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ABSTRACT 

 

 An urban heat island (UHI) is a phenomenon where the temperatures within cities are 

greater than those of surrounding rural areas due to human activity and physical properties of 

urban surfaces. This effect can cause the annual mean temperature within cities to be up to 3oC 

more than its surroundings. As cities have grown with the migration of people from rural to 

urban areas, the UHI effect has impacted an increasing number of people over time. One 

method that has been investigated as a way to mitigate the UHI phenomenon is to increase the 

albedo in cities, which would reflect a greater amount of solar radiation away from urban 

surfaces compared to conventional materials (e.g. dark asphalt shingles). In this study, we 

utilize the Weather Research and Forecasting (WRF) model to investigate the UHI under 

different scenarios during the same heat wave event (i.e. July 2012) in the Kansas City 

metropolitan area (KCMA). First a suite of sensitivity simulations is performed and analyzed 

in order to determine the best combination of physical parameterizations for subsequent 

scenarios. Next, the difference in urban temperatures from 1938 and 2011 is investigated by 

using land cover data sets representing these two periods of time. Lastly, two cool roof 
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simulations will be performed to determine the effectiveness of this mitigation strategy on 

reducing temperatures within the KCMA. The first scenario will represent “newly installed” 

cool roofs with an albedo of 0.8, and the second will model “aged” cool roofs with an albedo 

of 0.5. Over the past seven decades, temperatures in the KCMA have been exacerbated by the 

increase in city size and impervious surface density. Our results indicate that both newly 

installed and aged cool roof materials are able to mitigate the urban temperatures and the UHI 

effect during a heat wave in July 2012. 
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CHAPTER 1. INTRODUCTION 

In 2007, the United Nations estimated that half of all people on Earth lived in cities 

(Whiting and Unwin 2008), and by 2018, that percentage had grown to 55%, which equates to 

approximately 4.2 billion people globally (United Nations 2018). The same report predicts that 

by 2050, another 2.5 billion people will be added to the current estimate of urban population. 

Due to the movement of people from rural areas to cities, urban land cover surface area has 

also seen substantial gains in recent decades. He et al. (2019) found that urban land cover had 

more than doubled in area between 1992 to 2016, from 274,400 km2 to 621,100 km2, and 

projected that between 2010 and 2030, urban land cover could increase by over 1.5 million 

km2 to in order to support future urban population growth (Seto et al. 2011).  

As the number of those living in cities rises, an increasing proportion of people will be 

affected by climate phenomena that are only experienced in these areas. One example of these 

such events is the urban heat island (UHI) effect. An UHI occurs when the temperature within 

cities becomes significantly warmer than those of the surrounding rural areas due to multiple 

factors, such as human activities and infrastructure (Oke 1982). The UHI effect was first 

studied and described by Luke Howard in the early 1800s as he compared thermometer 

readings from London to those in rural locations around the city (Mills 2008). Recently, a study 

by Bhati and Mohan (2016) analyzed the impact of built-up land cover on temperature over a 

five-day period in Delhi, India using a climate model. In their findings, the researchers 

determined that the UHI effect caused temperatures within the city to be as much as 11oC  

warmer than those in a rural location during the evening. 
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1.1 Causes of urban heat islands 

The formation of an UHI is complex and involves different factors within cities. First, 

physical properties of urban surfaces affect the surface energy balance. One physical property 

of urban surfaces that contributes to the UHI effect is the imperviousness of the materials, e.g. 

asphalt and concrete. These surfaces have a reduced ability to absorb moisture when compared 

to soil (Wang et al. 2018). When precipitation falls on impervious surfaces, a majority of the 

water becomes runoff and is transported away from the city via the storm drainage system. 

Due to this process occurring, moisture in urban locations is reduced, limiting the cooling 

effect from evapotranspiration (Kaiser et al. 2019). The decrease in soil moisture also reduces 

latent heat flux from the surface to the atmosphere, leading to both a gain in the sensible heat 

flux and energy storage in the subsurface in order to maintain the surface energy balance. 

Another physical property of urban surfaces that contributes to the UHI effect is their large 

thermal inertia. Thermal inertia, or thermal admittance, is a measurement that describes how 

well a material stores and releases heat energy. Asphalt and concrete, for example, have a high 

thermal inertia value, which causes heat to be stored readily during the day and released slowly 

at night. Since these surfaces radiate stored heat throughout the night, this surface characteristic 

is an important aspect in explaining why the difference between rural and urban temperatures 

are greatest at night.  

The second major contribution to the UHI effect is the release of heat from anthropogenic 

sources (Oke et al. 2017). First, heat is produced from many different human activities, for 

example, through fuel combustion from vehicles and the use of air conditioners. In a modeling 

study by Salamanca, et al. (2014), researchers found that the use of air conditioning raised 

urban temperatures in Phoenix, AZ over 1oC in certain portions of the city. Second, the 
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production of greenhouse gas emissions from human activities cause a greater amount of 

longwave radiation to be absorbed in our atmosphere and re-emitted back toward Earth’s 

surface to warm it rather than escaping to space. 

A third major contributor to elevated temperatures in the UHI is the geometry of buildings 

in the city (Oke et al. 2017). Core urban areas tend to have tall buildings that are closely placed 

together. By having this configuration, heat that has been released from the surface is able to 

accumulate within the urban canyon instead of being moved away from the city via advection. 

 Lastly, changes in surface albedo, i.e. the ratio of the amount of solar radiation reflected 

from a surface to the amount of solar radiation incident upon the surface, affects the amount 

of energy absorbed by land cover. Asphalt, a common material for constructing roads, has a 

typical albedo of 7% (Hartmann 1994), meaning that 93% of the energy incident upon it is 

absorbed. A substantial amount of heat is sequentially stored and emitted from the road surface. 

As metropolitan areas grow, more and more asphalt is used for constructing roads, replacing 

natural surfaces with man-made, low-albedo surfaces. 
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Figure 1. Near-surface air temperature from a climate model simulation along a north-south 

cross-section through the central portion of the Kansas City metropolitan area at a longitude of 

94.6o W. Land cover at different locations within the domain are labeled within the graph, and 

pictures of land cover at these approximate locations are shown beside and below the graph. 

These areas include a) cropland near Louisburg, KS, b) suburban Leawood, KS and Kansas 

City, MO, c) Kansas City, MO and Kansas City, KS urban core, d) suburban Gladstone, MO, 

and e) cropland near Smithville Lake in Missouri (Google Maps 2020). 

 

A commonly used graph when describing UHIs is shown in Figure 1, where near-

surface air temperatures across a city and its surrounding rural areas are plotted. This figure 

depicts air temperature in the Kansas City metropolitan area during a heatwave, with data being 

obtained from a climate model. Temperature values are taken from a north-south cross-section 

through the center of the city at a longitude of 94.6o W. The greatest temperatures are found in 
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the urban core of Kansas City, then decrease as you move outward into less built-up and rural 

areas. Examples of land cover at these approximate locations are also shown in Figure 1. 

Aforementioned differences in physical properties and anthropogenic activity between these 

types of land cover lead to this type of warming pattern. 

1.2 Urban heat island health risks 

 Over the past 30 years, extreme heat has been the leading cause of weather-related 

mortality in the United States (National Weather Service 2019). One reason that it is important 

to study excessive heat in urban areas is that temperatures are exacerbated in these areas. As 

noted in the prior section, the UHI effect tends to become strongest at night because impervious 

surfaces release built-up heat from the absorption of shortwave radiation during the day. 

Therefore, as rural areas begin to cool as the sun sets, temperatures are maintained at a greater 

magnitude within the city during that time. As a consequence, those living in urban areas have 

a shorter period of time at night that their bodies are able to recover from the extreme daytime 

temperatures, increasing their risk of suffering from a heat-related illness (Environmental 

Protection Agency 2006; Luber and McGeehin 2008; Laaidi et al. 2012). During the 2003 

European heat wave that was responsible for over 70,000 deaths in Europe (Robine et al. 2008), 

approximately 50% of the heat-related deaths in West Midlands, England could be contributed 

to the UHI effect (Heaviside et al. 2016). In a separate study that analyzed the 2003 European 

heat wave, researchers found that in Paris, the probability of mortality during the heat wave 

increased with two main factors, i.e. 1) minimum temperatures during the heat wave and 2) the 

average minimum temperature the day of and six days prior to their death (Laaidi et al. 2012). 

Since minimum (i.e. nighttime) temperatures were significant indicators of death risk, this 
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illustrates how excessive heat in urban areas can exacerbate outcomes during heat waves since 

UHIs are strongest during the late evening and night. 

1.3 Social disparity and urban heat islands 

As the amount of research on UHIs has grown over time, it has been found that not all 

individuals in cities are affected to the same extent. Harlan et al. (2006) found that those who 

are affected most by the UHI effect in Phoenix, AZ tend to be minorities and those of lower 

socioeconomic status. These individuals also tended to live in areas with greater population 

density, less open space, and lower amounts of vegetation. The urban conditions that the 

authors found contributed to the heat stress experienced in Phoenix align well with the 

aforementioned causes of UHIs. First, greater population density and reduced vegetation 

indicate that surfaces are likely covered with greater amounts impervious surfaces, e.g. 

concrete and asphalt, which will reduce the amount of moisture that is able to be absorbed into 

the soil and increase the thermal inertia of the land cover. Other studies have also found this to 

be an important factor when investigating the relationship between vegetation and heat stress 

inequality  (Jenerette et al. 2011; Shiflett et al. 2017; Crum et al. 2017). Second, the 

combination of less open space with greater population density and reduced vegetation reveals 

that there are likely a higher density of buildings in these areas, leading to reduced air flow 

near the surface. Third, the amount of heat produced by anthropogenic activities, e.g. driving 

vehicles, would be greater in locations with more people. The authors also found that people 

living in areas that experience greater heat stress have less resources to help them cope with 

the greater temperatures (e.g. fewer social resources, air conditioners, and homes with 

swimming pools. 



 

 
7 

Mitchell and Chakraborty (2018) performed a similar study, but analyzed 20 

metropolitan statistical areas throughout the United States and compared differences exposure 

to urban heat between racial/ethnic groups. Similar to above, the authors determined that areas 

with lower socioeconomic status had greater exposure to urban heat than those in higher 

income areas. They also found that non-Hispanic blacks and Asians were 52% and 32%, 

respectively, more likely to live in areas with greater exposure to heat-risk related land cover 

compared to whites, while Hispanics were 21% more likely to live in these areas than whites. 
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CHAPTER 2. UHI MITIGATION 

In order to reduce the UHI effect, and therefore heat-related illness and mortality, 

multiple mitigation strategies have been researched and implemented. These strategies can 

include things such as applying solar reflective paint to urban surfaces and growing more 

vegetation within cities. Although these methods are different in the mechanism in which they 

function, they have the same overall goal, i.e. reduce temperatures within cities. In this section, 

a brief overview of the surface energy budget will be provided, then different methods to 

reduce urban heat will be introduced. 

2.1 Surface energy budget 

UHI mitigation strategies aim to alter the surface energy balance, which describes the 

conservation of energy at Earth’s surface (AMS 2012), and is represented by the equation 

𝑅! = 𝐺" + 𝐻 + 	𝜆𝐸,   (1) 

where Rn is the net radiation flux and G0 , H, and, and λE are the ground storage, sensible, and 

latent heat fluxes, respectively (Su 2002). Sensible heat flux is the transfer of energy between 

the surface and atmosphere without a change in phase of a substance, and latent heat flux is 

the energy released or absorbed when a substance changes phase, e.g. change from liquid water 

to water vapor (Oke et al. 2017). Ground storage heat flux is the net flow of energy through 

the ground (Lund et al. 2017).  

 The surface energy balance for a typical urban surface is depicted in Figure 2a. After 

incoming shortwave radiation interacts with the surface, different processes will take place. 

Since moisture is limited in impervious surfaces, the latent heat flux is relatively small 

compared to sensible and ground heat fluxes. Impervious surfaces with a low albedo, which 

are typical in urban areas, also absorb a majority of the incoming solar radiation, preventing it 
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from being reflected back toward the sky. These two factors lead to most of the solar energy 

to be partitioned into sensible and ground heat fluxes, leading to increased local temperature 

in these areas. Methods that are commonly employed to reduce urban heat alter these processes 

occurring at the surface. 

 

 

Figure 2. Latent, sensible, and storage heat fluxes for a) typical, low-albedo asphalt, b) a cool 

surface, and c) green and pervious surfaces. SR in = incoming solar radiation, SR Refl. = 

reflected solar radiation, LH = latent heat, and SH = sensible heat. Not drawn to scale. 

 

2.2 Cool surfaces 

2.2.1 Cool surfaces background 

 Most UHI mitigation strategies can be subdivided into two major categories, the first 

of which that will be discussed here are cool surfaces. Cool surfaces, which includes cool roofs, 

walls, and pavements, alter the energy balance by changing the albedo of a surface 

(Santamouris et al. 2011). A diagram of the underlying mechanism for of this type of method 

is shown in Figure 2b. By reflecting more radiation than typical urban surfaces, sensible and 

storage heat fluxes are reduced, thereby reducing temperatures within the city. Since moisture 

is not being added to the urban surface, latent heat remains relatively unchanged. Examples of 

a) b) c)
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cool roof materials include paints, metal and shingle roofs, and single-ply membranes 

(Santamouris et al. 2011), while examples of cool pavement includes pavement coloring 

additive, reflective paint, and a thin layer of concrete over low-albedo asphalt (Santamouris 

2013). 

 In order to be certified as a cool roof product, many building codes require that the 

product be tested and certified by specific organizations (Environmental Protection Agency 

2008). At this time, there are multiple testing methods and measurements that are utilized to 

classify a roof as being a cool product. One of the most important measures in rating these 

roofs is the albedo. One commonly used entity that is used to test and certify these products is 

ENERGY STAR®. For low-sloped roofs, ENERGY STAR requires the initial albedo to be at 

least 65% (or 0.65), and it must remain greater than or equal to 50% (or 0.5) after three years 

(ENERGY STAR 2020). In contrast, the California Energy Commission, has opted to use a 

combination of solar reflectance and thermal emittance in order to classify cool roofing 

materials (Urban and Roth 2010). Thermal emittance is a property of a material that describes 

the efficiency in which it will emit longwave radiation. An example of a cool roof is shown in 

Figure 3. 
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Figure 3. Example of cool roofs on residential structures (Cool Roof Rating Council 2016). 

 

2.2.2 Cool roof literature 

Regional climate models, such as the Weather Research and Forecasting Model (WRF), 

are one method that has often been utilized in investigating the potential for UHI mitigation 

strategies, including cool roofs, to reduce the UHI effect. In a study by Zhang et al. (2017), the 

authors investigated the effect of implementing cool roofs in the Yangtze River delta in China 

over a 73 day period in 2013 using the WRF model with a single-layer urban canopy model 

(SLUCM). For their control simulation, the albedo of roofs in the study area remained at the 

default of 0.2. For their two experimental simulations, the roof albedo was increased to 0.5 and 
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0.7. They discovered that in the higher albedo experiments, surface skin temperature and 2-m 

air temperature (T2) were reduced over this time frame compared to the control. Interestingly, 

near-surface relative humidity increased, which they contributed to an increase in specific 

humidity and decreased air temperature. 

In an article from Ma et al (2018), the authors completed a similar study, but also 

compared their results using three heat stress indices, including simplified wet-bulb globe 

temperature, apparent temperature, and humidity index. These heat stress indices take into 

account air temperature and humidity in order to provide a representation of how a person 

would perceive these conditions. The simulations in this study were focused over Sydney, 

Australia for a one-month period during each of the summers of 2007, 2008, and 2009. They 

also kept their control simulation roof albedo at 0.2, and chose to use a cool roof albedo of 

0.64, which they noted was the median value from multiple other studies. For their results, they 

found a reduction in near-surface air temperature by up to 0.8-1.2oC during the midday with 

the deployment of cool roofs, but had little change in vapor pressure between the scenarios. 

These effects led to a decrease in all three heat stress metrics compared to the control 

throughout the day, translating to improved human thermal comfort with cool roof 

implementation. 

Vahmani et al. (2016) performed one of the few long-term studies on this topic. Their 

area-of interest focused on Southern California, and the time frames of their analyses included 

present-day, mid-21st-century, and end-of-21st-century. Future simulations were performed for 

both RCP2.6 and RCP8.5 conditions. The cool roof albedo in this study, i.e. 0.4, was lower 

than the prior two manuscripts mentioned above, which the authors noted was due to “aging” 

of the roofs through deposition of pollutants over time. They also noted that homeowners prefer 
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darker roofs to support the use of 0.4-albedo cool roofs. The results showed that cool roofs 

were effective in countering the current UHI effect by reducing urban air temperature by an 

average of 0.9oC during the month of July for the present-day analysis. This mitigation strategy 

showed a similar effectiveness during the mid-century simulation (RCP 8.5), but for the end-

of-century simulation (RCP 8.5), cool roofs become less capable of mitigating the UHI effect. 

The authors warned that cool roofs will only continue to be effective for the next few decades 

unless steps are taken to reduce future greenhouse gas emissions. 

 Georgescu et al. (2014) also investigated the UHI phenomenon using future scenarios, 

which they accomplished by inputting projected urban land cover data that was obtained from 

the Environmental Protection Agency’s Integrated Climate and Land Use Scenarios (EPA 

2009) into the WRF model. In contrast to the other articles referenced above, the authors 

utilized a larger grid spacing, i.e. 20 km, so they could analyze the impact of cool roofs on a 

national level. Similar to other aforementioned studies, they found a reduction in two-meter 

air temperature with widespread deployment of cool roofs, which ranged from -0.4oC 

to -1.80oC depending on the location in the U.S. Interestingly, it was also noted that 

precipitation along the East Coast was reduced by as much as 2 mm/day during the summer 

with the increase in roof albedo. Other research has shown that along with reduced local 

temperatures, planetary boundary layer height and vertical mixing can also be decreased with 

the deployment of cool roofs (Sharma et al. 2016), which may have affected precipitation in 

the study by Georgescu et al. (2014). 
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2.3 Green roofs 

2.3.1 Green roof background 

A second method to mitigate the UHI effect includes green roofs, where soil and 

vegetation are installed on a building’s roof (Figure 4). Although the goal is the same as cool 

roofs, i.e. decrease urban temperatures, the underlying mechanism to accomplish this goal is 

different (Figure 2c). With green roofs, energy from solar radiation is absorbed by water 

molecules on Earth’s surface, which allows for liquid water to be converted to water vapor. 

When the liquid water is excreted from plants, this process is called transpiration, but for water 

from other sources, e.g. the soil, it is referred to as evaporation. When discussing the two 

processes in conjunction, it is referred to as evapotranspiration. After undergoing a change in 

phase from liquid to gas, the water molecules become airborne, taking with them the absorbed 

energy from Earth’s surface, causing a drop in local air temperature. Figure 2c shows that due 

to the increase in evapotranspiration with vegetated surfaces, the latent heat flux is increased, 

leading to a reduction in the sensible and ground heat fluxes, and therefore, air temperature. 

In addition to affecting temperature, green roofs have also been shown to reduce storm 

water flow volumes, decrease air pollution, and reduced building energy consumption 

(Mentens et al. 2006; Rowe 2011; Jaffal et al. 2012). One drawback for green roofs is that they 

require a more complex installation compared to cool roofs to protect the structure. In addition, 

since some water will be retained within the soil on the roof instead of directly running off, the 

load that a roof is able to withstand becomes an important factor to consider when designing a 

green roof. It has been estimated that green roofs can weigh approximately 73-122 kg/m2 

(Snodgrass and Snodgrass 2006). 
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Figure 4. Example of a green roof on Chicago’s City Hall (Inhabitat 2006) 

 

2.3.2 Green roof literature 

 Since green roofs are not the focus of this thesis, a more general overview of their 

effects from climate modeling studies will be provided compared to cool roofs, focusing on 

near-surface air temperature and heat stress indices. Of the articles reviewed, the impact of 

green roofs on near-surface air temperature ranged from a reduction of 0.12oC to 2.4oC 

compared to each study’s respective control simulation. Seven articles noted having a 

maximum decrease in T2 between 1-2oC during the day (Zhang et al. 2017; Imran et al. 2018; 

Ma et al. 2018; Georgescu et al. 2014; Li et al. 2014; Carvalho et al. 2017; Sun et al. 2016), 

while only two saw a maximum decrease over 2oC (Georgescu 2015; Chen and Zhang 2018). 

The remaining four studies saw more modest benefits with less than 1oC reduction in urban 

temperatures (Liu et al. 2018; Yang et al. 2016; Sharma et al. 2016; Yang and Bou-Zeid 2019). 

In the article by Yang & Bou-Zeid (2019), they found that in three of the six cities studied, i.e. 

Chicago, IL, Miami, FL, and Phoenix, AZ, there was no difference between the green roof 
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simulations and control. In contrast, Yang et al. (2016) had previously identified a 0.7oC 

decrease in near-surface air temperature in Phoenix, AZ with widespread use of green roofs, 

and Sharma et al. (2016) found a reduction of 1.0oC in UHI intensity in Chicago, IL using this 

mitigation strategy. 

Since green roofs act to increase the latent heat flux, thereby causing atmospheric 

moisture to rise, heat stress indices are an important aspect to consider when studying this 

strategy. The heat stress indices in the articles that utilized these measures consisted of the 

simplified wet-bulb globe temperature (SWBGT), apparent temperature (AT), and humidity 

index (HUMIDEX). Sun et al. (2016) reported a decrease of  1.7oC in AT in the Greater Beijing 

Area, and  Ma et al., (2018) found that AT, SWBGT, and HUMIDEX were reduced by 0.6oC, 

0.2oC, and 0.6oC, respectfully. To illustrate the importance of using these measures with green 

roofs, Ma et al. (2018) noted having a slight increase in heat stress in the morning using 

SWBGT even though the near-surface air temperature was less than the control simulation at 

that time. 

2.4 Objective 

The objective of this study is to investigate the UHI and the potential for mitigating this 

phenomenon in the KCMA. First, a suite of climate model sensitivity simulations will be 

performed in order to determine the best-performing set of physical parameterizations to be 

used in subsequent simulations. Next, the change in UHI size and magnitude will be evaluated 

by comparing climate model output using present-day and historical land cover data. By 

performing these simulations, I will be able to objectively analyze the impact of expanding 

impervious surfaces in this region. Lastly, the potential impact of cool roofs in mitigating the 

UHI effect will be investigated by comparing model output from a control simulation to output 
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from two scenarios that involve widespread deployment of cool roofs. In one of these 

scenarios, the albedo of roofs will be increased to 0.8 in order to simulate the impact of  “newly-

installed” cool roofs with a high albedo.. The second scenario will employ a roof albedo of 0.5, 

which will indicate the performance of cool roofs after they have “aged” over a period of time 

from deposition of atmospheric particulates on these surfaces. 
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CHAPTER 3. METHODOLOGY 

3.1 WRF and simulation parameterizations 

In order to accomplish the aims of this study, the Weather Research and Forecasting 

model will be utilized (version 3.9.1.1). WRF is a state-of-the-art mesoscale numerical model 

developed by the National Center for Atmospheric Research (Skamarock et al. 2008). WRF 

will be coupled with a single-layer urban canopy model (SLUCM) (Kusaka and Kimura 2004; 

Kusaka et al. 2001), which is depicted in Figure 5. The SLUCM accounts for sensible heat 

fluxes from multiple urban surfaces, including roofs, walls, and roads. Street canyons are 

parameterized within the model to represent urban geometry, allowing for building shadows 

and reflection and trapping of radiation (Chen et al. 2011). Up to three urban land cover 

intensities are able to be specified in WRF’s SLUCM, allowing for a more realistic 

representation of a city’s landscape. The coupling of WRF and the SLUCM has successfully 

been used in prior studies to analyze the impact of cool roofs on the UHI effect in other urban 

areas (Zhang et al. 2017; Sharma et al. 2016; Ma et al. 2018). 
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Figure 5. Depiction of the single-layer urban canopy layer. Ta is the air temperature at a given 

height Za. Subscripts w, r, and g indicate values of sensible heat (H) and temperature (T) from 

walls, roads, and ground, respectively. Ts is the temperature at the height of ZT+d. Adapted 

from Kusaka and Kimura (2004). 

 

To represent climate processes that occur at scales smaller than that of model domains’ 

resolutions, parameterizations are utilized. A suite of WRF parameterization sensitivity 

experiments are performed first to obtain a set of parameterizations that yield the most accurate 

results, which will be then used in the subsequent portions of this study, i.e. historical and cool 

roof simulations. As a starting point for this portion of our study, relevant literature was 

reviewed to determine commonly utilized parameterizations in UHI-relevant climate modeling 

research. Those which provided adequate results were then included in our sensitivity 

simulations. Parameterizations that were varied in these simulations include shortwave and 

longwave radiation, planetary boundary layer, and surface layer. The specific schemes that 
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were analyzed are shown in Table 1. Parameterizations that were kept consistent for each 

simulation include land surface model, microphysics, and cumulus. The land surface model, 

i.e. Noah, was also unchanged because it is required when the SLUCM in employed. The 

Thompson microphysics and Grell-Freitas cumulus schemes were not varied because they 

handle atmospheric moisture and precipitation processes, which are of lesser concern during a 

heat wave where precipitation was not received, as was the case in this study. In addition, both 

Thompson and Grell-Frietas schemes have been commonly employed in other UHI studies 

(Vahmani and Jones 2017; Jeong et al. 2019; Cao et al. 2015; Imran et al. 2018; Tewari et al. 

2019). 
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Table 1. Combinations of the different parameterizations tested for sensitivity MYJ = Mellor-

Yamada-Janjic; BouLac = Bougeault-Lacarrère; ACM2 = Asymmetric Convective Model 2; 

MYNN2.5 = Mellor-Yamada, Nakanishi, and Niino Level 2.5; MM5 = fifth generation 

Mesoscale Model; RRTMG = Rapid Radiative Transfer Model for Global Climate Models; 

RRTM = Rapid Radiative Model; GFDL = Geophysical Fluid Dynamics Laboratory; CAM = 

Community Atmosphere Model. 

 

 
 

3.2 Area-of-interest 

The area-of-interest for this study is the Kansas City metropolitan area (KCMA), which 

is located in the Midwestern United States at the confluence of the Kansas and Missouri Rivers. 

This area aligns closely with the nine-county area defined by the Mid-America Regional 

Council (MARC), an association of local governments, as the MARC region. Counties within 

PBL/Surface Layer LW SW Microphysics Cumulus Land Surface
MYJ/Eta

RRTMG RRTMG Thompson Grell-Freitas Noah
RRTM Dudhia " " "
RRTM Goddard " " "

BouLac/MM5
RRTMG RRTMG Thompson Grell-Freitas Noah
RRTM Dudhia " " "
RRTM Goddard " " "
GFDL GFDL " " "

ACM2/MM5
RRTMG RRTMG Thompson Grell-Freitas Noah
RRTM Dudhia " " "
CAM CAM " " "

MYNN2/MM5
RRTMG RRTMG Thompson Grell-Freitas Noah
RRTM Dudhia " " "
CAM RRTMG " " "

Parameterization Combinations in Sensitivity Testing
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this entity include Leavenworth, Wyandotte, Johnson, and Miami counties on the Kansas side 

and Platte, Clay, Ray, Jackson, and Cass on the Missouri side (Figure 6). 

3.2.1 KCMA population 

Jackson County, MO is the most populous county in the area (674,158 people), with 

Kansas City, MO being the city with the greatest population (491,918 people) (US Census 

Bureau 2018a). According to the Census statistics, the MARC region has grown from 

1,919,089 people in 2010 to 2,055,405 in 2018 (+136,316). In a 2014 analysis, research showed 

that the this area is expected to gain nearly 322,000 people between 2010 and 2040 (this 

analysis did not include Ray County, MO) (MARC 2014).  

3.2.2 KCMA land use and land cover 

In order to support growth population over time, the amount of the UHI-contributing 

impervious surfaces, e.g. roads and parking lots, has also had to expand. Figure 6 reveals the 

increase in urban surface area that has occurred in the MARC region from 1990 to 2017 using 

classified Landsat imagery. Landsat images were obtained from the United States Geological 

Survey’s Earth Explorer website at https://earthexplorer.usgs.gov/. In this 27-year period of 

time, a majority of growth has occurred in suburban areas on the periphery of the KCMA 

(indicated in black) where the core of this area (indicated in red) had been well established for 

some time. 
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Figure 6. Change in extent of urban land cover in the MARC region from 1990 to 2017 using 

unsupervised classification of Landsat satellite images. 

 

The extent of impervious surfaces in the MARC region from 2011 is shown in Figure 

7 using NLCD 2011 Percent Developed Imperviousness data (Yang et al. 2018). The portion 

of the KCMA with the greatest density of built-up area is centrally-located where the Kansas 

and Missouri Rivers meet. The land use in this area largely consists of commercial and 

industrial purposes (MARC 2010). As one moves outward away from these districts, the 

density of impervious surfaces decreases as the number of single-family homes increases. 

From the aforementioned NLCD 2011 data set (Yang et al. 2018), there was approximately 

732.22 km2 of impervious surfaces within the MARC region in 2011. Jackson County, MO 
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and Johnson County, KS contain the greatest impervious surface area with 227.08 and 186.55 

km2, respectively. 

 

Figure 7. Amount of imperious surface area in the MARC region in 2016. Percentage is given 

as a percent of each pixel that is covered with impervious surface. Percent developed 

imperviousness is from the NLCD 2011 Percent Developed Imperviousness data set and has a 

grid-spacing of 30 m2 (Homer et al. 2020). 
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The addition of impervious surfaces over time has contributed to the UHI effect in the 

KCMA. In 2014, researchers at Climate Central ranked Kansas City as having the seventh 

most intense UHI effect in the United States (Kenward et al. 2014). In their study, the authors 

compared weather data from urban and rural stations for all cities from 2003-2014 in order to 

determine the contrast in temperature between the two locations. For the KCMA, the average 

difference between urban and rural stations was 2.6oC. In the same study, this area also ranked 

15th for the greatest overnight UHI effect. 

3.2.3 KCMA climate 

The Köppen climate classification describes the KCMA as being at the convergence of 

two climates, i.e. Dfa (humid continental, hot summer) and Cfa (humid subtropical, hot 

summer) (Christopherson and Birkeland 2015). Kansas City receives approximately 987 mm 

of precipitation annually, with a majority falling during the spring and summer months (Figure 

8). Temperatures tend to peak during the summer in July, with monthly average and maximum 

temperatures of 25.7oC and 31.3oC, respectively (NCDC 2012). It is not uncommon for the 

maximum temperature to be greater than or equal to 37.8oC (i.e. 100oF) during the summer, 

with an average of three occurrences per year between 1981 – 2010 (NOAA 2020). With 

monthly temperatures reaching their lowest point in January with an average of -1.8oC, Kansas 

City has an average range in temperatures of 27.5oC during the year. 
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Figure 8. Climograph for Kansas City showing monthly average maximum temperature (Tmax), 

temperature (Tavg), minimum temperature (Tmin), and precipitation for 1981-2010. 

Measurements were taken at the Kansas City International Airport (National Climatic Data 

Center 2012). 

 

This study focuses on a heat wave during the summer of 2012. During this period of 

time, many temperature and precipitation records were broken due to persistent heat waves 

and drought throughout the Great Plains (Climate Central 2012). Over the meteorological 

summer of 2012, the maximum temperature reached at least 37.8oC (100oF) on 20 separate 

days, which is a substantial contrast from the typical annual average of three days that the 

temperature meets or exceeds this threshold (NOAA 2020). In addition, this area received 
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126.5 mm of precipitation during that summer, which is nearly a third of the typical 

precipitation experienced during this period of time. One of the major reasons that extreme 

weather was experienced during the summer of 2012 was the presence of anomalous 500-hPa 

geopotential heights (Hoerling et al. 2014). In June, a high-pressure ridge over much of the 

West and Midwest kept cold fronts from tracking into the Great Plains. In July, an anticyclone 

remained over the northern Plains, again blocking fronts from moving into this region. Lastly, 

in August, a trough over the eastern half of the US hindered the influx of moisture into the 

Great Plains, which limited the amount of rainfall in the final full month of the summer. 

Abnormal sea surface temperatures in the north Atlantic and Pacific Oceans may have 

contributed to these conditions (Hoerling et al. 2014). 

One advantage of performing simulations during a summer in which rainfall was 

limited is that changes in temperature with the deployment of cool roofs can be more 

definitively contributed to the roofs themselves rather than a combination of the mitigation 

strategy and cooling from the process of evaporation. A study by Husain et al. (2014) found 

that in Oklahoma City, OK, greater amounts of soil moisture led to a reduction in daytime 

heating within the city due to more energy being partitioned to latent heat flux instead of 

sensible heat flux. Therefore, during July 2012, extreme temperatures experienced were 

enhanced by the low soil moisture levels. Performing climate simulations during a hot and dry 

period of time also allows us to determine the maximum impact that can be expected from the 

use of cool roofs in the KCMA. 
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3.4 Model configuration 

3.4.1 Domains 

In order to effectively simulate the climate in this region, three nested model domains 

are utilized, each centered on the KCMA. From outermost to innermost, domain grid 

resolutions are 9, 3, and 1 km. Domain layout is shown in 8.Figure 9a along with the elevation 

of the outermost domain. Land cover of the innermost domain is presented in Figure 9b at 1-

km resolution. Urban land cover is categorized into 3 different classes based on the density of 

impervious surfaces and include low-intensity residential, high-intensity residential, and 

industrial/commercial classes. Each domain also has 44 vertical levels between the surface and 

100 hPa, with 21 layers within the first 1.5 km above the surface. Having a greater number of 

levels near the surface helps in resolving near-surface atmospheric processes, e.g. the planetary 

boundary layer. Only data from the innermost domain are analyzed from each simulation. 

3.4.2 Land cover 

Land cover for all three domains is represented by the National Land Cover Database 

(NLCD) 2011 (Homer et al. 2015), which is produced by the Multi-Resolution Land 

Characteristics Consortium. The NLCD 2011 is a land cover data set for the United States that 

consists of a spatial resolution of 30 m. It contains four different urban land cover categories, 

i.e. open space and low-, medium-, and high intensity, and the ranking of these categories are 

based on the amount of impervious surface covering the pixel area  Since the SLUCM allows 

up to three urban land cover categories, the open space and low intensity urban classes were 

combined, as recommended by Tewari et al. (2007). This manuscript will follow the urban 

land cover naming convention of other studies, i.e. low-intensity residential, high-intensity 

residential, and commercial/industrial (listed in order from least to greatest impervious surface 
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density). NLCD 2011 was used for all simulations in this study except for the historical 

scenario. 

 

Figure 9. a) Configuration of three nested domains in the WRF simulations. Resolutions for 

domains 1, 2, and 3 are 9, 3, and 1 km, respectively. Elevation of the outermost domain is also 

provided. b) Land cover within the innermost domain at a resolution of 1 km. The three urban 

categories, in order from least to greatest impervious surface area, are low-intensity residential, 

high-intensity residential, and commercial/industrial. Black stars indicate locations of weather 

stations used for model validation. 

b)

a)
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Land cover for the historical simulation will employ a land cover data set that is 

representative of the year 1938 for the conterminous United States, which was created by the 

United States Geological Survey Earth Resources Observation and Science Center using the 

Forecasting Scenarios of Land Use (FORE-SCE) model (Sohl et al. 2016). The grid-spacing 

for this product is 250 m, and annual LULC data is available from 1938 to 1992. Only one 

urban land cover category is utilized within this data set, therefore all urban pixels were 

regarded as being “low-intensity residential” (Figure 10). Additionally, all land cover classes 

were matched to corresponding classes from the NLCD 2011, and were reclassified using GIS 

software. 

3.4.3 Boundary and initial conditions 

Boundary and initial conditions for the simulations were provided by the North 

American Regional Reanalysis (NARR) product, which is produced by National Centers for 

Environmental Prediction (Mesinger et al. 2005). The NARR dataset has a temporal resolution 

of 3 hours and a spatial resolution of 32 km. NARR is a long-term product, with data 

availability that extends from 1979 to present-day. Lateral boundary conditions for NARR are 

provided by the National Centers for Environmental Prediction-Department of Energy Global 

Reanalysis 2 general circulation model. 
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Figure 10. Land cover for the innermost domain of the historical simulation at a resolution of 

1 km. All urban land cover is represented by one category, i.e. low-intensity residential. 

 

3.4.4 Experimental design 

 A diagram depicting the time frame and characteristics of each simulation is presented 

in Figure 11. A suite of sensitivity simulations was conducted over a ten-day period from 15 

July (1800 Local Standard Time (LST)) through 25 July (1500 LST) 2012. Previous testing 

from our lab had indicated that using a roof albedo of 0.3 led to a better estimation of 2-m air 

temperature (T2) than the WRF default of 0.2, so the roof albedo was tuned to 0.3 in these 

simulations. After the models are assessed for performance, the most accurate combination of 

parameterizations will be utilized in all subsequent simulations, which will all have a time 

frame of 18 July (0000 LST) to 24 July (2100 LST) 2012. Due to observed cooling effects 

from clouds in the innermost domain, the run time for all simulations after the sensitivity 
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experiments are narrowed down to a seven-day period (i.e. 18 – 24 July 2012) to ensure that 

changes in T2 in the cool roof simulations are from the mitigation strategy and not clouds. 

After the best-performing set of parameterizations is determined, a control simulation will be 

completed, which will be used to compare to three experimental scenarios. For the control, 

land cover will be represented by the NLCD 2011 data set and roof albedo will be 0.3. 

 

 

Figure 11. Depiction of the characteristics of each portion of this study. All simulations use 

NARR data from July 2012 for lateral and boundary conditions. All scenarios, except for the 

historical, will utilize the NLCD 2011 land cover. The historical case will employ land cover 

from the USGS for the year 1938. There are two cool roof simulations: the first uses a roof 

albedo of 0.8 to represent newly installed roofs, and the second has a roof albedo of 0.5, which 

indicates cool roofs that have been aged through deposition of dust and other particulates. 

• Land cover: NLCD 2011
• Run time/NARR data: 15 July to 25 July 2012
• Roof albedo: 0.3

Sensitivity 
Simulations

• Land cover: NLCD 2011
• Run time/NARR data: 18 July to 24 July 2012
• Roof albedo: 0.3

Control 
Simulation

• Land cover: USGS 1938
• Run time/NARR data: 18 July to 24 July 2012
• Roof albedo: 0.3

Historical 
Simulation

• Land cover: NLCD 2011
• Run time/NARR data: 18 July to 24 July 2012
• Roof albedo: 1) New roof - 0.8; 2) Aged roof - 0.5

Cool Roof 
Simulations (x2)
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 Next, three experimental simulations will be completed and compared to the control. 

First, the historical simulation will be performed, which will consist of the USGS land cover 

product that is representative of 1938, with roof albedo maintained at 0.3. Although it is named 

as the “historical” scenario, lateral and boundary conditions from the other present-day 

scenarios, i.e. NARR from 18 – 24 July 2012, will be utilized. This will allow for assessment 

of how the UHI effect has changed over the past approximately 74 years under equal weather 

conditions. The final two simulations will be used to represent UHI mitigation via widespread 

deployment of cool roofs through tuning of roof albedo. The first will depict the impact of 

newly-installed cool roofs with an albedo of 0.8. Over time, it has been shown that the 

reflectivity of these materials can be reduced through aging and weathering, such as deposition 

of airborne particulates (Akbari et al. 2005). In order to represent cool roofs that have been 

aged, the second mitigation scenario will employ roofs with an albedo of 0.5. This value also 

corresponds to the minimum albedo that a cool roof must maintain after three years to obtain 

ENERGY STAR approval (see Introduction for more information) (ENERGY STAR 2020). 

Road and building wall albedo remained at 0.3 for all conditions. Data from the first 48 hours 

of each simulation were excluded to account for model spin-up time. 
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CHAPTER 4. RESULTS 

4.1 Evaluation of sensitivity simulations 

Results from the suite of sensitivity tests are presented in Table 2. In total, 13 ten-day 

simulations were completed in order to determine the most accurate set of parameterizations 

for this study location. It has been recommended that a combination of outcome measures be 

used to evaluate models (Chai and Draxler 2014); therefore, WRF performance was based on 

three validation metrics, including root-mean-square error (RMSE), mean bias (MB), and 

mean absolute error (MAE). Observation data from five local airports were used for validation. 

 

Table 2. Results from the suite of WRF sensitivity simulations. RMSE = root-mean-square 

error, MB = mean bias, and MAE = mean absolute error. Results are the average of all five 

weather stations. 

 

PBL/Surface Layer LW SW RMSE MB MAE
MYJ/Eta

RRTMG RRTMG 2.22 1.35 1.83
RRTM Dudhia 2.01 1.09 1.64
RRTM Goddard 2.27 1.61 1.91

BouLac/MM5
RRTMG RRTMG 2.90 2.50 2.54
RRTM Dudhia 2.49 2.02 2.09
RRTM Goddard 2.91 2.57 2.59
GFDL GFDL 3.26 3.26 2.85

ACM2/MM5
RRTMG RRTMG 2.28 1.98 1.98
RRTM Dudhia 2.08 2.02 1.70
CAM CAM 1.79 1.06 1.43

MYNN2/MM5
RRTMG RRTMG 1.95 1.40 1.56
RRTM Dudhia 1.67 0.83 1.26
CAM RRTMG 1.74 0.39 1.40

Parameterizations Statistics
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Overall, measurements varied the greatest with different planetary boundary layer 

(PBL) and surface layer (SL) combinations. The PBL and SL parameterizations that exhibited 

the greatest RMSE, MB, and MAE was the BouLac and the fifth generation of the Mesoscale 

Model (i.e. MM5) schemes, respectively. Next, the Mellor-Yamada-Janjic/Eta and 

Asymmetric Convective Model 2/MM5 PBL/SL combinations performed slightly better and 

yielded similar results. The PBL and SL parameterizations that consistently provided the best 

outcomes are Mellor-Yamada, Nakanishi, and Niino Level 2.5 (MYNN2.5) and MM5, 

respectively, with all three statistical measures being found to be less than 2oC. Within this 

group, the longwave and shortwave radiation that provided the best result is Rapid Radiation 

Transfer Model (RRTM) and Dudhia scheme, respectively. Based on the sensitivity testing, 

the following parameterizations were selected for use in subsequent simulations in this study: 

longwave and shortwave radiation were represented by the RRTM and Dudhia scheme, 

respectively; the MYNN2.5 scheme for the planetary boundary layer; MM5-similarity theory 

for the surface layer; microphysics were represented by the Thompson et al. scheme; and the 

Grell-Frietas scheme for cumulus parameterization. The cumulus parameterization was only 

used for the outermost domain (i.e. 9-km resolution) since these processes are able to be 

resolved at resolutions less than or equal to three km (i.e. that of the middle and innermost 

domains in this study) (Jeworrek et al. 2019). 
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Table 3. Validation of T2 using observation data from local airports, which are indicated by 

their FAA three-letter code. Root-mean-square error (RMSE), mean bias (MB), and mean 

absolute error (MAE) are calculated for each location, with the average of each statistic listed 

on the right. MKC = Charles B. Wheeler Downtown Airport, MCI = Kansas City International 

Airport, IXD = New Century AirCenter; LXT = Lee’s Summit Municipal Airport, and OJC = 

Johnson County Executive Airport 

 

 

4.2 Evaluation of the control simulation 

 Using the aforementioned parameterizations, a seven-day (18 – 24 July 2012) control 

simulation was completed using a roof albedo of 0.3. The results from validation of the control 

are presented in Table 3 using the same five local airports as in the prior section. In evaluating 

model performance, average RMSE, MB, and MAE values were 1.54oC, 0.65oC, and 1.23oC, 

respectfully, which are in agreement with results in the prior section. Results from each output 

time over the five-day period (first two days are not included to account for spin-up) are 

illustrated in Figure 12 using a scatterplot that compares local observed two-meter air 

temperature (T2) (x-axis) to WRF simulated T2 (y-axis). Results from each airport location 

appear to follow a similar pattern. First, for observed T2 values less than approximately 23oC, 

WRF tended to slightly underestimate a small number of temperatures in this range (i.e. below 

the identity line). Between observed temperatures of 23 – 34oC, simulated T2 values show a 

MKC MCI IXD LXT OJC Average
RMSE (oC) 1.28 1.81 1.54 1.58 1.49 1.54

MB (oC) 0.69 1.22 0.77 0.05 0.50 0.65
MAE (oC) 1.08 1.31 1.20 1.31 1.24 1.23

Control Validation Using Five Local Airport Stations
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relatively even distribution of values above and below the y = x line, but above 34oC, WRF 

tended to slightly overestimate T2. 

 

 

Figure 12. Validation of the control simulation using 2-m air temperature observations from 

five local airports. The locations of each airport are matched to the nearest pixel within the 

innermost domain (D03). Points within the plot are aligned vertically due to observation values 

being in integer format. 

 
 The UHI signal in the control case was investigated following validation. In order to 

calculate the magnitude of the UHI, the difference between urban and rural locations are found 

using the equation 

T2UHI = T2U – T2R     (1) 

where T2UHI is the UHI magnitude and T2U and T2R are the urban and rural two-meter air 

temperature, respectively (Oke et al. 2017). Figure 13 contains the five-day average UHI 
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magnitude for each of the three urban land cover categories. In order to reduce the amount of 

influence of the urban area on temperature, rural pixels were only included if there were no 

urban pixels within 5 km in any direction. Areas with industrial/commercial and high-

intensity residential land cover experience the greatest UHI effect at night during the 2100 

and 0000 LST output times, with their magnitude reaching approximately 4oC warmer than 

rural areas at that time. Locations that consist of low-intensity urban cover also reach their 

greatest extent at the same times, with a difference of approximately +1.5oC. At 0900 and 

1200 LST, the difference between all three urban land cover categories and rural pixels 

became slightly negative indicating that areas away from the KCMA were warmer than those 

within the city. 
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Figure 13. Near-surface UHI effect averaged over the five-day heat wave for every WRF 

output time in the KCMA. Results are shown for each urban land cover category separately. 

I/C = industrial/commercial, HIR = high-intensity residential, and LIR = low-intensity 

residential.  

 

4.3 Comparison of control to historical simulation 

 The next step in this study was to compare the control to the simulation with land cover 

that was representative of 1938 in order to analyze the change in KCMA UHI over seven 

decades. Three-hourly output data from both simulations are presented in 13.Figure 14. T2 in 

both conditions were shown to be nearly equal in magnitude during the daytime hours. In 

contrast, at night, temperatures between the two simulations diverged, with the historical case 
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cooling to a greater extent. The greatest average difference between them came at 0000 LST, 

with a difference of 0.63oC. The average T2 difference over the five-day period was 31.25oC 

and 31.02oC for the control and historical simulations, respectively. 

 

 

Figure 14. Control and historical simulation five-day time series of T2 with output data 

plotted every three hours. Average T2 for the entire time frame for both scenarios are shown 

as dashed line. Only urban values are used in calculations. 
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Figure 15. Five-day average T2 difference between historical and control simulations (control 

minus historical) for the three urban land cover categories. Values averaged over all output 

times are shown as dashed lines. Only urban values are used in calculations. 

 

When T2 results are separated by urban land cover category, distinctions between these 

parts of the metropolitan area are revealed. Figure 15 compares the differences in T2 between 

the three urban classes from the present-day simulation to the corresponding low-intensity 

residential urban pixels in the historical case to display how temperature would have differed 

between the same locations during these two periods of time. For example, T2 values from 

industrial/commercial land cover pixels from present-day were compared to their analogous 

low-intensity residential pixels in the historical simulation. The same process was used for the 
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other two present-day urban land cover categories as well. If an urban pixel in 2011 was found 

to be non-urban in 1938, the T2 values from both data sets were excluded from the data 

presented in Figure 15 so that only results from urban locations were compared. Figure 15 

reveals that during the daytime, average T2 values from the historical simulation were similar, 

and in some cases slightly exceeded, those that were modeled in the present-day simulation. In 

contrast, nighttime temperatures in the historical case were less than the present-day scenario, 

especially for the industrial/commercial and high-intensity categories (over 2.5oC difference at 

2100 and 0000 LST). Comparing the five-day average T2 difference in Figure 16 below, 

similar results are observed. The blue shape approximates the extent of the KCMA UHI in 

1938, which is able to be distinguished by similar T2 values between the low-intensity 

residential pixels from both simulations (i.e. light red color within the blue shape). Locations 

with a darker red color within the blue shape indicate the impact of the higher intensity urban 

categories on T2 in 2012 compared to low-intensity residential land cover from 1938. The 

present-day UHI effect is approximated by the green shape. When these results are separated 

by output time in Figure A1 (Appendix), the increase in T2 is obvious from 2100 – 0600 LST, 

where T2 between 0900 and 1800 LST are relatively similar between the two simulations. 
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Figure 16. Map of the five-day average T2 difference between the historical and present-day 

simulations (control minus historical). Areas of the historical and present-day KCMA extent 

are approximated by the blue and green shapes, respectively. 

 
4.4 Impact of cool roofs 

4.4.1 Two-meter air temperature 

 The next step in this study was to run two cool roof simulations in order to investigate 

their impact on the excessive urban heat within the KCMA. When averaged over the entire 

study time frame, the 0.5- and 0.8-albedo cool roof cases were able to reduce urban T2 by 

approximately 0.2oC and 0.45oC, respectively (Figure 17). Both mitigation scenarios were able 

to mitigate urban temperatures throughout the day, with their greatest effect occurring at 2100 

LST (-0.26oC) and 0900 LST (-0.57oC) for the 0.5- and 0.8-albedo simulations, respectfully. 

The spatial plots in Figure 18 show that these impacts were not equal throughout the city. Both 
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scenarios revealed that cool roofs had their largest impact in the industrial/commercial and 

high-intensity residential sectors within the KCMA, especially those areas located centrally. 

In the 0.8-albedo simulation, five-day average difference between industrial/commercial and 

low-intensity residential T2 was nearly 0.20oC (-0.62oC vs. -0.44oC), where there was a 0.06oC 

difference in the 0.5-albedo case (-0.24oC vs. -0.18oC). T2 spatial plots are also presented for 

three-hourly output times in the Appendix (Figure A2 and Figure A3). The difference in 

cooling via the use of cool roofs is able to be visualized throughout the KCMA during each 

model output time. 

 

 

Figure 17. Impact of cool roofs on T2 in the KCMA (cool roofs minus control). Five-day 

average difference at each output time (solid line) is shown along with the average across all 

output times (dashed line). Only urban values are used in calculations. 
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Figure 18. Difference in T2 between the a) 0.5-albedo and b) 0.8-albedo cool roof and control 

simulations. The color scheme in both figures are equal. 

 

 The bar graphs in Figure 19 reveal the UHI effect by taking the average T2 for each 

urban land cover category in each simulation and subtracting it by the average rural T2 at every 

b)

a)
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three-hour output time. The UHI effect occurs when the difference between the urban and rural 

pixels is positive, which was greatest at night at 2100 LST. At this time, the UHI effect was 

reduced by 0.26 – 0.28oC for all urban categories in the 0.5-albedo simulation, and in the 0.8-

albedo case, it was decreased by 0.51 – 0.64oC. As the city cools during the night, the contrast 

in T2 lessens from 0000 LST to 0600 LST, but the three urban categories continue to display 

a reduction in the UHI effect in the cool roof simulations compared to the control. After the 

sun rises, the relationship between urban and rural areas switch, and rural locations become 

warmer than urban sites. At 1500 LST, industrial/commercial land cover began to exhibit the 

UHI effect in the control (0.3-albedo) simulation, but in both cool roof cases, all urban areas 

were still cooler than the rural parts of the domain. The UHI started to form during the 1800 

LST output time for both cool roof simulations in the industrial/commercial (0.5- and 0.8-

albedo simulations) and high-intensity residential (0.5-albedo only) categories. The UHI effect 

finally appeared in the remaining urban land cover categories by 2100 LST in the cool roof 

cases. 
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Figure 19. Magnitude of UHI effect comparing urban areas to rural locations (urban minus 

rural). Results are separated by WRF model output time. T2 data from rural pixels were 

included in the calculations if there were no urban pixels within five miles in any direction. 

Times are in local standard time. 

 

 The final step in assessing the effect of cool roofs on T2 was to investigate the statistical 

significance of the impact of cool roofs. Average five-day temperature for each urban pixel 

was included, which consisted of 75 industrial/commercial, 61 high-intensity residential, and 

1,235 low-intensity residential pixels from each scenario. Hypothesis testing was carried out 

by first analyzing differences among simulations within each urban land cover category. Due 
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to having non-normal data distributions, the Kruskal-Wallis test was employed (Table 4). The 

null and alternative hypotheses were as follows: 

H0 : 𝑟# = 𝑟$ = 𝑟%     (2) 

HA : 𝑟# ≠ 𝑟$ ≠ 𝑟%	or	𝑟# ≠ 𝑟$ = 𝑟%	or	𝑟# = 𝑟$ ≠ 𝑟%   (3) 

 Due to the p-values being less than the 𝛼-value of 0.01, the null hypothesis was rejected, 

indicating that a significant difference exists among the three scenarios in each land cover 

class. Next, differences between roof albedo cases were assessed with the post hoc multiple 

comparison analysis test using Dunn’s approach (Dunn 1961) in to avoid inflation of the type 

I error rate. The hypotheses for each multiple comparison test were as follows: 

H0 : 𝜇' = 𝜇(      (4) 

HA : 𝜇' ≠ 𝜇(      (5) 

The results show that within each land cover category, comparisons between the control, 0.5-

albedo, and 0.8-albedo simulations are all statistically significant (𝛼 = 0.01), therefore the null 

hypothesis was rejected in each pairwise comparison (Table 5). 

 

Table 4. Results from the Kruskal-Wallis test comparing average T2 among the three 

simulations (i.e. 0.5- and 0.8-albedo and the control), separated by urban land cover category 

(𝛼 = 0.01). 

 

 

Urban Category p -value
Industrial/Commercial <0.0001
High Intensity Residential <0.0001
Low Intensity Residential <0.0001
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Table 5. Results from the multiple comparison test using Dunn’s approach comparing average 

T2 between pairs of simulations for each urban land cover category. The first two columns on 

the left indicate the groups that were compared in each test. The next three columns contain 

the p-values for each land cover category. 𝛼 = 0.01 

 

 

4.4.2 Skin temperature 

 The next variable to be evaluated from the models’ output is skin temperature (TSK), 

i.e. the temperature of the ground surface. Figure 20 reveals the average three-hourly diurnal 

impact of cool roofs on TSK in the KCMA. The largest cooling effect was experienced at 1200 

LST in both the 0.5- and 0.8-albedo simulations, providing a decrease in TSK of approximately 

1.5oC and 3.6oC, respectively, at that time. When averaged over the entire five-day heat wave, 

surface temperatures were reduced by 0.69oC in the 0.5-albedo case, where the impact in the 

0.8-albedo condition was -1.66oC. 

Group 1 Group 2
p -value; 

Industrial/Commercial
p -value; High    

Intensity Residential
p -value; Low     

Intensity Residential

Control 0.5 <0.0001 <0.0001 <0.0001

Control 0.8 <0.0001 <0.0001 <0.0001

0.5 0.8 <0.0001 <0.0001 <0.0001

Groups Compared Results of Post-Hoc Multiple Comparison Test by Urban Category
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Figure 20. Average three-hourly impact of cool roofs on TSK for both the 0.5- and 0.8-albedo 

simulations. Dashed lines represent the five-day mean TSK difference, averaged across all 

output times. Only urban values are used in calculations. 

 

In analyzing the average change in TSK with deployment of cool roofs spatially, 

differences in cooling within various parts of the KCMA are observed (Figure 21). Similar to 

T2, cool roofs had the biggest effect in the industrial/commercial and high-intensity residential 

areas. In these locations, TSK was reduced by up to approximately 1oC in the 0.5-albedo 

simulation and 2.5oC when the albedo was increased to 0.8. Low-intensity residential locations 

saw less of an impact compared to the more densely urbanized sites. In the three-hourly spatial 
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plots (Figure A4 and Figure A5), the greatest impact was observed at 1200 LST for both cool 

roof simulations, followed by a gradual reduction in cooling from 1500 – 0300 LST. 

 

 

Figure 21. Difference in TSK between the a) 0.5-albedo and b) 0.8-albedo cool roof 

simulations and control. The color scheme in both figures are equal. 

a)

b)
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Similar to describing the UHI as a contrast in T2 between urban and rural locations, the 

same concept can be applied to TSK (i.e. the surface UHI). Figure 22 presents the surface UHI 

effect in the KCMA at each model output time, comparing TSK from the three urban land 

cover categories to rural TSK. The strongest surface UHI effect was experienced at both 2100 

and 0000 LST, where temperatures in the industrial/commercial sectors were over 7oC warmer 

than local rural areas (0.3-albedo simulation). After these times, this phenomenon weakened 

through 0600 LST. From 0900 to 1500 areas outside of the KCMA became warmer than those 

within it, which is indicated by negative ΔTSK values. During the midday, 

industrial/commercial and high-intensity residential pixels revealed a TSK difference of up to 

approximately -9oC. At 1800 LST, as the surface UHI effect forms in all urban locations in the 

control and 0.5-albedo scenario, high- and low-intensity residential areas in the 0.8-albedo cool 

roof simulation are still cooler than rural sites. 
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Figure 22. Magnitude of UHI effect comparing urban areas to rural locations. Results are 

separated by WRF model output time. TSK data from rural pixels were included in the 

calculations if there were no urban pixels within five miles in any direction. Times are in 

LST. 

 
4.4.3 Surface energy balance 

 To better understand the impact of cool roofs on two-meter and skin temperatures, the 

surface energy fluxes were analyzed. The sensible heat (SH) flux in the control case reached 

331.26 W/m2 at 1200 LST, and was reduced by 39.62 W/m2 and 95.67 W/m2 in the 0.5- and 
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0.8-albedo simulations, respectively (Figure 23a). SH was also decreased at 0900, 1500, and 

1800 LST, but to a lesser extent. During the nighttime, the SH between all three scenarios 

became approximately equal and negative (-20 – -5 W/m2) from 2100 – 0600 LST. In contrast 

to SH, latent heat (LH) fluxes were nearly equal throughout the day for all three cases (Figure 

23c). LH in the 0.8 simulation deviated slightly from the other two from 0900 – 1500 LST, 

ranging from 1.08 – 3.66 W/m2 less than the control at these times. At these same output times, 

the ground storage heat flux (GH) was negative, indicating that more energy was being stored 

in the ground rather than released from it (Figure 23b). From 1800 – 0600 LST, the amount of 

incoming solar radiation was reduced, therefore there was a net release of stored energy from 

the ground, which is denoted by the positive GH at these times. Using Equation 1, SH, LH, 

and GH can be combined to reveal the net radiation (Rn) balance at the surface (Figure 23d). 

The plot of Rn follows a similar shape as that from SH, with the peak reaching 327 W/m2, 292 

W/m2, and 241 W/m2 for the control and 0.5- and 0.8-albedo simulations, respectively, at 1200 

LST. Differences between scenarios became less pronounced during the nighttime compared 

to the day. 
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Figure 23. Average three-hourly a) sensible, b) ground storage, and c) latent heat fluxes for 

the control and 0.5- and 0.8-albedo simulations. d) Net radiation is also presented in the same 

format. Y-axes are not equal in range. 

 

4.4.4 Water vapor mixing ratio 

 In comparison to the control simulation, both cool roof cases exhibited an increase in 

two-meter water vapor mixing ratio (Q2) within the KCMA from 0900 – 1800 LST (Figure 

24). At the time of the greatest contrast, i.e. 1200 LST, the difference between the simulations 

was 0.16×10-3 kg/kg (0.5-albedo vs. control) and 0.35×10-3 kg/kg (0.8-albedo vs. control). At 

a)

b)

c)

d)
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other times of the day, values were approximately equal between the three scenarios. In the 

five-day average Q2 spatial plots, both the 0.5- (Figure 25a) and 0.8-albedo (Figure 25b) cases 

show an increase in atmospheric moisture over urban areas when compared to the control. 

 

 

Figure 24. Diurnal average water vapor mixing ratio for all three simulations at each WRF 

model output time. All y-axis values are ×10-2. Only urban values are used in calculations. 
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Figure 25. Results for five-day average Q2, comparing the a) 0.5-albedo and f) 0.8-albedo 

simulations to the control. Colorbar values are ×10-4, and color schemes are equal between 

the two plots. Note the increase atmospheric moisture over the KCMA in the domain. 

a)

b)
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 The difference in water vapor mixing ratio (Q) with the implementation of cool roofs 

along a north-south cross-section through the innermost domain at approximately 94.6o W is 

shown in Figure 26. Both the 0.5- and 0.8-albedo simulations revealed an increase in Q, 

especially the first one kilometer above the KCMA. Like with Q2, the magnitude of change 

was greater in the 0.8-albedo case compared to 0.5-albedo. Both scenarios also saw a decrease 

in Q throughout the cross-section at greater heights, especially between 1-2 km above the 

surface. 
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Figure 26. Cross-section of Q from the a) 0.5- and b) 0.8-albedo simulations compared to the 

control. Cross-section was taken at approximately 94.6o W. Colorbar values are × 10)*, and 

color schemes are equal between the two plots. The higher-reflectivity roof scenario in b) 

saw a greater increase in Q difference compared to a), especially near the core of the urban 

area (i.e. between 39o – 39.1o N). Results in the figure extend vertically to over 3.5 km. 

a)

b)
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Turbulent kinetic energy and planetary boundary layer height 

 Due to the influence of turbulent kinetic energy (TKE) on planetary boundary layer 

(PBL) height, results from both variables will be presented in conjunction. As with Q in the 

prior section, the difference in TKE between the control and mitigation scenarios was plotted 

using a cross-section along the longitude of 94.6o W (Figure 27). Both cool roof simulations 

led to a reduction in TKE in the KCMA, especially between the latitudes of 39o N and 39.2o N 

where the greatest concentration of industrial/commercial and high-intensity residential urban 

land cover is located. In this area, the 0.5- and 0.8-albedo scenarios saw a decrease of up to 

0.19 m2/s2 and 0.49 m2/s2, respectively. 
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Figure 27. Cross-section at approximately -94o W in domain 1 of the difference in TKE 

between the a) 0.5- and b) 0.8-albedo and the control. Color schemes are equal between the 

two figures. Results in the figure extend vertically to over 3.5 km. 

b)

a)
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The parts of the KCMA that saw the largest reduction in TKE also experienced the 

greatest loss in PBL height, i.e. areas with the greatest density of impervious surfaces (Figure 

28). In the highest albedo case, these areas had an average decrease in PBL height of 

approximately 93 m compared to the control, while in the “aged” cool roofs simulation, there 

was an average reduction of approximately 43 m. The low-intensity residential locations saw 

more modest PBL height decreases. In assessing the diurnal impact of this mitigation strategy 

at each output time (Figure 29), the plot follows a similar pattern to that of TSK. During the 

nighttime, little difference in PBL height is seen between the cool roof and control scenarios, 

but as the sun becomes more overhead during the day, the effect quickly increases to their peak 

of -50 m and -105 m at 1200 LST for the 0.5- and 0.8-albedo simulations, respectively. 

Following this time, the difference between the scenarios lessens. Spatial plots at each output 

time are presented in the Appendix (Figure A6 and Figure A7). The greater magnitudes of PBL 

height decline during the daytime compared to night are able to be observed in these figures. 
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Figure 28. Impact of a) 0.5- and b) 0.8-albedo cool roofs on the PBL height in the KCMA. 

Color schemes between the two figures are equal. 

b)

a)
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Figure 29. Average change in urban PBL height with the deployment of cool roofs at each 

model output time. Dashed lines indicate the average change across all output times. 

 
 
4.4.5 Comparison of median household income and cool roof impact 

 The final portion of analyzing the data was to compare the impact of cool roofs on T2 

within different census tracts and to census tract median household income. Figure 30 shows 

the median household income from the 2012 American Community Survey five-year estimate 

(US Census Bureau 2012). A majority of the tracts with lower household incomes are located 

centrally in the KCMA. The five-day average difference between each cool roof simulation 

and the control is presented for each tract in Figure 31. This data is equivalent to that in Figure 

18, but is presented at census tract-level instead of pixel-level. Like what found in Section 

4.4.1, cool roofs provided a greater magnitude of cooling in the central portion of the domain, 

which corresponds to areas with greater density of impervious surfaces in the KCMA. 
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Figure 30. Census tract median household income in the KCMA from the 2012 American 

Community Survey five-year estimates (US Census Bureau 2012). 
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Figure 31. Five-day average T2 difference between the 0.5- (left) and 0.8-albedo (right) cool 

roof and control simulations. T2 data is equal to that presented previously in Figure 18, but is 

now presented at census tract level. 

  

In order to focus the analysis on the KCMA within the innermost domain, data from 

the census tracts that approximately correspond to the cities within the Mid-America Regional 

Council region were extracted from the prior two figures. Data from the resulting polygon 

layer (Figure A8; light blue) were used in the following analyses. Next, the histogram for 

average T2 difference from each census tract was plotted (Figure A9). Both mitigation 

scenarios yielded slightly positively-skewed histograms, so the Kolmogorov-Smirnov (KS) 

Average Difference in Census Tract 2-m Air
Temperature Over the 5-Day Heat 

Wave (Cool Rool - Control)
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test was performed to objectively ensure that both data sets are a non-normal distribution 

(Table 6). The hypotheses for the KS test were as follows: 

      H0 : data follows a normal distribution    (6) 

HA : data does not follow a normal distribution    (7) 

In the 0.5- and 0.8-alabedo cool roof cases, the p-values from the KS test were found to be 

0.0059 and 0.0112, respectfully. Since both values are less than 𝛼 (𝛼 = 0.05), the null 

hypothesis was rejected, indicating that the data sets did not consist of a normal distribution. 

 

Table 6. Results from the Kolmogorov-Smirnov test for normal distribution (𝛼 = 0.05). 

 

 

 Due to having non-normal distributions, the non-parametric Spearman’s rank 

correlation coefficient was calculated for each data, comparing the relationship between census 

tract median household income and the impact of cool roofs on T2. The correlation coefficients 

for the impact of 0.5- and 0.8-albedo cool roofs on T2 vs. median household income were 

found to be 0.41 and 0.50, respectively (Table 7). The hypotheses were as follows: 

H0 : 𝜌+ = 0      (6) 

HA: 𝜌+ ≠ 0       (7) 

Both relationships were statistically significant, with p-values being less than 𝛼 (𝛼 = 0.05), 

leading to the rejection of the null hypothesis for each condition. The scatterplots for each 

comparison are shown in Figure 32, with median household income on the x-axis and T2 

difference on the y-axis. Points in the 0.5-albedo simulation are more clustered due to all ΔT2 

0.5 Albedo T2 Difference 0.8 Albedo T2 Difference
p -value 0.0054 0.0112

Kolmogorov-Smirnov Test
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values being less than 0.3oC. In contrast, points in the 0.8-albedo simulation are more widely 

dispersed, but the scatterplot shows a clearer relationship of less of a temperature reduction 

from deployment of cool roofs with increasing median household income. 

 

Table 7. Spearman’s rank correlation coefficient for T2 difference and median household 

income for each census tract in the core urban KCMA (α = 0.05). 

 

 

Corr. p -value Corr. p -value
Median Household Income 0.4151 <0.0001 0.5018 <0.0001

0.5 Albedo T2 Difference 0.8 Albedo T2 Difference
Spearman's Rank Correlation Coefficient
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Figure 32. Scatterplots of census tract median household income and T2 difference between 

the a) 0.5- and b) 0.8-albedo simulations and control. 

a)

b)
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CHAPTER 5. DISCUSSION 

5.1 Evaluation of the control simulation 

 Overall, WRF was able to re-create the near-surface air temperatures reasonably well. 

The five-station average RMSE, MB, and MAE were all less than 1.6oC (i.e. 1.54oC, 0.65oC, 

and 1.23oC, respectively), and are comparable in magnitude to other studies’ control validation 

results (Vahmani and Ban-Weiss 2016; Morini et al. 2016, 2018; Chen and Zhang 2018). T2 

was slightly overestimated as indicated by the low, positive MB value. All five stations, which 

are distributed throughout the KCMA, provided relatively similar values, with ranges between 

the minimum and maximum RMSE, MB, and MAE values being less than 0.75oC. In general, 

temperatures produced by WRF tended to slightly under-/overestimate observed conditions at 

lower/higher end of the range of temperatures during the heat wave. A similar pattern was 

found in a study by Vahmani and Ban-Weiss (2016), where WRF tended to under-

/overestimate near-surface air temperature during the nighttime/daytime. Between 23-34oC, 

less bias is present as points are well-distributed above and below the identity line (Figure 12).  

5.2 Effect of urban expansion on urban temperatures 

 The purpose of performing a simulation with an estimation of land cover in 1938 was 

to investigate how excessive urban heat has evolved with development of the KCMA. Upon 

first glance, temperatures during the heat wave (i.e. 20 – 24 July 2012) indicate only minor 

differences between the two scenarios, i.e. maximum T2 is approximately equal and they both 

have average five-day T2 between 31-32oC. The two cases do deviate from one another 

overnight, with the historical simulation cooling to a greater extent than the present-day 

control. In order to further analyze these differences, results were separated by land cover class. 
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In Figure 15, the impact of greater density of impervious surfaces becomes more pronounced 

in areas of industrial/commercial and high-intensity residential. From 2100 to 0300 LST, these 

locations, which are largely clustered in the center of the KCMA, become approximately 2.5-

3.1oC warmer in the control case than their corresponding urban pixels in the historical 

simulation. In addition to an increase in urban temperatures, the expansion of the KCMA areal 

extent is able to be discerned by an increase in average T2 when comparing the present-day 

and historical simulations, and is approximated by the area between the blue and green circles 

in Figure 16. Comparing the number of urban pixels between the two land cover data sets, the 

increase in the KCMA urban surface area equates to approximately 968 km2 between 1938 and 

2011. 

5.3 Impact of cool roofs 

 Cool roofs were shown to have an impact on multiple variables, especially T2, which 

directly affects the thermal comfort of those living in the KCMA. When averaged over the 

entire five-day heat wave and all urban pixels, the 0.5- and 0.8-albedo simulations reduced 

urban T2 by 0.2oC and 0.45oC, respectively. Multiple comparison testing discovered that the 

cooling effect from both mitigation scenarios were statistically significant compared to the 

control. The greatest impact from cool roofs was experienced in areas with 

industrial/commercial and high-intensity residential land cover, where the five-day average 

difference in T2 reached -0.3oC and -0.7oC for the 0.5- and 0.8-albedo scenarios, respectively. 

This is due to the two higher intensity urban land cover categories consisting of a greater 

percentage of each pixel being covered with buildings that have cool roofs, allowing them to 

reflect more solar radiation and provide a greater cooling effect than low-intensity residential 

locations. In regards to output time, the control simulation warmed quicker than the mitigation 
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scenarios in the morning and midday (0900 and 1200 LST), but cooled slower in the late 

evening (2100 LST), leading to peaks in T2 difference at these times (Figure 17). 

 TSK exhibited a similar spatial pattern as T2, where the industrial/commercial and 

high-intensity residential areas were cooled to a greater extent (0.5-/0.8-albedo: -1oC/-2.5oC) 

than low-intensity residential locations (-0.6oC/-1.5oC). In contrast to T2, TSK showed more 

of a straightforward pattern when comparing the cool roof scenarios to the control, i.e. when 

the sun was more overhead, TSK was reduced to a greater extent. From 0600 LST until 1200 

LST, TSK in the control warmed at a quicker rate than with cool roofs, as evidenced ΔTSK 

becoming more negative during these times. From 1200 – 0000 LST, TSK abated at a faster 

rate in the control, as evidenced by ΔTSK becoming less negative; however, the cool roof 

scenarios continued to maintain the KCMA at a lower TSK than the control at these times. 

 It is also important to take into account the impact that this mitigation strategy has on 

both the near-surface, i.e. T2, and surface, i.e. TSK, UHI effect (Figure 19 and Figure 22). 

During this heat wave, the UHI effect was found to be most profound at 2100 LST, which is 

due to multiple reasons. First, because of their high thermal inertia, impervious surfaces release 

a substantial amount of heat in the evening that has accumulated throughout the day. In 

contrast, soil has a lower thermal inertia, especially when it is dry (Oke et al. 2017), e.g. during 

a heat wave. In addition, a greater density of vegetation in rural locations compared to urban 

areas assists in cooling local temperatures to a greater extent through latent heat of evaporation. 

These factors, along with others (see Introduction for more information), cause the UHI effect 

to be more pronounced during the late evening and night. This phenomenon continues to be 

prevalent, although to a lesser extent, until 0600 LST due to the slow release of heat throughout 

the nighttime. One interesting occurrence is that during the daytime, rural areas became 
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warmer than urban sites. This effect is also due to the difference in thermal inertia between the 

two surfaces. Rural surfaces are able to take up and release heat more efficiently than 

impervious surfaces, therefore locations outside the KCMA warm at a faster rate than those 

within the KCMA. By 1500 LST, the near-surface UHI effect began to form in areas of 

industrial/commercial land cover in the control simulation, but hadn’t formed in the cool roof 

simulations at this time. Even at 1800 LST, locations with high- and low-intensity residential 

urban land covers in the 0.8-albedo simulation still had yet to become warmer than rural sites. 

Similar to the near-surface UHI, the surface UHI effect also still had yet to appear in the two 

residential land cover classes at 1800 LST during the 0.8-albedo scenario. 

 The surface energy balance plays a significant role in results obtained for T2 and TSK. 

With an increase in albedo with cool roofs, both sensible heat flux and net radiation decrease 

due to a greater percentage of solar radiation being reflected skyward (Figure 23). In addition, 

the storage heat flux becomes less negative/positive during the daytime/nighttime, indicating 

a reduction in the amount of heat energy stored/released at these times. In turn, the combination 

of these effects decreases the near-surface and surface temperatures throughout the day. 

One unsuspected result was that the latent heat flux declined in the 0.8-albedo 

simulation from 0900 – 1200 LST, which was not seen to the same extent in the 0.5-albedo 

scenario. The high-reflectivity condition also exhibited a greater gain in both Q (for the first 

kilometer above the surface) and Q2 compared to 0.5-albedo simulation (Figure 25 and Figure 

26). One possible explanation for this phenomenon is that due to a reduction in TKE over the 

KCMA, there is a reduction in PBL height. Due to having a shallower PBL, atmospheric 

moisture was retained within a smaller volume compared to the control, leading to an increase 

in Q and Q2 over the urban area. This combination of effects then likely led to a reduction in 



 

 
74 

evaporation, and therefore, surface latent heat flux was also decreased. A similar finding was 

reported by Li et al. (2014), but they noted that the decrease in latent heat flux was due to 

stronger advection of moist air from rural locations. Since the five-day average difference in 

wind speed between the 0.8-albedo simulation and control is approximately ±0.5 m/s in this 

study (Figure A10), their rationale would likely not have had a major effect here. 

 In assessing the social impact of widespread deployment of cool roofs, statistically 

significant relationships between reductions in T2 from both mitigation scenarios and median 

household income were identified. The Spearman rank correlation coefficient for the 0.5- and 

0.8-albedo simulations were 0.41 and 0.50, respectively. When this information is combined 

with the scatterplots in Figure 32, a positive relationship between T2 reduction and median 

household incomes, especially below $50,000 per year, is observed. This indicates that people 

living in census tracts with lower household incomes would reap the greatest benefits from 

cool roofs. In addition, many people in these areas have to spend more time outdoors when 

commuting to work, including walking, riding a bicycle, or waiting for public transportation, 

compared to other parts of the KCMA (Figure A11). The widespread deployment of cool roofs 

would assist in relieving the thermal stress they experience, even after aging of the roofs has 

occurred (i.e. 0.5-albedo simulation). 
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

 Over the past seven decades, urban temperatures in the KCMA have grown in both 

magnitude and areal extent. With an increase in impervious surface density in the central 

portions of the metro between 1938 and 2011, temperatures in these areas were shown to have 

increased by over 2.5oC at night during the same simulated heat wave event. Through the 

widespread deployment of 0.8-albedo cool roofs, these temperatures were able to be reduced 

by an average of 0.62oC in the more highly developed portions of the innermost domain. After 

“aging” of the roofs (i.e. albedo of 0.5), temperatures were still decreased by 0.24oC in these 

locations. Another important aspect of cool roofs from these results was the impact on the 

actual UHI effect, i.e. the contrast between urban and rural temperatures. As the near-surface 

UHI effect began to form at 1500 LST in the industrial/commercial parts of the city during the 

control simulation, both cool roof scenarios were able to push back the onset of this 

phenomenon until the next output time (i.e. 1800 LST). The 0.8-albedo case was able to even 

able to delay the UHI effect until 2100 LST in high- and low-intensity residential locations. 

Although the impact of cool roofs on T2 can lessen over time with the deposition of debris (as 

indicated by the 0.5-albedo simulation), cool roofs albedo can be restored to 90 – 100% of its 

original value with cleaning (Bretz and Akbari 1997; Akbari et al. 2005). 

 In addition to impacting urban temperatures, cool roofs were also shown to have an 

effect on the heat riskscape in the KCMA. Jenerette et al. (2011) described heat riskscapes as 

differences in individuals’ exposure to environmental heat hazards in an area based on different 

personal and environmental factors, including socioeconomic status, race/ethnicity, and 

vegetation density. Many areas in the KCMA that have the greatest density of impervious 

surfaces (Figure 7), and therefore greatest UHI effect, have median household incomes that are 
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at the lower-end of the spectrum in this region (Figure 30), indicating that they have less 

financial resources to cope with more extreme temperatures. Individuals that live in these areas 

are also more likely to spend a greater amount of time outdoors in order to commute to work 

(Figure A11). The results from this study show that the deployment of cool roofs in the KCMA 

has the potential to reduce urban temperatures the most for many citizens that have the least 

resources available to adapt to these hazards. 

 One limitation to this study is that it assumes that all buildings in this area are able to 

have cool roofs installed, which would take a substantial amount of resources to complete. In 

order to make UHI mitigation more feasible, future research could be directed at investigating 

the effects of deploying cool roofs in certain portions of the city, e.g. areas with lower median 

household incomes. Using WRF with the SLUCM, this could be accomplished by increasing 

roof albedo in only one or two of the three urban land cover categories instead of all three. 
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APPENDIX 

 

Figure A1. Difference in T2 between the simulations with historical and present-day land 

cover (historical minus present-day). 
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Figure A2. Difference in T2 between the 0.5-albedo and control scenarios for each WRF 

model output time (cool roof minus control). Color scheme is not equal to that in Figure A3. 
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Figure A3. Impact of 0.8-albedo cool roofs on T2 in the KCMA for each WRF model output 

time (cool roof minus control). Color scheme is not equal to that in Figure A2. 
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Figure A4. Difference in TSK between the 0.5-albedo and control scenarios for each WRF 

model output time (cool roof minus control). Color scheme is not equal to that in Figure A5. 
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Figure A5. Impact of 0.8-albedo cool roofs on TSK in the KCMA for each WRF model 

output time (cool roof minus control). Color scheme is not equal to that in Figure A4. 
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Figure A6. Difference in five-day average PBL height with the installation 0.5-albedo cool 

roofs for each model output time. Color scheme is not equal to that in Figure A7. 
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Figure A7. Effect of widespread deployment of 0.8-albedo cool roofs on PBL height in the 

KCMA. Five-day average results are shown for each output time. Color scheme is not equal 

to that in Figure A6. 
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Figure A8. In order to reduce the amount of non-urban areas in the correlation coefficient 

analysis, T2 and median household income data from the blue census tracts were extracted 

from the full data set. The thick black lines indicate the boundaries of cities that are part of 

the Mid-America Regional Council region. 
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Figure A9. Frequency of census tract T2 difference between the cool roof and control for 

both the a) 0.5- and b) 0.8-albedo scenarios. Both figures reveal a positively-skewed 

distribution. 

a)

b)
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Figure A10. Effect of widespread deployment of 0.8-albedo cool roofs on 10-m wind speed 

in the KCMA. 
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Figure A11. Percent of people in each census tract that have to spend a greater amount of 

time outdoors when commuting to work because of walking, biking, or using public 

transportation (US Census Bureau 2018b). 
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