
MOBILE HYPERSPECTRAL IMAGING FOR

STRUCTURAL DAMAGE DETECTION

A THESIS IN

Civil Engineering

Presented to the Faculty of the University

Of Missouri-Kansas City in partial fulfillment of

The requirement for the degree

MASTERS OF SCIENCE

 by

SAMEER ARYAL

B.E. Tribhuwan University, Kathmandu, Nepal, 2016

Kansas City, Missouri

 2020

© 2020

SAMEER ARYAL

ALL RIGHT RESERVED

iii

MOBILE HYPERSPECTRAL IMAGING FOR STRUCTURAL

DAMAGE DETECTION

Sameer Aryal, Candidate for the Master of Science Degree

University of Missouri -Kansas City, 2020

ABSTRACT

Numerous optical-imaging and machine-vision based inspection methods are

found that aim to replace visual and human-based inspection with an automated or a

highly efficient procedure. However, these machine-vision systems have not been entirely

endorsed by civil engineers towards deploying these techniques in practice, partially due

to their poor performance in object detection when structural cracks coexist with other

complex scenes. A mobile hyperspectral imaging system is developed in this work, which

captures hundreds of spectral reflectance values at a pixel in the visible and near-infrared

(VNIR) portion of the electromagnetic spectrum bands. To prove its potential in

discriminating complex objects, a machine learning methodology is developed with

classification models that are characterized by four different feature extraction processes.

Experimental validation with quantitative measures proves that hyperspectral pixels,

when used conjunctly with dimensionality reduction, possess outstanding potential in

recognizing eight different structural surface objects including cracks for concrete and

asphalt surfaces, and outperform the gray-values that characterize the texture/shape of the

objects. The authors envision the advent of computational hyperspectral imaging for

automating structural damage inspection, especially when dealing with complex structural

scenes in practice.

iv

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and

Engineering have examined the thesis titled “Mobile Hyperspectral Imaging for Structural

Damage Detection”, presented by Sameer Aryal, candidate of the Masters of Science

degree, and certify that in their opinion it is worthy of acceptance.

Supervisor Committee

ZhiQiang Chen, Ph.D., Committee Chair

Department of Civil and Mechanical Engineering

John Kevern, Ph.D., P.E., LEED AP

Department of Civil and Mechanical Engineering

Ceki Halmen, Ph.D., P.E.

Department of Civil and Mechanical Engineering

v

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... ix

ACKNOWLEDGMENTS ...x

CHAPTER 1. Introduction...1

Literature Survey ...4

Literature Survey Summary ...8

CHAPTER 2. Hyperspectral Image ...10

Hyperspectral Imaging Technology ...11

Hyperspectral Image Computing ...12

Camera Calibration ..14

CHAPTER 3. Preprocessing ..15

Imaging System ...15

Semantic Labelling ..17

CHAPTER 4. Methodology ... 19

Principal Component Analysis (PCA) ...23

Histogram of Oriented Gradient (HOG) ..27

CHAPTER 5. Machine Learning Approach .. 31

Support Vector Machine (SVM) ...32

Multi Classification System ...36

Kernel Trick ...36

Performance Evaluation ...37

Receiver Operating Characteristics (ROC) Curve38

vi

Area Under Curve (AUC) ..39

Confusion matrix ...40

Precision-Recall Curve (PR-Curve) ...40

Results ..41

Test1: Comparison between model M1(HYP) and M2(HYP_PCA)41

Test2: Comparison between model M2(HYP_PCA) and M3(GL_HOG) .45

Test3: Performance of model M4 (HYP_PCA+GL_HOG)55

Computational Cost ...56

CHAPTER 6. Discussion ..58

Conclusion ...59

REFERENCE LIST ...61

VITA ..76

APPENDIX-1 ..77

APPENDIX-2 ..95

vii

LIST OF ILLUSTRATIONS

Figure Page

1. A hyperspectral image data ...11

2. Reflectance plot for asphalt, color, concrete, crack, dry vegetation, oil, green

vegetation, and water respectively with 20 random pixels 14

3. Cubert hyperspectral camera and assembly system at UMKC 15

4. Cubert pilot application to visualize and extract the hyperspectral data 17

5. Images of concrete and asphalt surface with feature and their respective ground

truth images ..19

6. Dimensionality reduction and classification approach for the hyperspectral image .

... 20

7. HOG feature extraction and classification approach. ..21

8. A combined PCA and HOG feature extraction and classification approach21

9. Distribution of the first, second and third principal components of concrete,

asphalt, color, crack, dry vegetation, green vegetation, water, oil dataset 26

10. The first and second principal component distribution plot the dataset27

11. Block diagram for feature extraction with HOG feature descriptors28

12. Decision boundary and margin of SVM classifier. ... 34

13. ROC curve for model M2(HYP_PCA) and M3(GL_HOG) (Case-I). 45

14. Precision-Recall curve for M2(HYP_PCA) and M3(GL_HOG) (Case-I)46

15. ROC curves for model M2(HYP_PCA) and M3(GL_HOG) (Case-II)49

16. Precision-Recall curves for model M2(HYP_PCA) and M3(GL_HOG) (Case-II)

..50

17. ROC curve for model M2(HYP_PCA) and M3(GL_HOG) (Case-III)52

viii

18. Precision-Recall curve for model M2(HYP_PCA) and M3(GL_HOG) (Case-III)

..52

19. Training and testing time comparison plot ..57

ix

LIST OF TABLES

Table Page

1. Performance summary of model M1(HYP) ...42

2. Performance summary of model M2(HYP_PCA) ...43

3. Confusion matrix for model M2(HYP_PCA) (Test-I)...46

4. Confusion matrix for model M3(GL_HOG) (Test-I) ..47

5. Performance summary for model M3(GL_HOG) ...48

6. Confusion matrix for model M2(HYP_PCA) (Test-II) ...50

7. Confusion matrix for model M3(GL_HOG) (Test-II) ...51

8. Confusion matrix for model M2(HYP_PCA) (Test-III) ..53

9. Confusion matrix for model M3(GL_HOG) (Test-III) ..53

10. Performance summary for model M4(HYP_PCA+GL_HOG)55

x

ACKNOWLEDGMENTS

First and foremost, I would like to take this opportunity to express my deepest

gratitude and thanks to my advisor, Dr. ZhiQiang Chen, for his countless effort in guiding

me through studies and work, his patience with my learning and providing me with an

excellent atmosphere for research. This thesis would not have been complete without his

attitude and diligent effort which not only influences the content of this thesis but also the

language in which it has been conveyed. I am sure it would have not been possible

without his help.

Also, I would like to thank my colleague at the University of Missouri Kansas

City: Prativa Sharma, Shimin Tang, and Mostafa Badroddin for their effortless help,

valuable advice, and discussion. We had great and unforgettable times during all these

years.

 Last but not least, I am so thankful to my family whom they have been a

continuous source of encouragement and supports in all directions during my life.

1

CHAPTER 1. INTRODUCTION

Civil engineering structures are complexly planned systems that are vital for a

society’s prosperity and quality of life in general. Ensuring the reputation, civil

engineering structures have grown its dynamic demand around the globe over the past

few decades. Apparently in the United States, there are over 610,000 bridges, 5,500,000

commercial buildings, 160,000 miles of railroad tracks, 4,000,000 miles of roads, 84,000

dams, 19,000 airports and 400,000 miles of electric transmission lines providing services

to the population (ASCE, 2017). These structures are built and maintained to support the

daily routine load as well as the additional unexpected loads and the unavoidable severe

environmental conditions. For critical infrastructure systems, mandatory inspection

practices and standards exist for adoption by stakeholders to ensure the serviceability and

safety of the structure. One of them is for a comprehensive diagnostics and prognostics of

serviceability of the national infrastructures, American Society of Civil Engineers

(ASCE) has developed the ‘Infrastructure Report Card’ which grades the infrastructures

as A- Exceptional, Fit for the Future; B- Good, Adequate for now; C- Mediocre, Requires

Attention; D- Poor, At-Risk; and F- Critical Unfit for purpose.

Civil engineering structure inspection is more on the overall and general

conditions, as can be directly observed or measured. The task of inspection for evaluation

of civil engineering structure status has become increasingly challenging due to age,

scale, and magnitude of structures. Different civil engineering inspection techniques are

in practice to assist visual inspection. Exclusively these practices are to stipulate valuable

information for structural assessment and decision support for maintenance through

relevant measures of structural responses. These technologies can be generally

categorized into two types of methodologies. The first is Nondestructive Testing (NDT),

2

utilizing advanced sensing technologies (microwaves, thermal and ultrasonic) (Cawley,

2018), most of which aim to detect subsurface damage. The second methodology includes

various structural health monitoring (SHM) methods, which aim to monitor the dynamic

responses and identify the intrinsic parameters or changes in structure. Most NDT

techniques have become a growing field that has attracted a considerable amount of

research efforts. Given these technology-based inspections or monitoring methods, the

reality is that, at least for transportation structures that are managed by the department of

transportation (DOT) agencies across most of the states in the US, manual or visual

inspection is considered the mainstream approach. Sadly, despite the critical roles of these

structures in public safety and economy, human-based visual inspection is common and

consistent in quantitative evaluation and accessibility (Graybeal, Phares, Rolander,

Moore, & Washer, 2002). Visual inspection is widely used mostly due to the expensive

approach of the NDT techniques which demands a significant operational cost including

training and deployment of manpower and technology in the field. Due to the low-cost

and ubiquitous availability of optical imaging sensors or commonly speaking, digital

cameras, it is of no surprise that optical imaging has become a widely adopted equipment

for structural inspection, wherein besides visual inspection, digital images are recorded

for records or for post-inspection analysis (M. J. Olsen et al., 2016). Among many

methods for surveillance with the digital camera, one of them includes placing cameras at

different critical locations around the structure and constantly monitoring the deformation

and deterioration. This method covers only a small section of the structure and records

mostly the textural information which alone is never enough for a complete structural

assessment. To overcome the limitation, an alternative system is implemented which

involves gathering images and registering the conditions of the surface by a skilled

3

technician traveling along the surface while taking pictures. After the structural surface

images are captured, skilled technicians analyses each image and determine the existence

of any distress and classify damage type based on visual descriptions. This process

usually is time-consuming and requires a huge effort to analyze the full set of acquired

images. Hence there arises a need for a rapid data acquisition and classification platform

to collect, process and classify the structural surfaces in interest. These techniques have

emerged with an essential goal of safeguarding the operational safety of structures,

through deploying various types of sensors, monitoring diversified physical quantities,

assessing structural condition and performance, and instructing routine inspection and

maintenance. Subsequently, this has motivated the movement of developing machine

vision techniques to aid or event to automate engineering inspection of civil structures.

Machine vision is a technical field that concerns the development of digital

imaging methods and the use of image processing or computer vision algorithms for the

extraction of useful information from images (Morris, 2004). With the advent of early

digital cameras, researchers in the last eighties and nighties used simple digital filters,

including various edge detection methods, for realizing image-based structural damage

detection (Cheng & Miyojim, 1998; Ritchie, 1987; Ritchie Stephen, 1990). To further

automate the process of image capturing, researchers further strive to develop other

imaging methods that are expected to mitigate the human cost of professional inspectors.

These novel methods include ground vehicle-based imaging, aerial vehicle-based

imaging, and crowdsourcing based imaging [e.g., (Isawa et al., 2005; Kim, Sim, & Cho,

2015; Lattanzi & Miller, 2013; Tung, Hwang, & Wu, 2002; C. Zhang & Elaksher, 2012)

(Ozer, Feng, & Feng, 2015)]. For example, Ho et al. (2013) developed a system with

three cameras attached to a cable climbing robot to detect surface damage (Ho, Kim,

4

Park, & Lee, 2013). Yeum and Dyke (2015) proposed an unmanned aerial vehicle (UAV)

for remote imaging and image-based detection (Yeum & Dyke, 2015). In Chen et al.

(2015), a mobile-cloud infrastructure enabled approach was proposed that exploits

collaborative mobile and cloud computing to harness crowdsourcing-based structural

inspection (Chen, Chen, Shen, & Lee, 2015).

Unlike, regular digital imaging process, the author develops a mobile

hyperspectral imaging (HSI) system for both ground and aerial vehicle-based remote

sensing. With this HSI system and preliminary observation (e.g., by plotting spectral

profiles for different structural surface objects), it is hypothesized that structural damage

(e.g., cracks) and other complex artifacts can be effectively detected on structural

surfaces. Furthermore, this HSI system equipped with a machine learning approach can

outperform the performance of regular imaging methods with a high spatial resolution

(i.e., those based on panchromatic or true-color imaging). The essential contribution of

this thesis is the proven effectiveness of mobile HSI for structural surface damage

detection with complex scenes. Different from any existing image-based structural

damage detection method, in this study, the proposed framework deals with the detection

problem with much semantically rich structural-surface materials and objects, including

concrete, asphalt, crack, dry vegetation, green vegetation, water, oil, and artificial

markings, which are dealt with in the literature of image-based damage detection but

commonly found in engineered structures in service. Another significant contribution is

the semantically labeled dataset resulting from this research, which provides an

unprecedented basis for research in hyperspectral machine vision and engineering

inspection automation.

5

Literature Survey

With the abundance of these optical imaging platforms, one promising fact is the

ease of obtaining imagery structural-damage databases. Other than early vision methods,

these databases enable the adoption of a machine learning paradigm for image-based

structural damage detection. Most of the techniques in these early efforts used either of

one of the gradient-based edge detection (Shrivakshan & Chandrasekar, 2012), Hugh

transformed based line detection methods (Song & Lyu, 2005), wavelet-based processing

method (Abdel-Qader, Abudayyeh, & Kelly Michael, 2003; M. Olsen, Chen, Hutchinson,

& Kuester, 2012), image binarization method (Cheng, Shi, & Glazier, 2003; Oliveira &

Correia, 2009), percolation method (Tomoyuki, Shingo, & Shuji, 2008) or, shape-based

modeling method (Chen & Hutchinson, 2010; Huo, Yang, Li, & Zhou, 2017). Some

studies explored the methodology for automated surface cracks monitoring and

assessment of concrete surface, based on adaptive digital image processing Adhikari et al.

(2014) and infrared thermography Sakagami (2015) whereas some other incorporated the

displacement and strain measurement with digital imaging for crack defragmentation

(Adhikari, Bagchi, & Moselhi, 2014; Sakagami, 2015; Valença, Dias-da-Costa,

Gonçalves, Júlio, & Araújo, 2014). Many different integration approaches of two or more

sensors were explored and broadened to be used in more specific application categories.

Vaghefi et al. (2015) developed a combined nondestructive imaging technology on the

bridge deck to yield both surface and subsurface indicators of the condition (Vaghefi,

Ahlborn Theresa, Harris Devin, & Brooks Colin, 2015). Stabile et al. (2012) used a suite

of microwaves radar interferometer and a thermal camera to monitor the dynamic

displacement of bridges (Stabile et al., 2012). Waldbjorn et al. (2014) obtained the

feedback signals i.e. strain and displacement by fiber Bragg grating and digital image

6

correlation aligned to monitor the mandrel position by measuring the rigid body

displacement based on a multivariate least-squares algorithm (Waldbjørn et al., 2014).

Other than early vision methods, these databases enable the adoption of a machine

learning paradigm for image-based structural damage detection. As of today, many

machine learning methods are found, which feature the use of supervised or non-

supervised classifiers (Chen, Derakhshani, Halmen, & Kevern, 2011; Gavilán et al., 2011;

Kaseko & Ritchie, 1993; Liu, Suandi, Ohashi, & Ejima, 2002; Prasanna et al., 2014;

Zakeri, Nejad, & Fahimifar, 2017). In recent years, coincident with the advances in

artificial intelligence (AI), and particularly the development of deep learning techniques,

many have heralded the era of AI-enabled structural inspection. To this end, a simple

search through Google Scholar, using the combined keywords of “Crack Detection”,

“Convolutional Neural Network” (CNN), and “Image” returns more than 700 articles

within the period of January 2016 to October 2019. Notably, Zhang et al. firstly used a

CNN model as a feature extractor then fed the features into a classification model for the

detection of cracks in images (L. Zhang, Yang, Zhang, & Zhu, 2016). Such a CNN-based

machine learning approach is then adopted in many other similar efforts [e.g., (Alipour,

Harris, & Miller, 2019; Cha, Choi, & Büyüköztürk, 2017; Ni, Zhang, & Chen, 2019)].

One may expect that by duly considering the advances in these AI-enabled image-based

damage detection methods and the lowering cost of mobile or edge computing devices,

the notion of an autonomous structural inspection may become a reality. The authors in

this paper argue that if a fundamental fact is not acknowledged, the pace of automation

would ultimately be hindered. This fact is the complexity of structural scenes captured in

digital images. In the case of concrete structures, the scenes in images are often a mixture

of structural materials, possible damage, and other artifacts, such as artificial marking,

7

vegetation, moisture, oil spill, discoloring, and uneven illumination (Chen & Hutchinson,

2010). This implies that any image-based machine learning method or an end-to-end deep

learning method may encounter the infamous issue of generalization. In other words, if

such an autonomous image-based system is deployed in the field, its core detection

component (i.e., a classification model) even trained based on a relatively large dataset

with complex scenes, can over-fit the training data but cannot generalize to an arbitrary

scene that is more complex than the data used for training.

To resolve this challenge, one obvious solution is to continue developing much

larger dataset given the power of deep learning with an architecture that can potentially

accommodate any scale of data sizes and any complexity in field scenes, when regular

images (i.e., true-color images with red, green, and blue bands or RGB images) are

continuously used. However, this inevitably triggers the issue of labeling big data (e.g.,

pixel-wise labeling of cracks and other artifacts), which is expensive and time-consuming

(Roh, Heo, & Whang, 2019). Another approach is to resort to transfer learning and use

small data sets enhanced by effective data augmentation technique to obtain the notion of

learning from small data using DL models. A recent effort of such is reported (Shimin

Tang & Chen, 2017), which develops a crack pixels-based data augmentation technique

for fine-tuning of DL models. Regardless of the potential success in these solutions, it is

asserted that with the use of RGB images, the outcomes of developing these methods can

only asymptotically match the intelligence of trained inspectors, though possibly with

much higher efficiency than human inspectors. In other words, there is a performance

‘ceiling’ that tops the capacity of regular RGB images unless that machine intelligence

supersedes human beings.

8

An alternative solution is to break out the normal of matching human vision. An

emerging technology for structural inspection is hyperspectral imaging (HSI). In a

hyperspectral image, a pixel contains tens to thousands of digital values at different

spectral bands in the visible and near-infrared (VNIR) portion of the electromagnetic

spectrum bands, at which each digital value represents either the reflectance or

transmittance property of a material at one band. Such a high-dimensional spectral profile

hence is not directly visible to human eyes that respond, roughly speaking, only to three

discrete bands (namely, red, green, and blue)(Kaiser & Boynton, 1996). Scientific

knowledge in hyperspectral imaging and analysis is well archived and is, in general,

termed hyperspectral spectroscopy (Siesler, Ozaki, Kawata, & Heise, 2008). In the

context of image-based structural damage detection, it is stated that HSI provides a

significant possibility of detecting and identifying the presence of either structural

damage or noisy artifacts at the material level.

In this work, the authors develop a mobile hyperspectral imaging (HSI) system for

both ground and aerial vehicle-based remote sensing. With this HSI system and

preliminary observation (e.g., by plotting spectral profiles for different structural surface

objects), it is hypothesized that structural damage (e.g., cracks) and other complex

artifacts can be effectively detected on structural surfaces. Furthermore, this HSI system

equipped with a machine learning approach can outperform the performance of regular

imaging methods with a high spatial resolution (i.e., those based on panchromatic or true-

color imaging). Different from any existing image-based structural damage detection

method, in this study, the proposed framework deals with the detection problem with

much semantically rich structural-surface materials and objects, including concrete,

asphalt, crack, dry vegetation, green vegetation, water, oil, and artificial markings, which

9

are dealt with in the literature of image-based damage detection but commonly found in

engineered structures in service. Another significant contribution is the semantically

labeled dataset resulting from this research, which provides an unprecedented basis for

research in hyperspectral machine vision and engineering inspection automation.

Literature Survey Summary

To summarize the literature review, certain areas are yet to be explored and new

improved systems are yet to be developed for the damage detection in civil engineering

structures. While there have been researches focused on the detection of cracks,

defragmentation and damage assessment on the surface using images and videos but these

results lack when considering the complex and realistic scenes. This review shows that

the implementation of a computer vision-based method for non-destructive testing and its

potential to provide more valuable information for the visual inspection and structural

condition assessments through integration with other sensing techniques as well as

presents some critical limitations and challenges of the system. Most of the current

research is conducted through the images captured in a controlled environment. The

quality of the image captured by the vision device will be significantly affected by the

surrounding environment condition such as mixer of the contrast from other similar

materials, light variation, presence of oil or water on the surface and artificial marks on

the surface which are very common on the structural surface. Along with image quality

limitation, the majority of the current literature focuses on binary classifications using

simple machine learning techniques or threshold-based heuristics. However, multiclass

classification has not yet been explored for different classes of damages found on the civil

engineering structures.

10

In the following, first, the concept of HSI is briefly introduced, and a mobile HSI

system is described. In the next, the machine learning methodology is introduced with a

focus on proving the concept of HSI-based detection and its competitive performance.

Performance evaluation and discussion are further conducted with four classification

models, followed by a summary of conclusions and vision at the end.

11

CHAPTER 2. HYPERSPECTRAL IMAGE

When a beam of white light is dispersed by passing through a prism, a continuous

range of colors, the so-called color the spectrum is formed. All object gives off

electromagnetic radiation and it has been known that different materials emit, reflect and

absorb a different proportion of lights and this proportion is the function of the frequency

of the light wave (Richards & Jia, 1999). Since the color spectrum visible to the human

eye is only a small region of the much wider electromagnetic spectrum thereby detecting

and analyzing the energy emitted or reflected, an enormous amount of information about

the material into consideration can be obtained. This specific property of the physical

object is called reflectance. The reflectance of an object varies at different wavelength

producing a unique electromagnetic spectrum profile for each object.

The imaging spectroscopy is defined as “the simultaneous acquisition of the

measurement, processing, and analysis of images in many narrow, contiguous spectral

bands” (Goetz, Vane, Solomon, & Rock, 1985). The concept of HSI originated in the

1980s when Goetz and his colleagues at the Jet Propulsion Laboratory (JPL) began

developing the seminal instrument of the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) (R. O. Green et al., 1998; Plaza et al., 2009). Different from gray-level or RGB

images, in a hyperspectral image, a hyperspectral pixel consists of a large number of

intensity values sampled at different narrow spectral bands that represent the contiguous

spectral curve at the pixel. A Hyperspectral image, in general, can be assumed as a 3D

data cube structure, where a 2-D spatial-domain resides over a 1-D spectral-domain. One

may view each hyperspectral data cube as a stack of spatially registered 2D images at

different wavelengths (bands). Each pixel is a 1-D vector, corresponds to the reflectance

energy spectrum within its field of view (FOV) (Richards & Jia, 1999). Figure1 shows

12

full three-dimensional hyperspectral (two spatial dimensions plus one wavelength

dimension) data cube.

Figure1. A hyperspectral image data (Bodkin et al., 2009a)

For hyperspectral images obtained by advanced hyperspectral cameras, detailed

spectral information and fine spatial resolution enable an analysis of both materials and

structures of the object in a scene. Therefore, it is necessary to develop new techniques to

exploit these underlying spatial and spectral information in hyperspectral images, thus

advancing the limitation of human vision, computer vision, and remote sensing. Some

attempts have been made in both computer vision and remote sensing over time but still,

there has been a huge gap between hyperspectral imaging and material classification

application due to lack of effective spectral-spatial feature extraction method as well as

due to lack of enough data and robust classification method.

Hyperspectral Imaging Technology

As advances in HSI and especially sensors that are not for orbital or airborne

platforms, the acquisition of hyperspectral data cubes can be realized with other

mechanisms. Besides the spatial scanning or push-broom imaging mechanism, two other

13

mechanisms (spectral scanning and spatial-spectral scanning) are developed for HSI

applications in medical and biological sciences (Lu & Fei, 2014). It is noted that towards

producing a hyperspectral cube, these three scanning techniques require complex post-

processing steps to achieve the end product, a data cube. The fourth mechanism is the

non-scanning or ‘snapshot’ imaging (Johnson, Wilson, Bearman, & Backlund, 2004). The

snapshot imaging, different from other, acquires spectral pixels in a 2-D field-of-view

simultaneously, without the requirement of trajectory flights or using any moving parts in

the imager. Therefore, this ‘snapshot’ mechanism is also referred to as real-time HSI by

researchers (Bodkin et al., 2009b). This HSI mechanism can achieve much higher frame

rates and higher signal-to-noise ratios and can provide hyperspectral cubes immediately

after every action of capturing as in a regular digital camera. Due to this property, real-

time or ‘snapshot’ HSI opens up significant opportunities for its use in portable, mobile,

or low-altitude remote sensing.

Hyperspectral Image Computing

Given a hyperspectral cube, one can denote it as h(x, y, s) acquired from several

spectral bands (i.e., for visible bands s ∈ [400, 600] nm; and visible to near-infrared, s ∈

[400, 1,000] nm). At a select location of (x, y), therefore, h(x, y, s) represents a spectral

profile when plotted against the variable spectral s. In the remote-sensing context (not in a

medical or biological context), namely, the data cube is acquired in the air, and the

measurement at the sensor is the upwelling radiance. In general, it is the reflectance

property of a material at the ground that nominally does not vary with solar illumination

or atmospheric disturbance. Therefore, the acquired spectral profile reflects the

characteristics or signatures of the material. Therefore, a raw radiance data cube needs to

be corrected to generate a reflectance cube, considering the environmental lighting and

14

the atmospheric distortion. This process is called atmospheric correction (Adler-Golden et

al., 1998). Figure 2. Below represents the plot for the reflectance plot for each material

class we have opted to work within this thesis work.

15

Figure 2. Reflectance plot for asphalt, color, concrete, crack, dry vegetation, oil, green

vegetation, and water respectively with 20 random pixels.

Camera Calibration

The raw spectral image collected using the hyperspectral imaging system is

detector signal intensity. To calibrate the raw intensity images into reflectance, calibration

of the camera is performed with the help of a black and white reflectance image. This

process corrects the significant signal vibrations, which are caused by non-uniformity of

the illumination and the focal plane array of the camera, known as pattern noise (Nouri,

Lucas, & Treuillet, 2013). Natively, the imager captures radiance images, and with the

internal processing and a proper calibration procedure, the camera can output reflectance

images directly. To do so, a reflectance calibration process starts with the use of a

standard white reference board, achieving a data cube for the standard whiteboard

(denoted as hW). Second, a ‘perfect dark’ cube is obtained (by simply covering the lens

tightly with a black cap), denoted as hB. The relative reflectance image, h, is calculated

given a radiance cube hR,

ℎ =
ℎ𝑅 − ℎ𝑤

ℎ𝑤−ℎ𝐵
 (1)

Following Eq. (1), a reflectance image can be produced by the camera directly or

can be post-processed from the produced radiance image.

16

CHAPTER 3. PREPROCESSING

This section describes the data collection process with the developed application,

specifications of the hardware, data format, and information about the environmental

setup are also described in detail. For the data acquisition and processing, the most

important components are the camera and its specification that determines the resulting

quality of the collected data.

Imaging System

A mobile HSI system for ground-level and low-altitude remote sensing is developed by

the authors. The imaging system consists of a Cubert S185 FireflEYE snapshot camera

that combines the precision of hyperspectral camera with the ease of snapshot camera,

accurately capturing data over the whole field of view, and a mini-PC server for onboard

computing and data communication (Cubert Gmbh, 2018). For ground-based imaging, the

system is mounted to a DJI gimbal that provides two 15-W and 1580 mAh batteries for

powering both the imaging payload and the operation of the gimbal. Figure 3 shows the

gimbaled imaging system, which is ready for hand-held or other ground-based HSI. To

enable low-altitude remote sensing, an unmanned aerial vehicle (UAV) is used, and the

gimbaled system can be easily installed to the UAV for remote sensing.

Figure 3. Cubert hyperspectral camera and assembly at UMKC

17

This device has a wavelength range of 450nm to 950nm with a spectral resolution of

8nm capturing 139 channels and a pan resolution of 2500 spectral per cube providing a

complete hyperspectral cube with a global shutter in 1/1000 of a second, without the need

of IMU. As per the manufacturer, the wavelength accuracy at 532nm and 808nm are

respectively ±2.5nm and ±4.5nm. One unique feature of the Cubert HSI system is its dual

acquisition of hyperspectral cubes and a companion image, a gray-level intensity image.

The gray-level image has an identical field of view as the hyperspectral cube but has a

much higher spatial resolution, which has a size of 1,000 × 1,000. Denoting this gray

image as g(u, v), one can ‘fuse’ g(u, v) and h(x, y, s) to achieve a hyperspectral cube with

a higher resolution, and at its peak, one can obtain a cube with the size of 1,000 × 1,000 ×

139. This process is called pan-sharpening, and to obtain smooth sharpening effects,

many algorithms exist (Loncan et al., 2015). Nonetheless, it is noted that pan-sharpening,

which can provide visually appealing hyperspectral images (if visualized in terms of

pseudo-color images), does not provide new information compared to the original low-

resolution hyperspectral cube and the high-resolution gray image. Therefore, in this

paper, the low-resolution data cubes are directly used towards the goal of pattern

classification-based object detection.

The Cube-Pilot is the official graphical user interface (GUI) to the Cubert

Hyperspectral cameras making it possible to calibrate the camera before taking any

pictures and aiding in the process of image capturing. A window of the Cube-pilot

application is shown in Figure 4.

18

Figure 4. Cube pilot application to visualize and extract the hyperspectral data.

Semantic Labelling

With the mobile HSI system (Figure. 3), a total of 68 instances of hyperspectral

images (and their companion gray-level images) were captured in the field. Among these

images, 43 images come from concrete surfaces and 25 images from asphalt surfaces. To

create scene complexity, artificial markings, oil, water, green and dry vegetation were

added in 34 of concrete images and 16 of asphalt images that have hairline or apparent

cracks. Of the remaining 18 images, 9 images were taken from the surfaces of concrete

and asphalt pavements without cracks and any of the other artifacts, respectively.

To create a supervised learning-ready dataset, manual and semantic labeling is

carried out. Semantic labeling is the process of labeling each pixel in an image with a

corresponding class label. In this work, an image-segmentation (or image parsing) based

labeling approach is considered in which clustered segment with pixels belong to the

same class is delineated in the image domain and rendered with a select color. The image

of labeling is based on the gray-level image that accompanies a hyperspectral cube. In

this work, this process was conducted by using an open-source image processing

program, GIMP (Kimball & Mattis, 2019). As shown in Figure 5, during the labeling

19

process, a total of six different classes, including cracking, green vegetation, dry

vegetation, water, oil, and artificial marking, are assigned with the color of black, green,

brown, blue, red, and yellow, respectively. It is noted that in this effort, the background

materials (concrete and asphalt) are not classified in these complex-scene images as well

as in the plain (concrete/asphalt) images. Figure 5 shows two samples of the original

gray-level images and the resulting color-rendered mask images for a concrete surface

and an asphalt surface, respectively.

Figure 5. Images of concrete and asphalt surface with features and their respective ground

truth images

20

CHAPTER 4. METHODOLOGY

This section describes the proposed architecture and methodology followed in this

thesis. Four machine learning algorithms based on the traditional machine-learning

paradigm (namely, manually tuned feature extraction and select classification are

employed) are designed in this work. With these algorithms, the specific objectives are

two-fold:

1. Hyperspectral data can improve the accuracy of detection compared to gray-level images.

2. Dimensionality reduction can further improve the accuracy and robustness compared

against the case without dimensionality reduction.

Depending on the feature extraction methods, the following models are obtained. The

list below summarizes these four models with abridged notations and their primary testing

goals.

1. Model-1 or M1: feature extraction based on hyperspectral pixels with spectral values

directly used as feature vectors. Namely, h(x, y, s) at (x, y) is directly used as a feature

vector, where 𝑠 ∈ {1,2, … , 139} . To reflect this characteristic, an abridged notation

M1(HYP) is used, where HYP represents the feature extraction process.

2. Model-2 or M2: feature extraction based on hyperspectral pixels with spectral values

subject to a linear PCA as an additional feature selection step to reduce the

dimensionality. Namely, the profile of h(x, y, s) at (x, y) is reduced to six dimensions

only and becomes h’(x, y, k), where 𝑘 ∈ {1,2, 3, . . ,6}. For this model, M2(HYP_PCA)

is used for simplicity. The flowchart for model

3. Model-3 or M3: feature extraction based on the companion gray-level images, g(u, v),

where the feature vectors at a 20 × 20 neighborhood in g(u, v) maps to the hyperspectral

pixel at (x, y). To extract the gray-level features within a sliding 20×20 neighborhood in

21

g(u, v), the widely used gradient-based feature extractor, the histogram of gradients, or

HOG, is considered and a variant of HOG is adopted in this paper. The resulting model

is denoted by M3(GL_HOG.

4. Model-4 or M4: feature vectors based on the combined use of the feature vectors used

in Model-2 and Model-3. Namely, by concatenating the two feature vectors, it fuses

imagery information from both the hyperspectral pixel-based spectrum and the gray-

value based spatial distribution. Hence, the notation of M4(GL_HOG+HYP_PCA) is

used for simplicity, and GL_HOG+HYP_PCA represents the fourth feature extraction

process in this paper.

Figure 6. Dimensionality reduction and classification approach for the hyperspectral

image.

22

Figure 7. HOG feature extraction and classification approach.

Figure 8. A combined PCA and HOG feature extraction and classification approach.

With these models, the specific objectives towards proving the hypotheses are multi-

fold:

Color Mask (1000*1000)

Is Pixel

Count ≥ 200

(i.e. 50%)

Count Pixel (for Red, Green, Blue,

Brown, Yellow and Gold) in 20*20

block

Move to next

20*20 block
Extract the corresponding

HOG feature (31*1)

Data Set

If the

number

of block

is 2500

Training Set Testing Set

Model

HOG (50*50*31)

Pseudo-Color Image

(1000*1000*3)

Yes No

No

SVM Classifier

Classification

F
ea

tu
re

 E
x

tr
ac

ti
o

n
C

la
ss

if
ic

at
io

n

Yes

23

 Objective-1: Evaluate the performance of the classification model of M1(HYP) hence

to conclude if a hyperspectral pixel is effective in recognizing the underlying object

types, including structural damage given a complex scene.

 Objective-2: Evaluate and compare the performance of M1(HYP) and M2(HYP_PCA),

hence, to conclude if dimensionality reduction is effective in terms of improving the

discrimination of different objects.

 Objective-3: Evaluate and compare the performance of M2(HYP_PCA) and

M3(GL_HOG), hence, to conclude if hyperspectral pixels are more effective than high-

resolution gray-level images towards identifying complex object types.

 Objective-4: Evaluate the performance of the classification model of M4(HYP_PCA,

GL_HOG), hence, to conclude if, through simple data fusion, the combined

hyperspectral and gray-level features provide more competitive detection performance.

With the four models defined previously, they essentially differ in the use of different

feature extraction processes based on the original hyperspectral data instance (a data cube

and a companion gray-level image). With the colored mask images created as described

above, it is denoted as m(u, v) sharing the same spatial domain as the underlying gray

image g(u, v). For the sake of simplicity, based on the color coding for the mask images,

the value of m(⋅) takes an integer value of 1, 2, …, 6 to indicate the underlying six

different surface objects; in addition, the following notations are used to describe the

resulting dataset:

𝒟 = { ℎ𝑛(𝑥, 𝑦, 𝑠), 𝑔𝑛(𝑢, 𝑣), 𝑚𝑛(𝑢, 𝑣)| 𝑛 = 1,2, … , 50} (2)

To generate the machine-learning data for the models, the following feature extraction

and treatment process is developed. Considering the spatial domains of a pair of h(x, y, s)

and g(u, v), the following procedure is proposed:

24

1) Iterating with the location of (xi, yj) with i, j = 1, 2, …, 50, the spectral profile is stored

in the vector of {h(xi, yj, s)| s ∈ [1, 139]}, and the gray-values in the corresponding gray

image g(u, v) are confined in a neighborhood block of 𝒷 = {(u’, v’) | u’ ∈ [(xi -1)× 20

+ 1, xi × 20], and v’ ∈ [(yj -1)× 20 + 1, yj × 20]}. At this neighborhood of 𝒷, the gray-

level image patch and the corresponding mask patch corresponding to the hyperspectral

pixel at (x, y) are denoted as g(𝒷) and m(𝒷), respectively.

2) Given the mask patch m(𝒷), a simplified process is used to select the underlying class

label for the hyperspectral pixel at (xi, yj). By counting the number of pixels belong to

different object types within the neighborhood block 𝒷,

a. If a dominant class label exists, namely the number of pixels that belongs to a

class is greater than 50% of the total pixels in the block (namely, 200 over 400

pixels), this class label is assigned to (xi, yj).

b. If no dominant class label exists, this pixel (xi, yj) and the corresponding

neighborhood 𝒷 is skipped.

3) At a pixel with a dominant class label, and per the feature extraction method (HYP,

HYP_PCA, and GL_HOG),

a. If HYP is used, {h(xi, yi, s)| s ∈ [1, 139]} is directly used as the feature vector

with a dimension of 139 × 1.

b. If HYP_PCA is used, PCA is conducted over the vector {h(xi, yi, s)| s ∈ [1, 139]},

and the first 6 PC scores are used to form a much low-dimensional 6 × 1 feature

vector.

c. If GL_HOG is used, the feature extraction is based on the gray-level patch g(𝒷)

using the HOG-UoCTTI method, resulting in a 31× 1 feature vector.

25

d. If HYP_PCA + GL_HOG is fused, the two corresponding feature vectors are

simply concatenated, resulting in a 37 × 1 feature vector.

4) By iterating this procedure over all the hyperspectral pixels for all the 50 instances of

images which includes different types of features in consideration, the following

classification data set is obtained for each of the feature extraction methods above.

𝒟𝐹𝐸𝐴 = { (𝒑𝒌, 𝑐𝑘)| 𝑘 = 1,2, … , 𝐾} (3)

where the superscript FEA represents one of the feature extraction processes: HYP,

HYP_PCA, GL_HOG, or HYP_PCA+GL_HOG. It is noted that by skipping many

background pixels or pixels that do not have dominant labels in Step 2b, the resulting

number of meaningful pixels (with dominant class labels) is 29546. Among them,

8132, 6495, 6273, and 5312 features are obtained for the class labels (ck’s) of water,

oil, artificial marking and green vegetation, respectively. The number of features for

cracks (concrete and asphalt cracks) is 2377. The dry vegetation features have the

lowest number of 957.

With the data cubes and gray images for the plain concrete and asphalt surfaces (9

pairs each), 2601 features are arbitrarily extracted at each of feature extraction type but

without using mask images each for the concrete or the asphalt labels. After adding these

features into Eq. 3, the number of labeled features used in this paper, or K in Eq. 3, is

34748. As described above, given the lowest (957) and the largest (8132) number of

features, a moderate imbalance indeed exists.

Principal Component Analysis (PCA)

Principal component analysis (PCA) is the most widely used linear-dimension

method based on second-order statistics. PCA is also known as the Karhunen-Loeve

transformation, singular value decomposition (SVD), empirical orthogonal function

26

(EOF), and Hotteling transformation. PCA is a mathematical procedure that facilitates the

simplification of large data sets by transforming many correlated variables called

principal components. PCA finds a new set of orthogonal axes that have their origin at

the data mean and are rotated to a new coordinate system so that the spectral variability is

maximized. Resulting PC bands are linear combinations of the original spectral bands and

are uncorrelated.

Given a hyperspectral profile at (x, y), or denoted as a set {h(x, y, s) | s ∈ [1, 2, …,

139]}, if treated as a feature vector, it gives rise to a 139×1 feature vector. As mentioned

earlier, such high-dimensionality readily leads to poor performance when training a

classification model (particularly when the training data is small, and the model itself

cannot accommodate the high-dimensional space). Theoretically, assuming that an image

had n pixels, measured at k spectral bands, the matrix characterizing the image is as

follows.

𝐗 = [

𝑥1

⋮
𝑥𝑘

] (4)

where x1… xk is a vector of n elements.

The first step in the PC procedure is generally the subtraction of the mean from each of

the data dimesons. The mean spectrum vector represents the average brightness value of

the image in each band and is defined by the expected value as follows:

𝑨 =
1

𝑁
∑ 𝑥𝑗 − [

𝑥
⋮

𝑥𝑘

]𝑁
𝑗=1 (5)

Where A is the mean spectrum vector, N is the total number of image pixels, and

xj is a vector representing the brightness of the jth pixel of the image. Therefore, the

components of the mean spectrum vector A represent the average brightness of the image

in each band. The mean shift is calculated by subtracting the mean of the data. The PC

27

analysis de-correlates the data mainly by rotating the original axes, and therefore, the

mean shift does not change the attribute of the resulting PC images. The only difference is

the addition of a constant value in each band. This makes the decorrelation more evident

in subsequent stages but is not necessary.

The second step in the PC method is to calculate the covariance matrix, which is a

square symmetric matrix, where the diagonal elements are variance and the off-diagonal

elements are covariance. From a spectral imagery point of view, the variance represents

the brightness of each band and the covariances represent the degree of brightness

variation between bands in the image. Additionally, covariance that is large compared to

the corresponding variance in a spectral pair indicates a high correlation between these

bands while covariance close to zero indicates little correlation in these spectral pairs

(Richards, 2013).

The covariance matrix is computed by the formula

𝑪 =
𝟏

𝒏−𝟏
 (𝐗 − 𝐀)(𝑿 − 𝑨)𝑻 (6)

Where A is the mean spectrum vector of the image and X is the vector

representing the brightness values of each pixel. The next step in the PCA analysis is the

calculation of the eigenvectors and eigenvalues of the covariance matrix. The eigenvalues

λ = {λ1 … λk}v of a k×k square matrix is its scalar roots and are given by the solution of

the characteristic’s equation

|𝛴𝑥 − 𝜆𝑰| = 0 (7)

Where I is the identity matrix. The eigenvectors are closely related to the

eigenvalues and each one is associated with one eigenvalue. Their length is equal to one

and they satisfy the equation

𝛴𝑥𝐕𝑘 = 𝜆𝑘𝐕𝑘 (8)

28

Where Vk is the eigenvector corresponding to the λk eigenvalue and its dimension

is 1×k.

The eigenvectors are orthogonal to each other and provide us with information

about the patterns of the data. The first eigenvector provides a line that approximates the

regression line of the data- this axis is defined by maximizing the variance on this line.

Therefore, the second eigenvector provides a line that is orthogonal to the first and

contains the variance that is away from the primary vector. Then a regression plane can

be defined for the data that maximizes the variance. When more than 3 variables are

involved, the principles of maximizing the variance are the same but graphical

representation is almost impossible.

The fourth step in the PC analysis is the determination is the components that can be

ignored. An important property of the eigenvalue decomposition is that the total variance

is equal to the sum of the eigenvalues of the covariance matrix, as each eigenvalue is the

variance corresponding to the associated eigenvector. The PC process orders the new data

space such that the bands are ordered by variance, from highest to lowest. The

eigenvector with the highest eigenvalue is the first principal component (PC) and

accounted for most of the variation in an image. The second PC has the second larger

variance being orthogonal to the first PC, and so on. Figure. 9 presents the variation of

the three principal components for each class that are considered for training and testing

the classifier.

29

Figure 9. Distribution of the first, second and third principal components of

concrete,asphalt, color, crack, dry vegetation, green vegetation, water, and oil dataset.

A transformed data set is created by using the eigenvectors from the diagonalization of

the covariance or correlation matrix. After selecting the eigenvectors that should be

retained, the following formula is applied:

(𝐹𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡) = (𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑)′ × (𝐷𝑎𝑡𝑎 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑)′ (7)

Where (Eigenvector Adjusted)’ is the matrix of eigenvectors transposed so that the

eigenvectors are in the row with the first eigenvector on the top and (Data adjusted)’ is

the matrix with the mean-corrected data transposed.

30

Figure 10. The first and second principal component plot of the dataset.

Histogram of Oriented Gradient (HOG)

The Histogram of Oriented Gradient (HOG) feature descriptor aims to characterize

the contextual texture or shape of objects in images through counting the occurrence of

gradient orientations in a select block in an image or the whole image. It was first proven

effective by Dalal and Triggs (2005) in their seminal effort for pedestrian detection in

images (N. Dalal & Triggs, 2005); since then, HOG has been applied extensively for

different objective detection tasks in the literature of machine vision. HOG differs from

other scale-invariant or histogram-based descriptors in that its extraction is computed over

a dense grid of uniformly spaced cells, and it uses overlapping local contrast normalization

for improved performance. To this date, there are many variants of HOG descriptors for

improving the robustness and accuracy; and a commonly used one is the HOG-UoCTTI as

described in (Felzenszwalb, Girshick, McAllester, & Ramanan, 2010).

The basic idea behind HOG is; the appearances and shape of local objects within

an image can be well described by the distribution of intensity gradients as the votes for

31

dominant edge directions. Such a feature descriptor can be obtained by first dividing the

image into small contiguous regions of equal size called cells, and collecting a histogram

of gradient directions for the pixels within such cells, and hence combining all these

obtained histograms from each cell. To improve the detection accuracy against varied

illumination and shadowing, local contrast normalization can be applied by computing a

measure of the intensities across a larger region of an image, called a block, and using the

resultant value to normalize all the cells within the block. Hence HOG consists of gamma

and color normalization, gradient and orientation computation, cell histogram computation,

normalization across blocks, and flattening into a feature vector. An overview of object

detection with HOG is presented in figure 11.

Figure 11: Block diagram for feature extraction with HOG feature descriptors.

The first step of HOG feature extraction is the computation of image gradients. The

gradient tells how the image changes in the given direction. Gradient computation is done

by applying the 1D centered, point discrete derivative most in both the horizontal and

vertical direction while calculating gradient value for each pixel describing the relationship

of neighboring pixel values according to the mask. Then, the magnitude and orientation at

each pixel I(x, y) is calculated by

{
𝐺𝑚𝑎𝑔(𝑥, 𝑦) = √𝐺𝑥

2(𝑥, 𝑦) + 𝐺𝑦
2(𝑥, 𝑦)

𝜃(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦(𝑥,𝑦)

𝐺𝑥(𝑥,𝑦)
) + 𝜋

2⁄
 (9)

Where Gx(x, y) and Gy(x, y) are the gradient values at each pixel in the horizontal and

vertical direction, respectively.

In the next step, the histogram for each pixel region that is either rectangular or

radial is created. The histogram bin is evenly expanded from 0º to 180º for unsigned and 0º

Input Image Block normalization
Cell histograms:

weighted vote into bins

Gamma and

color

normalization

Gradient and

Orientation

Computation

Features

32

to 360º for signed, so every histogram bin has a spread of 20º. Every pixel in the cell casts

weighted voting into one of the 9 histogram bins which can either be the gradient magnitude

itself or some function of the magnitude. The voting simply means increasing the frequency

of the observed bin by the magnitude of the pixel.

Next, after generating cell histograms, to obtain the robustness against the various

illumination and contrast, the gradient strengths must be locally normalized. This can be

achieved by grouping the cells into lager pixels regions called bocks. Since the blocks

overlap with the neighboring blocks, each block contributes its orientation distribution

more than once. Since each scalar cell response contributes several components to the final

descriptor vector, each normalized concerning a different block. Overlapping block adds

redundant information that can improve the result significantly. There are four variants of

the HOG block scheme: Rectangular HOG, Circular HOG, Bar HOG and Center-surround

HOG (Navneet Dalal, 2006). (N. Dalal & Triggs, 2005) proposed and compared four

different methods for block normalization. Let ʋ denote the non-normalized feature vector

that collects all cell histograms from a given block ||ʋ||k denotes its k-norm for k = 1, 2 and

eps denote some small constant. Then the normalized scheme has the following forms:

𝐿2 − 𝑛𝑜𝑟𝑚: ʋ̂ =
ʋ

√||ʋ||2
2+𝑒𝑝𝑠2

 (10)

𝐿1 − 𝑛𝑜𝑟𝑚: ʋ̂ =
ʋ

(||ʋ||
1

+𝑒𝑝𝑠)
 (11)

𝐿1 − 𝑠𝑞𝑟𝑡: ʋ̂ = √
ʋ

(||ʋ||
1

+𝑒𝑝𝑠)
 (12)

L2-Hys is computed by re-normalizing the clipped L2-norm. All the normalization scheme

provides much better performance than the non-normalized case. Finally, the HOG feature

is the vector containing the elements of the normalized cell histogram from all of the block

regions.

33

In this effort, considering the resolution compatibility between the hyperspectral

cube and the companion gray-level image, the feature extraction is conducted in a 20 × 20

sliding-neighborhood in a gray image. Within such a neighborhood four histograms of

undirected gradients are averaged to obtain a no-dimensional histogram (i.e. binned per

their orientation into 9 bins or no = 9) and a similar operation is performed for the directed

gradient to obtain a 2no dimensional histogram (i.e. binned in accordance of their gradient

into 18 bins). Along with both directed and undirected gradient, the HOG-UoCTTI also

computes another four-dimensional texture-energy feature. The final descriptor is obtained

by stacking the averaged directed histogram, averaged undirected histogram and four

normalized factors of the undirected histogram. This leads to the final descriptor of size 4

+ 3 × no (i.e., a 31 × 1 feature vector).

34

CHAPTER 5. MACHINE LEARNING APPROACH

Some of the first applications of machine learning to hyperspectral considered the

task of classifying land cover, or terrain, into different classes, such as forest, water,

agricultural land, and built uplands. Early approach tried to predict the class label ci at a

pixel i from a vector Xi (Benediktsson, Swain, & Ersoy, 1990; Bischof, Schneider, &

Pinz, 1992; Paola & Schowengerdt, 1995), with the feature typically just taken to be the

values at the different spectral bands at pixels i.

The Bayes’ classifier is one of the simplest and most popular approaches to terrain

classification. The Bayes’ classifier makes explicit assumptions about the class

conditional distribution p (xiǀci = k) and the prior class probabilities P (ci = k) and uses

Bayes’ rule to obtain the posterior class probabilities P (ci = kǀxi). Various other

simplifying assumptions lead to many popular classifiers. For example assuming that Σk is

diagonal lead to the Naïve Bayes classifier for continuous inputs while assuming that P(ci

= k) = 1/K lead to what is known in the remote sensing literature as the maximum

likelihood classifier (Paola & Schowengerdt, 1995).

The main drawback of Bayes’ of the Bayes’ classifier is the need to explicitly

specify the class-condition distribution p(xiǀci = k). Since the multivariate normal

distribution is typically used for class-conditional distribution, only linear or quadratic

decision boundaries can be learned by such a model. The neural network became a

popular alternative to the Bayes’ classifier because they directly model p (xiǀci = k) as a

differentiable function whose parameter is learned (Bischof et al., 1992; Lee, Weger,

Sengupta, & Welch, 1990). This both sidesteps the need to specify p(xiǀci = k) and allows

for richer, non-linear decision boundaries to be learned when at least one hidden layer of

units with a non-linear activation function is used. Due to the ability to learn non-linear

35

decision boundaries, neural networks tend to give higher classification accuracies than

various forms of Bayes’ classifier (Benediktsson et al., 1990; J. Zhang & Modestino,

1989). (Bischof et al., 1992) explored adding contextual information by using spectral

values from a small patch at the pixel of interest as the input to a neural network, allowing

it to learn some contextual features. Others aimed to improve classification accuracy by

using hand-designed features that encoded local textural information. (Haralick,

Shanmugam, & Dinstein, 1973; Lee et al., 1990). (Haralick et al., 1973) introduced a

popular set of features derived from gray-level values i, and j co-occur at distance d and

angle θ.

Support Vector Machine

Discriminating between object classes with similar features, such as concrete,

asphalt, vegetation, water, and oil requires some knowledge of spectral profile and

context which in turn leads to much more complex decision boundaries than the ones

required to discriminate forest and city areas from imagery. Due to the need to learn such

highly nonlinear decision boundaries, applications of machine learning to high-resolution

imagery have relied on more sophisticated classifiers. While the neural network can learn

nonlinear decision boundaries and have been widely used in remote sensing applications,

many researchers found them difficult to train due to the presence of local optima

(Benediktsson et al., 1990).

Support Vector Machine (SVM) has been employed in a wide range of real-world

problems such as text categorization, handwritten digit recognition, tone recognition,

object detection, image classification, regression problem and more colloquially learning

from examples since purposed by Vapnik (Cortes & Vapnik, 1995). SVM has been

proven to be a good candidate for the machine learning approach due to its high

36

generalization performance without the need for prior knowledge, even when the

dimension of the input space is very high. Given a set of points which belongs to either

one of two class, a linear SVM finds the hyperplane leaving the largest possible fraction

of points of the same class on the same side while maximizing the distance of either class

from the hyperplane. According to Vapnik, this hyperplane minimizes the risk of

misclassifying data from the test set. SVM has often been found to provide higher

classification accuracies than other widely used pattern recognition techniques, such as

maximum likelihood (Mondal, Kundu, Chandniha, Shukla, & Mishra, 2012) and the

multilayer perceptron neural network classifier (Osowski, Siwek, & Markiewicz, 2004).

Furthermore, SVM appears to be especially advantageous in the presence of

heterogeneous classes for which only a few training samples are available. In the context

of hyperspectral image classification, some pioneering experimental investigations

preliminary pointed out the effectiveness of SVM to analyze the hyperspectral data

directly in the hyperdimensional feature space, without the need of any feature reduction

techniques (J. A. Gualtieri & Chettri, 2000; J. Anthony Gualtieri & Cromp, 1999)

In Figure 12, triangular data points belong to one of the classes and circular data points

belong to another class. SVM tries to find a hyper-plane (P1 and P2) that separates the

two classes. As shown in the figure there may be many hyperplanes that can separate the

data but SVM chooses the best decision boundary based on the maximum margin

hyperplane concept.

37

Figure 12. Decision boundary and margin of SVM classifier.

Each hyperplane (Pi) is associated with a pair of supporting hyper-plane (pi1 and

pi2) that are parallel to the decision boundary (Pi) and pass through the nearest data point.

The distance between these supporting planes is called margin. In the figure, even though

both the hyperplane (P1 and P2) divide the data points, P1 has a bigger margin and tends to

perform better for the classification of unknown samples than P2. Hence bigger the

margin is, less the generalization error for the classification of unknown samples is.

Therefore, in the case of the above figure hyperplane P1 is preferred over hyperplane P2.

For a linear SVM, the equation for the decision boundary is

𝒘 ∙ 𝒙 + 𝑏 = 0 (13)

Where w and x are vectors and the direction of w is perpendicular to the linear

decision boundary. Vector w is determined using the training dataset. For any set of data

points (xi) that lies above the decision boundary the equation is

𝒘 ∙ 𝑿𝒊 + 𝑏 = 𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑘 > 0, (14)

And for the data points (xj) which lie below the decision boundary, the equation is

w

p2
1

p1
1

P1p22 P2 p1
2

38

𝒘 ∙ 𝑿𝒋 + 𝑏 = 𝑘 ∙, 𝑤ℎ𝑒𝑟𝑒 𝑘 < 0, (15)

By rescaling the value of w and b the equations of the two supporting hype planes (p11

and p12) can be defined as

𝑝11: 𝒘 ∙ 𝑿 + 𝑏 = 1 (16)

𝑝12: 𝒘 ∙ 𝑿 + 𝑏 = −1 (17)

The distance between the two hyperplanes (margin “d”) is obtained by

𝑑 = 2
||𝒘||⁄ (18)

The objective of the SVM classifier is to maximize the value of d. The margin can

be seen as a measure of generalization ability: the larger the margin, the better the

generalization is expected to be (Palhang, 2009; Vapnik, 1998). This objective equivalent

is to minimize the value of ||w||2/2. The value of w and b are obtained by solving this

quadratic optimization problem under the constraints.

𝒘 ∙ 𝑿𝒊 + 𝑏 ≥ 1 𝑖𝑓 𝑦𝑖 = 1 (19)

𝒘 ∙ 𝑿𝒊 + 𝑏 ≥ −1 𝑖𝑓 𝑦𝑖 = −1 (20)

Where yi is the class variable for xi. Imposing these restrictions will make SVM to

place the training instances with yi = 1 above the hyperplane p11 and the training instances

with yi = -1 below the hyperplane p12. The optimization problem can be solved using the

Lagrange multiplier method. The objective function to be minimized in the Lagrangian

form can be written as:

𝑳𝑷 =
1

2
||𝒘||2 − ∑ 𝛼𝑖(𝑦𝑖(𝒘 ∙ 𝑿𝒊 + 𝑏) − 𝟏)𝑁

𝑖=1 (21)

αi are Lagrange multiplier and N are the number of samples. The Lagrange multiplier

should be non-negative (αi ≥ 0). To minimize the Lagrangian form, its partial derivatives

are obtained with respect to w and b are equated to zero and the equation is transformed

to its dual form.

39

𝑳𝐷 = ∑ 𝜶𝒊 −
𝟏

𝟐
∑ 𝜶𝒊𝜶𝒋𝒚𝒊𝒚𝒋𝑿𝒊𝑿𝒋

𝑵
𝒊=𝟏

𝑵
𝒊=𝟏 (22)

The training instances for which the value if αi > 0 lies on the hyperplane p11 or

h12 are called support vectors. Only these training instances are used to obtain the

decision boundary parameters w and b. Hence the classification of unknown samples is

based on the support vectors.

Multi Classification System

In the problem, which is dealt with in this thesis work, the recognition of different

civil engineering features, binary classification is of course not sufficient since there are

more than two different classes of features. Although being a binary classifier, SVM can

be formulated to solve a multi-class classification problem as opted in this research. Thus

within SVM, there are two well-known methods: “one versus all” and “pairwise

classification” (or “one versus one”) (Duan, Rajapakse, & Nguyen, 2007). The basic idea

is to formulate the problem differently: instead of learning “class 1 against class 2 against

class 3 and so on…”, the problem can be interpreted as “class 1 against the rest, class 2

against the rest and so on…”.

Kernel Trick

The basic idea with nonlinear SVM is to map training data into higher

dimensional features via some mapping Φ(x) and construct a separating hyperplane with

maximum margin in the input space. Sometimes, even with the fair amount of slack,

linear classification is not possible and thus finding the optimal hyperplane in the higher

dimensional feature space is both complicated and computationally expensive. The issue

can be handled with a kernel trick. The kernel trick takes all the point and map them into

a higher dimensional space. To do so, a kernel K is defined such that two-point x and x’

40

on the feature vector have a kernel value K (x, x’). The mathematical formulation is

shown in Equation 21.

𝑲(𝒙, 𝒙′) = 𝒆𝒙𝒑 (−
‖𝒙−𝒙′‖𝟐

𝟐𝝈𝟐
) (23)

Where || x-x’|| is Euclidean distance between two feature vector and γ =
1

2𝜎2

It can be simply thought of as a transformation of features into infinite-

dimensional space, allowing the linear classification which is the basis of SVM. The

hyperparameter (C and γ) optimization for this research is achieved by using the Bayesian

optimization algorithm which implements the 10-fold cross-validation and iteratively

evaluating and updating the promising hyperparameter configuration based on current

cross-validation model. In other words, the hyperparameter of the classifier is set by

searching the space for the best performance metrics: precision and recall score for each

cross-validation model.

Performance Evaluation

To proceed with the modeling and performance evaluation, a data partition

strategy is needed to split the data; hence one part is for the training and the other for

model validation. In the literature, the widely used scheme is to use 75% of the total data

for training and the rest 25% for testing. Indeed, if there are sufficient amount of data, the

data splitting ratio is flexible and up to the analyst. In this paper, it is meaningful to

examine if the data size is sufficient, which can be reflected if the prediction performance

increases with the size of training data. Three data splitting schemes are considered for

any of the obtained feature dataset as expressed above. In the first scheme namely Test-1,

and by carrying out a random shuffling, 25% (8147) of the data set is considered for

training and the rest 75% (26601) for testing purposes. In Test-2, the total dataset is

divided equally (i.e., 17374 for training and testing, separately). In Test-3, 75% (26601)

41

of the dataset is considered for training and the rest 25 % (8147) for testing. With these

three schemes, a total of 12 different models are evaluated in this thesis work.

The accuracy of the classifier needs to be defined for estimating and comparing the

quality of the classification result. In this effort, due to the presence of a higher number of

classes, it is important to properly analyze each parameter as a higher number of classes

in general decrease the classification accuracy. To quantify the performance of the

classifiers and more importantly their predictive capacity and robustness, two commonly

used performance analytics, receiver operating characteristics (ROC) curve, and

precision-recall (PR) curve, are adopted, which are constructed by setting a variable

decision threshold in the classifier. The area under ROC (AU-ROC) and precision-recall

(AU-PR) curve are used as lumped measures summarizing the two curves

Receiver Operating Characteristic Curve (ROC)

Receiver Operating Characteristics Curve (ROC Curve) is a graphical depiction of

correctly and incorrectly predicting an outcome condition. ROC curve is plotted on the

coordinate system with sensitivity (TPF) values along the y-axis and one minus

specificity (FPR) value along the x-axis. Sensitivity and specificity are two measure

which can capture model performance. Sensitivity is the percentage of cases in which the

outcome (individual class in interest) is correctly predicted. In other words, it is a measure

of the proportion of positive classes that are correctly predicted by the model. This

statistic is also referred to as the true positive fraction (TPF). Specificity is the percent of

cases in which the opposite of the outcome (in the multi-class system, classes belonging

to some other class when a particular class is into consideration) is incorrectly predicted,

also referred to as true negative fraction (TNF). These measures can be visually combined

to characterize the model behavior concerning data called the ROC curve. ROC curve is

42

also valuable because they permit the comparison of variables and summarize accuracy

across a range of tradeoffs between correct and incorrect classification probabilities. ROC

curve analysis involves a generally simple graphical representation of classification and is

generally used in engineering and imaging to qualify how accurately a detection system

can discriminate between binary classes. In practice, the ROC curve analysis evaluates

the classification ability of one independent (predictor) variable that is continuously

measured and one dependent (outcome) variable that is dichotomously measured.

Area Under Curve (AUC)

 (D. M. Green & Swets, 1966) first suggested the area under the ROC curve (ROC-

AUC) as an important accuracy index for the measure across all possible decision

thresholds. AUC statics is a robust measure because it represents the probability of

correct classification across all possible decision thresholds. AUC values of 1.0 indicate

perfect classification whereas 0 indicates no accuracy whatsoever for all classes. AUC

value of 0.5 corresponds with chance and are presented along the diagonal. Generally, the

AUC value above 0.7 indicates the test possesses good accuracy levels. Moreover, any

AUC values above 0.5 with a significant F1 score indicate some good ability to

discriminate. Since the statistics of the AUC curve are based on the proportion of cases,

the result is irrespective of the underlying group size, unlike other classification measures

such as accuracy. (Hosmer, Lemeshow, & Sturdivant, March 2013) provided quantitative

guidance for the labeling of discrimination ability that this will consolidate and adopt: 0.5

(no ability), ≥0.60 (low ability), ≥ (0.70) (accepted ability), ≥0.80 (excellent ability),

≥0.90 (outstanding ability), and 1.0 (perfect ability).

43

Confusion Matrix

In the problem of statistical classification, confusion matric is also called an error

matrix having a specific layout allowing a user to visualize the performance of a

supervised classifier algorithm. The confusion matrix is meant to visualize the per class

prediction performance of the chosen model. Each row of the matrix represents the

instance for the actual class whereas each column represents the instances for the

predicted class. Hence, we can infer the correctly classified points are grouped

corresponding to the classes in the diagonal entries of the confusion matrix. A sample Mij

here i=j indicates the true class and the predicted class are the same thus representing an

accurate classification (diagonal position). A sample that goes into Mij where i≠j indicates

that the true class i and the predicted class j are not the same thus representing a

misclassification.

Precision-Recall Curve (PRC Curve)

Precision and recall are the matrices that give us a picture of the model performance

and can be evaluated from the confusion matrix. Precision is a measure of how many of

the predicted values in a class is correctly classified are part of the true label of the class.

Hence it is the measure of the positive prediction by the model. Recall on the other hand

is the measure of the amount of information correctly retrieved or in other words, the

number of samples correctly predicted. Models can be optimized on a measure that

combines or balances both precision and recall. This is called F measure which is a

weighted average of the precision and recall of the model. Precision and recall can be

computed from the confusion matrix to determine the model performance using the

following formulations.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (24)

44

Recall =
TP

TP+FN
 (25)

This concept can be extended the multi-class cases for the precision and recall

formulation. If M represents a confusion matrix for multiple classes, M being a k ˟ k

matrix where k is the number of classes.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑀𝑖𝑖

∑ 𝑀𝑗𝑖𝑗
 (26)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑀𝑖𝑖/ ∑ 𝑀𝑖𝑗𝑖 (27)

AUC for the precision-recall curve is calculated as the area under the precision-recall

curve, where each point on the curve is defined by different values of the threshold to

convert continuous binary predictions. Unlike ROC, AUC-PR does not depend on the

number of true absent observations. While the AUC-ROC curve is maximized by a curve

in the upper left-hand corner, AUC-PR is maximized in the upper right-hand corner,

reflecting the norm of placing sensitivity on the y-axis in a receiver operating

characteristics curve but the x-axis in a precision-recall curve. AUC-PR varies on a scale

from zero to one, with random performance equal to sample prevalence in the focal

dataset

Results

Test 1: Comparison between model M1(HYP) and model M2(HYP_PCA)

We first examined the performance of the model M1(HYP) (i.e. classifier trained

on the full spectral dataset) and model M2(HYP_PCA) (i.e. the classifier trained on the

principal components of the spectral dataset). This test aims to endorse the hypothesis that

dimensionality reduction does increase the performance of the classifier. The parameters

acquired from the confusion matrix for each case both models M1(HYP) and

M2(HYP_PCA) are summarized in Table 1 and Table 2 respectively.

45

Table 1: Performance summary of model M1(HYP).

Concrete Asphalt Color Crack
Dry

Vegetation

Green

Vegetation
Water Oil

Test-I

Precision 0.998 1.000 0.598 0.414 0.488 0.776 0.743 0.612

Recall 0.999 0.998 0.531 0.130 0.164 0.705 0.946 0.717

F-Score 0.999 0.999 0.563 0.198 0.246 0.739 0.832 0.661

AU-ROC 1.000 1.000 0.889 0.783 0.915 0.947 0.965 0.909

AU-PR 1.000 1.000 0.551 0.237 0.265 0.811 0.830 0.638

Test-II

Precision 1.000 1.000 0.611 0.567 0.558 0.818 0.787 0.628

Recall 0.999 1.000 0.655 0.167 0.192 0.704 0.957 0.702

F-Score 1.000 1.000 0.632 0.257 0.286 0.756 0.864 0.663

AU-ROC 1.000 1.000 0.906 0.808 0.921 0.952 0.971 0.912

AU-PR 0.999 0.999 0.592 0.312 0.290 0.800 0.845 0.642

Test-III

Precision 1.000 1.000 0.501 0.918 0.402 0.706 0.572 0.553

Recall 1.000 1.000 0.629 0.057 0.213 0.733 0.962 0.724

F-Score 1.000 1.000 0.558 0.107 0.278 0.719 0.717 0.627

AU-ROC 1.000 1.000 0.869 0.774 0.906 0.940 0.963 0.890

AU-PR 0.999 0.999 0.490 0.495 0.234 0.745 0.685 0.586

Table 2: Performance summary for model M2(HYP_PCA)

Concrete Asphalt Color Crack
Dry

Vegetation

Green

Vegetation
Water Oil

Test-I

Precision 0.930 0.901 0.957 0.914 0.878 0.986 0.973 0.955
Recall 0.886 0.910 0.964 0.921 0.664 0.979 0.992 0.974
F-Score 0.907 0.906 0.961 0.917 0.757 0.982 0.983 0.964
AU-ROC 0.993 0.995 0.997 0.995 0.985 0.999 0.999 0.998

46

AU-PR 0.957 0.960 0.977 0.960 0.839 0.993 0.985 0.982

Test-II

Precision 0.970 0.936 0.973 0.973 0.900 0.990 0.994 0.979
Recall 0.959 0.945 0.989 0.952 0.808 0.994 0.995 0.981
F-Score 0.964 0.941 0.981 0.962 0.851 0.992 0.994 0.980
AU-ROC 0.998 0.998 0.999 0.997 0.993 1.000 1.000 0.998
AU-PR 0.987 0.983 0.985 0.987 0.893 0.995 0.997 0.985

Test-III

Precision 0.987 0.942 0.984 0.971 0.908 0.989 0.988 0.992
Recall 0.955 0.954 0.991 0.950 0.867 0.997 0.996 0.995
F-Score 0.971 0.948 0.988 0.960 0.887 0.993 0.992 0.993
AU-ROC 0.998 0.997 0.999 0.997 0.994 1.000 1.000 1.000
AU-PR 0.981 0.981 0.993 0.985 0.886 0.996 0.993 0.994

Firstly, from the F score of the model M1(HYP) based on Table 1, one can see that

the model identifies successfully (with F1 > 0.7) on the plain concrete, asphalt, green

vegetation, and water. For the color marking and oil, it is around 0.6. However, for cracks

and dry vegetation, the F1 measurements are lower than 0.3, indicating comparatively

lower prediction accuracy. First, this reflects the challenge in recognizing cracks primarily

caused by its inherent spectral complexity. Second, it is primarily due to the smaller size of

the dry-vegetation data points. Last and for all classes, this is presumptively attributed to

the high dimensionality of the feature vectors of the hyperspectral data set. Nonetheless, as

one expects from the AU-ROC measurements, as shown in Table 1, there is no doubt that

the model M1(HYP) is highly effective in recognizing these structural surface objects. At

the class label of concrete, the average AU-ROC is1. Therefore, it is stated herein that the

hyperspectral pixels as feature vectors are effective in recognizing most of the structural

surface objects, and have relatively less accuracy only in the detection of cracks and dry

vegetation. The area under the ROC curve for all cases in Test 1 showcases good

47

discriminative power of the classifier for the provided dataset. With all that stated, in some

cases, the visual representation from ROC plots can be deceptive when there is an

imbalance in the dataset as presented in this thesis work. Hence for evaluation of the

performance of the classifier, along with values of ROC curves, the area under the

precision-recall curve is also considered.

By observing the accuracy of the model M2(HYP_PCA) compared to M1(HYP)

in Table 1 and Table 2, it is desirable to observe that the detection accuracy is

significantly increased. At the two weak prediction instances of cracks and dry vegetation

pertinent to M1(HYP), the F1 score arises from 0.198 to 0.917 at Test-1 and 0.107 to 0.96

at Test-3, when M2(HYP_PCA) is tested. For dry vegetation, the F1 scores changes from

0.246 to 0.757 at Test-1 and 0.278 to 0.887 at Test-3. At all other class labels, the

classification accuracy still mounts up from their initially high F1 values from M1 to M2.

When the AU-ROC is concerned, besides that mostly they increase from M1 to M2, the

measurements are all greater than 0.99 at predicting all class labels. This again signifies

that the underlying model, M2(HYP_PCA), has nearly perfect capacity towards detecting

all structural surface objects. The comparative tests herein provide the direct evidence

that performing dimensionality reduction over hyperspectral profiles (i.e., as HYP feature

vectors) can substantially unleash the embedded discrimination capacity of the data that is

otherwise not exploitable.

Test 2: Comparison between model M2(HYP_PCA) and model M3(GL_HOG)

The secondary yet important hypothesis in this thesis work is to prove the

effectiveness of low spatial-resolution hyperspectral data when compared to high-

resolution gray-intensity images towards detecting the structural surface object. For this

purpose, the results of M2(HYP_PCA) and M3(GL_HOG) are evaluated and compared.

48

ROC and PR curves for all the classes of model M2(HYP_PCA) and M3 (GL_HOG) for

Test I are shown in Figure 13 and Figure 14 respectively. Both the ROC and PR curves

for model M2(HYP_PCA) illustrate a significant discriminative ability when compared to

the performance of model M3(GL_HOG).

Figure 13: ROC curves for model M2(HYP_PCA) and M3(GL_HOG) (Test-I).

Figure 14: Precision-Recall curves for model M2(HYP_PCA) and M3(GL_HOG)

(Test-I).

The confusion matrix both models M2(HYP_PCA) and M3(GL_HOG) are presented in

Table 3 and Table 4 respectively.

49

Table 3: Confusion matrix for model M2(HYP_PCA) (Test-I)

Actual Class

Concrete 1728 0 0 0 0 56 166 0

Asphalt 0 1775 40 29 20 0 0 86

Artificial

Mark 0 27 4588 87 36 0 0 19

Crack 0 32 76 1641 8 0 0 25

Dry

Vegetation 0 67 39 17 477 0 0 118

Green

Vegetation 83 0 0 0 0 3901 0 0

Water 48 0 0 0 0 0 6051 0

Oil 0 69 50 22 2 0 0 5268

 Concrete Asphalt
Artificial

Mark
Crack

Dry

Vegetation

Green

Vegetation
Water Oil

 Predicted Class

Table 4: Confusion matrix for model M3(GL_HOG) (Test-I).

Actual Class

Concrete
1090 499 98 13 0 63 31 156

Asphalt 495 1167 136 16 0 53 20 63

Artificial

Mark 106 31 3714 114 6 313 111 362

Crack 39 84 566 348 5 297 170 273

Dry

Vegetation 14 3 10 3 168 67 9 444

Green

Vegetation 63 88 182 54 13 2913 315 356

Water 47 70 47 31 0 72 5752 80

Oil 92 71 384 26 40 157 71 4570

 Concrete Asphalt Artificial

Mark

Crack Dry

Vegetation

Green

Vegetation

Water Oil

 Predicted Class

50

Similarly, the performance table model M3(GL_HOG) is presented in Table 5.

Table 5: Performance summary for model M3(GL_HOG).

Concrete Asphalt Color Crack
Dry

Vegetation

Green

Vegetation
Water Oil

Test-I

Precision 0.560 0.580 0.723 0.575 0.724 0.740 0.888 0.725

Recall 0.559 0.598 0.781 0.195 0.234 0.731 0.943 0.845

F-Score 0.560 0.589 0.751 0.292 0.354 0.736 0.915 0.780

AU-ROC 0.940 0.950 0.926 0.774 0.898 0.929 0.985 0.944

AU-PR 0.549 0.615 0.724 0.295 0.365 0.750 0.932 0.764

Test-II

Precision 0.638 0.690 0.752 0.676 0.827 0.786 0.929 0.785

Recall 0.669 0.637 0.827 0.273 0.290 0.801 0.964 0.903

F-Score 0.653 0.662 0.788 0.389 0.430 0.793 0.946 0.840

AU-ROC 0.963 0.966 0.948 0.833 0.931 0.958 0.991 0.962

AU-PR 0.647 0.701 0.756 0.399 0.466 0.796 0.954 0.831

Test-III

Precision 0.665 0.690 0.772 0.644 0.886 0.801 0.882 0.802

Recall 0.639 0.679 0.847 0.301 0.325 0.809 0.964 0.906

F-Score 0.652 0.684 0.808 0.410 0.476 0.805 0.921 0.851

AU-ROC 0.959 0.969 0.942 0.828 0.948 0.962 0.990 0.964

AU-PR 0.666 0.737 0.739 0.424 0.529 0.816 0.921 0.850

Even if the evaluation is done based on the area under the ROC curve, which is

usually the case in most of the classification work, the outcome suggests both the

classifier performs satisfactorily. Yet other scores, derived from the confusion matrix

provided more information particular for the faulty class of interest. As shown in Table 1,

the AU-ROC curves for all classes of model M2(HYP_PCA) are greater than the value

0.95 with perfect result 1 for the asphalt and concrete. Similarly, the AU-PR curves

follow the same trend for all the classes with an area above 0.9 except for the dry

vegetation that has a value of 0.632. The highest AU-PR curve value is 1 which is for

51

both asphalt and concrete but the class artificial color, crack, and dry vegetation are

underperforming with AU-PR value of 0.306, 0.316, and 0.092 respectively. Table 5

summarizes the values of AU-ROC and AU-PR curves for the model M3(GL_HOG).

Unlike from Table 1, the AU- ROC curve for class water has the highest value of 0.986,

and the rest of the classes have an AU-ROC curve value of around 0.90 except for the

crack and dry vegetation with AUC-ROC 0.748 and 0.7758 respectively. The model

M3(GL_HOG) gives AUC-PR of 0.9526 for the class water, however, for the rest of the

classes, lower values are observed i.e. 0.2892, 0.3279, 0.5779 and 0.6152 for crack, dry

vegetation, concrete, and asphalt respectively. This shows that with lower training

instances, there are losses in classification accuracy when a classifier is trained either with

gray features or principal components of hyperspectral features. Table 5 also illustrates

that precision, recall, and, F score for the classifier trained with HOG features are not

consistent throughout for all the classes compared to result obtained from the model M2.

In Test-II where the equal number of training and testing instances are considered, it is

expected to improve results for both the classifier. The ROC curve for model M2

presented in Figure 15 clearly reflects the increase in performance accuracy. The ROC

and PR curves obtained for model M2 (HYP_PCA) and model M3(GL_HOG) for Test-II

are presented in Figure 15 and Figure 16 respectively.

52

Figure 15: ROC curve for model M2 (HYP_PCA) and M3(GL_HOG) (Test-II).

Figure 16: Precision-Recall curve for model M2 (HYP_PCA) and M3(GL_HOG)

 (Test-II).

An improved and optimum result for model M2(HYP_PCA) is reflected by the

area under the precision-recall curve for all the classes. On the other hand, there aren’t

any significant improvement in the classifier accuracy using a higher number of features

for the model M3(GL_HOG). The area under the ROC curve for each class classified

using gray level features seems promising but is not backed by the area under the

precision-recall curves as shown in Figure15. Table 6 and Table 7 presents the confusion

matrix for each classification result.

Table 6: Confusion matrix for model M2(HYP_PCA) (Test-II).

Actual Class

Concrete
1248 0 0 0 0 27 26 0

Asphalt 0 1230 8 12 15 0 0 36

Artificial

Mark 0 10 3101 12 11 0 0 3

Crack 0 29 22 1132 3 0 0 3

53

Dry

Vegetation 0 31 21 5 387 0 0 35

Green

Vegetation 17 0 0 0 0 2639 0 0

Water 22 0 0 0 0 0 4044 0

Oil 0 14 36 3 14 0 0 3540

 Concrete Asphalt Artificial

Mark

Crack Dry

Vegetation

Green

Vegetation

Water Oil

 Predicted Class

Table 7: Confusion matrix for model M3(GL_HOG) (Test-II).

Actual Class

Concrete
870 288 46 9 0 17 9 62

Asphalt 370 829 52 9 1 23 3 14

Artificial

Mark 42 13 2594 66 1 218 31 172

Crack 21 27 429 325 2 183 69 133

Dry

Vegetation 6 0 4 4 139 9 0 317

Green

Vegetation 26 22 82 26 15 2127 185 173

Water 14 2 23 12 0 76 3920 19

Oil 15 21 219 30 10 53 2 3257

 Concrete Asphalt Artificial

Mark

Crack Dry

Vegetation

Green

Vegetation

Water Oil

 Predicted Class

Test-III with the most training instances among all three cases is expected to

demonstrate an optimum classification efficiency among all the cases considered. The

ROC and the PR curve are shown below in Figure 17 and Figure 18, follows the trend as

54

for the previous two cases and reflect a better discriminative ability for model

M2(HYP_PCA) rather than model M3(GL_HOG).

Figure 17: ROC curve for model M2 (HYP_PCA) and M3(GL_HOG) (Test-III).

Figure 18: Precision recall curve for model M2 (HYP_PCA) and M3(GL_HOG)

 (Test-III).

Classification accuracy represented by the area under the ROC curve for each

class in model M2(HYP_PCA) are all in the range of 0.99. For the class concrete and

asphalt, the classifier performs to its fullest as reflected by the area under the ROC curve

of 1 for both of the classes. The area under the precision-recall curve and the ROC curve

for the classifier trained with hyperspectral data are uniforms. This reflects the

exceptional performance model M2(HYP_PCA). Even though there a certain increment is

evident for the classification accuracy of model M3(GL_HOG), the increase is not

55

significant and as well is not backed by the area under the precision-recall curve. The

confusion matrix for the classifier result trained with spectral features and HOG features

are presented below in Table 8 and Table 9 respectively. The overall summary for models

M2(HYP_PCA) and model M3(GL_HOG) is presented in Table 1 and Table 5.

Table 8: Confusion matrix for model M2(HYP_PCA) (Test-III).

Actual Class

Concrete
622 0 0 0 0 15 14 0

Asphalt 0 621 6 5 12 0 0 7

Artificial

Mark 0 5 1519 4 5 0 0 0

Crack 0 20 7 565 3 0 0 0

Dry

Vegetation 0 12 6 6 208 0 0 8

Green

Vegetation 4 0 0 0 0 1324 0 0

Water 4 0 0 0 0 0 1129 0

Oil 0 1 5 2 1 0 0 1794

 Concrete Asphalt Artificial

Mark

Crack Dry

Vegetation

Green

Vegetation

Water Oil

 Predicted Class

Table 9: Confusion matrix for model M3(GL_HOG) (Test-III).

Actual Class

Concrete
416 174 16 8 0 14 2 21

Asphalt 166 442 19 8 0 4 2 10

Artificial

Mark 17 6 1329 45 0 109 10 53

Crack 11 11 194 179 1 93 28 78

56

Dry

Vegetation 0 1 3 0 78 6 0 152

Green

Vegetation 2 4 34 16 9 1075 104 84

Water 1 3 6 3 0 23 1092 5

Oil 13 0 120 19 0 18 0 1633

 Concrete Asphalt Artificial

Mark

Crack Dry

Vegetation

Green

Vegetation

Water Oil

 Predicted Class

From the F1 scores and the AU-ROC measurements shown in Figures 13, 15, and

17, respectively, a straightforward observation is clear that with the prediction of all class

labels, M2(HYP_PCA) supersedes M3(GL_HOG). Even considering the fourth model

M4 (HYP_PCA+GL_HOG) to be evaluated, the select model picked from all the models

is M2(HYP_PCA) at Test 3 This model provides an outstanding performance: the

smallest F1 score is 0.84 and the smallest AU_ROC measurement is 0.995, both at

predicting dry vegetation; and F1 = 0.93, AU_ROC = 0.99 at the crack prediction. The

control model at this data case, M3(GL_HOG), gives rise to F1 = 0.49, AU_ROC = 0.84

for dry vegetation; and AU_ROC = 0.79 F1 = 0.37, AU_ROC = 0.79 for cracks. The

performance of both the model appears to be comparable in ROC space, however, in PR

space model M2 (HYP_PCA) has a clear advantage over the other. One can observe that

for the model M2(HYP_PCA), their ROC and PR curves reflect that the resulting models

have not only superb classification capability but also stronger stability, the latter of

which is seen from the smoothness of the curves as the underlying threshold varies. In the

case of the M3(GL_HOG), the classification capability (and accuracy) are overall much

moderate; in addition, the stability as well is worsened.

57

Test 3: Performance of model M4(HYP_PCA+GL_HOG)

Finally, in Test 3 the performance of the model trained with combined features

from PC features of spectral data and high-resolution grayscale HOG feature is tested. A

summary of the results for the test is presented in Table 10. As the observed tendency

from the previous two tests, the classifier reflects an exceptional result for the area under

the ROC curve. The class dry vegetation with the area under the ROC curve of 0.683 is

the least among all the considered classes. Similarly, the values obtained from the area

under the precision-recall curve reflects a supporting conclusion. Similar to the result for

the AU-ROC, the result obtained for the area under the PR curve area also above 0.95 for

most of the classes. This shows a promising and consistent inconsistent result for the

classifier with a multi class problem. Table 10 also presents results for precision, recall,

and F1-score for the classifier trained with PCA-Hyperspectral and HOG-gray features.

Table 10: Performance summary for model M4(HYP_PCA+GL_HOG)

Concrete Asphal

t

Color Crac

k

Dry

Vegetation

Green

Vegetation

Water Oil

Test-I

Precision 0.520 0.842 0.904 0.785 0.489 0.905 0.956 0.890

Recall 0.965 0.881 0.921 0.848 0.341 0.927 0.679 0.873

F-Score 0.676 0.861 0.913 0.815 0.402 0.916 0.794 0.881

AU-ROC 0.978 0.992 0.993 0.985 0.938 0.993 0.974 0.986

AU-PR 0.695 0.933 0.963 0.898 0.391 0.964 0.930 0.930

Test-

Ii

Precision 0.450 0.829 0.922 0.841 0.670 0.875 0.930 0.903

Recall 0.963 0.888 0.931 0.876 0.436 0.910 0.567 0.902

F-Score 0.613 0.857 0.927 0.858 0.528 0.892 0.704 0.902

AU-ROC 0.969 0.993 0.994 0.990 0.957 0.990 0.961 0.988

AU-PR 0.592 0.928 0.966 0.931 0.583 0.947 0.888 0.938

Test-

III

Precision 0.779 0.761 0.931 0.895 0.779 0.947 0.969 0.925

Recall 0.939 0.962 0.935 0.835 0.529 0.951 0.851 0.894

F-Score 0.852 0.849 0.933 0.864 0.630 0.949 0.906 0.909

AU-ROC 0.995 0.995 0.994 0.989 0.962 0.998 0.997 0.989

AU-PR 0.946 0.957 0.970 0.924 0.683 0.985 0.981 0.944

58

Computational Cost

Training time and testing are important factors for assessing the classification

models as well as for the selection of the best model for a specific classification task. For

this thesis, the training and testing times for the four types of models in consideration

with the three data schemes has been noted and presented in Figure 19. It is evident from

the plots that as the number of data points increasing from Test-1 to 3, the training tends

to consume more computation time and similarly with decrease in testing instances from

Test-1 to 3 the classification process tends to consume less computational time. Second,

the dimensionality and complexity of features significantly affects the training time. As

evident form figure 19, the feature type GL_HOG demands more training time than any

other models, whereas the differences in training M1, M3, and M4 models are relatively

insignificant. Similarly, comparing the testing time for all models, it is evident that with

better training of the model, testing time can be significantly reduced. This implies that

when M2, M3, and M4 are candidates for choosing an optimal model, the prediction

performance may be the dominant factor without weighing the training cost in the balance

for model selection.

Figure 19: Training time comparison plot.

0

500

1000

1500

2000

2500

3000

Model 1Model 2Model 3Model 4Model 1Model 2Model 3Model 4Model 1Model 2Model 3Model 4

Test 1 Test 2 Test 3

Training Time (Sec) Testing Time (Sec)

59

 CHAPTER 6. DISCUSSION

Two arguments are discussed herein. Over the observed superior performance of

M2(HYP_PCA) compared to M3(GL_HOG), it implies that a single hyperspectral pixel

is much more effective than a 20 × 20 neighborhood of gray values in discriminating the

complex structural surface objects. The authors state that hyperspectral pixels with

reflectance features at both visible and infrared bands, once preprocessed (e.g., a PCA

based feature selection step), outperform the gray values or the embedded texture/shape

features corresponding to the hyperspectral pixel, even though the gray images are

captured at a much higher resolution (20 times high). Although improved gray-values

based feature extraction techniques can be used, it is safe to state that hyperspectral pixels

(being captured in the visible to near-infrared spectral bands with a high dimensionality)

have undoubtful promise in the detection of complex structural surface objects.

Regarding the performance of M4 using the simple data fusion method in this thesis, the

authors assert that an improved future fusion approach should be used rather than the

concatenation method. A promising approach is to extract spectral-spatial features using a

more integral approach; as mentioned earlier, through a pan-sharpening technique, one

can generate a high spatial-resolution hyperspectral cube. In this paper, this may give out

a cube data as h(u, v, s) defined in a 1000 × 1000 grid with a spectral dimension number

of 139, namely in a 1000 × 1000 × 139 cube. With this 3D cube, and the mask image of

the same size, advanced spatial-spectral features may be extracted (Fang, He, Li, Plaza, &

Plaza, 2018; Hang, Liu, Song, & Sun, 2015; Q. Zhang, Tian, Yang, & Pan, 2014), then a

classifier (e.g., a kernel SVM as used in this paper) can be adopted. On the other hand, the

latest deep learning architectures may be exploited as reviewed earlier. These promising

directions are beyond the scope of this work

60

Conclusion

A mobile hyperspectral imaging system is developed in this paper ready for ground-

based and aerial data collection. One of its primary application is to inspect structural

surfaces of concrete or asphalt materials that are commonly used transportation structures.

The innovation lies in its capability of detecting structural surface damage and other

surface artifacts at the material levels thanks to its high-dimensional pixels with

reflectance at both visible and near-infrared bands. This paper hence primarily aims to

prove its effectiveness compared to regular gray-level images that are much high-

resolution and commonly used in practice. Towards this goal, four different class cation

models that are characterized by different feature extraction processes are trained and

tested in this paper. With a total of 34,748 labeled features of different types, three data

splitting schemes are used to evaluate the effects of data sizes. A multi-class support

vector machine with a Gaussian kernel is adopted in all models. While testing the models,

state-of-the-art measures are adopted and the issue of data unbalancing is considered. The

F1 measure is employed as the primary accuracy measure, and the ROC-derived measure,

AU-ROC, is considered as a primary model capacity measure. With a comprehensive

evaluation, two major conclusions are formulated.

1) Hyperspectral pixels of reflectance in the VNIR domain as features are very effective

in recognizing all of the eight structural surface objects. Nonetheless, dimensionality

reduction is essential for this effectiveness. The linear PCA approach is adopted;

through using only the first three-component scores, the resulting classification models

are highly accurate, high-capacity, and stable.

2) When compared to the model based on gray-level features (GL_HOG, based on a

popular variant of HOG descriptor), the PCA adapted hyperspectral features manifest

61

a much more compelling detection performance than GL_HOG. The author state that a

single hyperspectral pixel with high-dimension spectral reflectance is evidentially

competitive compared to the corresponding high-resolution gray intensities that express

the shape and texture of the underlying objects. The data fusion technique in this paper

has a less desirable performance, however. This is attributed to the simple

concatenation technique that is used to combine the GL_HOG and HYP_PCA features.

With this experimental and machine learning-based evaluation results in this paper,

the authors further envision the dawn of computational hyperspectral imaging or

hyperspectral machine vision for structural damage detection in civil engineering and

their promise in dealing with complex structural scenes in practice.

62

REFERENCE LIST

Abdel-Qader, I., Abudayyeh, O., & Kelly Michael, E. (2003). Analysis of edge-detection

techniques for crack identification in bridges. Journal of Computing in Civil

Engineering, 17(4), 255-263. doi:10.1061/(ASCE)0887-3801(2003)17:4(255)

Adhikari, R. S., Bagchi, A., & Moselhi, O. (2014). Automated condition assessment of

concrete bridges with digital imaging. Smart Structures and Systems, 13, 901-925.

doi:10.12989/sss.2014.13.6.901

Adler-Golden, S., Berk, A., Bernstein, L., Richtsmeier, S., Acharya, P., Matthew, M., . . .

Chetwynd, J. (1998). FLAASH, a MODTRAN4 atmospheric correction package for

hyperspectral data retrievals and simulations. Paper presented at the Summaries of

the Seventh JPL Airborne Earth Science Workshop.

Alipour, M., Harris, D. K., & Miller, G. R. (2019). Robust pixel-level crack detection using

deep fully convolutional neural networks. Journal of Computing in Civil

Engineering, 33(6), 04019040.

ASCE. (2017). Infrastructure report card. Retrieved from

https://www.infrastructurereportcard.org/

Benediktsson, J. A., Swain, P. H., & Ersoy, O. K. (1990). Neural network approaches

versus statistical methods in classification of multisource remote sensing data. IEEE

Transactions on Geoscience and Remote Sensing, 28(4), 540-552.

doi:10.1109/TGRS.1990.572944

Bischof, H., Schneider, W., & Pinz, A. J. (1992). Multispectral classification of Landsat-

images using neural networks. IEEE Transactions on Geoscience and Remote

Sensing, 30(3), 482-490. doi:10.1109/36.142926

https://www.infrastructurereportcard.org/

63

Bodkin, A., Sheinis, A., Norton, A., Daly, J., Beaven, S., & Weinheimer, J. (2009a).

Snapshot hyperspectral imaging: The hyperpixel array camera. Proceedings of

SPIE - The International Society for Optical Engineering. doi:10.1117/12.818929

Bodkin, A., Sheinis, A., Norton, A., Daly, J., Beaven, S., & Weinheimer, J. (2009b).

Snapshot hyperspectral imaging: The hyperpixel array camera. Paper presented at

the Algorithms and Technologies for Multispectral, Hyperspectral, and

Ultraspectral Imagery XV.

Cawley, P. (2018). Structural health monitoring: Closing the gap between research and

industrial deployment. Structural Health Monitoring, 17(5), 1225-1244.

doi:10.1177/1475921717750047

Cha, Y.-J., Choi, W., & Büyüköztürk, O. (2017). Deep learning-based crack damage

detection using convolutional neural networks. Computer-Aided Civil and

Infrastructure Engineering, 32(5), 361-378. doi:10.1111/mice.12263

Chen, Z., Chen, J., Shen, F., & Lee, Y. (2015). Collaborative mobile-cloud computing for

civil infrastructure condition inspection. Journal of Computing in Civil Engineering,

29(5), 04014066.

Chen, Z., Derakhshani, R., Halmen, C., & Kevern, J. T. (2011). A texture-based method for

classifying cracked concrete surfaces from digital images using neural networks.

Paper presented at the The 2011 International Joint Conference on Neural Networks,

San Jose, CA, USA.

Chen, Z., & Hutchinson, T. C. (2010). Image-based framework for concrete surface crack

monitoring and quantification. Advances in Civil Engineering, 2010, 18.

doi:10.1155/2010/215295

64

Cheng, H. D., & Miyojim, M. (1998). Automatic pavement distress detection system.

Information Sciences, 108(1), 219-240. doi:https://doi.org/10.1016/S0020-

0255(97)10062-7

Cheng, H. D., Shi, X. J., & Glazier, C. (2003). Real-time image thresholding based on

sample space reduction and interpolation approach. Journal of Computing in Civil

Engineering, 17(4), 264-272. doi:10.1061/(ASCE)0887-3801(2003)17:4(264)

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-

297. doi:10.1007/BF00994018

Cubert Gmbh. (2018). Real-time hyperspectral imaging. Retrieved from https://cubert-

gmbh.com/

Dalal, N. (2006). Finding people iniImages and videos.

Dalal, N., & Triggs, B. (2005, 20-25 June 2005). Histograms of oriented gradients for

human detection. Paper presented at the 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA.

Duan, K.-B., Rajapakse, J. C., & Nguyen, M. N. (2007, 2007). One-versus-one and one-

versus-all multiclass SVM-RFE for gene selection in cancer classification. Paper

presented at the Evolutionary Computation,Machine Learning and Data Mining in

Bioinformatics, Berlin, Heidelberg.

Fang, L., He, N., Li, S., Plaza, A. J., & Plaza, J. (2018). A new spatial–spectral feature

extraction method for hyperspectral images using local covariance matrix

representation. IEEE Transactions on Geoscience and Remote Sensing, 56(6),

3534-3546.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object

detection with discriminatively trained part based models. IEEE Transactions on

https://doi.org/10.1016/S0020-0255(97)10062-7
https://doi.org/10.1016/S0020-0255(97)10062-7
https://cubert-gmbh.com/
https://cubert-gmbh.com/

65

Pattern Analysis and Machine Intelligence, 32(9), 1627-1645.

doi:10.1109/TPAMI.2009.167

Gavilán, M., Balcones, D., Marcos, O., Llorca, D. F., Sotelo, M. A., Parra, I., . . . Amírola,

A. (2011). Adaptive road crack detection system by pavement classification.

Sensors, 11(10), 9628-9657.

Goetz, A. F. H., Vane, G., Solomon, J. E., & Rock, B. N. (1985). Imaging spectrometry for

earth remote sensing. Science, 228(4704), 1147.

doi:10.1126/science.228.4704.1147

Graybeal, B. A., Phares, B. M., Rolander, D. D., Moore, M., & Washer, G. (2002). Visual

inspection of highway bridges. Journal of Nondestructive Evaluation, 21(3), 67-83.

doi:10.1023/A:1022508121821

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York:

Wiley.

Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale,

B. J., . . . Williams, O. (1998). Imaging spectroscopy and the airborne

visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment,

65(3), 227-248. doi:https://doi.org/10.1016/S0034-4257(98)00064-9

Gualtieri, J. A., & Chettri, S. (2000, 24-28 July 2000). Support vector machines for

classification of hyperspectral data. Paper presented at the IGARSS 2000. IEEE

2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse

of the Planet: The Role of Remote Sensing in Managing the Environment.

Proceedings (Cat. No.00CH37120).

https://doi.org/10.1016/S0034-4257(98)00064-9

66

Gualtieri, J. A., & Cromp, R. (1999). Support vector machines for hyperspectral remote

sensing classification (Vol. 3584): SPIE(Society of Photographic Instrumentation

Engineers).

Hang, R., Liu, Q., Song, H., & Sun, Y. (2015). Matrix-based discriminant subspace

ensemble for hyperspectral image spatial–spectral feature fusion. IEEE

Transactions on Geoscience and Remote Sensing, 54(2), 783-794.

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image

classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6),

610-621. doi:10.1109/TSMC.1973.4309314

Ho, H.-N., Kim, K.-D., Park, Y.-S., & Lee, J.-J. (2013). An efficient image-based damage

detection for cable surface in cable-stayed bridges. NDT & E International, 58, 18-

23. doi:https://doi.org/10.1016/j.ndteint.2013.04.006

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (March 2013). Applied logistic

regression: John Wiley & Sons, Inc.

Huo, G., Yang, S. X., Li, Q., & Zhou, Y. (2017). A robust and fast method for sidescan

sonar image segmentation using nonlocal despeckling and active contour model.

IEEE Transactions on Cybernetics, 47(4), 855-872.

doi:10.1109/TCYB.2016.2530786

Isawa, K., Nakayama, S., Ikeda, M., Takagi, S., Tosaka, S., & Kasai, N. (2005). Robotic

3D SQUID imaging system for practical nondestructive evaluation applications.

Physica C: Superconductivity, 432(3-4), 182-192.

Johnson, W. R., Wilson, D. W., Bearman, G. H., & Backlund, J. (2004). An all-reflective

computed tomography imaging spectrometer. Paper presented at the Instruments,

Science, and Methods for Geospace and Planetary Remote Sensing.

https://doi.org/10.1016/j.ndteint.2013.04.006

67

Kaiser, P. K., & Boynton, R. M. (1996). Human Color Vision (2 ed.). Washington DC:

Optical Society of America.

Kaseko, M. S., & Ritchie, S. G. (1993). A neural network-based methodology for pavement

crack detection and classification. Transportation Research Part C: Emerging

Technologies, 1(4), 275-291.

Kim, H., Sim, S., & Cho, S. (2015). Unmanned aerial vehicle (UAV)-powered concrete

crack detection based on digital image processing. Paper presented at the 6th

International Conference on Advances in Experimental Structural Engineering 11th

International Workshop on Advanced Smart Materials and Smart Structures

Technology IL, USA.

Kimball, S., & Mattis, P. (2019). GIMP (Version 2.10.12): GIMP Development Team.

Retrieved from https://www.gimp.org

Lattanzi, D. A., & Miller, G. (2013). A prototype imaging and visualization system for

robotic infrastructure inspection. Paper presented at the Structures Congress 2013:

Bridging Your Passion with Your Profession, Pittsburgh, Pennsylvania, United

States.

Lee, J., Weger, R. C., Sengupta, S. K., & Welch, R. M. (1990). A neural network approach

to cloud classification. IEEE Transactions on Geoscience and Remote Sensing,

28(5), 846-855. doi:10.1109/36.58972

Liu, Z., Suandi, S. A., Ohashi, T., & Ejima, T. (2002). Tunnel crack detection and

classification system based on image processing. Paper presented at the Machine

Vision Applications in Industrial Inspection X.

https://www.gimp.org/

68

Loncan, L., De Almeida, L. B., Bioucas-Dias, J. M., Briottet, X., Chanussot, J., Dobigeon,

N., . . . Simoes, M. (2015). Hyperspectral pansharpening: A review. IEEE

Geoscience and remote sensing magazine, 3(3), 27-46.

Lu, G., & Fei, B. (2014). Medical hyperspectral imaging: a review. Journal of biomedical

optics, 19(1), 010901.

Mondal, A., Kundu, S., Chandniha, S., Shukla, R., & Mishra, P. (2012). Comparison of

support vector machine and maximum likelihood classification technique using

satellite imagery. International Journal of Remote Sensing and GIS, 1, 116-123.

Morris, T. (2004). Computer vision and image processing: Basingstoke : Palgrave

Macmillan.

Ni, F., Zhang, J., & Chen, Z. (2019). Pixel‐ level crack delineation in images with

convolutional feature fusion. Structural Control and Health Monitoring, 26(1),

e2286.

Nouri, D., Lucas, Y., & Treuillet, S. (2013). Calibration and test of a hyperspectral imaging

prototype for intra-operative surgical assistance (Vol. 8676): Progress in

Biomedical Optics and Imaging - Proceedings of SPIE.

Oliveira, H., & Correia, P. L. (2009, 24-28 Aug. 2009). Automatic road crack segmentation

using entropy and image dynamic thresholding. Paper presented at the 2009 17th

European Signal Processing Conference.

Olsen, M., Chen, Z., Hutchinson, T., & Kuester, F. (2012). Optical techniques for

multiscale damage assessment. Geomatics, Natural Hazards and Risk, 4, 1-22.

doi:10.1080/19475705.2012.670668

Olsen, M. J., Barbosa, A., Burns, P., Kashani, A., Wang, H., Veletzos, M., . . . Federal

Highway, A. (2016). Assessing, coding, and marking of highway structures in

69

emergency situations : volume 3 : coding and marking guidelines (Vol. 3).

Washington, D.C.: Transportation Research Board.

Osowski, S., Siwek, K., & Markiewicz, T. (2004, 11-11 June 2004). MLP and SVM

networks - a comparative study. Paper presented at the Proceedings of the 6th

Nordic Signal Processing Symposium, 2004. NORSIG 2004.

Ozer, E., Feng, M. Q., & Feng, D. (2015). Citizen sensors for SHM: Towards a

crowdsourcing platform. Sensors, 15(6), 14591-14614.

Palhang, M. b. K. A. M. E. M. (2009). Generalization performance of support vector

machine and neural network in runoff modeing. Expert System with Applications,

36, 7624-4174. doi:10.1016/j.eswa.2008.09.053

Paola, J. D., & Schowengerdt, R. A. (1995). A detailed comparison of backpropagation

neural network and maximum-likelihood classifiers for urban land use

classification. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 981-

996. doi:10.1109/36.406684

Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls,

G., . . . Trianni, G. (2009). Recent advances in techniques for hyperspectral image

processing. Remote Sensing of Environment, 113, S110-S122.

doi:https://doi.org/10.1016/j.rse.2007.07.028

Prasanna, P., Dana, K. J., Gucunski, N., Basily, B. B., La, H. M., Lim, R. S., & Parvardeh,

H. (2014). Automated crack detection on concrete bridges. IEEE Transactions on

automation science and engineering, 13(2), 591-599.

Richards, J. A. (2013). Remote sensing digital image analysis: An introduction (Vol. 5;):

Springer Publishing Company, Incorporated.

https://doi.org/10.1016/j.rse.2007.07.028

70

Richards, J. A., & Jia, X. (1999). Remote sensing digital image analysis: An introduction:

Springer-Verlag.

Ritchie, S. G. (1987). Expert systems in pavement management. Transportation Research

Part A: General, 21(2), 145-152. doi:https://doi.org/10.1016/0191-2607(87)90007-

0

Ritchie Stephen, G. (1990). Digital imaging concepts and applications in pavement

management. Journal of Transportation Engineering, 116(3), 287-298.

doi:10.1061/(ASCE)0733-947X(1990)116:3(287)

Roh, Y., Heo, G., & Whang, S. E. (2019). A survey on data collection for machine learning:

a big data-ai integration perspective. IEEE Transactions on Knowledge and Data

Engineering.

Sakagami, T. (2015). Remote nondestructive evaluation technique using infrared

thermography for fatigue cracks in steel bridges. Fatigue & Fracture of

Engineering Materials & Structures, 38(7), 755-779. doi:10.1111/ffe.12302

Shimin Tang, & Chen, Z. (2017). Detection of complex concrete damage – A deep learning

framework and performance evaluation. Paper presented at the International

Workshop on Computing for Civil Engineering (IWCCE), Seattle, WA.

Shrivakshan, G. T., & Chandrasekar, C. (2012). A comparison of various edge detection

techniques used in image processing. International Journal of Computer Science

Issues, 9, 269-276.

Siesler, H. W., Ozaki, Y., Kawata, S., & Heise, H. M. (2008). Near-infrared spectroscopy:

principles, instruments, applications: John Wiley & Sons.

https://doi.org/10.1016/0191-2607(87)90007-0
https://doi.org/10.1016/0191-2607(87)90007-0

71

Song, J., & Lyu, M. R. (2005). A Hough transform based line recognition method utilizing

both parameter space and image space. Pattern Recognition, 38(4), 539-552.

doi:https://doi.org/10.1016/j.patcog.2004.09.003

Stabile, T. A., Giocoli, A., Perrone, A., Palombo, A., Pascucci, S., & Pignatti, S. (2012). A

new joint application of non-invasive remote sensing techniques for structural

health monitoring. Journal of Geophysics and Engineering, 9(4), S53-S63.

doi:10.1088/1742-2132/9/4/s53

Tomoyuki, Y., Shingo, N., & Shuji, H. (2008, 3-5 June 2008). An efficient crack detection

method using percolation-based image processing. Paper presented at the 2008 3rd

IEEE Conference on Industrial Electronics and Applications.

Tung, P.-C., Hwang, Y.-R., & Wu, M.-C. (2002). The development of a mobile manipulator

imaging system for bridge crack inspection. Automation in construction, 11(6), 717-

729.

Vaghefi, K., Ahlborn Theresa, M., Harris Devin, K., & Brooks Colin, N. (2015). Combined

imaging technologies for concrete bridge deck condition assessment. Journal of

Performance of Constructed Facilities, 29(4), 04014102.

doi:10.1061/(ASCE)CF.1943-5509.0000465

Valença, J., Dias-da-Costa, D., Gonçalves, L., Júlio, E., & Araújo, H. (2014). Automatic

concrete health monitoring: assessment and monitoring of concrete surfaces.

Structure and Infrastructure Engineering, 10(12), 1547-1554.

doi:10.1080/15732479.2013.835326

Vapnik, V. N. (1998). Statistical learning theory. Wiley-Interscience.

https://doi.org/10.1016/j.patcog.2004.09.003

72

Waldbjørn, J., Høgh, J., Wittrup-Schmidt, J., Nielsen, M. W., Branner, K., Stang, H., &

Berggreen, C. (2014). Strain and displacement controls by fibre bragg grating and

digital image correlation. Strain, 50(3), 262-273. doi:10.1111/str.12089

Yeum, C. M., & Dyke, S. J. (2015). Vision-based automated crack detection for bridge

inspection. Computer-Aided Civil and Infrastructure Engineering, 30(10), 759-770.

doi:10.1111/mice.12141

Zakeri, H., Nejad, F. M., & Fahimifar, A. (2017). Image based techniques for crack

detection, classification and quantification in asphalt pavement: A review. Archives

of Computational Methods in Engineering, 24(4), 935-977.

Zhang, C., & Elaksher, A. (2012). An unmanned aerial vehicle‐based imaging system for

3D measurement of unpaved road surface distresses 1. Computer‐Aided Civil and

Infrastructure Engineering, 27(2), 118-129.

Zhang, J., & Modestino, J. W. (1989). A markov random field model-based approach to

image interpretation (Vol. 1199): SPIE.

Zhang, L., Yang, F., Zhang, Y. D., & Zhu, Y. J. (2016). Road crack detection using deep

convolutional neural network. Paper presented at the 2016 IEEE international

conference on image processing (ICIP).

Zhang, Q., Tian, Y., Yang, Y., & Pan, C. (2014). Automatic spatial–spectral feature

selection for hyperspectral image via discriminative sparse multimodal learning.

IEEE Transactions on Geoscience and Remote Sensing, 53(1), 261-279.

73

VITA

Sameer Aryal was born in Chitwan, Nepal on April 13th, 1992. He joined the Himalaya

College of Engineering to pursue his Civil Engineering Studies. He was awarded a

Bachelor of Engineering degree from Tribhuwan University in April 2016.

Sameer joined the University of Missouri – Kansas City (UMKC) in the spring term of

2018 to pursue his Master’s degree in Civil Engineering. He started working as a

Graduate Research Assistant in the Civil and Mechanical Engineering Department under

the supervision of Dr. ZhiQiang Chen. He pursued his research in the field of structural

health assessment using regular RGB images and Hyperspectral images.

74

Appendix-1

Here within appendix-1, all the images that were used in this research along with their

respective mask have been presented. In the first section, 16 images on different artifacts

on asphalts surface are presented followed by 34 images of the concrete surface with

different artifacts on it.

75

Asphalt Surface

76

77

78

79

f

80

Concrete surface

81

82

83

84

85

86

87

88

89

90

91

92

Appendix 2

In appendix 2, the MatLab codes written for the different sections of the total workflow of

this research has been presented. To begin with, two functions for reading the hypercube

and high-resolution gray image of the respective hyperspectral images is presented.

Spectral feature extraction of the hyperspectral image with the assistance of the mask

image, dimensionality reduction using Principal Component Analysis (PCA), grayscale

feature extraction using Histogram of Oriented Gradient (HOG) and dataset preparation

for training and testing the SVM classifer respectively has been presented next. Finally,

this section is concluded with detailed code for extraction of results for classification like

the confusion matrix, ROC and PR- curves and summary statistics of the classifier.

93

Function to read gray scale image

function [img] = ReadGray(count, Dir_Mask,

FullDir_Mask)

 I =

fullfile(Dir_Mask,FullDir_Mask(count).name);

 img = imread(I);

 img = img(:,:,2);

end

Function to read hyperspectral image

function [imgHyper] = ReadHyper(count,

Dir_Hyperspectral, FullDir_Hyperspectral)

 IH =

fullfile(Dir_Hyperspectral,FullDir_Hyperspectral(count)

.name);

 imgHyper = double(imread(IH));

end

Extracting the spectral profile and HOG features of different classes on concrete

and asphalt surface.

% Defining directory with hyperspectral cube

Dir_Hyperspectral =

'C:\Users\sayd8\Documents\DataSet_Complex\Concrete\50_5

0';

FullDir_Hyperspectral =

dir(fullfile(Dir_Hyperspectral,'Auto*.tiff'));

% Defining directory with respective mask

Dir_Mask =

'C:\Users\sayd8\Documents\DataSet_Complex\Concrete\Mask

';

FullDir_Mask = dir(fullfile(Dir_Mask,'Auto*.jpg'));

% Defining directory for respective gray scale image

Dir_Gray =

'C:\Users\sayd8\Documents\DataSet_Complex\Concrete\Gray

_Scale';

FullDir_Gray = dir(fullfile(Dir_Gray,'Auto*.jpg'));

% Assign counter values

R = 1; C = 1;

94

counter_row = 1; counter_col = 1;

cellSize = 20;

Cz = 0; Wz = 0; Oz = 0; Dz = 0;Gz = 0;Az = 0;

Cx = 1; Wx = 1; Ox = 1; Dx = 1;Gx = 1;Ax = 1;

for count = 1:size(FullDir_Mask, 1)

 % Reading hyperspectral cube

 hyperspectral_image = ReadHyper(count,

Dir_Hyperspectral, FullDir_Hyperspectral);

 % Reading respective mask

 Mask = ReadGray(count, Dir_Mask, FullDir_Mask);

 % Reading grayscale image

 GrayImage = ReadGray(count, Dir_Gray,

FullDir_Gray);

 im = im2single(GrayImage); % Converting gray

image to single format

 % Extracting HOG feature from gray image

 hog = vl_hog(im, cellSize, 'Verbose');

 for row_block = 1 : 20 : 1000 %Working on 20*20

block of mask image

 for col_block = 1 : 20 : 1000

 for ct_row = R : R+19

 for ct_column = C : C+19;

 % Count number of considered pixel of respective

class in each block.

 if Mask(ct_row, ct_column) == 0 ;

 Cz = Cz + 1; %Crack pixel

counter

 else if Mask(ct_row, ct_column) == 47;

 Wz = Wz + 1; % Water pixel

counter

 else if Mask(ct_row, ct_column) == 22;

 Oz = Oz + 1; % Oil pixel

counter

 else if Mask(ct_row, ct_column) == 182;

 Dz = Dz + 1; % Dry vegetation

pixel counter

 else if Mask(ct_row, ct_column) ==

113;

 Az = Az + 1; % Artificial color

pixel counter

95

 else if Mask(ct_row, ct_column) ==

236;

 Gz = Gz + 1; % Green vegetation

pixel counter

 end

 end

 end

 end

 end

 end

 end

 end

% Extracting spectrum profile from the hyperspectral

cube and HOG features

% From grayscale image for the class with more than 200

pixels in each block

% If the number of cracked pixels is greater than 2000

% Spectral profile for class crack

 if Cz > 200 ; Crack_Spectrum1{Cx ,1} =

hyperspectral_image(counter_row,counter_col,:);

 % HOG feature for class

crack

 Crack_Hog1{Cx,1} =

hog(counter_row,counter_col,:);

 Cx = Cx + 1;

 % Spectral profile for

class water

 else if Wz > 200 ; Water_Spectrum1{Wx,1} =

hyperspectral_image(counter_row,counter_col,:);

 % HOG feature for class

water

 Water_Hog1{Wx,1} =

hog(counter_row,counter_col,:);

 Wx = Wx + 1;

 % Spectral profile for

class Oil

 else if Oz > 200 ; Oil_Spectrum1{Ox,1} =

hyperspectral_image(counter_row,counter_col,:);

 % HOG feature for class Oil

 Oil_Hog1{Ox,1} =

hog(counter_row,counter_col,:);

 Ox = Ox + 1;

 % Spectral profile for

class dry vegetation

96

 else if Dz > 200 ; Dry_Spectrum1{Dx,1} =

hyperspectral_image(counter_row,counter_col,:);

 % HOG feature for class dry

vegetation

 Dry_Hog1{Dx,1} =

hog(counter_row,counter_col,:);

 Dx = Dx + 1;

 % Spectral profile for

class artificial color

 else if Az > 200 ; Color_Spectrum1{Ax,1} =

hyperspectral_image(counter_row,counter_col,:);

 % HOG feature for class

artificial color

 Color_Hog1{Ax,1} =

hog(counter_row,counter_col,:);

 Ax = Ax + 1;

 % Spectral profile for

class green vegetation

 else if Gz > 200 ; Green_Spectrum1{Gx,1} =

hyperspectral_image(counter_row,counter_col,:);

 % HOG features for class

green vegetation

 Green_Hog1{Gx,1} =

hog(counter_row,counter_col,:);

 Gx = Gx + 1;

 end

 end

 end

 end

 end

 end

 Cz= 0; Wz=0; Oz=0; Dz=0; Gz=0; Az=0;% resetting

the pixel counter

 C = C +20; % Moving the block along the

row to nect set of 20 pixels

 counter_col = counter_col+1;

 end

 R = R + 20; % Moving the block to next row of 20

pixels.

 C = 1;

 counter_col = 1;

 end

 R = 1;

 C = 1;

end

97

% Apppending spectral and HOG features obtained from

concrete and asphalt surface

%Class Artificial Color

Color_Spectrum = [Color_Spectrum1 ; Color_Spectrum2];%

Spectral Feature

Color_Hog = [Color_Hog1; Color_Hog2];% HOG Feature

%Class Crack

Crack_Spectrum = [Crack_Spectrum1;

Crack_Spectrum2];%Spectral Features

Crack_Hog = [Crack_Hog1; Crack_Hog2];% HOG Features

%Class Dry Vegetation

Dry_Spectrum = [Dry_Spectrum1]; % Spectral Feature

Dry_Hog = [Dry_Hog1];% HOG Feature

% Class Green vegetation

Green_Spectrum = [Green_Spectrum1;

Green_Spectrum2]; %Spectral Feature

Green_Hog = [Green_Hog1 ; Green_Hog2];% HOG Feature

%Class Water

Water_Spectrum = [Water_Spectrum1(1:5000);

Water_Spectrum2];% Spectral Feature

Water_Hog = [Water_Hog1(1:5000) ; Water_Hog2];% HOG

Feature

% Class Oil

Oil_Spectrum = [Oil_Spectrum1(1:5000);

Oil_Spectrum2];%SpectralFeature

Oil_Hog = [Oil_Hog1(1:5000) ; Oil_Hog2];%HOG Feature

%Re-shuffling the obtained feature vector for each

class

Color_Train = cell2mat(Color_Spectrum);

Color_Train =

reshape(Color_Train,size(Color_Train,1)*1,139);

Color_HoGTrain = cell2mat(Color_Hog);

Color_HoGTrain =

reshape(Color_HoGTrain,size(Color_HoGTrain,1)*1,31);

Crack_train = cell2mat(Crack_Spectrum);

Crack_train =

reshape(Crack_train,size(Crack_train,1)*1,139);

Crack_HoGTrain = cell2mat(Crack_Hog);

Crack_HoGTrain =

reshape(Crack_HoGTrain,size(Crack_HoGTrain,1)*1,31);

98

Dry_Train = cell2mat(Dry_Spectrum);

Dry_Train = reshape(Dry_Train,size(Dry_Train,1)*1,139);

Dry_HoGTrain = cell2mat(Dry_Hog);

Dry_HoGTrain =

reshape(Dry_HoGTrain,size(Dry_HoGTrain,1)*1,31);

Green_Train = cell2mat(Green_Spectrum);

Green_Train =

reshape(Green_Train,size(Green_Train,1)*1,139);

Green_HoGTrain = cell2mat(Green_Hog);

Green_HoGTrain =

reshape(Green_HoGTrain,size(Green_HoGTrain,1)*1,31);

Water_Train = cell2mat(Water_Spectrum);

Water_Train =

reshape(Water_Train,size(Water_Train,1)*1,139);

Water_HoGTrain = cell2mat(Water_Hog);

Water_HoGTrain =

reshape(Water_HoGTrain,size(Water_HoGTrain,1)*1,31);

Oil_Train = cell2mat(Oil_Spectrum);

Oil_Train = reshape(Oil_Train,size(Oil_Train,1)*1,139);

Oil_HoGTrain = cell2mat(Oil_Hog);

Oil_HoGTrain =

reshape(Oil_HoGTrain,size(Oil_HoGTrain,1)*1,31);

% Re-shuffling the obtained spectral feature for

concrete and asphalt surfaces respectively.

Concrete_Train = cell2mat(Concrete_Spectrum);

Concrete_Train =

reshape(Concrete_Train,size(Concrete_Train,1)*1,139);

Asphalt_Train = cell2mat(Asphalt_Spectrum);

Asphalt_Train =

reshape(Asphalt_Train,size(Asphalt_Train,1)*1,139);

% HOG feature extraction for Concrete and asphalt

surface

Dir_Concrete =

'C:\Users\sayd8\Documents\DataSet_Complex\Plain';

FullDir_Concrete =

dir(fullfile(Dir_Concrete,'Auto*.jpg'));

99

Dir_Asphalt =

'C:\Users\sayd8\Documents\DataSet_Complex\Plain\Asphalt

';

FullDir_Asphalt =

dir(fullfile(Dir_Asphalt,'Auto*.jpg'));

Cx = 1;

for count = 1 : 9

 Asphalt_img = ReadGray(count, Dir_Asphalt,

FullDir_Asphalt);

 Concrete_img = ReadGray(count, Dir_Concrete,

FullDir_Concrete);

 cellSize = 20; %HOG feature are extracted in 20*20

block of 1000*1000 gray image

 im1 = im2single(Concrete_img);

 im2 = im2single(Asphalt_img);

 hog1 = vl_hog(im1, cellSize, 'Verbose');

 hog2 = vl_hog(im2, cellSize, 'Verbose');

 % Extracting the HOG feature of every third pixel

in 50*50 dimensional space.

 for row = 1 : 3 : 50

 for col = 1 : 3 : 50

 Concrete_Hog{Cx ,1} = hog1(row,col,:);

 Asphalt_Hog{Cx ,1} = hog2(row,col,:);

 Cx = Cx + 1;

 end

 end

end

% Re-shuffling the extracted HOG feature for concrete

and asphalt surface respectively.

Concrete_HoGTrain = cell2mat(Concrete_Hog);

Concrete_HoGTrain =

reshape(Concrete_HoGTrain,size(Concrete_HoGTrain,1)*1,3

1);

Asphalt_HoGTrain = cell2mat(Asphalt_Hog);

Asphalt_HoGTrain =

reshape(Asphalt_HoGTrain,size(Asphalt_HoGTrain,1)*1,31)

;

100

Principal Component Analysis

% Principal Component Analysis for Spectral Dataset

% Division of respective dataset into training and

testing

%PCA for Class artificial Color

[x_row x_col] = size(Color_Train);

m = mean(Color_Train');

d = Color_Train - repmat(m',1,139);

X = PCA(d);

Color_Train =

Color_Train(randperm(size(Color_Train,1)),:); % PC data

reshuffling

Color_TrainingSet = Color_Train(1:1568,:); %Training

set for PC of Class Artificial Color

Color_Test = Color_Train(1569:size(Color_Train),:); %

Testing set for PC of Class Artificial Color

%PCA for Class Crack

[x_row x_col] = size(Crack_train);

m = mean(Crack_train');

d = Crack_train - repmat(m',1,139);

X = PCA(d);

Crack_train =

Crack_train(randperm(size(Crack_train,1)),:);% PC data

re-shuffling

Crack_TrainingSet = Crack_train(1:595,:); % Training

set for PC of Class Crack

Crack_Test = Crack_train(596:size(Crack_train),:); %

Testing set for PC of class Crack

% PCA for Class Green Vegetation

[x_row x_col] = size(Green_Train);

m = mean(Green_Train');

d = Green_Train - repmat(m',1,139);

X = PCA(d);

Green_Train =

Green_Train(randperm(size(Green_Train,1)),:); %PC data

re-shuffling

Green_TrainingSet = Green_Train(1:1328,:); % Training

set for PC of Class Green Vegetation

Green_Test = Green_Train(1329:size(Green_Train),:);%

Testing set for PC of Green Vegetation

101

% PCA of Class Water

[x_row x_col] = size(Water_Train);

m = mean(Water_Train');

d = Water_Train - repmat(m',1,139);

X = PCA(d);

Water_Train =

Water_Train(randperm(size(Water_Train,1)),:);

 % PC data re shuffling

Water_TrainingSet = Water_Train(1:2033,:);

 % Training set for PC of Class Water

Water_Test = Water_Train(2034:size(Water_Train),:);

% Testing set for PC of class Water

%PCA of Class Concrete

[x_row x_col] = size(Concrete_Train);

m = mean(Concrete_Train');

d = Concrete_Train - repmat(m',1,139);

X = PCA(d);

Concrete_Train =

Concrete_Train(randperm(size(Concrete_Train,1)),:);

% PC data reshuffling

Concrete_TrainingSet = Concrete_Train(1:651,:);

 % Training set for PC of class concrete

Concrete_Test =

Concrete_Train(652:size(Concrete_Train),:);

 % Testing set for PC of class Concrete

%PCA of Class Asphalt

[x_row x_col] = size(Asphalt_Train);

m = mean(Asphalt_Train');

d = Asphalt_Train - repmat(m',1,139);

X = PCA(d);

Asphalt_Train =

Asphalt_Train(randperm(size(Asphalt_Train,1)),:); % PC

data reshuffling

Asphalt_TrainingSet = Asphalt_Train(1:651,:); %

Trainig set for PC of class Asphalt

Asphalt_Test =

Asphalt_Train(652:size(Asphalt_Train),:);% Testing set

for PC of class Asphalt

%PCA of Class Dry Vegetation

[x_row x_col] = size(Dry_Train);

m = mean(Dry_Train');

d = Dry_Train - repmat(m',1,139);

102

X = PCA(d);

Dry_Train = Dry_Train(randperm(size(Dry_Train,1)),:);%

Re-shuffling of data

Dry_TrainingSet = Dry_Train(1:239,:); % Training set

for PC of class dry Vegetation

Dry_Test = Dry_Train(240:size(Dry_Train),:); % Testing

set for PC of class dry vegetation

% Training and testing set formation for Hog Data Set

% Asphalt HoG dataset

Asphalt_Train =

Asphalt_HoGTrain(randperm(size(Asphalt_HoGTrain,1)),:);

Asphalt_TrainingHoG = Asphalt_Train(1:651,:);

% Training Set

Asphalt_TestingHog = Asphalt_Train(652:2601,:);

% Testing Set

%Color HoG Dataset

Color_Train =

Color_HoGTrain(randperm(size(Color_HoGTrain,1)),:);

Color_TrainingHoG = Color_Train(1:1568,:); % Training

Set

Color_TestingHoG = Color_Train(1569:6273,:); % Testing

Set

%Concrete HoG DataSet

Concrete_Train =

Concrete_HoGTrain(randperm(size(Concrete_HoGTrain,1)),:

);

Concrete_TrainingHoG = Concrete_Train(1:651,:); %

Training Set

Concrete_TestingHoG = Concrete_Train(652:2601,:); %

Testting Set

%Crack HoG DataSet

Crack_Train =

Crack_HoGTrain(randperm(size(Crack_HoGTrain,1)),:);

Crack_TrainingHoG = Crack_Train(1:595,:); %Training Set

Crack_TestingHoG = Crack_Train(596:2377,:); % Testing

Set

%Dry HoG DataSet

DRY_Train =

Dry_HoGTrain(randperm(size(Dry_HoGTrain,1)),:);

103

Dry_TrainingHoG = DRY_Train(1:240,:); % Training Set

Dry_TestingHoG = DRY_Train(241:957,:);% Testing Set

%Oil HoG DataSet

Oil_Train =

Oil_HoGTrain(randperm(size(Oil_HoGTrain,1)),:);

Oil_TrainingHoG = Oil_Train(1:1804,:); % Training Set

Oil_TestingHoG = Oil_Train(1805:7214,:);% Testing Set

%Water HoG DataSet

Water_Train =

Water_HoGTrain(randperm(size(Water_HoGTrain,1)),:);

Water_TrainingHoG = Water_Train(1:2033,:); % Training

Set

Water_TestingHoG = Water_Train(2034:8132,:); % Testing

Set

%Green HoG DataSet

Green_Train =

Green_HoGTrain(randperm(size(Green_HoGTrain,1)),:);

Green_TrainingHoG = Green_Train(1:1328,:); % Training

Set

Green_TestingHoG = Green_Train(1329:5312,:); % Testing

Set

Appending Training set from each class and creating the

label for the training set to feed into the classifier

Training_Set = [Concrete_TrainingSet;

Asphalt_TrainingSet; Color_TrainingSet;

Crack_TrainingSet; Dry_TrainingSet; Green_TrainingSet;

Water_TrainingSet; Oil_TrainingSet];

Label = cell(size(Training_Set,1),1);

Label(1:size(Concrete_TrainingSet,1)) = {'Concrete'};

Label((size(Concrete_TrainingSet,1)+1):(size(Asphalt_Tr

ainingSet,1)+size(Concrete_TrainingSet,1))) =

{'Asphalt'};

Label((size(Concrete_TrainingSet,1)+size(Asphalt_Traini

ngSet,1)+1) :

size(Concrete_TrainingSet,1)+size(Asphalt_TrainingSet,1

)+ size(Color_TrainingSet,1)) = {'Artificial Color'};

Label((size(Concrete_TrainingSet,1)+size(Asphalt_Traini

ngSet,1)+ size(Color_TrainingSet,1)+1) :

size(Concrete_TrainingSet,1)+...

104

 size(Asphalt_TrainingSet,1)+

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)) =

{'Crack'};

Label((size(Concrete_TrainingSet,1)+

size(Asphalt_TrainingSet,1)+

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1))+1

: size(Concrete_TrainingSet,1)...

 + size(Asphalt_TrainingSet,1)+

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+siz

e(Dry_TrainingSet,1)) = {'Dry Vegetation'};

Label((size(Concrete_TrainingSet,1)+

size(Asphalt_TrainingSet,1)+

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1))+

(size((Dry_TrainingSet),1))+ 1 :

size(Concrete_TrainingSet,1)+...

 size(Asphalt_TrainingSet,1)+

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+siz

e((Dry_TrainingSet),1)+ size(Green_TrainingSet,1)) =

{'Green vegetation'};

Label((size(Concrete_TrainingSet,1)+size(Asphalt_Traini

ngSet,1)+

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+

size(Dry_TrainingSet,1)+size(Green_TrainingSet,1)+1):

size(Concrete_TrainingSet,1)...

 +size(Asphalt_TrainingSet,1)+

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+

size(Dry_TrainingSet,1)+

size(Green_TrainingSet,1)+size(Water_TrainingSet,1)) =

{'Water'};

Label((size(Concrete_TrainingSet,1)+size(Asphalt_Traini

ngSet,1)+

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+siz

e(Dry_TrainingSet,1)+size(Green_TrainingSet,1)+size(Wat

er_TrainingSet,1)...

 +1) :

(size(Concrete_TrainingSet,1)+size(Asphalt_TrainingSet,

1)+

size(Color_TrainingSet,1)+size(Crack_TrainingSet,1)+siz

e(Dry_TrainingSet,1)+

size(Green_TrainingSet,1)+size(Water_TrainingSet,1)+siz

e(Oil_TrainingSet,1)))= {'Oil'};

% Training the SVM Classifier for the hyperspectral

data set

Tic % record time span for training the classifier

105

X = Training_Set;

Y = Label;

temp =

templateSVM('KernelFunction','rbf','KernelScale','auto'

,'BoxConstrain',1);

options = statset('UseParallel',true);

 [PMdl] =

fitcecoc(X,Y,'coding','onevsone','Learners',temp,'kFold

',10,...

 'ClassName',{'Concrete','Asphalt','Artificial

Color','Crack','Dry Vegetation',...

 'Green

vegetation','Water','Oil'},'FitPosterior',true,'CrossVa

l','on');

 Mdl = PMdl.Trained{1};

 toc

 %Validating the Classifier

 ValiInds = test(PMdl.Partition); % Extract the test

indices

XVali = Asphalt_Train(ValiInds,:);

YVali = Y(ValiInds,:);

[labels,~,~,Posterior] = predict(Mdl,XVali);

idx = randsample(sum(ValiInds),60); %Number of data to

cross validate the performance of classifer

table(YVali(idx),labels(idx),Posterior(idx,:),...

'VariableNames',{'TrueLabels','PredictedLabels','Poster

ior'})

% Appending the testing set of respective classes and

creating ground truth for validating the classifier.

TestingSet = [Concrete_Test; Asphalt_Test; Color_Test;

Crack_Test;Dry_Test; Green_Test; Water_Test; Oil_Test];

GroundTruth = cell(size(TestingSet,1),1);

GroundTruth(1:size(Concrete_Test,1)) = {'Concrete'};

GroundTruth((size(Concrete_Test,1)+1):(size(Asphalt_Tes

t,1)+size(Concrete_Test,1))) = {'Asphalt'};

GroundTruth((size(Concrete_Test,1)+size(Asphalt_Test,1)

+1) : size(Concrete_Test,1)+size(Asphalt_Test,1)+

size(Color_Test,1)) = {'Artificial Color'};

106

GroundTruth((size(Concrete_Test,1)+size(Asphalt_Test,1)

+ size(Color_Test,1)+1) : size(Concrete_Test,1)+...

 size(Asphalt_Test,1)+

size(Color_Test,1)+size(Crack_Test,1)) = {'Crack'};

GroundTruth((size(Concrete_Test,1)+

size(Asphalt_Test,1)+

size(Color_Test,1)+size(Crack_Test,1))+1 :

size(Concrete_Test,1)...

 + size(Asphalt_Test,1)+

size(Color_Test,1)+size(Crack_Test,1)+size(Dry_Test,1))

= {'Dry Vegetation'};

GroundTruth((size(Concrete_Test,1)+

size(Asphalt_Test,1)+

size(Color_Test,1)+size(Crack_Test,1))+size(Dry_Test,1)

+ 1 : size(Concrete_Test,1)+...

 size(Asphalt_Test,1)+

size(Color_Test,1)+size(Crack_Test,1)+size(Dry_Test,1)+

size(Green_Test,1)) = {'Green vegetation'};

GroundTruth((size(Concrete_Test,1)+size(Asphalt_Test,1)

+ size(Color_Test,1)+size(Crack_Test,1)+

size(Dry_Test,1)+ size(Green_Test,1)+1):

size(Concrete_Test,1)...

 +size(Asphalt_Test,1)+

size(Color_Test,1)+size(Crack_Test,1)+size(Dry_Test,1)+

size(Green_Test,1)+size(Water_Test,1)) = {'Water'};

GroundTruth((size(Concrete_Test,1)+size(Asphalt_Test,1)

+

size(Color_Test,1)+size(Crack_Test,1)+size(Dry_Test,1)+

size(Green_Test,1)+size(Water_Test,1)...

 +1) : (size(Concrete_Test,1)+size(Asphalt_Test,1)+

size(Color_Test,1)+size(Crack_Test,1)+ size(Dry_Test,1)

+size(Green_Test,1)+size(Water_Test,1)+size(Oil_Test,1)

))= {'Oil'};

[Class,~,~,Posterior] = predict(Mdl,TestingSet);

% Classification

C = confusionmat(GroundTruth,Class); % Confusion Matrix

% plotting the true and predicted class after

classification

table(GroundTruth,Class,'VariableNames',{'TrueLabels','

PredictedLabels'})

% Calculation of precision and recall for single data.

% Calculation of Recall for each class

107

for i = 1:size(C,1)

 recall(i) = C(i,i)/sum(C(i,:));

end

%Calculation of Precision for each Class

for i = 1:size(C,1)

 precision(i) = C(i,i)/sum(C(:,i));

end

%Calculation of F-measure

for i = 1:size(C,1)

 f_Score(i) =

(2*recall(i)*precision(i))/(precision(i) + recall(i));

end

%Calculating ROC Curve For EACH Individual class and

plotting it together.

GT_Conc =

double(strcmp(GroundTruth,'Concrete'));%Ground Truth

for Class Concrete

PredictedConc =double(strcmp(Class,'Concrete'));

GT_Asphalt =

double(strcmp(GroundTruth,'Asphalt'));%Ground Truth for

Class Asphalt

PredictedAsphalt =double(strcmp(Class,'Asphalt'));

GT_Color = double(strcmp(GroundTruth,'Artificial

Color'));%Ground Truth for Class Color

 PredictedColor =double(strcmp(Class,'Artificial

Color'));

GT_Crack = double(strcmp(GroundTruth,'Crack'));%Ground

Truth for Class Crack

PredictedCrack =double(strcmp(Class,'Crack'));

GT_Veg = double(strcmp(GroundTruth,'Green

vegetation'));%Ground Truth for Class Green vegetation

 PredictedVeg =double(strcmp(Class,'Green

vegetation'));

GT_Water = double(strcmp(GroundTruth,'Water'));%Ground

Truth for Class Water

 PredictedWater =double(strcmp(Class,'Water'));

GT_Oil = double(strcmp(GroundTruth,'Oil'));%Ground

Truth for Class Oil

PredictedOil =double(strcmp(Class,'Oil'));

GT_Dry = double(strcmp(GroundTruth,'Dry

Vegetation'));%Ground Truth for Class Dry Vegetation

PredictedDry =double(strcmp(Class,'Dry Vegetation'));

108

%Plotting of ROc Curve

[XConc,YConc,~,AUC_Conc,OPTROCPT_Conc] =

perfcurve(GT_Conc,Posterior(:,1),1); %Class Concrete

[XAsphalt,YAsphalt,~,AUC_Asphalt,OPTROCPT_Asphalt] =

perfcurve(GT_Asphalt,Posterior(:,2),1);%Class Asphalt

[XColor,YColor,~,AUC_Color,OPTROCPT_Color] =

perfcurve(GT_Color,Posterior(:,3),1);%Class Artificial

Color

[XCrack,YCrack,~,AUC_Crack,OPTROCPT_Crack] =

perfcurve(GT_Crack,Posterior(:,4),1);%Class Crack

[XVeg,YVeg,~,AUC_Veg,OPTROCPT_Veg] =

perfcurve(GT_Veg,Posterior(:,6),1);% Class

GreenVegetation

[XWater,YWater,~,AUC_Water,OPTROCPT_Water] =

perfcurve(GT_Water,Posterior(:,7),1);%Class Water

[XOil,YOil,~,AUC_Oil,OPTROCPT_Oil] =

perfcurve(GT_Oil,Posterior(:,8),1);%Classs Oil

[XDry,YDry,~,AUC_Dry,OPTROCPT_Dry] =

perfcurve(GT_Dry,Posterior(:,5),1);% Class Dry

Vegetation

% Plotting Precision recall curve

[XConc1,YConc1,~, AUCConc1, OPTROCPT_Conc1] =

perfcurve(GT_Conc,Posterior(:,1),1,'xCrit',

'reca','yCrit','prec'); % Class Concrete

[XAsph1,YAsph1,~, AUCAsph1, OPTROCPT_Asph1] =

perfcurve(GT_Asphalt,Posterior(:,2),1,'xCrit',

'reca','yCrit','prec');% Class Asphalt

[XColor1,YColor1,~, AUCColor1, OPTROCPT_Color1] =

perfcurve(GT_Color,Posterior(:,3),1,'xCrit',

'reca','yCrit','prec');% Class Artificial Color

[XCrack1,YCrack1,~, AUCCrack1,OPTROCPT_Crack1] =

perfcurve(GT_Crack,Posterior(:,4),1,'xCrit',

'reca','yCrit','prec');% Class Crack

[XDry1,YDry1,~, AUCDry1, OPTROCPT_Dry1] =

perfcurve(GT_Dry,Posterior(:,5),1,'xCrit',

'reca','yCrit','prec');% Class Dry vegetation

[XGreen1,YGreen1,~, AUCGreen1,OPTROCPT_Green1] =

perfcurve(GT_Veg,Posterior(:,6),1,'xCrit',

'reca','yCrit','prec');% Class Green Vegetation

[XWater1,YWater1,~, AUCWater1,OPTROCPT_Water1] =

perfcurve(GT_Water,Posterior(:,7),1,'xCrit',

'reca','yCrit','prec');% Class Water

109

[XOil1,YOil1,~, AUCOil1,OPTROCPT_Oil1] =

perfcurve(GT_Oil,Posterior(:,8),1,'xCrit',

'reca','yCrit','prec');% Class Oil

