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ABSTRACT 

Numerous optical-imaging and machine-vision based inspection methods are 

found that aim to replace visual and human-based inspection with an automated or a 

highly efficient procedure. However, these machine-vision systems have not been entirely 

endorsed by civil engineers towards deploying these techniques in practice, partially due 

to their poor performance in object detection when structural cracks coexist with other 

complex scenes. A mobile hyperspectral imaging system is developed in this work, which 

captures hundreds of spectral reflectance values at a pixel in the visible and near-infrared 

(VNIR) portion of the electromagnetic spectrum bands. To prove its potential in 

discriminating complex objects, a machine learning methodology is developed with 

classification models that are characterized by four different feature extraction processes. 

Experimental validation with quantitative measures proves that hyperspectral pixels, 

when used conjunctly with dimensionality reduction, possess outstanding potential in 

recognizing eight different structural surface objects including cracks for concrete and 

asphalt surfaces, and outperform the gray-values that characterize the texture/shape of the 

objects. The authors envision the advent of computational hyperspectral imaging for 

automating structural damage inspection, especially when dealing with complex structural 

scenes in practice.  
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CHAPTER 1. INTRODUCTION 

Civil engineering structures are complexly planned systems that are vital for a 

society’s prosperity and quality of life in general. Ensuring the reputation, civil 

engineering structures have grown its dynamic demand around the globe over the past 

few decades. Apparently in the United States, there are over 610,000 bridges, 5,500,000 

commercial buildings, 160,000 miles of railroad tracks, 4,000,000 miles of roads, 84,000 

dams, 19,000 airports and 400,000 miles of electric transmission lines providing services 

to the population (ASCE, 2017). These structures are built and maintained to support the 

daily routine load as well as the additional unexpected loads and the unavoidable severe 

environmental conditions. For critical infrastructure systems, mandatory inspection 

practices and standards exist for adoption by stakeholders to ensure the serviceability and 

safety of the structure. One of them is for a comprehensive diagnostics and prognostics of 

serviceability of the national infrastructures, American Society of Civil Engineers 

(ASCE) has developed the ‘Infrastructure Report Card’ which grades the infrastructures 

as A- Exceptional, Fit for the Future; B- Good, Adequate for now; C- Mediocre, Requires 

Attention; D- Poor, At-Risk; and F- Critical Unfit for purpose. 

Civil engineering structure inspection is more on the overall and general 

conditions, as can be directly observed or measured. The task of inspection for evaluation 

of civil engineering structure status has become increasingly challenging due to age, 

scale, and magnitude of structures. Different civil engineering inspection techniques are 

in practice to assist visual inspection. Exclusively these practices are to stipulate valuable 

information for structural assessment and decision support for maintenance through 

relevant measures of structural responses. These technologies can be generally 

categorized into two types of methodologies. The first is Nondestructive Testing (NDT), 
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utilizing advanced sensing technologies (microwaves, thermal and ultrasonic) (Cawley, 

2018), most of which aim to detect subsurface damage. The second methodology includes 

various structural health monitoring (SHM) methods, which aim to monitor the dynamic 

responses and identify the intrinsic parameters or changes in structure. Most NDT 

techniques have become a growing field that has attracted a considerable amount of 

research efforts. Given these technology-based inspections or monitoring methods, the 

reality is that, at least for transportation structures that are managed by the department of 

transportation (DOT) agencies across most of the states in the US, manual or visual 

inspection is considered the mainstream approach. Sadly, despite the critical roles of these 

structures in public safety and economy, human-based visual inspection is common and 

consistent in quantitative evaluation and accessibility (Graybeal, Phares, Rolander, 

Moore, & Washer, 2002). Visual inspection is widely used mostly due to the expensive 

approach of the NDT techniques which demands a significant operational cost including 

training and deployment of manpower and technology in the field.  Due to the low-cost 

and ubiquitous availability of optical imaging sensors or commonly speaking, digital 

cameras, it is of no surprise that optical imaging has become a widely adopted equipment 

for structural inspection, wherein besides visual inspection, digital images are recorded 

for records or for post-inspection analysis  (M. J. Olsen et al., 2016). Among many 

methods for surveillance with the digital camera, one of them includes placing cameras at 

different critical locations around the structure and constantly monitoring the deformation 

and deterioration. This method covers only a small section of the structure and records 

mostly the textural information which alone is never enough for a complete structural 

assessment. To overcome the limitation, an alternative system is implemented which 

involves gathering images and registering the conditions of the surface by a skilled 
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technician traveling along the surface while taking pictures. After the structural surface 

images are captured, skilled technicians analyses each image and determine the existence 

of any distress and classify damage type based on visual descriptions. This process 

usually is time-consuming and requires a huge effort to analyze the full set of acquired 

images. Hence there arises a need for a rapid data acquisition and classification platform 

to collect, process and classify the structural surfaces in interest. These techniques have 

emerged with an essential goal of safeguarding the operational safety of structures, 

through deploying various types of sensors, monitoring diversified physical quantities, 

assessing structural condition and performance, and instructing routine inspection and 

maintenance. Subsequently, this has motivated the movement of developing machine 

vision techniques to aid or event to automate engineering inspection of civil structures. 

Machine vision is a technical field that concerns the development of digital 

imaging methods and the use of image processing or computer vision algorithms for the 

extraction of useful information from images (Morris, 2004). With the advent of early 

digital cameras, researchers in the last eighties and nighties used simple digital filters, 

including various edge detection methods, for realizing image-based structural damage 

detection (Cheng & Miyojim, 1998; Ritchie, 1987; Ritchie Stephen, 1990). To further 

automate the process of image capturing, researchers further strive to develop other 

imaging methods that are expected to mitigate the human cost of professional inspectors. 

These novel methods include ground vehicle-based imaging, aerial vehicle-based 

imaging, and crowdsourcing based imaging [e.g., (Isawa et al., 2005; Kim, Sim, & Cho, 

2015; Lattanzi & Miller, 2013; Tung, Hwang, & Wu, 2002; C. Zhang & Elaksher, 2012) 

(Ozer, Feng, & Feng, 2015)]. For example, Ho et al. (2013) developed a system with 

three cameras attached to a cable climbing robot to detect surface damage (Ho, Kim, 
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Park, & Lee, 2013). Yeum and Dyke (2015) proposed an unmanned aerial vehicle (UAV) 

for remote imaging and image-based detection (Yeum & Dyke, 2015). In Chen et al. 

(2015), a mobile-cloud infrastructure enabled approach was proposed that exploits 

collaborative mobile and cloud computing to harness crowdsourcing-based structural 

inspection (Chen, Chen, Shen, & Lee, 2015).  

Unlike, regular digital imaging process, the author develops a mobile 

hyperspectral imaging (HSI) system for both ground and aerial vehicle-based remote 

sensing. With this HSI system and preliminary observation (e.g., by plotting spectral 

profiles for different structural surface objects), it is hypothesized that structural damage 

(e.g., cracks) and other complex artifacts can be effectively detected on structural 

surfaces. Furthermore, this HSI system equipped with a machine learning approach can 

outperform the performance of regular imaging methods with a high spatial resolution 

(i.e., those based on panchromatic or true-color imaging). The essential contribution of 

this thesis is the proven effectiveness of mobile HSI for structural surface damage 

detection with complex scenes. Different from any existing image-based structural 

damage detection method, in this study, the proposed framework deals with the detection 

problem with much semantically rich structural-surface materials and objects, including 

concrete, asphalt, crack, dry vegetation, green vegetation, water, oil, and artificial 

markings, which are dealt with in the literature of image-based damage detection but 

commonly found in engineered structures in service. Another significant contribution is 

the semantically labeled dataset resulting from this research, which provides an 

unprecedented basis for research in hyperspectral machine vision and engineering 

inspection automation.  
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Literature Survey 

With the abundance of these optical imaging platforms, one promising fact is the 

ease of obtaining imagery structural-damage databases. Other than early vision methods, 

these databases enable the adoption of a machine learning paradigm for image-based 

structural damage detection. Most of the techniques in these early efforts used either of 

one of the gradient-based edge detection (Shrivakshan & Chandrasekar, 2012), Hugh 

transformed based line detection methods (Song & Lyu, 2005), wavelet-based processing 

method (Abdel-Qader, Abudayyeh, & Kelly Michael, 2003; M. Olsen, Chen, Hutchinson, 

& Kuester, 2012),  image binarization method (Cheng, Shi, & Glazier, 2003; Oliveira & 

Correia, 2009), percolation method (Tomoyuki, Shingo, & Shuji, 2008) or, shape-based 

modeling method (Chen & Hutchinson, 2010; Huo, Yang, Li, & Zhou, 2017). Some 

studies explored the methodology for automated surface cracks monitoring and 

assessment of concrete surface, based on adaptive digital image processing Adhikari et al. 

(2014) and infrared thermography Sakagami (2015) whereas some other incorporated the 

displacement and strain measurement with digital imaging for crack defragmentation 

(Adhikari, Bagchi, & Moselhi, 2014; Sakagami, 2015; Valença, Dias-da-Costa, 

Gonçalves, Júlio, & Araújo, 2014). Many different integration approaches of two or more 

sensors were explored and broadened to be used in more specific application categories. 

Vaghefi et al. (2015) developed a combined nondestructive imaging technology on the 

bridge deck to yield both surface and subsurface indicators of the condition (Vaghefi, 

Ahlborn Theresa, Harris Devin, & Brooks Colin, 2015). Stabile et al. (2012) used a suite 

of microwaves radar interferometer and a thermal camera to monitor the dynamic 

displacement of bridges (Stabile et al., 2012). Waldbjorn et al. (2014) obtained the 

feedback signals i.e. strain and displacement by fiber Bragg grating and digital image 
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correlation aligned to monitor the mandrel position by measuring the rigid body 

displacement based on a multivariate least-squares algorithm (Waldbjørn et al., 2014).  

Other than early vision methods, these databases enable the adoption of a machine 

learning paradigm for image-based structural damage detection. As of today, many 

machine learning methods are found, which feature the use of supervised or non-

supervised classifiers (Chen, Derakhshani, Halmen, & Kevern, 2011; Gavilán et al., 2011; 

Kaseko & Ritchie, 1993; Liu, Suandi, Ohashi, & Ejima, 2002; Prasanna et al., 2014; 

Zakeri, Nejad, & Fahimifar, 2017). In recent years, coincident with the advances in 

artificial intelligence (AI), and particularly the development of deep learning techniques, 

many have heralded the era of AI-enabled structural inspection. To this end, a simple 

search through Google Scholar, using the combined keywords of “Crack Detection”, 

“Convolutional Neural Network” (CNN), and “Image” returns more than 700 articles 

within the period of January 2016 to October 2019. Notably, Zhang et al. firstly used a 

CNN model as a feature extractor then fed the features into a classification model for the 

detection of cracks in images (L. Zhang, Yang, Zhang, & Zhu, 2016). Such a CNN-based 

machine learning approach is then adopted in many other similar efforts [e.g., (Alipour, 

Harris, & Miller, 2019; Cha, Choi, & Büyüköztürk, 2017; Ni, Zhang, & Chen, 2019)]. 

One may expect that by duly considering the advances in these AI-enabled image-based 

damage detection methods and the lowering cost of mobile or edge computing devices, 

the notion of an autonomous structural inspection may become a reality. The authors in 

this paper argue that if a fundamental fact is not acknowledged, the pace of automation 

would ultimately be hindered. This fact is the complexity of structural scenes captured in 

digital images. In the case of concrete structures, the scenes in images are often a mixture 

of structural materials, possible damage, and other artifacts, such as artificial marking, 
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vegetation, moisture, oil spill, discoloring, and uneven illumination (Chen & Hutchinson, 

2010). This implies that any image-based machine learning method or an end-to-end deep 

learning method may encounter the infamous issue of generalization. In other words, if 

such an autonomous image-based system is deployed in the field, its core detection 

component (i.e., a classification model) even trained based on a relatively large dataset 

with complex scenes, can over-fit the training data but cannot generalize to an arbitrary 

scene that is more complex than the data used for training.  

To resolve this challenge, one obvious solution is to continue developing much 

larger dataset given the power of deep learning with an architecture that can potentially 

accommodate any scale of data sizes and any complexity in field scenes, when regular 

images (i.e., true-color images with red, green, and blue bands or RGB images) are 

continuously used. However, this inevitably triggers the issue of labeling big data (e.g., 

pixel-wise labeling of cracks and other artifacts), which is expensive and time-consuming 

(Roh, Heo, & Whang, 2019). Another approach is to resort to transfer learning and use 

small data sets enhanced by effective data augmentation technique to obtain the notion of 

learning from small data using DL models. A recent effort of such is reported (Shimin 

Tang & Chen, 2017), which develops a crack pixels-based data augmentation technique 

for fine-tuning of DL models. Regardless of the potential success in these solutions, it is 

asserted that with the use of RGB images, the outcomes of developing these methods can 

only asymptotically match the intelligence of trained inspectors, though possibly with 

much higher efficiency than human inspectors.  In other words, there is a performance 

‘ceiling’ that tops the capacity of regular RGB images unless that machine intelligence 

supersedes human beings. 



8 

 

An alternative solution is to break out the normal of matching human vision. An 

emerging technology for structural inspection is hyperspectral imaging (HSI). In a 

hyperspectral image, a pixel contains tens to thousands of digital values at different 

spectral bands in the visible and near-infrared (VNIR) portion of the electromagnetic 

spectrum bands, at which each digital value represents either the reflectance or 

transmittance property of a material at one band. Such a high-dimensional spectral profile 

hence is not directly visible to human eyes that respond, roughly speaking, only to three 

discrete bands (namely, red, green, and blue)(Kaiser & Boynton, 1996). Scientific 

knowledge in hyperspectral imaging and analysis is well archived and is, in general, 

termed hyperspectral spectroscopy (Siesler, Ozaki, Kawata, & Heise, 2008). In the 

context of image-based structural damage detection, it is stated that HSI provides a 

significant possibility of detecting and identifying the presence of either structural 

damage or noisy artifacts at the material level.  

In this work, the authors develop a mobile hyperspectral imaging (HSI) system for 

both ground and aerial vehicle-based remote sensing. With this HSI system and 

preliminary observation (e.g., by plotting spectral profiles for different structural surface 

objects), it is hypothesized that structural damage (e.g., cracks) and other complex 

artifacts can be effectively detected on structural surfaces. Furthermore, this HSI system 

equipped with a machine learning approach can outperform the performance of regular 

imaging methods with a high spatial resolution (i.e., those based on panchromatic or true-

color imaging). Different from any existing image-based structural damage detection 

method, in this study, the proposed framework deals with the detection problem with 

much semantically rich structural-surface materials and objects, including concrete, 

asphalt, crack, dry vegetation, green vegetation, water, oil, and artificial markings, which 
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are dealt with in the literature of image-based damage detection but commonly found in 

engineered structures in service. Another significant contribution is the semantically 

labeled dataset resulting from this research, which provides an unprecedented basis for 

research in hyperspectral machine vision and engineering inspection automation. 

Literature Survey Summary 

To summarize the literature review, certain areas are yet to be explored and new 

improved systems are yet to be developed for the damage detection in civil engineering 

structures. While there have been researches focused on the detection of cracks, 

defragmentation and damage assessment on the surface using images and videos but these 

results lack when considering the complex and realistic scenes. This review shows that 

the implementation of a computer vision-based method for non-destructive testing and its 

potential to provide more valuable information for the visual inspection and structural 

condition assessments through integration with other sensing techniques as well as 

presents some critical limitations and challenges of the system. Most of the current 

research is conducted through the images captured in a controlled environment. The 

quality of the image captured by the vision device will be significantly affected by the 

surrounding environment condition such as mixer of the contrast from other similar 

materials, light variation, presence of oil or water on the surface and artificial marks on 

the surface which are very common on the structural surface. Along with image quality 

limitation, the majority of the current literature focuses on binary classifications using 

simple machine learning techniques or threshold-based heuristics. However, multiclass 

classification has not yet been explored for different classes of damages found on the civil 

engineering structures.  
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In the following, first, the concept of HSI is briefly introduced, and a mobile HSI 

system is described. In the next, the machine learning methodology is introduced with a 

focus on proving the concept of HSI-based detection and its competitive performance. 

Performance evaluation and discussion are further conducted with four classification 

models, followed by a summary of conclusions and vision at the end. 
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CHAPTER 2. HYPERSPECTRAL IMAGE 

When a beam of white light is dispersed by passing through a prism, a continuous 

range of colors, the so-called color the spectrum is formed. All object gives off 

electromagnetic radiation and it has been known that different materials emit, reflect and 

absorb a different proportion of lights and this proportion is the function of the frequency 

of the light wave (Richards & Jia, 1999). Since the color spectrum visible to the human 

eye is only a small region of the much wider electromagnetic spectrum thereby detecting 

and analyzing the energy emitted or reflected, an enormous amount of information about 

the material into consideration can be obtained. This specific property of the physical 

object is called reflectance. The reflectance of an object varies at different wavelength 

producing a unique electromagnetic spectrum profile for each object. 

The imaging spectroscopy is defined as “the simultaneous acquisition of the 

measurement, processing, and analysis of images in many narrow, contiguous spectral 

bands” (Goetz, Vane, Solomon, & Rock, 1985). The concept of HSI originated in the 

1980s when Goetz and his colleagues at the Jet Propulsion Laboratory (JPL) began 

developing the seminal instrument of the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) (R. O. Green et al., 1998; Plaza et al., 2009). Different from gray-level or RGB 

images, in a hyperspectral image, a hyperspectral pixel consists of a large number of 

intensity values sampled at different narrow spectral bands that represent the contiguous 

spectral curve at the pixel. A Hyperspectral image, in general, can be assumed as a 3D 

data cube structure, where a 2-D spatial-domain resides over a 1-D spectral-domain. One 

may view each hyperspectral data cube as a stack of spatially registered 2D images at 

different wavelengths (bands). Each pixel is a 1-D vector, corresponds to the reflectance 

energy spectrum within its field of view (FOV) (Richards & Jia, 1999). Figure1 shows 
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full three-dimensional hyperspectral (two spatial dimensions plus one wavelength 

dimension) data cube.  

 

Figure1. A hyperspectral image data (Bodkin et al., 2009a) 

For hyperspectral images obtained by advanced hyperspectral cameras, detailed 

spectral information and fine spatial resolution enable an analysis of both materials and 

structures of the object in a scene. Therefore, it is necessary to develop new techniques to 

exploit these underlying spatial and spectral information in hyperspectral images, thus 

advancing the limitation of human vision, computer vision, and remote sensing. Some 

attempts have been made in both computer vision and remote sensing over time but still, 

there has been a huge gap between hyperspectral imaging and material classification 

application due to lack of effective spectral-spatial feature extraction method as well as 

due to lack of enough data and robust classification method.  

Hyperspectral Imaging Technology 

As advances in HSI and especially sensors that are not for orbital or airborne 

platforms, the acquisition of hyperspectral data cubes can be realized with other 

mechanisms. Besides the spatial scanning or push-broom imaging mechanism, two other 
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mechanisms (spectral scanning and spatial-spectral scanning) are developed for HSI 

applications in medical and biological sciences (Lu & Fei, 2014). It is noted that towards 

producing a hyperspectral cube, these three scanning techniques require complex post-

processing steps to achieve the end product, a data cube. The fourth mechanism is the 

non-scanning or ‘snapshot’ imaging (Johnson, Wilson, Bearman, & Backlund, 2004). The 

snapshot imaging, different from other, acquires spectral pixels in a 2-D field-of-view 

simultaneously, without the requirement of trajectory flights or using any moving parts in 

the imager. Therefore, this ‘snapshot’ mechanism is also referred to as real-time HSI by 

researchers (Bodkin et al., 2009b). This HSI mechanism can achieve much higher frame 

rates and higher signal-to-noise ratios and can provide hyperspectral cubes immediately 

after every action of capturing as in a regular digital camera. Due to this property, real-

time or ‘snapshot’ HSI opens up significant opportunities for its use in portable, mobile, 

or low-altitude remote sensing. 

Hyperspectral Image Computing 

Given a hyperspectral cube, one can denote it as h(x, y, s) acquired from several 

spectral bands (i.e., for visible bands s ∈  [400, 600] nm; and visible to near-infrared, s ∈  

[400, 1,000] nm). At a select location of (x, y), therefore, h(x, y, s) represents a spectral 

profile when plotted against the variable spectral s. In the remote-sensing context (not in a 

medical or biological context), namely, the data cube is acquired in the air, and the 

measurement at the sensor is the upwelling radiance. In general, it is the reflectance 

property of a material at the ground that nominally does not vary with solar illumination 

or atmospheric disturbance. Therefore, the acquired spectral profile reflects the 

characteristics or signatures of the material. Therefore, a raw radiance data cube needs to 

be corrected to generate a reflectance cube, considering the environmental lighting and 
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the atmospheric distortion. This process is called atmospheric correction (Adler-Golden et 

al., 1998). Figure 2. Below represents the plot for the reflectance plot for each material 

class we have opted to work within this thesis work. 
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Figure 2. Reflectance plot for asphalt, color, concrete, crack, dry vegetation, oil, green 

vegetation, and water respectively with 20 random pixels. 

Camera Calibration 

The raw spectral image collected using the hyperspectral imaging system is 

detector signal intensity. To calibrate the raw intensity images into reflectance, calibration 

of the camera is performed with the help of a black and white reflectance image. This 

process corrects the significant signal vibrations, which are caused by non-uniformity of 

the illumination and the focal plane array of the camera, known as pattern noise (Nouri, 

Lucas, & Treuillet, 2013). Natively, the imager captures radiance images, and with the 

internal processing and a proper calibration procedure, the camera can output reflectance 

images directly. To do so, a reflectance calibration process starts with the use of a 

standard white reference board, achieving a data cube for the standard whiteboard 

(denoted as hW). Second, a ‘perfect dark’ cube is obtained (by simply covering the lens 

tightly with a black cap), denoted as hB. The relative reflectance image, h, is calculated 

given a radiance cube hR, 

ℎ =  
ℎ𝑅 − ℎ𝑤 

ℎ𝑤−ℎ𝐵
      (1) 

Following Eq. (1), a reflectance image can be produced by the camera directly or 

can be post-processed from the produced radiance image.   
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CHAPTER 3. PREPROCESSING 

This section describes the data collection process with the developed application, 

specifications of the hardware, data format, and information about the environmental 

setup are also described in detail. For the data acquisition and processing, the most 

important components are the camera and its specification that determines the resulting 

quality of the collected data.   

Imaging System 

A mobile HSI system for ground-level and low-altitude remote sensing is developed by 

the authors. The imaging system consists of a Cubert S185 FireflEYE snapshot camera 

that combines the precision of hyperspectral camera with the ease of snapshot camera, 

accurately capturing data over the whole field of view, and a mini-PC server for onboard 

computing and data communication (Cubert Gmbh, 2018). For ground-based imaging, the 

system is mounted to a DJI gimbal that provides two 15-W and 1580 mAh batteries for 

powering both the imaging payload and the operation of the gimbal. Figure 3 shows the 

gimbaled imaging system, which is ready for hand-held or other ground-based HSI. To 

enable low-altitude remote sensing, an unmanned aerial vehicle (UAV) is used, and the 

gimbaled system can be easily installed to the UAV for remote sensing.  

 
Figure 3. Cubert hyperspectral camera and assembly at UMKC 
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This device has a wavelength range of 450nm to 950nm with a spectral resolution of 

8nm capturing 139 channels and a pan resolution of 2500 spectral per cube providing a 

complete hyperspectral cube with a global shutter in 1/1000 of a second, without the need 

of IMU. As per the manufacturer, the wavelength accuracy at 532nm and 808nm are 

respectively ±2.5nm and ±4.5nm. One unique feature of the Cubert HSI system is its dual 

acquisition of hyperspectral cubes and a companion image, a gray-level intensity image. 

The gray-level image has an identical field of view as the hyperspectral cube but has a 

much higher spatial resolution, which has a size of 1,000 × 1,000. Denoting this gray 

image as g(u, v), one can ‘fuse’ g(u, v) and h(x, y, s) to achieve a hyperspectral cube with 

a higher resolution, and at its peak, one can obtain a cube with the size of 1,000 × 1,000 × 

139. This process is called pan-sharpening, and to obtain smooth sharpening effects, 

many algorithms exist (Loncan et al., 2015). Nonetheless, it is noted that pan-sharpening, 

which can provide visually appealing hyperspectral images (if visualized in terms of 

pseudo-color images), does not provide new information compared to the original low-

resolution hyperspectral cube and the high-resolution gray image. Therefore, in this 

paper, the low-resolution data cubes are directly used towards the goal of pattern 

classification-based object detection. 

The Cube-Pilot is the official graphical user interface (GUI) to the Cubert 

Hyperspectral cameras making it possible to calibrate the camera before taking any 

pictures and aiding in the process of image capturing. A window of the Cube-pilot 

application is shown in Figure 4.  
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Figure 4. Cube pilot application to visualize and extract the hyperspectral data.  

Semantic Labelling 

With the mobile HSI system (Figure. 3), a total of 68 instances of hyperspectral 

images (and their companion gray-level images) were captured in the field. Among these 

images, 43 images come from concrete surfaces and 25 images from asphalt surfaces. To 

create scene complexity, artificial markings, oil, water, green and dry vegetation were 

added in 34 of concrete images and 16 of asphalt images that have hairline or apparent 

cracks. Of the remaining 18 images, 9 images were taken from the surfaces of concrete 

and asphalt pavements without cracks and any of the other artifacts, respectively.  

To create a supervised learning-ready dataset, manual and semantic labeling is 

carried out. Semantic labeling is the process of labeling each pixel in an image with a 

corresponding class label. In this work, an image-segmentation (or image parsing) based 

labeling approach is considered in which clustered segment with pixels belong to the 

same class is delineated in the image domain and rendered with a select color. The image 

of labeling is based on the gray-level image that accompanies a hyperspectral cube. In 

this work, this process was conducted by using an open-source image processing 

program, GIMP (Kimball & Mattis, 2019). As shown in Figure 5, during the labeling 



19 

 

process, a total of six different classes, including cracking, green vegetation, dry 

vegetation, water, oil, and artificial marking, are assigned with the color of black, green, 

brown, blue, red, and yellow, respectively. It is noted that in this effort, the background 

materials (concrete and asphalt) are not classified in these complex-scene images as well 

as in the plain (concrete/asphalt) images. Figure 5 shows two samples of the original 

gray-level images and the resulting color-rendered mask images for a concrete surface 

and an asphalt surface, respectively.   

 

 

Figure 5. Images of concrete and asphalt surface with features and their respective ground 

truth images 



20 

 

CHAPTER 4. METHODOLOGY 

This section describes the proposed architecture and methodology followed in this 

thesis. Four machine learning algorithms based on the traditional machine-learning 

paradigm (namely, manually tuned feature extraction and select classification are 

employed) are designed in this work. With these algorithms, the specific objectives are 

two-fold:  

1. Hyperspectral data can improve the accuracy of detection compared to gray-level images.  

2. Dimensionality reduction can further improve the accuracy and robustness compared 

against the case without dimensionality reduction.  

Depending on the feature extraction methods, the following models are obtained. The 

list below summarizes these four models with abridged notations and their primary testing 

goals.  

1. Model-1 or M1: feature extraction based on hyperspectral pixels with spectral values 

directly used as feature vectors. Namely, h(x, y, s) at (x, y) is directly used as a feature 

vector, where 𝑠 ∈ {1,2, … , 139} . To reflect this characteristic, an abridged notation 

M1(HYP) is used, where HYP represents the feature extraction process.  

2. Model-2 or M2: feature extraction based on hyperspectral pixels with spectral values 

subject to a linear PCA as an additional feature selection step to reduce the 

dimensionality. Namely, the profile of h(x, y, s) at (x, y) is reduced to six dimensions 

only and becomes h’(x, y, k), where 𝑘 ∈ {1,2, 3, . . ,6}. For this model, M2(HYP_PCA) 

is used for simplicity. The flowchart for model  

3. Model-3 or M3: feature extraction based on the companion gray-level images, g(u, v), 

where the feature vectors at a 20 × 20 neighborhood in g(u, v) maps to the hyperspectral 

pixel at (x, y). To extract the gray-level features within a sliding 20×20 neighborhood in 
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g(u, v), the widely used gradient-based feature extractor, the histogram of gradients, or 

HOG, is considered and a variant of HOG is adopted in this paper. The resulting model 

is denoted by M3(GL_HOG.  

4. Model-4 or M4: feature vectors based on the combined use of the feature vectors used 

in Model-2 and Model-3. Namely, by concatenating the two feature vectors, it fuses 

imagery information from both the hyperspectral pixel-based spectrum and the gray-

value based spatial distribution. Hence, the notation of M4(GL_HOG+HYP_PCA) is 

used for simplicity, and GL_HOG+HYP_PCA represents the fourth feature extraction 

process in this paper. 

 

Figure 6. Dimensionality reduction and classification approach for the hyperspectral 

image. 
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Figure 7. HOG feature extraction and classification approach. 

 

Figure 8. A combined PCA and HOG feature extraction and classification approach. 

With these models, the specific objectives towards proving the hypotheses are multi-

fold:  
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 Objective-1: Evaluate the performance of the classification model of M1(HYP) hence 

to conclude if a hyperspectral pixel is effective in recognizing the underlying object 

types, including structural damage given a complex scene.   

 Objective-2: Evaluate and compare the performance of M1(HYP) and M2(HYP_PCA), 

hence, to conclude if dimensionality reduction is effective in terms of improving the 

discrimination of different objects.   

 Objective-3: Evaluate and compare the performance of M2(HYP_PCA) and 

M3(GL_HOG), hence, to conclude if hyperspectral pixels are more effective than high-

resolution gray-level images towards identifying complex object types.    

 Objective-4: Evaluate the performance of the classification model of M4(HYP_PCA, 

GL_HOG), hence, to conclude if, through simple data fusion, the combined 

hyperspectral and gray-level features provide more competitive detection performance.  

With the four models defined previously, they essentially differ in the use of different 

feature extraction processes based on the original hyperspectral data instance (a data cube 

and a companion gray-level image). With the colored mask images created as described 

above, it is denoted as m(u, v) sharing the same spatial domain as the underlying gray 

image g(u, v). For the sake of simplicity, based on the color coding for the mask images, 

the value of m(⋅) takes an integer value of 1, 2, …, 6 to indicate the underlying six 

different surface objects; in addition, the following notations are used to describe the 

resulting dataset: 

𝒟 = { ℎ𝑛(𝑥, 𝑦, 𝑠), 𝑔𝑛(𝑢, 𝑣), 𝑚𝑛(𝑢, 𝑣)| 𝑛 = 1,2, … , 50}              (2) 

To generate the machine-learning data for the models, the following feature extraction 

and treatment process is developed. Considering the spatial domains of a pair of h(x, y, s) 

and g(u, v), the following procedure is proposed: 
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1) Iterating with the location of (xi, yj) with i, j = 1, 2, …, 50, the spectral profile is stored 

in the vector of {h(xi, yj, s)| s ∈ [1, 139]}, and the gray-values in the corresponding gray 

image g(u, v) are confined in a neighborhood block of 𝒷 = {(u’, v’) | u’  ∈ [(xi -1)× 20 

+ 1,  xi × 20], and  v’ ∈ [(yj -1)× 20 + 1, yj × 20]}. At this neighborhood of 𝒷, the gray-

level image patch and the corresponding mask patch corresponding to the hyperspectral 

pixel at (x, y) are denoted as g(𝒷) and m(𝒷), respectively.  

2) Given the mask patch m(𝒷), a simplified process is used to select the underlying class 

label for the hyperspectral pixel at (xi, yj). By counting the number of pixels belong to 

different object types within the neighborhood block 𝒷, 

a.  If a dominant class label exists, namely the number of pixels that belongs to a 

class is greater than 50% of the total pixels in the block (namely, 200 over 400 

pixels), this class label is assigned to (xi, yj). 

b. If no dominant class label exists, this pixel (xi, yj) and the corresponding 

neighborhood 𝒷 is skipped. 

3) At a pixel with a dominant class label, and per the feature extraction method (HYP, 

HYP_PCA, and GL_HOG),  

a. If HYP is used, {h(xi, yi, s)| s ∈ [1, 139]} is directly used as the feature vector 

with a dimension of 139 × 1. 

b. If HYP_PCA is used, PCA is conducted over the vector {h(xi, yi, s)| s ∈ [1, 139]}, 

and the first 6 PC scores are used to form a much low-dimensional 6 × 1 feature 

vector. 

c. If GL_HOG is used, the feature extraction is based on the gray-level patch g(𝒷) 

using the HOG-UoCTTI method, resulting in a 31× 1 feature vector.  
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d. If HYP_PCA + GL_HOG is fused, the two corresponding feature vectors are 

simply concatenated, resulting in a 37 × 1 feature vector. 

4) By iterating this procedure over all the hyperspectral pixels for all the 50 instances of 

images which includes different types of features in consideration, the following 

classification data set is obtained for each of the feature extraction methods above.  

𝒟𝐹𝐸𝐴 = { (𝒑𝒌, 𝑐𝑘)| 𝑘 = 1,2, … , 𝐾}                           (3) 

where the superscript FEA represents one of the feature extraction processes: HYP, 

HYP_PCA, GL_HOG, or HYP_PCA+GL_HOG. It is noted that by skipping many 

background pixels or pixels that do not have dominant labels in Step 2b, the resulting 

number of meaningful pixels (with dominant class labels) is 29546. Among them, 

8132, 6495, 6273, and 5312 features are obtained for the class labels (ck’s) of water, 

oil, artificial marking and green vegetation, respectively. The number of features for 

cracks (concrete and asphalt cracks) is 2377. The dry vegetation features have the 

lowest number of 957.  

With the data cubes and gray images for the plain concrete and asphalt surfaces (9 

pairs each), 2601 features are arbitrarily extracted at each of feature extraction type but 

without using mask images each for the concrete or the asphalt labels. After adding these 

features into Eq. 3, the number of labeled features used in this paper, or K  in Eq. 3, is 

34748. As described above, given the lowest (957) and the largest (8132) number of 

features, a moderate imbalance indeed exists.  

Principal Component Analysis (PCA) 

Principal component analysis (PCA) is the most widely used linear-dimension 

method based on second-order statistics. PCA is also known as the Karhunen-Loeve 

transformation, singular value decomposition (SVD), empirical orthogonal function 
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(EOF), and Hotteling transformation. PCA is a mathematical procedure that facilitates the 

simplification of large data sets by transforming many correlated variables called 

principal components.  PCA finds a new set of orthogonal axes that have their origin at 

the data mean and are rotated to a new coordinate system so that the spectral variability is 

maximized. Resulting PC bands are linear combinations of the original spectral bands and 

are uncorrelated.  

Given a hyperspectral profile at (x, y), or denoted as a set {h(x, y, s) | s ∈  [1, 2, …, 

139]}, if treated as a feature vector, it gives rise to a 139×1 feature vector. As mentioned 

earlier, such high-dimensionality readily leads to poor performance when training a 

classification model (particularly when the training data is small, and the model itself 

cannot accommodate the high-dimensional space). Theoretically, assuming that an image 

had n pixels, measured at k spectral bands, the matrix characterizing the image is as 

follows.  

𝐗 =  [

𝑥1

⋮
𝑥𝑘

] (4) 

where x1… xk is a vector of n elements. 

The first step in the PC procedure is generally the subtraction of the mean from each of 

the data dimesons. The mean spectrum vector represents the average brightness value of 

the image in each band and is defined by the expected value as follows: 

𝑨 =  
1

𝑁
∑ 𝑥𝑗 − [

𝑥
⋮

𝑥𝑘

]𝑁
𝑗=1  (5) 

Where A is the mean spectrum vector, N is the total number of image pixels, and 

xj is a vector representing the brightness of the jth pixel of the image. Therefore, the 

components of the mean spectrum vector A represent the average brightness of the image 

in each band. The mean shift is calculated by subtracting the mean of the data. The PC 
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analysis de-correlates the data mainly by rotating the original axes, and therefore, the 

mean shift does not change the attribute of the resulting PC images. The only difference is 

the addition of a constant value in each band. This makes the decorrelation more evident 

in subsequent stages but is not necessary.   

The second step in the PC method is to calculate the covariance matrix, which is a 

square symmetric matrix, where the diagonal elements are variance and the off-diagonal 

elements are covariance. From a spectral imagery point of view, the variance represents 

the brightness of each band and the covariances represent the degree of brightness 

variation between bands in the image. Additionally, covariance that is large compared to 

the corresponding variance in a spectral pair indicates a high correlation between these 

bands while covariance close to zero indicates little correlation in these spectral pairs 

(Richards, 2013).  

The covariance matrix is computed by the formula  

𝑪 =
𝟏

𝒏−𝟏
 (𝐗 − 𝐀)(𝑿 − 𝑨)𝑻 (6) 

Where A is the mean spectrum vector of the image and X is the vector 

representing the brightness values of each pixel. The next step in the PCA analysis is the 

calculation of the eigenvectors and eigenvalues of the covariance matrix. The eigenvalues 

λ = {λ1 … λk}v of a k×k square matrix is its scalar roots and are given by the solution of 

the characteristic’s equation  

|𝛴𝑥 − 𝜆𝑰| = 0 (7) 

Where I is the identity matrix. The eigenvectors are closely related to the 

eigenvalues and each one is associated with one eigenvalue. Their length is equal to one 

and they satisfy the equation  

𝛴𝑥𝐕𝑘 = 𝜆𝑘𝐕𝑘 (8) 
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Where Vk is the eigenvector corresponding to the λk eigenvalue and its dimension 

is 1×k.  

The eigenvectors are orthogonal to each other and provide us with information 

about the patterns of the data. The first eigenvector provides a line that approximates the 

regression line of the data- this axis is defined by maximizing the variance on this line. 

Therefore, the second eigenvector provides a line that is orthogonal to the first and 

contains the variance that is away from the primary vector. Then a regression plane can 

be defined for the data that maximizes the variance. When more than 3 variables are 

involved, the principles of maximizing the variance are the same but graphical 

representation is almost impossible.  

The fourth step in the PC analysis is the determination is the components that can be 

ignored. An important property of the eigenvalue decomposition is that the total variance 

is equal to the sum of the eigenvalues of the covariance matrix, as each eigenvalue is the 

variance corresponding to the associated eigenvector. The PC process orders the new data 

space such that the bands are ordered by variance, from highest to lowest. The 

eigenvector with the highest eigenvalue is the first principal component (PC) and 

accounted for most of the variation in an image. The second PC has the second larger 

variance being orthogonal to the first PC, and so on.  Figure. 9 presents the variation of 

the three principal components for each class that are considered for training and testing 

the classifier. 
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Figure 9. Distribution of the first, second and third principal components of 

concrete,asphalt, color, crack, dry vegetation, green vegetation, water, and oil dataset.  

A transformed data set is created by using the eigenvectors from the diagonalization of 

the covariance or correlation matrix. After selecting the eigenvectors that should be 

retained, the following formula is applied: 

(𝐹𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡) =  (𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑)′ × (𝐷𝑎𝑡𝑎 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑)′ (7) 

Where (Eigenvector Adjusted)’ is the matrix of eigenvectors transposed so that the 

eigenvectors are in the row with the first eigenvector on the top and (Data adjusted)’ is 

the matrix with the mean-corrected data transposed.  
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Figure 10. The first and second principal component plot of the dataset. 

Histogram of Oriented Gradient (HOG) 

The Histogram of Oriented Gradient (HOG) feature descriptor aims to characterize 

the contextual texture or shape of objects in images through counting the occurrence of 

gradient orientations in a select block in an image or the whole image. It was first proven 

effective by Dalal and Triggs (2005) in their seminal effort for pedestrian detection in 

images (N. Dalal & Triggs, 2005); since then, HOG has been applied extensively for 

different objective detection tasks in the literature of machine vision. HOG differs from 

other scale-invariant or histogram-based descriptors in that its extraction is computed over 

a dense grid of uniformly spaced cells, and it uses overlapping local contrast normalization 

for improved performance. To this date, there are many variants of HOG descriptors for 

improving the robustness and accuracy; and a commonly used one is the HOG-UoCTTI as 

described in (Felzenszwalb, Girshick, McAllester, & Ramanan, 2010).  

The basic idea behind HOG is; the appearances and shape of local objects within 

an image can be well described by the distribution of intensity gradients as the votes for 
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dominant edge directions. Such a feature descriptor can be obtained by first dividing the 

image into small contiguous regions of equal size called cells, and collecting a histogram 

of gradient directions for the pixels within such cells, and hence combining all these 

obtained histograms from each cell. To improve the detection accuracy against varied 

illumination and shadowing, local contrast normalization can be applied by computing a 

measure of the intensities across a larger region of an image, called a block, and using the 

resultant value to normalize all the cells within the block. Hence HOG consists of gamma 

and color normalization, gradient and orientation computation, cell histogram computation, 

normalization across blocks, and flattening into a feature vector.  An overview of object 

detection with HOG is presented in figure 11.  

 

Figure 11: Block diagram for feature extraction with HOG feature descriptors. 

The first step of HOG feature extraction is the computation of image gradients. The 

gradient tells how the image changes in the given direction. Gradient computation is done 

by applying the 1D centered, point discrete derivative most in both the horizontal and 

vertical direction while calculating gradient value for each pixel describing the relationship 

of neighboring pixel values according to the mask. Then, the magnitude and orientation at 

each pixel I(x, y) is calculated by  

{
𝐺𝑚𝑎𝑔(𝑥, 𝑦) =  √𝐺𝑥

2(𝑥, 𝑦) +  𝐺𝑦
2(𝑥, 𝑦)

𝜃(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦(𝑥,𝑦)

𝐺𝑥(𝑥,𝑦)
) + 𝜋

2⁄
 (9) 

Where Gx(x, y) and Gy(x, y) are the gradient values at each pixel in the horizontal and 

vertical direction, respectively.  

In the next step, the histogram for each pixel region that is either rectangular or 

radial is created. The histogram bin is evenly expanded from 0º to 180º for unsigned and 0º 
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to 360º for signed, so every histogram bin has a spread of 20º. Every pixel in the cell casts 

weighted voting into one of the 9 histogram bins which can either be the gradient magnitude 

itself or some function of the magnitude. The voting simply means increasing the frequency 

of the observed bin by the magnitude of the pixel. 

Next, after generating cell histograms, to obtain the robustness against the various 

illumination and contrast, the gradient strengths must be locally normalized. This can be 

achieved by grouping the cells into lager pixels regions called bocks. Since the blocks 

overlap with the neighboring blocks, each block contributes its orientation distribution 

more than once. Since each scalar cell response contributes several components to the final 

descriptor vector, each normalized concerning a different block. Overlapping block adds 

redundant information that can improve the result significantly. There are four variants of 

the HOG block scheme: Rectangular HOG, Circular HOG, Bar HOG and Center-surround 

HOG (Navneet Dalal, 2006). (N. Dalal & Triggs, 2005) proposed and compared four 

different methods for block normalization. Let ʋ denote the non-normalized feature vector 

that collects all cell histograms from a given block ||ʋ||k denotes its k-norm for k = 1, 2 and 

eps denote some small constant. Then the normalized scheme has the following forms: 

𝐿2 − 𝑛𝑜𝑟𝑚:    ʋ̂ =  
ʋ

√||ʋ||2
2+𝑒𝑝𝑠2

 (10) 

𝐿1 − 𝑛𝑜𝑟𝑚:    ʋ̂ =  
ʋ

(||ʋ||
1

+𝑒𝑝𝑠)
 (11) 

𝐿1 −  𝑠𝑞𝑟𝑡:     ʋ̂ =  √
ʋ

(||ʋ||
1

+𝑒𝑝𝑠)
 (12) 

L2-Hys is computed by re-normalizing the clipped L2-norm. All the normalization scheme 

provides much better performance than the non-normalized case. Finally, the HOG feature 

is the vector containing the elements of the normalized cell histogram from all of the block 

regions.  
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In this effort, considering the resolution compatibility between the hyperspectral 

cube and the companion gray-level image, the feature extraction is conducted in a 20 × 20 

sliding-neighborhood in a gray image. Within such a neighborhood four histograms of 

undirected gradients are averaged to obtain a no-dimensional histogram (i.e. binned per 

their orientation into 9 bins or no = 9) and a similar operation is performed for the directed 

gradient to obtain a 2no dimensional histogram (i.e. binned in accordance of their gradient 

into 18 bins). Along with both directed and undirected gradient, the HOG-UoCTTI also 

computes another four-dimensional texture-energy feature. The final descriptor is obtained 

by stacking the averaged directed histogram, averaged undirected histogram and four 

normalized factors of the undirected histogram. This leads to the final descriptor of size 4 

+ 3 × no (i.e., a 31 × 1 feature vector). 
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CHAPTER 5. MACHINE LEARNING APPROACH 

Some of the first applications of machine learning to hyperspectral considered the 

task of classifying land cover, or terrain, into different classes, such as forest, water, 

agricultural land, and built uplands. Early approach tried to predict the class label ci at a 

pixel i from a vector Xi (Benediktsson, Swain, & Ersoy, 1990; Bischof, Schneider, & 

Pinz, 1992; Paola & Schowengerdt, 1995), with the feature typically just taken to be the 

values at the different spectral bands at pixels i.  

The Bayes’ classifier is one of the simplest and most popular approaches to terrain 

classification. The Bayes’ classifier makes explicit assumptions about the class 

conditional distribution p (xiǀci = k) and the prior class probabilities P (ci = k) and uses 

Bayes’ rule to obtain the posterior class probabilities P (ci = kǀxi). Various other 

simplifying assumptions lead to many popular classifiers. For example assuming that Σk is 

diagonal lead to the Naïve Bayes classifier for continuous inputs while assuming that P(ci 

= k) = 1/K lead to what is known in the remote sensing literature as the maximum 

likelihood classifier (Paola & Schowengerdt, 1995). 

The main drawback of Bayes’ of the Bayes’ classifier is the need to explicitly 

specify the class-condition distribution p(xiǀci = k). Since the multivariate normal 

distribution is typically used for class-conditional distribution, only linear or quadratic 

decision boundaries can be learned by such a model. The neural network became a 

popular alternative to the Bayes’ classifier because they directly model p (xiǀci = k) as a 

differentiable function whose parameter is learned (Bischof et al., 1992; Lee, Weger, 

Sengupta, & Welch, 1990).  This both sidesteps the need to specify p(xiǀci = k) and allows 

for richer, non-linear decision boundaries to be learned when at least one hidden layer of 

units with a non-linear activation function is used. Due to the ability to learn non-linear 
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decision boundaries, neural networks tend to give higher classification accuracies than 

various forms of Bayes’ classifier (Benediktsson et al., 1990; J. Zhang & Modestino, 

1989).  (Bischof et al., 1992) explored adding contextual information by using spectral 

values from a small patch at the pixel of interest as the input to a neural network, allowing 

it to learn some contextual features. Others aimed to improve classification accuracy by 

using hand-designed features that encoded local textural information. (Haralick, 

Shanmugam, & Dinstein, 1973; Lee et al., 1990). (Haralick et al., 1973) introduced a 

popular set of features derived from gray-level values i, and j co-occur at distance d and 

angle θ.  

Support Vector Machine  

Discriminating between object classes with similar features, such as concrete, 

asphalt, vegetation, water, and oil requires some knowledge of spectral profile and 

context which in turn leads to much more complex decision boundaries than the ones 

required to discriminate forest and city areas from imagery. Due to the need to learn such 

highly nonlinear decision boundaries, applications of machine learning to high-resolution 

imagery have relied on more sophisticated classifiers. While the neural network can learn 

nonlinear decision boundaries and have been widely used in remote sensing applications, 

many researchers found them difficult to train due to the presence of local optima 

(Benediktsson et al., 1990).  

Support Vector Machine (SVM) has been employed in a wide range of real-world 

problems such as text categorization, handwritten digit recognition, tone recognition, 

object detection, image classification, regression problem and more colloquially learning 

from examples since purposed by Vapnik (Cortes & Vapnik, 1995). SVM has been 

proven to be a good candidate for the machine learning approach due to its high 
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generalization performance without the need for prior knowledge, even when the 

dimension of the input space is very high. Given a set of points which belongs to either 

one of two class, a linear SVM finds the hyperplane leaving the largest possible fraction 

of points of the same class on the same side while maximizing the distance of either class 

from the hyperplane. According to Vapnik, this hyperplane minimizes the risk of 

misclassifying data from the test set. SVM has often been found to provide higher 

classification accuracies than other widely used pattern recognition techniques, such as 

maximum likelihood (Mondal, Kundu, Chandniha, Shukla, & Mishra, 2012) and the 

multilayer perceptron neural network classifier (Osowski, Siwek, & Markiewicz, 2004). 

Furthermore, SVM appears to be especially advantageous in the presence of 

heterogeneous classes for which only a few training samples are available. In the context 

of hyperspectral image classification, some pioneering experimental investigations 

preliminary pointed out the effectiveness of SVM to analyze the hyperspectral data 

directly in the hyperdimensional feature space, without the need of any feature reduction 

techniques (J. A. Gualtieri & Chettri, 2000; J. Anthony Gualtieri & Cromp, 1999) 

In Figure 12, triangular data points belong to one of the classes and circular data points 

belong to another class. SVM tries to find a hyper-plane (P1 and P2) that separates the 

two classes. As shown in the figure there may be many hyperplanes that can separate the 

data but SVM chooses the best decision boundary based on the maximum margin 

hyperplane concept.  
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Figure 12. Decision boundary and margin of SVM classifier. 

Each hyperplane (Pi) is associated with a pair of supporting hyper-plane (pi1 and 

pi2) that are parallel to the decision boundary (Pi) and pass through the nearest data point. 

The distance between these supporting planes is called margin. In the figure, even though 

both the hyperplane (P1 and P2) divide the data points, P1 has a bigger margin and tends to 

perform better for the classification of unknown samples than P2. Hence bigger the 

margin is, less the generalization error for the classification of unknown samples is. 

Therefore, in the case of the above figure hyperplane P1 is preferred over hyperplane P2.  

For a linear SVM, the equation for the decision boundary is  

𝒘 ∙ 𝒙 + 𝑏 = 0  (13) 

Where w and x are vectors and the direction of w is perpendicular to the linear 

decision boundary. Vector w is determined using the training dataset. For any set of data 

points (xi) that lies above the decision boundary the equation is  

𝒘 ∙ 𝑿𝒊 + 𝑏 = 𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑘 > 0,  (14) 

And for the data points (xj) which lie below the decision boundary, the equation is  

w

p2
1

p1
1

P1p22 P2 p1
2
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𝒘 ∙ 𝑿𝒋 + 𝑏 = 𝑘 ∙, 𝑤ℎ𝑒𝑟𝑒 𝑘 < 0, (15) 

By rescaling the value of w and b the equations of the two supporting hype planes (p11 

and p12) can be defined as 

𝑝11: 𝒘 ∙ 𝑿 + 𝑏 = 1 (16) 

𝑝12: 𝒘 ∙ 𝑿 + 𝑏 = −1 (17) 

The distance between the two hyperplanes (margin “d”) is obtained by  

𝑑 =  2
||𝒘||⁄  (18) 

The objective of the SVM classifier is to maximize the value of d. The margin can 

be seen as a measure of generalization ability: the larger the margin, the better the 

generalization is expected to be (Palhang, 2009; Vapnik, 1998). This objective equivalent 

is to minimize the value of ||w||2/2. The value of w and b are obtained by solving this 

quadratic optimization problem under the constraints.  

𝒘 ∙ 𝑿𝒊 + 𝑏 ≥ 1 𝑖𝑓 𝑦𝑖 = 1 (19) 

𝒘 ∙ 𝑿𝒊 + 𝑏 ≥ −1 𝑖𝑓 𝑦𝑖 = −1 (20) 

Where yi is the class variable for xi. Imposing these restrictions will make SVM to 

place the training instances with yi = 1 above the hyperplane p11 and the training instances 

with yi = -1 below the hyperplane p12. The optimization problem can be solved using the 

Lagrange multiplier method. The objective function to be minimized in the Lagrangian 

form can be written as: 

𝑳𝑷 =
1

2
||𝒘||2 − ∑ 𝛼𝑖(𝑦𝑖(𝒘 ∙ 𝑿𝒊 + 𝑏) − 𝟏)𝑁

𝑖=1  (21) 

αi are Lagrange multiplier and N are the number of samples. The Lagrange multiplier 

should be non-negative (αi ≥ 0).  To minimize the Lagrangian form, its partial derivatives 

are obtained with respect to w and b are equated to zero and the equation is transformed 

to its dual form.  
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𝑳𝐷 = ∑ 𝜶𝒊 −
𝟏

𝟐
∑ 𝜶𝒊𝜶𝒋𝒚𝒊𝒚𝒋𝑿𝒊𝑿𝒋

𝑵
𝒊=𝟏

𝑵
𝒊=𝟏  (22) 

The training instances for which the value if αi > 0 lies on the hyperplane p11 or 

h12 are called support vectors. Only these training instances are used to obtain the 

decision boundary parameters w and b. Hence the classification of unknown samples is 

based on the support vectors.  

Multi Classification System 

In the problem, which is dealt with in this thesis work, the recognition of different 

civil engineering features, binary classification is of course not sufficient since there are 

more than two different classes of features. Although being a binary classifier, SVM can 

be formulated to solve a multi-class classification problem as opted in this research. Thus 

within SVM, there are two well-known methods: “one versus all” and “pairwise 

classification” (or “one versus one”) (Duan, Rajapakse, & Nguyen, 2007). The basic idea 

is to formulate the problem differently: instead of learning “class 1 against class 2 against 

class 3 and so on…”, the problem can be interpreted as “class 1 against the rest, class 2 

against the rest and so on…”.  

Kernel Trick 

The basic idea with nonlinear SVM is to map training data into higher 

dimensional features via some mapping Φ(x) and construct a separating hyperplane with 

maximum margin in the input space. Sometimes, even with the fair amount of slack, 

linear classification is not possible and thus finding the optimal hyperplane in the higher 

dimensional feature space is both complicated and computationally expensive. The issue 

can be handled with a kernel trick. The kernel trick takes all the point and map them into 

a higher dimensional space. To do so, a kernel K is defined such that two-point x and x’ 
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on the feature vector have a kernel value K (x, x’). The mathematical formulation is 

shown in Equation 21. 

𝑲(𝒙, 𝒙′) = 𝒆𝒙𝒑 (−
‖𝒙−𝒙′‖𝟐

𝟐𝝈𝟐
) (23) 

Where || x-x’|| is Euclidean distance between two feature vector and γ = 
1

2𝜎2
  

It can be simply thought of as a transformation of features into infinite-

dimensional space, allowing the linear classification which is the basis of SVM. The 

hyperparameter (C and γ) optimization for this research is achieved by using the Bayesian 

optimization algorithm which implements the 10-fold cross-validation and iteratively 

evaluating and updating the promising hyperparameter configuration based on current 

cross-validation model. In other words, the hyperparameter of the classifier is set by 

searching the space for the best performance metrics: precision and recall score for each 

cross-validation model.  

Performance Evaluation 

To proceed with the modeling and performance evaluation, a data partition 

strategy is needed to split the data; hence one part is for the training and the other for 

model validation. In the literature, the widely used scheme is to use 75% of the total data 

for training and the rest 25% for testing. Indeed, if there are sufficient amount of data, the 

data splitting ratio is flexible and up to the analyst. In this paper, it is meaningful to 

examine if the data size is sufficient, which can be reflected if the prediction performance 

increases with the size of training data. Three data splitting schemes are considered for 

any of the obtained feature dataset as expressed above. In the first scheme namely Test-1, 

and by carrying out a random shuffling, 25% (8147) of the data set is considered for 

training and the rest 75% (26601) for testing purposes. In Test-2, the total dataset is 

divided equally (i.e., 17374 for training and testing, separately).  In Test-3, 75% (26601) 
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of the dataset is considered for training and the rest 25 % (8147) for testing. With these 

three schemes, a total of 12 different models are evaluated in this thesis work. 

The accuracy of the classifier needs to be defined for estimating and comparing the 

quality of the classification result. In this effort, due to the presence of a higher number of 

classes, it is important to properly analyze each parameter as a higher number of classes 

in general decrease the classification accuracy. To quantify the performance of the 

classifiers and more importantly their predictive capacity and robustness, two commonly 

used performance analytics, receiver operating characteristics (ROC) curve, and 

precision-recall (PR) curve, are adopted, which are constructed by setting a variable 

decision threshold in the classifier. The area under ROC (AU-ROC) and precision-recall 

(AU-PR) curve are used as lumped measures summarizing the two curves 

Receiver Operating Characteristic Curve (ROC) 

Receiver Operating Characteristics Curve (ROC Curve) is a graphical depiction of 

correctly and incorrectly predicting an outcome condition. ROC curve is plotted on the 

coordinate system with sensitivity (TPF) values along the y-axis and one minus 

specificity (FPR) value along the x-axis. Sensitivity and specificity are two measure 

which can capture model performance. Sensitivity is the percentage of cases in which the 

outcome (individual class in interest) is correctly predicted. In other words, it is a measure 

of the proportion of positive classes that are correctly predicted by the model. This 

statistic is also referred to as the true positive fraction (TPF). Specificity is the percent of 

cases in which the opposite of the outcome (in the multi-class system, classes belonging 

to some other class when a particular class is into consideration) is incorrectly predicted, 

also referred to as true negative fraction (TNF). These measures can be visually combined 

to characterize the model behavior concerning data called the ROC curve. ROC curve is 
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also valuable because they permit the comparison of variables and summarize accuracy 

across a range of tradeoffs between correct and incorrect classification probabilities. ROC 

curve analysis involves a generally simple graphical representation of classification and is 

generally used in engineering and imaging to qualify how accurately a detection system 

can discriminate between binary classes. In practice, the ROC curve analysis evaluates 

the classification ability of one independent (predictor) variable that is continuously 

measured and one dependent (outcome) variable that is dichotomously measured.  

Area Under Curve (AUC) 

 (D. M. Green & Swets, 1966) first suggested the area under the ROC curve (ROC-

AUC) as an important accuracy index for the measure across all possible decision 

thresholds. AUC statics is a robust measure because it represents the probability of 

correct classification across all possible decision thresholds. AUC values of 1.0 indicate 

perfect classification whereas 0 indicates no accuracy whatsoever for all classes. AUC 

value of 0.5 corresponds with chance and are presented along the diagonal. Generally, the 

AUC value above 0.7 indicates the test possesses good accuracy levels. Moreover, any 

AUC values above 0.5 with a significant F1 score indicate some good ability to 

discriminate. Since the statistics of the AUC curve are based on the proportion of cases, 

the result is irrespective of the underlying group size, unlike other classification measures 

such as accuracy.  (Hosmer, Lemeshow, & Sturdivant, March 2013) provided quantitative 

guidance for the labeling of discrimination ability that this will consolidate and adopt: 0.5 

(no ability), ≥0.60 (low ability), ≥ (0.70) (accepted ability), ≥0.80 (excellent ability), 

≥0.90 (outstanding ability), and 1.0 (perfect ability).  
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Confusion Matrix 

In the problem of statistical classification, confusion matric is also called an error 

matrix having a specific layout allowing a user to visualize the performance of a 

supervised classifier algorithm. The confusion matrix is meant to visualize the per class 

prediction performance of the chosen model. Each row of the matrix represents the 

instance for the actual class whereas each column represents the instances for the 

predicted class. Hence, we can infer the correctly classified points are grouped 

corresponding to the classes in the diagonal entries of the confusion matrix. A sample Mij 

here i=j indicates the true class and the predicted class are the same thus representing an 

accurate classification (diagonal position). A sample that goes into Mij where i≠j indicates 

that the true class i and the predicted class j are not the same thus representing a 

misclassification.  

Precision-Recall Curve (PRC Curve) 

Precision and recall are the matrices that give us a picture of the model performance 

and can be evaluated from the confusion matrix. Precision is a measure of how many of 

the predicted values in a class is correctly classified are part of the true label of the class. 

Hence it is the measure of the positive prediction by the model. Recall on the other hand 

is the measure of the amount of information correctly retrieved or in other words, the 

number of samples correctly predicted. Models can be optimized on a measure that 

combines or balances both precision and recall. This is called F measure which is a 

weighted average of the precision and recall of the model. Precision and recall can be 

computed from the confusion matrix to determine the model performance using the 

following formulations.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (24) 
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Recall =
TP

TP+FN
 (25) 

This concept can be extended the multi-class cases for the precision and recall 

formulation. If M represents a confusion matrix for multiple classes, M being a k ˟ k 

matrix where k is the number of classes.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑀𝑖𝑖

∑ 𝑀𝑗𝑖𝑗
 (26) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑀𝑖𝑖/ ∑ 𝑀𝑖𝑗𝑖  (27) 

AUC for the precision-recall curve is calculated as the area under the precision-recall 

curve, where each point on the curve is defined by different values of the threshold to 

convert continuous binary predictions. Unlike ROC, AUC-PR does not depend on the 

number of true absent observations. While the AUC-ROC curve is maximized by a curve 

in the upper left-hand corner, AUC-PR is maximized in the upper right-hand corner, 

reflecting the norm of placing sensitivity on the y-axis in a receiver operating 

characteristics curve but the x-axis in a precision-recall curve. AUC-PR varies on a scale 

from zero to one, with random performance equal to sample prevalence in the focal 

dataset 

Results 

Test 1: Comparison between model M1(HYP) and model M2(HYP_PCA) 

We first examined the performance of the model M1(HYP) (i.e. classifier trained 

on the full spectral dataset) and model M2(HYP_PCA) (i.e. the classifier trained on the 

principal components of the spectral dataset). This test aims to endorse the hypothesis that 

dimensionality reduction does increase the performance of the classifier. The parameters 

acquired from the confusion matrix for each case both models M1(HYP) and 

M2(HYP_PCA) are summarized in Table 1 and Table 2 respectively.  
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Table 1: Performance summary of model M1(HYP). 

 

Concrete Asphalt Color Crack 
Dry 

Vegetation 

Green 

Vegetation 
Water Oil 

Test-I 

Precision 0.998 1.000 0.598 0.414 0.488 0.776 0.743 0.612 

Recall 0.999 0.998 0.531 0.130 0.164 0.705 0.946 0.717 

F-Score 0.999 0.999 0.563 0.198 0.246 0.739 0.832 0.661 

AU-ROC 1.000 1.000 0.889 0.783 0.915 0.947 0.965 0.909 

AU-PR 1.000 1.000 0.551 0.237 0.265 0.811 0.830 0.638 

Test-II 

Precision 1.000 1.000 0.611 0.567 0.558 0.818 0.787 0.628 

Recall 0.999 1.000 0.655 0.167 0.192 0.704 0.957 0.702 

F-Score 1.000 1.000 0.632 0.257 0.286 0.756 0.864 0.663 

AU-ROC 1.000 1.000 0.906 0.808 0.921 0.952 0.971 0.912 

AU-PR 0.999 0.999 0.592 0.312 0.290 0.800 0.845 0.642 

Test-III 

Precision 1.000 1.000 0.501 0.918 0.402 0.706 0.572 0.553 

Recall 1.000 1.000 0.629 0.057 0.213 0.733 0.962 0.724 

F-Score 1.000 1.000 0.558 0.107 0.278 0.719 0.717 0.627 

AU-ROC 1.000 1.000 0.869 0.774 0.906 0.940 0.963 0.890 

AU-PR 0.999 0.999 0.490 0.495 0.234 0.745 0.685 0.586 

 

 

 

Table 2: Performance summary for model M2(HYP_PCA) 

 

Concrete Asphalt Color Crack 
Dry 

Vegetation 

Green 

Vegetation 
Water Oil 

Test-I 

Precision 0.930 0.901 0.957 0.914 0.878 0.986 0.973 0.955 
Recall 0.886 0.910 0.964 0.921 0.664 0.979 0.992 0.974 
F-Score 0.907 0.906 0.961 0.917 0.757 0.982 0.983 0.964 
AU-ROC 0.993 0.995 0.997 0.995 0.985 0.999 0.999 0.998 
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AU-PR 0.957 0.960 0.977 0.960 0.839 0.993 0.985 0.982 

Test-II 

Precision 0.970 0.936 0.973 0.973 0.900 0.990 0.994 0.979 
Recall 0.959 0.945 0.989 0.952 0.808 0.994 0.995 0.981 
F-Score 0.964 0.941 0.981 0.962 0.851 0.992 0.994 0.980 
AU-ROC 0.998 0.998 0.999 0.997 0.993 1.000 1.000 0.998 
AU-PR 0.987 0.983 0.985 0.987 0.893 0.995 0.997 0.985 

Test-III 

Precision 0.987 0.942 0.984 0.971 0.908 0.989 0.988 0.992 
Recall 0.955 0.954 0.991 0.950 0.867 0.997 0.996 0.995 
F-Score 0.971 0.948 0.988 0.960 0.887 0.993 0.992 0.993 
AU-ROC 0.998 0.997 0.999 0.997 0.994 1.000 1.000 1.000 
AU-PR 0.981 0.981 0.993 0.985 0.886 0.996 0.993 0.994 

 

 

 

Firstly, from the F score of the model M1(HYP) based on Table 1, one can see that 

the model identifies successfully (with F1 > 0.7) on the plain concrete, asphalt, green 

vegetation, and water. For the color marking and oil, it is around 0.6. However, for cracks 

and dry vegetation, the F1 measurements are lower than 0.3, indicating comparatively 

lower prediction accuracy. First, this reflects the challenge in recognizing cracks primarily 

caused by its inherent spectral complexity. Second, it is primarily due to the smaller size of 

the dry-vegetation data points. Last and for all classes, this is presumptively attributed to 

the high dimensionality of the feature vectors of the hyperspectral data set. Nonetheless, as 

one expects from the AU-ROC measurements, as shown in Table 1, there is no doubt that 

the model M1(HYP) is highly effective in recognizing these structural surface objects. At 

the class label of concrete, the average AU-ROC is1. Therefore, it is stated herein that the 

hyperspectral pixels as feature vectors are effective in recognizing most of the structural 

surface objects, and have relatively less accuracy only in the detection of cracks and dry 

vegetation.  The area under the ROC curve for all cases in Test 1 showcases good 
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discriminative power of the classifier for the provided dataset. With all that stated, in some 

cases, the visual representation from ROC plots can be deceptive when there is an 

imbalance in the dataset as presented in this thesis work. Hence for evaluation of the 

performance of the classifier, along with values of ROC curves, the area under the 

precision-recall curve is also considered.  

By observing the accuracy of the model M2(HYP_PCA) compared to M1(HYP) 

in Table 1 and Table 2, it is desirable to observe that the detection accuracy is 

significantly increased. At the two weak prediction instances of cracks and dry vegetation 

pertinent to M1(HYP), the F1 score arises from 0.198 to 0.917 at Test-1 and 0.107 to 0.96 

at Test-3, when M2(HYP_PCA) is tested. For dry vegetation, the F1 scores changes from 

0.246 to 0.757 at Test-1 and 0.278 to 0.887 at Test-3. At all other class labels, the 

classification accuracy still mounts up from their initially high F1 values from M1 to M2. 

When the AU-ROC is concerned, besides that mostly they increase from M1 to M2, the 

measurements are all greater than 0.99 at predicting all class labels. This again signifies 

that the underlying model, M2(HYP_PCA), has nearly perfect capacity towards detecting 

all structural surface objects. The comparative tests herein provide the direct evidence 

that performing dimensionality reduction over hyperspectral profiles (i.e., as HYP feature 

vectors) can substantially unleash the embedded discrimination capacity of the data that is 

otherwise not exploitable.  

Test 2: Comparison between model M2(HYP_PCA) and model M3(GL_HOG) 

The secondary yet important hypothesis in this thesis work is to prove the 

effectiveness of low spatial-resolution hyperspectral data when compared to high-

resolution gray-intensity images towards detecting the structural surface object. For this 

purpose, the results of M2(HYP_PCA) and M3(GL_HOG) are evaluated and compared. 
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ROC and PR curves for all the classes of model M2(HYP_PCA) and M3 (GL_HOG) for 

Test I are shown in Figure 13 and Figure 14 respectively. Both the ROC and PR curves 

for model M2(HYP_PCA) illustrate a significant discriminative ability when compared to 

the performance of model M3(GL_HOG).  

 

Figure 13: ROC curves for model M2(HYP_PCA) and M3(GL_HOG) (Test-I). 

  

Figure 14: Precision-Recall curves for model M2(HYP_PCA) and M3(GL_HOG)   

(Test-I). 

The confusion matrix both models M2(HYP_PCA) and M3(GL_HOG) are presented in 

Table 3 and Table 4 respectively.  
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Table 3: Confusion matrix for model M2(HYP_PCA) (Test-I)  

Actual Class 
        

Concrete 1728 0 0 0 0 56 166 0 

Asphalt 0 1775 40 29 20 0 0 86 

Artificial 

Mark 0 27 4588 87 36 0 0 19 

Crack 0 32 76 1641 8 0 0 25 

Dry 

Vegetation 0 67 39 17 477 0 0 118 

Green 

Vegetation 83 0 0 0 0 3901 0 0 

Water 48 0 0 0 0 0 6051 0 

Oil 0 69 50 22 2 0 0 5268 

 Concrete Asphalt 
Artificial 

Mark 
Crack 

Dry 

Vegetation 

Green 

Vegetation 
Water Oil 

  Predicted Class 

 

 

 

Table 4: Confusion matrix for model M3(GL_HOG) (Test-I). 

Actual Class 
        

Concrete 
1090 499 98 13 0 63 31 156 

Asphalt 495 1167 136 16 0 53 20 63 

Artificial 

Mark 106 31 3714 114 6 313 111 362 

Crack 39 84 566 348 5 297 170 273 

Dry 

Vegetation 14 3 10 3 168 67 9 444 

Green 

Vegetation 63 88 182 54 13 2913 315 356 

Water 47 70 47 31 0 72 5752 80 

Oil 92 71 384 26 40 157 71 4570 

  Concrete Asphalt Artificial 

Mark 

Crack Dry 

Vegetation 

Green 

Vegetation 

Water Oil 

  Predicted Class 
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Similarly, the performance table model M3(GL_HOG) is presented in Table 5. 

 

 

 

Table 5: Performance summary for model M3(GL_HOG). 

 

Concrete Asphalt Color Crack 
Dry 

Vegetation 

Green 

Vegetation 
Water Oil 

Test-I 

Precision 0.560 0.580 0.723 0.575 0.724 0.740 0.888 0.725 

Recall 0.559 0.598 0.781 0.195 0.234 0.731 0.943 0.845 

F-Score 0.560 0.589 0.751 0.292 0.354 0.736 0.915 0.780 

AU-ROC 0.940 0.950 0.926 0.774 0.898 0.929 0.985 0.944 

AU-PR 0.549 0.615 0.724 0.295 0.365 0.750 0.932 0.764 

Test-II 

Precision 0.638 0.690 0.752 0.676 0.827 0.786 0.929 0.785 

Recall 0.669 0.637 0.827 0.273 0.290 0.801 0.964 0.903 

F-Score 0.653 0.662 0.788 0.389 0.430 0.793 0.946 0.840 

AU-ROC 0.963 0.966 0.948 0.833 0.931 0.958 0.991 0.962 

AU-PR 0.647 0.701 0.756 0.399 0.466 0.796 0.954 0.831 

Test-III 

Precision 0.665 0.690 0.772 0.644 0.886 0.801 0.882 0.802 

Recall 0.639 0.679 0.847 0.301 0.325 0.809 0.964 0.906 

F-Score 0.652 0.684 0.808 0.410 0.476 0.805 0.921 0.851 

AU-ROC 0.959 0.969 0.942 0.828 0.948 0.962 0.990 0.964 

AU-PR 0.666 0.737 0.739 0.424 0.529 0.816 0.921 0.850 

 

 

 

Even if the evaluation is done based on the area under the ROC curve, which is 

usually the case in most of the classification work, the outcome suggests both the 

classifier performs satisfactorily. Yet other scores, derived from the confusion matrix 

provided more information particular for the faulty class of interest. As shown in Table 1, 

the AU-ROC curves for all classes of model M2(HYP_PCA) are greater than the value 

0.95 with perfect result 1 for the asphalt and concrete. Similarly, the AU-PR curves 

follow the same trend for all the classes with an area above 0.9 except for the dry 

vegetation that has a value of 0.632. The highest AU-PR curve value is 1 which is for 
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both asphalt and concrete but the class artificial color, crack, and dry vegetation are 

underperforming with AU-PR value of 0.306, 0.316, and 0.092 respectively. Table 5 

summarizes the values of AU-ROC and AU-PR curves for the model M3(GL_HOG). 

Unlike from Table 1, the AU- ROC curve for class water has the highest value of 0.986, 

and the rest of the classes have an AU-ROC curve value of around 0.90 except for the 

crack and dry vegetation with AUC-ROC 0.748 and 0.7758 respectively. The model 

M3(GL_HOG) gives AUC-PR of 0.9526 for the class water, however, for the rest of the 

classes, lower values are observed i.e. 0.2892, 0.3279, 0.5779 and 0.6152 for crack, dry 

vegetation, concrete, and asphalt respectively. This shows that with lower training 

instances, there are losses in classification accuracy when a classifier is trained either with 

gray features or principal components of hyperspectral features. Table 5 also illustrates 

that precision, recall, and, F score for the classifier trained with HOG features are not 

consistent throughout for all the classes compared to result obtained from the model M2. 

In Test-II where the equal number of training and testing instances are considered, it is 

expected to improve results for both the classifier.  The ROC curve for model M2 

presented in Figure 15 clearly reflects the increase in performance accuracy. The ROC 

and PR curves obtained for model M2 (HYP_PCA) and model M3(GL_HOG) for Test-II 

are presented in Figure 15 and Figure 16 respectively.  
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Figure 15: ROC curve for model M2 (HYP_PCA) and M3(GL_HOG) (Test-II). 

 

Figure 16: Precision-Recall curve for model M2 (HYP_PCA) and M3(GL_HOG) 

 (Test-II). 

An improved and optimum result for model M2(HYP_PCA) is reflected by the 

area under the precision-recall curve for all the classes. On the other hand, there aren’t 

any significant improvement in the classifier accuracy using a higher number of features 

for the model M3(GL_HOG). The area under the ROC curve for each class classified 

using gray level features seems promising but is not backed by the area under the 

precision-recall curves as shown in Figure15. Table 6 and Table 7 presents the confusion 

matrix for each classification result.  

 

 

 

Table 6: Confusion matrix for model M2(HYP_PCA) (Test-II).  

Actual Class 
        

Concrete 
1248 0 0 0 0 27 26 0 

Asphalt 0 1230 8 12 15 0 0 36 

Artificial 

Mark 0 10 3101 12 11 0 0 3 

Crack 0 29 22 1132 3 0 0 3 
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Dry 

Vegetation 0 31 21 5 387 0 0 35 

Green 

Vegetation 17 0 0 0 0 2639 0 0 

Water 22 0 0 0 0 0 4044 0 

Oil 0 14 36 3 14 0 0 3540 

  Concrete Asphalt Artificial 

Mark 

Crack Dry 

Vegetation 

Green 

Vegetation 

Water Oil 

  Predicted Class 

 

 

 

Table 7: Confusion matrix for model M3(GL_HOG) (Test-II).  

Actual Class 
        

Concrete 
870 288 46 9 0 17 9 62 

Asphalt 370 829 52 9 1 23 3 14 

Artificial 

Mark 42 13 2594 66 1 218 31 172 

Crack 21 27 429 325 2 183 69 133 

Dry 

Vegetation 6 0 4 4 139 9 0 317 

Green 

Vegetation 26 22 82 26 15 2127 185 173 

Water 14 2 23 12 0 76 3920 19 

Oil 15 21 219 30 10 53 2 3257 

  Concrete Asphalt Artificial 

Mark 

Crack Dry 

Vegetation 

Green 

Vegetation 

Water Oil 

  Predicted Class 

 

 

 

Test-III with the most training instances among all three cases is expected to 

demonstrate an optimum classification efficiency among all the cases considered.  The 

ROC and the PR curve are shown below in Figure 17 and Figure 18, follows the trend as 
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for the previous two cases and reflect a better discriminative ability for model 

M2(HYP_PCA) rather than model M3(GL_HOG). 

 

Figure 17: ROC curve for model M2 (HYP_PCA) and M3(GL_HOG) (Test-III). 

 

Figure 18: Precision recall curve for model M2 (HYP_PCA) and M3(GL_HOG)  

 (Test-III). 

Classification accuracy represented by the area under the ROC curve for each 

class in model M2(HYP_PCA) are all in the range of 0.99. For the class concrete and 

asphalt, the classifier performs to its fullest as reflected by the area under the ROC curve 

of 1 for both of the classes. The area under the precision-recall curve and the ROC curve 

for the classifier trained with hyperspectral data are uniforms. This reflects the 

exceptional performance model M2(HYP_PCA). Even though there a certain increment is 

evident for the classification accuracy of model M3(GL_HOG), the increase is not 
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significant and as well is not backed by the area under the precision-recall curve. The 

confusion matrix for the classifier result trained with spectral features and HOG features 

are presented below in Table 8 and Table 9 respectively. The overall summary for models 

M2(HYP_PCA) and model M3(GL_HOG) is presented in Table 1 and Table 5.  

 

 

 

Table 8: Confusion matrix for model M2(HYP_PCA) (Test-III). 

Actual Class 
        

Concrete 
622 0 0 0 0 15 14 0 

Asphalt 0 621 6 5 12 0 0 7 

Artificial 

Mark 0 5 1519 4 5 0 0 0 

Crack 0 20 7 565 3 0 0 0 

Dry 

Vegetation 0 12 6 6 208 0 0 8 

Green 

Vegetation 4 0 0 0 0 1324 0 0 

Water 4 0 0 0 0 0 1129 0 

Oil 0 1 5 2 1 0 0 1794 

  Concrete Asphalt Artificial 

Mark 

Crack Dry 

Vegetation 

Green 

Vegetation 

Water Oil 

  Predicted Class 

 

 

 

Table 9: Confusion matrix for model M3(GL_HOG) (Test-III). 

Actual Class 
        

Concrete 
416 174 16 8 0 14 2 21 

Asphalt 166 442 19 8 0 4 2 10 

Artificial 

Mark 17 6 1329 45 0 109 10 53 

Crack 11 11 194 179 1 93 28 78 
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Dry 

Vegetation 0 1 3 0 78 6 0 152 

Green 

Vegetation 2 4 34 16 9 1075 104 84 

Water 1 3 6 3 0 23 1092 5 

Oil 13 0 120 19 0 18 0 1633 

  Concrete Asphalt Artificial 

Mark 

Crack Dry 

Vegetation 

Green 

Vegetation 

Water Oil 

  Predicted Class 

 

 

 

From the F1 scores and the AU-ROC measurements shown in Figures 13, 15, and 

17, respectively, a straightforward observation is clear that with the prediction of all class 

labels, M2(HYP_PCA) supersedes M3(GL_HOG). Even considering the fourth model 

M4 (HYP_PCA+GL_HOG) to be evaluated, the select model picked from all the models 

is M2(HYP_PCA) at Test 3 This model provides an outstanding performance: the 

smallest F1 score is 0.84 and the smallest AU_ROC measurement is 0.995, both at 

predicting dry vegetation; and F1 = 0.93, AU_ROC = 0.99 at the crack prediction. The 

control model at this data case, M3(GL_HOG), gives rise to F1 = 0.49, AU_ROC = 0.84 

for dry vegetation; and AU_ROC = 0.79 F1 = 0.37, AU_ROC = 0.79 for cracks. The 

performance of both the model appears to be comparable in ROC space, however, in PR 

space model M2 (HYP_PCA) has a clear advantage over the other. One can observe that 

for the model M2(HYP_PCA), their ROC and PR curves reflect that the resulting models 

have not only superb classification capability but also stronger stability, the latter of 

which is seen from the smoothness of the curves as the underlying threshold varies. In the 

case of the M3(GL_HOG), the classification capability (and accuracy) are overall much 

moderate; in addition, the stability as well is worsened.  
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Test 3: Performance of model M4(HYP_PCA+GL_HOG) 

Finally, in Test 3 the performance of the model trained with combined features 

from PC features of spectral data and high-resolution grayscale HOG feature is tested. A 

summary of the results for the test is presented in Table 10. As the observed tendency 

from the previous two tests, the classifier reflects an exceptional result for the area under 

the ROC curve. The class dry vegetation with the area under the ROC curve of 0.683 is 

the least among all the considered classes. Similarly, the values obtained from the area 

under the precision-recall curve reflects a supporting conclusion. Similar to the result for 

the AU-ROC, the result obtained for the area under the PR curve area also above 0.95 for 

most of the classes. This shows a promising and consistent inconsistent result for the 

classifier with a multi class problem. Table 10 also presents results for precision, recall, 

and F1-score for the classifier trained with PCA-Hyperspectral and HOG-gray features. 

 

 

Table 10: Performance summary for model M4(HYP_PCA+GL_HOG) 

 
Concrete Asphal

t 

Color Crac

k 

Dry 

Vegetation 

Green 

Vegetation 

Water  Oil 

 

 

Test-I 

Precision 0.520 0.842 0.904 0.785 0.489 0.905 0.956 0.890 

Recall 0.965 0.881 0.921 0.848 0.341 0.927 0.679 0.873 

F-Score 0.676 0.861 0.913 0.815 0.402 0.916 0.794 0.881 

AU-ROC 0.978 0.992 0.993 0.985 0.938 0.993 0.974 0.986 

AU-PR 0.695 0.933 0.963 0.898 0.391 0.964 0.930 0.930 

Test-

Ii 

Precision 0.450 0.829 0.922 0.841 0.670 0.875 0.930 0.903 

Recall 0.963 0.888 0.931 0.876 0.436 0.910 0.567 0.902 

F-Score 0.613 0.857 0.927 0.858 0.528 0.892 0.704 0.902 

AU-ROC 0.969 0.993 0.994 0.990 0.957 0.990 0.961 0.988 

AU-PR 0.592 0.928 0.966 0.931 0.583 0.947 0.888 0.938 

Test-

III 

Precision 0.779 0.761 0.931 0.895 0.779 0.947 0.969 0.925 

Recall 0.939 0.962 0.935 0.835 0.529 0.951 0.851 0.894 

F-Score 0.852 0.849 0.933 0.864 0.630 0.949 0.906 0.909 

AU-ROC 0.995 0.995 0.994 0.989 0.962 0.998 0.997 0.989 

AU-PR 0.946 0.957 0.970 0.924 0.683 0.985 0.981 0.944 
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Computational Cost 

Training time and testing are important factors for assessing the classification 

models as well as for the selection of the best model for a specific classification task. For 

this thesis, the training and testing times for the four types of models in consideration 

with the three data schemes has been noted and presented in Figure 19. It is evident from 

the plots that as the number of data points increasing from Test-1 to 3, the training tends 

to consume more computation time and similarly with decrease in testing instances from 

Test-1 to 3 the classification process tends to consume less computational time. Second, 

the dimensionality and complexity of features significantly affects the training time. As 

evident form figure 19, the feature type GL_HOG demands more training time than any 

other models, whereas the differences in training M1, M3, and M4 models are relatively 

insignificant. Similarly, comparing the testing time for all models, it is evident that with 

better training of the model, testing time can be significantly reduced. This implies that 

when M2, M3, and M4 are candidates for choosing an optimal model, the prediction 

performance may be the dominant factor without weighing the training cost in the balance 

for model selection.  

 

Figure 19: Training time comparison plot. 
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 CHAPTER 6. DISCUSSION 

Two arguments are discussed herein. Over the observed superior performance of 

M2(HYP_PCA) compared to M3(GL_HOG), it implies that a single hyperspectral pixel 

is much more effective than a 20 × 20 neighborhood of gray values in discriminating the 

complex structural surface objects. The authors state that hyperspectral pixels with 

reflectance features at both visible and infrared bands, once preprocessed (e.g., a PCA 

based feature selection step), outperform the gray values or the embedded texture/shape 

features corresponding to the hyperspectral pixel, even though the gray images are 

captured at a much higher resolution (20 times high). Although improved gray-values 

based feature extraction techniques can be used, it is safe to state that hyperspectral pixels 

(being captured in the visible to near-infrared spectral bands with a high dimensionality) 

have undoubtful promise in the detection of complex structural surface objects. 

Regarding the performance of M4 using the simple data fusion method in this thesis, the 

authors assert that an improved future fusion approach should be used rather than the 

concatenation method. A promising approach is to extract spectral-spatial features using a 

more integral approach; as mentioned earlier, through a pan-sharpening technique, one 

can generate a high spatial-resolution hyperspectral cube. In this paper, this may give out 

a cube data as h(u, v, s) defined in a 1000 × 1000 grid with a spectral dimension number 

of 139, namely in a 1000 × 1000 × 139 cube. With this 3D cube, and the mask image of 

the same size, advanced spatial-spectral features may be extracted (Fang, He, Li, Plaza, & 

Plaza, 2018; Hang, Liu, Song, & Sun, 2015; Q. Zhang, Tian, Yang, & Pan, 2014), then a 

classifier (e.g., a kernel SVM as used in this paper) can be adopted. On the other hand, the 

latest deep learning architectures may be exploited as reviewed earlier. These promising 

directions are beyond the scope of this work  
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Conclusion 

A mobile hyperspectral imaging system is developed in this paper ready for ground-

based and aerial data collection. One of its primary application is to inspect structural 

surfaces of concrete or asphalt materials that are commonly used transportation structures. 

The innovation lies in its capability of detecting structural surface damage and other 

surface artifacts at the material levels thanks to its high-dimensional pixels with 

reflectance at both visible and near-infrared bands. This paper hence primarily aims to 

prove its effectiveness compared to regular gray-level images that are much high-

resolution and commonly used in practice. Towards this goal, four different class cation 

models that are characterized by different feature extraction processes are trained and 

tested in this paper. With a total of 34,748 labeled features of different types, three data 

splitting schemes are used to evaluate the effects of data sizes. A multi-class support 

vector machine with a Gaussian kernel is adopted in all models. While testing the models, 

state-of-the-art measures are adopted and the issue of data unbalancing is considered. The 

F1 measure is employed as the primary accuracy measure, and the ROC-derived measure, 

AU-ROC, is considered as a primary model capacity measure. With a comprehensive 

evaluation, two major conclusions are formulated.  

1) Hyperspectral pixels of reflectance in the VNIR domain as features are very effective 

in recognizing all of the eight structural surface objects. Nonetheless, dimensionality 

reduction is essential for this effectiveness. The linear PCA approach is adopted; 

through using only the first three-component scores, the resulting classification models 

are highly accurate, high-capacity, and stable. 

2) When compared to the model based on gray-level features (GL_HOG, based on a 

popular variant of HOG descriptor), the PCA adapted hyperspectral features manifest 
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a much more compelling detection performance than GL_HOG. The author state that a 

single hyperspectral pixel with high-dimension spectral reflectance is evidentially 

competitive compared to the corresponding high-resolution gray intensities that express 

the shape and texture of the underlying objects. The data fusion technique in this paper 

has a less desirable performance, however. This is attributed to the simple 

concatenation technique that is used to combine the GL_HOG and HYP_PCA features. 

With this experimental and machine learning-based evaluation results in this paper, 

the authors further envision the dawn of computational hyperspectral imaging or 

hyperspectral machine vision for structural damage detection in civil engineering and 

their promise in dealing with complex structural scenes in practice. 
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Appendix-1 

Here within  appendix-1, all the images that were used in this research along with their 

respective mask have been presented. In the first section, 16 images on different artifacts 

on asphalts surface are presented followed by 34 images of the concrete surface with 

different artifacts on it.  
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Appendix 2 

In appendix 2, the MatLab codes written for the different sections of the total workflow of 

this research has been presented. To begin with, two functions for reading the hypercube 

and high-resolution gray image of the respective hyperspectral images is presented. 

Spectral feature extraction of the hyperspectral image with the assistance of the mask 

image, dimensionality reduction using Principal Component Analysis (PCA), grayscale 

feature extraction using Histogram of Oriented Gradient (HOG) and dataset preparation 

for training and testing the SVM classifer respectively has been presented next. Finally, 

this section is concluded with detailed code for extraction of results for classification like 

the confusion matrix, ROC and PR- curves and summary statistics of the classifier.  
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Function to read gray scale image  

function [ img] = ReadGray(count, Dir_Mask, 

FullDir_Mask) 

        I = 

fullfile(Dir_Mask,FullDir_Mask(count).name); 

        img = imread(I); 

       img = img(:,:,2); 

end  

 

Function to read hyperspectral image 

function [ imgHyper] = ReadHyper(count, 

Dir_Hyperspectral, FullDir_Hyperspectral) 

  

        IH = 

fullfile(Dir_Hyperspectral,FullDir_Hyperspectral(count)

.name); 

        imgHyper = double(imread(IH));   

end  

 

Extracting the spectral profile and HOG features of different classes on concrete 

and asphalt surface. 

% Defining directory with hyperspectral cube 

Dir_Hyperspectral = 

'C:\Users\sayd8\Documents\DataSet_Complex\Concrete\50_5

0'; 

FullDir_Hyperspectral = 

dir(fullfile(Dir_Hyperspectral,'Auto*.tiff')); 

% Defining directory with respective mask  

Dir_Mask          = 

'C:\Users\sayd8\Documents\DataSet_Complex\Concrete\Mask

'; 

FullDir_Mask = dir(fullfile(Dir_Mask,'Auto*.jpg')); 

% Defining directory for respective gray scale image 

Dir_Gray =      

'C:\Users\sayd8\Documents\DataSet_Complex\Concrete\Gray

_Scale'; 

FullDir_Gray =   dir(fullfile(Dir_Gray,'Auto*.jpg')); 

% Assign counter values 

R = 1; C = 1; 
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counter_row = 1; counter_col = 1; 

cellSize = 20; 

Cz = 0; Wz = 0; Oz = 0; Dz = 0;Gz = 0;Az = 0;  

Cx = 1; Wx = 1; Ox = 1; Dx = 1;Gx = 1;Ax = 1;  

 

 

for count = 1:size(FullDir_Mask, 1) 

        % Reading hyperspectral cube 

        hyperspectral_image = ReadHyper(count, 

Dir_Hyperspectral, FullDir_Hyperspectral); 

        % Reading respective mask  

        Mask = ReadGray(count, Dir_Mask, FullDir_Mask); 

        % Reading grayscale image 

        GrayImage = ReadGray(count, Dir_Gray, 

FullDir_Gray); 

        im = im2single(GrayImage); % Converting gray 

image to single format 

        % Extracting HOG feature from gray image  

        hog = vl_hog(im, cellSize, 'Verbose'); 

      

     for row_block = 1 : 20 : 1000  %Working on 20*20 

block of mask image 

       for col_block = 1 : 20 : 1000 

               

             for ct_row = R : R+19 

                for ct_column = C : C+19; 

     % Count number of considered pixel of respective 

class in each block. 

                    if Mask(ct_row, ct_column)  == 0 ;      

                        Cz = Cz + 1; %Crack pixel 

counter 

                else if Mask(ct_row, ct_column) == 47;      

                        Wz = Wz + 1; % Water pixel 

counter 

                else if Mask(ct_row, ct_column) == 22;      

                        Oz = Oz + 1; % Oil pixel 

counter 

                else if Mask(ct_row, ct_column) == 182;      

                        Dz = Dz + 1; % Dry vegetation 

pixel counter 

                else if Mask(ct_row, ct_column)  == 

113;      

                        Az = Az + 1; % Artificial color 

pixel counter 
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                else if  Mask(ct_row, ct_column) == 

236;      

                        Gz = Gz + 1; % Green vegetation 

pixel counter 

                    end 

                    end 

                    end 

                    end 

                    end 

                    end 

                end 

             end 

% Extracting spectrum profile from the hyperspectral 

cube and HOG features 

% From grayscale image for the class with more than 200 

pixels in each block 

% If the number of cracked pixels is greater than 2000 

% Spectral profile for class crack  

      if Cz > 200 ;         Crack_Spectrum1{Cx ,1} = 

hyperspectral_image(counter_row,counter_col,:); 

                             % HOG feature for class 

crack   

                            Crack_Hog1{Cx,1} = 

hog(counter_row,counter_col,:); 

                             Cx = Cx + 1; 

                            % Spectral profile for 

class water   

      else if Wz > 200 ;    Water_Spectrum1{Wx,1} =  

hyperspectral_image(counter_row,counter_col,:); 

                            % HOG feature for class 

water  

                            Water_Hog1{Wx,1} = 

hog(counter_row,counter_col,:); 

                            Wx = Wx + 1; 

                            % Spectral profile for 

class Oil  

      else if Oz > 200 ;    Oil_Spectrum1{Ox,1} =  

hyperspectral_image(counter_row,counter_col,:);  

                            % HOG feature for class Oil 

                            Oil_Hog1{Ox,1} = 

hog(counter_row,counter_col,:); 

                            Ox = Ox + 1; 

                            % Spectral profile for 

class dry vegetation  



96 

 

      else if Dz > 200 ;    Dry_Spectrum1{Dx,1} = 

hyperspectral_image(counter_row,counter_col,:);  

                            % HOG feature for class dry 

vegetation 

                            Dry_Hog1{Dx,1} = 

hog(counter_row,counter_col,:); 

                            Dx = Dx + 1; 

                            % Spectral profile for 

class artificial color  

      else if Az > 200 ;    Color_Spectrum1{Ax,1} = 

hyperspectral_image(counter_row,counter_col,:); 

                            % HOG feature for class 

artificial color 

                            Color_Hog1{Ax,1} = 

hog(counter_row,counter_col,:); 

                            Ax = Ax + 1; 

                            %   Spectral profile for 

class green vegetation 

      else if Gz > 200 ;    Green_Spectrum1{Gx,1} = 

hyperspectral_image(counter_row,counter_col,:); 

                            %   HOG features for class 

green vegetation 

                            Green_Hog1{Gx,1} = 

hog(counter_row,counter_col,:); 

                            Gx = Gx + 1;            

          end 

          end 

          end 

          end 

          end 

      end 

       Cz= 0; Wz=0; Oz=0; Dz=0; Gz=0; Az=0;% resetting 

the pixel counter        

             C = C +20; % Moving the block along the 

row to nect set of 20 pixels 

             counter_col = counter_col+1; 

       end 

       R = R + 20; % Moving the block to next row of 20 

pixels. 

       C = 1; 

       counter_col = 1;  

     end 

     R = 1; 

     C = 1; 

end 
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% Apppending spectral and HOG features obtained from 

concrete and asphalt surface 

%Class Artificial Color 

Color_Spectrum = [Color_Spectrum1 ; Color_Spectrum2];% 

Spectral Feature  

Color_Hog = [Color_Hog1; Color_Hog2];% HOG Feature 

%Class Crack 

Crack_Spectrum = [Crack_Spectrum1; 

Crack_Spectrum2];%Spectral Features 

Crack_Hog = [Crack_Hog1; Crack_Hog2];% HOG Features 

%Class Dry Vegetation 

Dry_Spectrum = [Dry_Spectrum1]; % Spectral Feature  

Dry_Hog = [Dry_Hog1];% HOG Feature 

% Class Green vegetation 

Green_Spectrum = [Green_Spectrum1; 

Green_Spectrum2]; %Spectral Feature 

Green_Hog = [Green_Hog1 ; Green_Hog2];% HOG Feature 

%Class Water 

Water_Spectrum = [Water_Spectrum1(1:5000); 

Water_Spectrum2];% Spectral Feature 

Water_Hog = [Water_Hog1(1:5000) ; Water_Hog2];% HOG 

Feature 

% Class Oil  

Oil_Spectrum = [Oil_Spectrum1(1:5000); 

Oil_Spectrum2];%SpectralFeature 

Oil_Hog = [Oil_Hog1(1:5000) ; Oil_Hog2];%HOG Feature 

 

%Re-shuffling the obtained feature vector for each 

class 

Color_Train = cell2mat(Color_Spectrum); 

Color_Train = 

reshape(Color_Train,size(Color_Train,1)*1,139); 

Color_HoGTrain = cell2mat(Color_Hog); 

Color_HoGTrain = 

reshape(Color_HoGTrain,size(Color_HoGTrain,1)*1,31); 

  

Crack_train = cell2mat(Crack_Spectrum); 

Crack_train = 

reshape(Crack_train,size(Crack_train,1)*1,139); 

Crack_HoGTrain = cell2mat(Crack_Hog); 

Crack_HoGTrain = 

reshape(Crack_HoGTrain,size(Crack_HoGTrain,1)*1,31); 
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Dry_Train = cell2mat(Dry_Spectrum); 

Dry_Train = reshape(Dry_Train,size(Dry_Train,1)*1,139); 

Dry_HoGTrain = cell2mat(Dry_Hog); 

Dry_HoGTrain = 

reshape(Dry_HoGTrain,size(Dry_HoGTrain,1)*1,31); 

  

Green_Train = cell2mat(Green_Spectrum); 

Green_Train = 

reshape(Green_Train,size(Green_Train,1)*1,139); 

Green_HoGTrain = cell2mat(Green_Hog); 

Green_HoGTrain = 

reshape(Green_HoGTrain,size(Green_HoGTrain,1)*1,31); 

  

Water_Train = cell2mat(Water_Spectrum); 

Water_Train = 

reshape(Water_Train,size(Water_Train,1)*1,139); 

Water_HoGTrain = cell2mat(Water_Hog); 

Water_HoGTrain = 

reshape(Water_HoGTrain,size(Water_HoGTrain,1)*1,31); 

  

Oil_Train = cell2mat(Oil_Spectrum); 

Oil_Train = reshape(Oil_Train,size(Oil_Train,1)*1,139); 

Oil_HoGTrain = cell2mat(Oil_Hog); 

Oil_HoGTrain = 

reshape(Oil_HoGTrain,size(Oil_HoGTrain,1)*1,31); 

 

% Re-shuffling the obtained spectral feature for 

concrete and asphalt surfaces respectively.  

Concrete_Train = cell2mat(Concrete_Spectrum); 

Concrete_Train = 

reshape(Concrete_Train,size(Concrete_Train,1)*1,139); 

Asphalt_Train = cell2mat(Asphalt_Spectrum); 

Asphalt_Train = 

reshape(Asphalt_Train,size(Asphalt_Train,1)*1,139); 

 

% HOG feature extraction for Concrete and asphalt 

surface 

Dir_Concrete =      

'C:\Users\sayd8\Documents\DataSet_Complex\Plain'; 

FullDir_Concrete =   

dir(fullfile(Dir_Concrete,'Auto*.jpg')); 
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Dir_Asphalt =      

'C:\Users\sayd8\Documents\DataSet_Complex\Plain\Asphalt

'; 

FullDir_Asphalt =   

dir(fullfile(Dir_Asphalt,'Auto*.jpg')); 

Cx = 1; 

for count = 1 : 9 

    Asphalt_img = ReadGray(count, Dir_Asphalt, 

FullDir_Asphalt); 

    Concrete_img = ReadGray(count, Dir_Concrete, 

FullDir_Concrete); 

    cellSize = 20; %HOG feature are extracted in 20*20 

block of 1000*1000 gray image 

         im1 = im2single(Concrete_img); 

         im2 = im2single(Asphalt_img); 

        hog1 = vl_hog(im1, cellSize, 'Verbose'); 

        hog2 = vl_hog(im2, cellSize, 'Verbose'); 

    % Extracting the HOG feature of every third pixel 

in 50*50 dimensional space.      

    for row = 1 : 3 : 50 

       for col = 1 : 3 : 50 

           Concrete_Hog{Cx ,1} = hog1(row,col,:); 

           Asphalt_Hog{Cx ,1} = hog2(row,col,:); 

    Cx = Cx + 1; 

       end 

     end     

     

end 

  

% Re-shuffling the extracted HOG feature for concrete 

and asphalt surface respectively.  

Concrete_HoGTrain = cell2mat(Concrete_Hog); 

Concrete_HoGTrain = 

reshape(Concrete_HoGTrain,size(Concrete_HoGTrain,1)*1,3

1); 

Asphalt_HoGTrain = cell2mat(Asphalt_Hog); 

Asphalt_HoGTrain = 

reshape(Asphalt_HoGTrain,size(Asphalt_HoGTrain,1)*1,31)

; 

 

 

 

 



100 

 

Principal Component Analysis 

% Principal Component Analysis for Spectral Dataset 

% Division of respective dataset into training and 

testing 

  

%PCA for Class artificial Color 

[x_row x_col] = size(Color_Train); 

m = mean(Color_Train'); 

d = Color_Train - repmat(m',1,139); 

X = PCA(d); 

Color_Train = 

Color_Train(randperm(size(Color_Train,1)),:); % PC data 

reshuffling 

Color_TrainingSet = Color_Train(1:1568,:);   %Training 

set for PC of Class Artificial Color  

Color_Test = Color_Train(1569:size(Color_Train),:); % 

Testing set for PC of Class Artificial Color 

  

%PCA for Class Crack 

[x_row x_col] = size(Crack_train); 

m = mean(Crack_train'); 

d = Crack_train - repmat(m',1,139); 

X = PCA(d); 

Crack_train = 

Crack_train(randperm(size(Crack_train,1)),:);% PC data 

re-shuffling 

Crack_TrainingSet = Crack_train(1:595,:); % Training 

set for PC of Class Crack     

Crack_Test = Crack_train(596:size(Crack_train),:); % 

Testing set for PC of class Crack 

  

% PCA for Class Green Vegetation 

[x_row x_col] = size(Green_Train); 

m = mean(Green_Train'); 

d = Green_Train - repmat(m',1,139); 

X = PCA(d); 

Green_Train = 

Green_Train(randperm(size(Green_Train,1)),:); %PC data 

re-shuffling 

Green_TrainingSet = Green_Train(1:1328,:); % Training 

set for PC of Class Green Vegetation 

Green_Test = Green_Train(1329:size(Green_Train),:);% 

Testing set for PC of Green Vegetation 
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% PCA of Class Water 

[x_row x_col] = size(Water_Train); 

m = mean(Water_Train'); 

d = Water_Train - repmat(m',1,139); 

X = PCA(d); 

Water_Train = 

Water_Train(randperm(size(Water_Train,1)),:); 

 % PC data re shuffling 

Water_TrainingSet = Water_Train(1:2033,:);   

 % Training set for PC of Class Water 

Water_Test = Water_Train(2034:size(Water_Train),:); 

% Testing set for PC of class Water 

  

%PCA of Class Concrete 

[x_row x_col] = size(Concrete_Train); 

m = mean(Concrete_Train'); 

d = Concrete_Train - repmat(m',1,139); 

X = PCA(d); 

Concrete_Train = 

Concrete_Train(randperm(size(Concrete_Train,1)),:); 

% PC data reshuffling  

Concrete_TrainingSet = Concrete_Train(1:651,:);   

 % Training set for PC of class concrete 

Concrete_Test = 

Concrete_Train(652:size(Concrete_Train),:); 

 % Testing set for PC of class Concrete 

  

%PCA of Class Asphalt 

[x_row x_col] = size(Asphalt_Train); 

m = mean(Asphalt_Train'); 

d = Asphalt_Train - repmat(m',1,139); 

X = PCA(d); 

Asphalt_Train = 

Asphalt_Train(randperm(size(Asphalt_Train,1)),:); % PC 

data reshuffling 

Asphalt_TrainingSet = Asphalt_Train(1:651,:);  % 

Trainig set for PC of class Asphalt 

Asphalt_Test = 

Asphalt_Train(652:size(Asphalt_Train),:);% Testing set 

for PC of class Asphalt 

  

%PCA of Class Dry Vegetation  

[x_row x_col] = size(Dry_Train); 

m = mean(Dry_Train'); 

d = Dry_Train - repmat(m',1,139); 
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X = PCA(d); 

Dry_Train = Dry_Train(randperm(size(Dry_Train,1)),:);% 

Re-shuffling of data 

Dry_TrainingSet = Dry_Train(1:239,:);  % Training set 

for PC of class dry Vegetation 

Dry_Test = Dry_Train(240:size(Dry_Train),:); % Testing 

set for PC of class dry vegetation 

 

% Training and testing set formation for Hog Data Set  

% Asphalt HoG dataset  

Asphalt_Train = 

Asphalt_HoGTrain(randperm(size(Asphalt_HoGTrain,1)),:); 

Asphalt_TrainingHoG = Asphalt_Train(1:651,:); 

% Training Set 

Asphalt_TestingHog = Asphalt_Train(652:2601,:);  

% Testing Set 

  

%Color HoG Dataset 

Color_Train = 

Color_HoGTrain(randperm(size(Color_HoGTrain,1)),:); 

Color_TrainingHoG = Color_Train(1:1568,:); % Training 

Set  

Color_TestingHoG = Color_Train(1569:6273,:); % Testing 

Set 

  

%Concrete HoG DataSet 

Concrete_Train = 

Concrete_HoGTrain(randperm(size(Concrete_HoGTrain,1)),:

); 

Concrete_TrainingHoG = Concrete_Train(1:651,:); % 

Training Set 

Concrete_TestingHoG = Concrete_Train(652:2601,:); % 

Testting Set  

  

%Crack HoG DataSet 

Crack_Train = 

Crack_HoGTrain(randperm(size(Crack_HoGTrain,1)),:); 

Crack_TrainingHoG = Crack_Train(1:595,:); %Training Set 

Crack_TestingHoG = Crack_Train(596:2377,:); % Testing 

Set 

  

%Dry HoG DataSet 

DRY_Train = 

Dry_HoGTrain(randperm(size(Dry_HoGTrain,1)),:); 
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Dry_TrainingHoG = DRY_Train(1:240,:); % Training Set 

Dry_TestingHoG = DRY_Train(241:957,:);% Testing Set  

  

%Oil HoG DataSet 

Oil_Train = 

Oil_HoGTrain(randperm(size(Oil_HoGTrain,1)),:); 

Oil_TrainingHoG = Oil_Train(1:1804,:); % Training Set 

Oil_TestingHoG = Oil_Train(1805:7214,:);% Testing Set 

  

%Water HoG DataSet 

Water_Train = 

Water_HoGTrain(randperm(size(Water_HoGTrain,1)),:); 

Water_TrainingHoG = Water_Train(1:2033,:); % Training 

Set 

Water_TestingHoG = Water_Train(2034:8132,:); % Testing 

Set 

  

%Green HoG DataSet 

Green_Train = 

Green_HoGTrain(randperm(size(Green_HoGTrain,1)),:); 

Green_TrainingHoG = Green_Train(1:1328,:); % Training 

Set  

Green_TestingHoG = Green_Train(1329:5312,:); % Testing 

Set 

 

Appending Training set from each class and creating the 

label for the training set to feed into the classifier 

  

Training_Set = [ Concrete_TrainingSet; 

Asphalt_TrainingSet; Color_TrainingSet; 

Crack_TrainingSet; Dry_TrainingSet; Green_TrainingSet; 

Water_TrainingSet; Oil_TrainingSet]; 

  

Label = cell(size(Training_Set,1),1); 

Label(1:size(Concrete_TrainingSet,1)) = {'Concrete'}; 

Label((size(Concrete_TrainingSet,1)+1):(size(Asphalt_Tr

ainingSet,1)+size(Concrete_TrainingSet,1))) = 

{'Asphalt'}; 

Label((size(Concrete_TrainingSet,1)+size(Asphalt_Traini

ngSet,1)+1) : 

size(Concrete_TrainingSet,1)+size(Asphalt_TrainingSet,1

)+ size(Color_TrainingSet,1)) = {'Artificial Color'}; 

Label((size(Concrete_TrainingSet,1)+size(Asphalt_Traini

ngSet,1)+ size(Color_TrainingSet,1)+1) : 

size(Concrete_TrainingSet,1)+... 
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        size(Asphalt_TrainingSet,1)+ 

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)) = 

{'Crack'}; 

Label((size(Concrete_TrainingSet,1)+ 

size(Asphalt_TrainingSet,1)+ 

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1))+1 

: size(Concrete_TrainingSet,1)... 

        + size(Asphalt_TrainingSet,1)+ 

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+siz

e(Dry_TrainingSet,1)) = {'Dry Vegetation'}; 

Label((size(Concrete_TrainingSet,1)+ 

size(Asphalt_TrainingSet,1)+ 

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1))+ 

(size((Dry_TrainingSet),1))+ 1 : 

size(Concrete_TrainingSet,1)+... 

        size(Asphalt_TrainingSet,1)+ 

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+siz

e((Dry_TrainingSet),1)+ size(Green_TrainingSet,1)) = 

{'Green vegetation'};  

Label((size(Concrete_TrainingSet,1)+size(Asphalt_Traini

ngSet,1)+ 

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+ 

size(Dry_TrainingSet,1)+size(Green_TrainingSet,1)+1): 

size(Concrete_TrainingSet,1)... 

    +size(Asphalt_TrainingSet,1)+ 

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+ 

size(Dry_TrainingSet,1)+ 

size(Green_TrainingSet,1)+size(Water_TrainingSet,1)) = 

{'Water'};   

Label((size(Concrete_TrainingSet,1)+size(Asphalt_Traini

ngSet,1)+ 

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+siz

e(Dry_TrainingSet,1)+size(Green_TrainingSet,1)+size(Wat

er_TrainingSet,1)... 

    +1) : 

(size(Concrete_TrainingSet,1)+size(Asphalt_TrainingSet,

1)+ 

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+siz

e(Dry_TrainingSet,1)+ 

size(Green_TrainingSet,1)+size(Water_TrainingSet,1)+siz

e(Oil_TrainingSet,1)))= {'Oil'}; 

 

% Training the SVM Classifier for the hyperspectral 

data set 

Tic  % record time span for training the classifier 



105 

 

X = Training_Set; 

Y = Label; 

temp = 

templateSVM('KernelFunction','rbf','KernelScale','auto'

,'BoxConstrain',1); 

options = statset('UseParallel',true); 

  

 [PMdl] = 

fitcecoc(X,Y,'coding','onevsone','Learners',temp,'kFold

',10,... 

    'ClassName',{'Concrete','Asphalt','Artificial 

Color','Crack','Dry Vegetation',... 

    'Green 

vegetation','Water','Oil'},'FitPosterior',true,'CrossVa

l','on'); 

 Mdl = PMdl.Trained{1}; 

 toc  

  

 %Validating the Classifier  

 ValiInds = test(PMdl.Partition);  % Extract the test 

indices 

XVali = Asphalt_Train(ValiInds,:); 

YVali = Y(ValiInds,:); 

[labels,~,~,Posterior] = predict(Mdl,XVali); 

  

idx = randsample(sum(ValiInds),60); %Number of data to 

cross validate the performance of classifer 

table(YVali(idx),labels(idx),Posterior(idx,:),... 

    

'VariableNames',{'TrueLabels','PredictedLabels','Poster

ior'}) 

 

% Appending the testing set of respective classes and 

creating ground truth for validating the classifier.  

TestingSet = [Concrete_Test; Asphalt_Test; Color_Test; 

Crack_Test;Dry_Test; Green_Test; Water_Test; Oil_Test]; 

  

GroundTruth = cell(size(TestingSet,1),1); 

GroundTruth(1:size(Concrete_Test,1)) = {'Concrete'}; 

GroundTruth((size(Concrete_Test,1)+1):(size(Asphalt_Tes

t,1)+size(Concrete_Test,1))) = {'Asphalt'}; 

GroundTruth((size(Concrete_Test,1)+size(Asphalt_Test,1)

+1) : size(Concrete_Test,1)+size(Asphalt_Test,1)+ 

size(Color_Test,1)) = {'Artificial Color'}; 
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GroundTruth((size(Concrete_Test,1)+size(Asphalt_Test,1)

+ size(Color_Test,1)+1) : size(Concrete_Test,1)+... 

        size(Asphalt_Test,1)+ 

size(Color_Test,1)+size(Crack_Test,1)) = {'Crack'}; 

GroundTruth((size(Concrete_Test,1)+ 

size(Asphalt_Test,1)+ 

size(Color_Test,1)+size(Crack_Test,1))+1 : 

size(Concrete_Test,1)... 

        + size(Asphalt_Test,1)+ 

size(Color_Test,1)+size(Crack_Test,1)+size(Dry_Test,1)) 

= {'Dry Vegetation'}; 

GroundTruth((size(Concrete_Test,1)+ 

size(Asphalt_Test,1)+ 

size(Color_Test,1)+size(Crack_Test,1))+size(Dry_Test,1)

+ 1 : size(Concrete_Test,1)+... 

        size(Asphalt_Test,1)+ 

size(Color_Test,1)+size(Crack_Test,1)+size(Dry_Test,1)+ 

size(Green_Test,1)) = {'Green vegetation'};  

GroundTruth((size(Concrete_Test,1)+size(Asphalt_Test,1)

+ size(Color_Test,1)+size(Crack_Test,1)+ 

size(Dry_Test,1)+ size(Green_Test,1)+1): 

size(Concrete_Test,1)... 

    +size(Asphalt_Test,1)+ 

size(Color_Test,1)+size(Crack_Test,1)+size(Dry_Test,1)+

size(Green_Test,1)+size(Water_Test,1)) = {'Water'};   

GroundTruth((size(Concrete_Test,1)+size(Asphalt_Test,1)

+ 

size(Color_Test,1)+size(Crack_Test,1)+size(Dry_Test,1)+ 

size(Green_Test,1)+size(Water_Test,1)... 

    +1) : (size(Concrete_Test,1)+size(Asphalt_Test,1)+ 

size(Color_Test,1)+size(Crack_Test,1)+ size(Dry_Test,1) 

+size(Green_Test,1)+size(Water_Test,1)+size(Oil_Test,1)

))= {'Oil'}; 

  

  

[Class,~,~,Posterior] = predict(Mdl,TestingSet);  

% Classification 

C = confusionmat(GroundTruth,Class); % Confusion Matrix  

% plotting the true and predicted class after 

classification 

table(GroundTruth,Class,'VariableNames',{'TrueLabels','

PredictedLabels'})  

  

% Calculation of precision and recall for single data. 

% Calculation of Recall for each class 
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for i = 1:size(C,1) 

    recall(i) = C(i,i)/sum(C(i,:)); 

end 

%Calculation of Precision for each Class 

for i = 1:size(C,1) 

    precision(i) = C(i,i)/sum(C(:,i)); 

end 

%Calculation of F-measure 

for i = 1:size(C,1) 

    f_Score(i) = 

(2*recall(i)*precision(i))/(precision(i) + recall(i)); 

end 

 

%Calculating ROC Curve For EACH Individual class and 

plotting it together. 

GT_Conc = 

double(strcmp(GroundTruth,'Concrete'));%Ground Truth 

for Class Concrete 

PredictedConc =double(strcmp(Class,'Concrete')); 

GT_Asphalt = 

double(strcmp(GroundTruth,'Asphalt'));%Ground Truth for 

Class Asphalt 

PredictedAsphalt =double(strcmp(Class,'Asphalt')); 

GT_Color = double(strcmp(GroundTruth,'Artificial 

Color'));%Ground Truth for Class Color 

 PredictedColor =double(strcmp(Class,'Artificial 

Color')); 

GT_Crack = double(strcmp(GroundTruth,'Crack'));%Ground 

Truth for Class Crack 

PredictedCrack =double(strcmp(Class,'Crack')); 

GT_Veg = double(strcmp(GroundTruth,'Green 

vegetation'));%Ground Truth for Class Green vegetation 

 PredictedVeg =double(strcmp(Class,'Green 

vegetation')); 

GT_Water = double(strcmp(GroundTruth,'Water'));%Ground 

Truth for Class Water 

 PredictedWater =double(strcmp(Class,'Water')); 

GT_Oil = double(strcmp(GroundTruth,'Oil'));%Ground 

Truth for Class Oil 

PredictedOil =double(strcmp(Class,'Oil')); 

GT_Dry = double(strcmp(GroundTruth,'Dry 

Vegetation'));%Ground Truth for Class Dry Vegetation 

PredictedDry =double(strcmp(Class,'Dry Vegetation')); 
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%Plotting of ROc Curve 

[XConc,YConc,~,AUC_Conc,OPTROCPT_Conc] = 

perfcurve(GT_Conc,Posterior(:,1),1); %Class Concrete 

[XAsphalt,YAsphalt,~,AUC_Asphalt,OPTROCPT_Asphalt]    = 

perfcurve(GT_Asphalt,Posterior(:,2),1);%Class Asphalt 

[XColor,YColor,~,AUC_Color,OPTROCPT_Color]        = 

perfcurve(GT_Color,Posterior(:,3),1);%Class Artificial 

Color 

[XCrack,YCrack,~,AUC_Crack,OPTROCPT_Crack]        = 

perfcurve(GT_Crack,Posterior(:,4),1);%Class Crack 

[XVeg,YVeg,~,AUC_Veg,OPTROCPT_Veg]        = 

perfcurve(GT_Veg,Posterior(:,6),1);% Class 

GreenVegetation 

[XWater,YWater,~,AUC_Water,OPTROCPT_Water]        = 

perfcurve(GT_Water,Posterior(:,7),1);%Class Water 

[XOil,YOil,~,AUC_Oil,OPTROCPT_Oil]        = 

perfcurve(GT_Oil,Posterior(:,8),1);%Classs Oil 

[XDry,YDry,~,AUC_Dry,OPTROCPT_Dry]        = 

perfcurve(GT_Dry,Posterior(:,5),1);% Class Dry 

Vegetation 

 

% Plotting Precision recall curve 

[XConc1,YConc1,~, AUCConc1, OPTROCPT_Conc1] = 

perfcurve(GT_Conc,Posterior(:,1),1,'xCrit', 

'reca','yCrit','prec'); % Class Concrete 

[XAsph1,YAsph1,~, AUCAsph1, OPTROCPT_Asph1] = 

perfcurve(GT_Asphalt,Posterior(:,2),1,'xCrit', 

'reca','yCrit','prec');% Class Asphalt 

[XColor1,YColor1,~, AUCColor1, OPTROCPT_Color1] = 

perfcurve(GT_Color,Posterior(:,3),1,'xCrit', 

'reca','yCrit','prec');% Class Artificial Color 

[XCrack1,YCrack1,~, AUCCrack1,OPTROCPT_Crack1] = 

perfcurve(GT_Crack,Posterior(:,4),1,'xCrit', 

'reca','yCrit','prec');% Class Crack 

[XDry1,YDry1,~, AUCDry1, OPTROCPT_Dry1] = 

perfcurve(GT_Dry,Posterior(:,5),1,'xCrit', 

'reca','yCrit','prec');% Class Dry vegetation 

[XGreen1,YGreen1,~, AUCGreen1,OPTROCPT_Green1] = 

perfcurve(GT_Veg,Posterior(:,6),1,'xCrit', 

'reca','yCrit','prec');% Class Green Vegetation 

[XWater1,YWater1,~, AUCWater1,OPTROCPT_Water1] = 

perfcurve(GT_Water,Posterior(:,7),1,'xCrit', 

'reca','yCrit','prec');% Class Water 
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[XOil1,YOil1,~, AUCOil1,OPTROCPT_Oil1] = 

perfcurve(GT_Oil,Posterior(:,8),1,'xCrit', 

'reca','yCrit','prec');% Class Oil 

 

 


