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technique was used to discern slope instability related movements in the 

Liechtenstein Alps. The authors state that the strengths of the technique lie in its 

ability to aid in:  

1. distinguishing stable and unstable regions on a large scale, and 

2. hazard mapping. 

Bovenga et al. (2006) and Wasowki et al. (2006) present an optimized approach 

aimed at identifying “persistent scatterers” in Caramanico where standard 

persistent scatter methods yielded low persistent scatterer densities. The 

optimized approach is termed Stable Point Interferometry over Un-Urbanized 

Areas (SPINUA). The authors verify the deformation estimates derived from the 

detected stable scatterers by verifying the conformity of their location with 

previously identified regions of landslide activity.  

3.7.2 Mining Related Subsidence 
 

Kircher et al. (2004) present the use of the IPTA analysis in inferring 

ground deformation in the Rhine river embayment in Germany resulting from 

large-scale groundwater drawdown during mining. The authors confirm the 

validity of the deformation estimates derived at point target locations using IPTA 

by comparing them with leveling measurements in the area. 

Colesanti et al. (2005) have applied the persistent scatterer technique to 

assess ground deformation occurring in a 300 m x 300 m area in Roncourt 

located in the iron mining basin of Lorraine, France.  

Walter et al. (2005) present the results of an extensive analysis used to 

verify permanent scatterer inferred subsidence due to coal mining at the Prosper-
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Haniel mine in the Ruhr region, Germany with ground truth. The authors report 

the use of 78 ERS-1/2 scenes to constrain their interferometric analysis. 

Jung et al. (2007) applied the persistent scatterer technique to infer 

subsidence rates at an abandoned coal mine in the Gaeun coal mining region in 

Korea. Twenty-five JERS-1 images acquired between 1992 and 1998 over the 

region were analyzed for deformation. The authors report the inference of a 

maximum subsidence of 11.2 cm over the time period of analysis. It is reported 

that the mean deformation rates derived from the interferometric analysis is 

consistent with the deformation rates associated with the extent of ground 

cracking levels measured at the site.  

3.7.3 Other Studies 
 

Meisina et al. (2006) use the permanent scatterer approach for 

deformation monitoring in the complex geological and structural setting of Oltrepo 

Pavase in Northern Italy which is also characterized by clay-rich sediment. The 

study area is reported to be characterized by both shallow and deep landslides 

and movements related to shrinkage and swelling of clayey soils. The study was 

carried out using SAR imagery acquired between 1992 and 2001 and detected 

deformation rates are reported to vary between + 5 mm/yr to -16 mm/yr where 

“+” indicates uplift and “-” indicates subsidence. The use of the permanent scatter 

technique is reported to have enabled the detection of some previously unknown 

regions characterized by slope instability. 
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Yue et al. (2005) report the use of the permanent scatterer technique to 

derive deformation rates and an improved DEM of Las Vegas using ERS-1/2 

SAR data stacks. 

Declercq et al. (2006) use a data stack containing seventy-four ERS-1/2 

SAR scenes acquired between 1992 and 2003 to identify 173,000 permanent 

scatterers and investigate ground water pumping related subsidence in a 900 

km2 area located in the Ottignies-Wavre area in Brussels, Belgium.  The detected 

regions of subsidence are reported to correspond to water-catchment regions 

and aquifers subjected to ground water withdrawal. 

Allievi et al. (2003) report the use of permanent scatterers in monitoring 

slow mass movements in the Lombardy alpine region of Italy between 1993 and 

2000. The authors report identification of more than 380,000 permanent scatters 

for use in the analysis despite the reasonably un-urbanized nature of the study 

area. The data used in identifying the permanent scatters is reported to consist of 

two stacks, one containing 51 scenes in the ERS descending imaging mode and 

the other containing 29 scenes in the ERS ascending mode of imaging. 

Riedmann and Haynes (2005) present the use of millimeter precision 

achievable from persistent scatterer interferometry to supplement traditional 

surveying techniques for ground stability detection. The usefulness of the 

technique to aid in the effective selection of locations suitable for pipeline 

network installation is demonstrated. 

 



 85

3.8 Summary 
 

This chapter presented an overview of the point target time series analysis 

technique, recent developments in the field and its applications in monitoring 

non-tectonic spatial and temporal deformation signatures. The specifics of how 

this method was used to accomplish the objectives of this study are described in 

detail in the next chapter.  
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4. METHODS 
 

 

4.1 Introduction 
 

This chapter introduces the study area and provides details pertaining to 

the point target analysis performed to achieve the objectives of this study. As can 

be recalled from Chapter 1, this study was designed to fulfill the following 

objectives: 

1. Evaluate the feasibility of using IPTA to detect small spatial-scale 

deformation features by computing the deformation time histories 

resulting from the construction of the Red Line in Los Angeles,   

2. Investigate the influence of dataset characteristics on the 

application of the conventional IPTA processing flow, and 

3. Quantify the dependence of the IPTA-derived deformation time 

history on the number of satellite acquisitions used to constrain the 

analysis.   

The first objective was designed to investigate the feasibility of using IPTA to 

detect deformations on spatial scales typical of civil engineering construction 

activities. The second and third objectives were motivated by situations 

confronted when limited numbers of SAR acquisitions or SLCs are available to 

constrain an IPTA processing flow. Given that IPTA enables utilization of SLCs 

separated by very long spatial as well as temporal baselines, such situations 

arise mainly due to limited imagery being available for a particular study area.  
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The first objective was addressed by performing an IPTA analysis using all 

SLCs acquired over the study area between 1992 and 2000. The second and 

third objectives were addressed by applying the IPTA processing flow to subsets 

of data that were derived from the stack of SLCs acquired over the study area 

between 1992 and 2000. The ease of application of the conventional IPTA 

processing flow in the second objective was evaluated by investigating the 

possibility to temporally unwrap or patch unwrap a subset of available data 

without obtaining patch unwrapping errors. For reasons provided later in the 

chapter, the average baseline of these subsets was used as the quality measure 

to investigate the second objective.   

In addition to details about the study area and experimental processing 

details, a list of SAR acquisitions used for the study and details pertaining to the 

software used for analysis has been provided.  

4.2 Study Area 
 

Characteristics of the study area and criterion governing its choice for this 

study are discussed in the following sections. 

4.2.1 Site Selection Criteria   
 

Suitability of a site for the study aimed at addressing the above-mentioned 

objectives was assessed based on the following desired characteristics: 

1. Availability of extensive SAR data for the study area with sufficient 

spatial and temporal coverage, 
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2. Study area characterized by an urban setting (due to the quality 

and density of point targets that can be identified in such a setting), 

and 

3. Known occurrence of localized ground deformation resulting from 

civil engineering construction activities. 

Due to (a) reported subsidence encountered along Hollywood Boulevard (Figure 

4.1 and Figure 4.2) during construction of the Los Angeles Metro Rail Red Line, 

and (b) availability of 52 SAR scenes spanning the time between 1992 and 2000, 

SAR imagery of Los Angeles was used for Interferometric Point Target Analysis 

(IPTA) presented study.  

4.2.2 Characteristics of the Red Line 
 

Key features of the Red Line construction as described by Stirbys et al. 

(1999) can be summarized as follows: 

The 37-km long Los Angeles Metro Rail Red Line subway, which was 

developed under the supervision of the Metropolitan Transportation Authority 

(MTA), forms an important segment of the 480 km rail system that was designed 

to serve the Los Angeles area. The Red Line was constructed in three segments, 

namely segments 1, 2 and 3 shown in Figure 4.2. Construction on segment 1 

was performed between 1987 and 1993. Construction along the Wilshire 

Boulevard section of segment 2 was performed between 1991 and 1996 while 

the Vermont and Hollywood sections of segment 2 were scheduled to be 

completed in 1998. Construction along segment 3 was performed between 1994  
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Figure 4.1 Google Earth image of study area. Los Angeles Metro Rail Red Line 
is delineated in red. 
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Figure 4.2 Layout and stages of construction of Los Angeles Red Line (Stirbys et 
al., 1999). 
 
and 2000. The imaged area covered by the section of SAR imagery used in this 

study (Figure 4.1) is representative of sites where construction of the entire 

second segment and a part of the third segment of the Red Line was pursued. 

Segment 2 is comprised of 11-km-long twin tunnels connecting eight subway 

stations, whereas Segment 3 is comprised of 10-km-long twin tunnels connecting 

three subway stations. The subway stations are marked by concentric circles in 

Figure 4.2. Each of the twin tunnels had a post-boring diameter of 6.6 m which 

was reduced to 5.5 m after finishing. The pillar separating the side walls of the 

two tunnels had a width that varied between 4.4 m and 6.1 m.  The depth of the 

tunnels varied between 11 m below ground level at subway stations to 300 m 
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along the third segment of Red Line that was routed through the Santa Monica 

Mountains. 

As shown in Figure 4.3, sections of segment 2 were bored through the 

following sub-surface conditions at various points along the alignment:  

1. Alluvial deposits varying in age from the Pleistocene to the Holocene, and 

2.  Upper Miocene to Plio-Pleistocene aged sandstone, siltstone and 

claystone formations. 

 

 
 
Figure 4.3 Geologic profile along segment 2 of the Red Line (Stirbys et al., 
1999). Note that Vermont Avenue tends North-South whereas Hollywood 
Boulevard tends East-West. 

 

Prevalence of these geological features throughout most of the area represented 

in Figure 4.1, necessitated soft-ground tunneling techniques to be adopted during 

the construction of most of the Red Line, excluding the portion of Segment 3 that 
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passed through the Santa Monica Mountains, where hard rock tunneling 

methods were used.   

The Salt Lake Oil Field located on Beverly Boulevard between Fairfax and 

Highland Avenue, and the Western Avenue Oil Field located on Beverly 

Boulevard between Western Avenue and Normandie Avenue, as shown in Figure 

4.2, are two abandoned oil fields situated in the vicinity of the Red Line 

alignment. Their location is of importance in the context of deformation features 

that were detected on analyzing SAR imagery of the study area while assessing 

the first objective of the study.     

4.2.3 Subsidence Features in Study Area 
 

According to Bell (1999), instances of ground deformation observed 

following the beginning of tunneling beneath Hollywood Boulevard include: 

1. Subsidence of 2” occurred during the construction of the first of two 

tunnels located 80’ below Hollywood Boulevard in August 1994, as 

opposed to the expected subsidence of ½”. 

2. Construction of the second tunnel that began three weeks later was 

accompanied by subsidence ranging from 5” to 10” with buildings on the 

section between Vine and the El Capitan Theater incurring severe 

damage. 

3. Occurrence of an 80’ wide sinkhole on the 6300 block of Hollywood 

Boulevard on  June 22, 1995 accompanied by cracking of the tunnel near 

the sinkhole.    



 93

Although these settlements are substantial, they likely occurred over a very 

localized region. The feasibility of detecting these small spatial scale settlements 

was investigated as part of the first objective of this study. 

4.3 Data  
 
The following raw data were used for interferometric analysis of the study area: 

1. A stack of 52 SAR images acquired by the ERS-1 and ERS-2 platforms 

over Los Angeles, California. Although data for the entire 100 km x 100 

km area defined by ERS Track 442, Frame 2925 were obtained, a 500 

pixel x 2500 pixel area containing the Los Angeles Red Line was clipped 

from the full frame image for interferometric point target analysis (IPTA) 

using the GAMMA Remote sensing software. A list of all SAR images 

used in the analysis is provided in Table 4.1. The SAR images are 

denoted by their respective ERS orbit numbers and acquisition dates. The 

geographic coordinates of the four corners defining the clipped section of 

the SAR image used for IPTA are listed in Table 4.2. 

2. A Digital Elevation Model (DEM) of the study area as acquired during the 

Shuttle Radar Topography Mission (SRTM) and sampled at 1 arc-second. 

The 1 arc-second sampling translates into a 30 m x 30 m DEM pixel.  

4.4 Software Used in Study 
 

The IPTA software package, developed and distributed by GAMMA 

Remote Sensing, was used for point target analysis performed in this study.  
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Table 4.1 List of SAR scenes of Los Angeles used for point target analysis. 
  

# Platform Orbit  Date # Platform Orbit  Date 
1 ERS1 4595 1-Jun-92  27 ERS2 7811 17-Oct-96  
2 ERS1 6098 14-Sep-92  28 ERS2 8312 21-Nov-96  
3 ERS1 6599 19-Oct-92  29 ERS2 8813 26-Dec-96  
4 ERS1 7100 23-Nov-92  30 ERS2 9815 6-Mar-97  
5 ERS1 7601 28-Dec-92  31 ERS2 10316 10-Apr-97  
6 ERS1 11108 30-Aug-93  32 ERS2 10817 15-May-97  
7 ERS1 11609 4-Oct-93  33 ERS2 11318 19-Jun-97  
8 ERS1 12110 8-Nov-93  34 ERS2 11819 24-Jul-97  
9 ERS1 19468 5-Apr-95  35 ERS2 13322 6-Nov-97  

10 ERS1 19969 10-May-95  36 ERS2 13823 11-Dec-97  
11 ERS1 20470 14-Jun-95  37 ERS2 14324 15-Jan-98  
12 ERS1 20971 19-Jul-95  38 ERS2 14825 19-Feb-98  
13 ERS1 21472 23-Aug-95  39 ERS2 17330 13-Aug-98  
14 ERS1 21973 27-Sep-95  40 ERS2 17831 17-Sep-98  
15 ERS1 22474 1-Nov-95  41 ERS2 18332 22-Oct-98  
16 ERS1 22975 6-Dec-95  42 ERS2 18833 26-Nov-98  
17 ERS1 23476 10-Jan-96  43 ERS2 19334 31-Dec-98  
18 ERS1 23977 14-Feb-96  44 ERS2 19835 4-Feb-99  
19 ERS1 24979 24-Apr-96  45 ERS2 20336 11-Mar-99  
20 ERS1 25480 29-May-96  46 ERS2 22340 29-Jul-99  
21 ERS2 2801 2-Nov-95  47 ERS2 23342 7-Oct-99  
22 ERS2 3302 7-Dec-95  48 ERS2 24344 16-Dec-99  
23 ERS2 3803 11-Jan-96  49 ERS2 26348 4-May-00  
24 ERS2 4304 15-Feb-96  50 ERS2 26849 8-Jun-00  
25 ERS2 6308 4-Jul-96  51 ERS2 27851 17-Aug-00  

26 ERS2 7310 12-Sep-96  52 ERS2 29354 30-Nov-00  
 

Table 4.2 Coordinates of SAR scene corners. 
 

Azimuth  Range 
WGS84 
Latitude WGS84 Longitude 

Pixel # Pixel # (degrees) (degrees) 
0 0 34.04 -118.29 
0 499 34.06 -118.40 

2499 0 33.95 -118.31 

2499 499 33.97 -118.43 
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GAMMA Remote Sensing, based near Bern, Switzerland, was founded in 1995 

by Dr. Charles Werner and Dr. Urs Wegmuller. In addition to the IPTA package, 

the Modular SAR Processor (MSP) - used for processing raw SAR data into 

SLCs, the Interferometric SAR Processor (ISP) - used for interferometric 

computations, Differential SAR Interferometry and Geocoding (DIFF&GEO)- 

used for differential interferometry, and Land Application Tools (LAT)- used for 

adopting SAR imagery for land applications, are other software packages that 

are provided by GAMMA Remote Sensing. Programs comprising the IPTA 

software package that were used in this study were run on a Dell Precision 690 

Workstation operating on an Intel Xeon processor.    

4.5 Datasets Analyzed 
 

 Although the IPTA processing flow and IPTA programs that were used to 

accomplish the different objectives of this study were essentially the same, the 

datasets to which these programs were applied were different depending on the 

objective being addressed. All future references to the sizes of datasets analyzed 

will be made with respect to the number of interferograms that were used for 

point target analysis. All interferograms comprising the datasets analyzed to 

accomplish the three objectives of this study were calculated with respect to a 

common reference SLC, namely, ERS1-11609, and included the auto-

interferogram. Datasets comprised of fewer than 52 interferograms are referred 

to as subsets and were computed from a stack of SLCs that contained a subset 

of all the available 52 SLCs shown in Table 4.1 
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The auto-interferogram is an interferogram calculated between the 

common reference SLC and itself. The auto interferogram enables atmospheric 

phase quantification, as will be explained in more detail in Section 4.6.2.1. 

Therefore, a dataset containing a total of n  interferograms was calculated from 

n  SLCs. All SLCs were coregistered and resampled to the geometry of ERS1-

11609 (master SLC) before interferogram calculations. 

4.5.1 Detection of Subsidence over Red Line 
 

To investigate the feasibility of using IPTA to detect subsidence resulting 

from tunneling during the construction of the Los Angeles Red Line, all steps 

comprising the IPTA processing flow shown in Figure 3.4 in Chapter 3, were 

applied to a dataset containing 52 interferograms that were computed from all 52 

SLCs listed in Table 4.1. As mentioned in Section 4.5, the count of 52 

interferograms is inclusive of the auto-interferogram.  

4.5.2 Dependence of Temporal Unwrapping on Average Baseline of Dataset 
 

To investigate the influence of acquisition parameters (namely, number of 

scenes and average baseline) on the ability to successfully patch unwrap all 

interferograms comprising a dataset, a total of 94 subsets of data were initially 

analyzed using Steps 2 through 6 from the IPTA processing flow shown in Figure 

3.4 in Chapter 3. Accomplishment of successful patch unwrapping was assessed 

based on the ability to unwrap all interferograms comprising a dataset without 

patch errors. For reasons mentioned in Section 4.6.1, the point targets detected 
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using all 52 available SLCs while addressing the first objective, were used for 

processing related to this part of the study.  

 Not counting the auto-interferogram, which was included in all datasets 

analyzed for patch unwrapping errors, datasets containing 15, 20, 25, 30, 35, 40 

and 45 interferograms were analyzed in this part of the study. Figure 4.4 

summarizes the total number of datasets generated containing each of the above 

mentioned number of interferograms. Each dataset generated was initially 

analyzed for feasibility in unwrapping without patch errors.  

Datasets that could be unwrapped successfully were then subjected to the 

remainder of the conventional IPTA processing flow, namely Steps 7 through 14 

as outlined in Figure 3.4 in Chapter 3. Details pertaining to patch unwrapping and 

the two-dimensional regression analysis have been provided in Section 4.6. 
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Figure 4.4 Datasets generated for point target analysis. 
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In Figure 4.4, the datasets are categorized as incremental, random and pseudo-

random, based on the method in which they were generated.  

1. The incremental method corresponds to that by means of which 

interferograms comprising datasets were chosen on the basis of 

increasing order of absolute perpendicular baselines characterizing them. 

This method of choice has been illustrated in Figure 4.5 by means of a 

hypothetical example wherein twenty interferograms were assumed to be 

available for dataset generation. In the example shown in Figure 4.5, 

numbers 1 through 20 represent twenty available interferograms sorted in 

increasing order of their absolute perpendicular baselines. So, pair 1 

represents an interferogram with the lowest absolute perpendicular 

baseline whereas pair 20 represents an interferogram with the highest 

absolute perpendicular baseline among the twenty available 

interferograms. The brackets represent a sliding window of a fixed size 

wherein interferogram numbers bracketed by the window represent 

interferograms that constitute a dataset. Hence, a unique dataset can be 

associated with each new position of the sliding window. 

       

            Figure 4.5 Illustration of incremental method of generating datasets 
            using sliding window. 
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Specifically, in Figure 4.5, the size of the sliding window is five. The size of 

window is chosen according to the size of the dataset desired. Moreover, 

it can be seen from Figure 4.5 that the sliding window was chosen to 

move to the right in steps of one until no more datasets of the desired size 

could be generated. 

For this study, the number of available non-zero baseline 

interferograms was 51. Sliding window sizes of 15, 20, 25, 30, 35, 40 and 

45 were chosen to generate incremental datasets for analysis. Hence, a 

dataset containing 45 interferometric pairs and corresponding to the 

lowest average baseline, for example, contained interferograms 

representing the 45 lowest absolute perpendicular baselines of the 

available 51 non-zero perpendicular baselines. Similarly, the 45 

interferogram dataset corresponding to the second-lowest average 

baseline was generated by moving the sliding window to the right by one 

interferogram. Hence, it was possible to generate seven such datasets 

containing 45 interferograms defined by non-zero perpendicular baselines. 

Similarly, the dataset corresponding to the lowest average baseline of all 

datasets analyzed and containing 15 interferograms, contained those 

interferograms that were defined by the 15 lowest perpendicular baselines 

among the available 51 non-zero perpendicular baseline interferograms.  

2. The random method of choice corresponds to datasets formed by random 

number generation as was achieved using Microsoft Excel. Non-repeating 

random numbers between 1 and 52 were generated using Excel. The 



 

 100

generated random numbers were then associated with the corresponding 

interferograms to which the IPTA processing flow would be applied. Table 

4.3 lists the interferometric combinations corresponding to numbers 

between 1 and 52 as used in the IPTA analysis.  

Perpendicular baseline values shown in Table 4.3 correspond to 

the component of the distance between the satellites when the center of 

the master and slave SLCs were acquired. The perpendicular baseline 

values are positive or negative depending on the relative positions of the 

satellites at the time of acquisition of the center of the master and slave 

SLCs. A positive perpendicular baseline implies that the satellite with 

which the slave SLC was acquired was positioned to the right of the look 

vector of satellite with which the master SLC (ERS1-11609) was acquired 

(Hanssen, 2001). 

3. The two pseudo-random datasets shown in Figure 4.4 contained every 

other combination of the possible 51 non-zero baseline interferograms 

listed in Table 4.3, ie., excluding the auto-interferogram. Hence, one 

pseudo-random set contained 26 non-zero interferometric pairs numbered 

1,3,5,7,…,51 in Table 4.3 whereas the other contained 25 that were 

numbered 2,4,6,8,…,50 in Table 4.3. 

The average perpendicular baseline corresponding to each dataset shown in 

Figure 4.4 was calculated by the ratio of the sum of absolute perpendicular 

baselines of interferograms comprising the dataset to the number of non-zero 
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baseline interferograms in the dataset. Hence the auto-interferogram was not 

accounted for in the average perpendicular baseline calculations.     

Table 4.3 List of Interferograms used in study. Only slave images are listed since 
all interferograms were calculated with respect to a common master-ERS1, 
Orbit11609. 

 
The generated datasets were then used for differential interferogram 

generation and subsequent patch-unwrapping and two-dimensional regression 

analysis. In cases where unwrapping could not be achieved without patch errors 

  Slave Perp.   Slave Perp. 
# Platform Orbit  Baseline (m) # Platform Orbit  Baseline (m) 
1 ERS1 4595 234.72 27 ERS2 8312 1171.35 
2 ERS1 6098 599.71 28 ERS2 8813 -79.42 
3 ERS1 6599 -151.31 29 ERS2 9815 23.25 
4 ERS1 7100 328.06 30 ERS2 10316 657.01 
5 ERS1 7601 -421.99 31 ERS2 10817 53.27 
6 ERS1 11108 -313.37 32 ERS2 11318 -46.70 
7 ERS1 12110 209.31 33 ERS2 11819 76.28 
8 ERS1 19468 -214.52 34 ERS2 13322 -716.81 
9 ERS1 19969 -986.10 35 ERS2 13823 -638.58 

10 ERS1 20470 -80.63 36 ERS2 14324 -216.50 
11 ERS1 20971 113.70 37 ERS2 14825 -304.08 
12 ERS1 21472 12.79 38 ERS2 17330 65.01 
13 ERS1 21973 214.79 39 ERS2 17831 -773.67 
14 ERS1 22474 859.03 40 ERS2 18332 -362.14 
15 ERS1 22975 217.72 41 ERS2 18833 -110.49 
16 ERS1 23476 184.21 42 ERS2 19334 -819.73 
17 ERS1 23977 674.87 43 ERS2 19835 -395.25 
18 ERS1 24979 876.63 44 ERS2 20336 -35.58 
19 ERS1 25480 -335.79 45 ERS2 22340 452.04 
20 ERS2 2801 711.02 46 ERS2 23342 -360.98 
21 ERS2 3302 67.19 47 ERS2 24344 512.79 
22 ERS2 3803 68.08 48 ERS2 26348 -18.05 
23 ERS2 4304 695.18 49 ERS2 26849 -210.40 
24 ERS2 6308 337.99 50 ERS2 27851 -103.83 
25 ERS2 7310 -153.31 51 ERS2 29354 -89.20 
26 ERS2 7811 430.25 52 ERS1 11609 0.00 
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for some interferograms in an analyzed dataset, the specific pairs within the 

analyzed datasets that were affected by patch unwrapping errors were excluded 

from the dataset and hence further analysis. This resulted in a reduction in the 

number of interferograms constituting the dataset and hence a modification in the 

average baseline corresponding to the dataset. The patch unwrapping step was 

then applied to the resulting modified dataset and any patch unwrapping errors 

were checked for. This procedure was repeated until no patch unwrapping errors 

were found in any of the interferograms constituting a dataset. The modified 

average baseline and the number of interferograms characterizing the dataset 

having no patch unwrapping errors were recorded.  

4.5.3 Influence of Number of Interferograms on Derived Deformation Rates 
 

Quantification of the dependence of the IPTA-derived deformation rates 

on the number of interferograms used to constrain the analysis was 

accomplished by generating the following datasets: 

1. one thousand datasets comprised of 15 randomly selected interferograms, 

2. one thousand datasets comprised of 25 randomly selected interferograms,  

3. one thousand datasets comprised of 35 randomly selected interferograms, 

and  

4. one thousand datasets comprised of 40 randomly selected interferograms  

It should be noted that the number of interferograms comprising datasets 

reported above does not take the auto-interferogram into account. As can be 

recalled, the auto-interferogram is included in all datasets in order to facilitate 

atmospheric phase estimation. Hence, a total of 4000 datasets were generated 
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to evaluate the dependence of IPTA-derived deformation rates on the number of 

interferograms analyzed. Point target analysis of all datasets was performed 

using the same command flow in order to facilitate comparison.  

One thousand datasets, each having a specific number of interferograms, 

were generated to ensure that statistics defining the deformation rates, derived 

by applying the  IPTA command flow to each of the one thousand datasets, were 

calculated from a representative sample size. Due to the infeasibility of ensuring 

that temporal unwrapping was accomplished without patch errors for each of the 

total of four thousand datasets analyzed, the IPTA command flow was applied to 

datasets that were generated by randomly sampling the 52 interferograms that 

were unwrapped without patch errors when accomplishing the first objective. 

Random sampling of the unwrapped interferograms as obtained while addressing 

the first objective meant that the point targets detected using all 52 available 

SLCs while addressing the first objective, were used for processing related to this 

part of the study. This procedure of dataset generation is shown in Figure 4.6. 

While generating these random datasets of unwrapped interferograms, it 

was ensured that each generated dataset contained the first and the last 

interferograms defined by record numbers 1 and 51 in Table 4.3, in addition to 

the auto-interferogram that is defined by record number 52 in Table 4.3. This was 

done to ensure that the deformation rates, derived from IPTA as applied to each 

of the datasets analyzed, were representative of the same time period. Since 

these randomly generated datasets were already unwrapped without patch 

errors, deformation rates from these datasets were derived by running programs 
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in the IPTA package aimed at accomplishing Steps 9 through 14 outlined in the 

IPTA processing flowchart shown in Figure 3.4 in Chapter 3. 

 

Figure 4.6 Random dataset generation. 
 

The random samplings used to generate the datasets analyzed for this part of 

the study were accomplished using MATLAB.   

4.5.3.1 Statistical Analysis 
 

The linear deformation rate and associated uncertainties, as obtained for 

each point target after IPTA analysis of each dataset analyzed, were used to 

statistically quantify the variability of the linear deformation rate estimates and 

corresponding uncertainties. The mean and standard deviation were the two 

statistical measures used for quantification of variability.  
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IPTA analysis of four groups of datasets, with each group containing one 

thousand datasets, wherein all datasets within a group were associated with a 

specific number of interferograms (15, 25, 35, 40), resulted in four groups of one 

thousand estimates of linear deformation and the associated uncertainty for each 

point target. Every group of one thousand estimates, derived from datasets 

containing a specific number of interferograms, was used to derive estimates of 

the following parameters for each point target:  

1. Mean and standard deviation of linear deformation rate, and   

2. Mean and standard deviation of uncertainty of linear deformation rate.  

Hence, for every point target, four estimates of mean and standard deviation of 

linear deformation rate and four estimates of mean and standard deviation of the 

uncertainty of linear deformation rate were obtained. These four estimates were 

used to investigate the influence of the number of interferograms characterizing 

the four different groups of datasets analyzed.   

The linear deformation rates, in millimeters-per-year, used for statistical 

analysis were those that were obtained by adding all incremental linear 

deformation rate estimates until two-dimensional regression was terminated 

(Step 10, in Figure 3.4 in Chapter 3). The uncertainty estimates used for 

statistical analysis, also expressed in millimeters-per-year, were those associated 

with the linear deformation estimates obtained as explained above. 
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4.6 IPTA Processing Parameters and Examples 
 

This section provides details about the point target analysis of the 

datasets used in this study. Examples of outputs corresponding to different 

stages of the processing flow are presented for illustration. 

4.6.1 Point target selection 
 

The point target candidates were chosen using the Mean-to-Standard 

deviation ratio (MSR) and spectral diversity criterion as explained in Section 3.3.2 

in Chapter 3. Point target candidates identified in this study using the MSR 

criteria correspond to those with MSR values greater than or equal to 1.4 and a 

backscatter intensity relative to a spatial average greater than or equal to 0.5.  

As mentioned is Section 3.3.2.2 in Chapter 3, point targets identified using 

the spectral diversity criteria correspond to those exhibiting a very low variation in 

backscatter intensities when imaged from different vantage points during satellite 

image acquisition. MSR values greater than or equal to 1.2 between four spectral 

looks, a spectral correlation greater than or equal to 0.4, and a backscatter 

intensity greater than or equal to 0.5 relative to the spatial average were used to 

identify point target candidates in each image in the data stack. Higher spectral 

correlation values are representative of lower spectral diversity.  

The final list containing point target candidates identified using spectral 

diversity contained points corresponding to an average spectral correlation of 

0.33. The average spectral correlation is the average of the spectral correlation 

values determined for a point in each record of the data stack. The candidates 

identified using both the criteria were merged to form a single point target 
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candidate list. The point targets identified using the above mentioned criteria are 

shown in Figure 4.7. SLC phase values and DEM heights corresponding to the 

coordinates of the point target candidates were extracted for point-wise complex 

interferogram and differential interferogram calculations.  

As mentioned in Section 4.5, all interferometric calculations were made 

between a common master, namely, ERS1-Orbit 11609, and all other images 

constituting the datasets. All datasets analyzed included the auto-interferogram. 

The complex phase values of the initial differential interferograms were subjected 

to a quality control procedure in order to choose the final point target list for use 

in further regression analysis. The quality of points were assessed using the 

IPTA program qc_pt that uses the standard deviation of the unwrapped phase of 

a point from a two-dimensional regression model relating the unwrapped 

differential phase of the point to the perpendicular baseline and time.   

The qc_pt program performs a regression for all possible point pairs with 

respect to all possible reference points within a user-specified search radius. A 

phase standard deviation threshold value of 0.7 radians and a search radius of 8 

pixels, as recommended by the GAMMA IPTA reference manual, were used for 

the quality control step in this study. In order to facilitate the comparison of 

deformation rates obtained from the point target analysis, the point target 

candidates identified using all 52 SLCs, and that passed the quality control step 

were used as point targets for the analysis of all other datasets used in this 

study, i.e., datasets having 15, 20, 25, 30 etc. combinations. 
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Figure 4.7 Point targets detected for the study area. Point targets are shown in 
yellow. The grey scale image in the background is the amplitude image of the 
study area. The bold dotted line shows the alignment of the Red Line. 
 

It should be noted that the number of point targets identified using different 

numbers of scenes would have yielded different estimates of MSR for the same 

pixels on the scene and could have resulted in a lesser reliability in the 

identification of point targets.   

4.6.2 Two-dimensional Regression Analysis 
 

This stage of the analysis is represented by Step 9 in Figure 3.4 shown in 

Chapter 3. The initial complex differential interferograms generated using 

topographic phase simulated from the original DEM, were unwrapped in the 

temporal direction using the IPTA program multi_def_pt. This program, whose 
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algorithm is similar to that of qc_pt, performs a regression of complex values or 

wrapped phase values of all point targets with respect to a user-defined 

reference point target.  

In this study, the point target with index number 30251 was used as the 

reference in all runs of the IPTA command flow. The program multi_def_pt 

ensures robustness of regression by performing a patch-wise operation in which 

all interferograms are divided into several patches and point targets within these 

user-defined patches are subjected to regression with respect to a local 

reference point within the patch, as identified by the program. Subsequently, the 

program performs a regression between the user-defined reference point (30251 

in this study) and the patch-wise local reference points chosen by the program in 

order to match the patches at the edges and yield a smooth unwrapped phase 

field.  

The multi_def_pt program solves for the temporal unwrapping besides 

resolving the perpendicular baseline and temporal dependence of the unwrapped 

phase values. As mentioned in Chapter 3, the linear estimate of unwrapped 

phase dependence on time translates into a linear deformation rate of a 

particular point target with respect to the user-defined reference point, whereas 

the linear estimate of the unwrapped phase dependence on perpendicular 

baseline translates into a height correction that needs to be added to or 

subtracted from the DEM height at the location of a point target with respect to 

the user-defined reference point. 
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 Similar to the qc_pt program, the point targets to which the two 

dimensional regression was applied were chosen based on the standard 

deviation of the unwrapped phase of a point target from a two dimensional 

regression model. It may be recalled that the two dimensional regression model 

relates the unwrapped phase of a point target, calculated with respect to a 

reference point, to the perpendicular baseline and time characterizing all 

interferograms chosen for analysis. An example of two-dimensional regression 

between a pair of point targets has been shown in Figure 3.6 in Chapter 3.  

The adoption of a patch-wise approach to ensure robustness of the 

solution necessitates the selection of point targets located within each patch that 

would be subjected to the two dimensional regression with respect to the local 

patch reference. The multi_def_pt program allows for such a selection to be 

made based on the standard deviation of unwrapped phase values of the point 

targets located within the patch from the two regression planes that relate the 

unwrapped phase to baseline and time.  In this study, a phase standard deviation 

of 1.2 radians from such best fit regression planes was chosen to facilitate point 

target selection within patches. The unwrapped phase values and the resulting 

linear deformation rates and height corrections for all point targets located within 

a patch, as derived from the patch-wise approach, are referenced to the local 

patch reference. 

As mentioned before, a regression between the user-defined reference 

point target (30251 in this study) and all patch reference points targets is 

performed in order to transform the unwrapped phase and the resulting height 
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corrections and linear deformation rates of all point targets such that they are 

referenced to the user-defined reference point. A standard deviation of 0.75 

radians between patch references was used as a threshold value in order to 

accomplish such a transformation. The standard deviation thresholds of 1.2 

radians and 0.75 radians are the default values that are recommended for use by 

the IPTA reference manual and were hence adopted for all multi_def_pt runs in 

this study.  

A patch size of 100 pixels in the range direction and 500 pixels in the 

azimuth direction was adopted in all multi_def_pt runs applied to all datasets 

analyzed in this study. Once all differential interferograms in a dataset were 

unwrapped without patch unwrapping errors, the phase values corresponding to 

updated DEM heights (obtained after the application of height corrections 

estimated from the regression), were added back to yield a stack of unwrapped 

interferograms having both topographic and non-topographic phase 

contributions. This operation represents Step 7 shown in Figure 3.4 in Chapter 3.  

A least squares improvement of baselines, as shown in Step 8 of Figure 

3.4, of all interferograms in a dataset was accomplished using the stack of 

unwrapped interferograms containing both topographic and non-topographic 

phase contributions  and by masking regions on the interferogram corresponding 

to significant deformation. In brief, at this stage, a stack of unwrapped 

interferograms representing the unwrapped version of the initial point-wise 

complex interferograms and precise estimates of the baseline associated with 
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each of these interferograms were obtained. The improved baseline estimates 

were used to simulate the phase contribution due to the initial DEM heights.  

The stack of precise topographic phase estimates was then subtracted 

from the stack of complete unwrapped interferograms to yield a stack of 

unwrapped differential interferograms. This stack was referred to as pint_diff in 

the IPTA command flow adopted for analysis of the study area. 

A two dimensional regression analysis, as shown by Step 9 of Figure 3.4 

in Chapter 3, was performed on the stack of unwrapped differential 

interferograms (pint_diff) using the IPTA program def_mod_pt. The unwrapped 

differential interferograms were generated by subtracting the topographic phase 

contribution, as calculated from improved baseline estimates, from the 

unwrapped interferogram containing phase contributions from topography, 

deformation and other sources.  

The def_mod_pt program is similar to multi_def_pt program, except that it 

does not use patch-wise regression to solve for perpendicular baseline and time 

dependence of phase values. Since initial unwrapping was accomplished by 

means of a robust regression analysis using multi_def_pt, all subsequent 

regression analysis on the unwrapped data was accomplished using the IPTA 

program def_mod_pt.   

Figure 4.8 illustrates results of the two-dimensional regression analysis as 

applicable to the pint_diff phase of point target number 19655 located on 

Hollywood Boulevard with respect to the reference point target number 30251. 

The height corrections and deformation rates for all point targets were estimated 
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with respect to point target number 30251 in a way similar to that illustrated in 

Figure 4.8. The estimated height corrections were added to existing DEM height 

values for all points and the deformation rates estimated for all points were taken 

as initial deformation rate estimates.  

These updated DEM height values and initial deformation rates were 

subtracted from the initial stack of complete unwrapped interferograms 

containing both topographic and non-topographic phase contributions to obtain a 

new stack of unwrapped differential interferograms. This new stack was denoted 

as pdiff4_unw in the IPTA command flow adopted for analysis. Figure 4.9 

illustrates the results of the two-dimensional regression as applied to the phase 

of point 19655 in pdiff4_unw with respect to reference point number 30251. The 

height corrections and incremental deformation rates for all point targets as 

obtained from two-dimensional regression analysis of pdiff4_unw were added to 

updated DEM heights and deformation rates as obtained after the previous run of 

def_mod_pt. The resulting new DEM heights and deformation rates 

corresponding to all point targets were subtracted from the initial stack of 

complete unwrapped interferograms containing both topographic and non-

topographic phase contributions to obtain a new stack of unwrapped differential 

interferograms. 
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Figure 4.8 Two dimensional regression performed using pint_diff phase for point 
target number 19655 with respect to reference point number 30251. The baseline 
dependence plot on top corresponds to a height correction of -7.99 m to be 
applied to the DEM height of point 19655 with an uncertainty of 0.61 m, whereas 
the temporal dependence plot at the bottom corresponds with a deformation rate 
corresponding to point 19655 of -3.29 mm/yr with an uncertainty of 0.29 mm/yr. 
The negative sign associated with the deformation rate indicates subsidence. 
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Figure 4.9 Two dimensional regression performed using pdiff4_unw phase for 
point target number 19655 with respect to reference point number 30251. The 
baseline dependence plot on top corresponds to a height correction of -0.06 m to 
be applied to the DEM height of point 19655 with an uncertainty of 0.61 m, 
whereas the temporal dependence plot at the bottom corresponds with an 
incremental deformation rate corresponding to point 19655 of 0.02 mm/yr with an 
uncertainty of 0.29 mm/yr.  
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This new stack was denoted as pdiff5_unw in the IPTA command flow adopted 

for analysis. Figure 4.10 illustrates the results of the two-dimensional regression 

as applied to the phase of point 19655 in pdiff5_unw with respect to reference 

point number 30251. 

It should be noted that pdiff4_unw and pdiff5_unw are the differential 

interferogram stacks resulting from additional iterations of the loop formed by 

Steps 3, 9, 10 and 11 of the IPTA processing flow shown in Figure 3.4 in Chapter 

3.  The incremental DEM height corrections and deformation rates for all point 

targets as obtained from two-dimensional regression of phase values of 

pdiff5_unw were added to improved DEM heights and deformation rate estimates 

obtained after two-dimensional regression of phase values of pdiff4_unw. As can 

be seen from horizontal line fits on the perpendicular baseline dependence and 

time dependence plots in Figure 4.9 and Figure 4.10, the estimated 

improvements to the DEM heights and deformation rates were negligible, hence, 

the two dimensional regression was terminated.  

As mentioned in Chapter 3, the phase values deviating from the 

regression at this stage were assumed to be residual phase containing 

contributions from non-linear deformation, atmospheric path delay, and noise. 
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Figure 4.10 Two dimensional regression of pdiff5_unw phase for point target 
number 19655 with respect to reference point number 30251. The baseline 
dependence plot on top corresponds to a height correction of 0.02 m to be 
applied to the DEM height of point 19655 with an uncertainty of 0.69 m whereas 
the temporal dependence plot at the bottom corresponds with an incremental 
deformation rate corresponding to point 19655 of -0.11 mm/yr with an uncertainty 
of 0.41 mm/yr. 
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4.6.2.1 Atmospheric Phase Estimation 
 

The residual phase estimate, obtained after termination of two-

dimensional regression, was subjected to spatial low-pass filtering using the 

program spf_pt. This step was aimed at reducing phase noise. All frequency 

components of the residual phase that are smaller than that represented by the 

user-defined radius are passed through the filter for further processing. A radius 

of 7 pixels was used for spatial low-pass filtering of the residual phase obtained 

from IPTA processing as applied to all datasets analyzed in this study.  

The temporal variation of the spatially filtered residual phase 

corresponding to all point targets analyzed was then analyzed for temporal 

correlation. This was accomplished using a temporal filter characterized by a 

user-defined temporal window. Temporal filtering was applied to the spatially  

filtered residual phase. The IPTA program tpf_pt was used to accomplish 

temporal filtering wherein the program analyzes spatially filtered residual phase 

estimates from interferograms spanning the user-defined temporal window and 

determines those components of the phase signal that correlate with time. The 

temporal filtering was constrained by using a time window that included three 

interferograms nearest in time to every interferogram comprising the 

interferogram stack.  
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Figure 4.11 Time series showing spatially filtered residual phase of point target 
number 19655 obtained after two dimensional regression of its phase in 
pdiff5_unw. 
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Figure 4.12 Component of spatially filtered residual phase of point target number 
19655 correlating with time over a temporal window of 72 days. Zero time 
indicates the date of acquisition of master SLC (E1-11609). 
 

Phase estimates derived after temporal filtering correspond to those that are 

filtered for noise minimization and that correlate with time. As explained in 

Section 3.2.2 in Chapter 3, by definition, it is assumed that atmospheric phase 

can be spatially correlated while being temporally uncorrelated. Hence, the 

temporally correlated estimate of phase derived from tpf_pt was subtracted from 

the spatially filtered estimate to derive atmospheric phase estimates. 
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Figure 4.13 Difference between spatially filtered and temporally filtered residual 
phase as a function of time. Zero time indicates the date of acquisition of master 
SLC (E1-11609).  
 
It is of importance to recall that the auto-interferogram was included in all of the 

datasets analyzed. The auto-interferogram is an interferogram having the 

reference scene (ERS1-11609) as both master and slave and hence represents 

zero baseline and zero time. Owing to the best fit regression line not passing 

through zero time and zero baseline, it is sometimes possible to have an 

estimate for the residual phase for the auto-interferogram. 
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Figure 4.14 Atmospheric phase as a function of time. Zero time indicates the 
date of acquisition of master SLC (E1-11609). 
 

Having an estimate for the residual phase in an auto-interferogram, results 

in an estimate of atmospheric phase for the auto-interferogram when in reality 

there should be none. Hence, any atmospheric phase contribution estimated for 

points in the auto-pair are subtracted from the atmospheric phase estimates of 

corresponding points representing all other interferometric pairs. An updated 

stack of differential interferograms were calculated by subtracting the estimated 
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atmospheric phase, updated DEM heights and deformation rates of all point 

targets analyzed from the initial stack of complete unwrapped interferograms 

containing both topographic and non-topographic phase contributions. A final 

two-dimensional regression was performed on the differential interferogram stack 

using def_mod_pt.  Similar to the cases shown in Figure 4.9 and Figure 4.10, the 

incremental estimates at this stage were observed to be very low. 

The incremental estimates were added to already existing DEM height 

map and deformation rate estimates to obtain final estimates of the same. Since 

atmospheric phase contribution was already modeled, the residual phase 

estimate obtained from the final two-dimensional regression was assumed to 

have contributions from non-linear deformation and a very low phase noise. 

Since def_mod_pt yields estimates of deformation rate in units of mm/yr and 

residual phase estimates were obtained in radians, the linear deformation rates 

were converted to phase rates and added to the non-linear phase estimates. The 

sum was then converted into final displacement rate estimates in mm/yr for 

further analysis. The final displacement time series of point target number 19655 

with respect to the reference point target 30251 is shown in Figure 4.15. Figure 

4.8 through Figure 4.15 illustrate step-wise results obtained for point target 

number 19655, with respect to the user-defined reference point, by executing the 

IPTA processing flow. The IPTA programs subject all other identified point 

targets to the same procedure. A detailed comparison of deformation rates and 

related statistics is presented in detail in the next chapter. 
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Figure 4.15 Displacement of point target number 19655 with respect to reference 
point target number 30251 as a function of time. Zero time indicates the date of 
acquisition of master SLC (E1-11609). 
 

4.7 Summary 
 

An introduction of the study area and the list of SAR data used for point 

target analysis of the study area have been provided in this chapter. The 

processing flow adopted to address each of the three objectives has also been 

provided. A graphical representation of outputs derived from each step of the 

processing flow has been provided for illustration. Results obtained by applying 
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the methods presented in this chapter to SAR data obtained for the study area 

are presented in the next chapter. 
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5. RESULTS AND DISCUSSION 
 

5.1 Introduction 
 

 The results obtained from point target analysis of the study area are 

presented in this chapter. The three objectives of the study were accomplished 

by adopting the methods that were outlined in detail in Chapter 4. In addition to 

the obtained results, a detailed analysis and discussion of the results are 

presented. The results obtained for each objective and the related analyses are 

presented in separate sections within the chapter.  

5.2 Deformation Detection 
 

The first objective of the study was to investigate the feasibility of using 

point target analysis to detect and compute the deformation history 

corresponding to small-scale deformation features. Results obtained by 

performing point target analysis of the study area with 52 interferograms are 

presented in this section.  As mentioned in Chapter 4, the 52 interferograms used 

to constrain the analysis for this part of the study were calculated between a 

common master SLC, namely ERS1-11609, and all other SLCs acquired over the 

study area between 1992 and 2000.  

5.2.1 Spatial Extent of Detected Deformation 
 

Figure 5.1 and Figure 5.2 show satellite line-of-sight displacement maps 

for the study area that correspond to four distinct time periods during the 

construction of the Red Line.  
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(a) (b) 

Figure 5.1 Line-of-sight displacement for the study area corresponding to (a)1st June, 1992 and (b) 1st November, 1995. 
Both displacement fields were calculated relative to ERS1-11609 acquired on 4th October, 1993. One color cycle 
corresponds to 28 mm of displacement in the satellite line-of-sight direction. The line-of-sight direction corresponds with a 
descending satellite viewing geometry.              
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                                                (a)                                                                             (b) 

 
Figure 5.2 Line-of-sight displacement for the study area corresponding to (a) 10th April, 1997 and (b) 4th May, 2000. Both 
displacement fields were calculated relative to ERS1-11609 acquired on 4th October, 1993. One color cycle corresponds 
to 28 mm of displacement in the satellite line-of-sight direction. The line-of-sight direction corresponds with a descending 
satellite viewing geometry.            

128
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Two distinct deformation features are evident in Figure 5.1 and Figure 5.2. The 

first is a large region of deformation, which is consistent with the location of the 

abandoned Salt Lake oil field. It may be recalled from Chapter 4 that the Salt 

Lake Oil field is one among the several abandoned oil fields that are situated in 

the vicinity of the study area. The spatial deformation signature corresponding to 

the Salt Lake oil field is present in all displacement maps shown in Figure 5.1 

and Figure 5.2. Also important to note from Figure 5.1 and Figure 5.2, is the 

increase in the number of color cycles that can be associated with deformation in 

the vicinity of the oil field as a function of time.  Each color cycle corresponds to 

28 mm of displacement resolved along the satellite line-of-sight.  

A series of spatially linear deformation features that are consistent with the 

alignment of the Red Line tunnels represent the second set of deformation 

features that were detected in the study area. It is interesting to note the absence 

of these linear features in 1992/1993 (Figure 5.1(a) and Figure 5.1(b)) and its 

strong emergence between 1997 and 2000 (Figure 5.2(a) and Figure 5.2(b)). The 

time periods of emergence of the deformation features along the Red Line 

alignment are consistent with the dates of construction along segment 2 and 

segment 3. 

The limited spatial extent of the subsidence detected along the Red Line 

alignment can be explained in the context of the 20 m resolution achievable from 

ERS SAR data.  It may be recalled from Chapter 4 that each of the twin tunnels 

had a post-boring diameter of 6.6 m while the pillar separating the side walls of 

the two tunnels had a maximum width of 6.1 m. The cross-sectional width of the 
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entire setup hence equaled approximately 20 m, which is effectively equivalent to 

one pixel on the map. The extent of the spatial deformation signature caused by 

subsidence during construction of the tunnels can be expected to depend on the 

zone of influence, and can hence be expected to be greater than 20 m in a 

direction perpendicular to the alignment of the tunnel.  

5.2.2 Temporal Signature of Detected Deformation 
 

A second important result from this phase of the study concerns the 

deformation-time relationship for different regions in the study area. The temporal 

deformation signatures that might be expected in these different regions can be 

summarized as follows: 

1. Along Red Line Alignment: A deformation time series with a step or 

ramp that correlates distinctly with the time of tunneling would be 

expected for point targets located along the alignment of the Red Line,  

2. Over Salt Lake Oil Field: Considering that the oil filed is abandoned 

(Stirbys et al., 1999), the temporal signature of deformation 

corresponding with point targets located in the vicinity of the oil field 

can be expected to correspond with gradual settlement. In other 

words, the deformation time history for point targets near the oil field 

can be expected to be different from those for point targets along the 

Red Line alignment, and  

3. Other Points: Assuming no other deformation in the study area, the 

deformation signature for point targets located away from the Red 

Line and the oil field would be expected to represent zero deformation. 
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The deformation time series for point targets located along the Hollywood 

Boulevard section (segment 3) of the Red Line are shown in Figure 5.3. Figure 

5.4 presents the deformation time series for point targets located in the vicinity of 

the oil field and Figure 5.5 shows the deformation time series for point targets 

located away from the deformation fields corresponding to the Red Line and the 

Salt Lake oil field. It can be observed from these plots, that three different 

deformation time series signatures were observed in regions representing 

different deformation sources within the study area. A detailed discussion of 

these deformation time series signatures is presented in the next section.  

5.2.3 Discussion 

The first important observation from the first phase of this study is that the 

small deformation associated with the construction of the Red Line tunnels can 

be detected using IPTA. Although the deformation occurred over a region 

covering the width of a few pixels, the linear trend, which correlates spatially with 

the tunnel alignment, is evident (Figure 5.2).  

The second important observation is that the expected deformation-time 

trend that can be associated with tunnel construction is present in the 

deformation history plots for point targets along the tunnel alignment (Figure 5.3).  

All deformation time history plots shown in Figure 5.3 through Figure 5.5 have a 

discontinuity between 8th November 1993 and 5th April 1995 due to unavailability 

of SAR data during that time period. It is important to note that despite this 

discontinuity in the time series, a distinct step in the deformation series can be 

observed in most of the time series plots shown in Figure 5.3.  
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Figure 5.3 (a) Line of sight displacement field (descending view) for time period 
between 4th October, 1993  and 4th May, 2000 (b) Deformation time series for 
point targets along Section A-A’ on Hollywood Boulevard. 
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Figure 5.3 contd.  Deformation time series for point targets along Section A-A’ 
on Hollywood Boulevard. 
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                                                                   (b) 
 
Figure 5.4 (a) Line of sight displacement field (descending view) calculated for 
time period between 4th October, 1993  and 4th May, 2000 (b) Deformation time 
series for point targets along Section A-A’ in the vicinity of the Salt Lake Oil Field.
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Figure 5.5 (a) Line of sight displacement field (descending view) for time period 
between 4th October, 1993  and 4th May, 2000 (b) Deformation time series for 
point targets located away from the Red Line and oil field deformation fields.
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Subsidence ranging between ½” to 1” in the satellite line of sight direction 

can be inferred from the step in the deformation time series plots of some point 

targets along Section A-A’ in Figure 5.3. This is consistent with the 2 inches of 

subsidence that was observed during construction along Hollywood Boulevard 

(Bell, 1999).  

On comparing the deformation time history plots shown in Figure 5.3, it is 

observed that the time period of occurrence of the step in the deformation history 

shifts from 1993 for point 17269 to 1995 for point 19243. This time progression of 

the step, indicates that tunneling along Hollywood Boulevard may have 

progressed from A to A’ (right to left with reference to the Figure 5.3).  It is also 

important to note that the steps in deformation time history plots for all point 

targets shown in Figure 5.3 occur between 1994 and 2000, which is consistent 

with the time period of tunneling along Hollywood Boulevard. Comparing the 

location of Section A-A’ shown in Figure 5.3(a) with the layout of the Red Line as 

shown in Figure 4.2 in Chapter 4, it can be observed that the point targets 

showing the strongest deformation signature along Section A-A’ in Figure 5.3(a) 

are located between the Hollywood/Vine  station and Hollywood/Highland station. 

From the geologic profile shown in Figure 4.3 in Chapter 4, it can be observed 

that the alignment between the Hollywood/Vine and Hollywood/Highland stations 

passes mainly through young alluvium, which may be the reason for the 

observed high magnitude of subsidence.  

In comparison with the deformation time history corresponding to point 

targets located along the Red Line alignment, the deformation time history for 
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point targets located in the vicinity of the Salt Lake oil field shows much larger 

settlements with a time linear trend. This indicates continuous deformation that 

was prevalent during the time period bracketed by acquisition dates of SAR data 

used in this study. 

For point targets located away from the Red Line and Salt Lake oil field 

deformation fields, data points in the deformation time history plots vary about 

zero and do not show the step that was observed in deformation time history for 

point targets situated along the tunnel. The random nature implied by the 

qualitative and quantitative signature of time series plots for these point targets 

are likely indicative of system noise as opposed to actual deformation. Given the 

location of these point targets, such a deformation time history conforms to the 

general expectation and more importantly, confirms that the time history plots for 

point targets located along the Red Line and the Salt Lake oil field are 

representative of deformation. 

5.3 Influence of Number of Scenes and Average Baseline on 
Data Processing Feasibility 

 
As explained in Chapter 3, the patch unwrapping step in the IPTA 

processing flow is critical in ensuring the robustness of the two-dimensional 

regression analysis that follows. The patch unwrapping step in IPTA is aimed at 

accomplishing phase unwrapping in the temporal domain. The temporal 

unwrapping approach is adopted in order to negate spatial sampling issues that 

arise from the irregular distribution of point targets in a given study area. This 

irregular spatial distribution of point targets renders the conventional spatial 
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phase unwrapping techniques of InSAR susceptible to unwrapping errors in the 

form of skipped cycles. It may be recalled from Chapter 2 that conventional 

phase unwrapping techniques are based on the assumption that the inherent 

unwrapped phase surface is adequately sampled in the spatial domain. 

Regression analyses performed with such erroneous unwrapped phase values 

can lead to incorrect phase dependence inferences.  

In practice, unless a satellite platform is tasked for regular SAR image 

acquisition over a region of interest, the number of SLCs available for IPTA 

analysis of any area, and the spatial and temporal baselines defining the 

resulting dataset, is dependent on the acquisition history associated with that 

area. In such instances, and given the criticality of phase unwrapping in obtaining 

reliable deformation histories of point targets, it would be very useful to quantify 

the characteristics of datasets that can be unwrapped successfully, i.e., without 

patches. Such quantification can be useful in determining the following: 

1. The feasibility of using IPTA for a study area based on the available SAR 

imagery, and 

2. Choice of specific SLCs that will be used for IPTA analysis of a study area 

given that sufficient SAR images of the study area are available for 

analysis. 

Keeping the above mentioned objectives in mind, it was sought to investigate the 

degree of success in unwrapping all records of datasets of varying sizes by 

characterizing the success or failure in unwrapping a dataset as a function of the 

average baseline of the dataset. As mentioned in Chapter 1, it was hypothesized 
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that the number of interferograms comprising a dataset and the resulting average 

baseline of the dataset are the most critical parameters affecting the success or 

failure of patch unwrapping. This section provides details pertaining to this 

second portion of the study. 

5.3.1 Patch Unwrapping Analysis 
 

As mentioned in Chapter 4, subsets of the 52 availabe SLCs acquired 

over the study area between 1992 and 2000 were generated for analysis. 

Table 5.1Table 5.1 provides the details of all the 94 datasets that were 

analyzed in this part of the study (Figure 5.6). Both initial and modified average 

absolute perpendicular baselines of the analyzed datasets are provided. The 

interferograms in the initially generated datasets that had patch unwrapping 

errors and those interferograms that were removed from the corresponding 

initially generated datasets in order to negate the patch unwrapping errors are 

indicated by their record numbers in the table. The record numbers indicated in 

Table 5.1 correspond to the interferograms represented in Table 4.3 in Chapter 

4. It can be seen from Table 5.1 and Figure 5.7 that, regardless of the method in 

which the datasets were generated, all the datasets analyzed can be classified 

into two groups:  

1. Datasets in which all constituent interferograms could be 

unwrapped without patch errors, and 

2. Datasets in which either some or all constituent interferograms 

were characterized by patch unwrapping errors. 



 

 140

Table 5.1 Details of datasets analyzed for patch unwrapping errors. “*” indicates 
datasets analyzed after masking point targets in the Santa Monica mountains. 
 

                 Before                     After Generation 

# # Pairs B-perp (m) Patches in Records Omitted # Pairs B-perp (m) Method 

1 9 43.32 All Unsuccessful     Incremental 
2 10 46.62 All Unsuccessful     Incremental 
3 11 49.60 All Unsuccessful     Incremental 
4 12 52.19 All Unsuccessful     Incremental 
5 13 55.03 All Unsuccessful     Incremental 
6 14 58.52 All Unsuccessful     Incremental 
7 15 61.98 None None 15 61.98 Incremental 
8* 15 68.71 All Unsuccessful     Incremental 
9* 15 77.60 All Unsuccessful     Incremental 

10* 15 86.27 All Unsuccessful     Incremental 
11* 15 107.02 All Unsuccessful     Incremental 
12* 15 117.49 All Unsuccessful     Incremental 
13* 15 127.46 All Unsuccessful     Incremental 
14* 15 137.30 All Unsuccessful     Incremental 
15* 15 147.19 All Unsuccessful     Incremental 
16* 15 156.62 All Unsuccessful     Incremental 
17 15 166.98 All Unsuccessful     Incremental 
18 15 181.87 All Unsuccessful     Incremental 
19 15 196.82 All Unsuccessful     Incremental 
20 15 252.57 All Unsuccessful     Random 
21 15 264.33 All Unsuccessful     Random 
22 15 368.66 All Unsuccessful     Random 
23 15 390.78 All Unsuccessful     Random 
24 15 232.12 All Unsuccessful     Random 
25* 20 87.08 48,50,51 48,50,51 17 90.03 Incremental 
26* 20 154.98 1,28,49,50,51 1,3,51 17 154.38 Incremental 
27* 20 167.29 1,28,37 1,50,51 17 171.65 Incremental 
28* 20 180.29 All Unsuccessful     Incremental 
29 20 206.20 All Unsuccessful     Incremental 
30 20 220.21 All Unsuccessful     Incremental 
31 20 233.86 All Unsuccessful     Incremental 
32* 20 280.11 Most Unsuccessful     Random 
33* 20 307.99 All Unsuccessful     Random 
34* 20 337.95 All Unsuccessful     Random 
35* 20 344.99 All Unsuccessful     Random 
36 20 387.03 All Unsuccessful     Random 
37* 20 655.76 All Unsuccessful     Incremental 
38* 25 112.62 3 3,21,51 22 113.99 Incremental 
39* 25 121.50 1,3 1,3,21,50,51 20 119.56 Incremental 
40* 25 132.94 28,51 1,3,28,51 21 131.85 Incremental 
41* 25 144.54 1,50,51 1,7,21 22 141.02 Incremental 
42* 25 156.24 1,3,4,28 1,3,4,49,50,51 19 146.77 Incremental 
43* 25 167.81 1,21,28 1,51 23 168.32 Incremental 

44* 25 179.20 1,3,4,21,28 1,3,4,7,51 20 173.37 Incremental 
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Table 5.1 contd. 

                 Before                     After Generation 

# # Pairs B-perp (m) Patches in Records Omitted # Pairs B-perp (m) Method 

45* 25 191.04 1,4,28 1,4,7,21,28 20 192.86 Incremental 
46* 25 202.83 1,3 1,3,4,50,51 20 208.19 Incremental 
47* 25 215.92 1,4,25 1,4,25,28,50 20 224.93 Incremental 
48 25 339.92 40 40 24 338.99 Pseudo 

49* 25 589.38 
Most 

Records 2,35 23 586.79 Incremental 
      50 26 357.18 None None 26 357.18 Pseudo 

51* 30 144.39 1,4,7,28 1,21 28 143.92 Incremental 
52* 30 155.23 1,7,21 1,21 28 155.53 Incremental 
53* 30 166.66 1,21,28 1,7,21,50,51 25 171.82 Incremental 
54 30 177.95 21 21 29 181.77 Incremental 
55 30 189.94 21 21 29 194.17 Incremental 
56 30 202.45 3,21 21 29 207.12 Incremental 
57* 30 279.24 All Unsuccessful     Incremental 
58* 30 360.42 1,4 1,4,28 27 376.68 Random 
59* 30 355.61 8,21 1,2,4,14,21,45 24 338.65 Random 
60* 30 289.17 All Unsuccessful     Random 
61* 30 296.19 18,30 None 30 296.19 Random 
62* 30 278.99 18, 30 1,3,4,20,48,50,51 23 309.09 Random 
63* 30 527.76 4,35,47 4,35,47 27 531.60 Incremental 
64 35 177.43 1,21 1,21 33 179.03 Incremental 
65 35 189.35 21 21 34 192.95 Incremental 
66* 35 201.75 21 1,3,49,50,51 30 209.06 Incremental 
67* 35 215.74 21 4,7,21,50,51 30 225.11 Incremental 
68* 35 231.86 1,21,28 1,21,28 32 241.68 Incremental 
69 35 248.77 21,35 21,35 33 242.46 Incremental 
70* 35 266.02 21,35 1,5,21,28,30,35 29 248.68 Incremental 
71* 35 283.44 35 21 34 289.80 Incremental 
72 35 301.39 7 35 34 291.47 Incremental 
73 35 321.68 44,46,50 1,35 33 314.71 Incremental 
74* 35 478.32 35 35 34 473.61 Incremental 
75 40 221.08 21 21 39 225.03 Incremental 
76 40 237.18 21 21,35 38 231.10 Incremental 
77 40 253.61 21 7,21 38 259.68 Incremental 
78* 40 270.41 21 4,7,21,35 36 265.92 Incremental 
79 40 287.29 21,35 7,21 37 295.14 Incremental 
80 40 304.05 21,35,50 21 38 310.12 Incremental 
81 40 322.06 21,35 21 38 328.59 Incremental 
82 40 340.92 21,35 21,35 37 340.29 Incremental 
83 40 360.72 None None 40 360.72 Incremental 
84* 40 380.93 None None 40 380.93 Incremental 
85* 40 403.68 28 28 39 411.99 Incremental 
86* 40 430.98 35 35 39 425.65 Incremental 
87 45 273.29 21 21 44 277.98 Incremental 

88 45 290.20 21 21 44 295.27 Incremental 
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Table 5.1 contd. 

                 Before                     After Generation 

# # Pairs B-perp (m) Patches in Records Omitted # Pairs B-perp (m) Method 

89 45 308.02 21 21 44 313.49 Incremental 
90 45 326.59 21 21 44 332.48 Incremental 
91 45 345.28 21 21,35 43 344.93 Incremental 
92 45 366.15 21 21,35 42 352.03 Incremental 
93 45 391.00 21 21,35 43 392.77 Incremental 

94 52 342.00 None None 52 342.00 All Pairs 

 

While patch unwrapping of some datasets classified into the first group 

could be accomplished without modification of the size of the initially generated 

datasets, patch unwrapping others necessitated modification of the initial dataset 

by means of discarding some interferograms from the analysis. As can be seen 

from Figure 5.7, the smallest dataset that could be unwrapped without patch 

errors contained 15 interferograms. The 15 interferogram dataset contained 

interferograms that were characterized by the lowest absolute perpendicular 

baselines among those characterizing the 51 single master interferograms 

computed for the study area.  

The 15 interferogram dataset was arrived at by beginning with a dataset 

containing the 10 lowest absolute perpendicular baseline interferograms 

computed for the study area and continually appending this dataset with an 

interferogram characterized by the least absolute perpendicular baseline among 

the interferograms not already in the dataset.  The flowchart depicting this 

method of dataset generation is shown in Figure 5.8. This approach for 

generating datasets is analogous to the incremental method of dataset 

generation using a sliding window as shown in Chapter 4.  
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Figure 5.6 All datasets analyzed for patch unwrapping errors characterized by 
the number of interferograms in the dataset and the resulting average baseline. 
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Figure 5.7 Datasets grouped based on success in patch unwrapping. Open 
symbols depict unsuccessful patch unwrapping while closed symbols depict 
successful patch unwrapping. 
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The only dissimilarity between the methods is that in this approach, the size of 

the sliding window was increased in steps of one rather than keeping its size the 

same and moving the sliding window to the right in steps of one.  

 

 

 
Figure 5.8 Dataset generation method adopted to establish dataset having least 
number of interferograms which patch unwrapped successfully. 
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The appended datasets were patch unwrapped and all interferograms in 

the dataset were checked for patch unwrapping errors. This cycle of appending 

and patch unwrapping a dataset was continued until all interferograms in the 

dataset could be unwrapped without patch errors. The subset that eventually 

unwrapped without patches contained 15 pairs. The average absolute 

perpendicular baseline of this subset was approximately 62 m with the absolute 

perpendicular baselines characterizing the interferograms in the dataset ranging 

between 12 m and 111 m. The IPTA reference manual states that patch 

unwrapping of small datasets (less than 25 interferograms) could be infeasible 

due to the lack of reliability of a solution constrained by so few interferograms.  In 

this context, the ability to successfully unwrap a dataset having only 15 

interferograms with very short baselines motivated the generation and analysis of 

the remainder of the datasets (as shown in Figure 5.6) to investigate the 

existence of a relationship between the average absolute perpendicular baseline 

of a dataset and the ability to successfully patch unwrap a dataset. 

5.3.2 Discussion 
 
The findings of this part of the study can be summarized as follows: 

1. As can be inferred from Table 5.1, the removal of some of the 

interferograms from the original datasets in order to facilitate unwrapping 

without patches sometimes resulted in an increase in the average 

perpendicular baseline of the modified dataset and sometimes did not 

change the average perpendicular baseline significantly in comparison 

with the average baseline of the original dataset. This suggests that the 
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average perpendicular baseline of the dataset might not be the dominant 

parameter influencing the occurrence of patches in the unwrapped 

interferograms.  

2. It is important to recall that the study area is located in an urban setting, 

where the quality of detected point targets has been proven to be suitable 

for point target interferometry. From Figure 5.7, it can be inferred that even 

with a priori information about the location of such point targets, 

unwrapping without patch errors can be very challenging when the 

number of interferograms available to constrain the regression is less than 

or equal to about 20. It may be recalled from Chapter 4 that the point 

targets detected using all the 52 SLCs were used for analysis of datasets 

generated from subsets of the SLC data stack.  

3. While it was possible to successfully patch unwrap a dataset initially 

containing 23 of the 25 highest absolute perpendicular baseline 

interferograms computed for the study area, doing the same with a 

dataset containing the 20 highest absolute perpendicular baseline 

interferograms was not possible. Excluding a few cases, and considering 

that a priori knowledge about the location of point targets was used to 

constrain the analysis for this part of the study, this indicates that at least 

20 - 25 interferograms are needed to constrain the regression reliably.  

4. As can be seen from Table 5.1, record number 21 which had a 

perpendicular baseline of 67.2 m was consistently difficult to unwrap 

without patch errors. This can be attributed to most of the area in the 
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interferogram represented by record 21 having phase contribution from 

atmospheric path delay. In the context of the multi-patch unwrapping 

approach being an attempt to solve the unwrapping problem in the 

temporal domain, atmospheric phase can be visualized as a jump in the 

temporal phase history of point targets. This phase jump can be difficult to 

resolve and results in unwrapping errors. Such unwrapping errors are 

similar to the unwrapping errors encountered while trying to solve the 

unwrapping problem in the spatial domain, where phase jumps resulting 

from irregular topographic relief can be difficult to resolve, given that the 

unwrapped phase field is assumed to be spatially smooth. As outlined in 

the IPTA reference manual, in some cases the best approach was to 

exclude interferograms with severe atmospheric distortions from the 

analysis in order to avoid patch unwrapping errors. 

5. As mentioned before, datasets that could not be unwrapped without patch 

errors were modified by removing interferograms. This resulted in datasets 

with size and average baseline values that were modified relative to the 

original dataset analyzed. When the datasets before and after removal of 

interferograms were plotted on the same graph (Figure 5.9), it was not 

possible to demarcate a distinct boundary separating all the datasets that 

could be unwrapped from the datasets that could not be unwrapped. This 

can be used as additional information to confirm that the average baseline 

of a dataset might not be the most dominant parameter influencing the 

ability to unwrap a dataset with the multi-patch approach.   
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Figure 5.9 Datasets with patch unwrapping errors and the corresponding 
datasets that resulted from omitting some interferograms to make patch 
unwrapping possible. Open symbols depict unsuccessful patch unwrapping while 
closed symbols depict successful patch unwrapping. 

 

6.  As can be seen in Figure 5.10, while analyzing the 52 scene dataset with 

the default standard deviation parameters suggested in the IPTA 

reference manual, the point targets located in the rugged region to the 

north-west of all interferograms were rejected from the analysis due to 

their standard deviations from the two dimensional regression model being 

greater than the threshold for acceptance.  

However, in cases where the size of datasets analyzed was less 

than 52, the point targets in the north-west region did not get masked out. 

This could be attributed to the estimated standard deviation from the 

regression model being lesser than the specified threshold of 1.2 radians. 
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The discrepancy in the standard deviation estimates derived for the same 

point targets when the analysis was constrained by differing numbers of 

interferograms exhibits that the list of point targets accepted for analysis of 

a study area can vary depending on the size of the dataset analyzed and 

hence the standard deviation threshold should be adjusted accordingly. In 

most cases, when the standard deviation threshold was not enough to 

reject point targets in the north-west region from analysis, it was found that 

interferograms affected by patch unwrapping errors had patches in only 

this region whereas the entire region representing the urban part of the 

study area was free of such errors. In some cases, the number of point 

targets in this region that were accepted for analysis based on the 

standard deviation threshold were so few that the existence of patches in 

the this part of the interferograms were difficult to discern by means of 

visual inspection.  

In cases where the standard deviation from the regression model 

as derived from the dataset was not sufficient to reject these point targets 

from the analysis, information from the 52 scene analysis was used and all 

point targets in the north-west region were masked out by user interaction. 

This was done in order to ensure the robustness of unwrapping in all 

datasets. Such datasets are represented by * in the first column of Table 

5.1. 
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Figure 5.10 Part of the SLC over the study area that was masked from point 
target analysis of some datasets.  
  

5.4 Analysis of Deformation Rates  
 

The slope of the best fit linear regression line that corresponds to the data 

points defining the deformation history of a point target yields an estimate of the 

deformation rate corresponding to that point target. The number of data points 

defining the deformation history of a point target is given by the number of 

interferograms used for IPTA analysis. In this section, results obtained on 

analyzing the deformation rates derived from IPTA for dependence on the 

number of interferograms constituting a dataset are presented. 
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5.4.1 Deformation Rate Comparison for Point Targets in Datasets without      
Patch Unwrapped Errors   

 
While analyzing for dependence of the ability to patch unwrap a dataset 

on the average baseline parameter (presented in Section 5.3), the datasets that 

patch unwrapped successfully were subjected to the remainder of the IPTA flow 

to obtain deformation rate estimates for all point targets located in the study area. 

The deformation rates obtained at the end of the IPTA processing flow 

were then compared to investigate for dependence on the average baseline of 

the dataset or dependence on the number of interferograms used for IPTA 

analysis. The deformation histories compared contain both time linear and non-

linear deformation components. To facilitate the comparison, point targets were 

selected at random locations in the study area and their deformation histories as 

obtained from different IPTA runs were plotted. The point target locations chosen 

for deformation history comparison are shown in Figure 5.11. In order to analyze 

dependence of the deformation histories on the average absolute perpendicular 

baseline defining the datasets, all datasets that patch unwrapped successfully 

were divided into two groups, namely 

1. Datasets with average absolute perpendicular baseline less than 200 m, 

and  

2. Datasets with average absolute perpendicular baseline greater than 200 

m.  

Figure 5.12 through Figure 5.20 compare the deformation histories of selected 

point targets as obtained when the study area was analyzed with datasets having 

(a) average absolute perpendicular baselines less than 200 m and (b) average 
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absolute perpendicular baselines greater than 200 m. The deformation history as 

obtained from the 52 pair dataset was chosen as the reference for comparison 

and hence is shown on all plots in Figure 5.12 through Figure 5.20. 

 
Figure 5.11 Point targets chosen for deformation rate comparison. 
 
 
The convention used in Figure 5.12 through Figure 5.20 was chosen in order to 

represent the datasets by the number of constituent interferograms, excluding 

the auto-pair, as well as the inherent average absolute perpendicular baseline. 

Hence, 51_349, for example, represents the 52 pair dataset (51 plus the auto-

interferogram) that had an average absolute perpendicular baseline of 349 m. 

The average absolute perpendicular baseline shown on the plots was rounded to 

the next integer for convenience in representation.  
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(b) 

 
Figure 5.12 Deformation history for point 47238. (a) Average perpendicular 
baseline less than 200 m, (b) Average perpendicular baseline greater than 200 
m. 51_349 indicates 51 non-zero baseline interferogram dataset with an average 
baseline of 349 m. 
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(b) 

 
Figure 5.13 Deformation history for point 47217. (a) Average perpendicular 
baseline less than 200 m, (b) Average perpendicular baseline greater than 200 
m. 51_349 indicates 51 non-zero baseline interferogram dataset with an average 
baseline of 349 m. 
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(b) 

 
Figure 5.14 Deformation history for point 47205. (a) Average perpendicular 
baseline less than 200 m, (b) Average perpendicular baseline greater than 200 
m. 51_349 indicates 51 non-zero baseline interferogram dataset with an average 
baseline of 349 m. 
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(b) 

 
Figure 5.15 Deformation history for point 43046. (a) Average perpendicular 
baseline less than 200 m, (b) Average perpendicular baseline greater than 200 
m. 51_349 indicates 51 non-zero baseline interferogram dataset with an average 
baseline of 349 m. 
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(b) 

 
Figure 5.16 Deformation history for point 34314. (a) Average perpendicular 
baseline less than 200 m, (b) Average perpendicular baseline greater than 200 
m. 51_349 indicates 51 non-zero baseline interferogram dataset with an average 
baseline of 349 m. 
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(b) 

 
Figure 5.17 Deformation history for point 30874. (a) Average perpendicular 
baseline less than 200 m, (b) Average perpendicular baseline greater than 200 
m. 51_349 indicates 51 non-zero baseline interferogram dataset with an average 
baseline of 349 m. 
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(b) 

 
Figure 5.18 Deformation history for point 19615. (a) Average perpendicular 
baseline less than 200 m, (b) Average perpendicular baseline greater than 200 
m. 51_349 indicates 51 non-zero baseline interferogram dataset with an average 
baseline of 349 m. 
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(b) 

 
Figure 5.19 Deformation history for point 16997. (a) Average perpendicular 
baseline less than 200 m, (b) Average perpendicular baseline greater than 200 
m. 51_349 indicates 51 non-zero baseline interferogram dataset with an average 
baseline of 349 m. 
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(b) 

 
Figure 5.20 Deformation history for point 58096. (a) Average perpendicular 
baseline less than 200 m, (b) Average perpendicular baseline greater than 200 
m. 51_349 indicates 51 non-zero baseline interferogram dataset with an average 
baseline of 349 m. 
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From the deformation history comparison plots shown above, it can be observed 

that the deformation (in centimeters) of a point target relative to  

1. the user-defined reference point 30251, and  

2. relative to the user defined temporal reference ERS1-11609, 

at a specific point in time is slightly different when derived from different subsets 

of data. However, the overall sense of the deformation (uplift or subsidence) and 

the deformation rate that can be inferred from the slope of the best-fit straight line 

through the deformation history are generally consistent with the 51 

interferogram dataset results.  

For a statistically robust quantification of the variability of the deformation 

time history as obtained from IPTA analysis using different datasets, a sample 

size greater than the number of datasets that patch unwrapped successfully is 

needed. The results obtained by statistically comparing deformation rates of point 

targets as obtained from an increased number of datasets is presented in 

Section 5.4.2.  

5.4.1.1 Deformation Rate Discrepancies for Point Targets 
 

In contrast to the observation of deformation rates that were consistent 

between IPTA analyses constrained by varying dataset sizes, comparing 

deformation rates obtained from different datasets yielded large discrepancies for 

some point targets. More specifically, it was found that subsidence as derived 

from some datasets, including the dataset having 51 interferograms, was being 

mapped as uplift and vice-versa.  



 

 163

A detailed examination of the outputs derived from each IPTA processing 

step for the point targets showing deformation rate discrepancies was performed. 

It was found that the unwrapped phase values being assigned to the point target 

at different points in time, as accomplished by patch unwrapping in the temporal 

domain, was different from the unwrapped phase values that were assigned to 

the same point target when temporal unwrapping was constrained by a dataset 

containing all 51 interferograms. In other words, inconsistent unwrapped values 

were obtained for some point target locations when the IPTA analysis was 

constrained with different datasets. These inconsistent unwrapped phase values 

translated into inconsistent deformation rates that were obtained at the end of the 

IPTA processing flow. 

It must be noted that the inconsistent values of unwrapped phase did not 

result in patch errors and hence could not be detected in the part of the study 

outlined in Section 5.3.1. Recall that unwrapping in the temporal domain was 

accomplished by means of the multi-patch method that relies on simultaneously 

resolving the phase unwrapping problem and dependence of the resulting 

unwrapped phase on time and perpendicular baseline by means of the two-

dimensional regression. Figure 5.21 and Figure 5.22 show the results of two-

dimensional regression for one such point target with respect to the reference 

point, when the solution was  

1. Constrained with a dataset having 18 non-zero baseline interferograms, 

and 

2. Constrained with all 51 non-zero baseline interferograms.  
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The results of the two-dimensional regression shown in Figure 5.21 and Figure 

5.22 correspond to the first iteration of the IPTA processing flow. The multi-patch 

approach solves the unwrapping problem and infers baseline and time 

dependence of the unwrapped phase simultaneously. However, as mentioned in 

Chapter 3, although the baseline and time dependencies are inferred from the 

unwrapped phase, the GAMMA IPTA module rewraps the unwrapped phase in 

the graphical representation of the two-dimensional regression analysis. Hence, 

it must be noted that the relative phase values represented by the cross marks in 

Figure 5.21 and Figure 5.22 are rewrapped versions of the unwrapped phase.  

Due to the difference in the unwrapped phase values that were inferred for 

point target # 19655 for different points in time, the inferred baseline 

dependence- which translates into an incremental relative height correction, and 

the inferred time dependence- which translates into an incremental linear 

deformation rate, are different for the 51 interferogram case and the 18 

interferogram case. Due to the iterative nature of the IPTA processing flow, an 

inconsistency in the inferred linear deformation rate and height correction at the 

end of the first iteration propagates into the rest of the process, thus resulting in a 

discrepancy in the inferred linear deformation rates and height corrections at the 

end of the analysis. Such discrepancies are illustrated in Figure 5.23 through 

Figure 5.26. 

The star and the open circle represent deformation in terms of radians of 

phase as inferred from two IPTA analyses constrained by different datasets. The 

open triangles indicate the difference between the unwrapped phase values at  
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Figure 5.21 Two dimensional regression analysis for point target 19655 with 
respect to point target 30251 constrained with 51 interferograms. 
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Figure 5.22 Two dimensional regression analysis for point target 19655 with 
respect to point target 30251 constrained with 18 interferograms. 
 
 
specific points in time. Similar unwrapped phase values as obtained from the two 

IPTA analyses being compared would result in the triangles being plotted along 

the zero axis. It can be seen from Figure 5.23 through Figure 5.26 that any 

difference in the unwrapped phase values as obtained from the two IPTA 

analyses, translates into a difference in the deformation rates inferred. It can be 
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inferred from the deformation history that the deformation phase shown in Figure 

5.23 through Figure 5.26 have both time linear and non-linear components. 

From Figure 5.23 through Figure 5.26, it can also be observed that such 

unwrapped phase discrepancies do not correspond to only very small datasets. 

Figure 5.24 shows an example where a discrepancy in the inferred deformation 

rate of a point target was observed even when IPTA analysis was constrained 

with 44 interferograms. The significance of this finding can be evaluated in the 

context of the situation when only those SAR scenes that would result in 

inconsistent deformation rate inference are available for analysis. In order to 

mitigate such instances, it is recommended that  

1. The values of  standard-deviation-from-linear-fit parameters that can be  

used to mitigate such inconsistent unwrapped phase values as obtained 

from multi_def_pt must be investigated, and 

2. Keeping in mind that the choice of point target candidates and that their 

quality control was accomplished by means of using the default 

parameters recommended in the IPTA reference manual, the parameter 

values that can help reject point targets corresponding to such 

inconsistent deformation rate inferences should be investigated.   
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Figure 5.23 Deformation phase comparison for point target number 58096 
located at the middle of the subsidence zone resulting due to oil pumping.  
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Figure 5.24 Deformation phase comparison for point number 16928. 
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Figure 5.25 Deformation phase comparison for point number 14858. 
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Figure 5.26 Deformation phase comparison for point number 44204. 
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5.4.2 Statistical Assessment of Dependence of Deformation Rate Estimates 
on the Size of Dataset 

 
In practice, the size of a dataset used for point target analysis of a site 

depends on the number of SAR images available for analysis. In such an event, 

having an estimate of the variability associated with the deformation rates 

derived from point target analysis as a function of the size of the dataset would 

be valuable to quantify the associated reliability.  

Motivated by the value of such information, the third objective of the study 

was to assess and quantify the variation of deformation rates associated with 

point targets as a function of the number of interferograms used to constrain the 

point target analysis. Point target analysis for this part of the study was applied to 

four groups of datasets that were generated by random sampling of the 51 

correctly patch-unwrapped interferograms (obtained from point target analysis 

aimed at accomplishing the first objective of the study). The four groups were 

classified depending on the size of the datasets comprising each group. Not 

counting the auto-interferogram, the four groups of datasets that were used in 

this part of the study consisted of: (1) 15 interferograms, (2) 25 interferograms, 

(3) 35 interferograms and (4) 40 interferograms. Each group consisted of one 

thousand datasets. Figure 5.27 shows a schematic illustrating the method 

adopted to calculate the mean and standard deviation of deformation rates of all 

point targets considered for analysis in this part of the study. In effect, the 

random sampling method adopted for sensitivity analysis represents a modified 

bootstrap approach. 
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Figure 5.27 Illustration of the method adopted to calculate the mean and 
standard deviation of deformation rates of all point targets considered for 
analysis. The uncertainty is obtained from the GAMMA IPTA module and 
represents the standard error of the slope of the best fit linear regression line. 
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5.4.2.1 Analysis of Linear Deformation Rates 
 

The point target locations chosen for deformation rate comparison are the 

same as those represented in Figure 5.11. Figure 5.28 shows the mean 

deformation rate corresponding to datasets of varying sizes as obtained for the 

point targets considered for analysis. The deformation rates corresponding to the 

51 interferogram dataset, shown in Figure 5.28, correspond to the deformation 

rates obtained while assessing the first objective. The deformation rates 

corresponding to the 51 interferogram dataset are plotted as a reference for 

comparison with the mean deformation rates for the same point targets as 

obtained from datasets of varying sizes. The mean deformation rates 

corresponding to each dataset size, as represented in Figure 5.28, were derived 

from one thousand estimates since it may be recalled that four groups of one 

thousand datasets were generated with the number of interferograms in each 

dataset depending upon the group to which the dataset belonged, i.e., 15, 25, 35 

and 40.  It can be seen from Figure 5.28 that the mean deformation rates for all 

point targets chosen for analysis are consistent with the deformation rates 

derived for the same point targets when point target analysis was constrained 

with 51 interferograms.  

The standard deviation of the one thousand estimates of deformation 

rates about the mean corresponding to each dataset group is presented in Figure 

5.29. As can be seen from Figure 5.29, the standard deviation of deformation 

rates from the mean is consistently less than 0.5 mm/yr for all point targets 

considered for analysis and decreases monotonically with an increase in the  
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Figure 5.28 Mean of linear deformation rate estimates calculated from one 
thousand datasets. Symbols shown in the legend represent point target numbers. 
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Figure 5.29 Standard deviation of linear deformation rate estimates calculated 
from one thousand datasets. Symbols shown in the legend represent point target 
numbers. 
 



 

 176

number of interferograms used for point target analysis.   

5.4.2.2 Analysis of Linear Deformation Rate Uncertainty 
 
As can be inferred from any of the two-dimensional regression analysis plots 

shown in Chapters 3 and 4, some uncertainty can be associated with the best-fit 

linear regression line that relates the independent and dependent variables. 

Hence, the final estimates of DEM height corrections and linear deformation 

rates derived from point target analysis can be associated with corresponding 

estimates of uncertainty. These estimates of uncertainty, as obtained from the 

GAMMA IPTA module, represent the standard error of the best fit linear 

regression line, and are expressed in mm/yr. Future references to this term are 

made using the symbol UG. At the end of the IPTA processing flow, estimates of 

UG are obtained for each point target considered for analysis. Since this study 

emphasizes on the deformation rates derived from point target analysis, the 

uncertainties (UG) associated with the deformation rates were analyzed for 

dependence on the number of interferograms used for analysis. This comparison 

was developed for the point targets shown in Figure 5.11. As can be seen from 

Figure 5.30, the mean derived from one thousand estimates of UG corresponding 

to one thousand estimates of the deformation rate associated with a point target, 

(a) is less than 0.7 mm/yr for all point targets considered for analysis and (b) 

decreases monotonically with an increase in the number of interferograms used 

for point target analysis. As can be seen from Figure 5.31, the standard deviation 

of UG as derived from one thousand estimates shows a similar trend with the 

magnitude of estimates for all point targets considered for  
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Figure 5.30 Mean of uncertainty (UG) associated with linear deformation rate 
estimates. Each estimate of the mean shown in the plot was calculated from one 
thousand datasets. Symbols shown in the legend represent point target numbers. 
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Figure 5.31 Standard deviation of uncertainty (UG) associated with linear 
deformation rate estimates. Each standard deviation estimate shown in the plot 
was calculated from one thousand datasets. Symbols shown in the legend 
represent point target numbers. 
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Figure 5.32 Dependence of the mean of uncertainty (UG) on the associated 
absolute deformation rates and the size of the dataset used for analysis.  
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Figure 5.33 Dependence of the standard deviation of uncertainty (UG) on the 
associated absolute deformation rates and the size of the dataset used for 
analysis. 
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analysis being less than 0.2 mm/yr. 

Irrespective of the deformation rate of a point target, the mean of the 

associated uncertainty (UG), as derived from one thousand estimates, is shown 

to decrease with an increase in the size of the dataset used for IPTA analysis 

(Figure 5.32). However, no relation between the mean of the uncertainty (UG) 

and the corresponding deformation rates is evident. Similarly, irrespective of the 

deformation rate of a point target, the standard deviation of the associated 

uncertainty (UG), as derived from one thousand estimates, is shown to decrease 

with an increase in the size of the dataset used for IPTA analysis (Figure 5.33). 

However, no relation between the standard deviation of the uncertainty (UG) and 

the corresponding deformation rates is evident. 

5.4.2.3 Relationship between Magnitude of Deformation Rate and its 
Uncertainty  

 
Figure 5.34 shows the relationship between the coefficient of variation 

corresponding to a range of linear deformation rates and the size of the dataset 

used for point target analysis. The coefficient of variation shown in Figure 5.34 is 

the ratio of the standard deviation to the mean of the absolute linear deformation 

rates corresponding to a point target. The absolute value of the mean 

deformation rates were considered because deformation rates derived with 

respect to the user defined reference point-30251, were associated with a 

positive or a negative sign depending on whether the nature of deformation in 

question was uplift or subsidence. It may be recalled that both the mean and the 

standard deviation associated with linear deformation rate estimates 
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corresponding to a point target analyzed with a particular dataset size were 

derived from one thousand estimates.  

As can be inferred from Figure 5.34, the effect of the size of the dataset 

used for point target analysis on the variability in deformation rate estimates 

decreases exponentially with an increase in the absolute linear deformation rate 

of a point target. The effect is most pronounced for point targets associated with 

linear deformation rates less than about 2 mm/yr. More specifically, while it was 

found that the standard deviation associated with deformation rates of all ranges 

considered for analysis varied inversely as a function of the number of 

interferograms used to constrain the IPTA analysis, the difference between the 

standard deviation estimates associated with deformation rates less than 2 

mm/yr as achieved from point target analysis of varying dataset sizes was found 

to be more significant than the difference between standard deviation estimates 

associated with higher deformation rates. It must be recalled that the estimates of 

coefficient of variation shown in Figure 5.34 were derived by having a priori 

knowledge about the location of point targets in an urban setting and their 

corresponding unwrapped phase values and can hence be considered to 

represent the best case scenario. Figure 5.35 shows that the coefficient of 

variation of deformation rates of all point targets chosen for analysis decreased 

with an increase in the size of the dataset analyzed.   
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Figure 5.34 Coefficient of variation of deformation rate for a range of mean 
deformation rates. 
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Figure 5.35 Coefficient of variation of deformation rates of point targets as 
obtained from the analysis of datasets of varying sizes. 
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Figure 5.36 Dependence of the standard deviation of deformation rate on the 
associated absolute deformation rates and the size of the dataset used for 
analysis. 
 

From Figure 5.36, it can be observed that, irrespective of the deformation 

rate of a point target, the standard deviation of the deformation rate as derived 

from one thousand estimates, decreases with an increase in the size of the 

dataset used for IPTA analysis. However, from Figure 5.36, no relation between 

the standard deviation of the deformation rate and the corresponding deformation 

rates is evident. 

5.4.2.4 Discussion 
 

The estimates of mean and standard deviation of deformation rates and 

related uncertainty (UG) presented in Sections 5.4.2.1 and 5.4.2.2 were derived 

from a representative sample containing one thousand datasets. If only one 

dataset is available for IPTA analysis, the variability or precision that can be 
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associated with the derived deformation rates and the corresponding uncertainty 

(UG), can be estimated using the mean and standard deviation estimates 

reported in Sections 5.4.2.1 and 5.4.2.2.  

For this study, estimates of such precision are expressed in terms of the 

range of values bounding 95% of the one thousand estimates of deformation rate 

and associated uncertainty (UG). Since the estimates of the standard deviation of 

deformation rates and the associated uncertainty (UG) were derived from one 

thousand samples, it was assumed that the sample standard deviation was 

representative of the population standard deviation.   

Provided that the underlying population is normally distributed, the range 

of values bounding 95% of the one thousand estimates of deformation rate and 

associated uncertainty (UG) can be expressed as:  

                  ( )σ96.195.0 ±= xRange                                                                      (5.1) 

where, x and σ represent estimates of the mean and standard deviation 

respectively. As can be seen from Equation 5.1, the interval defined by the range 

of values bounding 95% of the one thousand estimates of deformation rate, is a 

function of the standard deviation that can be associated with the mean (Ang and 

Tang, 1975).  

 For this study, the assumption of normality of the distributions defining 

one thousand estimates of deformation rates and one thousand estimates of the 

associated uncertainty (UG), was validated by means of plotting a histogram and 

the corresponding normal probability plot. The histogram and normal probability 

plots corresponding to deformation rates and associated uncertainty (UG), as 
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obtained for point target number 58096, are shown in Figure 5.37 through Figure 

5.40 below. The data shown in Figure 5.37 through Figure 5.40 represent the 

deformation rates and associated uncertainty (UG) that were obtained from one 

thousand IPTA runs, wherein each IPTA run was constrained with 15 

interferograms and 25 interferograms respectively. The histograms and normal 

probability plots corresponding to the estimates of the deformation rate of all 

other point targets considered for analysis and the associated uncertainty (UG) 

are shown in Appendices A and B.  

The histogram represents the number of occurrences of a range of data 

values (deformation rates, associated uncertainty(UG)). The distribution outlined 

by the solid line in the histogram plot corresponds to the normal distribution with 

a mean and standard deviation equal to the ones estimated from the data 

represented by the histogram. The data represented in the histogram are 

denoted by cross marks on the normal probability plot. The dashed line on the 

normal probability plot denotes the straight line along which the cross marks 

should plot if the data represented by the cross marks are normally distributed. 

As can be inferred from the histograms and normal probability plots shown in 

Figure 5.37 through Figure 5.40 and in Appendices A and B, deviations from the 

normal distribution are concentrated at the tails of the histogram i.e., below 10th 

percentile and above 90th percentile, whereas the frequency of occurrence of the 

rest of the data follows a normal distribution. 
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Figure 5.37  Deformation rates for point target #58096 as calculated from one 
thousand datasets each containing 15 interferograms. The histogram is shown to 
the left and the normal probability plot is shown to the right. 
 

 

Figure 5.38 Uncertainty (UG) associated with deformation rates for point target 
#58096 as calculated from one thousand datasets each containing 15 
interferograms. The histogram is shown to the left and the normal probability plot 
is shown to the right. 
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Figure 5.39 Deformation rates for point target #58096 as calculated from one 
thousand datasets each containing 25 interferograms. The histogram is shown to 
the left and the normal probability plot is shown to the right.  
 

 

Figure 5.40 Uncertainty (UG) associated with deformation rates for point target 
#58096 as calculated from one thousand datasets each containing 25 
interferograms. The histogram is shown to the left and the normal probability plot 
is shown to the right. 
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This was used as sufficient proof to assume that the deformation rate and 

associated uncertainty (UG) of all point targets considered for analysis follow a 

normal distribution. Therefore, Equation 5.1 was used to calculate the range of 

values bounding 95% of the data used to derive the mean and the standard 

deviation estimates. 

The mean deformation rate, the corresponding standard deviation and the 

value representing the 95% interval bound corresponding to all point targets 

considered for analysis is shown in Table 5.2 through Table 5.5. The (95% 

Range/2) parameter shown in the tables represents ( )σ96.1 .  

 

Table 5.2 Deformation rate statistics estimated from point target analysis of one 
thousand datasets containing 15 interferograms each. 
 
 

Point µ σ (95%Range)/2 
Target # (mm/yr) (mm/yr) (mm/yr) 

16997 0.00 0.19 0.37 
19615 0.53 0.36 0.71 
34314 1.17 0.32 0.62 
43046 -1.38 0.44 0.86 
46809 2.15 0.46 0.90 
47205 0.59 0.17 0.34 
47217 -6.35 0.38 0.74 
47238 -3.34 0.36 0.71 
47395 1.30 0.29 0.57 
50586 -4.45 0.30 0.59 
50658 -0.80 0.37 0.73 
54251 -7.66 0.27 0.52 
58096 -8.28 0.39 0.77 

 

 

 

 
 



 

 188

Table 5.3  Deformation rate statistics estimated from point target analysis of one 
thousand datasets containing 25 interferograms each. 
 
 

Point µ σ (95%Range)/2 
Target # (mm/yr) (mm/yr) (mm/yr) 
16997 0.15 0.14 0.27 
19615 0.50 0.29 0.56 
34314 1.28 0.24 0.48 
43046 -1.14 0.34 0.67 
46809 2.08 0.37 0.72 
47205 0.72 0.12 0.24 
47217 -6.40 0.29 0.57 
47238 -3.23 0.28 0.56 
47395 1.13 0.20 0.39 
50586 -4.32 0.23 0.44 
50658 -0.61 0.28 0.55 
54251 -7.65 0.21 0.41 
58096 -8.39 0.31 0.61 

 
 
 

Table 5.4  Deformation rate statistics estimated from point target analysis of one 
thousand datasets containing 35 interferograms each. 
 
 

Point µ σ (95%Range)/2 
Target # (mm/yr) (mm/yr) (mm/yr) 
16997 0.24 0.10 0.19 
19615 0.49 0.21 0.41 
34314 1.33 0.16 0.31 
43046 -1.02 0.24 0.47 
46809 2.05 0.26 0.52 
47205 0.80 0.08 0.15 
47217 -6.42 0.21 0.41 
47238 -3.16 0.21 0.42 
47395 1.05 0.14 0.27 
50586 -4.24 0.15 0.30 
50658 -0.51 0.20 0.40 
54251 -7.65 0.15 0.29 
58096 -8.39 0.21 0.42 
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Table 5.5  Deformation rate statistics estimated from point target analysis of one 
thousand datasets containing 40 interferograms each. 
 
 

Point µ σ (95%Range)/2 
Target # (mm/yr) (mm/yr) (mm/yr) 
16997 0.26 0.08 0.15 
19615 0.47 0.16 0.32 
34314 1.34 0.13 0.25 
43046 -1.00 0.19 0.37 
46809 2.05 0.21 0.41 
47205 0.81 0.06 0.12 
47217 -6.43 0.16 0.32 
47238 -3.15 0.16 0.31 
47395 1.02 0.11 0.22 
50586 -4.22 0.12 0.24 
50658 -0.49 0.17 0.33 
54251 -7.65 0.11 0.22 
58096 -8.40 0.17 0.34 

 
 
 

In section 5.4.2, the standard deviation of deformation rates of all point 

targets considered for analysis and standard deviation of the associated 

uncertainty (UG), were shown to decrease monotonically with an increase in the 

number of interferograms constituting the dataset used for point target analysis. 

Additionally, the mean and standard deviation estimates were derived from a 

constant sample size of one thousand for all point targets. Given these 

constraints and given that estimates of the range of values bounding 95% of the 

data is a function of the standard deviation and the sample size used in its 

derivation, the precision of the mean estimates for all point targets, as inferred 

from the (95% Range/2) parameter, varies between ± 0.10 mm/yr and ± 0.90 

mm/yr. The data presented for some point targets in Table 5.2 through Table 5.5 

are summarized in Figure 5.41. From Figure 5.41 and Table 5.2 through Table 
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5.5, it is observed that a lower variability in the estimated deformation rates can 

be expected when point target analysis is constrained with larger datasets. 
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Figure 5.41 95% interval bounds (± σ96.1 ) of deformation rates estimated from 
datasets of varying sizes.  
 

The variability that can be associated with the uncertainty (UG) 

corresponding to the deformation rates of all point targets considered for analysis 

are shown in Table 5.6 through Table 5.9. As can be inferred from the tables, 

estimates of the range of values bounding 95% of the data corresponding to the 

uncertainty (UG) associated with the deformation rates of all point targets 

analyzed, ranges between ± 0.01 mm/yr to ± 0.30 mm/yr. The data presented for 

some point targets in Table 5.6 through Table 5.9 are summarized in Figure 5.42. 

Data for only two point targets are shown in Figure 5.42 to facilitate clarity in 

presentation. 
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Table 5.6 Statistics of uncertainty of deformation rate (UG) estimated from point 
target analysis of one thousand datasets containing 15 interferograms each. 
 
 

Point µ σ (95%Range)/2 
Target # (mm/yr) (mm/yr) (mm/yr) 
16997 0.22 0.05 0.10 
19615 0.38 0.07 0.14 
34314 0.35 0.08 0.16 
43046 0.53 0.13 0.25 
46809 0.58 0.12 0.24 
47205 0.17 0.03 0.07 
47217 0.42 0.08 0.16 
47238 0.38 0.07 0.14 
47395 0.55 0.11 0.22 
50586 0.22 0.06 0.11 
50658 0.41 0.11 0.22 
54251 0.36 0.13 0.25 
58096 0.45 0.08 0.16 

 
 

 
Table 5.7 Statistics of uncertainty of deformation rate (UG) estimated from point 
target analysis of one thousand datasets containing 25 interferograms each. 
 
 

Point µ σ (95%Range)/2 
Target # (mm/yr) (mm/yr) (mm/yr) 
16997 0.18 0.03 0.06 
19615 0.31 0.04 0.08 
34314 0.28 0.04 0.08 
43046 0.44 0.08 0.15 
46809 0.45 0.06 0.12 
47205 0.15 0.02 0.04 
47217 0.35 0.05 0.09 
47238 0.32 0.04 0.07 
47395 0.40 0.07 0.13 
50586 0.19 0.03 0.06 
50658 0.33 0.06 0.12 
54251 0.30 0.07 0.14 
58096 0.34 0.05 0.09 
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Table 5.8 Statistics of uncertainty of deformation rate (UG) estimated from point 
target analysis of one thousand datasets containing 35 interferograms each. 
 
 

Point µ σ (95%Range)/2 
Target # (mm/yr) (mm/yr) (mm/yr) 
16997 0.15 0.02 0.04 
19615 0.27 0.02 0.05 
34314 0.24 0.03 0.05 
43046 0.37 0.05 0.09 
46809 0.39 0.03 0.06 
47205 0.13 0.01 0.02 
47217 0.30 0.03 0.06 
47238 0.28 0.02 0.04 
47395 0.32 0.04 0.08 
50586 0.17 0.02 0.04 
50658 0.29 0.04 0.07 
54251 0.26 0.04 0.08 
58096 0.28 0.03 0.05 

 
 

Table 5.9 Statistics of uncertainty of deformation rate (UG) estimated from point 
target analysis of one thousand datasets containing 40 interferograms each. 
 
 

Point µ σ (95%Range)/2 
Target # (mm/yr) (mm/yr) (mm/yr) 
16997 0.14 0.01 0.03 
19615 0.25 0.02 0.04 
34314 0.22 0.02 0.04 
43046 0.36 0.03 0.07 
46809 0.36 0.02 0.05 
47205 0.12 0.01 0.02 
47217 0.28 0.02 0.04 
47238 0.27 0.02 0.03 
47395 0.30 0.03 0.06 
50586 0.16 0.01 0.03 
50658 0.27 0.03 0.05 
54251 0.25 0.03 0.06 
58096 0.26 0.02 0.04 
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Figure 5.42 95% interval bounds (± σ96.1 ) of the uncertainty (UG) associated 
with deformation rates estimated from datasets of varying sizes. 
 
From Figure 5.42 and Table 5.6 through Table 5.9, it is observed that a lower 

variability in the uncertainty (UG) associated with the estimated deformation rates 

can be expected when point target analysis is constrained with larger datasets. 

5.5 Summary 
 

Results obtained on assessing the objectives of this study were presented 

in this chapter. A discussion of the inferred results was presented in each 

section.  

The main findings of this study indicate that small deformation features 

can be detected spatially and temporally using IPTA. With respect to the 

influence of the dataset size on the deformation estimates derived using IPTA, it 
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was observed that, for a given point target, the deformation rates derived from 

large datasets were less variable than the deformation rates derived from smaller 

datasets. The dataset size was observed to have a greater influence on the 

variability of deformation rates for point targets associated with deformation rates 

less than 2mm/yr. It was also observed that the variability in the uncertainties that 

can be associated with the deformation rate of a point target depends on the size 

of the dataset used for analysis. Larger datasets were observed to yield smaller 

variability of the deformation rate uncertainty for a point target. 

It is of importance to note that the results derived from this study are 

representative of a small study area situated in an urban setting. Performing 

similar studies for bigger sites and those located in different settings will be 

useful in a more comprehensive characterization of the technique. Detailed 

conclusions that were inferred from the findings of this study are presented in the 

next chapter.  



 195

6. CONCLUSIONS AND RECOMMENDATIONS 
 
 

The scope of the work presented in this document was designed to 

address three main objectives, namely: 

1. Evaluate the feasibility of using IPTA to detect small spatial-scale 

deformation features by computing the deformation time histories 

resulting from the construction of the Red Line in Los Angeles, 

2. Investigate the influence of dataset characteristics on the application of 

the conventional IPTA processing flow, and 

3. Perform an analysis to quantify:  

a. the variability associated with deformation rate estimates 

derived from IPTA, and  

b. the dependence of the deformation rate estimates on the 

number of satellite acquisitions used to constrain the analysis. 

The conclusions that were derived after addressing each of the objectives are 

presented in this chapter.  

6.1 Deformation Detection in Study Area (Objective 1) 
 

With respect to the use of point target interferometry to detect deformation 

in the study area, the findings are as follows: 

1. The localized deformation associated with the construction of the Los 

Angeles Red Line for 1992-2000 was successfully detected using 

IPTA. In addition, a much larger deformation feature associated with 

the abandoned Salt Lake oil field was also detected.  
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2. The temporal deformation plots corresponding to point targets located 

over the Red Line showed an episodic event that was distinct from the 

deformation signatures observed at other locations within the study 

area. More specifically, 

a. A distinct step in the deformation time series was observed for 

point targets located along segment 3 of the Red Line alignment 

situated along Hollywood Boulevard. The magnitude of 

subsidence corresponding to the step in the deformation time 

series ranged between ½ inch and 1 inch in the satellite line of 

sight direction. 

b. In contrast to the episodic  nature of the temporal signature that 

was detected for point targets along the Red Line, the 

deformation time history for point targets located in the vicinity 

of the Salt Lake oil field showed a monotonic subsidence trend. 

For point targets located at the center of the oil field, a total 

subsidence of 8 cm in the satellite line of sight direction was 

detected for the time period between 1993 and 2000.  

c. Deformation time histories for randomly selected point targets 

located outside the two prominent deformation fields in the 

study area exhibited fluctuations about zero deformation.   
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6.2 Influence of SAR Image Acquisition Parameters on IPTA 
Processing (Objective 2) 

 
With respect to the analysis of the influence of SAR image acquisition 

parameters on the ability to unwrap a dataset without patch errors, the findings 

are as follows: 

1. It was not possible to establish a clear relationship between the 

average perpendicular baseline defining a dataset and the occurrence 

of patch errors during temporal unwrapping of the interferograms 

constituting the dataset. 

2. Considering the urban setting characterizing the study area, where the 

quality of detected point targets has been proven to be suitable for 

point target interferometry, and considering that a priori information 

about the location of such point targets was used in the analysis of this 

part of the study, it was found that few datasets containing less than 

about 20 interferograms could be unwrapped without patch errors. 

Additionally, it was found that the dataset containing 23 interferograms 

characterized by the highest baselines, unwrapped without patch 

errors. This result can be used to infer the need for about 20-25 

interferograms to successfully perform point target analysis of small 

study areas located in urban settings. 
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6.3 Dependence of Deformation Rates on Dataset Size (Objective 
3) 

 
With respect to the analysis that was performed to quantify the influence 

of the size of a dataset used for IPTA analysis on the variability of the 

deformation rate estimates, the findings are as follows: 

1. The standard deviation of one thousand estimates of deformation rates 

about the mean was found to be consistently less than 0.5 mm/yr for 

all point targets considered for analysis and was found to decrease 

monotonically with an increase in the number of interferograms used 

for point target analysis.  

2. A similar trend was observed for the mean and standard deviation of 

uncertainty (UG) that was associated with one thousand estimates of 

the linear deformation rate of a point target. While the mean 

uncertainty (UG) associated with the deformation rates of all point 

targets analyzed was less than 0.6 mm/yr, the magnitude of the 

estimates of standard deviation of uncertainty (UG) was found to be 

less than 0.2 mm/yr. 

3. The coefficient of variation of deformation rate for point targets 

associated with deformation rates greater than 2 mm/yr, was observed 

to be similar irrespective of the size of the dataset used in their 

estimation. However, the coefficient of variation of deformation rate for 

point targets associated with deformation rates less than about 2 

mm/yr was observed to be greatly reduced when the number of 
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interferograms used to constrain the IPTA analysis was increased from 

15 to 40. 

4. The coefficient of variation of deformation rates of all point targets 

chosen for analysis was observed to decrease with an increase in the 

size of the dataset analyzed. 

5. Irrespective of the deformation rate of a point target, the mean of the 

associated uncertainty (UG), as derived from one thousand estimates, 

was observed to decrease with an increase in the size of the dataset 

used for IPTA analysis. However, no clear relation between the mean 

of the uncertainty (UG) and the corresponding deformation rates was 

identified.  

6. Irrespective of the deformation rate of a point target, the standard 

deviation of the associated uncertainty (UG), as derived from one 

thousand estimates, was observed to decrease with an increase in the 

size of the dataset used for IPTA analysis. However, no clear relation 

between the standard deviation of the uncertainty (UG) and the 

corresponding deformation rates was identified. 

6.4 Recommendations 
 

To facilitate further characterization of point target interferometry, the 

following recommendations are made: 

1. The baseline separating the available SAR acquisitions for a site, and 

the time of their acquisition, are the two parameters that are available 

to aid in deciding the composition of a dataset that would be used for 
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point target analysis. This study addressed the influence of the 

baseline on successfully patch unwrapping a dataset. It is 

recommended that future studies investigate the dependence of patch 

unwrapping success on the time period separating the SAR 

acquisitions chosen to constitute a dataset.  

2. In this study, the multi-patch approach to unwrap all datasets was 

performed by adopting the parameters recommended for the standard 

deviation of phase from the two dimensional regression. An 

investigation into the influence of different phase standard deviation 

parameters is recommended to determine the range of parameter 

values that can be used to successfully patch unwrap study areas 

located in different settings.  

3. The statistical estimates of variability that were associated with 

deformation rates of point targets in this study area are representative 

of an urban setting. Investigation of similar estimates of variability 

associated with point targets located in different settings will be useful 

in further characterization of IPTA.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure A.1 Histogram and corresponding normal probability plot of deformation 
rate for point target #16997, as inferred from one thousand datasets containing 
(a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(a) 
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(c)  

 
(d) 

 
Figure A.2 Histogram and corresponding normal probability plot of deformation 
rate for point target #19615, as inferred from one thousand datasets containing 
(a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(a) 

 
(b) 

 
(c)  

 
(d) 

 

Figure A.3 Histogram and corresponding normal probability plot of deformation 
rate for point target #34314, as inferred from one thousand datasets containing 
(a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(a) 

 
(b) 

 
(c)  

 
(d) 

 
Figure A.4 Histogram and corresponding normal probability plot of deformation 
rate for point target #43046, as inferred from one thousand datasets containing 
(a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(c)  

 
(d)  

 
Figure A.5 Histogram and corresponding normal probability plot of deformation 
rate for point target #47205, as inferred from one thousand datasets containing 
(a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs.  
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(a) 
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(d) 

 
Figure A.6 Histogram and corresponding normal probability plot of deformation 
rate for point target #47217, as inferred from one thousand datasets containing 
(a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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Figure A.7 Histogram and corresponding normal probability plot of deformation 
rate for point target #47238, as inferred from one thousand datasets containing 
(a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(a) 
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(d) 

 
Figure A.8 Histogram and corresponding normal probability plot of deformation 
rate for point target #58096, as inferred from one thousand datasets containing 
(a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(a) 
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(c) 

 
(d) 

 

Figure B.1 Histogram and corresponding normal probability plot of deformation 
rate uncertainty (UG) for point target #16997, as inferred from one thousand 
datasets containing (a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(a) 

 
(b) 

 
(c)  

 
(d) 

 
Figure B.2 Histogram and corresponding normal probability plot of deformation 
rate uncertainty (UG) for point target #19615, as inferred from one thousand 
datasets containing (a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(a) 

 
(b) 

 
(c)  

 
(d) 

 

Figure B.3 Histogram and corresponding normal probability plot of deformation 
rate uncertainty (UG) for point target #34314, as inferred from one thousand 
datasets containing (a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(a) 

 
(b) 

 
(c)  

 
(d) 

 
Figure B.4 Histogram and corresponding normal probability plot of deformation 
rate uncertainty (UG) for point target #43046, as inferred from one thousand 
datasets containing (a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(c)  

 
(d)  

 
Figure B.5 Histogram and corresponding normal probability plot of deformation 
rate uncertainty (UG) for point target #47205, as inferred from one thousand 
datasets containing (a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure B.6 Histogram and corresponding normal probability plot of deformation 
rate uncertainty (UG) for point target #47217, as inferred from one thousand 
datasets containing (a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure B.7 Histogram and corresponding normal probability plot of deformation 
rate uncertainty (UG) for point target #47238, as inferred from one thousand 
datasets containing (a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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(b) 

 
(c) 

 
(d) 

 
Figure B.8 Histogram and corresponding normal probability plot of deformation 
rate uncertainty (UG) for point target #58096, as inferred from one thousand 
datasets containing (a)15 pairs, (b) 25 pairs, (c) 35 pairs and (d) 40 pairs. 
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