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DOMAIN-CONCEPT MINING: 
AN EFFICIENT ON-DEMAND DATA MINING APPROACH 

Wannapa Kay Mahamaneerat 
Dr. Chi-Ren Shyu, Dissertation Supervisor 

ABSTRACT 

Traditional brute-force association mining approaches, when applied to large 

datasets, are thorough but inefficient due to computational complexity. A low global 

minimum probability threshold can worsen this complexity by producing an overwhelming 

number of associations; however, a high threshold may not uncover valuable associations, 

especially from under-represented groups within the population. Regardless, the uncovered 

associations are not systematically organized. 

To solve these problems, novel Domain-Concept Mining (DCM) with Partition 

Aggregation (DCM-PA) has been developed. DCM organizes data by grouping transactions 

with common characteristics, such as a certain age group, into “domain-concepts” (dc). 

DCM granulizes partitioning criteria by pairing each attribute with its values. Criteria may 

include under-represented groups as well as spatial, temporal, and incremental 

dimensionalities. Then, a statistical power analysis is utilized to determine if multiple criteria 

of the same attribute, such as age group 18-24 and 25-34, should be combined to form a 

broader partition. Doing so maintains the tradeoff between findings with statistical 

significance and computational resource consumptions, while preserving data organization. 

Associations can be extracted from each partition independently because a partition contains 

all of its qualified transactions. Moreover, the partition size proportionally adjusts the global 

threshold to be more specific and sensitive.  

After the initial phase is complete, DCM-PA efficiently reuses DCM’s associations to 

compute results from multiple-partition aggregation (union or intersection) using Bayes 

Theorem and a pipelining technique. DCM-PA offers the flexibility to perform association 

mining that is expected to uncovering more valuable knowledge through means like trends 

and comparisons from various dc partitions and their aggregations. 
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CHAPTER 1  

INTRODUCTION 

 

 

 

1.1 Motivations 

Descriptive data mining, or association mining, may be understood as an analysis 

tool intended to discover knowledge, which can be defined as logical associations or 

relationships, homogenous patterns, and/or hidden correlations among data attributes or 

variables [1-4]. Some association mining approaches may further evaluate discovered 

knowledge by discerning whether it is consistent with previously uncovered knowledge 

or it is in fact a novel item, which may suggest additional studies [5-7]. With the rapid 

and incessant growth of the data collected [1, 8-10], users, which include human subject-

matter experts who may own or collect the data, have encountered difficulties in finding 

ways to comprehend and utilize the data directly without some forms of data 

aggregations, summarizations, and analyses [11]. So far, association mining [12-18] has 

been known to be one of the most successful approaches in order to respond to the ever 

growing need of data management [9, 19]. Unfortunately, traditional brute-force 

association mining approaches, which are based on the association rule (AR) mining that 

was originally proposed by Agrawal et al. [12], have been shown not to be efficient 

enough to mine very large data sets entirely, due to the amount of memory required for 
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its iterative comparison processes [20, 21]. Another problem with the traditional brute-

force mining approaches is that the overwhelming amount of the mining results [21, 22] 

is unorganized [23, 24], and hard to browse or search [23, 25]. This problem is caused by 

an assumption of mining with no prior hypothesis, with a purpose of discovering the 

complete set of associations [22, 23]. Hence, the association mining effort and its 

uncovered knowledge may not be utilized to their potential because users end up with 

similar difficulties in comprehending extremely large amounts of information [7, 24].  

An important factor of the association mining problems is its global minimum 

probability threshold [5, 26], called “minimum support”. An association that is uncovered 

from a data set is determined by comparing the probability (proportion, occurrence 

frequency [20], or percentage of transactions [27]) of its co-occurring attributes with the 

minimum support threshold [12, 13, 27, 28]. When the minimum support is low, the 

association mining approach may uncover valuable associations or knowledge [26, 27], 

which may be associated with under-represented groups of population [24]. However, 

lowering the minimum support value increases the computational complexity [27] 

because millions of associations [29], whether they are valuable or trivial, may be 

reported. On the contrary, raising the minimum support, which reduces the amount of the 

computational resources required, may result in an inability to discover valuable 

knowledge from the data [27]. 

In practical settings, human experts may apply their experience and form 

expectations of what a valuable finding from the data would be [25]. Many valuable 

findings are usually non-trivial [30], which implies that the finding are from co-occurring 

attributes that have low probabilities. Hence, uncovering such valuable findings directly 
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from the entire data set may not be efficient, because an association mining approach 

likely uncovers many trivial associations than non-trivial ones. Further, identifying non-

trivial associations from a pool of associations will lead to a double-effort of the 

association mining [22, 24].  

1.2 A Need for Domain-Concept Mining 

To solve the afore-mentioned problems, we have developed a novel data mining 

approach, called Domain-Concept Mining (DCM), to: 1.) uncover non-trivial findings 

directly, 2.) improve mining efficiency by reducing the size of the data set, and 3.) 

organize the resulting associations using data characteristics. DCM first organizes the 

data before analysis through its unique partitioning technique by grouping transactions 

that share some common characteristics together. For example, all transactions with the 

same age group ranging from 18 to 24 will be in the same partition. The data 

characteristics are drawn systematically by pairing each attribute (or variable) with its 

values. DCM granulizes a characteristic of the data to be (one attribute: one value) pair, 

called “domain-concept” (dc). This step is done for all (attribute: value) pairs, which also 

include the under-represented groups’ characteristics, and temporal, spatial, and 

incremental dimensionalities of the data when available. All domain-concepts are 

considered as DCM’s potential partitioning criterion. The purposes of partitioning the 

data are: 1.) to increase the efficiency of the association mining by reducing the number 

of transactions for each partition, 2.) to include all qualified transactions according to the 

partition’s criterion into a partition, so the mining step can be done for each partition 
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independently, and 3.) to naturally organize the data according to their characteristics. It 

is worth mentioning that the mining results will also be organized accordingly. 

However, a tradeoff between increasing the association mining efficiency and the 

findings with statistical significance should also be maintained. DCM utilizes a statistical 

power analysis (also called a sample size estimation) [31, 32], which recommends the 

minimum number of transactions for a partition. When necessary, DCM combines two or 

more domain-concepts with the same attribute to form a broader domain-concept. For 

example, if too few transactions qualify for the (age group: 18-24) domain-concept, 

DCM broaden this domain-concept by combining it with (age group: 25-34), and so on, 

until the recommended number of transactions is achieved. Doing so balances the 

tradeoff and also preserves the organization of the partitions. 

After the transactions are grouped into domain-concept partitions, DCM 

implements an association mining algorithm, called “Frequent Pattern Tree” (FPT or FP-

Tree) [20], to uncover findings from each partition separately and independently in 

batches of distributed or parallel fashion. DCM uses one global minimum support 

threshold, which is automatically and locally adjusted according to the partition size; 

hence, the threshold can be more sensitive and specific to the distribution of the domain-

concept. 

It is worth mentioning that dc partitions, which represent characteristics of the 

data, may have different sizes. Since DCM uses all attributes to partition the data, it is 

possible that some dc partitions may overlap each other. To better explain the unique 

features of the afore-mentioned dc partitions and the DCM partitioning technique, a 

generic example of a biomedical informatics data set is used (as shown in Table 1.1). 
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TIDs represent a transaction identifiers, which are numeric values from 1 to n, where n is 

the total number of transactions in the entire data set. Columns A to E represent 

(attribute: value) pairs of (chronic disease: diabetes), (healthcare coverage: no), (age 

group: 65-74), (diagnosis: stroke), and (high blood pressure: yes), respectively. Please 

note that an attribute, such as chronic disease, may have many other possible values, such 

as heart disease and cancer. The attribute values shown in Table 1.1 are scoped down for 

simplicity. To further simplify the explanation, variables A to E may be used for each 

corresponding (attribute: value) pair. 

Table 1.1. A Generic Example of a Biomedical Informatics Data Set 

TID 
A 

(chronic disease: 
diabetes) 

B 
(healthcare 

coverage: no) 

C 
(age group: 

65-74) 

D 
(stroke:  

yes) 

E 
(high blood  

pressure: yes) 

1 √ √ √   

2 √ √   √ 

3 √ √ √ √  

4  √ √  √ 

.  √   √ 

. √  √  √ 

.    √  

n-1 √    √ 

n   √ √ √ 

 Let us assume that each domain-concept is a set of (attribute: value) pair, and the 

statistic power analysis does not suggest any combination of domain-concepts. In this 

setting, DCM partitions the data into five dc partitions, A, B, C, D, and E, where the 

transactions that share (chronic disease: diabetes) are in partition A, and so forth. 
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Moreover, the dc partition A may have a different number of transactions from the dc 

partition B, depending on the actual qualified transactions.  

It is important to mention that dc partitions are based on actual distributions of 

data. Furthermore, multiple (attribute: value) pairs make up transactions. Hence, the 

resulting dc partitions may overlap each other, (e.g. TIDs 2 and 3 are the overlapping 

transactions between partitions A and B). 

1.2.1 A Real-World Example 

 To further understand the benefit from the DCM partitioning technique that 

groups transactions according to their common (attribute: value) pair(s), Figure 1.1 

illustrates the distributions of an attribute “Would you say that in general your health is?” 

(or GENHLTH). Figure 1.1 (a) shows the distribution of GENHLTH’s values: excellent, 

very good, good, fair, and poor, and (b) shows the distribution of GENHLTH’s values 

among those who have been told by a doctor they have diabetes (DIABETES: yes). All 

values shown in Figure 1.1 are drawn from a public health data set of the “Centers for 

Disease Control and Prevention” (CDC), called the “Behavioral Risk Factor Surveillance 

System” (BRFSS) 2006 [33]. In addition, the entire BRFSS 2006 has 355,710 

transactions. 

Suppose a human expert is interested in uncovering associations that are related to 

(DIABETES: yes) and other health risks, behaviors, or factors. Findings such as 

associations between (DIABETES: no) and either (GENHLTH: excellent), (GENHLTH: 

very good), or (GENHLTH: good) are considered trivial and not of the expert’s interest. 

As shown in Figure 1.1 (b), only 18.1% of all transactions that have (DIABETES: yes) are 
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associated with (GENHLTH: poor), which is only 6,480 transactions (or 1.8%) of the 

entire BRFSS 2006 data set. 

  

 

 

 

 

 

 

Figure 1.1. An example of (a) attribute values and their distributions in comparison to (b) 
the same attribute values, but different distributions once another variable  

is taken into considerations. 

Without the DCM partitioning technique, which groups all transactions that have 

(DIABETES: yes) as a partition, one may have to set the minimum support threshold, 

lower than 1.8% to uncover any associations beyond (DIABETES: yes) and (GENHLTH: 

poor). For example, an association that contains (DIABETES: yes), (GENHLTH: poor), 

and (QLACTLM: yes) (where QLACTLM is “Are you limited in any way in any activities 

because of physical, mental, or emotional problems?”) has only 4,969 qualified 

transactions (or 1.4% of 355,170 transactions). By lowering the support threshold in 

order to uncover such association may cause a brute-force association mining approach to 

report an overwhelming amount of trivial associations. This scenario may also cause a 

memory exhaustion problem because the complete (and redundant subsets) of 

The distribution of “Would you say that in 
general your health is?” (GENHLTH) 
attribute values in BRFSS 2006

The distribution of (GENHLTH) values 
among those who have been told by a 
doctor they have diabetes (DIABETES: 
yes) in BRFSS 2006

(a) (b) 
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associations would be reported. Mining efficiency may be increased by reducing the 

number of transactions, which will be detailed when DCM is discussed in Chapter 3 

Section 3.3.3. The discussion in the same section will also detail how DCM uses the 

statistical power analysis sample size estimation in maintaining the minimum number of 

transactions of a dc partition.  

Since characteristics of the under-represented groups of data are their (attribute: 

value) pairs, these characteristics can also be designated as dc’s to be used as partitioning 

criteria so that DCM can uncover associations from these dc partitions directly. 

Moreover, the associations from all dc partitions are organized according to their dc’s. 

Result organizations facilitate users when they view or search the associations. More 

importantly, trends and comparisons of the associations from various dc partitions can be 

built to expand the usefulness and understandability of the findings. 

Moreover, setting one global minimum support threshold (e.g. 0.1 or 10%) for all 

dc partitions has the same effect as adjusting the threshold value according to the actual 

distribution of an individual characteristic of the data. For example, a DCM mining 

process reports any associations that co-occur more than 10% of the dc partition 

(DIABETES: yes), which has 36,085 transactions. This implies that the minimum support 

threshold is adjusted to approximately 1% of the entire BRFSS 2006 (355,710 

transactions in total). In other words, the DCM partitioning technique introduces a more 

sensitive and specific minimum support setting that automatically adjusts itself according 

to the characteristics of the dc partitions and the data distributions. 

An extension of the DCM approach, called a “hybrid threshold”, is proposed to 

incorporate statistical analysis to improve the traditional association mining’s minimum 
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support threshold. The purpose is to statistically evaluate (attribute: value) pairs of an 

association. The hybrid threshold is a weighted sum of the: 1.) minimum support 

threshold (to measure the probability of the association), 2.) coefficient of determination 

value (to measure the strength of the association), and 3.) correlation coefficient (to 

measure the direction of the correlation). The hybrid threshold has an objective to filter 

the associations by excluding those associations that may occur frequently, but are not 

statistically correlated. More detailed discussions and analyses are in Chapter 3. 

1.3 A Need for Domain-Concept Mining with On-Demand Partition 

Aggregation Capabilities 

Domain-Concept Mining (DCM) is unique because of its partitioning technique, 

how it organizes the data mining results, and the support threshold that offers sensitivity 

and specificity as discussed in the previous section. However, the research main 

contribution is the ability to allow human experts to flexibly aggregate data mining 

results on-demand and online by either broadening (union) or narrowing (intersection) 

the domain-concept (dc) partitions. This is achieved through a novel approach, called 

Domain-Concept Mining Partition Aggregation (DCM-PA). DCM-PA implements Bayes 

Theorem [31] in order to intelligently aggregate uncovered associations among various 

dc partitions by reusing the information obtained during the mining of the associations. 

Furthermore, DCM-PA incorporates a database query optimization through a pipelining 

technique [34], which enables DCM-PA to aggregate associations on-demand and on-the-

fly without a need to materialize intermediate results. 
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More importantly, the DCM-PA’s ability to union (the transactions of) the dc 

partitions increase association mining efficiency by eliminating the need to mine the 

entire data set. Instead, DCM-PA compliments DCM by allowing DCM to mine a set of 

the domain-concepts that share the same attribute, e.g. mining all partitions of age 

groups. Then, DCM-PA performs a union operation of these partitions to achieve the 

complete set of organized results as if the entire data set was mined from the ground up. 

A complete detail of DCM-PA is discussed in Chapter 4. 

1.4 A Need for Domain-Concept Mining Online System 

To complete the development of DCM and maximize the usefulness of its mining 

results, a Web system, called “DCMiner,” has been developed. DCMiner utilizes the 

organized results from DCM for users to compare, contrast, and form trends among 

various dc partitions. DCMiner also offers various result visualization techniques, which 

includes both tabular and graphical formats. The provided capabilities from DCMiner 

increase ways of investigating results, which may also lead to discovering other valuable 

knowledge.  

 Currently, DCMiner has been implemented to the following data sets: 1.) the 

“Agency for Healthcare Research and Quality” (AHRQ)’s “Nationwide Inpatient 

Sample” (NIS) [35], 2.) the “Centers for Disease Control and Prevention” (CDC)’s 

“Behavioral Risk Factor Surveillance System” (BRFSS) [36], and 3.) the “Callaway 

Nuclear Power Plant’s Action Request” (CAR) data. DCMiner and its details are 

discussed in Chapter 6. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 

 

This chapter contains a discussion of the previously published data mining related 

articles that have inspired our work. The summarization of the literature reviewed is 

shown in Table 2.1. 

 Table 2.1. A Survey Summary of Data Mining Approaches  

Approaches 
Use Support 

and 
Confidence? 

Brute- Force 
or 

Estimation? 
Features 

Association Rule Mining 

Mining large itemsets and association 
rules [12] Yes Brute-Force Large itemsets, association rules 

mining, syntactic constraints. 

Apriori and Candidate Generation 
algorithms [13] Yes Brute-Force 

An improvement of the previous 
approach ([12]) to improve memory 
efficiency during Candidate 
Generation Algorithm. 

Quantitative association rules mining [28] Yes Brute-Force 
An extended work of the previous two 
approaches ([12, 13]) with partitioning 
of quantitative attributes. 

Information-theoretic-lower bound [18] Yes (support) Sampling 
Build frontier set by using information 
from previous database scans to 
reduce the size of candidate set. 

Statistical Analysis and Information Theory 

Mutual Information Measure (MIM) [37] MIM Brute-Force 
Utilize Information Theory in findings 
association through the entropy and 
MIM. 

Statistics and Data Mining [38] Yes Not 
applicable 

Examine statistics and data mining 
similarities and differences. 



12 

 

Approaches 
Use Support 

and 
Confidence? 

Brute- Force 
or 

Estimation? 
Features 

Correlation Rules (generalizing 
association rules to correlations) [15, 39] No Brute-Force 

An implementation of the Chi-square 
test for independence, monotonically 
increasing or upward closure property 
of correlation (the border of 
correlation). 

Regression and Frequent Temporal 
Patterns of Data Streams (FPT-DS) [40] Yes Estimation 

Reduce the number of data scan to one 
and regression-based compact pattern 
representation. 

Quantitative Correlated Patterns (QCPs) 
approach [41] No Brute-Force 

Use a statistical correlation analysis 
and information theory to mine data. 
Data mining results are not based on 
frequently co-occurring items, but the 
items with high Mutual Information 
Measure values. 

Clusters data based on correlation [42] No Brute-Force 
Utilize data distribution and 
correlation to cluster and build 
correlation rules. 

Mining rank-correlated sets of numerical 
attributes [43] Yes (support) Brute-Force 

Discover patterns combining 
numerical (using correlation) and 
categorical attributes. 

Bitmap and Granular Computing (Bit-
AssoRule) [16] No Brute-Force 

Use bit operations to find rules based 
on granular (a set of transactions with 
same attributes) computing. 

Regression Class Mixture Decomposition 
(RCMD) [44] No Estimation 

Define inlier attributes that are in 
regression class. The regression class 
is a subset of the data set that is 
defined by a regression model.  

Subjective measures of interestingness 
[30]  No Brute-Force 

Propose actionable and unexpected 
measures based on Bayes rule with 
positive and negative evidences. 

Most interesting rules mining and 
support/confidence border [45] Yes Brute-Force 

Propose the most interesting rules, 
which are those that reside along a 
support/confidence border. In other 
words, interesting rules are rules that 
either have high support, high 
confidence, or both.  

Improvement of Frequent Itemset Mining (through Data Structures) 

Frequent Pattern Tree (FP-Tree) approach 
(Mining frequent patterns without 
candidate generation) [20, 46, 47] 

Yes Brute-Force 

Compact the database to FP-Tree data 
structure that contains sorted frequent 
itemsets and build association rules 
from FP-Tree. 
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Approaches 
Use Support 

and 
Confidence? 

Brute- Force 
or 

Estimation? 
Features 

PPMCR algorithm and Incrementally 
Counting Suffix Tree (ICST) [48] Yes Estimation 

Utilize suffix tree data structure. 
PPMCR generates a set of patterns 
using a single database scan then 
traverse ICST to find non-redundant 
rules. The approach is based on a 
statistical correlation analysis. 

LOOPBACK and Build Once Mine Once 
(BOMO) algorithms [27] No Brute-Force 

Efficiently mine N k-itemsets with the 
highest supports. Build FP-Tree for 
the longest k-itemsets with an 
assumption the minimum support is 
set to zero. 

Closed Association Rule Mining 
(CHARM) [49, 50] and other frequent 
closed itemsets [21, 51, 52] 

Yes Brute-Force 

Use itemset lattices and closures to 
mine frequent ‘closed’ itemsets, which 
results in less number of itemsets 
without a loss of information.  

Results Organization 

Direction Setting (DS) rules [22] Yes Brute-Force 

Prune rules by grouping rules with the 
same consequent then prune out the 
rules that do not have correlation 
between antecedent and consequent. 

Multiple support apriori (MSapriori) 
algorithm [26] Yes Brute-Force 

Users can specify different minimum 
support thresholds for different 
attributes depending on how rare the 
attributes are in the database. 
Direction Setting (DS) rules help 
organized the association rules. 

Organize rules based on General-Specific 
(GS) [23] Yes Brute-Force 

Propose most-general rules set 
(MGRS) as top-level rules for users to 
select and browse for more specific 
rules 

Swap randomization [53] No 

Estimation 
through 

randomizatio
n 

Use randomization and Markov chain 
approaches to measure significance 
complex associations and to access the 
findings. 

Association Mining with Partitions and Random Sampling 

BitOp and association rule clustering 
system (ARCS) [19] Yes Brute-Force 

Propose two-dimensional association 
rules clustering – one dimension per 
attribute. 

Direction Setting (DS) rules [22] (also 
categorized in Results Organization) Yes Brute-Force 

Prune rules by grouping rules with the 
same consequent then prune out the 
rules that do not have correlation 
between antecedent and consequent. 
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Approaches 
Use Support 

and 
Confidence? 

Brute- Force 
or 

Estimation? 
Features 

Most interesting rules mining and 
support/confidence border [45] (also 
categorized in Statistical Analysis and 
Information Theory) 

Yes Brute-Force 

Propose the most interesting rules are 
those that reside along a 
support/confidence border, meaning 
interesting rules are rules that either 
have high support, high confidence, or 
both.  

Overall sequential pattern mining, mining 
by divide-and-conquer [54] Yes Brute-Force Mine sequence patterns, which are 

composed of sequences of actions. 

Regression Class Mixture Decomposition 
(RCMD) [44] No Estimation 

Define inlier attributes that are in 
regression class. The regression class 
is a subset of the data set that is 
defined by a regression model.  

Sliding window filtering (SWF) for 
incremental mining [55] Yes Estimation 

Utilize partitions and sliding windows 
to incrementally mine data by using 
an un-mined partition to update the 
already mined results.  

Preemptive Distributed Decision Miner 
(PDDM) and Distributed Dual Decision 
Miner (DDDM) in Distributed 
Association Rule Mining (D-ARM) 
algorithm [56] 

Yes No Distributed Association Rule Mining 
with less communication 

Binary space partitioning trees and 
Optimized Gain Rules for numeric 
attributes mining [57] 

Yes Estimation 

Find correlations among one or two 
numeric attributes and categorized 
attributes using binary space 
partitioning trees and dynamic 
programming. 

Data Feature Oriented Data Partition 
(DFDP) [58] Yes Brute-Force Partition data for parallel processing. 

FAST, a novel two-phase sampling based 
algorithm for discovering association 
rules [59] 

Yes Sampling Two-phase sampling. 

Incremental Mining 

Regression and Frequent Temporal 
Patterns of Data Streams (FPT-DS) [40] Yes Estimation One data scan and regression-based 

compact pattern representation. 

Real-time data mining [60] Not applicable Not 
applicable 

A review of approaches needed to 
achieve real-time data mining. The 
approaches include anomaly detection 
and data stream mining. 
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Approaches 
Use Support 

and 
Confidence? 

Brute- Force 
or 

Estimation? 
Features 

Temporal High Utility Itemsets – Mine 
(THUI-Mine) [61] No Estimation 

Mine temporal data stream, by 
including new data and removing 
obsolete data, based on a 
measurement, called utility. 

Sliding window filtering (SWF) for 
incremental mining [55] (also categorized 
in Association Mining with Partitions and 
Random Sampling) 

Yes Estimation 

Utilize partitions and sliding windows 
to incrementally mine data by using 
an un-mined partition to update the 
already mined results.  

Calendar-based temporal association rule 
[62] Yes Brute-Force 

Utilize a user-given calendar schema 
to mine data for calendar-based 
temporal association rule. Use a level-
based mining. 

Statistical Borders for Incremental Mining 
[63] 

Yes, but also 
with other 

measurements 
Sampling 

A novel approach that biases the 
initial support for patterns mining, but 
maximizes one of two parameters 
(precision or recall) for incremental 
data 

Incremental Mining for Temporal 
Association Rules [64] 

Yes (support 
and 

“strength”) 
Estimation 

Maintain temporal association rules 
with numerical attributes and the 
temporal negative border method [17]. 
Update rules with new data. 

Partial Periodic Patterns in Time-Series 
Databases [65] 

Yes, with 
adaptation Brute-Force Merge rules of two or more databases 

2.1 Traditional Association Rule Mining 

Data mining has been widely researched for over a decade. Since Agrawal et al. 

[12] and other closely related work [13, 28] have initiated the association rule (AR) 

mining field. They proposed a model to mine sets of items from a very large market 

basket data set specifically used for the following:  

1.) co-occurrences of items in the baskets, or called itemsets, such as an itemset 

that contains {bread, butter, milk}, and  
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2.) association rules (AR) in the form of (antecedent  consequent), e.g.  

({bread, butter}  milk).  

Further, they defined that an item is binary. In that a basket of items either contains bread 

or no bread; hence, two loafs of white bread and one loaf of wheat bread in the same 

basket means that the bread item exists in the basket.  

In 1994, Agrawal and Srikant [13] proposed fast algorithms, “Apriori” and 

“AprioriTID” algorithms with “apriori-gen” function to mine data sets for associations 

rules. In general, the Apriori algorithm and apriori-gen function have garnered much 

attention due to the usefulness of the association rule idea and the difficulty of mining co-

occurrences of items. Particularly, the apriori-gen function, which generates candidate 

sets of frequent itemsets, was proposed to speed up the data mining process by 

eliminating unnecessary database scans. The database scans are used to verify the 

probability of a set of items in order to determine whether the set is frequent or not. A 

scan is needed when the size of itemsets grows from l to l+1. Hence, reducing number of 

items each scan needs to verify will speed up the process. 

DCM uses a generalized version of the Apriori algorithm from the binary items. 

Instead, DCM defines an item to be (attribute: value) pair, e.g. (bread: white) is not the 

same as (bread: wheat). An item (of size one) is denoted by ji  where j = 1, 2, …, M and 

M is the total number of (attribute: value) pairs in a data set.  

A set of one or more mutually exclusive items is called an itemset ( PI ), where 

{{ },{ },...,{ },{ , },...,{ , , ... }}j k m j k j k m
PI i i i i i i i i∈ , 
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, , {1, 2, ..., } ,  ,  and j mj k m M i j m i i φ∈ ≠ ≠ ∩ = . Furthermore, an itemset can be called a 

frequent itemset if and only if the joint probability of its co-occurring items is at least 

equal to the minimum support threshold, or minsup, where 

0 ≤ minsup ≤ 1. 

The percentage of transactions that have the co-occurring items [27] of an itemset I is 

called a support value denoted by s, which can be calculated by: 

 
pIN

s
N

=  (2.1) 

, where 
I

pN  is the number of transactions that have PI , N is the total number of 

transactions in the data set, and 0 1s≤ ≤ . 

The process to identify frequent itemsets is iterative. It starts from itemsets of size 

one, i.e. 1 1| {{ },{ }, ...,{ }}j k mI I i i i∈ . The process generates frequent itemsets of size l+1 

from those of size l by using a database scan to gather the probability of each itemsets. 

However, it is learned that frequent itemsets possess a downward closure property, which 

states that all subsets of a frequent itemsets are frequent [1, 26, 66]. This property also 

implies that a super set of a non-frequent itemset cannot be frequent. For example, if 1I  is 

not frequent, then 1 2
2 { , }I i i=  cannot be frequent. The downward closure property helps 

prune the candidate set, which contains potential frequent itemsets of size l+1. The actual 

support values of the candidate itemsets will be verified by the subsequent database scan.  

Therefore, for each iteration: 

1.) the size of the frequent itemsets grows longer, 
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2.) the number of frequent itemsets of size l is less than or equal to those of size  

l-1, and 

3.) the number of itemsets, which are the member of the candidate set of size l+1 

is reduced. 

The iterative process stops when at least one of the following conditions is met: 

1. the process cannot determine a frequent itemset of size l+1, which has 

s minsup≥ , from the candidate set, or 

2. 1l M+ > . 

After the above iterative process completes, the next step is to generate 

association rules (AR) from the frequent itemsets. The AR process uses a minimum 

confidence threshold, or minconf, where 0 ≤ minconf ≤ 1, to determine whether a pattern 

(antecedent  consequent) is an association rule. A confidence value α of a pattern

yxI I→ , where xI is the antecedent, and yI  is the consequent of the pattern, can be 

calculated by 

 
( , )

( )

x y

x

s I I
s I

α =  (2.2) 

, where ( , )x ys I I  is a support value of the itemset that has xI and yI . In other words, α 

represents the conditional probability of yI given xI , or P( | )y xI I , where x yI I φ∩ = , α 

determines the dependency of yI on xI [66]. 

It is worth mentioning that a frequent itemset of length l means that there are also 

2l - 2 subsets which are also frequent [4, 67] based on the downward closure property. 

These subsets of a frequent itemset increases the complexity of the algorithm [49]. Even 
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though, the idea of a candidate set helps improve Apriori’s efficiency, but it is still time 

consuming to do database scans [51, 68]. Moreover, scans may also lead to memory 

exhaustion problems, especially when l is long [18, 49]. 

2.2 Statistical Analysis, Information Theory, and Other Measures for 

Association Mining 

Statistical probability is a common background for both the information theory 

and data mining fields of study. This is simply because these fields share similar 

objectives in discovering structure in data [38]. We can date back the idea of the 

information theory to the early 1900s [69]. The well-known Shannon entropy [70], or in 

short “the entropy”, is closely related to probability calculations and other statistical 

approaches. The entropy’s purpose is to measure an information gain from knowing a 

piece of information [71]. A direct extension of the entropy in the information theory is 

Mutual Information Measure (MIM) [37], which calculates how many multiple pieces of 

information are related to one another.  

Moreover, data mining research, such as [15, 30, 40-44, 57] suggested that the use 

of basic frequency counting and probability calculations of the support value [12, 13, 28] 

may not be sufficient in selecting information pieces (or items). This is because the 

support value may be able to represent co-occurrences of the information pieces, but it 

can merely justify how closely related those information pieces are. A statistical data 

mining related research [37] also agrees with this idea because the support value cannot 

provide a proof of whether the associations have or have not occurred by chance and 

holds any significant statistical meaning.  
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More research, such as [16, 23, 24], attempted to avoid using the support value as 

a threshold, with the reasoning that it is difficult to set a right value, and that the number 

of rules discovered can be extraordinary large if the support threshold is set too low. This 

problem is directly related to a tradeoff between the sensitivity and specificity [31, 72] of 

the support threshold. The sensitivity may be improved by lowering the threshold value, 

which may lead to uncovering more valuable associations that are often not trivial. On 

the other hand, the specificity may be improved by raising the threshold value, which 

may filter out unimportant associations that appear too rarely. 

Extensions of DCM utilize the information theory through the correlation analysis 

as part of threshold values in selecting frequent itemsets. A purpose is to filter out trivial 

frequent itemsets that are not statistically correlated. However, since DCM partitions the 

data into domain-concept partitions, a partition size represents the actual distribution of 

the (attribute: value) domain-concept. Therefore, the global support value that is used 

among all of the domain-concept partitions is automatically and locally adjusted by the 

sizes of the partitions. As a result, the support value can be more sensitive and specific 

for each partition. Moreover, an association rule “domain-concept  itemset” is implied 

for every frequent itemset uncover from each domain-concept. Hence, there is no extra 

calculation needed. Further details can be found in Chapter 3.  

2.3 Improvement of Frequent Itemset Mining 

Frequent itemset mining is the most time consuming task of the association rule 

mining [51, 68]. Frequent Pattern Tree (FPT), proposed by Han et al. [20], which is used 

extensively in our research, utilizes an idea of a suffix tree (or a suffix pattern) [73] to 
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compact the data set. FPT and its variations [27, 46, 47] are considered as one of the most 

efficient frequent itemsets mining algorithms due to its data structure, limited number of 

the database scans (two scans to be exact), and the fact that the algorithm bypasses a need 

for candidate set generations . Li and Hamilton [48] also utilize a suffix tree to find 

pattern rules but with an aim to reduce itemset redundancy; and thus, reducing the 

number of rules discovered.  

Lin and Kedem [4] proposed an algorithm called Pincer-Search to produce only a 

maximum frequent set (i.e. a set of the longest possible frequent itemsets in a top-down 

fashion). Pincer-Search is opposite to many association rule (AR) mining algorithms, 

which find frequent itemsets in a bottom-up fashion. Other maximum frequent set 

research includes [74, 75]. It is worth mentioning that a disadvantage of discovering only 

the longest possible frequent itemsets is that the association rules cannot be inferred from 

the longest frequent itemsets due to the loss of the subsets’ support values [49].  

Another alternative approach to frequent itemset is frequent “closed” itemsets [21, 

49, 51, 52]. Generating frequent closed itemsets minimizes the frequent itemset 

redundancy while maintaining the ability to generate association rules. A frequent closed 

itemset is the super set of frequent itemsets. All of the transactions of the subsets of the 

frequent closed itemset are maintained. In other words, a frequent closed itemset is an 

itemset that passes the minimum support threshold, and there exists no supper set that 

completely contains both its items and its transactions. An algorithm, called “CHARM” 

(Closed Association Rule Mining, where the “H” is gratuitous), has been proposed to 

efficiently mine frequent closed itemsets [49, 50] . Please note that CHARM is one of the 
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approaches implemented by DCM for its offline mining processes (more details in 

Chapter 5). 

2.4 Association Mining and Result Organizations 

In general, after frequent itemsets and association rules have been mined, data 

mining processes have yet to be finished because there can be overwhelming amount of 

association rules than one could possibly utilize in a useful fashion [21, 22]. There are a 

number of investigators who focus on the organization, search, pruning, summarization, 

and access to data mining results [22-24, 48, 53]. For example, Dai and Huang [23] 

organized discovered association rules in a hierarchical fashion. Their organized rules are 

called General-Specific (GS) patterns. Another work is done by Gionis et al. [53] who 

used the randomization, Markov chain approach with clustering, and ranking as the basis 

of their approach to access data mining results. Please note that the Markov chain 

approach is closely related to the statistical probability and Bayes Theorem [76]. 

Some of the authors who recognized the need of reducing the number of rules 

after they have been discovered are such as Liu et al. [26]. The authors used Chi-square 

test to remove the insignificant associations, and used the direction setting (DS) rules as 

rule summaries. DS rules are groups of rules based on domain, where users can browse 

each DS rule to find more details. 

The association organization offered by DCM is rather different from all of the 

afore-mentioned research. DCM organizes data before association mining by partitioning 

them into domain-concept partitions. More importantly, a domain-concept represents a 

characteristic of the data; hence, a domain-concept partition represents the distribution of 
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a certain characteristic. After the partitioning step, DCM analyses the partitions for 

frequent itemsets. Therefore, the frequent itemsets are automatically organized according 

to their domain-concepts. Further discussion can be found in Chapter 3. 

2.5 Number of Transactions Reduction through Partitions and 

Random Sampling 

It has been known that many applications apply data mining onto their very large 

data sets to find associations, patterns, or correlations, with a hope of being able to draw 

some conclusions or uncover valuable information from the data [1, 10]. We have 

discussed previously that the traditional AR mining may not be efficient enough to mine 

an entire data set at once due to its computational complexity [51, 68]. An attempt to 

solve the computational complexity problem is to partition the data in order to reduce the 

size of the data set per a data mining process. The discussion in this section will also be 

related to distributed or parallel processing because they usually go hand in hand with 

data partitioning. 

Lee et al. [55] proposed the usage of a sliding-window to incrementally mine the 

data, partition by partition, with some overlapping between neighboring partitions. 

Schuster and Wolff [56] proposed an algorithm called Distributed Association Rules 

Mining (D-ARM) to mine associations from a data set that has been partitioned and 

physically placed across networks. Wei et al. [58] proposed a principle called Data 

Feature Oriented Data Partitioning (DFDP) to emphasize utilizing partitions in parallel 

computing for efficiency in data mining and for discovering more interesting rules. 

Another system, called Association Rule Clustering System (ARCS), uses clustering 
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technique (also widely used in artificial intelligence and machine learning fields [77]) to 

find associations from segment of data in two-dimensional space [19]. ARCS is 

considered efficient comparing to C4.5 decision tree [78] because the bit-wise operations 

that ARCS utilizes in association rule mining. 

Unfortunately, many of the afore-mentioned data mining with partition research 

may potentially suffer from: 1.) communication overheads that need to be maintained 

among partitions to ensure that an itemset (which may or may not be frequent in some 

partitions) will be considered for subsequent comparisons [56], and 2.) an estimation or 

heuristic technique that may aid the maintaining of these itemsets from partition to 

partition [2, 55, 79].  

A definite pruning (of the candidate frequent itemsets) technique commonly used 

by the association mining with partition is based on the downward closure property [1, 

26, 53]. However, the property may be applied to association mining with partition only 

when an itemset is not frequent in any of the partitions by an inference that it will not be 

a frequent itemset. However, no conclusion can be drawn from other situations (i.e. 

whether an itemset that is frequent in one or more partitions will be frequent in the end) 

to further prune the candidate frequent itemsets. Therefore, an itemset uncovered from a 

partition with a support value that falls in a “border” range may be kept for the 

subsequent processes for further validations [2, 79].  

One way to estimate the support value is to apply a statistical sampling technique 

to the entire data set [59]. The purpose is to reduce the number of itemsets that will be 

considered as a set of candidate frequent itemsets. The estimated support value will be 

updated when more partitions are mined in order to decide whether the itemset is in fact 
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frequent or not. Moreover, most data mining approaches that need to generate a set of 

candidate frequent itemsets require higher memory usage than the approaches that do not 

need a candidate set. Many data mining works, such as [40-45], have utilized statistical 

sampling technique beyond an estimation of the support value. The common idea 

between statistical sampling technique and association mining with partition is to speed 

up the mining process by reducing the number of transactions to be considered by 

attempting to maintain a level of accuracy of the results.   

DCM utilizes the idea of data partitioning in order to reduce the computational 

complexity by applying a frequent itemset mining algorithm to each partition instead of 

to the entire data set. Since DCM partitions a data set with a main purpose to organize the 

data before analysis, a partition does contain all domain-concept qualified transactions. 

Therefore, DCM can mine these partitions independently, or in batches of distributed or 

parallel fashion. Moreover, a frequent itemset uncovered from a domain-concept partition 

is frequent with regard to the domain-concept. This means that DCM does not need a 

communication among processes or an estimation or border of the support value. More 

importantly, a DCM Partition Aggregation (DCM-PA) approach is developed in order to 

achieve a complete set of organized results by aggregating multiple domain-concept 

partitions efficiently without a mining process required. Hence, it takes less computation 

resources to find out whether a frequent itemset of a partition will stay frequent when its 

frequency is verified against the entire data set. Further details of DCM and DCM-PA are 

discussed in Chapters 3 and 4, respectively. 
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2.6 Incremental Data Mining 

Most data sets have a nature of being collected or updated accumulatively, either 

on a schedule basis such as monthly, quarterly, or yearly [62], or in no exact temporal 

pattern such as the data that come in stream [63]. Many data mining researchers, 

including [64, 65, 79], have seen the need of mining new data and then combining the 

previous mining results to minimize the computational resources used. It is worth 

mentioning that the newly obtained data may update by either invalidating or 

strengthening the previously mined results [51, 64]. A proposed method, called 

“Temporal High Utility Itemsets – Mine” (THUI-Mine) [61], can efficiently mine data 

using a two-phase method along with borders [59] and with an extension of the sliding-

window filter [55]. THUI-Mine’s phase I is to overestimate itemsets, so it would less 

likely miss any frequent itemsets. Its phase II is to prune the overestimated itemsets with 

one database scan. The sliding-window filter is used so that the approach can 

incrementally process partitions of data. Therefore, this method can be adapted to be used 

for temporal data from stream.  

A regression-based method, called Frequent Temporal Pattern of Data Streams 

(FPT-DS) [40] mines data based on a frequent pattern tree (FPT) approach [20]. The FPT 

approach itself is memory efficient because the FPT data structure is compact, yet can 

completely store all frequent itemsets. FPT-DS mines data by using an estimation 

technique to predict frequency of patterns of new data from experience of previously 

collected data. FPT-DS also uses regression analysis as its framework. 

A need for real-time incremental data mining approaches has been studied. 

Thuraisingham et al. [60] suggested that in order to achieve real-time data mining, one 
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would need to combine various computational approaches. These include parallel 

computing, classification, clustering, link analysis, anomaly detection, and association 

rules. Combinations of them would quickly mine and detect patterns in on-going data. 

Moreover, this branch of data mining may also need efficient and sensitive input devices, 

such as surveillance cameras, to reliably feed a quality incoming data stream quickly. 

This is because the validity of mined results directly depends on the quality of the input. 

However, data that comes with this fast pace, oftentimes contain noises, or the data may 

be incomplete or inaccurate at the certain time point. In conclusion, real time data mining 

is still an on-going research topic that is receiving much attention from researchers. 

DCM can apply its domain-concept partitioning technique to mine data that are in 

incremental or temporal nature by using the schedules of the data as the domain-concept 

partitions. Further, results from the domain-concept partitions can be used as temporal 

patterns to build trends for result comparisons. The functionality to build trends is offered 

by a DCM Web system, called “DCMiner” (more details in Chapter 5). 

For the issue of updating the current results with the newly mined results, a DCM 

Partition Aggregation (DCM-PA) approach can be utilized. DCM-PA applies Bayes 

Theorem [31] and the pipelining technique [34] to efficiently aggregate results from 

domain-concept partitions, where the two major partitions are the previously collected 

and the newly collected data sets. Moreover, each of the two major partitions is 

composed of sub-partitions, which are regular (attribute: value) domain-concepts. Further 

details regarding DCM-PA can be found in Chapter 4.  
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CHAPTER 3  

DOMAIN-CONCEPT MINING (DCM)  

 

 

 

3.1 Domain-Concept Mining Approach 

Domain-Concept Mining (DCM) approach is developed to address the following 

problems in a descriptive association mining research:  

1.) association mining efficiency and memory exhaustion, 

2.) organization and management of the overwhelming amounts of association 

mining results, 

3.) inability to discover valuable (attribute: value) pairs of under-represented 

groups of population, where these pairs often have low support values, and 

4.) a problem of an insensitive and unspecific global minimum support threshold.  

The processes of DCM, which is depicted in a DCM flowchart (Figure 3.1), 

include: 

1.) Input data pre-processing, 

2.) Data partitioning, which includes a statistical power analysis for a sample size 

estimation, 

3.) DCM offline association mining, and 

4.) DCM Partition Aggregation (DCM-PA), which will be detailed in Chapter 4. 
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Figure 3.1. A Domain-Concept Mining flowchart. 
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3.1.1 DCM Pre-Processing Step 

The initial step of DCM is data pre-processing. It starts by identifying domain-

concepts (dc). In general, a dc is a set of (attribute: value) pairs, or items as indicated by 

the user who is a subject-matter expert. However, in order to systematize the process and 

maximize the independency between the system and the human expert involvement, 

DCM can granulizes all dc’s to contain only one item by pairing each attributej to each of 

its valuesjk’s. This step assumes that attributes’ values are categorical. However, if the 

values are originally continuous, DCM discretizes them by utilizing pre-established 

scales, such as age groups defined by the “Center for Disease Control and Prevention” 

(CDC). In a circumstance that the scale is not applicable or unavailable, DCM applies a 

statistical analysis to bin a continuous value around their average value based on an 

assumption of the normal distribution and the central limit theorem [31].  

After the granulizing is done, each of the (attributej: valuejk) pairs is also uniquely 

identified as an item using an enumerated value, called “itemID”, as its representative. 

An example of DCM pre-processed biomedical informatics attributes (which is a small 

portion of the BRFSS 2006 data set [33]) are shown in Table 3.1.  

Table 3.1. An Example of DCM Pre-Processed Biomedical Informatics Attributes 

ItemID Name Description Value Meaning Interesting 
Indicator 

1 GENHLTH Would you say that in general your 
health is: 1 Excellent N 

2 GENHLTH Would you say that in general your 
health is: 2 Very 

good N 

3 GENHLTH Would you say that in general your 
health is: 3 Good N 

4 GENHLTH Would you say that in general your 
health is: 4 Fair Y 

5 GENHLTH Would you say that in general your 
health is: 5 Poor Y 
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ItemID Name Description Value Meaning Interesting 
Indicator 

6 HLTHPLAN 

Do you have any kind of health care 
coverage, including health insurance, 
prepaid plans such as HMOs, or 
government plans such as Medicare? 

1 Yes N 

7 HLTHPLAN 

Do you have any kind of health care 
coverage, including health insurance, 
prepaid plans such as HMOs, or 
government plans such as Medicare? 

2 No Y 

8 MEDCOST 
Was there a time in the past 12 months 
when you needed to see a doctor but 
could not because of cost? 

1 Yes N 

9 MEDCOST 
Was there a time in the past 12 months 
when you needed to see a doctor but 
could not because of cost? 

2 No Y 

10 DIABETE2 Have you ever been told by a doctor 
that you have diabetes? 1 Yes Y 

11 DIABETE2 Have you ever been told by a doctor 
that you have diabetes? 3 No N 

Further, the pre-processing step also allows the user to identify what value(s) of an 

attribute that he or she may want to omit from the mining results. This identification is 

called “interesting indicator” with values Y or N. The indicators are considered beneficial 

because they may reduce the number of trivial items in the association results. Without 

these indicators, the trivial items are likely to be repeating as associations due to the fact 

that they are commonly populated in the data. Moreover, the DCM offline mining will be 

able to achieve a higher efficiency when there is less number of items to be considered 

per partition. On the contrary, the interesting indicators will not prevent the trivial items 

from being used as dc’s. Having a complete set of items as dc’s (regardless whether the 

items are trivial, non-trivial, or from the under-represented groups of the population) 

enables:  

1.) Human experts to compare and contrast the association results, especially for the 

findings that are different from their assumptions or prior knowledge. The experts 

can also validate findings of a dc against other dc’s, 
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2.) Trends to be formed among different dc’s. These trends reflect changes and 

transitions of associations from one dc to the next. 

3.) More flexibility and choices that DCM-PA could offer to the experts during the 

on-demand partition aggregation step. 

4.) DCM-PA to aggregate a set of dc’s that share the same attributej in order to 

obtain a complete set of associations. This is because aggregating all values of an 

attribute is the same as combining all transactions of the entire data set together. 

5.) DCM-PA to fully utilize Bayes Theorem to infer values of aggregation results 

“on-the-fly” without accessing the original un-mined data. More details of the on-

demand partition aggregation and how DCM-PA aggregates multiple dc partitions 

will be discussed in Chapter 4. 

3.1.2 DCM Partitioning Step 

As discussed previously, the most granulized partitioning criterion is obtained by 

a set of one (attribute: value) pair. Each of the pairs filters qualified transactions for a dc 

partition. Let x be an item, which is an (attribute: value) pair in a database D, X be x’s 

domain-concept, T be the set of all transactions in the database, itemID be the selected 

items that theirs interesting indicators (or ini) values are ‘Y’ and exclude the itemID of 

the criterion x, ID(.) be a function that transforms a criterion to an itemID, n be the total 

number of items, and π andσ be the relational algebra projection and selection operators 

[34], respectively. A subset of T that shares the same domain-concept X is defined as: 

 
1 ID( ,( ' '){ \ })

( ( ))n
ii

x x ini YitemID x
T T

ζ
π σ

=
=∈∀

=  (3.1) 
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With the DCM partitioning technique, one transaction could be in multiple 

partitions because the transaction may qualify for many domain-concepts according to its 

attribute values. The set of transactions will then be mined by the DCM offline 

association mining process to extract frequent itemsets. An itemset i is said to be 

“frequent” in a domain-concept X if and only if its support value (s) is greater than or 

equal to the minimum support threshold value (minsup). The support value of an item i 

can be calculated by: 

| |
| |

i
X

X

Ts
T

=  (3.2) 

, where i
XT is the set of transactions in X that contain i and |.| indicates the number of 

transactions of a data set. It is worth mentioning that the minsup criterion is a “global” 

value used for all of the domain-concept partitions. More importantly, the value of the 

minsup is automatically and proportionally adjusted by the size of a domain-concept. For 

example, a global minsup of 0.1 (or 10%) when used by a domain-concept partition with 

10,000 transactions yields a different minimum transactions from the same minsup of 

another domain-concept partition with 20,000 transactions. Also important is the fact that 

| |
| |

i
X

X

T
T

is equivalent to a conditional probability of P(i| X), which is the confidence value 

(α) of an association rule “X  i”. 

To demonstrate the partitioning process, the attributes (shown previously in Table 

3.1) and an example of transactions of a data set (shown in Table 3.2) are used. 

According to Table 3.1, there are 11 dc’s identified. Let Table 3.1 be called “items”, 

Table 3.2 be called “data”, and both of them are stored in a database system. DCM 
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SELECT * 

FROM     data, items 

WHERE (items.Name = ‘DIABETE2’) AND  
                 (items.Value = 1) AND  
                 (items.itemID IN data.itemID); 

partitions “data” by using a Structured Query Language (SQL) statement [34]. Figure 3.2 

is an example of a statement used when partitions the data for (DIABETE2: 1) dc 

partition. 

Table 3.2. An Example of a DCM Pre-Processed Data Set 

TID itemID 

1 1,6,9,11 

2 2,9,11 

3 3, 11 

4 4,7,8,10 

5 5,7,8,10 

. 

. 

. 

. 

. 

. 

m 5,6,9 

 

 

 

Figure 3.2. A SELECT statement used by DCM to partition data. 

However, to better utilize the human experts’ interesting indicators of the items to 

compact the size of the dc partitions, the results from the previous SELECT statement 

can be further reduced. The reduction can be achieved by: 1.) keeping the previous results 

in a temporary table, called “temp,” and 2.) implementing the SELECT statement as 

shown in Figure 3.3.  
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Figure 3.3. A SELECT statement used by DCM to filter (attribute: value) pairs’ itemIDs  
with interesting indicator = ‘Y’. 

In conclusion, the three major benefits from this DCM partitioning step are:  

1.) DCM organizes the data into dc partitions; hence, the data mining results will 

be organized accordingly,  

2.) DCM needs only one minsup threshold to be used by all dc partitions. 

However, this threshold is automatically adjusted by the total number of 

transactions of a dc partition, 

3.) All dc partitions are independent and compact because:  

a.) A dc partition contains all transactions that share the same dc, 

b.) Only itemIDs with interesting indicator ‘Y’ are included. 

3.2 DCM Offline Mining 

After the initial partitioning step, DCM implements a well-known and efficient 

brute-force frequent itemsets mining algorithms called Frequent Pattern Tree (FPT) [20]. 

This is done in order to conduct DCM offline mining, at the rate of one FPT process per 

partition in batches of distributed or parallel fashion. To continue the case examples used 

SELECT temp.itemID 

FROM     temp, items 

WHERE  (items.InterestingIndicator = ‘Y’) AND 

                 (items.itemID = temp.itemID); 
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in the previous sections, there are 11 dc partitions to be processed. Furthermore, it is 

worth mentioning that a mining process can be independently executed with no 

communication overhead among the dc partitions.  

Following the offline mining step, DCM stores all of the results that are 

associated with their domain-concepts in a relational database. The relational schema of 

the offline mining results and the entity-relationship diagram (ERD) are shown in Figure 

3.4 and Figure 3.5, respectively. 

ITEMS itemID: 
integer 

dc_attribute: 
character(10) 

description:
text 

dc_value:
 integer 

dc_value_meaning:
text 

 

FREQUENT 
_ITEMSETS 

_METADATA 

frequent_itemsetID: 
integer 

support:
real 

dc_attribute:
character(10) 

dc_value: 
integer 

size:  
integer 

 

FREQUENT_ITEMSETS frequent_itemsetID: 
integer 

itemID: 
integer 

 

Figure 3.4. The relational schema of the frequent itemsets from  
DCM offline mining processes. 

 

Figure 3.5. The entity-relationship diagram for the relational schema  
as shown in Figure 3.4. 
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There are three relational tables that are related to the DCM offline results. The 

first table is “ITEMS”, which also resembles to Table 3.1. This table contains: 1.) itemID, 

which is its transaction unique identifier or primary key, 2.) dc_attribute, 3.) description, 

which describes the dc_attributes in full text, 4.) dc_value, 5.) dc_value_meaning , and 

6.) interesting_indicator. The second table is “FREQUENT_ITEMSETS_METADATA”. 

This table contains: 1.) frequent_itemsetID, which is the primary key, 2.) support, 3.) 

dc_attribute, 4.) dc_value, and 5.) size, which is the size of an itemset (how many co-

occurring items in an itemset). As shown in Figure 3.5, there is a relationship between 

FREQUENT_ITEMSETS_METADATA and ITEMS. FREQEUNT_ITEMSETS_MATA 

DATA’s dc_attribute and dc_value reference to ITEMS’s dc_attribute and dc_value. The 

third table is “FREQUENT_ITEMSETS”. It contains two attributes, frequent_itemsetID 

and itemID, where the primary key is a composite key (meaning multiple attributes are 

needed to form a unique identifier). This is because frequent_itemsetID alone cannot be a 

unique identifier because an itemset can contain one or more items. 

FREQUENT_ITEMSETS’s frequent_itemsetID references to FREQUENT_ITEMSET_ 

METADATA’s frequent_itemsetID, and FREQEUNT_ITEMSETS’s itemID references 

to ITEMS’ itemID. 

Furthermore, these relational tables are utilized by: 1.) the on-demand DCM 

Partition Aggregation (DCM-PA) system, and 2.) the online associations viewing system, 

called “DCMiner”. DCMiner is an interface for the users to utilize the results. It is a tool 

to browse, compare, contrast, aggregate, and view the results using various visualization 

techniques. More of DCM-PA’s and DCMiner’s details will be discussed in Chapters 4 

and 6, respectively. 
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Please note that for an exploration of an efficient algorithm used during the 

offline step, DCM also utilizes CHARM (or “Closed Association Rule Mining”, where 

the “H” is gratuitous) [49] as an alternative to FPT. Specifically, CHARM offers a more 

compact result set, i.e. a set of frequent “closed” itemsets, as previously discussed in 

Chapter 2. The relational schema and ERD of the frequent closed itemsets are the same as 

those of the FPT’s frequent itemsets. Further experimental results and comparisons 

between FPT and CHARM that are implemented by DCM are discussed Chapter 5. 

In addition to DCMiner, a main contribution of DCM is its partition aggregation 

approach, called “DCM-PA”, which can aggregate results among dc partitions on-

demand and online based on Bayes Theorem [76, 80]. DCM-PA offers two ways to 

aggregate the results: 1.) by broadening (union), and 2.) by narrowing (intersection) the 

dc partitions. The aggregation can be done efficiently because: 1.) DCM-PA reuses the 

information obtained from the offline mining step, which are stored on a relational 

database, and not in the main memory, 2.) the calculation of aggregated results’ support 

values are done by inferring and propagating the support value of the offline results, and 

3.) there is no computationally expensive association mining process involved. 

Specifically in regards to the union ability of DCM-PA, DCM can mine the data 

offline through the steps we have discussed in this Chapter, and then DCM-PA 

aggregates the results from sets of dc partitions that share the same attribute. A purpose is 

to achieve a complete set of results with respect to a dc attribute. A set of dc partitions is 

such as (age group: *), where * represents all age groups’ values. For example, DCM-PA 

combines (unions) all associations of the age group dc partitions together. This way, the 
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results of this union operation is equivalent to the complete set of the associations as if 

the entire data set was mined from the ground-up.  

Together, the DCM and DCM-PA approaches can also be extended to mine: 1.) 

temporal data sets (e.g. mine each temporal unit, such as month, quarter, or year as a dc 

partition, and then aggregate the partitions), 2.) spatial data sets (e.g. mine each specific 

data region such as county or state as a dc partition, and then aggregate them), and 3.) 

incremental data sets (e.g. mine the newly collected data as a dc, and then combine the 

results with the previously mined ones). When DCM-PA aggregates partition of these 

dc’s, the associations are updated. For example, the new associations from an incremental 

dc partition can change the support values of the historical associations. Further details of 

DCM-PA are in Chapter 4. 

3.3 An Extension of DCM with Statistical Analyses 

In this section, we discuss plans of theoretically extending DCM by incorporating 

statistical analyses in: 1.) strengthening the threshold value for determining associations 

by using correlation values, and 2.) determining the domain-concept size by applying 

statistical power of estimation analyses. 

3.3.1 Correlation Analysis 

Data mining is a multi-disciplinary computational approach with probability and 

statistical analyses as its major foundations. There have been many implementations of 

such analyses in data mining, ranging from very basic frequency and probabilistic 

approaches (used in determining support and confidence values of the traditional AR 
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mining) to correlations, regression, multivariate, and principle component analyses, just 

to name a few [30]. The main goal of data mining is to find associations, correlations, or 

patterns in the data that may be non-trivial. The data mining findings are generally called 

discovered knowledge, where the purpose of discovering the knowledge is to increase the 

utilization of the data through a summarization offered by the knowledge.  

To only implement the frequency, which calculates probability (or proportion) 

value, seems insufficient to serve the aforementioned purpose. This is because the 

knowledge found using these values is not always relevant and may sometimes happen 

by chance [39]. Brin et al. [15] have initiated the use of a statistical technique, the chi-

square test, which may be considered as an added measurement to the probability and 

conditional probability used widely in the traditional AR mining. The chi-square test has 

the ability to measure the significance of itemsets by forming a border between absence 

and presence of correlations. The itemsets are crucial to the subsequent process of 

forming association rules. This is simply because if the frequent itemsets (the itemsets 

that pass the minimum support threshold) are not properly discovered, then it is rather 

less likely to achieve a valid set of association rules afterwards. 

The approach proposed by Brin et al. [15] strengthens association mining by 

considering both positive and negative correlations in filtering itemsets. An example of a 

classic market basket analysis (Table 3.3), which can show why the support and 

confidence values may not be sufficient in judging what itemsets are to be used to build 

association rules, is as shown in Table 3.3. 
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Table 3.3. An Example of Market Basket Transactions between Two Items,  
Beer and Diapers, in Summary 

Items Diapers No Diapers Total Rows 

Beer 20 10 30 

No Beer 55 15 70 

Total Columns 75 25 100 

Assume that we set a minimum support threshold (minsup) to be 0.2 (or 20%) and 

a minimum confidence threshold (minconf) of 0.6 (or 60%). The support value of people 

who buy beer and diapers in the same transactions is 0.2 (20/100). The confidence value 

of people who buy beer and also buy diapers (or {beer  diapers}) is 0.67 (0.2/0.3). The 

confidence value of people who buy diapers then buy beer (or {diapers  beer}) is 0.27 

(0.2/0.75). Therefore, we can conclude that we found a frequent itemset of {beer, 

diapers} using the minsup = 0.2, and found an association rule of {beer diapers} using 

the minconf = 0.6. It is worth mentioning that we did not find an association rule of 

{diapers  beer} using the same minconf threshold. 

On the other hand, we want to analyze further whether beer and diapers really 

have a strong relationship. The appropriate statistical technique that we will use is the 

correlation analysis, called “Pearson correlation coefficient” (r) [31], between two 

random variables. In this case, the variables are beer and diapers. r can be calculated by: 

 2 2 2 2

 ( ) - ( )( )

[ ( ) ( ) ][ ( ) ( ) ]

n xy x y
r

n x x n y y
=

− −
∑ ∑ ∑

∑ ∑ ∑ ∑
 (3.3) 

, where beer is represented by ݔ א ሼ0,1ሽ, diapers is represented by ݕ א ሼ0,1ሽ, an absence 

of an item is represented by 0, and a presence of an item is represented by 1.  
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Please note that the approach introduced in [15] used a rather intuitive calculation 

to determine a correlation (e.g. P({beer, diapers}) / [P({beer}) * P({diapers})] = 

0.2/(0.3*0.75) = 0.89), which gives an alternative value to measure the dependency 

between beer and diapers. This is based on an assumption of independent events [31] that 

if two variables (or events) are independent then P({beer, diapers}) would result in the 

same value as P({beer})*P({diapers}); hence, the calculated dependency value is 1. 

Furthermore, when the dependency value is less than 1, it indicates a negative 

relationship between variables, i.e. the variables co-occur together in the same 

transactions less often than when they separately occur, and vice versa. The same 

calculation may also be implied as a measure of the dependency strength (i.e. variables 

are less dependent on one another when the value is close to 1).  

However, DCM follows the Pearson correlation coefficient calculation in 

determining dependencies. As a result, the correlation coefficient r of the itemset {beer, 

diapers} calculated by equation (3.3) is -0.13, and the coefficient of determination r2 is 

0.02. The r value indicates that beer and diapers have a negative correlation, which is the 

same conclusion as [15], but in different scales. Furthermore, the r2 value indicates that 

beer and diapers do not have a strong correlation, where 0 ൑ ଶݎ ൑ 1 (the higher the r2, 

the stronger the correlation). Thus, this demonstrates that the traditional association 

mining, which uses only the support and confidence thresholds, may not be sufficient in 

determining whether associations found are statistically correlated. 

To analyze this insufficiency of support and confidence thresholds further, we can 

examine the absence of items (as denoted by ¬) of beer and diapers in the itemset {¬beer, 

¬diapers}. Following the same settings of minsup and minconf, the support value of 
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{¬beer, ¬diapers}, and the confidence values of {¬beer  ¬diapers} and {¬diapers  

¬beer} are 0.15, 0.21, and 0.6, respectively. These numbers indicate that the absence of 

the items cannot pass the threshold values; hence, the itemset {¬beer, ¬diapers} is not 

frequent and cannot be considered as an association rule. More importantly, the 

correlation coefficient r and coefficient of determination r2 values are exactly the same 

for both the original case and in case where the items are absent. (Please note that when 

we calculated the values with the absence of the items, we used 1 to represent an absence 

and 0 to represent a presence of an item).  

Therefore, we conclude that the correlation coefficient r and coefficient of 

determination r2 add more information regarding the strength and direction of the 

relationships of itemsets to the support and confidence thresholds, without being 

impacted by how frequent the items appear in the transactions. In addition, the r and r2 

calculations focus on the scope of the relationship between variables, not on how frequent 

these variables occur in the whole data set.  

3.3.2 A Hybrid Threshold 

From the prior discussion, it has been demonstrated that using only the primitive 

probability calculations of the support and confidence thresholds in the traditional AR 

approach may not be sufficient in describing relationships between variables. In addition, 

using only correlations may also not be a proper representation of how important 

(frequent) the items are to the whole data set.  

In this section, the combination of both approaches is explained. We discussed a 

hybrid threshold (h), which is based on a weighted harmonic mean among the support, 
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correlation, and coefficient of determination values. The confidence value is omitted 

from the hybrid threshold due to the fact that the value is implied by the support value as 

previously discussed in Section 3.1.2. 

To understand why the harmonic mean is chosen for the hybrid threshold 

calculation, let us begin with a comparison of mean values and calculations. There are 

three main types of mean calculation – 1) arithmetic mean, 2) geometric mean, and 3) 

harmonic mean, each of which is calculated as shown in Table 3.4.  

Table 3.4. Formula of Arithmetic, Geometric, and Harmonic Means 

Types of Mean Simplest Formula Most Informative Formula 

Arithmetic mean of x and y ( ) / 2x y+  0.5 0.5x y+  

Geometric mean of x and y xy  0.5 0.5x y⋅  

Harmonic mean of x and y 2 /( )xy x y+  1
(0.5 / ) (0.5 / )x y+

 

Moreover, Table 3.5 illustrates that there is no difference in how x and (100 – x) 

can affect the values of the arithmetic means (the regular average values) as long as the 

summations of x and (100 – x) stay the same. The same table also shows that the 

geometric and harmonic means can give penalties to inequalities between the two 

numbers, regardless of the same summation values. Please note that the examples shown 

below are adapted from [81]. 
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Table 3.5. An Example of Arithmetic, Geometric, and Harmonic Means 

x 100-x Arithmetic mean Geometric mean Harmonic mean 

50 50 50 50 50 

40 60 50 49 48 

30 70 50 46 42 

20 80 50 40 32 

Furthermore, Figure 3.6 shows the comparison between the geometric and 

harmonic means. One can see that the geometric means give fewer penalties to uneven 

numbers than the harmonic means. If each number in the mean calculation is considered 

as a measurement of good performance, and a better mean calculation should be able to 

express the evenly good performances, it follows that using the harmonic mean would be 

a better choice than the geometric mean.  

 

Figure 3.6. Geometric and harmonic means between two values: x and (100 - x). 
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An example of a mean calculation that utilizes the harmonic mean is the “F-

measure” [71], shown in equation (3.4). F-measure is widely used in various information 

retrieval approaches. There is an important add-on to F-measure, which makes the 

calculation a weighted harmonic mean between the precision and recall values. The 

weight ω is to adjust how important the recall is for the F-measure value.  

 
(1 )
( )

precision recallF
precision recallω
ω

ω
+ ⋅ ⋅

=
⋅ +

 (3.4)

 1
2 precision recallF
precision recall
⋅ ⋅

=
+

 (3.5)

One can find from equation (3.4) that when the ω value increases, the weight of 

recall is higher. Equation (3.5) shows an example of evenly weighted precision and recall 

when ω = 1. To elaborate further with commonly used F-measures, F2 weights recall 

twice as much as precision. On the contrary; F0.5 weights precision twice as much as 

recall.  

From the above discussions, the hybrid threshold ( hω ), which is a weighted 

harmonic mean
 
of support (s), correlation coefficient (r), and coefficient of determination 

(r2), can be calculated below. 

 
2

2

(1 )
( ) ( )

s r rh
s r rω
ω

ω
+ ⋅ ⋅ ⋅

=
⋅ + +

 (3.6)

The principle is to utilize previously explained threshold parameters – support, 

correlation coefficient, and coefficient of determination together as one value. The 

support of a frequent itemset of a dc partition is the confidence of (dc partition  

frequent itemset) with respect to the entire data. More importantly, the support value is 
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given a specific weight ω, where the other values share an equal weight. It is worth 

mentioning that, based on the objective to discover non-trivial knowledge, a weight 

should be given less to the support value by setting ω >1. 

3.3.3 Domain-Concept Partition Size Estimation 

The DCM approach is designed to granulize the partitioning criteria by pairing 

each attribute with each of its values. Even though, the assigned domain-concepts are 

highly reliable because: 1.) all of their qualified transactions are grouped together, 2.) dc 

partitions are completely data driven, and 3.) there is no manipulation to the data and its 

distribution in anyway, we could foresee a few potential problems associated with this 

partitioning approach. Examples include the issue of under-represented groups of 

population with (attribute: value) pairs that occur too few in a data; and therefore, the 

findings from these domain-concepts may be less statistically significant. 

Furthermore, an important development that compliments DCM is its partition 

aggregation approach, called DCM-PA (which will be discussed in details in Chapter 4), 

has changed the scenario. By being able to aggregate partition using the union operation 

(i.e. merge the transactions from partitions) may improve statistical values of the 

findings. However, it is still more suitable to prevent partitions from being too small so 

that all findings from any partitions can be presented to the users directly as statistically 

worthy findings. 

Therefore, to prevent dc partition from being too small, we developed a 

systematic way of determining a domain-concept size based on a statistical approach of 

sample size estimation or power analysis [31, 82, 83], as a guideline to determine an 
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expected size of the domain-concept’ lower bound value. The foundations of this 

approach are discussed as follows. 

The basic idea of the sample size estimation value, n, is to find a statistically good 

interval ( ( ) ( )/ 2 / 2ˆ ˆ ˆ ˆ ˆ ˆ(1 ) / , (1 ) /p z p p n p z p p nα α
⎡ ⎤− − + −⎣ ⎦

, see also Figure 3.7) that a 

value of interest ( p̂ ) can possibly fall in the confidence interval. However, this is also not 

to allow the interval to be too wide until it is too useless to estimate any values correctly 

(or not to allow the interval to contain too many transactions to be efficiently mined by 

DCM). 

 

Figure 3.7. The confidence interval of p̂ .  

In other words, the goal is to be 100(1-α) % certain that p (or a value DCM is 

estimating) falls in the interval of ( p̂ - d) ≤ p̂ ≤ ( p̂ + d). A distance d is defined as: 

 / 2 ˆ ˆ(1 ) /d z p p nα= −  (3.7)

Furthermore, / 2zα represents a percentile of the unit normal curve ( z ) for the significance 

criterion of two-tailed test ( / 2α ). The value / 2zα can be looked up from the table of the 

standard normal distribution. One can solve equation (3.7) above to find the value of the 

sample size n as follow. 
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 / 2

2

2

ˆ ˆ(1 )z p p
n

d
α

−
 (3.8)

It is also important to mention that ˆ ˆ(1 )p p− is equivalent toσ , where σ is a standard 

deviation value. Further, to simplify equation (3.8), one can utilize the knowledge of 

calculus to conclude that the following equation gives the upper bound value of 1/4. 

 ˆ ˆ ˆMAX( ( )) (1 ) 1/ 4g p p p= − =  (3.9)

Therefore, we can get a cleaner version of equation (3.8) below: 

 / 2

2

24
z

n
d
α  (3.10)

, which can be used when no prior estimate is available. Please note that the above 

sample size estimation is designed for continuous variables. However, most of the 

attributes that DCM regularly faces with are not continuous, but categorical. Importantly, 

when DCM faces with a continuous variable (attribute), such as age, it discretizes the 

values into categories, e.g. age groups.  

In general, the larger the sample size n, the smaller the error from a statistical 

analysis would be. Further, DCM partitions data with objectives to achieve a better 

efficiency (i.e. processing a smaller set of transactions would require less computational 

time and resources). Therefore, the ability to determine an appropriate partition size may 

improve the accuracy (of a correlation coefficient, for example) when DCM faces with 

domain-concept partitions that may have too few transactions.  
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A basic statistical concept of Type I and Type II errors (shown in Table 3.6) is 

reviewed to provide basis understanding of the sample size estimation. These errors are to 

be considered when one conducts a statistical testing whether to accept or reject a null 

hypothesis (H0). A power of a statistical test can be obtained by using a complement of β, 

or (1- β ), where “β is the probability of falsely accepting H0 when in fact H1 is true” [84]. 

Table 3.6. Type I and II Errors 

 
Hypotheses 

H0 H1 

Decisions 
H0 Correct acceptance of H0 Type II error β 

H1 Type I error α Correct rejection of H0 

The goal is to minimize both of the error types. However, there is a trade-off between 

minimizing these two errors, e.g. if the error of Type I is lower, then Type II is higher.  

The next step is to derive an effect size (d) which determines the minimum 

acceptable difference for a statistical test. A relationship between d and r proposed by 

Cohen’s standardized difference, d, [85], as follows. 

2( 4)
dr

d
=

+
 (3.11)

One can rearrange equation (3.11) to compute d from r as follows. 

2

2
(1 )

rd
r

=
−

 (3.12) 
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, where r is an expected value of the correlation coefficient from a domain-concept. In 

equations (3.11) and (3.12), we consider only an absolute value of r by ignoring the 

correlation directions (+/-).  

 The standardized difference or effect size, d, is basically a scale of magnitudes for 

changes in means [83, 86]. DCM sample size estimation that is based on a correlation 

value r will allow some acceptable changes in the mean of an attribute that is being 

considered as the domain-concept. This also enables DCM to tolerate some noise in data, 

which usually occurs in a real-world situation. 

The following is a sample size estimation through a calculation that brings in an 

effect size (d) and a correlation r together, which is introduced in [83, 86]. The 

calculation takes into account a confident interval of 95%, which implies Type I error (α) 

to be 5%, and an acceptable value of Type II error (β) of 20%. 

2

32n
d

=  (3.13)

 By designating Type II error to be 20% implies a conservative estimate of a 

power of a test to be only 80%. Furthermore, an approach for a sample size estimation, 

such as the calculation shown in equation (3.12), that is related to a ratio between α and β 

is also called Compromise Power Analysis based on A Priori Power Analysis [84]. A 

Priori Power Analysis is an analysis that involves samples without a prior estimate. The 

power of a test, 1- β , for 800 samples, can be shown in Figure 3.8. The figure depicts two 

normal distribution curves, which are plotted by using a statistical power analysis tool, 

called G*Power version 3.0.10 [84].  
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Figure 3.8. A Power analysis of sample size 800 with a ratio between α and β of ¼. 

To further simply the sample size estimation, DCM pre-calculates the estimated d 

values using equation (3.12) and the corresponding sample sizes (n) using equation 

(3.13). This is to generate a look-up table shown in Table 3.7. Please note that the rough 

scales of r, which includes “trivial”, “small”, “moderate”, “large”, “very large”, and 

“nearly perfect” is based on a suggested scale of Cohen [87]. The scales are for a purpose 

of brief interpretations. 

Table 3.7. A Lookup Table for Effect Size (d)  

Correlation 
Scales Trivial Small Moderate Large Very large Nearly 

perfect 

r  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

d
 

0 0.2 0.4 0.6 0.9 1.2 1.5 2.0 2.7 4.1 ∞ 

n n/a 800 200 89 40 23 15 8 5 2 n/a 

 

For example, when d = 0.2 (or we expect a small correlation between variables), 

equation (3.13) gives us the sample size of 800. DCM uses this number as a lower bound 

of the acceptable sample size a domain-concept should have. This means that a domain 

concept should contain [800, ∞) transactions. If a domain-concept has the number of 
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transactions less than suggested, DCM generalizes the domain-concept by aggregating 

(union) the transactions of two or more (attribute: value) pairs of the same attribute to 

form a new single domain-concept. For example, if a dc partition with (age group: 18-25) 

is too small, DCM iteratively aggregates the transactions of (age group: 18-25) with one 

other age group until the sample size reaches the suggested value. In addition, 

aggregating dc’s of the same attribute still preserves the organization of the data. 

In practical settings, DCM uses 800 transactions as a lower bound value for all dc 

partitions of public health data sets, including the Centers for Disease Control and 

Prevention (CDC)’s Behavioral Risk Factor Surveillance System (BRFSS) [36] and the 

Agency for Healthcare Research and Quality (AHRQ)’s Nationwide Inpatient Sample 

(NIS) [35]. The sizes of these data range from 184,450 (BRFSS 2000) to over 8 millions 

(NIS 2005) transactions; hence, it is relatively seldom that a domain-concept partition 

with the most granulized criterion of a (attribute: value) pair would have less than 800 

transactions. For other data sets that are a lot smaller than the prior mentioned sets, such 

as the breast cancer survivor with lymphedema and the synthetic data for industrial 

engineering machine-group problem, the sample size estimation is not yet implemented. 

More DCM’s applications and implementation details are discussed in Chapter 6. 
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CHAPTER 4  

ON-DEMAND MINING 

 

 

 

As discussed previously, the Domain-Concept Mining (DCM) approach groups 

transactions into domain-concept (dc) partitions. Each dc partition can be mined 

independently because a dc partition contains all of its dc-qualified transactions. This 

independency among dc partitions enables DCM to process them offline in either a batch, 

parallel, or distributed fashion with no estimation or communication among the partitions 

needed. Thus, the independent dc partitions give DCM an advantage over other 

association mining approaches that utilize traditional partitioning or sliding window, and 

parallel or distributed computing techniques. More importantly, frequent itemsets 

uncovered from each partition by DCM is thorough because the approach implements 

brute-force association mining algorithms. 

After frequent itemsets from each dc partition have been uncovered and stored in 

a relational database, the next step is to intelligently aggregate the partitions and their 

frequent itemsets by utilizing information obtained from the offline data mining 

processes. The objectives are: 1.) not to perform a mining process again because a 

process is computationally expensive, 2.) allow human experts to utilize the domain-

concept organization to combine, compare, and contrast results by adjusting mixtures of 

domain-concepts, and 3.) obtain a thorough and true set of results by merging domain-
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concepts (especially when merging all values of the same attribute) as if the results had 

been uncovered from the entire data set. 

In order to efficiently achieve the above objectives, a novel DCM Partition 

Aggregation (DCM-PA) approach is developed. DCM-PA utilizes Bayes Theorem [31] 

along with the database query optimization technique, called pipelining [34]. On the one 

hand, Bayes Theorem is utilized to compute an actual proportion of the transactions (or 

support value) that an itemset has when multiple domain-concepts are aggregated. 

Furthermore, the theorem allows DCM-PA to re-use the information previously obtained 

from the DCM’s offline association mining to achieve the actual support value. On the 

other hand, the pipelining technique is implemented to maximize the efficiency of the 

aggregation processes by supplying necessary inputs to the aggregation operators step by 

step without materializing intermediate results. 

The assumptions and/or conditions needed for DCM-PA are: 

1.) All (attribute: value) pairs, any member of their power set (itemsets), and their 

numbers of transactions (or support values) are known from the DCM 

partitioning step and offline association mining. Otherwise, their numbers of 

transactions can be efficiently retrieved from dc partitions based on a 

reasoning that a partition is significantly smaller than the size of the entire 

data set, and 

2.) All itemsets can be used to partition the data. 

Let A1, A2, and B be sets of transactions that share a1 item(s), a2 item(s), and b 

item(s), respectively. A Venn diagram, as shown in Figure 4.1 (a), represents these sets as 
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three domain-concepts. In this example, the aggregation is between the domain-concepts 

A1 with a1 = (diabetes: yes) and A2 with a2 = (age group: 65-74). Furthermore, B with b = 

(healthcare coverage: no) is rather considered as a finding instead of a dc partition 

without the loss of generalization. This implies that item b can be uncovered from the 

domain-concepts A1 and A2 during the DCM offline association mining.  

There are two operations offered by DCM-PA to aggregate dc partitions: 

1.) A union operation, denoted by ∨ .  

2.) An intersection operation, denoted by ∧ . 

The operations are to aggregate “transactions” of multiple dc partitions. It is worth 

mentioning that the operators∨are∧  used as opposed to the operators ∪ and ∩ . This is 

because, according to traditional association mining approaches, operators ∪ and ∩ are 

reserved to be used when union or intersect “(attribute: value) pairs” (columns or 

itemsets). 

Also as shown in Figure 4.1 (b), the union operation of the dc partitions, A1 and 

A2, is to combine all transactions of these dc partitions. The result of this operation is the 

computed conditional probability of an itemset, b, written in the form of 1 2P( | )B A A∨ . 

Similarly, Figure 4.1 (c) shows the intersection operation of the transactions from the 

same dc partitions. The computed conditional probability of b from this intersection 

operation is denoted by 1 2P( | )B A A∧ . 
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Figure 4.1. (a) A Venn diagram depicts three domain-concept partitions, each of which 
can be represented by a set of transactions, and their overlapping, (b) a Venn diagram 
depicts the DCM-PA using the union operation, and (c) a Venn diagram depicts the 

DCM-PA using the intersection operation. 

As already mentioned, an important aspect of the union operation used when 

aggregates dc partitions is to ultimately achieve the support value of an itemset b with 

respect to all transactions of the original data set. This is to compute the conditional 

probability: 

 ( )1P | n
i iB A=∨  (4.1)
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  In order to compute the support value of an itemset, regardless of the number of 

dc partitions aggregated, the set theorem with generalized intersection [31], “Bayes 

Theorem” [31], basic set properties, and the “Inclusion-Exclusion Principle” [88] through 

lattices and algebraic structures [89] are utilized. 

4.1 Probability and Association Mining 

Considering a dc partition A1, the proportion of the transactions in A1 with respect 

to the entire data set is denoted by P(A1), and can be calculated by: 

 1
1

number of transactions that have P( )
total number of transactions in 

aA
U

=  (4.2)

, where U represents the whole data set (or the universe of discourse). Please note that the 

number of transactions that have a1 is basically the size of the dc partition A1. The 

support value of an itemset b in a dc partition A1 can be written as 1P( | )B A , which 

represents the conditional probability of the itemset b given the dc partition A1. This 

value can be calculated by: 

 1
1

1

P( )P( | )
P( )
A BB A

A
∧

=  (4.3)

Even though 1P( | )B A is called a support value of b in the dc partition A1, this same value 

is also the confidence value of an association rule a1  b. Next is to calculate the 

proportion of the transactions that have both a1 and b co-occur at the same time, or

1P( )A B∧ , which is the nominator of equation (4.3), by: 

 1
1

number of transactions that have both  and P( )
total number of transactions in 

a bA B
U

∧ =  (4.4) 
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However, DCM-PA avoids computing 1P( )A B∧ as shown in equation (4.4) because this 

equation requires a database scan. Instead, DCM-PA is designed to restrict the access to 

the entire data set especially now that DCM-PA can re-use the information from the 

offline mining process. Therefore, DCM-PA can obtain 1P( )A B∧ more efficiently than 

equation (4.4) by applying “Multiplication Rule” [31] to equation (4.3): 

 1 1 1P( ) P( | ) ( )A B B A P A∧ = ⋅  (4.5) 

Equations (4.2), (4.3), and (4.5) can also be applied to P(B), P(A1|B), P(A2), P(B| A2), 

P(A1| A2), and P(A2| A1) to obtain 1 2P( )A A∧ and 2P( )A B∧ . Hence, we have all pieces of 

the needed information to aggregate A1 and A2. The details will be discussed in the next 

section. 

4.1.1 Generalized Intersection and Domain-Concept Aggregation 

To generalize and simplify the aggregation of multiple dc partitions, we first 

attempt to find the following conditional probabilities:  

 
( )1 2

1 2
1 2

P ( )
P( | )

P( )
B A A

B A A
A A
∧ ∨

∨ =
∨

 (4.6)

and 
 

 
( )1 2

1 2
1 2

P ( )
P( | )

P( )
B A A

B A A
A A
∧ ∧

∧ =
∧

 (4.7)

Let’s begin by solving equation (4.6), which is to broaden a partition through a 

union operation of two dc partitions. From the “General Addition Rule” [31], 1 2P( )A A∨

can be obtained by: 

 1 2 1 2 1 2P( ) P( ) P( ) P( )A A A A A A∨ = + − ∧  (4.8)
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Furthermore, the union and intersection operations of sets have a closure property [90]. 

These set operations also possess the following basic set properties: 1.) associative, 2.) 

commutative, and 3.) distributive [88]. Therefore, one can apply the distributive property 

to equation (4.6) to obtain: 

 

( )

( )

1 2
1 2

1 2

1 2

1 2

P ( )
P( | )

P( )
P ( ) ( )

                      
P( )

B A A
B A A

A A
B A B A

A A

∧ ∨
∨ =

∨

∧ ∨ ∧
=

∨

 (4.9)

Then, equation (4.9) can be expanded using the format of equation (4.8) to obtain: 

 1 2 1 2
1 2

1 2 1 2

P( ) P( ) P( )P( | )
P( ) P( ) P( )

B A B A B A AB A A
A A A A

∧ + ∧ − ∧ ∧
∨ =

+ − ∧
 (4.10)

DCM maximizes the aggregation efficiency with the purpose to achieve the 

solution of 1 2P( | )B A A∨ without performing a mining process on a new set of 

transactions, e.g. a set of transactions that have either a1 or a2 or both. Therefore, DCM 

solves equation (4.10) by reusing the following values: 1.) 1P( )A , 2.), 1P( )B A∧  3.), 2P( )A  

and 4.) 2P( )B A∧ . The first two values can be directly obtained from the results of the dc 

partition A1, and the latter two can be obtained from the dc partition A2.  

Although, we have not done an offline data mining process on a set of 

transactions that have both a1 and a2, 1 2(in other words, )A A∧ , it is obvious that 

1 2P( )A A∧ can be obtained directly from either the dc partition A1 or A2. This is simply 

because 1 2P( )A A∧ can be inferred from the pre-established assumptions (i.e. a2 is an 

attribute inside the dc partition A1, and vice versa). Therefore, the only unknown 
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component in equation (4.10) is 1 2P( )B A A∧ ∧ , which can be obtained by utilizing the 

following calculations and techniques:  

1.) A posteriori probability calculation based on Bayes Theorem. The theorem is 

detailed step-by-step from equations (4.11) to (4.14) below: 

 1
1

1

P( )P( | )
P( )
A BB A

A
∧

=  (4.11)

         1 1 1P( ) P( ) P( | )A B A B A∧ = ⋅  (4.12)

                          1 1 1P( ) P( ) P( ) P( | )A B B A B A B∧ = ∧ = ⋅  (4.13)

 
        

1
1

1

P( ) P( | )P( | ) 
P( )

B A BB A
A

⋅
=  (4.14)

2.) The generalized intersection, which is also detailed step-by-step from 

equations (4.15) to (4.18), where each step resembles Bayes Theorem above. 

 1 2
1 2

1 2

P( )P( | )
P( )
A A BB A A

A A
∧ ∧

∧ =
∧

 (4.15)

               1 2 1 2 1 2P( ) P( ) P( | )A A B A A B A A∧ ∧ = ∧ ⋅ ∧  (4.16)

 
       

( ) ( )
( )

1 2 1 2

1 2

P ( ) P ( )

                           P( ) P ( ) |

A A B B A A

B A A B

∧ ∧ = ∧ ∧

= ⋅ ∧
 (4.17)

 

        

( ) ( )

( )

1 2
1 2

1 2

1 2

1 2

P ( )
P | ( )  

P( )
P( ) P ( ) |

                           
P( )

B A A
B A A

A A
B A A B

A A

∧ ∧
∧ =

∧

⋅ ∧
=

∧

 (4.18)
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Therefore, 1 2P( )B A A∧ ∧ , which is the only unknown component in equation 

(4.10), can be obtained by: 

          ( )1 2 1 2 1 2P( ) P( ) P | ( )B A A A A B A A∧ ∧ = ∧ ⋅ ∧  (4.19)

because 

 ( ) ( )1 2
1 2

1 2

P( ) P ( ) |
P | ( )

P( )
B A A B

B A A
A A

⋅ ∧
∧ =

∧
 (4.20)

Furthermore, all components in equation (4.20) are known from the offline mining 

processes of the domain-concept A1, A2, and B. It is important to note that while we were 

solving a union operation of two dc partitions, we have solved an intersection operation 

as shown in equation (4.7) as well. This is because equation (4.20) addresses equation 

(4.7) straightforwardly. In conclusion, we have successfully aggregated two dc partitions 

to obtain actual probability values of b without performing any further frequent itemset 

mining process. 

The next step is to demonstrate that we can also apply the above solutions when 

more than two dc partitions are aggregated. The union of all dc partitions, except B, has 

been established in equation (4.1), which can be further detailed as: 

 ( ) ( )( )
( )

1
1

1

P
P |

P

n
i in

i i n
i i

B A
B A

A

=
=

=

∧ ∨
∨ =

∨
 (4.21)

According to the set closure property [90], we can substitute ( 1
n
i iA=∨ ) component in 

(4.21) with a set C to obtain the following. 

  ( )1
P( )P | P( | )

P( )
n
i i

B CB A B C
C=
∧

∨ = =  (4.22)
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Hence, the problem of the union of all (or multiple) dc partitions can be reduced to the 

problem of the union of two dc partitions. Similarly, the problem of the intersection of 

multiple or all dc partitions can also be reduced the same way because of the same 

reason.  

The set properties, which include closure, associative, distributive, and 

commutative, are important. This is because they allow DCM-PA to strictly utilize only 

the information that has been previously obtained; hence, DCM-PA can achieve a high 

efficiency. Moreover, DCM-PA does not store intermediate results because they could be 

redundant and would result in high computational costs. The intermediate results if they 

were stored is called “materialized” [34], which would add the costs of storage, writing, 

and reading them back for use. On the contrary, DCM-PA can be efficient by calculating 

needed probabilities through Bayes Theorem, which is a “pipeline” [34] of processes. By 

using Bayes Theorem, DCM-PA accumulatively infers or propagates the calculations 

until it finally achieves the final solution. Hence, the term “on-demand” (or equivalently 

called “on-the-fly” in [34]) is used. DCM pipeline processes can be illustrated in Figure 

4.2. More details will also be discussed in subsequent sections. 
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Figure 4.2. On-demand DCM-PA and its pipeline processes through Bayes Theorem, 

where “op” is either union (∨ ) or intersection (∧ ) operation. 
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4.1.2 An Alternative Solution by Using Generalized Union 

The union operation on a two-set problem and its probability calculation has been 

previously detailed in equation (4.10). To further clarify equation (4.21), which contains 

a generalized set union (a series of the union operations of more than two sets), one can 

formulate a union operation among three sets [91] as: 

 

( )
[ ]

[ ] [ ]

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 2 3 1 2 1 3

1 2 3 2 3

P( ) P ( )

                          P( ) P( ) P ( )

                          P( ) P( ) P( ) P( ) P ( ) ( )
                          P( ) P( ) P( ) P( )

A A A A A A

A A A A A A

A A A A A A A A A
A A A A A

∨ ∨ = ∨ ∨

= + ∨ − ∧ ∨

= + + − ∧ − ∧ ∨ ∧

= + + − ∧ −

[ ]{ }1 2 1 3 1 2 1 3

1 2 3 1 2 1 3 2 3

1 2 3

                              P( ) P( ) P ( ) ( )

                          P( ) P( ) P( ) P( ) P( ) P( )
                              P( )

A A A A A A A A

A A A A A A A A A
A A A

∧ + ∧ − ∧ ∧ ∧

= + + − ∧ − ∧ − ∧ +

∧ ∧
 

(4.23) 

The property of equation (4.23) for n sets is also known as the “Inclusion-Exclusion 

Principle” [88], which details the following: 

( ) ( )

( )

( )

( )

1 1

1
1

1

1

P P

                    P

                    P

                    ... ( 1) P

nn
i i ii

n n
i i
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i j n

i j k
i j k n

A A

A A

A A A

A

= =

−
=

≤ < ≤

≤ < < ≤

∨ =

− ∧

+ ∧ ∧

− + − ∧

∑
∑

∑
 (4.24) 

 
 

The Inclusion-Exclusion Principle can be computed efficiently, as can equation 

(4.23). It is worth mentioning that this principle resembles a well-known statistical trial, 

called Bernoulli that forms the Bernoulli distribution [31], which is a foundation of the 

Binomial and Normal distributions.  
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However, a very important discussion regarding the use of this principle directly 

to obtain either ( )1P | n
i iB A=∨ or ( )1 1P | ( )n

i i nB A A= +∨ ∨  may be plausible only under the 

following assumption:  

All members and their numbers of transactions of the following sets are known: 

{

}

1 2 1

1 2 1

1 2 1

( ), ( ),..., ( ),
( ),..., ( ),
...,
( ,..., )

n

n n

n n

B A B A B A
B A A B A A

B A A A A

+

+

+

∧ ∧ ∧

∧ ∧ ∧ ∧

∧ ∧ ∧

 

Practically, however, computational costs of maintaining each member’s number of 

transactions to fulfill equation (4.24) could be expensive because all set intersections and 

their redundancies must be stored (or materialized) as intermediate results. In addition, 

equation (4.24) requires multiple database scans (or queries), each of which is to retrieve 

the probability value of an intersection. Moreover, this equation does not strictly pursue 

the purpose of DCM-PA, which is to intelligently reuse the associations discovered from 

the DCM offline mining processes. This is because DCM-PA’s foundation is its 

efficiency that could be obtained by inferring or computing a needed conditional 

probability value. Therefore, an intersection operation, such as 1 2 1( ,..., )n nB A A A A +∧ ∧ ∧  

to obtain ( )1 1P | ( )n
i i nB A A= +∧ ∧ is also not preferred; although, it is possible through a 

database query. For readers who are interested in more investigations of the Inclusion-

Exclusion Principle when applied to calculate ( )1 1P | ( )n
i i nB A A= +∨ ∨ value, the proof can 

be found in Appendix C. 
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4.1.3 Domain-Concept Partition Aggregation (DCM-PA) On-Demand 

This section is to illustrate the DCM-PA approach step-by-step strictly based on 

the set theorem and Bayes Theorem [31]. Before we detail the DCM-PA approach 

further, the followings are the basis of the discussion: 

1.) All domain-concepts (Ai)have been mined offline separately, 

2.) The results of the offline mining are stored in a database, and they are 

organized according to their domain-concepts.  

3.) Users then select sets of interesting domain-concepts they are interested in 

seeing the aggregated findings, 

4.) b is an itemset that represents a finding, which is expected to be discovered 

from this on-demand mining approach. b’s set of transactions is represented 

by B.  

4.1.3.1 Intersect Multiple Domain-Concept Partitions 

DCM-PA intersection ability is offered to the users so that they can narrow the 

partitioning criteria while viewing the DCM associations. For example, an association 

reported to the users from the domain-concept (diabetes: yes) is (BMI: overweight). 

Suppose the users would like to investigate further if this association is still true with a 

group of people who not only have been told they have diabetes, but also: 1.) do not have 

a healthcare coverage, or the domain-concept (healthcare coverage: no), and 2.) those 

who reported they would also say that their general health is poor, or the domain-concept 

(general health: poor). The users can select these other two domain-concepts to 

aggregate with the original domain-concept (diabetes: yes). 
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As discussed briefly in Section 4.1.1 regarding the DCM-PA’s pipeline processes 

(see also Figure 4.2), in this section, the discussion will lay out the processes step-by-

step. The objective of DCM-PA is to calculate the following to achieve the aggregation 

result. 

( )( ) ( )( )
( )

1
1

1

P
P | , , , 1

n
i in

i i in
i i

B A
B A B A U n

P A

=
=

=

∧ ∧
∧ = ∀ ∈ ≥

∧
 (4.25) 

, where U is a set of all transactions in a data set D. Let P(B) and P( )iB A∧  be the 

probability values of an itemset b and an itemset (b, ai), respectively. The most basic case 

of equation (4.25) is the probability value of an itemset b from a domain-concept A1, as 

shown in the following equation: 

 1
1

1

P( )P( | )
P( )
B AB A

A
∧

=  (4.26)

To aggregate A1 and A2 by using the intersection operation is to calculate the conditional 

probability of: 

 
( )1 2

1 2
1 2

P ( )
P( | )

P( )
B A A

B A A
A A
∧ ∧

∧ =
∧

 (4.27)

, where the distributive property [88] can be applied to the ∧  operation. Therefore, 

equation (4.27) can be re-written as: 

 
( )1 2

1 2
1 2

P ( ) ( )
P( | )

P( )
B A B A

B A A
A A

∧ ∧ ∧
∧ =

∧
 (4.28)

, where  
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( )1 2 1 2( ) ( ) ( )B A B A B A A∧ ∧ ∧ = ∧ ∧  (4.29) 

Then, Bayes Theorem is applied to equation (4.29) to infer the value of 1 2P( )B A A∧ ∧  

from their a priori probabilities (as shown in equation (4.19) in Section 4.1.1). 

Next is to expand the pattern in equation (4.27) to an aggregation of

1 2 ... nA A A∧ ∧ ∧ . Therefore, equation (4.27) can be re-written as:  

 

( )
( )

( )
( )

1 2
1 2

1 2

1 2

1 2

P ( ... )
P( | ... )

P ...

P ...
                                    

P ...

n
n

n

n

n

B A A A
B A A A

A A A

B A A A
A A A

∧ ∧ ∧ ∧
∧ ∧ ∧ =

∧ ∧ ∧

∧ ∧ ∧ ∧
=

∧ ∧ ∧

 (4.30)

, where the denominator is a sub-problem of the nominator. Therefore, it is reasonable to 

simplify the problem to solve the value of the nominator. Then, one can applied the 

“Multiplication Rule” [31] to the nominator of equation (4.30) as shown below. 

( )1 2 1 2 1

3 1 2

1 2 1

P ... P( ) P( | ) P( | )
                                         P( | ) ...
                                        P( | ... )

n

n n

B A A A B A B A B A
A B A A
A B A A A −

∧ ∧ ∧ ∧ = ⋅ ⋅ ∧

⋅ ∧ ∧ ⋅

⋅ ∧ ∧ ∧ ∧

 (4.31) 

,where 

1 1P( )  P( ) P( | )B A B A B∧ = ⋅  (4.32) 

1 2 1 2 1P( )  P( ) P( | ) P( | )B A A B A B A B A∧ ∧ = ⋅ ⋅ ∧  (4.33) 

, and so on. Hence, the problem can be pipelined as follow: 

( ) ( )1 2 1 2P ... P ((( ) ) ...)n nB A A A B A A A∧ ∧ ∧ ∧ = ∧ ∧ ∧ ∧  (4.34) 

Specifically, Bayes Theorem is applied to each of the P( | ) | ( ... )x p q rτ τ = ∧ ∧ ∧

in equation (3.1) when τ  is composed of at least two sets intersection. This is to infer the 
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posteriori probability, e.g. 1 2 1P( | ... )n nA B A A A −∧ ∧ ∧ ∧ , from the known (or a priori) 

probabilities. This is because there has not been an aggregation or an intermediate result 

of 1 2 1( ... )nB A A A −∧ ∧ ∧ ∧ materialized previously. Therefore, Bayes Theorem is used as 

follow:  

1 2 1
1 2 1

1 2 1

P( ... )P( | ... )
P( ... )

n n
n n

n

A B A A AA B A A A
B A A A

−
−

−

∧ ∧ ∧ ∧ ∧
∧ ∧ ∧ ∧ =

∧ ∧ ∧ ∧
 (4.35) 

1 2
1 2 1

P( ... )P( ... | )
P( )

n
n n

n

B A A AB A A A A
A−

∧ ∧ ∧ ∧
∧ ∧ ∧ ∧ =  (4.36) 

1 2 1 2 1P( ... ) P( ... | ) P( )n n n nB A A A B A A A A A−∧ ∧ ∧ ∧ = ∧ ∧ ∧ ∧ ⋅  (4.37) 

1 2 1
1 2 1

1 2 1

P( ... | ) P( )P( | ... )
P( ... )

n n n
n n

n

B A A A A AA B A A A
B A A A

−
−

−

∧ ∧ ∧ ∧ ⋅
∧ ∧ ∧ ∧ =

∧ ∧ ∧ ∧
 (4.38) 

The denominator value of the above equation has been calculated prior this equation 

because of pipelining. In conclusion, the calculation of ( )( )1P | , 1n
i iB A n=∧ ≥  can be done 

accumulatively, two sets at a time. And, the probability values needed for each step are 

known or can be inferred by using Bayes Theorem. 

4.1.3.2 Union Multiple Domain-Concept Partitions 

A union of multiple domain-concepts is important because it can be utilized for 

cases include: 1.) incremental data mining, 2.) compare and contrast the effect of 

numbers of transactions. For the first case, dc partitions can be a partition of current data, 

and another of new data. After DCM has mined both partitions for associations, DCM-

PA performs a union operation to combine the transactions of both partitions together. 

Hence, the current associations are updated by the new findings.   
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An example of the second case is a set of findings that could be verified from 

trivial knowledge or beliefs. For example, one may believe that there is an association 

between a particular disease and overweight or obesity. Suppose a finding uncovered 

from the domain-concept (diabetes: yes) shows that (BMI: overweight) has a high support 

value, which could partially confirm the prior knowledge of the experts. However, by 

combining domain-concepts (diabetes: yes) and (diabetes: no) together through the 

DCM-PA union operation shows that (BMI: overweight) may have a lower support value, 

but the value is still higher than the threshold. This piece of information could be useful 

for the experts’ further validations of their beliefs to find out whether overweight is in 

fact an epidemic problem of a general population or a specific problem associated with 

people with diabetes.  

The DCM pipelining process for the union operation starts from the offline 

associations that are organized based on their domain-concepts are stored in a database as 

shown in Figure 4.2. A Web interface, called DCMiner (which will also be explained 

further in Chapter 6), allows the users to select domain-concepts to perform a union 

operation. In this case, the selected domain-concepts are A1, A2, A4, and An-1. Without the 

loss of generalization, let b be a set of items that would be the end results of the 

aggregation operation, B be a set of transactions that have b, Ai re-index the selected 

domain-concept to be i = 1 to 4, and U be a set of all transactions in a data set D. 

Therefore, DCM-PA performs the following calculation: 

( )( ) ( )( )
( )

1
1

1

P
P | , , 4

n
i in

i i in
i i

B A
B A B A U n

P A

=
=

=

∧ ∨
∨ = ∀ ∈ =

∨
 (4.39) 
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The goal is to show that the above equation will result in the correct probability value of 

an item b after DCM-PA aggregates these multiple Ai partitions through pipelining. 

Let P(B) and P( )iB A∧  be the probability values of an itemset b and an itemset (b, 

ai), respectively. DCM-PA starts with the probability of the finding in the first domain-

concept, or 1P( | )B A as shown below.  

 1
1

1

P( )P( | )
P( )
B AB A

A
∧

=  (4.40)

Then, DCM-PA proceeds to its first aggregation between A1 and A2, which is to calculate 

the conditional probability of: 

 
( )1 2

1 2
1 2

P ( )
P( | )

P( )
B A A

B A A
A A
∧ ∨

∨ =
∨

 (4.41)

The distributive property [88] can be applied to both of the∨
 
and ∧  operations. Hence, 

we obtain: 

 
( )1 2

1 2
1 2

P ( ) ( )
P( | )

P( )
B A B A

B A A
A A

∧ ∨ ∧
∨ =

∨
 (4.42)

, which is re-arranged to be a problem of sets union, which is defined in the “General 

Addition Rule” [31] as follow: 

 1 2 1 2 1 2P( ) P( ) P( ) P( )A A A A A A∨ = + − ∧  (4.43)

Hence, one can apply equation (4.43) to equation (4.42) to get: 

 1 2 1 2
1 2

1 2 1 2

P( ) P( ) P( )P( | )
P( ) P( ) P( )

B A B A B A AB A A
A A A A

∧ + ∧ − ∧ ∧
∨ =

+ − ∧
 (4.44)
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Furthermore, all components on the right hand side of the above are known, except

1 2P( )B A A∧ ∧ , which can instead be inferred using Bayes Theorem as discussed 

previously in Section 4.1.1. Also, without the loss of generalization, both of the 

nominator and denominator of equation (4.44) are calculated the same way, and B is 

implied to be the expected finding from the selected domain-concepts. Therefore, the 

problem can be reduced to 1 2P( )A A∨ .  

The next DCM-PA step is to pipeline the rest of the selected domain-concept into 

the calculation as follow: 

( )1 1 2 3 4P P((( ) ) )n
i iA A A A A=∨ = ∨ ∨ ∨  (4.45) 

This calculation is possible because sets union and intersection possess the closure, 

associative, commutative, and distributive properties [90]. 

In conclusion, the problem of multiple domain-concepts union is reduced to a 

union of two sets at a time. It is also worth mentioning that, based on the DCM-PA 

pipeline processes, the aggregation through a series of union operations can be applied to 

any number of selected domain-concept partitions (i.e. n ≥ 1). 

4.1.3.3 Union Multiple Domain-Concept Partitions for Complete 

Results 

As discussed in the previous sections regarding the calculations of the DCM-PA 

union operation, this section details how DCM-PA obtains a set of complete results. The 

step-by-step DCM-PA discussed recently shows that DCM-PA has the ability to 

aggregate dc partitions that may have different sizes and overlap each other (see also 
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Figure 4.1). Therefore, an aggregation of all dc partitions that share the same attribute 

will lead to a merging of all transactions of the data set together; and thus, DCM-PA can 

obtain a set of complete results with respect to the attribute. Further, a set of all dc 

partitions that share the same attribute has no overlapping transactions among the dc 

partitions. In other words, these partitions are mutually exclusive. According to the Set 

Addition Principle, an aggregation of these dc partitions implies the following equation: 

 1
1

P( ) P( )
n

n
i i i

i
A A=

=
∨ =∑  (4.46) 

For example, as shown in Figure 4.3, an attribute “age group” has 6 different 

values. The (attribute: value) pairs for age group are (age group: 18-24), (age group: 25-

34), (age group: 35-44), (age group: 45-54), (age group: 55-64), and (age group: 65 or 

older). In addition, a transaction that qualifies for one dc partition, such as (age group: 

18-24), will not qualify for the other age group partitions. Consequently, DCM-PA can 

utilize the union operation to aggregate all age groups’ partitions in order to: 1) merge all 

transactions in the data set, and 2.) obtain the complete set of results that are associated to 

the overall concept of age group without processing an offline data mining process for the 

entire data set.  

This aggregation of a set of domain-concepts with the same attribute can be 

compared directly to traditional association mining approaches, which mine the entire set 

of transactions without partitions. A main disadvantage that the traditional approaches 

have is that it may take a considerable amount of time to process, and it may not be able 

to achieve any result at all if 1.) the support value is set high (so that the process can be 

completed or completed quicker), or 2.) the process has used up all of the computational 
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resources available. Further, the results from the traditional approach not organized; 

hence it is not easy to browse or make comparisons. Further details, experimentations, 

and comparisons between DCM with DCM-PA and the traditional approach can be found 

in Chapter 5. 

 
Figure 4.3. DCM-PA union operations for all age group partitions. 

4.1.4 Domain-Concept Partition Aggregation with Negations and 

Mixtures of Union and Intersection Operations 

This section details the other aggregation situations that the DCM-PA approach 

can be applied. The aggregation situations include: 1.) a domain-concept and its negation, 

and 2.) a mixture of the union and intersection operations. 
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4.1.4.1 Aggregation between Domain-Concept and Its Negation 

The problem of aggregating a domain-concept and its negation (denoted by ¬) 

can be illustrated in Figure 4.4. 

 
Figure 4.4. A Venn diagram represents various set intersection situations. 

The first problem is to calculate the value of the following. 

( )( )
( )

1 1
1 1

1 1

P ( ) ( )
P( | ( ))

P ( )
B A B A

B A A
A A

∧ ∨ ∧ ¬
∨ ¬ =

∨ ¬
 (4.47) 

, which is equivalent to: 

( ) ( )
1 1

1 1
P( ) P( ( )) P( )P( | ( )) P( )

P P
B A B A BB A A B

U U
∧ + ∧ ¬

∨ ¬ = = =  (4.48) 

This is because the nominator of equation (4.47) is disjoint, and P(U) is 1, where U is the 

entire data set. In general, P( | ( )) P( )Y X X Y∨ ¬ = , where X and Y can be multiple sets. 

The application of this kind of aggregation is the same as a union of multiple 

domain-concepts discussed in Sections 4.1.3.2 and 4.1.3.3. In other words, a union of a 
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domain-concept and its negation is the same as a union of the set of domain-concepts that 

have the same attribute. For a general case of negation that involves various attributes, 

e.g. a (broader) domain-concept that is form by an aggregation between (age group: 18-

24) and (healthcare coverage: no), its negation can also be calculated the same way. That 

is to merge all domain-concepts that their attributes are “age group” or “healthcare 

coverage”. 

For a purpose of explorations, the second problem, which is rather unusual, is to 

calculate the value of the following. 

( ) ( )( )
( )

( )
( )

1 1
1 1

1 1

1 1

1 1

P ( ) ( )
P | ( )

P ( )

P ( )
                            

P ( )

B A B A
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B A A
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∧ ∧ ∧ ¬
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∧ ¬

∧ ∧ ¬
=

∧ ¬

 (4.49) 

, which is not computable due to the values of ( )1 1P ( )B A A∧ ∧ ¬ and ( )1 1P ( )A A∧ ¬ are 

both zero. Therefore, any P( | ( ))Y X X∧ ¬ is not applicable. 

4.1.4.2 Aggregation Using Mixtures of Union and Intersection 

Operations 

An example of the problem of a mixture of the union and intersection operations 

can be detailed as follows. 

( )( ) ( )( )
( ) ( )( )

1 3 2 3
1 2 3

1 3 2 3

P ( ) ( )
P | ( )

P
B A A B A A

B A A A
A A A A

∧ ∧ ∨ ∧ ∧
∨ ∧ =

∧ ∨ ∧
 (4.50) 

Both components of the nominator can be calculated by using Bayes Theorem as 

previously explained in Section 4.1.3.1. Then, the Set Addition Principle is utilized to 
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achieve the value of the nominator. For the denominator, both components can be 

obtained directly from offline mining results, and then the Set Addition Principle is 

applied. In general, the problem can be re-arranged to a disjunctive normal form (DNF) 

[34], which is a union of multiple domain-concepts as follows.  

( )( )
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∧ ∨ ∧ ∨ ∨ ∧

∨ ∧ ∧
=

∨ ∧

 
(4.51) 

Without the loss of generalization, B can be omitted for a purpose of a simpler 

illustration. Therefore, an on-demand aggregation problem can be pipelined as illustrated 

in Figure 4.5. Please note that each of the intersection processes of the offline partitions 

may be done when it is needed to be used in the pipeline, e.g. all of the intersections do 

not need to be computed at the same time. This is to maximize the efficiency by 

minimizing the use of the main memory. 
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Figure 4.5. Pipeline processes of a mixture between intersection and union operations in  
a disjunctive normal form.  
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The next problem is the intersection and then the union operations of multiple 

domain-concepts. It can be formulated as: 

( )( ) ( )( )
( ) ( )( )

( )( )
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 (4.52) 

In general, the problem can be re-arranged to a conjunctive normal form (CNF) [34] as 

follows. 
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(4.53) 

, which can be solved by pipelining as well. Without the loss of generalization, B is 

omitted. Therefore, an on-demand aggregation process is illustrated in Figure 4.6. 
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Figure 4.6. Pipeline processes of a mixture between intersection and union operations in  
a conjunctive normal form. 
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CHAPTER 5  

EXPERIMENTAL RESULTS AND 

EVALUATION 

 

 

 

The data set used in the evaluation of the DCM and DCM-PA approaches is from 

the “Behavioral Risk Factor Surveillance System” (BRFSS) 2006 [33] survey data. 

BRFSS 2006 contains 355,710 transactions with 302 variables that are collected from a 

stratified random sample of adults (age 18 years or older), with a maximum of one adult 

surveyed per household. The samples are drawn throughout 50 states, the District of 

Columbia, Puerto Rico, Guam, and the Virgin Islands. The BRFSS employed a telephone 

survey method to collect the health related data, which included data on behavioral risk 

factors and health practices that are related to chronic diseases, injuries, and some 

infectious diseases. The following is sample of survey questions (from 302 originally 

collected questions and variables) and corresponding answers:  

1. “Have you ever been told by a doctor that you have diabetes?” (If “Yes” and 

respondent is female, as “Was this only when you were pregnant?”. If respondent 

answered “pre-diabetes or borderline diabetes”, response code 4 was used.) 

1.1. Value: 1. Value Label: Yes. 

1.2. Value: 2. Value Label: Yes, but female told only during pregnancy. 

1.3. Value: 3. Value Label: No. 
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1.4. Value: 4. Value Label: No, pre-diabetes or borderline diabetes. 

1.5. Value: 7. Value Label: Don’t know/Not sure. 

1.6. Value: 9. Value Label: Refused. 

1.7. Value: BLANK. Value Label: Not asked or Missing. 

2. “Has a doctor, nurse, or other health professional ever told you that you had a heart 

attack, also called a myocardial infarction?” 

2.1. Value: 1. Value Label: Yes. 

2.2. Value: 2. Value Label: No. 

2.3. Value: 7. Value Label: Don’t know/Not sure. 

2.4. Value: 9. Value Label: Refuse. 

Derived domain-concepts from the above survey questions and their answers: 

1. (DIABETE2: 1), which corresponds to question 1 with choice 1.1. 

2. (DIABETE2: 3), which corresponds to question 1 with choice 1.3. 

3. (CVDINFR: 1), which corresponds to question 2 with choice 2.1. 

4. (CVDINFR: 2), which corresponds to question 2 with choice 2.2. 

As detailed in Table Appendix A.1, there are 84 domain-concepts selected from 

302 variables of the BRFSS 2006 data set for testing purposes. Unselected BRFSS 

variables were classified as identifiers, non-core questions that were not asked 

consistently every year, geographic variables included area codes, stratum codes used for 

statistical purposes, calculated variables, and the values “Don’t know/Not Sure,” 

“Refuse,” “Not asked or Missing”. ItemIDs are used in the DCM processes as the 

representative of each (variable name: variable value). It is important to emphasize that a 

previously established assumption of DCM infers that an itemID can be considered as an 
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item or a granulized domain-concept. Variable names, descriptions, variable values, 

variable meanings, frequencies, and percentages are obtained directly from the provided 

BRFSS 2006 Codebook [33], which details all survey questions and their choices. 

The interesting indicators in Table Appendix A.1 are implemented to differentiate 

itemIDs whether they are of an interest or not. The attributes with interesting indicator 

value N (no) usually imply that their variable meanings are not of health risks or 

problems [e.g. (GENHLTH: 1), (HLTHPLAN: 1)]. In addition, the interesting indicators 

are helpful in reducing the number of items to be considered in both the DCM and the 

brute-force frequent itemset mining of the “entire” set of transactions of the BRFSS 2006 

data. The indicators exclude non-interesting itemIDs from a mining process’s 

consideration. For example, the interesting indicators used in the domain-concept 

partition (DIABETE2: 1) will report only results from items that imply health risks and 

problems. Therefore, itemID 1 will not be reported. 

5.1 Computational Resources 

There are two sets of the computation resources used in the experiments and 

evaluation processes. In the first experiment, the DCM approach was evaluated using a 

cluster system with 128 four-processor Intel Xeon CPU 2.66 GHz with four MB cache 

machines. These machines may contain four to six GB of memory. Please note that, there 

were two sets of 84 batch processes in the first experiment.  In addition, at a given point 

in time, the processes may or may not utilize all of the 128 nodes of the cluster system.  

The second experiment was conducted to evaluate the efficiency of the DCM-PA 

approach. For the purpose of monitoring the progress of the aggregation operations 
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executed by DCM-PA, the operations were evaluated using a single server with four-

processor Intel Xeon CPU 2.80 GHz with a one MB cache and four GB of memory. 

Moreover, this server was also used as the storage device of the DCM offline results, 

where a MySQL database was utilized. Even though DCM-PA is designed to be used on-

demand and on-line, all of the DCM-PA aggregation operations and their efficiency were 

tested as offline batch processes. This is to ensure that the experiment was not affected by 

the network and its traffic.  

5.2 Offline DCM Frequent Itemsets 

There are two main testing sets, which are directly related to the types of frequent 

itemsets used in the evaluation of DCM-PA. They are: 1.) DCM and DCM-PA based on 

the FPT algorithm [20] for brute-force frequent itemsets, and 2.) DCM and DCM-PA 

based on CHARM algorithm [49] for frequent closed itemsets. The testing for the brute-

force frequent itemsets is to utilize the complete set of the frequent itemsets (and their 

subsets). The complete set is based on the downward closure property [1], which states 

that if an itemset is frequent then all of its subsets are frequent.  

The testing for frequent closed itemsets is to obtain and use a lossless set of 

frequent itemsets (a set of frequent itemsets with minimum repeating subsets). Only the 

subsets of the frequent itemsets that are necessary for a complete transaction retracing 

and association rule generation purposes are kept. The set of frequent closed itemsets can 

be smaller than the set of frequent itemsets. Please note that the frequent closed itemsets 

are not same as the maximum frequent itemsets (the longest frequent itemsets). This is 

because one may not be able to retrace the actual numbers of transactions of the subsets 
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of the maximum frequent itemsets. The association rule generation cannot be done 

without the information of the number of transactions. 

5.3 Experimental Results 

The following section will outline and describe the statistical characteristics of the 

DCM and DCM-PA experimental results for both the brute-force frequent itemsets and 

frequent closed itemsets. 

5.3.1 DCM Processes 

Table 5.1 details the two sets of the DCM offline processes, where the first set 

was to mine the complete frequent itemsets, and the second set was to mine the frequent 

closed itemsets. A DCM process was implemented independently for each dc partition. 

The largest dc partition, (CDVSTRK: 2), has 341,643 transactions, which is 14,067 less 

transactions than the whole BRFSS 2006 data set (355,710 transactions in total). The 

smallest dc partition, (EDUCA: 1), had 630 transactions. For a purpose of comparing 

efficiencies based on sizes, the statistical power analysis was exempt from the pre-

processing step. On average, a dc partition contains 85,738 transactions, with a standard 

deviation of 95,677 transactions. The global minimum support threshold used for all of 

the DCM processes was 0.1 (or 10%).  

It is important to note that if we had mined all 355,170 transactions of the BRFSS 

2006 at once with the same minimum support threshold of 0.1, we would not have 

uncovered any frequent (or frequent closed) itemsets from the domain-concepts that have 

less than 35,517 transactions. From Table Appendix A. 1, there are 46 domain-concepts 
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or variables (55% of 84 domain-concepts in total) with frequencies less than 35,517 

transactions. More importantly, there are 39 domain-concepts (63% of 62 domain-

concepts with the interesting indicator Y) that will not meet the threshold. This implies 

that the data mining results would likely have not contained findings that were related to 

health risks or problems. Hence, without DCM, the data mining effort and the results may 

have been rendered ineffective. 

Table 5.1. Statistics of DCM Offline Processes for Frequent Itemsets and  
Frequent Closed Itemsets 

Statistics Number of Transactions  
(Domain-Concept Partition Size) 

Brute-Force 
Time (seconds) 

Frequent Closed 
Itemsets Time 

(seconds) 

Maximum 341,643 84.4 1.2 

Minimum 630 0.009 0.007 

Average 85,738 8.9 0.3 

Standard 
Deviation 95,677 17.6 0.3 

Moreover, Table 5.1 details the statistics of the time spent (in seconds) during the 

offline processes. Overall, the time spent for the frequent closed itemset processes was 

shorter than for the frequent itemset processes. Figure 5.1 and Figure 5.2 show the 

corresponding dc partition size (number of transactions in 10-3 unit) and time spent of 

each of the 84 dc partitions for the frequent itemsets (in seconds), and the frequent closed 

itemsets (in 10-2 seconds), respectively. It is worth mentioning that the size of a dc 

partition may be the main factor, but it is not the only factor that contributes to the time 

spent for its offline DCM process. The other factors that may affect the time are the 
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distribution of the data (sparse or dense), and the load of the cluster server during testing. 

However, these other factors are not in the scope of this study.  

 
Figure 5.1. Numbers of transactions and time spent for the DCM offline frequent 

itemsets processes of the domain-concept partitions shown in Table Appendix A.1. 

 

 
Figure 5.2. Numbers of transactions and time spent for the DCM offline frequent closed 

itemsets processes of the domain-concept partitions shown in  
Table Appendix A.1.  
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5.3.2 DCM-PA Processes 

The experimental results are grouped according to the two approaches to 

aggregate dc partitions: 1.) union, which is to calculate P( | )iB A∨ , and 2.) intersection, 

which is to calculate P( | )iB A∧ . The union operation for the brute-force frequent itemsets 

required at most 95,858 comparisons with the total time spent to merge all single frequent 

itemsets of 5.22 hours from 84 dc partitions. On the other hand, the union operation for 

the frequent closed itemsets required at most 84,344 comparisons with the total time 

spent of 5.19 hours from the same number of partitions. On average, the union operation 

between two dc partitions took about 0.2 seconds for each comparison regardless whether 

the comparison was for the frequent itemset or frequent close itemset. Further details of 

the union operation can be found in Table 5.2. 

Table 5.2. Statistics of DCM-PA Processes Comparing between Aggregating Frequent 
Itemsets and Frequent Closed Itemsets Using the Union Operations 

Statistics 

Brute-Force Frequent Itemsets Frequent Closed Itemsets 

Number of  
Pair-Wise 

Comparison 

Aggregation 
Time (seconds) 

Number of  
Pair-Wise 

Comparison 

Aggregation 
Time 

(seconds) 

Maximum 2,923 634.8 2,686 657.8 

Minimum 81 0.09 3 0.46 

Average 1,183.4 232.2 1,041.3 230.9 

Standard 
Deviation 734.2 163.5 799.1 191.5 

The intersection operation of the brute-force frequent itemsets required at most 

95,858 comparisons with the total time spent to aggregate all of the single frequent 



90 

 

itemsets of 7.8 hours from 84 dc partitions. On the other hand, the intersection operation 

for the frequent closed itemsets required at most 84,344 comparisons with the total time 

spent of 5.3 hours from the same number of partitions. On average, the intersection 

operation between two dc partitions also took about 0.2 seconds for each comparison 

regardless whether the comparison was for the frequent itemset or frequent close itemset. 

Further details can be found in Table 5.3. 

Table 5.3. Statistics of DCM-PA Processes Comparing between Aggregating Frequent 
Itemsets and Frequent Closed Itemsets Using the Intersection Operations 

Statistics 

Brute-Force Frequent Itemsets Frequent Closed Itemsets 

Number of  
Pair-Wise 

Comparison 

Aggregation 
Time (seconds) 

Number of  
Pair-Wise 

Comparison 

Aggregation 
Time (seconds) 

Maximum 2,923 797.8 2,686 655.9 

Minimum 81 32.9 3 0.8 

Average 1,183.4 345.6 1,041.3 236.2 

Standard 
Deviation 734.2 210 799.1 195.5 

In the experiments of aggregating two dc partitions ( 1 2P( | * )B A A , where * 

represents ∨  or∧ ). There were cases when frequent itemsets and frequent closed 

itemsets could not be aggregated due to: 1.) the first dc partition’s frequent (and frequent 

closed) itemset was the same as the second dc partition (B is A2), and 2.) the probability 

of 1 2P( | * ) 0B A A = . Example of 1 2P( | * ) 0B A A = are  

1.) B = (TOTINDA: 2), A1 = (PROSTATE: 2), and A2 = (AGEG: 1), 

2.) B = (MARITAL: 3), A1 = (AGEG: 1), A2 = (QLACTLM: 1). 
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Please refer to Table Appendix A.1 for descriptions of the above examples. Table 5.4 

concludes the number of no aggregation instances of both the brute-force frequent 

itemsets and the frequent closed itemsets. 

Table 5.4. Number of “No-Aggregation” Instances Comparing between Brute-Force 
Frequent Itemsets and Frequent Closed Itemsets for Both Union and  

Intersection Operations 

Case 
Number of Instances 

Brute-Force Frequent Itemsets Frequent Closed Itemsets 

B is A2 134 112 

1 2P( | ) 0B A A∨ =  401 14 

Total 535 126 

5.3.3 Report of Correlation and Hybrid Values 

As discussed in Section 3.3.2, the correlation coefficient (r), the coefficient of 

determination (r2), and hybrid values (h) have been proposed. This section reports these 

values when DCM utilizes them to test for correlations between domain-concepts and 

items on the BRFSS 2006 data set. The average value of r’s from the domain-concept 

partitions is 0.064. Furthermore, the average value of r2’s is 0.009. The low r and r2 

average values are contributed from the sparseness of the data and the number of 

different values that an attribute has. On average, an attribute has four values (min = 2 

and max = 8). For example, r and r2 values between the attributes HLTHPLAN and 

GENHLTH are 0.043 and -0.002, respectively. In this case, both HLTHPLAN and 

GENHLTH do not have a strong correlation (0.043), and the direction of the correlation is 

slightly negative. Moreover, hybrid values (h), which are calculated by equation (3.6) 

with the weight of support values (ω) as 2, are consequently low with an average of 
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0.001. More details of these r, r2, and h, which are categorized by the attributes of 

domain-concepts, are shown in Table 5.5. 

Table 5.5. Correlation Coefficient (r), Coefficient of Determination (r2), and Hybrid 
Values (h) Categorized by Domain-Concepts’ Attributes 

Domain-Concept Description r r2 h 

GENHLTH General health 0.119 0.022 0.003 

HLTHPLAN Have any health care coverage 0.041 0.003 0.0002 

DIABETE2 Ever told by a doctor you have diabetes 0.032 0.001 7.55E-05 

CVDINFR3 Ever diagnosed with heart attack 0.058 0.004 0.0003 

CVDSTRK3 Ever Diagnosed with A Stroke 0.047 0.003 0.0002 

ASTHMA2 Ever told had an asthma 0.045 0.003 0.0002 

QLACTLM2 Activity limitation due to health problem 0.136 0.031 0.0045 

ORACE2 Respondent race choice 0.036 0.002 8.5E-05 

MARITAL Marital status 0.064 0.006 0.0005 

EDUCA Education level 0.174 0.038 0.0065 

EMPLOY Employment status 0.172 0.043 0.007 

INCOME2 Income level 0.018 0.0004 1.19E-05 

SEX Respondents sex 0.015 0.000 6.02E-06 

PROSTATE Ever told you had a prostate cancer 0.029 0.001 3.92E-05 

INSULIN Now taking insulin 0.069 0.008 0.00067 

DIABPILL Now taking diabetes pills 0.015 0.0003 6.78E-06 

FEETSORE Ever had feet sores or irritations 0.035 0.0023 0.0001 

DIABEYE Ever told diabetes has affected eyes 0.035 0.003 0.0001 

BMICAT Computed Body Mass Index categories 0.077 0.007 0.0007 

According to the characteristics of the BRFSS 2006 data set, the correlation and 

hybrid values are not sufficient to be used as independent thresholds because the reported 
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correlations among the variables are not strong. From this evaluation, the disadvantages 

of the under-represented groups (those with low support values, s), especially those 

(attribute: value) pairs with the interesting indicators ‘Y’, cannot be overcome by 

utilizing the correlation and hybrid values. This is because the hybrid values are 

calculated based on the harmonic mean calculation, which is considered as a 

measurement of evenly good performances or factors. In this case, the factors are r, r2, 

and s values, which are unfortunately not high enough to yield good hybrid values. 

5.4 Evaluation of 1-Itemsets 

To evaluate the DCM approach, the experiments were conducted to compare: 1.) 

a distinct set of the 1-itemsets (itemsets of size one) uncovered from the 84 domain-

concepts using the DCM approach, and 2.) the 1-itemsets uncovered from a frequent 

itemset mining using the FPT approach on the entire BRFSS 2006 data set. Table 5.6 

contains the findings, which are the itemIDs with interesting indicator ‘Y’. Empirically, 

the FPT approach implementation to the BRFSS 2006 with no domain-concept confirms 

that without domain-concept partitions, there can be many valuable findings that the 

brute-force approach cannot identify (see the cells in Table 5.6 with *). This is because 

these findings usually cannot meet the global minimum support threshold, such as the 

variables with health risks and problems with the interesting indicators ‘Y’, as discussed 

in section 5.3.1. 

It is worth mentioning that there are two other major advantages from the DCM 

approach. First, a x-itemset from a dc partition implies a (x+1)-itemset, where x 

represents the number of items in the itemset, e.g. a co-occurrence of a 1-itemset and the 
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variable that the dc represents implies a 2-itemset. Second, an association rule “dc 

partition  x-itemset,” where the support value of the x-itemset is the confidence value 

of the association rule.  

Table 5.6. A Summary of the 1- Itemsets Results (ItemIDs) from Frequent Itemset 
Mining of the BRFSS 2006 Data Set (No Domain-Concept Partition) 

ItemID from 
Table 

Appendix 
A.1 

Results from Entire 
BRFSS 2006 

ItemID 
(Uncovered*) 

Support 
Value 

4 4 0.13 
5 n/a* n/a 
7 7 0.117 
9 9 0.882 
10 10 0.101 
12 n/a* n/a 
14 n/a* n/a 
16 16 0.129 
18 18 0.243 
20 n/a* n/a 
22 22 0.552 
23 23 0.14 
24 24 0.127 
26 26 0.128 
27 n/a* n/a 
29 n/a* n/a 
30 n/a* n/a 
31 31 0.303 
32 32 0.263 
33 33 0.327 
34 34 0.466 
35 n/a* n/a 
38 n/a* n/a 
39 n/a* n/a 
40 40 0.241 
41 n/a* n/a 
42 n/a* n/a 
43 n/a* n/a 

ItemID from 
Table 

Appendix 
A.1 

Results from Entire 
BRFSS 2006 

ItemID 
(Uncovered*) 

Support 
Value 

44 n/a* n/a 
45 n/a* n/a 
46 46 0.112 
47 47 0.141 
48 48 0.146 
49 49 0.206 
50 50 0.381 
51 51 0.619 
56 56 0.11 
57 n/a* n/a 
58 n/a* n/a 
61 n/a* n/a 
63 n/a* n/a 
65 n/a* n/a 
67 n/a* n/a 
69 n/a* n/a 
71 n/a* n/a 
72 72 0.108 
73 73 0.169 
74 74 0.213 
75 75 0.195 
76 76 0.134 
77 77 0.116 
79 79 0.257 
81 81 0.129 
82 82 0.356 
83 83 0.347 
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A summary of the 1-itemsets, their minimum and maximum support values, and 

the number of dc partitions that the 1-itemsets are associated to is shown in Table 5.7. 

The shaded rows are corresponding to the uncovered frequent itemsets from the brute-

force approach as previously shown in Table 5.6. 

Table 5.7. A Summary of the DCM 1-itemsets (ItemIDs), Their Minimum and Maximum 
Support Values, and the Number of Domain-Concept Partitions 

ItemID 
Min 

Support 
Value 

Max 
Support 

Value 

Number 
of DC 

Partitions 
4 0.101 0.342 66 
5 0.103 0.401 33 
7 0.101 0.428 56 
9 0.572 0.97 82 

10 0.1 1 49 
12 0.104 0.293 27 
14 0.101 0.189 10 
16 0.102 1 78 
18 0.104 0.815 81 
20 0.102 0.465 43 
22 0.161 0.82 78 
23 0.103 0.286 71 
24 0.107 0.543 57 
26 0.101 0.682 54 
27 0.1 0.1 1 
29 0.104 0.144 6 
30 0.101 0.197 33 
31 0.134 0.429 78 
32 0.196 0.458 78 
33 0.105 0.634 76 
34 0.103 0.682 75 
35 0.101 0.164 13 
38 0.1 0.171 9 
39 0.25 0.25 1 
40 0.104 0.799 68 
41 0.102 0.414 34 
42 0.1 0.245 24 
43 0.101 0.176 22 

ItemID 
Min 

Support 
Value 

Max 
Support 

Value 

Number 
of DC 

Partitions 
44 0.1 0.146 28 
45 0.1 0.147 38 
46 0.101 0.146 62 
47 0.102 0.169 64 
48 0.102 0.198 49 
49 0.1 0.4 45 
50 0.173 1 81 
51 0.45 0.988 80 
56 0.1 0.352 63 
57 0.202 0.266 2 
58 0.101 0.256 11 
61 0.109 0.258 10 
63 0.11 0.478 8 
65 0.104 0.787 23 
67 0.101 0.211 4 
69 0.15 0.395 7 
71 0.102 0.529 5 
72 0.101 0.275 43 
73 0.102 0.25 60 
74 0.114 0.302 73 
75 0.141 0.355 74 
76 0.106 0.372 62 
77 0.102 0.493 46 
79 0.122 0.605 82 
81 0.102 1 78 
82 0.132 0.55 81 
83 0.239 0.476 81 
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There are 2,564 1-itemsets (itemsets of size 1) in total that are uncovered from the 

84 dc partitions, with an average of 31 1-itemsets per partition. The itemIDs that cannot 

be uncovered from the mining of the entire set of transactions from BRFSS 2006 data are 

in shaded areas. Please note that the uncovered items contribute to 23 of 55 interesting 

itemIDs. If one focuses only on the shaded areas of both tables, one would find that DCM 

with dc partitions can report more associations than without dc partition ranging from an 

association with 1 dc to 43 dc’s. Hence, it confirms that, without dc partition, there can be 

interesting items and their associations with one or more dc’s missing from the results. 

5.5 Evaluation of Itemsets with Other Sizes 

Table 5.8 summarizes the brute-force frequent itemset mining on the entire set of 

transactions from the BRFSS 2006 data. The longest frequent itemset uncovered with the 

minimum support threshold of 0.1 is 4.  

Table 5.8. A Summary of the Results from the Brute-Force Frequent Itemset Mining on 
the Entire BRFSS 2006 Data Set 

Itemset Size Number of Itemsets Minimum Support Value Maximum Support Value

1 32 0.101 0.882 

2 74 0.538 0.103 

3 51 0.283 0.102 

4 9 0.137 0.101 

Table 5.9 details the nine 4-itemsets. When each of the itemIDs is interpreted 

using Table Appendix A.1, one may find that the nine of these 4-itemsets contain mostly 

demographic information, and very little information regarded health risks and problems.
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Table 5.9. Nine 4-Itemsets Uncovered Using the Brute-Force Frequent Itemset Mining 
on the Entire BRFSS 2006 Data Set 

Itemset No. ItemID ItemID ItemID ItemID Support Value 

1 22 51 34 9 0.137 
2 51 22 82 9 0.121 
3 22 34 50 9 0.117 
4 22 34 33 9 0.115 
5 22 34 49 9 0.107 
6 22 51 33 9 0.106 
7 22 33 49 9 0.105 
8 22 50 83 9 0.103 
9 51 34 33 9 0.101 

In contrast, there are five instances of 6-itemsets uncovered from the DCM 

approach as shown in Table 5.10. Again, a 6-itemset uncovered from a dc partition 

implies a 7-itemset. Further, from the DCM approach, there are 378 instances of 5-

itemset, 2,575 instances of 4-itemset, 6,893 instances of 3-itemset, and 7,588 instances of 

2-itemset in total. Also important is the fact that the association mining of a data set 

without domain-concept partitions yields unorganized associations. Hence, drawing a 

conclusion from the findings would take more effort. In conclusion, there are a big 

numbers of associations that a brute-force mining approach could not uncover without 

partitioning the data. 

Table 5.10. Six Itemsets Uncovered Using the DCM Approach from the BRFSS 2006 
Data Set with Domain-Concept Partitions 

Itemset 
No. 

DC 
Partition ItemID ItemID ItemID ItemID ItemID ItemID Support 

Value 
1 52 9 22 40 50 77 83 0.106 
2 67 9 10 18 20 51 79 0.105 
3 67 9 10 18 20 65 79 0.105 
4 67 9 10 18 51 65 79 0.101 
5 67 9 10 18 20 63 79 0.1 
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5.6 Evaluation of DCM-PA Itemsets 

In order to demonstrate that the DCM-PA approach can compliment DCM to 

uncover many more itemsets than the brute-force frequent itemset mining approach, an 

example from Table 5.6 is used. Let us investigate the 1-itemset with the itemID 10, 

which is (DIABETE2: 1) or “Have you ever been told by a doctor that you have 

diabetes?: yes,” with the support value of 0.101. There are no co-occurrences of the 

itemID 10 with other itemIDs uncovered from the BRFSS 2006 without dc partition. In 

other words, the itemID 10 is not a part of any other size itemsets; hence, it has no 

association uncovered. 

On the other hand, there are 49 dc partitions where the DCM approach uncovered 

the itemID 10 as their 1-itemset, with the support values ranging from 0.1 to 1 (see Table 

5.7 at itemID 10). More importantly, using the DCM-PA approach to aggregate dc 

partitions in the form of 1 2( | )P B A A∨ , where A1 is the itemID 10, A2 can be the other 83 

dc partitions ( 1 2A A≠ ), and B can be the other 82 itemIDs ( 1 2B A A≠ ≠ ), there are 1,828 

such 1 2( | )P B A A∨ instances as the results of the DCM-PA union operations. The 

summary of the results can be found in the Appendix B. Moreover, if one wishes to 

aggregate A1 with multiple other domain-concepts in order to further expand its 

associations, one can do this freely through an online system, DCMiner, which all offer 

1 2( | )P B A A∧ as well.  

One way to validate the DCM-PA approach is to demonstrate that the number of 

transactions that made up ( )( )iB A∧ ∧ , which can be derived from the instance 
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( | )iP B A∧ (see equations (4.18) to (4.20) in Chapter 4), is the same as the result of a 

multiplication between:  

1.) the support value of the brute-force approach’s itemset (with the size of three 

or larger when DCM-PA aggregates two domain-concept partitions, or

1 2( | )P B A A∧ ). Itemsets are those that have B and Ai as its items, and  

2.) the total number of transactions in the BRFSS 2006 data set.  

In the case of three variables (B, A1, and A2), without the loss of generalization, 

the support values and the numbers of transactions of B, A1, A2, 1B A∧ , 2B A∧ , and 

1 2A A∧  that made up the value of 1 2( | )P B A A∧ , were calculated by using the exact 

same algorithm for both the DCM approach and the brute-force frequent itemset mining 

on the BRFSS 2006 data set without domain-concept partition. Therefore, it is adequate 

to draw a conclusion that a DCM-PA’s 1 2( | )P B A A∧ value is correct once compared to 

the support value of the brute-force frequent 3-itemset of the same variables (B, A1, and 

A2). 
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CHAPTER 6  

APPLICATIONS 

 

 

 

In the recent years, Domain-Concept Mining (DCM), DCM Partition Aggregation 

(DCM-PA), and DCM Web system, called DCMiner, have been successfully 

implemented as data mining tools for various data sets, including: 1.) the Agency for 

Healthcare and Research Quality (AHRQ)’s Nationwide Inpatient Sample (NIS) data 

[35], 2.) the Center for Disease Control and Prevention (CDC)’s Behavioral Risk Factor 

Surveillance System (BRFSS) data [36], 3.) the data sets from the National Institute of 

Health (NIH)-funded breast cancer survivors with lymphedema project, and 4.) an 

industrial engineering grouping technology data. Other data sets where DCM and 

DCMiner have been implemented, but are omitted from the detailed discussion includes 

the Callaway nuclear power plant’s Action Request (CAR) data and geospatial image 

databases [92]. A summary of the implementations categorized by the applications is 

shown in Table 6.1. 
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Table 6.1. A Summary of DCM, DCM-PA, and DCMiner Applications 

Data Set DCM DCM-PA DCMiner Future Work 

NIS [29] Multi-level 
domain-concepts On-going Yes, with both tabular and graphical 

formats. 

Temporal (years prior to and after 
2005) and spatial domain-concepts for 
trends 

DCM-PA 

DCMiner with Google Earth [93] 

BRFSS [94] Yes for 2003-
2006 data sets 

Yes, 2006 
only 

Yes, with tabular format for all 
domain-concepts, but graphical format 
for (diabetes: yes) only. 

DCM-PA implementations for other 
data years 

More domain-concepts, include states 
(spatial) and non-core questions 

Full DCMiner graphical 
functionalities 

Expand to cover 1990 – 2002 data sets 

Breast cancer 
survivors with 
lymphedema [95] 

Yes, but limited 
to cancer-affected 
sides, limb 
dominant sides, 
and BMI 
categories as 
domain-concepts 

No Yes with both tabular and graphical 
format, but limited functionalities. 

More domain-concepts include 
medication history, breast cancer 
treatments, signs and symptoms, 
among others. 

Expansion of DCM to uncover over-
time trend of limb volume change and 
its associations with other risk factors 

Full DCMiner functionality with 
DCM-PA 

Industrial 
engineering 
grouping 
technology [96] 

Yes, with 
Sequential 
Forward Floating 
Selection 

No No. Results are off-line machine/cost 
(m/c) matrices only n/a 

CAR Yes, with text 
mining No Yes with tabular format only. 

Expansion of DCM to be able to rank 
and classify the results, i.e. to generate 
‘association rule induction’ and over-
time patterns from the uncovered 
associations 

Geospatial image 
databases [92] 

Yes, for ranking 
and classification 
purposes 

No No. Results are off-line features of 
images n/a 



102 

 

DCM and its related approaches have been useful to a vast range of data sets 

because DCM can uncover valuable associations among attributes from these rich data 

sources efficiently; whereas, the traditional association mining may not be efficiently or 

feasibly applied. Further, the findings from DCM are highly organized according to a 

data set’s domain-concept (dc) partitions. In this chapter, some of the research that havs 

implemented DCM, DCM-PA, and DCMiner are discussed.  

6.1 DCMiner 

DCMiner was originally designed by a team of three doctoral students to create a 

back-end relational database for storage of DCM results, and to create an interface which 

offered various visualizing formats for the results. This work was named as a winner of 

the American Medical Informatics Association (AMIA) 2007 Annual Symposium Data 

Mining Competition [29].  

Moreover, DCMiner offers more functions than Web-based database browser of 

the DCM mining results. DCMiner also offers a tool through which human experts can 

view, compare, and contrast the results across domain-concepts in both tabular (text) and 

graphical formats. In addition, DCMiner has the ability to present the findings on-the-fly 

in graphical formats, particularly when there are thousands of potentially interesting 

findings to browse. A graphical representation can act as an informative summary of a 

group of findings. Consequently, the number of findings presented to the human experts 

is reduced.  

In general, findings that can be identified with trends or patterns across some 

certain sets of domain-concepts, including temporal (e.g. years), spatial (e.g. states), and 
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other domain-concepts (e.g. age groups, income levels, races, genders, levels of 

healthcare coverage, etc.), DCM’s representations also allow human experts to 

contemplate a more complete picture of the findings, rather than just a snapshot (a table) 

would be able to provide. More details of the DCMiner implementations for the NIS, 

BRFSS, and lymphedema data are discussed as part of sections 6.2, 6.3, and 6.4, 

accordingly. 

6.2 Domain-Concept Mining on the 2005 Nationwide Inpatient Sample 

(NIS) Data 

The 2005 Nationwide Inpatient Sample (NIS) contains almost 8 million 

transactions. Datasets of this size can be under-utilized due to their complexity and the 

difficulty in comprehending and exploring the relationships among variables. To exploit 

this rich data set, we applied DCM and discovered approximately 8.9 million frequent 

itemsets in our 149 partitions of the 2005 NIS. DCMiner was then used to facilitate the 

navigation of the results, and the research community was able to identify clinically 

meaningful patterns in the NIS dataset for further examination and analysis. Thus, the 

DCMiner demonstrates the potential for using computational methods to provide an 

efficient, robust, and flexible tool to healthcare researchers for knowledge discovery, 

which may lead to further clinical studies. 

6.2.1 Motivations 

The 2005 NIS is a collection of inpatient visits from hospitals in 37 states. The 

hospitals included in the study were chosen using stratified sampling, with strata 
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definitions based on the hospital characteristics of geographic region, control, location, 

teaching status, and bed capacity. Between these five characteristics, a total of 14 strata 

were defined, with sampling performed to select 20% of the all information in each 

stratum. From the 3,860 hospitals obtained using this sampling strategy, nearly 8 million 

records for the dataset were selected.  

Despite the fact that the 2005 NIS is a sampling itself, the dataset is quite large, 

and the ability to utilize such large datasets for knowledge discovery is important, as 

these types of datasets are becoming increasingly more available [97].  

Some previous studies utilizing the NIS dataset performed statistical analysis on 

limited topics from the dataset. These types of studies are valuable in the topic of interest, 

but are incapable of discovering associations across or among other topics. Data mining 

approaches, however, facilitate the discovery of such associations. Unfortunately, with a 

traditional, purely descriptive data mining approach, such as association rule (AR) 

mining [13], the knowledge discovered is unorganized and the sheer volume of extracted 

information is overwhelming to researchers. It therefore becomes essential to develop 

methods of organizing the discovered knowledge and presenting it in meaningful ways so 

that newly discovered knowledge can be identified by humans [98].  

Domain-Concept Mining (DCM) is a customized, semi-descriptive data mining 

approach that seeks to accomplish these goals. DCM first organizes data before analysis 

by partitioning the data into groups of relevant domain-concepts. For the 2005 NIS, these 

domain-concepts are based mainly on Clinical Classifications Software (CSS) for ICD-9-

CM as well as demographic, temporal, and spatial variables. The DCM then analyzes 

data by extracting associations among variables from each partition. This is accomplished 
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in a two-step process: 1.) off-line discovery of associations from each domain-concept 

partition, and 2.) on-line exploration of potential relationships between selected domain-

concepts and other variables of interest via a web application called DCMiner. This tool 

allows researchers to efficiently navigate the findings from each domain-concept, to 

compare and contrast findings across domain-concepts, and to view results using a 

variety of visualization techniques.  

6.2.2 Knowledge Discovery Process 

The process by which one extracts, uncovers, and identifies meaningful and 

relevant knowledge in large datasets is known as the knowledge discovery process. This 

process is comprised of four steps: 1.) data selection, 2.) data pre-processing and 

transformation, 3.) data mining, and 4.) presentation of results. We discuss each step of 

the process with respect to our analysis of the 2005 NIS.  

6.2.2.1 Data Selection  

To increase the efficiency of the mining process, DCM implements a stratified 

random sampling technique, which not only reduces the number of transactions, but 

maintains the characteristics of the original data. According to statistical sample size 

estimation [31], a dataset containing 8 million records can be represented with as few as 

9,604 random samples with a confidence interval 95%. Considering computational 

resources, the time constraints for analysis, and the fact that the NIS dataset is already a 

sampled dataset, we chose to perform stratified sampling (based on the CDC’s predefined 

age groups [33]) to select 10% of the data, which is a much more conservative sampling 

than theory requires. To ensure accuracy, we conducted an experiment to compare 
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attribute value (item) frequencies between the raw NIS dataset and our sampled set. In 

terms of total number of items occurring with a frequency of 10% or more, the sampled 

and NIS data matched 358 of 359 items. Furthermore, the frequency values of these items 

differed by at most 0.5%.  

6.2.2.2 Data Pre-processing and Transformation  

As with any dataset, a certain amount of pre-processing had to be performed on 

the 2005 NIS before data analysis could be initiated. First, the degree of the dataset was 

reduced to eliminate redundancies and sparsely populated attributes. In total, 60 attributes 

were selected for study. These attributes include information related to demographics, 

hospital, diagnoses, comorbidities, procedures, admission types, among others. Second, 

because descriptive data mining techniques rely on co-occurrence frequencies, the 

attributes of interest need to be discrete in nature. Thus, discretization of attributes with 

continuous values must be performed before the data can be analyzed with DCM. Some 

continuous attributes that were discretized include age, total charge, length of stay, 

number of procedures, and the number of days from admission to principal procedure. 

For the age attribute, discretization was performed as mentioned previously using CDC 

guidelines. For the other continuous attributes, statistics (e.g. range, mean, mode, and 

standard deviation) were used as the underlying guides in defining partitions. 

6.2.2.3 Data Mining: Domain-Concept Mining  

Descriptive data mining approaches aim to uncover hidden knowledge by 

identifying itemsets (a set of co-occurring items) without prior hypotheses. For example, 

the (attribute: value) pairs {(GENDER: Female), (PRIMARY PAYER: Private including 
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HMO), (MDC: Pregnancy, Childbirth, and Puerperium)} together form an itemset. Since 

the approach was developed [13], researchers have struggled with one of its challenges: 

how to discover novel, useful, or interesting frequent itemsets efficiently. This is difficult 

because on the one hand, itemsets with high support (co-occurrence frequency) are 

usually trivial knowledge, but on the other hand, itemsets with low support are often 

novel and clinically significant. Because of this, setting the support threshold is vitally 

important. If the support threshold is set too high, important associations of rare itemsets 

will never be discovered. If the threshold is set too low, analysis becomes 

computationally inefficient and even impracticable due to the huge number of qualified 

frequent itemsets. 

For example, consider the itemset (RACE: Native American), which has a 

probability of 0.0033 in the 2005 NIS. If one would like to find novel knowledge from 

this sub-population, the support threshold should be set lower than 0.33%. With such a 

low threshold, millions of qualified co-occurring itemsets will make it difficult for users 

to find the proverbial needles in the haystack of returned itemsets to identify meaningful 

hidden knowledge.  

To address this issue, we define domain-concepts by partitioning the 2005 NIS 

dataset into two levels of domain-concepts. First-level domain-concepts can be grouped 

into demographic, temporal, spatial, comorbidity measures (CM), and major diagnosis 

category (MDC) attributes, among others. All first-level domain-concepts are listed in 

Table 6.2, along with the numbers of their level-two concepts. For example, the first-

level domain-concept “Hospital Bed Size” has three level-two concepts: “Small,” 

“Medium,” and “Large.”  
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Table 6.2. Lists of the Number of Level-Two Domain-Concepts under Each  
First-Level Domain-Concept 

Level-One Domain-Concepts # of Level-Two Domain-Concepts 

Hospital State 37 

Comorbidity Measures 29 

MDC 25 

Admission Month 12 

Age Groups 8 

Age Groups (100%) 8 

Race 6 

Control of Hospital 5 

Discharge Quarter 4 

Hospital Region 4 

Bed Size of Hospital 3 

Survival 2 

Gender 2 

Hospital Location 2 

Hospital Teaching Status 2 

Let X be a subset of items (variables) in database, dx be X’s domain-concept, and 

T be the set of all records in the database. A subset of T that shares the same domain-

concept dx is defined as: ( )dx dxT Tσ= , where σ is the relational algebra selection 

operator. With domain-concept partitioning, one record could be in multiple partitions 

since the record may be qualified for many domain-concepts according to its attribute 

values. Records in Tdx will then be mined to extract frequent itemsets. An itemset is said 

to be frequent in a domain-concept dx if and only if 
| |
| |

I
dx

dx

T s
T

≥ , where I
dxT is the set of 
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records in dx that contain I, s is the minimum support threshold, and |.| is the number of 

records from a dataset. 

While one of the advantages of data mining is that the results are driven by the 

data and not constrained by preconceived hypotheses, the use of domain-concepts is 

useful in providing a seed or starting point for uncovering knowledge. The search for 

other interesting, relevant, and nontrivial information can be extended from the original 

domain-concepts. 

Offline processing was performed on a Dell EM64T cluster system with 128 

nodes and 512 processors. Each node has 4-6 GB of memory and is attached to 50 TB of 

disk using an Infiniband high speed interconnect infrastructure for both processor and 

storage access.  

6.2.2.4 Knowledge Presentation and Visualization 

We designed a web-based, database-driven knowledge presentation and 

visualization system called DCMiner that assists users in navigating the information 

uncovered from DCM. This website has two main functional components: 1.) a text-

based, result-browsing capability (Figure 6.1), and 2.) a graphical representation of 

statistical distributions (Figure 6.2).  

In browse mode, users must first initialize the knowledge interpretation process 

by choosing a number of criteria to select a subset of the result set as shown in the top 

panel of Figure 6.1. For this, users are prompted to select a level-two domain-concept, 

chosen via two levels of dropdown menus that correspond to the two levels of domain-

concepts. Other criteria provided to the user are the maximum number of co-occurring 
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items, a minimum frequency threshold, and a list of attributes of interest from which the 

user can select multiple items. 

 
Figure 6.1. A Screenshot of DCMiner. 

 
Figure 6.2. Graphical Representation of Statistical Distribution. 
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 The lower panel of Figure 6.1 contains: 1.) a list of qualified, selected 1-itemsets ranked 

by their co-occurrence frequencies within the domain of interest, 2.) an expanded list of 

qualified 1-itemsets that were not selected but might be relevant, and 3.) a list of 

disqualified, selected 1-itemsets that did not pass the frequency threshold. The users are 

able to check a set of 1-itemsets from 1.) and 2.) for further studies. 

Those qualified 1-itemsets that were not checked along with the disqualified 1-

itemsets will not be used in forming the larger itemsets, which range in size from two to 

the selected maximum number of co-occurring items. Larger itemsets (not shown due to 

space limitation) are then summarized in ranked order based on their co-occurring 

frequencies.  

For example, consider the situation in Figure 6.3, where “Race” was chosen at the 

level-one domain-concept, and “Black” the level-two domain-concept. Users can choose 

one of the qualified 1-itemsets such as “Emergency” to view a comparison of this itemset 

across all level-two sub-domain siblings. Users can also view larger itemsets containing 

those qualified 1-itemsets.  

 
 

Figure 6.3. Compare and contrast specific itemsets among  
level-two sub-domain siblings. 
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In the graphical mode, charts are generated on-the-fly based on selected domain-

concepts. An example is shown in Figure 6.2, where the top pie chart depicts the 

distributions of the age group domain-concepts while the bottom pie chart shows the 

distribution of the same domain-concept within the selected variable (MDC: Blood, 

blood-forming organs, and immunological disorders) for comparison purposes. These 

two charts appear side-by-side and can be used to learn differences the selected variable 

have on the domain-concept’s distribution.  

The web-based online system is a PowerEdge 1850 with Dual Xeon-4, 2.8 GHz 

processors and 4 GB of memory. 

6.2.3 Results 

After data mining has completed, DCM has identified all frequent itemsets in the 

dataset whose co-occurrence frequencies are greater than the support threshold. In total, 

this is nearly 8.9 million itemsets for the 2005 NIS, any of which may potentially qualify 

as a meaningful result. Due to space limitations, we report only a select subset of those 

findings in this section. The reported findings are classified into four broad classes of 

domain-concepts: demographic, temporal, spatial, and diagnosis attributes. Additional 

results can be generated and examined using the DCMiner at http://medbio-

ext.rnet.missouri.edu/kddm. 

6.2.3.1 Demographic Attributes 

Findings in this broad domain-concept class are based on demographic 

information like gender, race, income level, and age. Example findings include: 52.2% of 

Caucasian admissions live in large metropolitan areas versus 72.6% of Asians admissions 
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and 30.8% of Native American admissions; 4.52% of males have the CM of depression 

compared to 6.91% of females; and 31.76% of people living in zip codes with a median 

household income of less than $37,000 have the comorbidity measure of alcohol abuse 

versus only 16.85% of those living in zip codes with a median household income greater 

than $61,000.  

6.2.3.2 Spatial Attributes 

Findings in the spatial domain-concept class are in some way linked to the 

location and characteristics of hospitals. For example, the most frequent MDC for the 

Midwest, Northeast, and South was contained diseases and disorders of the circulatory 

system, but was contained in pregnancy, childbirth, and puerperium for the West.  

6.2.3.3 Temporal Attributes 

Findings in the temporal domain-concept class are related to attributes like 

admission month and discharge quarter. An example finding would be that admissions 

with an MDC of diseases and disorders of the respiratory system occur more frequently 

in winter months (e.g. 10.3% in February and 9.6% in January) than in summer months 

(e.g. 5.6% in July and 5.7% in August).  

6.2.3.4 Diagnostic Attributes 

Among those with a CM of obesity, 53.2% are from large metropolitan areas, 

27.6% from small metropolitan areas, and 11.5% from micropolitan. The gender 

breakdown for this subpopulation is 64.6% female compared to 35.4% male. The top 

three ranked MDC in this group are hypertension (58.9%), diabetes (32.6%), and chronic 
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pulmonary disease (22.6%). More details regarding the approximate 500 ICD9-CM CCS 

for diagnoses and procedures can be viewed for this population using DCMiner.  

Another example population consists of those with a CM of metastatic cancer. In 

this group, 53.2% are female versus 46.8% male; and 53.5% are from large metropolitan 

areas, 27.5% from small metropolitan areas, and 10.5% from micropolitan areas. The top 

three ranked MDC for this group are hypertension (36.9%), fluid and electrolyte 

disorders (28.1%), and chronic pulmonary disease (19.8%). Other relevant associations 

include 48.3% use the ER, 72.3% chose elective admissions, 55.9% were paid by 

Medicare, and 37% were discharged within 5-10 days.  

6.2.4 Conclusion 

In this competition, the proposed semi-descriptive data mining approach offers 

unlimited possibilities for discovering and exploring new knowledge buried in the 2005 

NIS via efficient mining using DCM and a web-based visualization tool. 

6.3 Knowledge Discovery using Domain-Concept Mining Approach for 

the Behavioral Risk Factor Surveillance System (BRFSS) Data 

The publicly available, state-based Behavioral Risk Factor Surveillance System 

(BRFSS) data from the Centers for Disease Control and Prevention (CDC) is the largest 

annual state-based telephone health survey system in the world. Often times, the data set 

is under-utilized due to its size, complexity, inconsistency of variables used among the 

survey years, and the difficulty of comprehending and exploring the relationships among 

variables. With a traditional data mining approach, such as AR mining, the amount of 
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knowledge discovered is too overwhelming for policy makers to efficiently manage. The 

DCM approach partitions data into groups of relevant domain-concepts, mainly health-

related and demographic variables, then extracts associations among other variables from 

each partition. The DCM is a two-step process: 1) off-line discovery of associations from 

each domain-concept partition and 2) on-line exploration of potential relationships 

between selected domain-concepts and other variables of interest.  

The DCM on-line system provides public health policy makers with a tool to 

investigate potential health related issues in a variety of dimensions across various risk 

factors. These factors include geographic location, times, availability and access to health 

care providers and health insurance, education, income, race, age, disease of interest (i.e., 

diabetes or HIV), weight and body mass index levels, exercise regimens, nutrition, 

smoking, etc. For example, an association rule from this health domain-concept could 

possibly be rendered in questions (and a calculated value of a question), such as  

“{(Have you ever been told by a doctor that you have diabetes?: yes)}  

 {(Have you ever had blood cholesterol checked?: yes) AND 

  (At risk for heavy alcohol consumption (greater than two drinks per day   
   for men and greater than one drink per day for women): not at risk for   
   heavy drinking)}.”  

Similar rules for the same domain-concept (diabetes) are also extracted and archived in a 

relational database for knowledge aggregation.  

These domain-concepts are used to assist in policy planning, in which the DCM 

finding results can help pin-point health related problems for further examinations and 

analyses for specific populations or for generalized uses. Moreover, a portion of the 

findings from the BRFSS data sets between 1990 and 2006 show that DCM may 
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efficiently discover valid and relevant information from the BRFSS with respect to 

previously published literature, such as those in PubMed. In addition, findings from 

DCM may also potentially suggest further studies of the new knowledge that has not been 

published. 

6.3.1 Motivations 

• To discover hidden knowledge in large databases, such as a publicly available 

data set from the Centers for Disease Control and Prevention (CDC)’s Behavioral 

Risk Factor Surveillance System (BRFSS) questionnaire [36]. A BRFSS data set 

can contain more than 1,000 items (from 302 attributes in BRFSS 2006, each of 

which has approximately 5 different answers or values), and 181, 289 records 

yearly average (maximum 355,710 records in 2006). 

• From this data set size, the traditional association rule mining algorithm, such as 

the Apriori algorithm [13], could take days to discover, and it would result in 

millions of association rules. In most threshold values setting, it is not feasible to 

discover association rules directly from the entire data set. 

• Not all discovered association rules are relevant, useful, and novel. Not all items 

should be included in the data mining process. 

• BRFSS items can be categorized into domain-concepts. The example of domain-

concepts are health-related behavior, health-related risk, nutrition intake, 

exercises, etc. 

• A domain-concept is a set of items of interest. The domain-concept helps 

categorize and identify relevant items. We can separately implement data mining 
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process on each domain-concept. This can make the data mining process faster 

and more feasible. 

6.3.2 Methods 

In BRFSS data, a domain-concept of interest is a (attribute: value) pair, for 

example (Do you have any health care coverage?: No). Let X be a subset of items 

(attribute: value) in database R, dx be X’s domain-concept, and T be a set of all records in 

R. A subset of T that shares the same domain-concept dx is defined as: 

 ( )dx dxT Rσ=  (6.1)

, where σ is a selection operator. Records in Tdx will then be mined to extract frequent 

itemsets. 

An itemset I is a set of (attribute: value) pairs. It is said to be frequent in a 

domain-concept if and only if 

  (6.2) 

, where ௗܶ௫
ூ  is the records in dx that has I, s is the minimum support threshold, and |.| 

represents the number of records from a data set. Frequent itemsets are extracted only 

from partitions with sizes that are smaller than or equal to 

  (6.3) 
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, where Ndx is the total number of domain-concepts. It gives us the expected number of 

records for each domain-concept that we will conduct experiments on. If a partition is too 

large, it suggests to further divide itself into multiple domain-concepts. 

6.3.3 Example of Findings 

Selected findings and associated support values as shown in Table 6.3, Table 6.4, 

and Table 6.5 are from BRFSS 2003 to 2006 data sets. Their co-occurring support values 

are 23.4%, 24.7%, and 24.2%, respectively. The findings are from the domain-concept: 

(Ever been told by a doctor that you have diabetes: yes), with criteria of co-occur support 

values ≥ 20.0%. 

Table 6.3. Findings from BRFSS 2003 with a Co-Occur Support Value 23.4 % 

Findings Support Values (%) 

(Fruits or vegetables consumption per day: consume < 5 servings 
per day)  74.2 

(Ever been told blood pressure high: yes)  68.0 

(Trying to lose weight: yes)  61.1 

(Body Mass Index: obese (30.0 ≤ BMI < 99.99)) 59.3 

Table 6.4. Findings from BRFSS 2004 with a Co-Occur Support Value 24.7 % 

Findings Support Values (%) 

(Race groups: white (non-hispanic))  71.7 

(Body Mass Index: obese (30.0 ≤ BMI < 99.99))  59.6 

(Respondents sex: female)  57.3 
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Table 6.5. Findings from BRFSS 2005 with a Co-Occur Support Value 24.2 % 

Findings Support Values (%) 

(Fruits or vegetables consumption per day: consume < 5 servings 
per day)  73.7 

(Race groups: white) 72.0 

(Ever been told blood pressure high: yes) 69.4 

(Ever been told blood cholesterol high: yes)  59.2 

Table 6.6. Findings from BRFSS 2006 with a Co-Occur Support Value 20.2% 

Findings Support Values (%) 

(Was there a time in the past 12 months when you needed to see a 
doctor but could not because of cost: no )  86.7 

(Are you now taking diabetes pills: yes) 59.2 

(Physical activity of exercise in the last 30 days: no) 40.1 

The number of surveys increases each year as shown in Table 6.7. It is 

noteworthy to mention that the percentage of the selected domain-concept, (Ever been 

told by a doctor you have diabetes: yes) also increases each year. 

Table 6.7. The Number of Surveys from the Selected Domain-Concept Comparing to the 
Entire BRFSS 2003 - 2006 Data Sets 

Years Number of Surveys  
(records) 

Number of Surveys from the Selected  
Domain-Concept 

2003 264,684 21,729 (8.2%) 

2004 303,822 25,736 (8.5%) 

2005 356,112 33,320 (9.4%) 

2006 355, 170 36,085 (10.1%) 
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Table 6.8 shows the support values of various findings from 1990 to 2006 from 

the same domain-concept. Please note that n/a values in columns (Ever been told blood 

pressure high: yes) and (Ever been told blood cholesterol high: yes) are due to one of the 

following reasons: the support value of a finding is lower than the threshold value of 10% 

or a finding was not required to be asked in a particular year. 

Table 6.8. Selected Findings from BRFSS 1900 to 2006 

Years (Ever been told blood 
pressure high: yes)* 

(Ever been told blood 
cholesterol high: yes) 

(BMI: 
overweight) ** 

(BMI: 
obese) 

1990 45.9 n/a 52.8 n/a 

1991 48.4 29.6 51.4 n/a 

1992 51 31.9 51 n/a 

1993 47.5 37.1 47.4 n/a 

1994 n/a n/a 46.5 n/a 

1995 42.5 36.2 43.8 n/a 

1996 15 n/a 51.2 n/a 

1997 56.6 39.4 52.3 n/a 

1998 11.8 n/a 55.1 n/a 

1999 58.5 41.7 57.1 n/a 

2000 n/a n/a 33.7 41.6 

2001 64.2 47.4 33.5 42.9 

2002 11.2 10.1 32.7 43.8 

2003 65.3 51.9 31.6 46 

2004 12.3 n/a 31.7 46.8 

2005 67.3 57.4 31 47.9 

2006 n/a n/a 34.71 24.75 

*The fluctuation of the values is caused by whether the question is asked for all states in 
particular years. 

**From 1990 to 1999, (BMI: Overweight) was defined to be (BMI ≥ 27.8) for males and (BMI ≥ 
27.3) for females. Hence, there was no (BMI: Obese) reported during that time. Since BRFSS 
2000, (BMI: Overweight) and (BMI: Obese) have been (25.0 ≤ BMI < 30.0) and (30.0 ≤ BMI < 
99.99), respectively.  
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6.3.4 DCMiner Implementation 

The BRFSS 2000-2006 DCM mining results of the domain-concept (diabetes: 

yes) with both tabular (text) and graphical formats are offered by DCMiner. The main 

page of the search system is shown in Figure 6.4. 

 
Figure 6.4. DCMiner for BRFSS 2000-2006. 

Figure 6.5 is an example of a graphical format, which shows a trend of the 

distributions (percentage) of the domain-concept (diabetes: yes) in the BRFSS 2000 – 

2006. DCMiner also allows the experts to select multiple (attribute: value) pairs. In this 

example, the selection is (general health status: fair) AND (healthcare coverage: no) to 

plot their percentages for trends as shown in Figure 6.6. 

 
Figure 6.5. The distributions of (diabetes: yes) in BRFSS 2000 - 2006. 
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Figure 6.6. Comparisons among trends of percentages of each (attribute: value)  
offered by DCMiner. 

The results of another search functionality of DCMiner are shown in Table 6.9, 

which contains a set of results with multiple selections: (General Health Status: fair) 

AND (Healthcare Coverage: no). The same results are represented as a histogram 

(Figure 6.7), which is also offered by DCMiner. 

Table 6.9. An Example of a DCM Tabular Format Representation of the Results when 
Search for (General Health Status: fair) AND (Healthcare Coverage : no) within  

the Domain-Concept (diabetes: yes) 

Domain-Concept Number of 
Transactions 

Probability (of 
355,710 transactions 
total in BRFSS 2006) 

Conditional 
Probability {given 

(diabetes: yes)} 

(diabetes: yes) 36,985 0.1 n/a 

(General Health Status: fair) 
AND (Healthcare Coverage : no) 

41,492 0.12 n/a 

(General Health Status: fair) 
AND (Healthcare Coverage : no) 
GIVEN (diabetes: yes) 

1,037 0.003 0.3 
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Figure 6.7. Histogram representation offered by DCMiner of the search results  
shown in Table 6.9. 

The BRFSS 2006 DCM mining results of various domain-concepts (beyond 

diabetes) with tabular (text) formats offered by DCMiner with DCM-PA functionalities 

can be accessed on-line. The main page of the system is shown in Figure 6.8 (a). The 

same figure also contains an example of findings (itemsets) of size 1 to 4 (as shown in 

Figures 6.8 (a) – (e), accordingly) when a human expert select (diabetes: yes) as the 

domain-concept. Please note that we chose to display this domain-concept for continuity. 
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(a) (b) 

 

(c) 

 

(d) 

Figure 6.8. BRFSS’s DCMiner result browser (tabular format) for dc partition 
(diabetes: yes) with associations (itemsets) of sizes (a) 1, (b) 2, (c) 3, and (d) 4. 
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6.3.4.1 BRFSS with Domain-Concept Partition Aggregation 

Beyond the work presented above, BRFSS 2006, in particular, is utilized to 

demonstrate the DCM-PA approach, which is detailed in Chapter 4. Also, the reports of 

the experimental results and evaluation of DCM and DCM-PA are presented in Chapter 

5. It is important to note that the purpose of DCM-PA is to give human experts the 

flexibility to aggregate (union and/or intersections) the findings from any number of 

domain-concepts. Figure 6.9 (a) illustrates the DCMiner with DCM-PA, which is located 

at http://medbio-ext.rnet.missouri.edu/brfss/aggregate. Further, an example of the 

aggregation results when the expert selects (CVDSTRK or Have you ever been told by a 

doctor you have a stroke?: yes), (DIABETE2 or diabetes: yes), and (HLTHPLAN or Do 

you have any healthcare coverage?: no) is shown in Figure 6.9 (b). The details of the 

intersection and union probabilities and their calculations can be found in Chapter 4. 

6.3.5 Conclusion and Future Work 

Work on DCM and DCM-PA is an on-going endeavor in order to further include 

the other BRFSS data sets, and to provide the experts with a full set of visualization 

techniques (e.g. graphs and charts) through DCMiner. Further, we plan to conduct a 

systematic evaluation of the approach by health informatics experts, biostatisticians and 

other professionals with relevant expertise. The objective of the evaluation will be to 

determine: 1.) the exploration of relationships among BRFSS variables, 2.) the quality 

evaluation of findings, and 3.) the usefulness of DCMiner.  
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(a) 

 
(b) 

Figure 6.9. DCM-PA (a) interface (a menu to aggregate all selected domain-concepts), 
and (b) aggregation results. 

 Finally, we plan to offer a complete system through which human experts can 

submit new (incremental) data sets online to be efficiently mined by DCM. Subsequently, 
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DCM-PA adaptively aggregates the new with the pre-existing mining results. And then, 

the experts may instantly browse the results through DCMiner. 

6.4 Breast Cancer Survivors with Lymphedema 

Preliminary research using database management and statistical analysis has been 

conducted to a data set of 202 participants, who are breast cancer survivors in the 

National Institute of Health (NIH)-funded 30-month post-breast cancer diagnosis study. 

The research will serve as a ground work prior to an implementation of the DCM 

approach, which aims to uncover associations among the following categories: 1.) limb 

volume change, 2.) BMI change, 3.) sign and symptom (such as pain, weakness, 

tenderness, redness, blistering, among others), 4.) medication history (includes 

prescription and non-prescription drugs), and 5.) breast cancer treatment (such as 

radiotherapy, chemotherapy, surgery, etc.).  

The unique contribution of this preliminary work is a proposed 5% BMI-adjusted 

limb volume change (LVC) approach, which considers a change of 5% or greater in 

breast cancer affected-arm volume over percent change in BMI, to be indicative of 

lymphedema. The research aims to: 1.) identify lymphedema development risks that may 

be associated with BMI-adjusted LVC, dominant limb and cancer-affected side and post-

op swelling (1~4 weeks after surgery), and 2.) show an importance of pre-op (before 

surgery) limb measurement as a reference for detection of limb swelling. The research 

details and findings are as follows. 
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6.4.1 Post-Op Swelling and Lymphedema Following Breast Cancer 

Treatment: A Baseline-Comparison BMI-Adjusted Approach 

Over 200,000 American women and over one million women around the world 

are newly affected by breast cancer each year [99, 100]. The two million breast cancer 

survivors living in the US and ten million worldwide are at lifetime risk for the 

development of lymphedema [101, 102], a chronic condition involving accumulation of 

protein-rich fluid which impacts physical, functional, and psychosocial health and well-

being [85-89]. Second only to breast cancer recurrence, lymphedema is the most dreaded 

sequalae of breast cancer treatment [103].  

The percentage of breast cancer survivors who develop lymphedema is not 

precisely known, although it is conservatively estimated that as many as 50% of survivors 

may experience lymphedema during their lifetimes [87-89]. The discrepancy between the 

reported percentages of 3% to 62.5% [88-90] in the literature stems from difficulties in 

measurement, diagnosis, and follow-up [104-109]. Common quantitative criteria for 

lymphedema include: two or more centimeters difference in limb girth between the 

affected and non-affected limbs; a 200 ml limb volume difference; or a 10 percent limb 

volume change (LVC) [104, 110].  

The reported incidence fluctuates greatly among groups of individuals at risk for 

lymphedema [111, 112]. Although a number of factors have been implicated as 

associated with increased risk of lymphedema, including axillary dissection, radiation 

therapy, post-op infection, age, and weight gain [106, 109, 113-117], the diagnostic 

criteria themselves require further refinement in order to clarify actual occurrence of 
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lymphedema [104]. One of the dilemmas of the current afore-mentioned anthropometric 

criteria for lymphedema is that they are not calibrated to account for selected individual 

changes which commonly occur over the course of breast cancer treatment, such as fluid 

retention and changes in body mass index (BMI) [118]. 

Just as it is identified that increased BMI is associated with higher risk of breast 

cancer and poorer outcomes [119], including breast cancer recurrence [120], second 

primary cancers, and higher morbidity and mortality [121, 122], studies have identified a 

correlation between both BMI and BMI change and the development of lymphedema 

after breast cancer treatment [123, 124]. Unfortunately, the 2 cm, 200 ml, and even 10% 

LVC criteria do not take into account the changes experienced in the body that result in 

weight gain during or following treatment. The aim of this study was to develop and 

refine a BMI-adjusted criterion for lymphedema occurrence [118] that would take into 

account the commonly-experienced fluctuations in weight during and following breast 

cancer treatment.  

6.4.1.1 Methods 

In this National Institute of Health (NIH)-funded prospective repeated-measures 

study, 202 breast cancer survivors were recruited to participate in the 30-month study 

starting from pre-op visit (visit T0 after breast cancer diagnosis and before surgery). 

Participants were seen at post-op examinations, every 3 months for 12 months, and then 

every 6 months for 18 months for a total of 30 months (see Figure 6.10). Of all 

participants, 193 were unilateral breast cancer survivors. From this group, there were 105 

participants whose cancer-affected side was their dominant limb (11 participants were 
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left-handed, 94 participants were right-handed); whereas, there were 88 participants 

whose cancer-affected side was not their dominant limb. From the same group of 193 

participants, there were 37 participants who experienced swelling during the post-op visit 

(visit T1).  

 
Figure 6.10. Timeline for data collection (pre-op to 30 months following surgery). 

Arm circumferences were measured at every 4 cm using non-stretch tape 

measures [105, 125]. Volume was calculated using a summation of cylinder volumes (v), 

a derived cylinder formula shown in equation (6.4). Please note that a cylinder’s base 

area was inferred from an average of two circular areas associated with two consecutive 

circumference measurements (c1 and c2) starting from the wrist to the underarm; and a 

cylinder’s height is 4 cm. 

2 2
1 2

1 ( )
2

v c c
π

= +  (6.4) 

The unique contribution of this research is a proposed 5% BMI-adjusted limb 

volume change (LVC) criterion which is a potentially valid and reliable measure of 

lymphedema. Because: 1) increased BMI is associated with higher risk of lymphedema 

occurrence following breast cancer; 2) current standards rarely consider simultaneous 
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contralateral LVC; and 3) study participants’ BMI ranged from 17.2 to 54.4 (average 

30.5), BMI was considered in the assessment for lymphedema occurrence. BMI was 

calculated using the formula and categories of the Centers for Disease Control and 

Prevention [126] (Table 6.10). The same table also shows the percentages of women in 

this study per BMI category compared to women age 18 years or older who answered the 

Behavioral Risk Factor Surveillance System (BRFSS) survey in year 2006 [33]. The 

BRFSS 2006 data showed that women in the state of Missouri (MO) had higher 

percentages for the overweight and obese categories than the national percentages. These 

statistics are consistent with the higher percentages of the same BMI categories among 

the participants in this study. 

Table 6.10. Adult Women BMI Weight Status 

BMI Weight Status Percent of 
Participants 

BRFSS 2006 

Percent of MO 
Women 

Percent of US 
Women 

Below 18.5 Underweight 1.6% 
37.3% 40.3% 

18.5 – 24.9 Normal 22.8% 

25.0 – 29.9 Overweight 31.6% 30.1% 28.7% 

30.0 and Above Obese 44% 28.9% 24% 

6.4.1.2 Analysis 

Occurrence of lymphedema was first calculated from percent change in cancer-

affected limb volume at each of eight post-op time points (starting from 1~4 weeks to 30 

months post-surgery) compared to pre-op (before surgery) limb volume. Secondly, 

percent change in BMI during the same time periods were calculated. Finally, a change of 



132 

 

5% or greater in affected-arm volume over percent change in BMI was considered to be 

indicative of lymphedema. Two sets of statistical analyses were conducted between: 1) 

the cancer-affected dominant and non-dominant limbs; and 2) those with and without 

post-op (1~4 weeks after surgery) swelling. Unpaired (two-sample or independent-

samples) t-tests were used to determine statistical significance [72, 127]. Relative risk 

was calculated to estimate the magnitude of the difference. 

Participants were grouped according to their BMI weight status [126], as shown 

in Table 6.10. To find whether there was an increased risk of developing lymphedema on 

the dominant limb side that may be used more often, the first analysis compared risks of 

developing lymphedema from 3 months to 30 months post-surgery (visits T2 to T8) 

between the group of participants whose cancer affected their dominant limb side and the 

group of participants whose cancer affected their non-dominant side.  

To find whether there was an increased risk of developing lymphedema that may 

be associated with the swelling caused by breast cancer surgery, the second analysis 

compared risks of developing lymphedema during the same time period as the first 

analysis (visits T2 to T8) between the group of participants who met or exceeded the 5% 

BMI-adjusted LVC criterion at the post-op visit (visit T1) and the group that did not meet 

this criterion at visit T1.  

6.4.1.3 Results 

For all unilateral cancer-affected limb participants (n = 193), 63% (n = 121) met 

the 5% BMI-adjusted LVC criterion at some point following (excluding) the post-op visit 

(mean time to criterion = 9 months, standard deviation = 7 months). 



133 

 

6.4.1.3.1 Cancer-Affected Dominant and Non-Dominant Limbs 

To answer the question of whether there was an increased risk of developing 

lymphedema when a patient’s cancer-affected limb was her dominant side, t-test and 

relative risk analyses were used to compare between two groups of participants: 1) 

cancer-affected dominant limb group; and 2) cancer-affected non-dominant limb group. 

Overall, the relative risk between these groups was 1.1, and there was not a significant 

difference (65.7% compared to 59.1%; t = 0.95; p = 0.35) as detailed in Table 6.11 (see 

also Figure 6.11). 

Table 6.11. Relative Lymphedema Risk Analysis between Cancer-Affected Dominant  
and Non-Dominant Sides 

Dominance,  
Cancer-Affected Side, 

 and Lymphedema 

BMI Status 

Total 
Underweight Normal 

weight Overweight Obese 

Cancer-
Affected 

Dominant Limb 

Total Number 
of Participants 1 23 35 46 105 

Swelling at 
Visits T2 to T8 

0 of 1  
(0%) 

12 of 23 
(52.2%) 

22 of 35 
(62.9%) 

35 of 46 
(76.1%) 

69 of 105
(65.7%) 

Cancer-
Affected Non-

Dominant Limb 

Total Number 
of Participants 2 21 26 39 88 

Swelling at 
Visits T2 to T8 

1 of 2  
(50%) 

13 of 21 
(61.9%) 

18 of 26 
(69.2%) 

20 of 39 
(51.3%) 

52 of 88 
(59.1%) 
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Figure 6.11. Number of participants whose: (a) cancer affected their dominant limb; or  

(b) cancer affected their non-dominant limb, categorized by BMI weight status. 

Tests of statistical significance were also conducted for lymphedema occurrence 

and non-occurrence in the three BMI categories—normal weight, overweight, and obese, 

with the reported relative risks of 0.84, 0.91, and 1.48, reported t values of 0.64, 0.51, and 

2.44, and reported p values of 0.53, 0.61, and 0.02, respectively. Even though in the 

larger group analysis, limb dominance and cancer-affected side were not significantly 

associated with the risk of developing lymphedema, participants with BMI 30 and above 

had significantly higher risk of developing lymphedema if their cancer treatment was on 



135 

 

the dominant side (rr = 1.48, 48% higher risk). Please note that the underweight group 

was not tested due to its small sample size.  

6.4.1.3.2 With and Without Post-op Swelling 

A relative risk analysis was calculated to compare the risk of developing 

lymphedema at later visit (visits T2 to T8) between the groups of participants with and 

without post-op (visit T1) swelling. Overall, the relative risk between these two groups 

was 1.4, and there is a significant difference between the groups (81.1% compare to 

58.3%; t= 2.6; p = 0.01) as detailed in Table 6.12 (see also Figure 6.12). Those with post-

op swelling had a 1.4 greater risk of developing lymphedema at some later point, as 

compared to those without post-op swelling. 

Table 6.12. Relative Lymphedema Risk Analysis between Participants  
with and without Post-op Swelling 

With and Without  
Post-Op Swelling 

BMI Status 

Total 
Underweight Normal 

Weight Overweight Obese 

Total Number of 
Participants 3 44 61 85 193 

Post-Op 
Swelling 

Swelling at 
Post-Op Visit 

0 of 3  
(0%) 9 of 44 (20.5%) 13 of 61 

(21.3%) 
15 of 85 
(17.6%) 37 

Swelling at 
Visits T2 to 

T8 

0 of 0  
(N/A %) 

5 of 9  
(55.6%) 

11 of 13 
(84.6%) 

14 of 15 
(93.3%) 

30 of 37
(81.1%) 

No  
Post-Op 
Swelling 

No Swelling 
at Post-Op 

Visit 

3 of 3 
(100%) 

35 of 44 
(79.5%) 

48 of 61 
(78.7%) 

70 of 85 
(82.4%) 156 

Swelling at 
Visits T2 to 

T8 

1 of 3  
(33.3%) 

20 of 35 
(57.1%) 

29 of 48 
(60.4%) 

41 of 70 
(58.6%) 

91 of 
156 

(58.3%) 
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Figure 6.12. Categorized by their BMI status, number of participants who:  

(a) experienced post-op swelling, or (b) did not experience post-op swelling. 

Tests of statistical significance were also conducted for each of the three BMI 

categories—normal weight, overweight, and obese, with the reported relative risk values 

of 0.97, 1.4, and 1.6, reported t-values of 0.08, 1.64, and 2.63, and reported p values of 

0.93, 0.11, and 0.01, respectively. In addition to the larger group analysis in which post-

op swelling was significantly associated with the risk of developing lymphedema, a sub-

category analysis revealed participants with BMI above 25 had a higher relative risk of 

developing lymphedema than the normal weight group (rr = 1.4 and 1.6, 40% and 60% 
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higher risk for overweight and obese, respectively). Please note that the underweight 

group was not tested due to its small sample size. 

Further analyses showed the significance of having the pre-op (before surgery) 

measurement when we substituted the data from the 3-month (following surgery) visit for 

the missing pre-op data. Without the pre-op measurement, 49 participants who met the 

5% BMI-adjusted LVC criterion at visit T2 would not have been recognized.  

6.4.1.4 Discussion 

For all participants, 63% met the 5% BMI-adjusted LVC criterion at some point 

following (excluding) the post-op visit. Limb dominance and cancer-affected side were 

not significantly associated with the development of post-surgery lymphedema (relative 

risk = 1.1) in the group as a whole. In the subgroup analysis, those with higher BMI 

showed a 48% greater lymphedema risk in women whose cancer occurred on their 

dominant side. Further, post-op swelling significantly increased the risk of later 

developing lymphedema (relative risk 1.4) across the group as a whole. This means the 

person who developed post-op swelling was 40% more likely to develop lymphedema at 

some later time (before 30 months) after surgery. In the subgroup analysis, this relative 

risk of developing lymphedema was even higher in the overweight and obese BMI 

groups than for normal weight women (40% and 60% greater risk). 

Also of importance, among 121 participants who later met the 5% BMI-adjusted 

LVC criterion, there were 49 participants with lymphedema who would have been 

overlooked if the pre-op measurements were not available. Further, since post-op 

swelling is associated with higher risk of developing lymphedema, having the pre-op 
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baseline is an essential reference for detection of post-op swelling. This finding 

documents the need for pre-op assessment in the clinical setting. 

6.4.1.5 Conclusions 

Using the 5% BMI-adjusted LVC approach to assessment of lymphedema 

occurrence provides the opportunity for a more valid and reliable estimation of post-

breast cancer lymphedema occurrence. Also important is the capability to compare pre-op 

limb volume measurements to post-op volume. Based on this preliminary analysis, 

lymphedema is a risk for approximately two-thirds of breast cancer survivors in the 30 

months after surgery. These data suggest increased risk for lymphedema in survivors with 

higher BMI whose dominant limb was treated for cancer. Overall, breast cancer survivors 

with post-op swelling have a significantly higher risk of developing lymphedema than 

those who do not have post-op swelling. It is the group with higher BMI who have the 

greatest risk of developing lymphedema. Breast cancer survivors with higher BMI appear 

to have cumulative risk of developing lymphedema if the cancer was on the dominant 

side or if they experience post-op swelling. The survivors who are overweight or obese 

will benefit from education on maintaining optimal BMI and lymphedema risk reduction 

practices, as well as careful monitoring for limb and symptom changes. Further vigilance 

is required for participants with higher BMI who have cancer treatment to the dominant 

side or experience post-op swelling. 
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Further research to examine the constellation of risk factors that contribute to the 

development of lymphedema in breast cancer survivors must include the consideration 

of:  

1.) Pre-diagnosis BMI, 

2.) BMI increase in survivorship, 

3.) Occurrence of post-op swelling, and 

4.) Cancer treatment to the dominant side. 

Increased understanding of the cumulative impact of these and other known risk 

factors will enable researchers and clinicians to design and implement more targeted risk-

reduction interventions. 

6.4.2 DCM and Its Web-Based System for Lymphedema 

The DCM Web-based interfaces for lymphedema research are presented in this 

section. Figure 6.13 illustrates the main page of system. This page contains links to the 

other components of the system, which includes the search functionalities. Examples of 

the outputs from the search functionalities are shown in:  

1.) Table 6.13 contains summaries of limb swelling sides and volume (cc) levels. 

The summaries are drawn from a search functionality, which lists the numbers 

of patients categorized by the volumes of limb swelling (starting from 50 cc to 

200 cc) and the cancer-affected sides (left, right, or both arms). Please note 

that for those participants whose cancer-affected sides are both arms (B), the 

limb swelling side can be left only (L), right only (R), or both sides.  
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Figure 6.13. Main page of the DCM web system for the lymphedema data set.  

Table 6.13. Summaries of Limb Swelling Sides and Volume (cc) Levels 

Cancer-Affected Side Volume (cc) Level Number of Participants 

Left 50 43 

100 36 

150 27 

200 45 

Right 50 47 

100 48 

150 37 

200 49 

Both (Limb Swelling on Both) 200 2 

Both (Limb Swelling on Left) 50 1 

100 1 

200 2 

Both (Limb Swelling on Right) 100 1 

200 2 
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2.) Figure 6.14 is an alternative representation of the information shown in Table 

6.13. 

 
Figure 6.14. Summaries of cancer-affected sides and limb swelling (cc) levels. 

3.) Figure 6.15 offers the human expert a comparison between the numbers of 

participants categorized by cancer-affect sides, and cancer-affected dominant 

side. 

 
Figure 6.15. A comparison between: 1.) cancer-affect sides and  

2.) cancer-affected dominant sides. 
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6.5 Domain-Concept Mining for Large-Scale and Complex Cellular 

Manufacturing Tasks 

To provide a novel domain-concept mining (DCM) algorithm that offers solutions 

to complex cell formation problems, which consist of a non-binary machine-component 

(m/c) matrix and production factors for fast and accurate decision support. The DCM 

algorithm first identifies the domain-concept from the demand history and then performs 

association rule mining to find associations among machines. After that, the algorithm 

forms machine-cells with a series of inclusion and exclusion processes to minimize inter-

cell material movement and intra-cell void element costs as well as to maximize the 

grouping efficacy with the constraints of Bill of Material (BOM) and the maximum 

number of machines allowed for each cell. 

The DCM algorithm delivers either comparable or better results than the existing 

approaches using the known binary data sets. We demonstrate that the DCM can obtain 

satisfying machine-cells with production costs when extra parameters are needed. The 

DCM algorithm adapts the idea of the Sequential Forward Floating Selection (SFFS) 

[128] to iteratively evaluate and arrange machine-cells until the result is stabilized. Even 

though, the SFFS algorithm is an improvement over a greedy algorithm called Sequential 

Forward Selection (SFS) [129, 130], SFSS can only ensure sub-optimal solutions. 

However, the machine-cells problem is considered NP-hard [73], and thus, achieving 

sub-optimal solutions within a certain computational complexity limitation may be 

acceptable. The DCM algorithm considers a wide range of production parameters, which 

make the algorithm suitable to the real-world manufacturing system settings. 
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The proposed DCM algorithm is unlike other array-based algorithms. It can group 

non-binary m/c matrix with considerations of real-world factors including product 

demand, BOM, costs, and maximum number of machines allowed for each cell. 

6.5.1 Motivations 

Due to changes of customers’ demand pattern in contemporary market places, 

traditional fixed production lines that produce very large batches of products with long 

production lead-time have been becoming out-of-date shop floor plans. Modern 

manufacturing entities must adopt flexible production approach to accommodate the 

challenge from competitive and changing market. The Flexible Manufacturing System 

(FMS) has been emerging as an essential concept to conform the task to cluster flexible 

facility assemblages for small batches that can rapidly respond to changes for different 

product orders and design changes.  

Cellular Manufacturing (CM) is an effective approach for determining functional 

machine layouts when sequential production lines are no longer practical in small-median 

batch manufacturing environments. CM posits a common management principle: 

grouping related manufacturing tasks such that tasks with similar requirements are 

associated within the same work cells [131]. In CM, the manufacturing facilities are 

divided into “cells” where distinctive functional machines produce a family of products 

or parts. Grouping machines and parts according to the ideas of Group Technology (GT) 

is a natural starting point of CM and cell formation - the fundamental problem of CM 

system design. Given the entire set of parts and available machines, the objective of cell 

formation is to configure a set of machine-cells and a partition of parts which streamlines 
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the production flow. By devoting a machine-cell to the manufacturing of a part family, 

advantages have been reported in many aspects, such as setup time reduction, work-in-

process reduction, throughput time reduction, material handling costs reduction, 

scheduling simplification, and product quality improvement [132]. 

It is well recognized that simply grouping the machines from a binary machine-

component (m/c) incidence matrix is a far cry from real-world situations; other important 

manufacturing factors should also be considered and recorded in the matrices. 

Additionally, to mimic the real-world setting, hierarchies of components should be 

included in the decision making process. Figure 6.16 depicts an example of such 

hierarchies, and Table 6.14 shows the corresponding Bill of Material (BOM) matrix. The 

numbers in the BOM matrix represent the amount of components needed for parent 

components in the hierarchical structure. Figure 6.16 (a), (b), and (c) show the hierarchies 

of components to produce final products, Pa, Pb, and Pc, respectively. For example, to 

produce one unit of a final product Pa in Figure 6.16 (a), three P1 and four P2 are 

needed. This also suggests the operation sequence of Pa.  

 
Figure 6.16. An example of a Bill of Material for three final products – Pa, Pb, 

and Pc, where (a), (b) and (c) show components needed and production sequences to 
produce Pa, Pb, and Pc, respectively. 
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In general, a component may be needed to produce various components and/or 

final products, such as three units of P1 are needed to produce a unit of Pa, and nine units 

of P1 are needed to produce a unit Pb. The second factor to be considered is the 

production cost matrix, which includes an aggregation of laboring, material, and handling 

costs. One more factor to be considered is the maximum number of machines allowed for 

each machine-cell, which can estimate the area required to locate the cell that a 

manufacturing facility will have to handle. The abovementioned matrices and factors 

should be utilized to generate an efficient production plan, possibly with alternatives for 

unexpected changes under some circumstances. The production plans will be used in the 

decision-making process that responds to the users’ predefined criteria, which include the 

demands for products, possible machine breakdowns, and changes in production costs. 

Table 6.14. A Bill of Material Matrix for Figure 6.16, where the Matrix Suggests Units 
of Components Needed to Produce Other Components and/or Final Products 

Parts P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Final product Pa 3 4          

Final product Pb  5  2        

Final product Pc 9      1  1   

P1 0           

P2  0 5         

P3   0         

P4    0 2 5      

P5     0       

P6      0      

P7       0 7    

P8        0    

P9         0 8  

P10   2       0 4 

P11           0 
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6.5.2 Background 

Approaches that customarily deal with the cell formation problems can be briefly 

categorized into various methods such as: mathematical programming, array-based 

algorithms, hierarchical clustering algorithms, non-hierarchical clustering algorithms, and 

heuristics. Many mathematical models were recently proposed to deal with particular 

versions of cell formation problem [41-43]. The advantage of the mathematical 

programming is that the formulations are capable of considering a variety of 

manufacturing information, such as space limitation, alternative production sequence, 

and/or product demand. Harhalakis et al. [133], and Cao and Chen [134] represented the 

physical limitation of maximum number of machines per cell by a constraint or an upper 

bound. Balakrishnan and Cheng [135] proposed a two-stage method that took into 

consideration of rearrangement cost and product demand of multi-period planning 

horizons. Sofianopoulou [136] presented an implementation of cellular manufacturing, 

which was able to evaluate the alternative production scenarios by data envelopment 

analysis (DEA). However, the balance between modeling a meticulous manufacturing 

system and simplifying the computational complexity is always difficult to maintain. 

Thus, finding comprehensive and yet feasible approaches is still a challenging research 

problem. 

Compared to mathematical programming approaches, array-based algorithms, 

which solve the binary m/c matrix problem, are relatively efficient in terms of 

computational complexity and feasibility. The machine-cells and part families can be 

obtained simultaneously on the main diagonal of the m/c matrix by rearranging the 

matrix, where the columns are in accordance with parts and the rows are in accordance 
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with machines. Unlike the complex mathematical approach, the m/c matrix only provides 

limited binary information, (i.e. zero or one for each element), so important 

manufacturing information, such as product demands and inter-cell material movement 

costs, are rarely taken into consideration in the former algorithms, which could solve only 

the binary m/c matrix problems. There are three approaches, which utilize the binary m/c 

matrix, namely array-based, hierarchical clustering, and non-hierarchical approaches. 

Array-based methods rearrange the rows and the columns in an m/c matrix in 

order to group the machines and the parts. An early contribution for array-based methods 

was made by Burbidge [137]. Array-based methods are a part of the Production Flow 

Analysis (PFA) procedure for the implementation of the cellular manufacturing system. 

A computational implementation of the PFA method, named GROUPTEC, and its case 

study has been reported by Santos and Araújo [138]. Other notable array-based methods 

include Rank Order Clustering (ROC) [139], Bond-Energy Algorithm (BEA) [140], and 

MODROC [141]. In contrast, hierarchical clustering methods use similarity or distance 

information to produce a hierarchy of clusters or partitions. Such methods are normally 

unable to arrange both machine-cells and part families simultaneously. Pioneering work 

on hierarchical clustering method was proposed by McAuley [142], and the most recent 

hierarchical clustering methods are GP-SLCA [132] and MOD-SLC [143]. Gupta [144] 

argued that the hierarchical clustering methods suffer from chaining effect problems. 

Similarly, non-hierarchical clustering approaches form machine-groups and part families 

by using similarity and distance functions. The number of clusters is often assigned a 

priori for non-hierarchical clustering algorithms. Chandrasekharan and Rajagopalan [145] 

proposed an ideal seed non-hierarchical clustering (ISNC) for binary cell formation 
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problems. Other common algorithms in this field include ZODIAC [146] and GRAFICS 

[147]. Miltenburg and Zhang [148] reported a comprehensive comparison and evaluation 

of many known algorithms including array-based, hierarchical clustering, and non-

hierarchical clustering algorithms. Other approaches apply heuristics such as fuzzy logic 

[149], evolutionary algorithms [150], and genetic programming [151, 152] have been 

utilized to search a feasible solution. In addition to the abovementioned production-

oriented algorithms, a hybrid manufacturing system (HMS) has been proposed to solve 

the cell formation problems by Zolfaghari and Roa [153]. The HMS is an integration of 

cellular manufacturing and job shop. The major advantage of the HMS approach is the 

ability of producing non-family part. 

Recently, data mining techniques, such as association rules (AR) mining, have 

been applied to the same research problem. Chen [154] proposed an approach called 

Association Rule Induction (ARI) by applying the Apriori algorithm [12] from the data 

mining field to group machines. Although the abovementioned contributions are 

promising, the cell formation task is still challenging in actual practice because of large-

scale machine-component relationships and difficulties in construction criterion 

functions. Therefore, a novel domain-concept association rules mining (DCM) algorithm 

is developed in this dissertation to solve large-scale and complex cell formation 

problems, where factors such as operation sequences, unit inter-cell material movement 

costs, demand for products, production quantities, and maximum number of machines 

allowed for each cell are considered for fast and accurate decision support.  

A domain-concept is a partition mechanism for machines based on a prioritized 

factor list from the complex cell formation setting. For instance, if users would like to see 
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machines, which will be grouped within a cell, to produce components that are required 

for some products under some prioritized constraints (such as demands and a BOM), the 

DCM algorithm will mine rules from machines with parts that have high demands 

followed by machines with parts from a selected list in a BOM. Depending on the 

number of partitions in the domain, the DCM algorithm keeps mining secondary 

prioritized partitions and generates extra rules which will then be utilized for cell 

formation by their priorities  

 Rules mined from the DCM algorithm could be efficiently indexed in a database 

and utilized to meet the needs of decision support when unexpected changes happen. The 

details of the DCM algorithm, its architecture, and its criterion function are presented in 

the next section. 

6.5.3 Methods 

As shown in Table 6.15, the DCM algorithm first accumulates historical demand 

information (i.e. which product with what quantity) of each product into a demand vector 

(D), where Di is a total demand value of Pi. The DCM also utilizes the predefined BOM 

matrix, as shown in Table 6.14, to calculate the total number of product needed to be 

produced, as shown at BOM row in Table 6.15.  

Table 6.15. Demand Values (Di), Resulting BOM Calculations by Applying Di to the 
Values in Table 6.14, Predetermined Unit Inter-Cell Material Movement Costs (Vi), and 

Predetermined Unit Intra-Cell Void Element Costs (Ei) 

Components Pa Pb Pc P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

 Di 18 35 15 3 2 2 1 4 8 5 2 6 4 5 

BOM 18 35 15 (3Pa)+(9Pc) (4Pa)+(5Pb) (5P2)+(2P10) 2Pb 2P4 5P4 Pc 7P7 Pc 8P9 4P10 

Vi  15 25 10 3 7 4 1 3 5 3 2 1 1 3 

Ei  15 25 10 3 7 4 1 3 5 3 2 1 1 3 
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The algorithm uses these values instead of 0’s and 1’s in an m/c matrix. Each row 

of an m/c matrix is a machine, which is considered a transaction to be mined for 

association rules by the DCM. Each column is a component that is regarded as an 

attribute and may be identified as a domain-concept. Furthermore, the algorithm also 

accepts input matrices of the unit inter-cell material movement cost of each product (Vi) 

and the unit intra-cell void element cost (Ei) then minimizes these values when forming 

machine-cells. 

It is essential to understand the basic idea of the AR mining that was introduced 

by Agrawal et al. [12] in order to better understand the DCM algorithm that served as the 

backbone of our decision making process. The pseudo codes of the DCM algorithm and 

its procedures are Figure 6.17. The AR mining statistically finds relationships among 

attributes of the underlying data without a prior knowledge or hypothesis. A discovered 

association rule X Y tells that mutually disjoint sets of attributes X and Y co-occur with 

an observed frequency of X and Y happening at the same transactions. This frequency is 

called a support value. Moreover, a rule X Y also carries a conditional probability of Y 

given X, which is called a confidence value. The confidence value indicates how often Y 

occurs when X occurs. To efficiently use the rules for a real-time decision support, we 

developed the DCM algorithm, which is an extension of the original AR algorithm.  

DCM (parameters:C, M, D, MC, BOM, V, E, max_m) 
1.  Identify the x highest demand products, px, in D 
2.  (T1, T2, MC) = BuildTransactions(D, px,C, M, MC, BOM) 
3.  Execute AR mining to build rules of all machine pairs and obtain

1TAR ,
2TAR , respectively.  

4.  FOR (each domain-concept dc, where dc = 1 to 2) { 
5.    WHILE ( ( )MC φ≠  AND (

dcTAR φ≠ ) ) DO 
6.       Form the tentative MG } } 
7.  Calculate F(MG) 
8.  ( ', ( '))MG F MG  = AdjustCells(MG, C, M, BOM, max_m) 
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9.  WHILE ( ( ') ( ))F MG F MG<  DO {   
10.   MG MG′=  
11.   ( ', ( '))MG F MG  = AdjustCells(MG, C, M, BOM, max_m) } 

12. RETURN (MG, F(MG)) 
 

 

BuildTransactions (parameters: D, px,C, M, MC, BOM) 
1.  Set 1 21, , , ' , ' , 'count T T M M C C D Dφ φ= = = = = =  
2.  FOR (ALL )DDl ∈ {  
3.      IF (px IN Dl) { 
4.         FOR (ALL ) IN lj Dp { 
5.           Filter BOM using pj to obtain jBOM  
6.           FOR (ALL ) IN ji BOMC { 
7.               Identify the quantity needed for Ci. Add this number to quant. 
8.               Filter MC using Ci to obtain MCi. 
9.               Create Tcount by  
10.                  Including Ci and 
11.                  Including all machines in MCi.  
12.              Update 'M by excluding the previously selected M in MCi 
13.              Update 'C  by excluding the previously selected C in MCi 
14.              count++ } 
15.          FOR (q = 1 to quant) { 
16.              Add a new transaction Tcount into T1 } 
17.             Update the corresponding MC cells with quant }} 
18.     ELSE lDDD −= ''  }  
19.  FOR (ALL )'DDl ∈ { 
20.     Perform steps 4 to 17 for the machines in 'M and the components in 'C to build T2. } 
21.  RETURN (T1, T2, MC) 
 
 

AdjustCells(MG, C, M, BOM, max_m) 
1. MG ′  = AdjustMachines(MG, M, max_m) 
2. IF ( ( ) ( )F MG F MG′ < ) { 
3.    MG ′  = AdjustComponents( MG ′ , C, BOM)  
4.    RETURN ( MG ′ ,F( MG ′ )) } 
5. RETURN (MG, F(MG)) 

 
 
AdjustMachines(MG, M, max_m) 

1. FOR (ALL Mj in M){ 
2.    Identify original_cell of Mj    
3.    Initialize min_cost to a large number    
4.    selected_cell = 0 
5.    FOR (ALL mgk in MG) {       
6.      Calculate F(Mj)  
7.      IF (F(Mj) < min_cost) { 
8.         min_cost = F(Mj) 
9.         selected_cell = k }} 
10.   IF ( _(| |selected cellmg < max_m) AND (selected_cell ≠ original_cell)) { 
11.     Remove Mj from mgoriginal_cell 
12.     Assign Mj to mgselected cell 
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13.     Update MG  }} 
14. RETURN (MG) 

 
 
AdjustComponents(MG, C, BOM) 

1. FOR (ALL Ci in C) { 
2.    Identify original_cell of Ci 
3.    Initialize min_cost to a large number 
4.    selected_cell = 0 
5.    FOR (ALL mgk in MG) { 
6.      Calculate F(Ci) 
7.      IF ((F(Ci) < min_cost) AND (Ci is from the same BOM as other C in mgk) ) { 
8.        min_cost = F(Ci) 
9.        selected_cell = k }} 
10.   IF (selected_cell ≠ original_cell) { 
11.     Remove Ci from its mgoriginal_cell 
12.     Assign Ci to mgselected_cell 
13.     Update MG  }}  
14. RETURN (MG) 

Figure 6.17. Pseudo codes for the DCM algorithm, BuildTransactions, AdjustCells, 
AdjustMachines, and AdjustComponents procedures. 

In general, the AR mining with domain-concept will report the associations 

among attributes within each domain-concept, with the support and confidence values, 

without considering the other criteria. The complex cell formation problem, on the other 

hand, has the knowledge for a certain set of machines that should be favorably grouped 

together to preserve the operation sequence and the hierarchical (a PART-OF) 

relationship among components shown in a BOM. The BOM suggests the DCM to make 

a decision to add only related components and their associated machines into a cell. Rules 

are then used to form efficient cells with regards to the total inter-cell material movement 

costs (V) and the total intra-cell void element costs (E). Both V and E directly determine 

the total cost (F) of the resulting machine-groups. 

In this dissertation, we introduce a cost function F that the DCM attempts to 

minimize while forming machine-cells. The F function is expected to fulfill two 

objectives simultaneously: minimization of the inter-cell material movement cost and 
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maximization of the machine utilization when a new machine is added to a cell. F is 

defined as follows. 
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, where   

| . | = total number or cardinality, 

MG = machine-group matrix that contains mgk cells, where k is the index of 

machine-cells, 

k = 1, 2, …, |MG|, 

Ci = component, where i is the index of components, i = 1, 2, …, |C|, 

Mj = machine, where j is the index of machines, j = 1, 2, …, |M|, 

Vi = unit inter-cell material movement cost of component Ci, 

Vij = unit inter-cell material movement cost of component Ci at machine Mj, 

Di = demand of component Ci, 

Dij = demand of component Ci at machine Mj, 

Ni = number of inter-cell material movements of component Ci, where 
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Nj = number of inter-cell material movements at machine Mj, where 
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Ei = unit intra-cell void element cost of component Ci, 

Eij = unit intra-cell void element cost of component Ci at machine Mj, 

Gi = number of void elements of component Ci, where 

 
| | | |

1 1
(1 )

MG M

i ij jk
k j

G o q
= =

= − ×∑∑  (6.10)

Gj = number of void elements at machine Mj, where 
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wN = weight of inter-cell material movement cost 

wG = weight of intra-cell cost of void elements, 

 1N Gw w+ =  (6.12)

1,    when component   is produced on machine 
0,                                                                  otherwise

i j
ij

C M
o ⎧

= ⎨
⎩

, and 

1,  when machine  is assigned to machine-group 
0,                                                                      otherwise

j k
jk
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q ⎧
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. 

The F(MG), F(Ci), and F(Mj) functions, as shown in equations (6.5) to (6.7), 

represent costs that are incurred when we form machine-cells. The F(MG) is the function 

to calculate the total cost of the entire MG matrix. Equations (6.6) and (6.7) calculate the 

inter-cell and intra-cell material movement costs for only a portion of the MG matrix. In 
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equation (6.6), F(Ci) calculates the costs with respect to the cell, mgk. It sums up the costs 

incurred for each machine (a row in the m/c matrix) if it is assigned to the cell, mgk, 

where | |
kmgM is the total number of machines in the mgk cell. In equation (6.7), F(Mj) 

computes the costs similar to equation (6.6). The difference is that equation (6.7) adds up 

the costs for each component (a column in the m/c matrix) which assigns to the cell, mgk, 

where | |
kmgC is the total number of components in the mgk cell. 

The aforementioned functions are composed of two terms, the inter-cell material 

movement cost and the intra-cell cost of void elements. The first terms of the F functions 

are the weighted summation of the inter-cell material movement cost (VDN). The inter-

cell material movement cost is often considered as an important measurement to evaluate 

a cellular manufacturing system. The product demand (D) is considered in the 

computation in order to obtain a practical machine-group arrangement. To compute the 

inter-cell material movement (N), we apply equations (6.8) and (6.9) which captures 

inter-cell material movements, i.e. the non-zero elements outside the diagonal cells. 

The second terms of the F functions indicate the weighted intra-cell cost of void 

elements (G) for all components Ci’s. A void element is an empty or a zero element 

inside a diagonal cell. The density of each cell is considered as a significant indicator of 

the efficiency of a cell formation solution. The higher density a cell has the better cell 

formation. Therefore, minimization of the second term can improve machine utilization. 

Equations (6.10) and (6.11) calculate the number of void elements for the corresponding 

column (component) i and row (machine) j in the m/c matrix. For the experiments 

conducted in this research, we weigh both terms equally, wN = wG = 0.5. 
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Identifying machines to be grouped in a cell is an optimization problem. The 

DCM initializes machine-groups by employing algorithms proposed by Chen [154] that 

builds association rules from all pairs of machines, places machines into cells according 

to their highest support values, and places each part into cells based on the maximum 

number of operation between the part and the machines in the cell. To reduce the chance 

of obtaining local optima that usually associate with greedy algorithms [155], the DCM 

makes selections of a machine-component to be in a cell aiming to minimize overall F as 

well as to maximize the grouping efficacy by incorporating an idea of reevaluating a 

criterion function from the Sequential Forward Floating Selection (SFFS) algorithm 

[128]. The SFFS is a selection procedure that repeatedly includes or excludes features 

(machines and components) by evaluating a criterion function (F) when it forms a new 

set of features. By following the idea of SFFS, the DCM is able to iteratively adjust the 

machines and components in the currently formed machine-groups, through the following 

procedures – AdjustCells, AdjustMachines, and AdjustComponents, to improve the 

total cost. Figure 6.18 depicts a flowchart of the DCM algorithm. 

The input parameters for the DCM algorithm (Figure 6.17) are as follows: C is a 

set of components, where iC C∈  and i = 1, 2, …, |C|; M is a set of machines, where 

jM M∈  and j = 1, 2, …, |M|; D is a demand vector, where lD D∈  and l = 1, 2, …, |D|; 

MC is a machine-component matrix; BOM is a matrix that represents BOM structure; V is 

a unit inter-cell material movement cost matrix, which V will incur costs to the total cost 

(F) only when Ni or Nj value is 1; E is an intra-cell void element cost matrix, which E will 

incur costs to F only when Gi or Gj value is 1 (equations (6.5) to (6.7) detail the cost 
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calculations); max_m is an integer indicates the maximum number of machines allowed 

for each cell. 

 
Figure 6.18. A flowchart of the DCM algorithm. 
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Let AR be a set of association rules; 
dcTAR be a set of association rules from a 

transaction matrix dcT where dc = 1 indicates domain-concept based transactions, and dc 

= 2 indicates other transactions (with a setting of two partitions); MG be a machine-group 

matrix that contains mgk groups, and k = 1, 2, … , |MG|. The outputs of the DCM 

algorithm are MG and F(MG). 

At line 1 of the DCM algorithm in Figure 6.17, the x highest demand products, px, 

are identified as domain-concepts. For each px, the DCM algorithm calls 

BuildTransactions to generate two transaction matrices, T1 (the group of MC 

transactions that belong to the domain-concept px) and T2 (the group of other MC 

transactions). Please note that a flexible domain-concept setting with any number of 

partitions could be set. Lines 2 to 18 of the BuildTransactions algorithm separates 

transactions that are derived from demands (D) to build T1, where line 7 shows that each 

demand contains components )( CCi ∈ and their quantities (quant). The variable quant is 

be used at line 17 to update and build a non-binary MC matrix that reflects the quantity of 

each machine-component (MCij). At line 18, the BuildTransactions updates the 

unselected demands )'(D . This 'D  is be used when the algorithm builds T2 at lines 19 to 20 

by performing steps 4 to 17 using 'M (machines that are not associated with px) and 'C  

(components that are not associated with px), and 'D . The BuildTransactions terminates 

at line 21 and return T1, T2, and non-binary MC to the DCM. 

After the results of the BuildTransactions algorithm have been returned, the 

DCM continues with association rules mining process at line 3. The DCM then extracts 

two sets of association rules, one for T1, and another for T2, where each association rule 
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contains two machines. From lines 4 to 6, the DCM forms a tentative machine-group 

(MG) by incorporating Chen’s approach [154] that first places machines into cells based 

on the support values then places components into cells based on the number of 

operations between components and cells. Moreover, the DCM also maintains the 

following: 1. Placing machines that are from the set of rules from the domain-concept,

dcTAR , before placing the rest of the machines, and 2. Arranging components that are 

from the same BOM sub-structure. At line 7, the DCM calculates the cost F(MG) of its 

tentative cell formation MG. From lines 8 to 11, the algorithm iteratively processes the 

AdjustCells to obtain a stabilized cell formation. The DCM finally returns the set of the 

final machine-groups MG and the cost F(MG) at line 12. 

The AdjustCells is an evaluation process of machines, using F(Mj) function 

through AdjustMachines sub-procedure, and components, using F(Ci) function through 

AdjustComponents sub-procedure. The AdjustMachines and the AdjustComponents 

work similarly. The former is to reevaluate each machine and reassign the machine to the 

cell that incurs the minimum cost with a criterion that the size of the newly selected 

machine-group, mgselected_cell, is not more than the maximum number of machines allowed 

for a cell (as indicated by max_m). The latter is to reevaluate each component then 

reassign the component to the cell that incurs the minimum cost with a criterion that the 

component is from the same BOM sub-structure as the others in the cell. Both of the sub-

procedures update and return MG to the AdjustCells. More detail explanations are as 

follows. 

The AdjustCells procedure starts by executing its sub-procedure, 

AdjustMachines, to evaluate each machine, Mj, against the currently assigned 
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components, Ci’s, of each machine-group, mgk, in MG. In AdjustMachines, all machines 

are evaluated and to be reassigned to other cells if the cost F(Mj) is reduced. The 

AdjustMachines returns an updated machine-group matrix to the AdjustCells which 

then compares whether the new machine-groups ( MG ′ ) matrix is different from the 

previous machine-cells (MG) at line 2. If the cost is improved, the AdjustCells executes 

the AdjustComponents sub-procedure at line 3. This is to evaluate each component, Ci, 

against the machines, Mj’s, of each machine-group, mgk, in MG. However, if there is no 

improvement in cost, the AdjustCells terminates without further executing the 

AdjustComponents. The AdjustCells returns the original MG and the cost F(MG) to the 

DCM at line 5. 

6.5.4 Results, Analysis and Discussions 

The experiments are conducted on a standard server with an Intel Xeon IV 

2.40GHz CPU and 1 gigabytes memory machine. The DCM program and its modules are 

written in Java programming language (JDK 1.5). There are two experiments conducted 

to evaluate the DCM algorithm. The first experiment is to demonstrate the DCM 

algorithm is able to produce comparable results to existing methods on binary data set 

using a single domain setting without constraints. This experiment is conducted on 20 

data sets to demonstrate the grouping efficacy. On average, the computation time for this 

data collection is approximately 0.153 seconds.  

The second experiment is conducted using a randomly generated data set of the 

m/c matrix with dimensions of 200 machines and 2,000 components, where each value in 

the matrix represents a multiplication value of ij iM C V∗ that can be any positive number 
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rather than 0 or 1. This data set also includes other input parameters. They are a product 

demand vector (D) and a BOM matrix that is generated with two criteria, a maximum 

fan-out of 20 and a maximum height of 6 for each component path. Due to space 

limitations, only a subset of the second collection with the dimensions of 25 machines 

and 14 components that utilizes the BOM structure from Figure 6.16 and Table 6.14 are 

shown in this section. The average computation time from the experiments using the 

second data collection is about 6 minutes. 

The grouping efficacy measure, Γ, introduced by Kumar and Chandrasekharan 

[156] is used to evaluate the experimental results of the proposed DCM algorithm and to 

compare with other approaches. The Γ formula is as follow. 

 0 0  1   v

v v

e e e e
e e e e
+ −

Γ = − =
+ +

 (6.13) 

, where e is the total number of non-zero cells in the matrix, ev is the total number of zero 

cells inside machine-groups, meaning that there is no component produced by the 

particular machine, and e0 is the total number of non-zero cells outside the machine-

groups, meaning that the component has to be transported among machine-groups. An 

ideal grouping result has Γ =1 

Table 6.16 shows the grouping efficacy (Γ) values from the experiments 

conducted using the known binary m/c matrices, but without constraints, such as BOM 

and product demands. The DCM algorithm takes a binary m/c matrix and a maximum 

number of machines allowed for each cell as its input parameters. The algorithm reports 

Γ values of the tentative cell formations, the iterations, and the final cell formations. An 

iteration involves a series of machine movement and component rearrangement.  
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Moreover, Table 6.17 details the Γ values of the same experiments as above by 

comparing the DCM with other approaches. The DCM approach has comparable results 

to the ARI and the GP-SLCA. However, either the ARI or the GP-SLCA can provide 

flexible mechanism to take into considerations of BOM and demands. 

Table 6.16. The Details of the DCM Experiments Using Known Binary m/c Matrices 

No Data set Size e 
Tentative 

MG Γ  
Iteration 1 

Γ  
Iteration 2 

Γ  
Final MG

Γ  

Final MG’s 
characteristics 

Time  
(milli-

seconds) 
Number  

of 
machines 
in a cell 

(at most) 

Number 
of cells 

1 Boctor 1[157] 16x30 121 0.457 0.492 n/a 0.492 8 3 100 

2 Boctor 2 [157] 16x30 106 0.571 0.579 0.609 0.609 6 3 100 

3 Boctor 3 [157] 16x30 92 0.583 0.7 n/a 0.700 5 4 140 

4 Boctor 4 [157] 16x30 111 0.411 0.462 n/a 0.462 7 4 130 

5 Boctor 5 [157] 16x30 107 0.658 0.727 n/a 0.727 5 4 130 

6 Boctor 6 [157] 16x30 101 0.533 0.766 n/a 0.766 5 4 140 

7 Boctor 7 [157] 16x30 112 0.593 0.732 n/a 0.732 7 4 101 

8 Boctor 8 [157] 16x30 114 0.562 0.579 n/a 0.579 7 5 100 

9 Boctor 9 [157] 16x30 118 0.595 0.774 n/a 0.774 6 4 101 

10 Boctor 10 [157] 16x30 108 0.593 0.638 n/a 0.638 5 5 140 

11 Boe and Cheng 
[158] 20x35 153 0.474 0.556 n/a 0.556 6 4 150 

12 Burbidge [159] 16x43 126 0.544 0.561 n/a 0.561 4 6 130 

13 Carrie [160] 20x35 136 0.475 0.757 n/a 0.757 5 4 190 

14 
Chandrasekharan 
and Rajagopalan 
[146] 

40x100 420 0.476 0.840 n/a 0.840 6 10 461 

15 
Chandrasekharan 
and Rajagopalan 
[145] 

8x20 61 0.656 0.852 n/a 0.852 4 3 51 

16 
Chandrasekharan 
and Rajagopalan 
1 [161] 

24x40 131 0.611 1.000 n/a 1.000 5 7 180 

17 
Chandrasekharan 
and Rajagopalan 
2 [161] 

24x40 130 0.833 0.851 n/a 0.851 5 7 251 
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No Data set Size e 
Tentative 

MG Γ  
Iteration 1 

Γ  
Iteration 2 

Γ  
Final MG

Γ  

Final MG’s 
characteristics 

Time  
(milli-

seconds) 
Number  

of 
machines 
in a cell 

(at most) 

Number 
of cells 

18 
Chandrasekharan 
and Rajagopalan 
3 [161] 

24x40 131 0.551 0.677 0.735 0.735 5 7 210 

19 
Chandrasekharan 
and Rajagopalan 
5 [161] 

24x40 131 0.373 0.428 0.455 0.455 2 2 201 

20 Seifoddini [162] 11x12 78 0.646 0.731 n/a 0.731 4 3 60 

Table 6.17. The Grouping Efficacy (Γ) Values as the Experimental Results Comparisons 
among Various Approaches Using Known Binary m/c Matrices 

No DCM ARI GP-SLCA ZODIAC GRAFICS MST-GRAFICS MST GA-TSP SLINK ALINK 

1 0.492 n/a 0.509 0.349 0.481 0.447 n/a n/a n/a n/a 

2 0.609 0.571 0.618 0.586 0.534 0.508 n/a n/a n/a n/a 

3 0.700 0.708 0.700 §  0.686 0.675 0.644 n/a n/a n/a n/a 

4 0.462 0.478 0.496 0.267 0.449 0.407 n/a n/a n/a n/a 

5 0.727 0.727 0.727 § 0.727 0.691 0.727 n/a n/a n/a n/a 

6 0.766 0.766 0.782 0.764 0.771 0.760 n/a n/a n/a n/a 

7 0.732 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

8 0.579 0.579 0.774 § 0.320 0.579 0.530 n/a n/a n/a n/a 

9 0.774 0.774 n/a 0.774 0.774 n/a n/a n/a n/a n/a 

10 0.638 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

11 0.556 0.527 0.568 0.511 n/a 0.471 n/a 0.551 n/a n/a 

12 0.561 0.549 0.568 § 0.538 0.544 n/a n/a 0.539 0.544 0.483 

13 0.757 0.751 0.767 0.751 0.751 n/a n/a 0.753 n/a n/a 

14 0.840 0.842 0.840 § 0.839 0.839 n/a 0.831 0.840 n/a n/a 

15 0.852 0.852 0.852 § 0.852 0.852 n/a 0.852 0.852 n/a n/a 

16 1.000 1.000 1.000 § 1.000 1.000 n/a 1.000 1.000 n/a n/a 

17 0.851 0.851 0.851 § 0.851 0.851 n/a 0.851 0.851 n/a n/a 

18 0.735 0.735 0.735 § 0.730 0.735 n/a 0.730 n/a n/a n/a 

19 0.455 0.520 0.479 0.204 0.433 0.466 n/a 0.494 n/a n/a 

20 0.731 0.742 0.731 § 0.731 0.731 n/a n/a n/a 0.522 0.720 

§ denotes the resulting machine-groups contain one or more singletons, where a singleton is a 
machine-cell that has only one machine. 
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Table 6.18 shows the resulting Γ values and the F values of machine-group 

matrices from three settings when apply the DCM algorithm with the subset of the data in 

the second experiment. Each setting has a different maximal number of machines per 

cell. For all settings, we execute the DCM with the complex constraints. Please note that 

the demand values (Di) are randomly generated, and they associate with the BOM shown 

in Figure 6.16 and the parameters listed in Table 6.15. The resulting Γ values and the F 

values consistently agree, e.g. the setting that results in a better Γ value (higher) also has 

the better F value (lower). 

Table 6.18. The Resulting Grouping Efficacy (Γ) and Total Cost (F) as Measurement 
Values when the DCM Algorithm Is Applied to the Subset of 200x2000 Data Set in 

Various Machine-Group Settings 

Measurement 
Values 

2 machine-groups 
with max_m = 13 

3 machine-groups 
with max_m = 11 

4 machine-groups 
with max_m = 9 

Γ  0.192 0.326 0.347 

F 86,275.5 54,506.5 50,390.5 

As shown in Table 6.18, the DCM generates the MG matrix with three machine-

cells that optimizes the total cost (F) under the max_m constraint of 11. The F value 

calculated from the DCM is 54,504.5. The Γ value obtained from the experiment with 

this setting is 0.326. However, it is important to mention that the low Γvalue is a result of 

four factors: 1.) fully applying the DCM algorithm with the objectives of rearranging m/c 

matrix in favor of the highest demand products as domain-concepts, 2.) rearranging m/c 

matrix by the DCM with a restriction of the given BOM, 3.) allowing only m/c’s that 

minimize the cost (F) being added into cells, and 4.) the sparseness of the generated data 

set is high. 
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 Table 6.19. MG Grouping Experimental Results with Three Groups of Machines 
(max_m = 11) from an m/c Matrix of Size 25x14, a Subset of the 200x2000 Data Set 

m/c P3 Pb P2 P6 P4 P11 Pa P8 P1 P10 P9 Pc P7 P5 

M2 5900 875                         

M13 5900 875                         

M11     1729 1750 70                   

M25       1750 70         480         

M18       1750 70                   

M15       1750         567           

M6       1750                     

M5   875                         

M8     1729         210             

M1         70 2400 270       90       

M7         70 2400                 

M16           2400         90       

M24   875       2400         90       

M12     1729     2400   210             

M19             270 210   480         

M4             270 210 567           

M9                   480 90 150     

M10             270   567           

M21                 567           

M14                   480   150 75 420 

M17           2400           150 75   

M3     1729             480   150     

M22         70   270 210         75 420 

M23 5900               567         420 

M20     1729                     420 

Vi 5900 875 1729 1750 70 2400 270 210 567 480 90 150 75 420

Ni 1 1 3 0 3 1 1 2 2 3 0 1 0 0 

Ei 5900 875 1729 1750 70 2400 270 210 567 480 90 150 75 420 

Gi 7 6 7 4 6 5 6 7 7 8 6 3 3 2 

Fi 23600 3062.5 8645 3500 315 7200 945 945 2551.5 2640 270 300 112.5 420 

As shown in Table 6.19, the last five rows show the resulting unit inter-cell 

material movement costs (Vi), number of inter-cell material movements of component i 
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(Ni), unit intra-Cell void element costs (Ei), number of void elements of component i (Gi), 

and total costs of each component (Fi). The total cost of the entire MG (F) is 54,506.5. 

Table 6.20. MG Grouping Experimental Results with Four Groups of Machines  
(max_m = 9) Using the Same Data Set as Table 6.19 

m/c P3 Pb P2 P6 P4 P11 Pa P8 P1 P10 Pc P9 P7 P5 

M2 5900 875                         

M13 5900 875                         

M11     1729 1750 70                   

M25       1750 70         480         

M18       1750 70                   

M15       1750         567           

M6       1750                     

M5   875                         

M8     1729         210             

M1         70 2400 270         90     

M7         70 2400                 

M16           2400           90     

M24   875       2400           90     

M12     1729     2400   210             

M19             270 210   480         

M4             270 210 567           

M10             270   567           

M21                 567           

M9                   480 150 90     

M14                   480 150   75 420 

M3     1729             480 150       

M17           2400         150   75   

M22         70   270 210         75 420 

M23 5900               567         420 

M20     1729                     420 

Vi 5900 875 1729 1750 70 2400 270 210 567 480 150 90 75 420

Ni 1 1 3 0 3 1 1 2 2 2 0 3 2 1 

Ei 5900 875 1729 1750 70 2400 270 210 567 480 150 90 75 420 

Gi 7 6 7 4 6 4 5 6 6 1 0 3 2 0 

Fi 23600 3062.5 8645 3500 315 6000 810 840 2268 720 0 270 150 210 



167 

 

Table 6.20 is used to directly compare the MG results with Table 6.19. DCM 

generates the MG matrix result with four machine-cells that optimizes the total cost (F) 

under the max_m constraint of 9. The experimental results shown in this table give an F 

value of 50,390.5 and the Γ value of 0.347, where both values indicate that the resulting 

MG matrix in Table 6.20 is better than the one in Table 6.19. If there is no max_m 

constraint, the DCM algorithm will execute all possible settings (2 ≤ max_m ≤ |M|) and 

select the lowest cost for the final formation. 

In conclusion, from both collections of the experiments discussed in this section, 

the DCM algorithm has demonstrated that it is not only able to generate comparable 

grouping efficacy results when applied to the documented data sets, but also possesses 

the advantages of flexibility, efficiency, and applicability for large-scale and complex 

cellular manufacturing settings that can optimize costs while maintaining the production 

requirements based on a given BOM.  

6.5.5 Conclusion and Future Work 

The formation of cellular manufacturing is an indispensable procedure for the 

implementation of flexible manufacturing systems. The proposed DCM algorithm 

provides an effective method for such a task. To solve the large-scale and complex cell 

formation problems, DCM applies an AR approach with a consideration of real-world 

factors, which include the machine-component relationships, the demands for the 

products, the inter-cell material movement costs, and the intra-cell void element costs. 

DCM forms manufacturing cells by grouping the machines and parts according to their 
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associations and relationships, while also balancing the possible highest interaction 

within cells and the lowest inter-cell movements.  

From the experimental results, we found that the DCM algorithm could be used to 

solve various cell formation problems with results that are at least as efficient as other 

approaches in terms of grouping efficacy values using binary m/c matrices. Moreover, the 

DCM algorithm has its main advantages over the other approaches which include the 

following: 

1.) The ability to handle more parameters rather than the co-occurrence of 

machine-component in term of binary matrices,  

2.) Its ability to efficiently handle bigger data set sizes,  

3.) Its capability to optimize machine-groups according to the criterion function 

while making decisions of adding a machine into a group, and  

4.) The ability to allow machine-cells to be reevaluated by a series of inclusion 

and exclusion processes to improve a preset criterion value. 

Cell rearrangement may be required in various manufacturing situations, such as 

machine breakdown and machine/part inclusion after the machine-group matrix has been 

determined. In practice, the DCM algorithm has the capability of dealing with cell 

rearrangement because it can regenerate the cell formation speedily. System managers 

thus can use the information to make an appropriate decision. Moreover, since the DCM 

algorithm includes an extensive set of manufacturing parameters, the resulting cell 

formation is more down-to-earth. 
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Further improvements to this ongoing research include the following: 1.) 

Assistance in decision-makers definition and validation of Bill of Material because there 

are currently no limitations of PART-OF relationship structures, 2.) Prioritizing and 

weighting the influences of BOM, demands, the inter-cell movement costs, and the intra-

cell void element costs in the DCM algorithm, 3.) Adding the ability to give an incentive 

when grouping machine-cells based on the BOM and to assign penalty otherwise, and 4.) 

Adding the ability to collect the production information as feedback and to use this 

information to further improve machine groupings. 
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

 

 

 

The Domain-Concept Mining (DCM) approach has been empirically proven 

useful to a vast range of data sets, including but not limited to public health and 

biomedical informatics data, as demonstrated in the previous chapters. This chapter will 

serve as a conclusion and discussion of the challenging research problems yet unsolved, 

which are the on-going and future work of this research. 

7.1 Conclusion 

As a comparison between the traditional brute-force data mining approaches and 

DCM, a summary of the common problems from the traditional approaches (such as 

Apriori [13] and FPT [20]) that DCM has overcome are listed in Table 7.1. 

The main reason that DCM can solve the listed problems is because it was 

originally designed to respond to human experts’ preferences, needs, and expectations. 

The approach starts by utilizing the experts’ valuable experiences in organizing data 

before analysis. Further, DCM takes into account the findings that are expected by the 

experts to be part of the uncovered associations. This is done by partitioning the data in a 

way that DCM can directly mine associations from dc partitions, which are (attribute: 

value) pairs representing the valuable findings. 
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Table 7.1. Comparisons between Traditional Mining and DCM 

Traditional Brute-Force 
Mining Issues DCM 

Memory exhaustion with large 
data sets and/or a low minimum 
support threshold. 

Multiple domain-concept partitions (where each is magnitude smaller 
than the original data) that can be independently mined in batch, 
distributed, or parallel fashion with much less computer resource 
requirements. 

Unorganized results. Results are organized according to their natural distributions, i.e. 
their domain-concept partitions. 

Minimum support threshold is 
neither sensitive nor specific. 

One global minimum support threshold is needed for all domain-
concept partitions. The threshold is automatically adjusted according 
to each domain-concept’s distribution. Hence, the threshold is 
sensitive and specific. 

Valuable items with low 
probabilities cannot be 
uncovered, not efficiently 
uncovered, or are buried in an 
overwhelming amount of 
unorganized results. 

Valuable results can be domain-concept partitions. As a result, DCM 
can specifically mine these partitions; hence, DCM needs less 
computational resources. Moreover, the associations uncovered from 
these partitions are directly related to the valuable results, and they 
are organized. 

Mine data with an assumption of 
no prior hypothesis. 

DCM granulizes partitioning criteria and groups related transactions 
together. DCM adds no other prior hypothesis to domain-concepts; 
hence, the mining results are completely data driven and no bias. 

The number of items in the 
longest association is too few; 
hence, the association represents 
only a limited co-occurrences of 
the (attribute: value) pairs. 

With DCM-PA, the longest association contains many more items 
than the traditional approach. In addition, there are many more of 
such valuable (different) associations offered to human experts.  

Cannot be directly implemented 
to temporal, spatial, or especially 
incremental data sets. 

DCM is an approach that is designed to partition then mines the data; 
hence, it is a good fit with temporal, spatial, and incremental data 
sets. DCM-PA intelligently aggregates DCM’s offline results from 
various partitions through pipelining technique. Therefore, these 
results are not required to be materialized. Further, DCMiner gains 
advantages from these special data sets by being able to offer various 
visualization formats (including trends) that fit to the nature of the 
data. 

Estimation and heuristic 
approaches often used to improve 
the traditional approaches. 

DCM and DCM-PA are brute-force; hence, the results are the 
complete set of frequent itemsets. 
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Moreover, dc partitions are unique because their sizes are different, and they may 

overlap each other. However, these dc partitions’ properties are DCM’s advantages, not 

drawbacks, because dc partitions represent the distribution of the data. Hence, the global 

minimum support threshold is automatically adjusted once used for mining each dc 

partition, accordingly. This allows DCM to be sensitive (uncover valuable findings), and 

specific (uncover valuable findings directly while using less computational resources). 

Moreover, the DCM-PA approach, which is based on Bayes Theorem [31], can 

intelligently and correctly aggregate various sizes partitions that may overlap each other. 

DCM-PA offers the flexibility to the human experts to adjust the results on-demand and 

online by being more specific (intersect dc partitions) or more broad (union dc partitions). 

These aggregation abilities increase the understandability and usability of the uncovered 

results.  

In conclusion, the combination of DCM, DCM-PA, and DCMiner makes it 

possible to offer an efficient on-demand, and yet brute-force, data mining approach for 

the human experts to fully utilize and benefit from their large data sets. 

7.2 Future Work 

This section details challenging research topics, on-going, and future work of 

Domain-Concept Mining (DCM) and DCM Partition Aggregation (DCM-PA) on 

temporal, spatial, and incremental data sets, and DCM Web system (DCMiner). 

Challenging research topics for DCM and DCM-PA include: 
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1.) Association mining with partition when items’ values are continuous. 

Currently, DCM categorized all continuous attributes by utilizing well-

accepted scales from the CDC’s BRFSS definitions. However, there can be 

other continuous values beyond those of health-related. Therefore, this future 

work is to explore approaches, which include techniques to discretize 

continuous values using equi-width (equal ranges), equi-depth (equal number 

of transactions among the bins), and other statistical analyses. Particularly for 

the statistical analysis, which has been briefly explored in the DCM’s work 

for NIS 2005 data set, it is to bin the continuous values according to their 

distributions around the average values.  

2.) Following the above topic, a future work also includes an exploration of 

“crisp” as compared to “fuzzy” values of attributes. This is because not all 

attributes’ values can be categorized as “yes” or “no”, “male” or “female”, 

etc. Uncertainty and degree of truth should also be considered when binning 

continuous values. There can also be overlapping areas among the 

neighboring bins. 

3.)  Association mining that takes into consideration of quantities. Using a market 

basket analysis as an example, two loafs of white bread in a basket should not 

be considered only as the bread item exists in the transaction. A potential 

approach is to assign different weights to represent different quantities. 

4.) Association mining that is suitable for multiple-choice multiple-answer 

surveys. So far, DCM assumes that each transaction represents a survey (or a 

person), and each question is answered once for each survey. This assumption 
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is not applicable to many other real-world data sets, such as the lymphedema 

(one patient with multiple visits) and other general questionnaire-type data.  

5.) Explorations of association ranking in order to utilize the associations as 

predictors. Currently, DCM mining results may be repeated according to their 

actual distributions and associations; hence, DCM is a “descriptive” 

association mining approach. For example, the (diabetes: yes) item can 

associate with any number of domain-concepts. The future work is to explore 

which domain-concept(s) is/are best for an item to be associated with. Hence, 

this work would enable associations to have a strong predictive power, i.e. the 

associations may be used to predict domain-concepts when new or 

incremental transactions are submitted to the system. 

6.) Explorations of a root cause and a solution of how to best uncover 

associations from the under-represented groups of a population. The current 

explorations using correlations and hybrid thresholds are still not sufficient 

enough in identifying these valuable associations.  

7.) Enabling a “complete” on-demand mining, i.e. allow newly collected data to 

be submitted on-line for DCM to partition and then mine efficiently. 

Subsequently, DCMiner and DCM-PA include these new results into the 

online systems on-the-fly. 

The following details the on-going and future work of DCMiner. A goal of the 

DCMiner Web-based interface is to serve as an incremental data mining tool, where 

human experts can upload a series of newly collected data, as they become available, for 

DCM to mine for frequent itemsets. After that, DCM-PA incrementally aggregates 
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(union) the new and previous sets of results (frequent itemsets). Finally, DCMiner offers: 

1.) a result viewing tool that can compare and contrast between a series of results, 2.) an 

aggregation tool that the human experts can flexibly merge (union or intersection) these 

results according to their domain-concept selections. Particularly for the DCMiner result 

viewing tool, visualization techniques, such as line graphs (for trends), histograms, and 

pie charts can be highly suitable as representations of the frequent itemsets and their 

temporal patterns. Lastly, for data sets such as the NIS and the BRFSS, with spatial 

dimensions from data collected from states, (hospital) region, metropolitan and rural 

areas, etc., “Google Earth” [93] will be integrated to increase the understandability of the 

results. 
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APPENDIX A  

BRFSS 2006 SELECTED VARIABLES 

 

 

 

Table Appendix A.1. BRFSS 2006 Selected Variables 

itemID Variable 
Name 

Description Variable 
Value 

Variable 
Meaning 

Interesting 
Indicator 

Frequency Percentage 

1 GENHLTH Would you say that in general your health is: 1 Excellent N 67337 18.93 

2 GENHLTH Would you say that in general your health is: 2 Very good N 113348 31.87 

3 GENHLTH Would you say that in general your health is: 3 Good N 107288 30.16 

4 GENHLTH Would you say that in general your health is: 4 Fair Y 46373 13.04 

5 GENHLTH Would you say that in general your health is: 5 Poor Y 20005 5.62 

6 HLTHPLAN Do you have any kind of health care coverage, 
including health insurance, prepaid plans such as 
HMOs, or government plans such as Medicare? 

1 Yes N 313248 88.06 

7 HLTHPLAN Do you have any kind of health care coverage, 
including health insurance, prepaid plans such as 
HMOs, or government plans such as Medicare? 

2 No Y 41492 11.66 
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itemID Variable 
Name 

Description Variable 
Value 

Variable 
Meaning 

Interesting 
Indicator 

Frequency Percentage 

8 MEDCOST Was there a time in the past 12 months when you 
needed to see a doctor but could not because of 
cost? 

1 Yes N 41035 11.54 

9 MEDCOST Was there a time in the past 12 months when you 
needed to see a doctor but could not because of 
cost? 

2 No Y 313853 88.23 

10 DIABETE2 Have you ever been told by a doctor that you 
have diabetes? 

1 Yes Y 36085 10.14 

11 DIABETE2 Have you ever been told by a doctor that you 
have diabetes? 

3 No N 311704 87.63 

12 CVDINFR Has a doctor, nurse, or other health professional 
ever told you that you had a heart attack (a 
myocardial infarction)? 

1 Yes Y 20354 5.72 

13 CVDINFR Has a doctor, nurse, or other health professional 
ever told you that you had a heart attack (a 
myocardial infarction)? 

2 No N 333726 93.82 

14 CVDSTRK Has a doctor, nurse, or other health professional 
ever told you that you had a stroke? 

1 Yes Y 13150 3.7 

15 CVDSTRK Has a doctor, nurse, or other health professional 
ever told you that you had a stroke? 

2 No N 341643 96.06 

16 ASTHMA Have you ever been told by a doctor, nurse, or 
other health professional that you had asthma? 

1 Yes Y 45843 12.89 

17 ASTHMA Have you ever been told by a doctor, nurse, or 
other health professional that you had asthma? 

2 No N 308931 86.86 

18 QLACTLM Are you limited in any way in any activities 
because of physical, mental, or emotional 
problems? 

1 Yes Y 86460 24.31 
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itemID Variable 
Name 

Description Variable 
Value 

Variable 
Meaning 

Interesting 
Indicator 

Frequency Percentage 

19 QLACTLM Are you limited in any way in any activities 
because of physical, mental, or emotional 
problems? 

2 No N 267758 75.27 

20 USEEQUIP Do you now have any health problem that 
requires you to use special equipment, such as a 
cane, a wheelchair, a special bed, or a special 
telephone? (Include occasional use or use in 
certain circumstances.) 

1 Yes Y 33069 9.3 

21 USEEQUIP Do you now have any health problem that 
requires you to use special equipment, such as a 
cane, a wheelchair, a special bed, or a special 
telephone? (Include occasional use or use in 
certain circumstances.) 

2 No N 322396 90.63 

22 MARITAL Are you married, divorced, widowed, separated, 
never been married, or a member of an unmarried 
couple? 

1 Married Y 196341 55.2 

23 MARITAL Are you married, divorced, widowed, separated, 
never been married, or a member of an unmarried 
couple? 

2 Divorced Y 49804 14 

24 MARITAL Are you married, divorced, widowed, separated, 
never been married, or a member of an unmarried 
couple? 

3 Widowed Y 45333 12.75 

25 MARITAL Are you married, divorced, widowed, separated, 
never been married, or a member of an unmarried 
couple? 

4 Separated Y 8339 2.34 

26 MARITAL Are you married, divorced, widowed, separated, 
never been married, or a member of an unmarried 
couple? 

5 Never been 
married 

Y 45430 12.77 
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itemID Variable 
Name 

Description Variable 
Value 

Variable 
Meaning 

Interesting 
Indicator 

Frequency Percentage 

27 MARITAL Are you married, divorced, widowed, separated, 
never been married, or a member of an unmarried 
couple? 

6 A member of an 
unmarried 

couple 

Y 8970 2.52 

28 EDUCA What is the highest grade of year of school you 
completed? 

1 Never attended 
school or only 
kindergarten 

Y 630 0.18 

29 EDUCA What is the highest grade of year of school you 
completed? 

2 Grades 1 
through 8 

(Elementary) 

Y 12799 3.6 

30 EDUCA What is the highest grade of year of school you 
completed? 

3 Grades 9 
through 11 
(Some high 

school) 

Y 23983 6.74 

31 EDUCA What is the highest grade of year of school you 
completed? 

4 Grade 12 or 
GED (High 

school 
graduate) 

Y 107740 30.29 

32 EDUCA What is the highest grade of year of school you 
completed? 

5 College 1 to 3 
years (Some 
college or 
technical 
school) 

Y 93399 26.26 

33 EDUCA What is the highest grade of year of school you 
completed? 

6 College 4 years 
or more 
(College 
graduate) 

Y 116169 32.66 

34 EMPLOY Are you currently employed for wages, self-
employed, out of work, a homemaker, student, 
retired, or unable to work? 

1 Employed for 
wages 

Y 165724 46.6 
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itemID Variable 
Name 

Description Variable 
Value 

Variable 
Meaning 

Interesting 
Indicator 

Frequency Percentage 

35 EMPLOY Are you currently employed for wages, self-
employed, out of work, a homemaker, student, 
retired, or unable to work? 

2 Self-employed Y 31954 8.99 

36 EMPLOY Are you currently employed for wages, self-
employed, out of work, a homemaker, student, 
retired, or unable to work? 

3 Out of work for 
more than 1 

year 

Y 6158 1.73 

37 EMPLOY Are you currently employed for wages, self-
employed, out of work, a homemaker, student, 
retired, or unable to work? 

4 Out of work for 
less than 1 year 

Y 7539 2.12 

38 EMPLOY Are you currently employed for wages, self-
employed, out of work, a homemaker, student, 
retired, or unable to work? 

5 Homemaker Y 28542 8.03 

39 EMPLOY Are you currently employed for wages, self-
employed, out of work, a homemaker, student, 
retired, or unable to work? 

6 Student Y 6832 1.92 

40 EMPLOY Are you currently employed for wages, self-
employed, out of work, a homemaker, student, 
retired, or unable to work? 

7 Retired Y 85595 24.07 

41 EMPLOY Are you currently employed for wages, self-
employed, out of work, a homemaker, student, 
retired, or unable to work? 

8 Unable to work Y 22200 6.24 

42 INCOME What is your annual household income from all 
sources? 

1 Less than 
$10,000 

Y 17895 5.03 

43 INCOME What is your annual household income from all 
sources? 

2 $10,000 to 
$14,999 

Y 19136 5.38 

44 INCOME What is your annual household income from all 
sources? 

3 $15,000 to 
$19,999 

Y 23973 6.74 
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itemID Variable 
Name 

Description Variable 
Value 

Variable 
Meaning 

Interesting 
Indicator 

Frequency Percentage 

45 INCOME What is your annual household income from all 
sources? 

4 $20,000 to 
$24,999 

Y 29388 8.26 

46 INCOME What is your annual household income from all 
sources? 

5 $25,000 to 
$34,999 

Y 39964 11.24 

47 INCOME What is your annual household income from all 
sources? 

6 $35,000 to 
$49,999 

Y 50221 14.12 

48 INCOME What is your annual household income from all 
sources? 

7 $50,000 to 
$74,999 

Y 51837 14.58 

49 INCOME What is your annual household income from all 
sources? 

8 $75,000 or 
More 

Y 73370 20.63 

50 SEX Indicate sex of respondent 1 Male Y 135408 38.07 

51 SEX Indicate sex of respondent 2 Female Y 220302 61.93 

52 PROSTATE Have you ever been told by a doctor, nurse, or 
other health professional that you had prostate 
cancer? 

1 Yes Y 63103 63.15 

53 PROSTATE Have you ever been told by a doctor, nurse, or 
other health professional that you had prostate 
cancer? 

2 No N 32227 32.25 

54 EMTSUPRT How often do you get the social and emotional 
support you need? 

1 Always N 167954 48.82 

55 EMTSUPRT How often do you get the social and emotional 
support you need? 

2 Usually N 101052 29.37 

56 EMTSUPRT How often do you get the social and emotional 
support you need? 

3 Sometimes Y 39152 11.38 

57 EMTSUPRT How often do you get the social and emotional 
support you need? 

4 Rarely Y 11324 3.29 
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itemID Variable 
Name 

Description Variable 
Value 

Variable 
Meaning 

Interesting 
Indicator 

Frequency Percentage 

58 EMTSUPRT How often do you get the social and emotional 
support you need? 

5 Never Y 17617 5.12 

59 LSATISFY In general, how satisfied are you with your life? 1 Very satisfied N 156739 45.58 

60 LSATISFY In general, how satisfied are you with your life? 2 Satisfied N 166330 48.37 

61 LSATISFY In general, how satisfied are you with your life? 3 Dissatisfied Y 14415 4.19 

62 LSATISFY In general, how satisfied are you with your life? 4 Very 
dissatisfied 

Y 3656 1.06 

63 INSULIN Are you now taking insulin? 1 Yes Y 7922 26.43 

64 INSULIN Are you now taking insulin? 2 No N 22014 73.45 

65 DIABPILL Are you now taking diabetes pills? 1 Yes Y 21362 71.28 

66 DIABPILL Are you now taking diabetes pills? 2 No N 8532 28.47 

67 FEETSORE Have you ever had any sores or irritations on your 
feet that took more than four weeks to heal? 

1 Yes Y 3368 11.24 

68 FEETSORE Have you ever had any sores or irritations on your 
feet that took more than four weeks to heal? 

2 No N 26468 88.33 

69 DIABEYE Has a doctor ever told you that diabetes has 
affected your eyes or that you had retinopathy? 

1 Yes Y 6314 21.08 

70 DIABEYE Has a doctor ever told you that diabetes has 
affected your eyes or that you had retinopathy? 

2 No N 23219 77.51 

71 AGEG Age groups 1 Age 18 to 24 Y 14 4.07 

72 AGEG Age groups 2 Age 25 to 34 Y 38 10.78 

73 AGEG Age groups 3 Age 35 to 44 Y 60 16.87 

74 AGEG Age groups 4 Age 45 to 54 Y 75 21.29 

75 AGEG Age groups 5 Age 55 to 64 Y 69 19.47 
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itemID Variable 
Name 

Description Variable 
Value 

Variable 
Meaning 

Interesting 
Indicator 

Frequency Percentage 

76 AGEG Age groups 6 Age 65 to 74 Y 47 13.41 

77 AGEG Age groups 7 Age 75 or older Y 41 11.56 

78 TOTINDA Adults that report doing physical activity or 
exercise during the past 30 days other than their 
regular job 

1 Had physical 
activity or 
exercise 

N 263 74.21 

79 TOTINDA Adults that report doing physical activity or 
exercise during the past 30 days other than their 
regular job 

2 No physical 
activity or 

exercise in last 
30 days 

Y 91 25.68 

80 LTASTHM Adults who have ever been told they have asthma 1 No N 308 86.85 

81 LTASTHM Adults who have ever been told they have asthma 2 Yes Y 45 12.89 

82 BMICAT Three-categories of Body Mass Index (BMI) 1 Neither 
overweight nor 
obese (BMI less 

than 25.0) 

Y 126 35.62 

83 BMICAT Three-categories of Body Mass Index (BMI) 2 Overweight 
(25.0 <= BMI 

<=29.9) 

Y 123 34.71 

84 BMICAT Three-categories of Body Mass Index (BMI) 3 Obese (BMI 
30.0 or greater) 

Y 88 24.75 
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APPENDIX B  

DCM-PA EXPERIMENTAL RESULTS 

 

 

 

The summary of the experimental results from Domain-Concept Partition 

Aggregation (DCM-PA) that aggregates (DIABETE2: 1) or itemID 10 (see Table 

Appendix A.1 for itemIDs and their meanings) with the other 83 domain-concepts of the 

“Centers for Disease Control and Prevention” (CDC)’s “Behavioral Risk Factor 

Surveillance System” (BRFSS) 2006 data set [33] is shown in Table Appendix B.2. The 

purpose is to demonstrate that DCM with DCM-PA is able to uncover many more 

valuable findings than the traditional brute-force association mining approach. 

In total, there are 1,828 1 2( | )B A A∨ aggregations, where A1 is (DIABETE2: 1), A2 

is one the possible 83 domain-concept partitions, and B is one of the other possible 82 

itemIDs. Please note that it is not always the case that an aggregation is successful 

because there can be combinations of A1, A2, and/or B that do not actually exist in the 

data set, such as an aggregation between A1 = (DIABETE2: 1) and A2 = (EDUCA: 1). 

From this data set, the maximum number of A2 to be aggregated with A1 is 73, which is 

when B itemID is either 18 (QLACTLM: 1) or 79 (TOTINDA: 1). 

From the BRFSS 2006 data set, (DIABETE2: 1) domain-concept contains 36,085 

transactions from 355,170 transactions in total. The last two columns in Table Appendix 
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B.1 are the minimum support values and the maximum support values in the form of

P( | )1 2B A A∨ .  

Table Appendix B.1. The Summary of the Results from DCM-PA Union Operations on  
the BRFSS 2006 Data Set with (DIABETE2: yes) as A1 

# of A2  
Domain-Concepts 

Domain-Concept 
B itemID 

MIN P( | )1 2B A A∨  MAX P( | )1 2B A A∨  

62 4 0.12 0.31 
32 5 0.13 0.23 
24 12 0.12 0.19 
70 16 0.11 0.61 
73 18 0.19 0.56 
40 20 0.12 0.29 
69 22 0.39 0.71 
62 23 0.11 0.20 
51 24 0.11 0.38 
29 30 0.10 0.13 
69 31 0.21 0.38 
69 32 0.23 0.29 
67 33 0.18 0.49 
66 34 0.20 0.52 
60 40 0.20 0.60 
31 41 0.11 0.21 
24 44 0.10 0.12 
34 45 0.10 0.12 
55 46 0.11 0.14 
56 47 0.12 0.16 
43 48 0.10 0.18 
72 50 0.29 0.82 
71 51 0.53 0.76 
56 56 0.11 0.19 
6 63 0.22 0.22 
20 65 0.20 0.59 
6 69 0.17 0.17 
64 74 0.16 0.27 
65 75 0.18 0.29 
55 76 0.13 0.33 
40 77 0.11 0.35 
73 79 0.20 0.44 
70 81 0.11 0.61 
72 82 0.15 0.39 
72 83 0.29 0.42 
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APPENDIX C  

PROOF DOMAIN-CONCEPT PARTITION 

AGGREGATION BY INDUCTION 

 

 

 

This section is to illustrate a proof of the Domain-Concept Partition Aggregation 

(DCM-PA) approach by induction [164] based on the Inclusion-Exclusion Principle. The 

proof has been adapted from [165].  

Theorem 1. The following statement is true for all 1n≥ .  
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(C.1) 

The proof by induction is as follows. First, the associative property can be applied 

to the denominator of Theorem 1 to obtain the following. 

( )1
1 1P ( ) P( )n n

i i n i iA A A−
= =∨ ∨ = ∨  (C.2) 
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Hence, the Inclusion-Exclusion Principle as shown in equation (C.1) can be applied to

1P( )n
i iA=∨ . Therefore, the problem statement is reduced to only the problem of the 

nominator of equation (C.1). 

The base case is to consider a single set of ( )( )1
1P ( )n

i i nB A A−
=∧ ∨ ∨  , which is when 

n = 1. We can obtain: 

( )( )0
1 1 1P ( ) P( )i iB A A B A=∧ ∨ ∨ = ∧  (C.3) 

Then, the Inclusion-Exclusion Principle is implied that 

( )1
1 1

1
P( ) ( ) Pii i j

i j n
B A B A B A A

=
≤ < ≤

∧ = ∧ − ∧ ∧∑ ∑  (C.4) 

, which is equal to itself because there is no such j that is greater than i and less than 1. 

Specifically for this problem, the base case should also be expanded to n = 2 as follow: 

( )( ) ( )
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1 2 1 2
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1

1 2 1 2

1 2
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i i
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∑ ∑  (C.5) 

This is because the DCM-PA approach is developed to aggregate multiple domain-

concepts, e.g. P( | )i jB A A∨ . Further, the “Set Addition Principle” [31] states that: 

1 2 1 2 2 1 1 2( \ ) ( \ ) ( )A A A A A A A A∨ = ∨ ∨ ∧  (C.6) 

, where all three components of the right hand side are disjoint and (A1 \ A2) is a set 

whose members are in A1, but not in A2. Therefore, we can apply the Set Addition 

Principle to 1 2P( | )B A A∨ in equation (C.5) to obtain: 
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 (C.7) 

This proofs that the Inclusion-Exclusion Principle holds for our base case of an 

aggregation of any two sets. The next step is to proof that Theorem 1 holds for any n > 2 

using an induction hypothesis. Therefore, the hypothesis assumes that Theorem 1 holds 

for1 i m n≤ < ≤ , which is: 
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 (C.8) 

The above equation is from a problem of a two-set aggregation.  

( ) ( ) ( )1 1
1 1( ) ( )n n

i i n i i nB A A B A B A− −
= =∧ ∨ ∨ = ∧ ∨ ∨ ∧  (C.9) 

Therefore, we can rearrange the equation using the Set Addition Principle to obtain: 
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At this step, let two groups of an arbitrary number of sets and their intersections be: 

1. Il is a collection of k-fold intersections of ( ) ( ) ( )1 2 1, ,..., nB A B A B A −∧ ∧ ∧ . 

2. '
lI is a collection of k-fold intersections of ( ) ( ) ( )1 2, ,..., nB A B A B A∧ ∧ ∧ . 

This implies that ( )nB A∧ is included every member of '
lI , but not of Il. Hence, these two 

collections do not duplicate.  

From equation (C.10), we can obtain the following for n domain-concepts: 

( )( ) ( ) ( )
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 (C.11)

Also, for the last component of the above equation, we can apply the set distributive 

property to obtain: 

( ) ( )( )( )1 1
1 1P ( ) Pn n

i i n i i nB A A B A A− −
= =∧ ∨ ∧ = ∧ ∨ ∧  (C.12)

It is worth mentioning the following set operation will take care of some redundancies (if 

there are any): 

( ) ( ) ( )p r q r p q rA A A A A A A∧ ∧ ∧ = ∧ ∧  (C.13)

Therefore, the Inclusion-Exclusion Principle can also be applied to

( )( )( )1
1P n

i i nB A A−
=∧ ∨ ∧ because it is re-arranged to be a union problem of n-1 sets. 

Hence, we can obtain: 
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, which resembles the union of two domain-concepts problem shown in equation (C.7). 

Further, the last component of (C.14) that has P( ) |n jS A S I∧ ∈ can be substituted by 

1
'P( ) |
j

S S I
+

∈  as follow: 
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Moreover, the last component can also be re-written another way as its substitution 

shown below: 
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The last component (+/-) sign has to be changed if the power of (-1) is changed from j to 

j+1. 
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However, ( )nB A∧ can be included in the last component to obtain: 
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By combining two summations together, we can finally obtain: 
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(C.19)

Hence, equation (C.19) proofs the Inclusion-Exclusion Principle.  

Q.E.D. 

Theorem 2. The following statement is true for all 1n≥ .  
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The proof by induction is as follows. 

The associative property can be applied to Theorem 2 to obtain the following. 
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The base case of ( )( )1
1P | ( )n

i i nB A A−
=∧ ∧  is when n = 1, which is: 
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Specifically for DCM-PA that aggregates two or more domain-concept partitions, the 

base case should also be expanded to n = 2, which is: 
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Therefore, the base case is true.  

Assume the following holds for1 i m n≤ < ≤ .  

( )( ) ( )
( )

1
11

1 1
1

P ( )
P | ( )

P ( )

n
i i nn

i i n n
i i n

B A A
B A A

A A

−
=−

= −
=

∧ ∧ ∧
∧ ∧ =

∧ ∧
 (C.24)

Further, based on the set theorem and the associative property of an intersection 

operation, the following also holds for1 i m n≤ < ≤ .  

( )1
1 1P ( ) P( )n n

i i n i iA A A−
= =∧ ∧ = ∧  (C.25)

Given the above is true, prove the following. 
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By set association, we can obtain: 

( ) 1
1 1 1P ( ) P( )n n

i i n i iA A A+
= + =∧ ∧ = ∧  (C.27)

Finally, we can obtain:  



193 

 

( )( ) ( )
( )

1
1

1 1 1
1

P ( )
P | ( )

P

n
i in

i i n n
i i

B A
B A A

A

+
=

= + +
=

∧ ∧
∧ ∧ =

∧
 (C.28)

Q.E.D. 
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