

THE HOLISTIC COURSE DELIVERY: A NOVEL PEDAGOGY FOR COLLEGIATE

INTRODUCTORY COMPUTER PROGRAMMING

A DISSERTATION IN

Curriculum and Instruction

and

Computer Science

Presented to the Faculty of the University

of Missouri-Kansas City in partial fulfillment of

the requirements for the degree

DOCTOR OF PHILOSOPHY

by

BELINDA JOAN COPUS

M.S., University of Central Missouri, 2013

B.S., University of Texas at Austin, 1993

Kansas City, Missouri

2020

© 2020

BELINDA JOAN COPUS

ALL RIGHTS RESERVED

 iii

THE HOLISTIC COURSE DELIVERY: A NOVEL PEDAGOGY FOR COLLEGIATE

INTRODUCTORY COMPUTER PROGRAMMING

Belinda Joan Copus, Candidate for the Doctor of Philosophy Degree

University of Missouri-Kansas City, 2020

ABSTRACT

For many years there have not been enough computer science graduates to fill open

positions. One of the chief barriers to the formation of computer science graduates is that many

students are unsuccessful in the introductory programming course. Unsuccessful students often

change their major field of study or terminate their collegiate studies. A chief concern is

therefore to minimize the DFW rate (grade of D or F, or withdrawal from a course).

Student characteristics have been extensively studied to explain, and sometimes justify,

the high DFW rate in introductory programming courses. Pairs programming, flipped

classrooms, choice of programming language, and a variety of other modifications and novel

methods have been devised in efforts to reduce the DFW rate. The collective conclusion has

been that there is no silver bullet that has been demonstrated to be universally effective.

This quasi-experimental study incorporates four learning theories that inform the design

and delivery of an introductory programming course: Neo-Piagetian Theory, Cognitive

Apprenticeship Theory, Cognitive Load Theory, and Self-Efficacy Theory. The objective was

 iv

to (1) design a course from the top-down that integrates several pedagogical elements in a

holistic way, and (2) deliver it to a group of nascent programming students.

The Holistic Course Delivery was implemented in three class sections of an

introductory programming course at a midwestern university in which a total of 96 students

were enrolled. The Holistic Course Delivery had a significantly lower DFW rate compared to

both historic DFW rates at the institution and established international norms and students

indicated they felt prepared for subsequent computer science coursework.

 v

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Graduate Studies,

have examined a dissertation titled “The Holistic Course Delivery: A Novel Pedagogy for

Collegiate Introductory Computer Programming,” presented by Belinda Joan Copus, candidate

for the Doctor of Philosophy degree, and certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Rita Barger, Ph.D., Committee Chair

School of Education

Carolyn Barber, Ph.D.

School of Education

Raol Taft, Ph.D.

School of Education

Yugyung Lee, Ph.D.

Department of Computer Science and Electrical Engineering

Praveen Rao, Ph.D.

Electrical Engineering and Computer Science,

University of Missouri School of Medicine

 vi

CONTENTS

ABSTRACT ... iii

ILLUSTRATIONS ... ix

TABLES .. x

ACKNOWLEDGMENTS .. xi

Chapter

1. INTRODUCTION ... 1

Statement of Problem .. 6

Theoretical Framework .. 8

Purpose Statement ... 11

Research Questions .. 13

Definition of Terms ... 14

Study Limitations... 18

2. LITERATURE REVIEW .. 20

Brief Summary of History & Progression of Computer Science Education

& Curriculum ... 20

Important Observations in the Past 20 Years in Introductory Programming 24

Predictors of Student Success .. 26

Prior Research on Challenges Programming Novices Face 29

Reasons Students Dropped an Introductory Programming Course 31

Education Theory that Informs Computer Science Education 31

3. METHODOLOGY .. 38

Statement of Significance of the Problem ... 38

Research Questions .. 40

 vii

Participants .. 40

Detailed Description of the Holistic Course Delivery 43

Data Sources and Sample Instruments .. 48

Data Analysis Procedures .. 54

Institutional Review Board and Permissions ... 54

Risks and Limitations .. 54

4. ANALYSIS .. 56

RQ1 .. 56

RQ2 .. 57

RQ3 .. 62

RQ4 .. 68

RQ5 .. 77

5. DISCUSSION .. 81

RQ1 .. 81

RQ2 .. 84

RQ3 .. 88

RQ4 .. 93

RQ5 .. 102

Conclusion ... 104

Future Research ... 105

Appendix

A. PRE-COURSE SURVEY ... 108

B. PRE-COURSE TEST & POST-COURSE TEST 115

C. POST-COURSE SURVEY ... 124

 viii

D. HOMEWORK REFLECTION ... 132

E. HOMEWORK ASSIGNMENTS .. 136

F. CODING SPRINTS... 160

G. FINAL EXAM PROGRAMMING QUESTIONS 172

H. QUALITATIVE INTERVIEW QUESTIONS 175

I. CURRICULUM OUTLINE ... 177

J. SYLLABUS ... 180

REFERENCES .. 184

VITA .. 198

 ix

ILLUSTRATIONS

Figure Page

1.1 Theoretical Framework ... 8

3.1 Quasi-experimental design static-group pretest-posttest design 39

4.1 Confidence in Java Programming ... 60

4.2 Student Confidence in Problem Solving ... 61

4.3 Histograms: Student Self-Reported Java Programming Confidence............................ 58

4.4 Histogram, Final Course Grade (Points out of 1000) ... 63

4.5 Homework First Problem Perceived as Difficult or Requiring Substantial Effort 72

4.6 Histogram, Time Spent on HW6 .. 73

4.7 Time Spent on Homework Assignments .. 74

4.8 Frequency of Guessing on Quizzes .. 75

4.9 Sprint 5, Question 2 Score Histogram .. 76

4.10 Sprint Code Tracing and Programming Performance .. 77

4.11 Sample Question Sensorimotor/Preoperational Staging ... 79

4.12 Sample Question Concrete Operational Staging .. 79

 x

TABLES

Table Page

3.1 Participant Demographics .. 42

3.2 Summary of course elements and theory that motivated inclusion 48

4.1 DFW Rate of Holistic Course Delivery vs. Institutional and International Averages 57

4.2 Student Self-Reported Preparedness for the Next Programming Course 62

4.3 Self-Reported Programming Ability at Start and End of Course 60

4.4 Student Continuous Characteristics and Final Course Grade .. 64

4.5 Student Discrete Characteristics and Final Course Grade ... 66

4.6 Course Pass/Fail and Class Rank for Course Completers ... 67

4.7 Class Rank and Major Field of Study .. 68

4.8 End-of-Course Survey, Part 1 .. 68

4.9 End-of-Course Survey, Part 2 .. 69

4.10 End-of-Course Survey, Part 3 .. 69

4.11 End-of-Course Survey, Part 4 .. 69

4.12 End-of-Course Survey, Part 5 .. 70

4.13 End-of-Course Survey, Part 6 .. 70

4.14 End-of-Course Survey, Part 7 .. 70

4.15 Cross-Tabulation of Neo-Piagetian Stage, Pre- and Post-Course 78

4.16 Improvement in Students’ Neo-Piagetian Stage from Pre- to Post-Course 80

 xi

ACKNOWLEDGMENTS

I have been most fortunate to be surrounded by many persons who, knowingly or not,

aided me in achieving this milestone, and I would like to express my gratitude for making this

possible.

• First, I would like to thank my Committee Chair and Advisor, Dr. Rita Barger, for her

guidance; and the other members of my committee: Drs. Carolyn Barber, Yugyung Lee,

Praveen Rao, and Raol Taft, for their constructive suggestions for my research, time

reviewing the artifacts leading to this dissertation, and guidance in my education.

• A major theme in this research involved mentors and role models. I had several mentors

and role models in this journey in three capacities. Thank you Dr. Rita Barger, Dr.

Carolyn Barber, and Dr. Yugyung Lee for sharing your experiences in higher education

and helping me to refine my thinking.

• Thank you to my UCM mentors -Dr. Xiaodong Yue, Dr. Mahmoud Yousef and Dean

Alice Greife – without you I would never have considered this path; and without your

support, I could never have finished.

• Thank you to my coworkers - Dr. Ann McCoy, Dr. Rhonda McKee, and Ms. Becky

White for your words of encouragement that were always spoken at just the right

moment.

• Thank you to the teachers who started me down the path of Computer Science and

sparked my love for programming and software development: Dr. Tess Stewart – Plano

East Senior High School, Dr. Nell Dale and Dr. Laurie Werth – The University of

Texas at Austin.

 xii

• I am grateful for my students and their willingness to participate in this study and their

contagious curiosity in learning.

• And finally, I am grateful for, and to, my parents, sister, and immediate family. My

partner in life, Perry – this was but a small challenge among others in our past few

years. Your fortitude to stay alive in the face of great physical trial gave me courage to

push through the tough days. As God may grant, may we continue this journey in life

together. Thank you, Peter, Zachary, and Caleb, for the many sacrifices you made so

that this could happen.

 1

CHAPTER 1

INTRODUCTION

According to the Bureau of Labor Statistics (BLS) (2018), the demand for software

developers in the United States will grow by 24% in the ten-year period from 2016 to 2026.

This rate is significantly higher than the average expected growth rate of 7% for all other

occupations. The software developer field is predicted to grow by 302,500 jobs during this

ten-year period while other computing fields such as web development, database

administration, information security analysis, and research science are also expecting

substantial growth (U.S. Department of Labor, 2018). Most potential employers for software

developers and related jobs require an applicant to have a bachelor’s degree in computer

science or a closely related field.

Employers are unable to recruit sufficient qualified candidates to fill open positions

(Adams, 2014). Although enrollment in introductory computer programming classes and

computer science major declarations have increased for each of the past eight years, with a

recently-reported nationwide increase in computer science majors (Sax, Lehman, & Zavala,

2017), degree production is not increasing at the same pace and is insufficient to support

current market demand. In fact, industry leaders have been pleading with political leaders to

allocate funding for computer programming education in all U.S. schools so that more

workers can be trained in this profession (CS Education Coalition, 2016).

 2

A significant impediment to producing a sufficient number of Computer Science

graduates is that a large number of students are unsuccessful in completing the introductory

courses in Computer Science, and thus will never graduate in the discipline (Watson & Li,

2014). The first two computer science courses are collectively labeled as “Introductory

Programming” or “CS1” and often represent a major barrier to entry into the field for

freshman computer science students. The failure rate (“DFW,” or grades of D, F, or a

withdrawal) has been widely reported to be approximately 33% worldwide for over a decade

in the introductory computer science courses. At the minimum, DFWs often lead to changes

of major to something other than computer science (Beaubouef & Mason, 2005; Watson &

Li, 2014). If this rate could be improved by enabling more students to be successful in

introductory computer programming courses, many more graduates could potentially fill the

current and projected hiring gap.

There have been many attempts to understand why the DFW rate in introductory

computer programming courses is so high. Some researchers have examined student

demographics such as race, gender, and socioeconomic status. Women are underrepresented

in obtaining computer science degrees, earning only 23% of all B.S. Computer Science

degrees in 2004, and dropping to a modest 18% a decade later in 2014 (Espinosa, 2015).

Non-white graduates, as reported by the National Science Foundation, represented 18% of

B.S. Computer Science degree grants. That is an underrepresentation by half, as more than

36% of the U.S. population is non-white (National Science Foundation, 2017). A study by

the Computing Research Association found that only 8% of those declaring the B.S.

 3

Computer Science major were Black or Hispanic (National Academy of Sciences, 2018).

Clearly, there is a diversity problem in computer science as in many STEM fields.

It is generally held that lack of exposure to computing is the primary issue driving

the lack of diversity of computer science degree grants, and there are many working to

expose underrepresented populations to Computer Science early in their primary education.

For example, Code.org is a non-profit with a mission to expand computer science access in

K-12 schools particularly concerned with increasing the participation of women and

underrepresented minorities (Code.org). It is hoped that time will reveal a more diverse and

larger computer science workforce.

It is not surprising that students from underrepresented populations have a higher

rate of failure in computer science. Recent AP Computer Science data tracking

underrepresented populations in an NCES study from the years 2003-2009 shows that initial

majors in computer/information sciences had some of the highest percentages of departures

from all STEM majors, with approximately 59% of majors choosing to leave the field.

Additionally, this report shows that 52% of students who left a STEM bachelor’s program

without a certificate or degree were Black or Hispanic, while 62% of STEM majors that

switched to another major were Black or Hispanic (U.S. Department of Education, 2013).

While the data does not directly state the number of underrepresented persons who start a

degree in computer science and fail to complete it, it is likely that underrepresented

populations majoring in Computer Science experience much higher rates of failure than

other populations and other STEM fields.

 4

Researchers have also investigated the mechanisms of delivery for computer science

courses as a contributing factor to the high failure rate. Studies on the class format, such as

traditional vs. online formats, or traditional vs. flipped classrooms, have been conducted.

Results are generally unhelpful. For example, Horton and Craig (2015) found no substantial

difference in the failure rates obtained through traditional classrooms and flipped

classrooms.

Researchers have also considered the choice of programming language that is taught

in introductory programming courses and its effect on failure rates, with the evidence

suggesting that the choice of programming language has no significant impact on the DFW

rate (e.g., Watson & Li, 2014). Researchers have also considered pairs programming, a

cooperative software development method that has emerged from recent developments in

agile software engineering, as a potential solution, but found that it did not produce

significantly higher rates of success (McDowell, Werner, Bullock, & Fernald, 2006).

Prior experience in programming, science, and/or mathematics has also been

researched in an effort to determine if prior related experience is an indicator of subsequent

success in introductory programming courses. Results have been mixed: prior programming

experience was shown to be a positive predictor of success in CS1 in some cases, and a non-

influencing, or neutral effect in others (Ventura & Ramamurthy, 2004; Horton & Craig,

2015). On the other hand, high-level mathematics experience, such as calculus, has been

demonstrated to be a somewhat positive predictor of success in introductory programming

courses (Owolabi, Olanipekun & Iwerima, 2014, p. 109). This may be because mathematics

is suspected to contribute to the development of problem-solving skills (Hiebert et al.,

 5

1996). This area of research has shown the most promise in finding a predictor of success in

CS1. However, many universities are not able to be highly selective in terms of student

population prerequisites, so it may be unrealistic to require students to have coursework in

advanced mathematics prior to enrolling in an introductory computer programming course

for many computer science programs.

As in other educational disciplines, a student’s belief in their own capabilities is

associated with their degree of success. Self-efficacy in computer programming is no

different and should be considered “a significant aspect of learning” (Sharmain, Zingaro,

Zhang, & Brett, 2019). Kallia and Sentance (2018 & 2019) and Ramalingam, LaBelle, and

Wiedenbeck (2004) stress the importance of enhancing students’ self-efficacy in computer

science courses, particularly programming.

While there is much research on what to teach in an introductory programming

course—such as procedural or object-first approach, the best programming language for a

novice, the best format for delivery (face-to-face, online, flipped)—there is very little

research that explores developing the novice student in a holistic way. A computer

programmer needs to master three facets of computing: syntax knowledge, conceptual

knowledge, and strategic knowledge (McGill & Volet, 1997). Most research in this field has

focused on one of the three facets. Few studies have explored how to provide course content

to address this triumvirate of skills holistically.

A few researchers have looked to educational theorists such as Piaget and his

successors’ neo-Piagetian theory for an explanation. Research has shown that neo-Piagetian

theory is relevant to computer programming (Lister 2011; Teague, Corney, Ahadi, & Lister

 6

2013). Lister (2011) was able to explore the relationship between novice programming

students and neo-Piagetian theory. He found that the novice programmer progresses through

learning stages, essentially from concrete to abstract. It is the objective for a learner to reach

the abstract level in order to be a competent and independent software developer (Knight &

Sutton, 2004). Lister and others often state in their concluding statements that neo-Piagetian

theory should inform pedagogy. Additionally, educators of adult learners must “allow

students to master programming skills using the type of reasoning indicative of the earlier

stages of development before exposing them to significantly more abstract concepts”

(Teague & Lister, 2014). Studies that take up this pedagogical problem in a comprehensive

way have not yet materialized. Modifications to curriculum and pedagogy in light of neo-

Piagetian theory is thus a viable area of exploration in pursuit of a way to address the DFW

problem in introductory programming courses.

Statement of Problem

While many facets such as student characteristics, prior programming experience,

programming language taught, etc. have been explored, nothing has been found to be a

consistent predictor of success rates in introductory programming courses. Some research

has been conducted regarding applying pedagogy to each facet (Knight & Sutton, 2004).

These studies typically address one of the three major components (syntax, conceptual

knowledge, and application to solve a problem) in learning computer programming. Little

research exists that explores how educators can address success in introductory

programming by understanding how its students learn and how an educator might best adapt

pedagogy to enable and maximize attainment of the three components of ability that a

 7

programmer should possess. We know that introductory computer programming students

progress through stages as defined by neo-Piagetian theory (Lister, 2011; Teague, 2015).

This knowledge has not yet produced a comprehensive application to educational practice

(Knight & Sutton, 2004). Additionally, researchers often focus on improving one of the

three components with little improvement in the success of novice programmers. Perhaps all

three facets need to be addressed as individual parts of a whole. Perhaps a new approach to

course design, informed by neo-Piagetian theory, and expressly holistic in its pedagogical

approach, could provide more insight on how to improve DFW rates.

Piagetian learning theory is a theory that addresses the intellectual development of

children. Piaget proposed four stages of cognitive development that are aligned with the age

of a child. The stages progress from reflexive to concrete to abstract:

In Piaget’s view, children’s thought processes move from innate reflex actions

(sensory-motor stage, birth to two years), to being able to represent concrete objects

in symbols and words (preoperational stage, two to seven years), to an understanding

of concepts and relationships of ideas (concrete operational state, seven to eleven

years), to an ability to reason hypothetically, logically, and systematically (formal

operational stage, twelve-plus years). (Merriam, Caffarella, & Baumgartner, 2007, p.

326).

Piaget’s theory does not address an individual beyond 12 years old, including adult

learners. Neo-Piagetian theory has expanded Piaget’s original theory to better understand

cognitive development in adulthood.

Neo-Piagetian theory accepts the four stages posed by Piaget: sensorimotor,

preoperational, concrete operational, and formal operational. When relating this to the adult

learner, the theme of age-related progression through stages is not applicable, but theorists

believe that the novice programmer will still progress through the neo-Piagetian stages.

Further they assert that, “[the] novice programmer actually positions these behaviors as

 8

normal behaviors to be expected in the long and torturous cognitive development of the

novice programmer” (Corney, Teague, Ahadi, & Lister, 2012, p. 86). Instructors of novice

programming students could benefit by understanding that students develop and proceed

through the stages established by neo-Piagetian theory.

Theoretical Framework

Several theoretical frameworks form the foundation of this study as shown in Figure

1.1.

Figure 1.1

Theoretical Framework

Neo-Piagetian theory builds upon Piagetian theory. Neo-Piagetian theory includes

the principles from Piaget: the idea of stages, that cognitive structures are actively created by

learners, that these cognitive structures become increasingly complex through the intricate

interaction of maturation and experience in a cyclical knowledge building process, and that

cognitive levels build on and transform the lower, less complex levels (Knight & Sutton,

Neo-Piagetian Theory

Cognitive Load Theory

 Cognitive Apprenticeship

Theory

Zone of Proximal

Self-efficacy Theory

Introductory

Programming

C&I

 9

2004, p. 49). The schemes or stages from least abstract to abstract are sensorimotor,

preoperational, concrete operational, and formal operational. The learner will progress

through these four stages, regardless of age (Knight & Sutton, 2004, p. 49). This is a

substantial difference from Piaget, who believed that progression from one stage to the next

is connected with the age or maturation of the learner. Neo-Piagetian theorists further extend

Piagetian theory through the observation that the adult learner can display different levels of

cognition in different topics. The learner can display an “unevenness in development across

different domains and contexts. . . . [this] is the norm and [is] to be expected.” (Knight &

Sutton, 2004, p. 49).

Vygotsky (1978) developed the concept of “Zone of Proximal Development” (ZPD),

which posited that a novice’s thinking is influenced by relationships with others who are

more capable (Vygotsky, 1978, p. 87). Essentially, a novice learner needs assistance from an

expert to initially demonstrate or share knowledge and skill, arrange experience for the

novice to practice the skill and be guided through the exposure of knowledge, and to

gradually provide less and less of this support. This modeling, a bit like that of a coach,

enables the learner to obtain basic skills and internalize the skills/knowledge. The student is

an active participant in their learning and the instructor is a collaborator with the learner.

Bruner (1960) used the term “instructional scaffolding” and posited similar concepts

regarding the need for guidance which is provided at just the right time and with just the

right content (Bruner, 1960).

Cognitive Apprenticeship theory (Collins, Brown, & Newman, 1987) is similar to

Zone of Proximal Development, but proposes six teaching methods: modeling, coaching,

 10

scaffolding, articulation, reflection, and exploration. This theory also relies on an expert as

the initiator or enabler in learning:

In order to make a real difference in students’ skill, we need both to understand the

nature of expert practice and to devise methods that are appropriate to learning that

practice. Thus, we must first recognize that cognitive and metacognitive strategies

and processes, more centrally than low-level subskills or abstract conceptual factual

knowledge, are the organizing principles of expertise, particularly in domains such as

reading, writing, and basic mathematics. Further, because expert practice in these

domains rests crucially on the integration of cognitive and metacognitive processes,

we believe that it can best be taught through methods that emphasize what Lave (in

preparation) calls successive approximation of mature practice, methods that have

traditionally been employed in apprenticeship to transmit complex physical

processes and skills (Collins et al., 1987, p. 2).

Cognitive apprenticeship theory addresses pedagogical methods, sequencing of

learning activities, and the sociology of learning to replicate the traditional model of

apprenticeship in the modern educational setting.

Sweller (1988) developed a Cognitive Load Theory which addresses how students

process new information and how the instructor can best manage presentation of information

to optimize student learning. Sweller studied whether working math problems of basic

principles after demonstration from the instructor was an effective method for student

learning. He suggests that this might not be the best method for the student and further

suggests that more worked examples could be beneficial. He states that problem solving as a

learning device is not necessarily effective. This theory has application to computer

programming in that the learner needs direction in both learning basic principles and in

applying those principles to solve a problem.

Bandura defines self-efficacy as “people’s judgments of their capabilities to organize

and execute courses of action required to attain designated types of performances” (Bandura,

1986, p. 391). Bandura suggests four ways a person can develop self-efficacy; two are quite

 11

relevant to introductory computer programming. First, “mastery experience” (success) leads

to greater self-efficacy. Second, “social modeling” (seeing others, especially those similar to

ourselves, succeed) increases the belief in our own ability (Bandura in Lopez, 2008). In light

of Bandura, Kinnunen and Simon (2011) determined four aspects for consideration in

promoting self-efficacy in computer science. These include avoiding repeated failures at the

beginning of the learning process, selecting tasks that are at the appropriate difficulty level

and provide an attainable path of benchmarks that the student can trace, and intentionally

managing the classroom environment to create a sense of belonging. Cognitive

apprenticeship theory is closely related to self-efficacy in that the instructor can act as a

social model and provide mastery experiences to the learner. In summary, one would expect

that guided and careful exposure to programming exercises in the classroom and outside the

classroom will enable small victories and lead to an increase in self-efficacy.

Each of the theories—neo-Piagetian, cognitive load, cognitive apprenticeship, and

self-efficacy—can contribute to elements in a course design. The theories can be used to

inform the design and delivery of an introductory computer programming course to

holistically develop the student as a nascent computer programmer.

Purpose Statement

The purpose of this quasi-experimental study was to describe DFW rates and self-

efficacy in students enrolled in an introductory computer programming course designed

around the neo-Piagetian, cognitive apprenticeship, cognitive load, and self-efficacy

theories. Students’ perceived belief of how the format of the class contributed to their own

performance in the course was also studied. The study considered student characteristics

 12

such as prior programming experience for 96 participants at a Midwestern university. The

course design and delivery for this study, the Holistic Course Delivery, is generally defined

as a course curriculum designed with planned topic presentation that utilizes minimal

cognitive load and the components of cognitive apprenticeship. Student “success” is defined

as obtaining a grade of A, B, or C in a first programming course. The aggregate number of

students earning grades of D or F, and students who withdrew from the course after the last

official free drop date, was divided by the total number of students who registered for the

course and did not drop it before the last official drop date—this is referred to as the DFW

rate. In addition to the DFW rate, student self-efficacy was measured throughout the course

with a cadence corresponding to the homework assignments and at the beginning and the

end of the course. Prior programming experience and a pre-collegiate standardized

mathematics test score were also considered.

This research is significant and contributes knowledge to many different

constituencies. The primary constituency to receive benefit from this study is the future

students, who will obtain a deeper understanding of course material, have greater success in

the course, and be better equipped to tackle higher level computer science coursework.

Additionally, universities will benefit from an increased rate of retention for the computer

science major, which is advantageous relationally, reputationally, and fiscally. Third,

educators will benefit from the detailed study of this topic as it may help them to improve

their own practices in teaching introductory programming courses, resulting in better

outcomes and decreased vocational frustration. Fourth, this research will contribute to the

sparse body of literature on this critical subject that has not been adequately examined in the

 13

immediate past years. Finally, it is also an interest of this study to determine if the

demographically defined population of students most likely to fail CS1 can be better served.

Research Questions

This study sought to describe DFW rates, final exam scores, and self-efficacy for

students taking an introductory computer programming course designed and delivered

according to principles informed by the Neo-Piagetian, Cognitive Apprenticeship, Cognitive

Load, and Self-Efficacy theories. Such a course is referred to as a Holistic Course Delivery,

as opposed to a course that is not intentionally developed according to insights to these four

theories, referred to as a Traditional Course Delivery. Additional open-ended interviews

were conducted to complement the quantitative results of the study and were used to help

interpret findings in the discussion section. The research questions for this study included

the following:

Research Question 1: How do DFW rates for the Holistic Course Delivery compare

to historic DFW rates for introductory programming courses taught using Traditional Course

Delivery at the institution at which the present study was conducted, and internationally?

Research Question 2: Does student self-efficacy with respect to Java programming

and with respect to problem solving change over the course of the semester for students

participating in the Holistic Course Delivery?

Research Question 3: Are there particular student characteristics associated with

total points achieved in the Holistic Course Delivery?

Research Question 4: What course elements do students believe were helpful in the

Holistic Course Delivery?

 14

Research Question 5. Does the neo-Piagetian stage of students change from the

beginning to the end of the Holistic Course Delivery?

Definition of Terms

Because this study addresses two primary audiences, both educators in general, and

computer science educators in particular, definitions are given for terms that might be

unfamiliar to one or another of these audiences.

Neo-Piagetian Theory

Neo-Piagetian Theory is a learning theory that builds from the seminal work of Jean

Piaget on intellectual development. Piaget proposed that the learner advances through four

cognitive stages: sensorimotor, preoperational, concrete operational, and formal operational.

The stages are essentially organized from concrete to abstract and the learner will advance

through these stages as they age or mature. Piaget described the basic unit of cognitive

analysis, or a scheme. A scheme functions through a dual process or assimilation and

accommodation (Mascolo, 2015). Essentially, that which is to be known is incorporated into

an existing scheme and the existing scheme is modified to include the knowledge. Neo-

Piagetians revised this theory to include skills rather than schemes that are products of

context. Piagetian theory addresses cognitive growth in normal children by age and therefore

does not allow the possibility that learners develop at substantially different rates. Neo-

Piagetian theory provides an alternative and more universal model and allows that a learner,

regardless of age, will advance through the four stages of cognitive development as new

domains of knowledge are encountered. This effectively extends Piaget’s theory into the

realm of adult learning.

 15

Cognitive Apprenticeship Theory

Cognitive Apprenticeship Theory (Collins et al., 1987) proposes six teaching

methods: modeling, coaching, scaffolding, articulation, reflection, and exploration. This

theory relies on an expert as the initiator or enabler in learning. Essentially, the instructor

models a skill and the learner is guided by the instructor with decreasing dependence on the

instructor while a particular skill is attained.

Cognitive Load Theory

Cognitive Load Theory deals with how students process new information and how

the instructor can best manage presentation of information to optimize student learning. It is

believed that by minimizing extraneous information for the student that students can focus

on learning important knowledge.

Traditional Course Delivery

Traditional course delivery is a course design which relies heavily on lectures by the

instructor. Students are primarily passive during class meeting times. A delivery method

often used in traditional courses is content knowledge shared via PowerPoint presentation.

There could be opportunity for students to observe the instructor live coding, but students

performing live coding during the lecture time is rare. The course will typically follow the

concept ordering as presented in the textbook. Students will have weekly homework

assignments that include problems requiring content knowledge not necessarily

demonstrated during class meeting times. Midterm(s) and a final exam are the primary

assessment instruments in a traditional course.

 16

Holistic Course Delivery

The course design and delivery utilized in this study that incorporates Neo-Piagetian,

Cognitive Apprenticeship, Cognitive Load, and Self-Efficacy theories in an introductory

computer programming course.

DFW rate

DFW rate is the ratio of the total number of grades of D or F, and the number of

withdrawals from a course divided by the number of students registering for the course who

do not drop it before the last free drop date. A withdrawal occurs when a student drops or

withdraws from a course after the formal add/drop period at the beginning of a semester.

Student Success

Student success is defined as a student completing an introductory computer

programming course with a grade of C or higher.

Self-efficacy

Self-efficacy is defined as a student’s individual belief in his or her ability to

succeed.

Special Demographic Participants

Special demographic participants include female students and underrepresented

minorities in an introductory programming course. Underrepresented minorities typically are

females and persons who are non-white.

Historically Challenging Programming Questions

These include programming questions that deal with programming concepts of

variable assignments, if-statements, loops, and lists.

 17

Introductory Programming Course

An introductory programming course is a course in which programming

fundamentals are introduced. Traditionally there are two courses (CS1 and CS2) that

comprise the foundation in computer science, particularly the programming aspect. These

two courses were originally developed in the ACM’s 1978 Computing Curricula, and the

names continue today with modernization of course content. While there is disagreement

among educators as to what topics are typically included in CS1, the primary topics in CS1

include the programming constructs of variables, types, conditionals, loops, methods, and

arrays (Hertz, 2010). CS2 is often a continuation of CS1 that adds object-oriented

programming and/or an introduction to data structures. Both courses will have some level of

problem decomposition, testing, and debugging. For the purpose of this writing, the

description of topics typically included in CS1 (as mentioned above), will comprise an

introductory programming course.

Triumvirate Skill Set

Many have stressed the importance that a computer programmer needs to master a

triumvirate skill set. This set of three skills includes syntactical knowledge, conceptual

knowledge, and strategic knowledge (McGill & Volet, 1997). Each skill is defined by Qian

and Lehman (2017) as follows:

Syntactical knowledge is the knowledge of the language features, basic facts, and

rules. Conceptual knowledge refers to the knowledge of how programming

constructs and principles work and what happens inside the computer. Strategic

knowledge refers to how to apply syntactic and conceptual knowledge of

programming to solve novel problems. (p. 3-4).

 18

A novice programming student will need to learn the syntax of a programming language, be

able to apply multiple programming constructs, and ultimately be able to solve a variety of

problems.

Study Limitations

This study has potential limitations. Random selection of participants is not possible,

since students are able to self-enroll in course offerings. A non-randomized control group

was considered but presented several concerns: (1) The researcher’s belief that the Holistic

Course Delivery may be significantly superior to the Traditional Course Delivery might

have introduced an element of researcher bias in the delivery of the course, had the

researcher employed both methods in different sections of the course; (2) The one other

section of the course for which data might have been available to the researcher was taught

by another instructor and met twice per week (instead of three times per week, as in the

sections taught by the researcher). This additional section represented a small data set in

comparison, met less frequently, and was taught by a different instructor—hardly a

reasonable basis for comparison.

It has been argued in the literature that course grades are an inadequate measure of

student knowledge acquisition. While this is acknowledged, this study used course grades

because the DFW rate, which intrinsically incorporates letter grade earned in a course, is a

metric that is tracked by, and important to, universities.

A pre-test and pre-course survey was used to establish a baseline and to understand

the characteristics of the class make-up and each individual student. The pre-test and pre-

course survey also served as post-test instruments, potentially allowing for threat of testing.

 19

Due to the methodology used in this study, causation was not confirmable. The research

findings may be generalizable to other similarly situated institutions.

 20

CHAPTER 2

LITERATURE REVIEW

Brief Summary of History & Progression of Computer Science Education &

Curriculum

Currently there is no required standard to teach in computer science. Most would

agree that computer programming is at the heart of computer science. While there is a

hardware aspect to computing, individuals with a degree in computer science will most

likely take a professional role in software development. Computer science curriculum has

developed over many decades, but only after computers became a reality and were

determined to be a very useful tool for humanity.

We can begin the story of the origin of computer programming with Ada Lovelace in

1843. Lovelace was working as an assistant to Charles Babbage while he was developing the

Analytical Engine Difference Machine. The concept of a computer program (a set of

instructions a machine could execute to solve a problem) existed prior to the first computing

machine. A computer was originally a machine that would perform calculations. One

hundred years would pass and a world war (WWII) would occur before significant

developments in computing would take root. The Eastern Association for Computing

Machinery was formed on the east coast of the U.S. to promote and advance science,

development, construction, and application of new machinery for computing, reasoning, and

 21

handling of information. This was on the heels of WWII when computers had names such as

ENIAC and MARK I. The mathematicians and scientists managing these machines--

Hopper, Aiken (IBM)--used them to calculate ballistic firing tables. The computer used pre-

punched paper for arithmetic instructions. Data was stored mechanically, and results were

then transferred to paper through an electronic typewriter, an early version of printer. While

this was a specialized, almost single-purpose machine, scientists were quite aware of the

potential computers represented and conceived of ways to make the computer versatile,

general, and more powerful. Thus, the concept of a compilable language was born and

computing expanded quickly in the realm of software and programs.

The first computer programmers were predominantly mathematicians, so early

computers were applied to solving mathematical problems. During the 1950s, George

Forsythe with Stanford wanted to apply computers to a general set of problems that went

beyond mathematical calculation. The Division of Computer Science was born, but under

the Mathematics Department. Purdue University established the first Computer Science

department as such in 1962.

During this period (1950s-1960s), there was ongoing conflict on what computer

science was and where it should be housed at universities. Is it a tool for mathematics? Is it a

natural science? An individual science? Is it engineering? And so on. Strong opinions fueled

substantial controversy about the nature of computer science and the way new practitioners

should be taught the discipline.

It was by the work of people organized under the Association for Computing

Machinery (ACM), formerly the Eastern Association for Computing Machinery, that formal

 22

computer science curriculum was defined. In 1968, the first curriculum for higher education

was released. This curriculum aligned heavily with mathematics and remained math-focused

until the late 70s and early 80s, during which there was a new push for CS to be

“professionally-focused” and to become a field in its own right. ACM began to define more

curriculum that was application oriented and less fundamentally theoretical or mathematical.

During this time the Institute for Electrical and Electronics Engineers (IEEE) published their

own curriculum for computer science that was more hardware based. This was useful for

those studying computer engineering, but it failed to connect hardware and software and

missed the mark for computer science.

While ACM continued to refine what constituted a computer science curriculum in

higher education, a movement to accredit computer science programs began. In 1990,

ABET, under the CSAB (Computer Science Accrediting Body), developed criteria to

accredit undergraduate CS programs. These criteria established minimum requirements for

mathematics (1.5 years – 45 credits). The criteria for curriculum was informed by the ACM

curriculum. There are requirements for minimum credits in science, math, and computing

subjects, but the latter allows for a wide variety of topics, focus, and definition for individual

programs.

During this time period, computer science was increasingly taught in public high

schools—primarily something arranged along the lines of the first programming sequence

course from higher education, and an Advanced Placement (AP) exam was offered. High

schools varied widely in how they credited computer science course work. Some districts

counted the credit as elective while others counted the course as a math, science, or foreign

 23

language credit. Similar to the controversy of where to house computer science in higher

education, how to allow credit for Computer Science in public high schools has been just as

controversial. Computer science didn’t fit any of the traditional areas and those traditional

areas (mathematics and science) perceived a threat in allowing CS to exist at all.

After the dot-com bubble of the 2000s there was an increasing realization that the

need for persons trained in computer science had not perished with the venture capital-

fueled startups of the era. Computing was integral to modern life and was here to stay.

Private non-profit organizations such as Code.org were formed to promote computer science

in K-12 schools. These organizations placed computing skills at the same level as reading,

writing, and mathematics. They believed that computational thinking and programming are

skills to which all people should be exposed. States also began to awaken and address this

need by examining how to bring computer science into schools and how to give credit for

high school computer science courses. Some states now require computer science to be

taught in high school. Many educational bodies pushed for exposure in K-12, a pathway to

teacher certification, and credit as an advanced science, math, or foreign language. Some

fear that a student could forego mathematics coursework in high school, replace it with CS,

and enter college mathematically underprepared. Nonetheless, Code.org estimates that there

are over 500,000 computing job openings in the U.S. right now, and that we produce 63,000

graduates into the workforce each year (Code.org). (Brief history summarized from Misa,

2017, Communities of Computing).

 24

Important Observations in the Past 20 Years in Introductory Programming

Soloway, Ehrlich, Bonar, and Greenspan (1982) examined the disconnect that novice

programmers exhibit between natural language and programming language. They suggest

that instruction could be a contributing factor (Soloway, Ehrlich, Bonar & Greenspan, 1982,

p. 12). More recently, McCracken et al. (2001) published a seminal paper on the

programming competency of students in higher education who recently completed the first

two programming courses in computer science. In the study, the McCracken group created a

set of five student learning objectives that first year students should attain. These include the

following: abstraction of a problem from a description, decomposition of a problem into

sub-problems, creation of solutions for sub-problems, combining sub-problem solutions, and

iterative evaluation and correction until a final solution is produced. After this framework

was determined, the group developed strategies for assessing the attainment of the

outcomes. Charettes, or short programming assignments completed in a lab setting were

used to assess the participants. A set of three charettes were created and the instructors from

four universities administered at least one of the three to their class. A common rubric was

created to maintain consistency of grading across participating institutions. There was also

an optional student questionnaire that gathered demographic information, programming

background, and reaction to the exercise(s). The McCracken group addressed the challenge

of comparing results from participating institutions. After considering differences among

student prior experience, time allowed, hints given, etc., they were able to conclude that

students did much more poorly than predicted and that students in introductory computer

programming courses do not know how to program at the expected skill level. The authors

 25

did acknowledge that their expectations might have been too high and that this could have

contributed to the results. The study did show that students often were unable to successfully

deliver a program that would even compile (a step in which program syntax is checked for

errors). A major point in the conclusion was that “issues of how the course is taught and

who the students are influence the outcome” and that this is more relevant than the

programming language used in the course (McCracken et al., p. 132). While there were

other interesting findings in this study, it suggests that we overestimate the types and

complexities of problems that we can expect first year students to complete and that how

students are taught—including scope, sequence, and delivery method—is intimately tied to

student success. The McCracken paper continues to be extensively cited and was a major

contribution in highlighting where first year programming students are weak, and a possible

disconnect in what students should be expected to know at the end of introductory

programming coursework. A curriculum designer cannot consider course content for an

introductory programming course without reflection on the McCracken Report.

Lister (2011) boldly concluded in his study that teachers of introductory

programming students should reset their expectations for skill attainment and, specifically,

that the first semester student should not be expected to develop programming skills at a

highly abstract level. Lister took a step back to analyze how students’ cognitive thinking

develops in a first semester programming course. He found that a programming student

develops skills from concrete to more abstract concepts which aligned with neo-Piagetian

learning theory. His study refined the major conclusions from the McCracken report by

showing that both students’ cognition and programming-specific skill mature in a particular

 26

order. He suggests that the computer science educator should be aware of the progression

and consequently adapt introductory pedagogy to incorporate this theory (Lister, 2011, p.

17).

Brown and Altadmri (2017) support Lister. They examined programming mistakes

that students frequently made and found that certain syntactical errors decrease, but that as

programming problems became more complex some mistakes continue to be made. The fact

is that some mistakes become easily identified, corrected, and no longer made. When coding

problems become more complex, the novice student has difficulty managing syntax and has

a need to apply more abstract thinking.

Predictors of Student Success

Previous Programming Experience

Prior programming experience would seem to be an obvious factor promoting

student success. If a student has had some experience programming, whether formal or

informal, one would expect the student to be more likely to succeed in an introductory

programming course in higher education than if they had no such prior experience. Indeed,

Petersen, Craig, Campbell, and Tafliovich (2016), indicate that lack of prior programming

experience is a key contributor to students dropping or withdrawing from an introductory

programming course. This agrees with a study conducted by American Association of

University Women it was determined that students in introductory programming were more

likely to succeed if they were enrolled in a section based on prior experience (Corbett &

Hill, 2015), and another that found that students with no prior programming knowledge

score lower than students with some prior programming knowledge (Veerasamy, D’Souza,

 27

Linden, and Laakso, 2018). But not all studies are agreed on this point. A 2004 study points

in a different direction: Prior programming experience did not benefit students taking an

objects-first introductory programming course (Ventura & Ramamurthy, 2004).

Programming Language Taught

Programming language that is taught in a course is often considered a possible

contributing factor to student failures in an introductory course. Watson & Li (2014) showed

that pass rates were independent of programming language taught in the course.

Pair Programming

Some educators have turned to pair programming as an intervention in an

introductory programming course to enable more student success. Petersen et al. (2016)

conducted qualitative interviews of students who dropped an introductory programming

course that utilized pair programming. They discovered that the student had come to rely on

the partner during lab and that they had been unsuccessful in working independently. Pair

programming has not consistently been shown to be a reliable intervention.

Gender

Women are underrepresented in introductory programming courses. According to a

study by Sankar, Gilmartin, and Sobel (2015), women are less likely to answer course-

related questions and choose to use tools that maintain anonymity. This points to a potential

connection with self-efficacy and a difference in male and female students. One study found

that women performed similarly to their male peers in an introductory programming course

(Pillay & Jugoo, 2005). It seems that performance is gender independent, but self-efficacy

might not be level between genders.

 28

Others have developed courses in an attempt to better engage and retain female

students. An introductory computer programming course was conducted as an experiment

among Biology majors. Based on prior literature, female students are found to perceive an

introductory programming course more difficult than the male students in the course.

Additionally, male students are more likely to pursue additional programming coursework.

The researchers theorized that the pedagogy of the introductory programming course

contributed to these perceptions. They designed an experimental section of a course that

used physical computing with Arduinos. The researchers were hoping that the use of

contextual programming through Arduinos would be more engaging and less intimidating

for female students. The researchers were able to conclude that the gap between male and

female students’ perception and learning outcomes was reduced with their pedagogy (Rubio,

Zaliz, Manoso, & Madrid, 2015).

Class Size

Class size has been explored as a possible contributing factor toward the DFW rate.

Watson and Li (2014) determined that classes with less than 30 students will typically have

a lower DFW rate.

Delivery Format

Delivery formats may comprise of pure lecture, lecture and code, or lecture and lab.

Hawi (2010) demonstrated that students who practiced coding concepts by creating

programs were much more likely to be successful in an introductory programming course.

This supports having the student participate with the instructor in writing working computer

programs in the classroom. It is through this instructor/student interaction that the student

 29

learns how to learn computer programming. This study explored other factors related to lack

of success in an introductory programming course, such as “lack of study,” “subject

difficulty,” “exam anxiety,” and others, but found that students who were high achievers

believed their success was related to their “learning strategy” or intentional coding practice.

Prior Research on Challenges Programming Novices Face

Code Tracing

Code tracing is an important skill for the computer programmer. Code tracing is

reading a computer program in order to predict what the program will do. Kaczmarczyk,

Petrick, East, and Herman (2010) studied students and misconceptions they have in

introductory programming. These researchers found that students form strong assumptions

about a specific piece of code—in this case, variables and memory models—and are unable

to recognize true programming issues because of their assumptions. The researchers indicate

that the instructor is key in correcting and preventing this common weakness in novice

programmers (Kaczmarczyk, Petrick, East, & Herman, 2010).

Veerasamy, D’Souza, and Laakso (2016) studied misconceptions of novice Python

programmers and found that students who were unable to trace code were also unable to

write code. Code tracing is a skill that precedes code writing.

Coding Constructs

Programming includes many constructs. Examples of coding constructs include

selection statements to determine a logical path within a program and looping constructs

which allow portions of a computer program to be repeated until a condition is met to

terminate repetition. It was found that understanding loop programming constructs requires

 30

cognitive skills beyond the ability to type a looping construct syntactically correctly

(Veerasamy, D’Souza, & Laakso, 2016).

Veerasamy et al. (2016) did not find that students had significant issues with

defining methods and passing parameters to methods. Other researchers referred to in

Veerasamy did find otherwise.

Understanding logic is key to success in using programming constructs such as

selection statements and loops. VanDeGrift et al. (2010) found that instructors should not

assume students have prior knowledge or mastery in logic. Students often exhibit fragility in

applying logic to programming. Students might understand logic concepts in English but

have difficulty in translating the concept to a computing language. Based on this

observation, my study will incorporate instruction and student practice problems on the

basic truth tables and careful wording when explaining selection and loop constructs.

Strategic Knowledge

Veerasamy et al. (2016) found that two thirds of the students in their study struggled

to solve mathematics-based problems, in which the students used coding syntax and

constructs to solve said problems. This discovery supports the notion that prior knowledge

outside of computing, i.e. mathematics, cannot be taken for granted. Perhaps novice

programmers need additional support in math review or more considerate choice of problem

selection on behalf of the instructor.

 31

Reasons Students Dropped an Introductory Programming Course

Petersen et al. (2016), indicate that lack of prior programming experience, lack of

time, lack of motivation, and pace of course were all reasons that students dropped

introductory programming.

Education Theory that Informs Computer Science Education

Cognitive Load Theory

Caspersen and Bennedsen (2007) explored the benefits of designing an introductory

programming course with consideration for cognitive load and cognitive apprenticeship. The

course design was for an objects-first approach to teaching introductory programming. Their

writing serves as a primer for CS educators in understanding learning theories of cognitive

load and cognitive apprenticeship and how these theories can be applied in the introductory

programming classroom. The study did not provide any evidence of success of this model

but indicated that it has been used successfully with over 400 students in four years. Some

would disagree with an objects-first approach to teaching programming, but this is incidental

to the chief value of their study, which is that it provides a way to reconsider and improve

pedagogy. Although the research in this study did not use an objects-first approach it has

intentionally incorporated Cognitive Load Theory.

Bouvier et al. (2016), demonstrated that designing programming problems with a

complicated theme or real-world context contributed to a greater cognitive load and had a

negative impact on learning in a CS1 course. While CS educators seek to make problem sets

interesting and relevant, the instructor will need to weigh the cognitive load to the potential

return on learning for the student.

 32

Debugging computer programs is closely related to problem solving. While problem

solving involves designing a solution and producing an artifact, debugging involves

searching for cause when the artifact does not perform correctly, or is syntactically incorrect.

Becker et al. (2018) analyzed error messages from student produced programs. A student

program might list several errors in a single compilation. The Becker study found that

having students focus on the first reported error and to ignore any other errors listed

minimized the cognitive load for the student. Often, corrections made in relation to the first

error message will drastically alter the successive list of errors. They advise instructors to

demonstrate the technique of only solving the first compilation error and then recompile and

repeat the process.

Brown and Altadmri (2017) studied student programming mistakes. They believed

that instructors often rely on intuition, knowledge, and experience to determine which

programming mistakes are commonly made and how long it takes students to correct the

error. Brown and Altadmri (2017) surveyed computing educators on these two points. They

compared the results of the survey to actual data collected on student mistakes and time to

correction. The study concluded that instructors, regardless of experience level, often

mispredicted the frequency of errors that students make and the time needed for correction.

The researchers suggest that computing educators should rely on more than intuition to

better understand errors that students make and incorporate this knowledge into course

content. This study will be reflected in my own practice that is connected with this

dissertation.

 33

Bergersen and Gustafsson (2011) studied computing professionals and whether

working memory was mediated through programming knowledge. They administered

twelve programming tests and a working memory test to each participant. They found that

an increased level of programming knowledge allows for greater cognitive load. While this

study focused on the professional, the concept is applicable to the novice learner in that the

novice will also be able to manage a greater cognitive load as foundational concepts are

stored in long-term memory.

Stachel et al. (2013) examined the use of scaffolding tools on cognitive load. Their

study was conducted on students in a programming course. The experimental study involved

the treatment group receiving worksheets, video presentations, and simulations/animations

as part of their instruction. The analysis of collected data showed an improvement in course

grades and a decrease in frustration over the control group.

Cognitive Apprenticeship

Vihavainen, Paksula, and Luukkainen (2011) built on the idea of cognitive

apprenticeship and developed a course utilizing extreme apprenticeship. Scaffolding and

continuous feedback was a key component of their course design. They chose to avoid

“preaching” during class lecture times and to replace traditional lecture with a substantial

number of worked examples. The study was conducted on two sections of two courses

during a single semester and demonstrated a higher passing rate and a lower dropout rate by

using their method.

 34

Neo-Piagetian Theory

 Fisher and Kenny (1986) examined the mathematics thinking of students ranging

from elementary age through adulthood. They found that five levels of cognitive ability

could be defined and that the learner advances from one level to the next, which progresses

from concrete to abstract. Their study adds an additional stage that refines formal

operational thinking. The study concluded that the development of “mental muscle” is

related to the amount of support and practice of the learner and that practice is necessary for

the learner to achieve the next cognitive level. It is also the case that students of computer

science also progress through cognitive stages as they gain greater abilities of abstraction.

It is commonly agreed among computer science educators that “the process of

abstraction will normally be prominent in all undergraduate curricula” (Turner, 1991).

Kramer (2007) suggested that a test for ability in abstraction be a precursor to admittance

into a computer science program. This reasoning firmly places abstract thinking as an innate

trait rather than a concept that can be learned. Previous research sought to determine

Piagetian level as a predictor of success and often would utilize instruments unrelated to

programming to determine a participant’s level of abstraction (Lister 2011). Lister (2011)

looked for an alternative explanation by exploring learning theory as a way to develop

abstract thinking. Specifically, he applied neo-Piagetian learning theory to learning

introductory computer programming. He established that the student progresses through

stages of learning that move from concrete to more abstraction and that the learner might

exhibit different levels on different topics. Further, Lister says that we as computer science

educators are flawed in thinking that the student will be able to reach the target level of

 35

formal operational reasoning in an introductory course. He remarks that teachers of

introductory programming students should seek for the student to reach the concrete

operational level. The learner might not exhibit the formal operational stage of abstract

ability of reasoning, but that a pedagogical approach informed by neo-Piagetian theory can

enable the learner to transition from the concrete to abstract forms of thinking.

Lister (2011) also demonstrated that students at the preoperational stage can trace

code with about 50% accuracy or greater. Students with less than a 50% accuracy are

considered to be operating at the sensorimotor stage. Code tracing involves manually

executing a piece of code to determine values in variables. The student must provide, or be

provided, initial values for the variables and then track how they are modified through some

number of lines of code. A novice at the preoperational level is somewhat successful at

tracing code but is unable to provide a description of what the code is doing without

performing a trace or making a guess (Lister, 2011). This particular characteristic of the

preoperational stage learner will be tracked throughout this study to help place the student at

the stage of sensorimotor or preoperational. Expert (formal operational stage) programmers

have the ability to read a section of code and deduce what it is doing without manually

tracing values of variables.

Teague and Lister (2014) conducted qualitative research through interviews with

novice programmers. The participant led the interviewer through a common programming

task by verbally walking through a solution. This format is called a “think aloud.” Two

programming questions were used in the instrument that were based on an experiment by

Piaget on cyclic series. The two problems would be considered a simple problem for an

 36

experienced programmer but poses a challenge to a novice programmer. The two problems

were closely related in that they performed the same task, but the second problem added one

additional requirement. There were eleven students in the study, and four of the eleven

participants demonstrated difficulties in solving the second problem. Analysis of the think

aloud data confirmed that novice programmers struggle with preoperational reasoning.

While the sample was small in order to allow for interview/think aloud, they were able to

demonstrate that computer science educators must possess an awareness that novice

programmers develop at different rates and will not necessarily reach the same neo-

Piagetian stage at the end of a course. They also suggest that computer science educators

assume the student begins the course at a preoperational stage when in actuality a

sensorimotor level is likely. Computer science educators cannot assume that basic

programming constructs are easily learned and that students immediately are able to reason

at the concrete operational stage.

Self-efficacy in Computer Science

Self-efficacy is defined as a novice programmer’s belief that he or she is able to

succeed is a necessary element. Wilson and Shrock (2001) discovered twelve factors that

predicted success or failure in an introductory computer science course. Of the twelve,

three—which include comfort level, math experience, and attribution to luck—were

associated with success or failure. Comfort level in the course and math experience had a

positive association, while attribution to luck had a negative association. While math is not

an area that can be altered significantly prior to taking an introductory programming course,

comfort level and luck are addressable. As with Bandura (2008) and Kinnunen and Simon

 37

(2011), classroom climate is an important factor in self-efficacy. Creating a classroom in

which students are comfortable to engage and desire to engage should be a priority in any

introductory programming course. Second, on the topic of luck, if an instructor utilizes

cognitive apprenticeship, cognitive load management, and scaffolding, the perceived need

for luck can be greatly minimized. Through intentional topic order, worked examples, etc. a

student will be better prepared for working independently and not need to rely on luck,

either through random changes to programming problems or guessing.

Watson, Li, and Godwin (2014) examined predictors of programming performance.

The student was able to confirm prior research in that students who perform well in

programming courses have “high levels of intrinsic motivation and self-efficacy” (p. 472).

Ramalingam and Wiedenbeck (1998) designed a survey to measure levels of self-

efficacy in programming students. This survey is widely accepted by the community. This

survey was originally created to address students learning C++ programming language and

was administered at the beginning and end of an introductory course.

 Ramalingam et al. (2004), hypothesized that self-efficacy increases as a student

progresses through an introductory course. The pedagogical theme is to challenge but not

overwhelm the student and to build confidence through accomplishment. Frequent

assignments with quick and ample feedback and watching someone else complete a difficult

task both increase self-efficacy. The researchers saw the greatest improvement in students

with initially weak self-efficacy. They examined 75 students in sections of CS1, mixed

majors, C++. They believe that inclusion of elements from Cognitive Load Theory and

cognitive apprenticeship contributed to the results.

 38

CHAPTER 3

METHODOLOGY

Statement of Significance of the Problem

Industry demand for graduates trained in software development is not currently met

by universities in the United States. A contributing factor is that many beginning students

are unsuccessful in the first programming course. While many potential reasons have been

suggested as to why many students are unsuccessful, pedagogy has not been a primary

focus. An analogy of trade apprenticeship can be applied to learning computer

programming, specifically the idea that the learner interacts with an expert to gain and hone

skills (Collins et al., 1987).

This study examined whether teaching an introductory computer programming

course with a design informed by Neo-Piagetian and Cognitive Load theories, and with a

cognitive apprenticeship methodology and intentional emphasis on building student self-

efficacy, will improve DFW rates and self-efficacy. This study has a quasi-experimental

design and uses a static group pretest-posttest, multiple measures design as illustrated in

Figure 3.1.

 39

Figure 3.1

Quasi-experimental design static-group pretest-posttest design

A Randomized Controlled Trial is considered by some to be the “Gold Standard” for

education-based research design. While researchers would prefer the advantages of a tightly-

controlled experimental design that produces results indicating strong causal relationships,

this is not always practical in the educational setting, and Randomized Controlled Trials are

“quite limiting at best and inappropriate at worst” (Christ, 2014, p. 74). Given the

impracticality of assigning students randomly to the study and ethical and pragmatic

considerations concerning including a traditional course delivery method as a control (Cf.

Study Limitations, p. 18, above), this research instead utilized a quasi-experimental design.

Additionally, Christ states that Randomized Controlled Trials are often disadvantageous

because the results are unable to “show how or why the intervention affected change in the

participants, nor if the intervention was applicable, or desirable to the stakeholders” (Christ,

2014, p. 79). It was the intention of this study to analyze the relationship of course design

Pre-Course
Survey

Pre-Course
Test

Self Efficacy
Survey

Post-Course
Survey with
Qualitative
Reflection

Final
Exam/Post-
Course Test

Self Efficacy
Survey

Qualitative
Post-course

Interviews of 5-
8 students

Neo-Piagetian

Course Delivery

with Self

Reflection

 40

and delivery to DFW rate and self-efficacy, but also to capture the course elements students

believed contributed to their success—the “how” and the “why.”

Research Questions

Research Question 1: How do DFW rates for the Holistic Course Delivery compare

to historic DFW rates for introductory programming courses taught using Traditional Course

Delivery at the institution at which the present study was conducted, and internationally?

Research Question 2: Does student self-efficacy with respect to Java programming

and with respect to problem solving change over the course of the semester for students

participating in the Holistic Course Delivery?

Research Question 3: Are there particular student characteristics associated with

total points achieved in the Holistic Course Delivery?

Research Question 4: What course elements do students believe were helpful in the

Holistic Course Delivery?

Research Question 5. Does the neo-Piagetian stage of students change from the

beginning to the end of the Holistic Course Delivery?

Participants

The target population for this study was introductory programming students. The

accessible population for this study included three sections of the same introductory

programming course with 96 students during the fall 2019 semester at a Midwestern

university. The introductory programming course is the first course taken in computer

programming. The students were not restricted to computer science majors. The students

were primarily white, male, and traditional college-age; but other genders, races, and non-

 41

traditional students took the course. Approximately 12% of the students were non-white and

21% female. There were no prerequisites for the course and students were from a variety of

majors; but Computer Science, Cybersecurity, and Software Engineering majors

predominated. The researcher served as the instructor for each of the three sections. There

was one additional section of the course offered which was taught by a different instructor

and was not part of this study.

There were 85 students who took the final exam and were considered to have

completed the course, regardless of final grade. There were 11 participants in the study who

either formally withdrew or effectively withdrew from the course. Participants who did not

take the final exam and had stopped attending were considered to have effectively

withdrawn from the course. Demographic information for the participants is shown in Table

3.1 and includes data for participants who started the course and for students who completed

the course.

 42

Table 3.1

Participant Demographics

Initially

Enrolled

Course

Completers

 Total Students 96 85

 Gender

 Male 78.1% 77.6%

 Female 20.8% 21.2%

 Unknown 1.0% 1.2%

 Total 100% 100%

 Race

 White or Caucasian 80.2% 77.6%

 Asian 3.1% 3.5%

 Black or African American 6.3% 7.1%

 American Indian or Alaskan Native 2.1% 2.4%

 Unknown 8.3% 9.4%

 Total 100% 100%

 PELL Grant Eligible

 Yes 75.0% 76.5%

 No 25.0% 23.5%
 Total 100% 100%

 43

 44

Table 3.1—Continued

Initially

Enrolled

Course

Completers

 Year of Study

 Freshman 63.5% 63.5%

 Sophomore 21.9% 21.2%

 Junior 10.4% 10.6%

 Senior 3.1% 3.5%

 Other 1.0% 1.2%

 Total 100% 100%

 Major

 Computing Focused

 Computer Science 54.2% 51.8%

 Cybersecurity 6.3% 5.9%

 Software Engineering 9.4% 9.4%

 Total Computing Focused 69.8% 67.1%

 Other Majors

 Math 4.2% 4.7%

 Actuarial Science 11.5% 11.8%

 Math Education 5.2% 5.9%

 Statistics 1.0% 1.2%

 Bioinformatics 1.0% 1.2%

 Music Tech/Music 3.1% 3.5%

 Technology Management 1.0% 1.2%

 Undecided 2.1% 2.4%

 Unknown 1.0% 1.2%

 Total Other Majors 30.2% 32.9%

 Total 100% 100%

 ACT Math Score

 N 72 64

 Mean 23.0 23.3
 Range 14-33 14-33

 45

Detailed Description of the Holistic Course Delivery

The study included students in three sections of an introductory programming course

that implements the following:

● Intentionally organized course content where topics were presented at just the right

time. The breadth of each topic that was introduced consisted of that which was

immediately needed, avoiding cognitive overload through too much detail.

● Cognitive load was intentionally managed so that the student was able to focus on

one major concept at a time. New content knowledge was limited to only that which

was needed at the moment.

● Half of the class time was dedicated to lectures. The remaining half of class meetings

incorporated live coding, problem solving activities, and a bi-weekly code tracing

and coding sprint.

● Live coding served as a scaffolding tool and was used when a new concept was

introduced. The student worked alongside the instructor to create a program utilizing

the content provided by the instructor (Cognitive Apprenticeship: Scaffolding). Live

coding also allowed for the instructor to introduce errors or confusion into the

program so that the students had to refine or restate their knowledge (Cognitive

Apprenticeship: Articulating).

● Formative quizzes were given after lectures through Blackboard, an online learning

management system. The quizzes provided feedback on missed questions so that the

student could review lacking knowledge. Each quiz could be taken as many times as

 46

desired over a 48-hour window (Cognitive Apprenticeship: Scaffolding and

Reflection).

● There were no midterms. There was a final exam.

● Every two weeks, the student completed an in-class code tracing and program

creation which was similar to an in-class quiz. These were called “Code Sprints.”

The student had approximately 25 minutes to complete the two-part assessment. The

first part required the student to trace code and select a response for the output of a

computer program similar to those presented in the prior two weeks. The second part

required the student to create a program that solves a given problem, relying on skills

gained in the previous two weeks of lecture. The sprint was conducted through

Blackboard during a regular class meeting.

● On the same day as the bi-weekly sprint, the students worked on a hands-on

problem-solving activity with a partner, or as a class. These presented problems that

were more complex relative to previous work. The students rearranged mis-ordered

steps into a logical sequence or developed their own steps to solve the problem.

(Cognitive Apprenticeship: Exploration). The students worked alongside the

instructor (Cognitive Apprenticeship: Coaching), and every student left class with a

working example that they had developed.

● The student was asked to provide pseudo-code prior to coding for a single problem

on select homework problems for instructor review and feedback (Cognitive

Apprenticeship: Coaching).

 47

● The student completed a brief reflection survey after submitting a homework

assignment. The self-reflection measured the student’s confidence and perceived

quality of their homework submission and the student stated challenges, or areas for

improvement. The student provided an estimate of time spent on the homework

assignment (Cognitive Apprenticeship: Reflection).

● The classroom climate was intentionally designed to encourage student questions,

attendance, and a feeling of equality regardless of race, gender, or ability. This

included questions of address (addressing students by their given names, flexibility

in address of the instructor, encouragement for students to get to know their

classmates); Strong and upbuilding engagement of student questions (encouragement

of questions, embodying the notions of “no dumb questions” and “no dumb

answers”; default assumption that the students do not understand because of a gap in

communication originating with the instructor; Intentional effort to be approachable,

available, and personable, including intentional identification with the cadence of an

academic semester from the student’s point of view and waxing/waning energy and

stressors for the students; Instructor awareness of cultural differences and challenges,

especially for the international students.

The process and instruments outlined in this chapter were piloted in a single course

section in the semester prior to the semester engaged in this study. A summary of the course

elements, and their relationships to the four fundamental learning theories, is shown below.

 48

Table 3.2

Summary of course elements and theory that motivated inclusion

Course Element

Neo-

Piagetian

Theory

Cognitive

Load

Theory

Cognitive

Apprent.

Theory

Self

Efficacy

Intentional content selection • • •
Worked example and assigned

problem progression • • •

Formative quizzes • • •
Minimal simultaneous new

concepts • •

Live coding

with think-aloud • •
Whole class live coding

alongside instructor • • •
Biweekly coding sprints

(no midterms) • • • •

Problem-solving activities • • • •

Instructor accessibility
 •

Pseudocoding prior to coding
 •

Self-reflections after

homework submissions • •

Quick feedback on homework
 • •

Data Sources and Sample Instruments

Pre-Course Survey

The survey prompted the participant for demographic information, such as age, class

level, gender, prior programming experience, and prior math experience. This survey also

 49

captured perceptions and attitudes about computer programming. This survey was created

by the researcher (Copus, 2015) under the guidance of a research advisor and used in an

unpublished study on freshman and sophomore college students’ perceptions of computer

science. The survey included categorical and Likert-type data. This data was used to control

for differences between participants. The Pre-course survey can be found in Appendix A.

Pre- and Post-Course Test

The test covered technical knowledge in programming and was administered at the

beginning and the end of the course. The pre-course test served as a baseline for the skill

level and neo-Piagetian staging for each participant. Problems were similar to those utilized

by Teague and Lister (2014) and Kutscha (2017). The post-course test was a repeat of the

pre-test and demonstrated level of achievement or course content and neo-Piagetian staging.

The post-test was included as a portion of the final exam. Neo-Piagetian staging was

determined from success on groupings of problems. The questions included on the pre-

course and post-course test can be found in Appendix B.

To determine neo-Piagetian staging, questions from the test were divided into two

groups. Group 1 includes 13 questions that were used to determine code tracing ability.

Students who were able to correctly trace code 50% of the time or greater were considered

to be functioning at a preoperational level, while less than 50% accuracy in code tracing

indicated a sensorimotor level (Lister, 2011). Group 2 includes three questions in which

students provided a written description as to the purpose of a piece of code. Students who

were able to accurately state the purpose of a piece of code were considered concrete

operational (Lister, 2011). Participants who scored greater than 50% on the Group 1

 50

questions and at least 66.7% on Group 2 questions were considered to be functioning at a

concrete operational level. The neo-Piagetian stage for each participant was categorized

based on results in Group 1 and Group 2 questions as sensorimotor, preoperational, or

concrete operational. The highest neo-Piagetian stage of formal operational was not assessed

since introductory programming students are unlikely to have achieved this level (Lister,

2011).

Student Exit Survey

The Student Exit Survey included questions on computer science perceptions from

the Pre-Course survey but did not repeat the demographic questions. Additional questions

prompting the opinion of the participant on the delivery of the course, level of confidence

and ability, and preparedness for future programming coursework were included. The survey

included Likert-type responses and free responses. The free responses are qualitative in

nature and are not included in the primary analysis, but were consulted to add color to the

quantitative analysis in Chapter 5. A sample of the Student Exit Survey can be found in

Appendix C.

Bi-Weekly Code Tracing and Coding Sprint

This was an instructor-designed assessment that was used to establish the neo-

Piagetian level at which the student was performing for a given topic during the semester.

The sprint contained two parts. The first part required the student to trace a computer

program and to select a response of the expected output of the program. Sample problems

were reviewed similar to those utilized by Teague and Lister (2014), and Kutscha (2017),

and were augmented to align with topics covered in the course at a specific period. The

 51

second portion of the sprint required the student to create a solution to a programming

problem. The problems were chosen to allow the student to demonstrate knowledge from the

prior two weeks of class and were designed to be completed in about 25 minutes. The sprints

are included in Appendix F.

Homework

Assignments were given weekly. Each assignment consisted of at least three

problems. One problem was very similar to an example presented in class. The second

problem required the student to apply knowledge to a slightly different problem. The third

problem required the student to combine knowledge from previous content knowledge with

current content. It was expected that students would find the first problem fairly easy as it

was targeted to be at the pre-operational stage. The second and third problems sought to

provide opportunities for students to show a transition to concrete operational stage and to

practice problem solving skills. The homework assignments are included in Appendix E.

Homework Self-Reflection Surveys

A self-reflection survey was given after each homework assignment. This survey

was an instrument to help the student analyze their own performance on the assignment

which is an element of cognitive apprenticeship. The survey asked for the amount of time

spent on the assignment and perceived confidence level with the immediate content

knowledge. The survey gathered data on self-efficacy. The instrument was piloted during a

summer 2019 section of an introductory programming course. A sample of the homework

self-reflection surveys is included in Appendix D.

 52

Blackboard Adaptive Release and Metadata

Number of attempts on quizzes will be tracked for the group. Quizzes are formative

and taken after a lecture on participants own time. There were 21 quizzes during the

semester. Participants were allowed to take the quiz as many times as they desired with the

highest scored attempt recorded in the gradebook.

Instructor Daily Diary

The instructor summarized lecture content and notable interactions with the

participants. Lesson plans were written for each class meeting. The diary is included in

Appendix I.

Final Exam Questions

The final exam included two portions: Post-Course Test questions and three

additional questions requiring a response of a computer program. The Post-Course Test

multiple-choice questions were given on paper on the last class day with a time limit of 50

minutes. These were the same as the questions on the Pre-Course Test that is included in

Appendix B. The programming portion of the final was administered during final exam

week with a time limit of two hours. The scores on this exam will function as a dependent

variable of a continuous value. The programming portion is included as Appendix G.

DFW Rates

The number of D and F grades and the number of withdrawals were collected. This

number served as a dependent variable.

 53

Classroom Attendance

Attendance was taken at each class meeting. Attendance was a requirement toward

the course grade. The course met 40 times during the semester.

Post-Course Interviews

Interviews were conducted a few weeks after the end of the semester. This

qualitative data consisted of open-ended questions on the elements of the course that

contributed to student success and overall thoughts regarding the format of the course.

Participation in interviews from student with a variety of backgrounds and characteristics

was requested and seven students agreed to participate in the individual interviews. The

interviews were free flowing and directed by the students’ initial responses. The interview

sought to understand why the student did, or did not, prefer this course design, and what

particular challenges or advantages contributed to success or lack of success. Interviews

were recorded for transcription and analysis. The interview responses are qualitative in

nature and are not included in the primary analysis but were consulted to add color to the

quantitative analysis in Chapter 5. The questions that were asked during the interviews are

included in Appendix H.

Withdrawal Interview

A request for interview via email or in-person was requested for students who

withdrew from the course. The interview attempted to capture the reason the student chose

to withdraw. The interview was informal and free flowing.

 54

Data Analysis Procedures

Appropriate data analyses were conducted on collected data and are described in

detail in Chapter 4.

Institutional Review Board and Permissions

Institutional Review Board approval from the University of Missouri-Kansas City

and from the University of Central Missouri was obtained. Permission to conduct the study

was obtained from the University of Central Missouri program administration as part of the

IRB application process. Student consent for participation in the study was obtained.

Participants were instructed that any data, particularly qualitative data, that the participant

might consider compromising, would not be reviewed until final semester grades were

submitted. Risks to participants was minimal and not greater than student participation in a

normal classroom setting. Participants were able to withdraw from the study at any time

without reservation or penalty.

Risks and Limitations

This study had limitations. Random selection of participants was not possible, since

students were able to self-enroll in course offerings. Some variables that influenced

outcomes were controlled, such as prior programming experience, prior mathematics

experience, etc. A pre-test was used to establish a baseline for neo-Piagetian level and also

served as the post-test at the end of the semester. Testing threat was minimal because many

weeks transpired between the pre- and post- administration of the instruments. A

relationship between intervention and outcome was demonstrable. Due to the quasi-

experimental, one-group design, causation was not confirmable. Instrumentation was a

 55

possible threat since grading of assignments, quizzes, and exams has potential for bias.

Rubrics and training were provided to a student grader to reduce this threat. Additionally,

blind grading was used. Attrition was a potential threat since this study required

participation in the course. For this study, attrition was a potential threat, but also was a

valuable source of data. Participants who withdrew from the course were invited to share

reasons for withdrawing, and this attrition-related feedback was of value to the study.

Additionally, withdrawals were generally no greater than in previous offerings of this

course. The researcher deviated from the proposed methodology. A Pre-Course Self-efficacy

survey was administered at the beginning of the course but was not administered at the end

of the course as originally intended. Self-efficacy data was also collected, weekly, through a

second instrument and provided a secondary metric for self-efficacy. External validity, or

generalizability of the study is possible to other similarly situated institutions.

 56

CHAPTER 4

ANALYSIS

This chapter presents results of the analyses used to examine the relationship

between student characteristics, self-efficacy, course reflections and DFW rate and student

success. The analysis proceeds from more general to individual student. First, the overall

DFW rate is explored, followed by analysis of characteristics of students who completed and

did not complete the course. Elements of the course that impacted student success, student

characteristics, and student perceptions and confidence are then analyzed. Finally, changes

in neo-Piagetian stage are explored.

RQ1

Research Question 1: How do DFW rates for the Holistic Course Delivery compare

to historic DFW rates for introductory programming courses taught using Traditional Course

Delivery at the institution at which the present study was conducted, and internationally?

Table 4.1 shows the DFW rates for the holistic course delivery with 13-year

institutional and international averages. A total of 96 students enrolled in the introductory

programming course, and 19.8% of those students did not pass the course (including

withdrawals and final grades of D or F). The institutional DFW rate in the past 13 years was

29.4%, and the international average DFW rate in three studies was reported to be 33%,

32.3%, and 28% (Bennedsen & Caspersen, 2007; Watson & Li, 2014; Bennedsen &

 57

Caspersen, 2019). Pearson’s χ2 test was conducted to evaluate whether the differences in

observed rates could arise by chance. The DFW rate for the holistic course delivery was

significantly lower than both the institutional and two of the international statistics.

Table 4.1

DFW Rate of Holistic Course Delivery vs. Institutional and International Averages

 N

DFW

Rate Difference χ2 ρ

International Meana N/A 33% 13.2% 4.48 .034*

International Meanb N/A 32.3% 12.5% 4.06 .044*

International Meanc N/A 28% 8.2% 1.85 .174

Institution, last 13

Academic Years 1925 29.4% 9.6% 4.11 .043*

Holistic Course

Delivery 96 19.8%
a Bennedsen & Caspersen, 2007
b Watson & Li, 2014
c Bennedsen & Caspersen, 2019

* ρ<.05

RQ2

Research Question 2: Does student self-efficacy with respect to Java programming

and with respect to problem solving change over the course of the semester for students

participating in the Holistic Course Delivery?

Student self-efficacy was self-reported in four dimensions: Perceived change in

programming ability from the beginning to the end of the course, confidence in Java

programming, confidence in problem solving, and preparedness for the next programming

course.

 58

In the Student Exit Survey students were asked about their programming ability at

the beginning of the course and their programming ability at the end of the course (Student

Exit Survey question 14). The Wilcoxon signed rank test was selected as an alternative to

the t-test for comparing the paired measurements since the data for the beginning of the

course were non-normal as determined by examining a histogram (shown in Figure 4.1).

Figure 4.1

Histograms: Student Self-Reported Java Programming Confidence

Unsurprisingly, students reported significantly better programming ability at the end of the

course as compared to the beginning of the semester as shown in

51

21

7 5
1

35 38

10

0

10

20

30

40

50

60

Poor Average Above

Average

Excellent Poor Average Above

Average

Excellent

N
 (

S
tu

d
en

ts
)

Beginning of Course End of Course

 59

Table 4.2.

 60

Table 4.2

Self-Reported Programming Ability at Start and End of Course

Self-Reported Programming Ability N Mean σ Z ρ

At beginning of the course
84

1.60a 0.88
-6.87 <.001*

At the end of the course 2.68a 0.70

a 1 = "Poor", 2 = "Average", 3="Above Average", 4="Excellent"

* <.001

Students self-reported their confidence in Java programming in the Homework Self-

Reflection after completing each homework assignment (Homework Reflection Question 5).

The confidence in Java programming was significantly increased over time as shown in

Figure 4.2, where the prompt was, “Rate your confidence in Java programming after

completing this assignment,” and the responses ranged from 1 (very low) to 5 (very high).

Figure 4.2

Confidence in Java Programming

3

3.25

3.5

3.75

4

4.25

HW1 HW2 HW3 HW4 HW5 HW6 HW7 HW8 HW9 HW10 HW11 HW12 HW13

Ja
v
a

P
ro

g
ra

m
m

in
g
 C

o
n
fi

d
en

ce

Homework Assignment

 61

Problem Solving (identifying a problem and understanding the steps needed to solve

a problem) is a necessary skill to producing a working software (Morgado & Barbosa,

2012). This skill is closely related to programming, but ideally, precedes writing of code. By

equipping students with techniques in developing a solution to a problem allows the student

to more easily create a working software program (Loksa, et al., 2016). Students self-

reported confidence in problem solving after each homework assignment. Figure 4.3

indicates a steady level of problem-solving confidence after HW2. Homework assignments

progressed in complexity and inclusion of more abstraction with each subsequent

assignment.

Figure 4.3

Student Confidence in Problem Solving

1

1.25

1.5

1.75

2

2.25

2.5

HW1 HW2 HW3 HW4 HW5 HW6 HW7 HW8 HW9 HW10 HW11 HW12 HW13

P
ro

b
le

m
-S

o
lv

in
g
 C

o
n
fi

d
en

ce

Homework Assignment

 62

The Student Exit Survey asked students to rate their preparedness for code tracing

and preparedness for code writing prior to each sprint (Student Exit Survey question 10).

Spearman’s rho correlation was selected since both variables are ranked values. It was found

that students who felt better prepared for tracing also felt better prepared for writing code (r

= .600, strongly positive monotonic relationship).

As another measure of confidence, students were asked to self-report whether they

believed they were prepared for the follow-on course (Student Exit Survey question 12). Of

the students that indicated that they intended to take the follow-on course most reported that

they were “somewhat prepared” or “well prepared” to take the next course (77.6%) as

shown in Table 4.3.

Table 4.3

Student Self-Reported Preparedness for the Next Programming Course

Self-Reported

Preparedness N Percent Cumulative

Well Prepared 32 42.1% 42.1%

Somewhat Prepared 27 35.5% 77.6%

Neutral 13 17.1% 94.7%

Somewhat Unprepared 3 3.9% 98.7%

Totally Unprepared 1 1.3% 100.0%

Total 76 100.0%

RQ3

Research Question 3: Are there particular student characteristics associated with

total points achieved in the Holistic Course Delivery?

 63

The variable, final course grade, had a right-stacked, non-normal distribution as

shown in Figure 4.4.

Figure 4.4

Histogram, Final Course Grade (Points out of 1000)

To determine if there was a significant relationship between the continuous variables

(prior college credits, attendance, ACT Math score) and final course grade, Spearman’s rho

correlations were conducted. Higher attendance rate and higher ACT Math score were each

correlated with higher points in the course (see Table 4.4).

0

5

10

15

20

25

30

35

40

45

50

<100 100-

199

200-

299

300-

399

400-

499

500-

599

600-

699

700-

799

800-

899

>899

S
tu

d
en

ts
 (

N
)

Course Grade (points)

Completer

Non-Completer

 64

Table 4.4

Student Continuous Characteristics and Final Course Grade

 N rs ρ

Prior college credits 70 .094 .437

Attendance 85 .576 <.001**

ACT Math 64 .511 <.001**

** ρ<.001

The Mann-Whitney U test was selected to examine the relationship between the discrete

student characteristics and final course grade. Mann-Whitney U was preferred over an

independent t-test since the discrete variables (class rank, gender, race, major field of study,

PELL Grant eligibility, and Prior experience) are not interval-scaled. After examining the

categorical data it was observed that each categorical variable with more than two possible

values possessed one dominant value. The multi-valued categorical variables were each

therefore grouped into two dichotomous sets comprising the dominant value and the others

(e.g., freshman and non-freshman, versus the original freshman, sophomore, junior, senior).

The groupings, frequencies, and results of the Mann-Whitney U tests are shown in

 65

Table 4.5.

 66

Table 4.5

Student Discrete Characteristics and Final Course Grade

 N

Mean

Points σ U ρ

Class Rank Total: 85

Freshman 54 848.0 159.9
819.0 .869

Non-freshman 31 877.1 97.7

Gender Total: 84

Male 66 842.9 138.1
316.5 .002*

Female 18 914.9 142.4

Race Total: 77

White 66 862.7 139.4
303.0 .382

Non-White 11 839.2 139.9

Major field of study Total: 84

Computing-focused 57 831.3 152.1
480.0 .006* Non-computing-

focused 27 915.4 94.5

PELL grant Total: 85

Eligible 20 847.8 119.7
565.5 .381

Non-eligible 65 862.0 147.0

Prior Experience Total: 84

Formal course 30 835.2 129.0
569.0 .024**

No formal course 54 871.2 147.3

* ρ<.01; ** ρ<.05

There was no significant relationship between race, class rank, or PELL eligibility

and points earned in the course. However, gender mattered, as females had higher course

points than males (ρ=.002). Students who were part of the computing-focused majors of

Computer Science, Software Engineering, and Cybersecurity earned fewer points than those

who were not (ρ=.006). Students who had not taken a prior programming course performed

better than those who had taken a prior course (ρ=.024).

 67

In addition to calculating Spearman’s rho correlations on the continuous variables

(prior college credits, attendance, ACT Math score), Pearson’s χ2 test was used to evaluate

whether the differences in pass/fail for each binary dependent variable were significant. This

yielded the interesting observation that being a freshman completer of the course correlated

with failing the course (grade of D or F), and in fact all the students who completed the

course and failed were freshmen. These findings, summarized in Table 4.6, are discussed in

more detail in Chapter 5.

Table 4.6

Course Pass/Fail and Class Rank for Course Completers

 Failed (N)

Passed

(N) χ2 ρ

Class Rank Total: 8 Total: 77

Freshman 8 46
5.07 .024*

Non-freshman 0 31

* ρ<.05

Of the eight freshmen who completed but failed the course, seven were in

computing-focused major fields of study, and one was not. It is notable that students who

were in computing-focused majors were more likely to be freshmen since the CS1 courses

are generally encountered earliest in those programs. 68.7% of computing-focused majors in

the course were freshmen, while only 53.6% of non-computing-focused majors were

freshmen, as shown in Table 4.7.

 68

Table 4.7

Class Rank and Major Field of Study

Computing-

focused

Not

computing-

focused

Class Rank Total: 67 Total: 28

Freshman 46 15

Non-freshman 21 13

RQ4

Research Question 4: What course elements do students believe were helpful in the

Holistic Course Delivery?

The Student Exit Survey collected data on student opinions concerning the value or

merit of various elements of the Holistic Course Delivery, summarized in Table 4.8 to Table

4.14, below.

Table 4.8

End-of-Course Survey, Part 1

 N

Extremely

Helpful Helpful

Slightly

Helpful Not helpful

Watching the instructor live

code was
83 65.1% 27.7% 7.2% 0.0%

Coding alongside the

instructor during class was
83 77.1% 19.3% 3.6% 0.0%

Practice with problem solving

before sprints was
83 66.3% 25.3% 8.4% 0.0%

Online Quizzes were 84 23.8% 56.0% 19.0% 1.2%

Homework problems were 83 53.0% 42.2% 3.6% 1.2%

 69

Table 4.9

End-of-Course Survey, Part 2

 N Helpful Unhelpful

Don't

Know

Soft deadlines for

homework were
83 77.1% 2.4% 20.5%

Table 4.10

End-of-Course Survey, Part 3

 N Often Sometimes Rarely Never

How often did you turn

in homework late?
83 16.9% 15.7% 44.6% 22.9%

Table 4.11

End-of-Course Survey, Part 4

 N Too many About right Not enough

Number of problems on each

assignment was
84 3.6% 89.3% 7.1%

Weekly frequency of

assignments was
84 3.6% 89.3% 7.1%

 70

Table 4.12

End-of-Course Survey, Part 5

 N Too difficult About right Too easy

Difficulty of problems on

each homework was
84 10.7% 85.7% 3.6%

Table 4.13

End-of-Course Survey, Part 6

 N Sprints

Midterm

exams Don't care

Do you prefer having

sprints or midterm

exams?

84 90.5% 4.8% 4.8%

Table 4.14

End-of-Course Survey, Part 7

Reflections after homework… N Percent

Helped me to assess my own

comprehension of subject matter
83 55.4%

Helped me assess my own performance on

the assignment
83 49.4%

Were a good closure before moving on to

the next assignment
83 54.2%

Were not of much use for me 83 26.5%

Other 83 3.6%

 71

Homework Assignments

The first problem on each homework was a programming problem that closely

followed an example presented in the classroom or in the textbook. The Homework

Reflection for each assignment asked students to rate the difficulty level of the first

homework problem (question 5). The possible responses were “Difficult to solve,”

“Completed with substantial effort and review of course materials,” “Fairly easy and

straightforward with some review of course material,” “Easy with hardly any need to review

course material,” and “None of the above.” The responses were re-categorized for analysis,

with responses of “None of the above” treated as missing. The remaining four possible

responses were dichotomized into “Difficult” and “Easy,” with “Difficult to solve” and

“Completed with substantial effort and review of course materials” as “Difficult,” and

“Fairly easy and straightforward with some review of course material” and “Easy with

hardly any need to review course materials” as “Easy.” Percentages were reported for the

new categorizations and analyzed. The top three assignments that were perceived as

“Difficult” include HW10, HW5, and HW6. The top three assignments considered “Easy”

include HW1, HW2, and HW3. Student perceptions of assignments that were difficult or

required substantial effort are visualized in Figure 4.5.

 72

Figure 4.5

Homework First Problem Perceived as Difficult or Requiring Substantial Effort

The Student Exit Survey asked participants to rate the quantity of problems on each

homework and whether the frequency of assignments was appropriate. Most students

reported that the number of problems on each assignment was about right (89.2%). Most

students reported that the frequency of assignments of weekly was also about right (90.4%).

Participants also self-reported the amount of time spent on each homework

assignment. This information was collected through the Homework Reflection after each

homework assignment (Question 3). The data were determined to be non-normal by

examining the histograms which were largely left-biased. For example, the histogram for

HW6 is shown in Figure 4.6.

0%

10%

20%

30%

40%

50%

60%

70%

80%

HW1 HW2 HW3 HW4 HW5 HW6 HW7 HW8 HW9 HW10HW11HW12HW13

P
er

ce
n

ta
g
e

o
f

S
tu

d
en

ts

Homework Assignment

Difficult

Substantial Effort

 73

Figure 4.6

Histogram, Time Spent on HW6

Students reported that more time was spent on most assignments as the semester

progressed as shown in Figure 4.7. Students reporting 1-3 hours spent on homework

predominated in the early part of the semester, where a more even split between the 1-3

hours group and the 4-6 hours group is evidenced in some of the assignments in the last half

of the semester. As many as three students reported spending more than nine hours on an

assignment in seven of the 13 assignments. It was observed that the average number of

students submitting a homework reflection decreased at the end of the semester (from an

average of 73 on the first ten assignments, to an average of 60 on the last three assignments).

0

10

20

30

40

50

60

N
 (

S
tu

d
en

ts
)

Time Spent

1-3 hours

4-6 hours

7-9 hours

 74

Figure 4.7

Time Spent on Homework Assignments

Formative Quizzes

Students completed formative quizzes two to three times per week that were derived

from lecture meetings. Students were permitted to take a quiz as many times as they wanted

with the highest scored attempt recorded in the gradebook. Since attempts were essentially

unlimited, the number of quiz attempts was examined to identify if a student was randomly

guessing on the quiz or making a viable attempt. When a student made four or more

attempts, the effort was thought to be guessing, while one to three attempts was considered

to be a knowledge-based effort. Frequencies and percentages of attempts for students were

recorded for each quiz. There were 15.3% students who guessed (according to the criterion

indicated above) on none of the fourteen quizzes, 15.3% students guessing on two quizzes,

and 14.1% students guessing on four quizzes. Around 3.6% (N=3) students guessed on ten

or more quizzes.

0

10

20

30

40

50

60

70

80

90

HW1 HW2 HW3 HW4 HW5 HW6 HW7 HW8 HW9 HW10 HW11 HW12 HW13

N
u
m

b
er

 o
f

S
tu

d
en

ts

Homework Assignment

1-3h 4-6h 7-9h >9h

 75

Figure 4.8

Frequency of Guessing on Quizzes

The relationship between the quiz attempts and final grade was analyzed. The

number of quizzes for which a student guessed are non-normal as can be seen in Figure 4.8

(above). Due to the non-normal distribution of guessing, Spearman’s rho correlation was

employed. A student averaging more quiz attempts generally earned a higher final grade in

the course but this positive relationship was weak (r = .279).

Code Sprints

Each of the seven Code Sprints consisted of two questions. The first question

involved code tracing, in which a student examined provided code and “traced” the path

through the code, determining the output that would be produced if the code had been

executed on a computer. The student then selected a multiple-choice answer corresponding

to the output that would have been produced. The second question involved writing a small

piece of code based on knowledge content presented in the previous two weeks of

instruction. The code tracing question response was scored by multiple-choice and was

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
 (

st
u
d
en

ts
)

Number of Quizzes Guessed

 76

therefore binary (correct/incorrect), while the programming question response was

continuous. The programming question scores were not normally distributed and were right-

stacked as shown (by way of example) in the histogram for HW5 in Figure 4.9.

Figure 4.9

Sprint 5, Question 2 Score Histogram

Since the scores for the second question were non-normal a generalized linear model

was selected, treating programming performance as an outcome. When considering the

subject as a random effect, the generalized mixed linear model exhibited a better model fit

than a generalized linear model (again utilizing the Akaike Information Criterion, which

provides an estimate of model quality, to quantify model fitness). Thus the relationship

between code tracing (question 1) and programming (question 2) was analyzed using a

generalized linear mixed model with gamma regression in which the subject was a random

effect, while time and code tracing performance were the fixed effects. There was no

 77

significant relationship between code tracing and programming, though both trended lower

in the second half of the course as shown in Figure 4.10.

Figure 4.10

Sprint Code Tracing and Programming Performance

RQ5

Research Question 5. Does the neo-Piagetian stage of students change from the

beginning to the end of the Holistic Course Delivery?

Categorized results on questions from the pre-course test were used to identify the

neo-Piagetian stage for each student. The same questions were repeated on the final exam

and used to establish a post course neo-Piagetian stage. A set of 13 questions from the test

was used to determine if a student was potentially operating at a Sensorimotor or

Preoperational level. It is thought that students who can trace code with a 50% success rate

are functioning a Preoperational level, and below 50% is a sensorimotor level (Lister, 2011).

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6 Sprint 7

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Tracing and Coding Sprint

Tracing

Programming

 78

Students who could successfully complete six or more questions was categorized as

Preoperational, otherwise, Sensorimotor. A set of three questions was used to ascertain if a

student was operating a Concrete Operational stage. Students who were able to answer two

or three questions correctly were categorized as Concrete Operational. Sample questions

used to determine neo-Piagetian level are displayed in Figure 4.11 and Figure 4.12, and in

more detail in the appendices. Students completed the same set of questions on the final

exam as were categorized a second time. A cross-tabulation of pre- and post-test neo-

Piagetian stage is given in Table 4.15. There we no students who were categorized as

Sensorimotor that also could have been categorized as Concrete Operational on the Pre-Test

nor the Post-Test.

Table 4.15

Cross-Tabulation of Neo-Piagetian Stage, Pre- and Post-Course

 Post Stage

Pre Stage Sensorimotor Preoperational

Concrete

Operational Total

Total 1 40 41 82

Sensorimotor 1 30 32 63

Preoperational 0 9 7 16

Concrete operational 0 1 2 3

 79

After executing the following line of code:

int f = 7 + 3;

What is the value of f?

A. 3

B. 5

C. 7

D. 10

E. None of the above

Figure 4.11

Sample Question Sensorimotor/Preoperational Staging

In one sentence, state the purpose of this code, or respond Don’t know.

if (y1 < y2){

 t = y1;

 y1 = y2;

 y2 = t;

}

if (y2 < y3){

 t = y2;

 y2 = y3;

 y3 = t;

}

if (y1 < y2){

 t = y1;

 y1 = y2;

 y2 = t;

}

Figure 4.12

Sample Question Concrete Operational Staging

 80

Marginal homogeneity assesses if a significant change in a categorical value has

occurred in a population between two points in time. A marginal homogeneity test was used

to compare the neo-Piagetian stage of the students comprising the population at the times of

the pretest and the posttest. Most students who completed the course and took the posttest

(69 of 82) advanced at least one Neo-Piagetian stage. One student regressed from Concrete

Operational to Preoperational. Twelve students neither regressed nor progressed but

remained at the same neo-Piagetian stage: one Sensorimotor, nine Preoperational, and two

Concrete Operational. Sixty-nine students advanced at least one stage, with 32 advancing

two stages, from Sensorimotor to Concrete Operational. The advancement of neo-Piagetian

stage was significant, as shown in Table 4.16.

Table 4.16

Improvement in Students’ Neo-Piagetian Stage from Pre- to Post-Course

 Pre-course Post-course

Neo-Piagetian Stage N Meana σ N Meana σ ρ

Total 82

1.27 0.522

82

2.49 0.527 <.001*
Sensorimotor 63 1

Preoperational 16 40

Concrete operational 3 41

a 1 = Sensorimotor, 2 = Preoperational, 3 = Concrete operational

* Marginal Homogeneity, ρ<.001

 81

CHAPTER 5

DISCUSSION

RQ1

Research Question 1: How do DFW rates for the Holistic Course Delivery compare

to historic DFW rates for introductory programming courses taught using Traditional Course

Delivery at the institution at which the present study was conducted, and internationally?

This is the primary question addressed by the present study. The high DFW rate in

introductory computer programming courses results in a series of consequences: poor

student experience, lower than optimal retention of students in computing-centric major

fields of study, and ultimately inadequate supply of computing graduates to fill chronic

shortages in the field. If it the DFW rate demonstrated by the Holistic Course Delivery

compares favorably to the Traditional Course Delivery then it should be considered as an

option for course delivery and perhaps the subject of additional study.

Three studies quantified the DFW rate for introductory programming internationally

at 33%, 32.3%, and 28% (Bennedsen & Caspersen, 2007; Watson & Li, 2014; Bennedsen &

Caspersen, 2019). Bennedsen and Casperson’s 2007 study comprised 63 respondents with

complete survey responses who were computer science educators from around the world,

although two-thirds were from the United States. Bennedsen and Caspersen repeated their

2007 study in 2017 with the same metric, methods, and sources; they drew 170 respondents,

again with about two-thirds from the United States. In both studies they acknowledge that

 82

the representative nature of the universities covered by their respondent group, and by their

respondent group itself, is debatable, but is nonetheless useful as an indicator. Watson and

Li pursued a different methodology, performing a systematic review of the literature on

introductory computer programming instruction, extracting data, and performing a statistical

analysis on the resulting dataset. Their study addressed the trajectory of DFW rates over

time as well as correlative factors such as geography, programming language taught, size of

the class, and “grade level” of the institution (distinguishing universities from colleges and

secondary schools). Both sets of researchers demonstrated that students in small classes (30

or fewer students) pass at higher rates than their counterparts in larger classes. The class

sizes included in this study were on the border of this differentiation, at 33, 32, and 31

students (31, 32, and 30 after withdrawals are taken into account).

It is notable that neither Bennedsen and Casperson, nor Watson and Li, considered

pedagogy. While it is unknown how introductory programming curriculum was delivered in

calculating the three historic international statistics for DFW, the Holistic Course Delivery

exhibits a significant improvement over the mean of between 8.2% and 13.2%.

The introductory programming courses at the university engaged in this study have a

13-year DFW rate that falls between the values established by Caspersen and Bennedsen,

and Watson and Li, at 29.4%. Based on ad-hoc discussions with other faculty and the

researcher’s personal experience, the population of the introductory programming students is

similar today to the 13-year demographic norms, except that there has been a modest

increase in students of color and females in introductory programming courses in

 83

approximately the last five years. The Holistic Course Delivery again demonstrates an

improvement of 9.6% over the status-quo.

It was interesting to examine the group of students who received a grade of D or F in

the course. There were five students who received a grade of D and 11 students who

received a grade of F. All but four of these 16 students were on academic probation or were

dismissed from the university at the end of the semester in which they took the course

engaged in this study. The 12 students dismissed or on probation performed poorly in a

majority of their coursework that resulted in their grade point average dropping below, or

remaining below, a 2.0. It is questionable whether any realistic intervention or adaptation of

the Holistic Course Delivery could have better served this group, or if it was beyond the

power of the course design and delivery to address the acute need of these students. Perhaps

early identification and reporting of students to university level systems of care is the only

way to assist students in general academic distress since a picture of the student across all

enrolled courses is required. If the 12 students who were experiencing broad academic

issues were removed from the calculation of DFW rate, a realistic lower bound for DFW

rate that could be reasonably attributed to the nature of the course and its content would be

approximately 7%.

Bennedsen and Caspersen (2019) indicate that a 28% DFW rate is acceptable

because it is lower than College Algebra DFW rates. University administrators watching

program retention rates might reasonably disagree. Watson and Li similarly state that their

calculated rate of 32.3% is not alarmingly high. They acknowledge, however, that

improving the pass rate would improve the reputation held by introductory programming

 84

courses and be less of a deterrent for students considering enrolling in them. Reducing the

DFW rate through better course design and delivery would serve to improve the reputation

of the courses and programs, improve program retention rates, and offer educators a method

more likely to produce students with a firm foundation, high confidence, and strong desire to

continue computing-focused studies.

RQ2

Research Question 2: Does student self-efficacy with respect to Java programming

and with respect to problem solving change over the course of the semester for students

participating in the Holistic Course Delivery?

This question was addressed by the present study because it has been shown that

self-efficacy positively correlates to success in an introductory computer science course

(Wilson and Shrock, 2001).

Self-efficacy is “people’s judgments of their capabilities to organize and execute

courses of action required to attain designated types of performance” (Bandura, 1986, p.

391). The ability to create working programs is intimately tied to self-efficacy. Course

performance and greater self-efficacy were associated with “a well-developed and accurate

mental model,” and, “performance attainments on self-efficacy indicates that students need

to incrementally build up a history of success at increasingly difficult tasks” (Ramalingam,

LaBelle, & Wiedenbeck, 2004, p. 174). “Therefore monitoring students’ level of self-

efficacy is a process that is critical and necessary for educators” (Kallia & Sentence, 2019,

p. 753).

 85

It has been demonstrated that instructional design can assist in reducing emotional

load and contribute to increased student self-efficacy (Kinnunen & Simon, 2010), therefore

a key consideration of the Holistic Course Delivery was to architect a course content and

delivery that promotes self-efficacy. While other factors are important (e.g., classroom

environment), the backbone of holistic self-efficacy in the Holistic Course Delivery was

exposing students to content in an order and progression carefully designed with self-

efficacy as a primary goal so that students more easily establish and build upon early

successes. This included code tracing examples presented in the classroom, live coding

problems, and careful selection of homework problems. These were selected with a view

toward building self-efficacy with progressive increases in level of challenge (further

explained below).

Code tracing involves identifying the output a computer program will produce

(Kumar, 2015). Code tracing is regarded as one of the first skills a student can demonstrate

and informs programming (Ramalingam, LaBelle, & Wiedenbeck, 2004; Kumar, 2015).

Students traced code with the instructor each lecture in the Holistic Course Delivery. It is

likely that tracing code in the classroom helped students form strong mental models and

reinforced syntactical knowledge.

The first programs chosen for code tracing in the classroom were simple examples of

the current topic under discussion. Subsequent programming problems were more complex

as students were able to absorb more nuanced and abstract elements of the topic under

discussion and integrate those elements with previously held knowledge. For example, a

program for tracing loops (a programming construct) for the first time would consist only of

 86

a loop. A second example, assuming the class responded well to the first example, would

involve tracing a loop which contained a method call (another programming construct). The

concept of methods in Java would be, by that point in the course, fairly comfortable to the

student as previously held knowledge. The combination of new and old would be the natural

next progression in complexity and sophistication. This pattern of progression increased the

likelihood and frequency of successes with concomitant increases in self-efficacy.

Homework problems followed a similar progression. The first problem on an

assignment was parallel to an example worked together in the classroom. The objective was

for the student to have an independent, initial success to build self-confidence for the

subsequent work. The second problem on the assignment required the student to apply the

same knowledge but to a problem not addressed previously in the classroom—a natural

progression in complexity approaching a more real-world scenario, but still incremental with

respect to the first problem and able to be achieved with the application of only moderate

effort. The third problem on a homework activity required the student to address the current

topic at a moderate level as in the second problem but combine it with and build upon

previously mastered knowledge and concepts. While the first and second problems were

designed to build confidence, the third problem’s purpose was to stretch and exercise the

student’s abilities while still respecting the need to moderate cognitive load. In this way the

homework assignments, like the code tracing work, were incremental and cumulative with

the penultimate goal of increasing self-efficacy, and the ultimate goal of eliciting stronger

student performances. “Students undertake activities that they believe they can succeed in

and avoid activities they believe will exceed their abilities” (Kinnunen & Simon, 2011).

 87

Two instruments provided insight into student self-efficacy: The Homework

Reflections, administered after each homework assignment was due (13 times during the

course), and the Student Exit Survey. The homework reflections captured a snapshot of

student’s feelings of self-efficacy with respect to Java Programming and with respect to

problem solving. Self confidence in connection with Java Programming generally increased

over the course of the semester while confidence in problem solving remained constant.

It is speculated that the Holistic Course Delivery’s careful content progression in

homework assignments, live coding and code tracing, and formative quizzes, was

instrumental in building confidence in Java Programming ability. Through hands-on

experience creating successful solutions in the classroom, reinforcement through structured

and progressive homework assignments that overlapped and extended the Live Coding

examples, and quizzes that functioned as study aids, the students were challenged, but not

overwhelmed or frustrated with overly complicated and obtuse problem sets.

The problem solving confidence remained somewhat static through the semester,

excepting a substantial dip at HW2. The second homework assignment was the first

requiring students to create their own, novel solution to a programming problem and to

document it with original pseudocode. That problem solving confidence decreased in the

face of this increased challenge is unsurprising on reflection. Likewise, the level nature of

problem solving confidence apart from HW2, while initially unexpected, fits a simple

explanation: Early in the semester students may have experienced a failure of imagination

and overestimated their problem solving ability. Nonetheless, as problems became more

complex and required accumulation and application of more and more substantial

 88

knowledge elements, problem solving confidence remained constant. In other words, the

students were adequately prepared for success at each incremental step.

The Student Exit Survey assessed self-efficacy with respect to readiness for the next

programming course and self-reported change in programming ability from the beginning to

the end of the semester. More than three-fourths of the students who were intending to take

the next programming course indicated they were “somewhat prepared” or “well prepared”

for the next course and a significant increase in programming ability was reported. The

Holistic Course Delivery is believed to be a viable model for introductory programming

course delivery.

RQ3

Research Question 3: Are there particular student characteristics associated with

total points achieved in the Holistic Course Delivery?

This secondary research question was included in the present study to better

understand the student population and the relationship between characteristics and

performance in the Holistic Course Delivery. Several characteristics are compared to the

findings of prior studies.

Among the results, particularly interesting were the relationships between student

performance and these characteristics: ACT Math score, attendance, gender, major area of

study, and prior programming courses.

Higher ACT Math score was moderately correlated with higher total points in the

course. This reflects previous findings in the literature that indicate mathematics ability has

a positive relationship with success in computer programming since “mathematics and

 89

programming involve the ability to understand abstract concepts in solving problems”

(Owolabi, Olanipekun, & Iwerima, 2014, p. 112).

Higher course attendance was also moderately correlated with higher total points in

the course. A majority of students in the course were freshmen in their first semester of

college (53.1%). Incoming freshmen often have difficulty adjusting to the demands of

collegiate studentship (Beaubouef & Mason, 2005), and showing up to class “offers students

the opportunity to participate in class exercises and discussions, and to fully engage with the

material–and that is half the battle” (Rolka & Remshagen, 2015, p. 14). The Holistic Course

Delivery also expressly rewards attendance with significant hands-on practice that students

found extremely valuable and an important factor in their course performance.

Students overwhelmingly indicated (96.4%) that Live Coding was Extremely helpful

or Helpful and overwhelmingly indicated that Live Coding was one of the most-liked

elements of the course in the qualitative Student Exit Survey questions. This finding is

discussed in more detail in connection with RQ4 (below). Course delivery for introductory

programming at the institution involved in this study has traditionally followed a

conventional lecture format structured around content-dense PowerPoint presentations

provided by the textbook publisher, and like many universities, does not have a required lab

component that would afford an opportunity for hands-on practice. The PowerPoint-centric

format rarely if ever left time for watching the instructor code or for hands-on live coding.

Additionally, students are less engaged and interactive in lectures that rely heavily on

PowerPoint-type presentation (Abernethy, 2012; Ogeyik, 2017). Students commented in the

individual interviews that they, “appreciated that the class was not ‘death by PowerPoint’”.

 90

Females, though a minority in the course (~20%), generally performed better in the

course than males. This result is somewhat different from those found in the existing

literature that suggest women generally perform similarly to males in computer

programming courses (Lishinski, Yadav, Good, & Endody, 2016; Pillay & Jugoo, 2005;

Akinola, 2016). Prior research has shown that underrepresented minorities perform better

when they have a mentor with whom they can identify who establishes an environment of

belonging (Herrmann, et al., 2016; Cotner, Ballen, Brooks, & Moore, 2011), and that

females in particular, paired with a strong female mentor, are able to overcome stereotypical

gender barriers (Lockwood, 2006). In this course females were an underrepresented minority

and the presence of a female instructor might have positively impacted the performance of

the females in the course. A recent survey of 181 Ph.D.-granting Computer Science

departments in North America, while not exhaustive, found that 22.6% of Computer Science

instructors are female (Zweben & Bizot, 2019). Interestingly, this is closely matched to the

percentage of female students engaged in the present study (21.1%).

It has also been demonstrated that for students just entering college, females

demonstrate a greater level of academic motivation and psychosocial abilities (comprising

academic discipline, commitment to college, communication skills, general determination,

goal striving, and study skills) than their male counterparts (Ndum, Allen, Way, & Casillas,

2018). This might have been a factor in females outperforming males in the present study,

given that almost two-thirds of the students enrolled in the studied sections were incoming

freshmen.

 91

It was surprising that students whose majors were not computing-related performed

better than students in computing-related major fields of study (Computer Science,

Cybersecurity, and Software Engineering). The course delivered in this study is often the

first course for freshmen in the computing-centric majors, while it is a later, required course

for some non-computing majors. Consequently, the non-computing major group were

generally more experienced students: About 69% of the students in computing-centric

majors were freshmen, while about 54% of the students in non-computing majors were

freshmen. That freshmen often declare a major without sufficient experience to adequately

determine the fit and also tend to have less preparation in studentship than upperclassmen

(Beggs, Bantham, & Taylor, 2008; Bolting, Schneider, & Muhling, 2019) may have been a

factor in the surprising result. It is also worth noting that all the students who completed but

failed the course (letter grade of D or F) were freshmen (N=15) and 80% of those (12 of 15)

were placed on probation or dismissed from the university at the end of fall 2019, suggesting

performance issues in all their coursework, not just in this course.

It is also worthy of mention that students who withdrew from the course did so

because of a change of interest and major field of study. There were only three formal

withdrawals from the course. One student, a sophomore, met with the instructor and

indicated they had decided a computing-centric major was not suited to their interests and

subsequently changed their major to a non-computing-related field of study. Another student

who withdrew was a freshman who decided to change their major to a non-computing-

related field early in the semester because programming was perceived to be uninteresting.

The third student was also a freshman in their first semester of college and indicated that

 92

issues of studentship led to withdrawal from the course—specifically, involvement in an

extra-curricular group that led to time management issues. The student withdrew from the

course but continued in the major and re-enrolled in the course in a subsequent semester.

Another surprising finding was that students without prior programming coursework

performed significantly better than students who had undertaken prior programming

coursework. Despite the common-sense, intuitive feeling that previous experience would be

a positive indicator of success, the prior literature on this question is mixed (Ventura &

Ramamurthy, 2004; Veerasamy, D’Souza, Linden, and Laakso, 2018): Ventura and

Ramamurthy indicated that students with prior programing performed no better than those

without prior experience, and Veerasamy, et al. indicated performance was better for

students with prior programming experience.

This finding, and the mixed results in the literature, could be a function of the quality

of prior course experience. A poor-quality prior experience of computer programming might

give an inadequate impression of the difficulty of introductory programming or might

develop and reinforce poor student habits. One freshman with prior high school

programming coursework stated that their high school instructor never explained why

computing topics were being covered and frequently emphasized mimicking—a “just do it

this way” teaching pattern—over conceptual learning. That student did quickly grasp

material in the collegiate course engaged in this study but had many misconceptions that had

been formed in the high school course. The importance of quality of early programming

exposure is supported by prior research that points to quality issues in pre-collegiate

programming coursework. One study concluded that there is no statistically significant

 93

advantage to students who had a high school programming course prior to coming to college

in terms of their comprehension of what computer science is, and what computer scientists

do; and many students were unable even to state the programming language used in the

course (Copus, 2015).

RQ4

Research Question 4: What course elements do students believe were helpful in the

Holistic Course Delivery?

This question was included in the present study to provide a feedback mechanism for

measuring and improving the Holistic Course Delivery and for validating the principle that a

holistic combination of insights from the four foundational learning theories (Neo-Piagetian,

Cognitive Apprenticeship, Cognitive Load, Self-Efficacy) produces a strong course design.

The course elements were intentionally implemented to create a course delivery that is

informed by the neo-Piagetian, cognitive load, cognitive apprenticeship, and self-efficacy

theories as detailed in CHAPTER 3, Table 3.2.

Cognitive apprenticeship is a model of instruction that “works to make thinking

visible” (Collins, et al., 1989, p. 1). There are six techniques that define cognitive

apprenticeship: modeling, coaching, scaffolding, articulation, reflection, and exploration.

Each of the pedagogical components of the Holistic Course Delivery aligned with at least

one of the six techniques. The course components that students experienced directly and

could evaluate were: watching the instructor code, participating in Live Coding,

pseudocoding and breaking a problem into parts, formative quizzes, homework problems,

and self-reflections after homework submissions (Refer to Table 3.2, p. 48).

 94

Students were asked on the Student Exit Survey to report on how important or

helpful the various course elements were to them. A vast majority of students rated four

elements as Extremely helpful or Helpful, Watching the instructor live code (92.8%), Live

coding alongside the instructor (96.4%), Practice with problem solving (91.6%), and

Homework problems (95.2%). Students clearly believe that these components were helpful.

Online Quizzes, which were brief formative quizzes over lecture content which students

could take an unlimited number of times, were perceived to be Extremely helpful or Helpful

by a smaller majority of students (79.8%).

Modeling

Watching the instructor code is modeling. Students watched the instructor code or

trace through a program while the instructor verbalized the thinking process. The steps used

to solve the problem at hand, syntactical elements that were relevant, and potential pitfalls

and errors that could have occurred were introduced in this way.

Live Coding is also modeling but includes coaching as an additional component of

Cognitive Apprenticeship. Modeling and coaching have been described as a form of

storytelling in which the real-world experience of the coach is “especially powerful as a

source of guidance” (Bareiss & Radley, 2010, p. 163).

When asked what course elements students liked most in the open ended, optional,

question in the Student Exit Survey (Question 17) and in Individual Interviews, these two

course elements (watching the instructor code and live coding) were overwhelmingly liked.

Student Exit Survey responses were frequently similar to, “It was hands-on and the

instructor made sure nobody fell behind,” “Whenever I can do something, that’s the way

 95

that I remember it best…doing a lot of the coding in class,” “[You] showed us what could

go wrong in a multitude of different steps,” and “[You were] learning without thinking you

were learning.” The free responses by the students give insight to why these two

components were rated so highly. When students were given an opportunity to suggest what

they would change about the course (Student Exit Survey, Question 18) there was not a

single comment suggesting a change with respect to these course elements.

Classroom Environment

An objective of the Holistic Course Delivery was to create a classroom environment

with a positive climate for the students: psychologically comfortable, collaborative, and

uninhibited. The optimal classroom environment was thought to embody open, bilateral

communication between the instructor and each student and encourage structured

communication between students at appropriate times. Ultimately these would provide

support and scaffolding from both the instructor and peers.

Comfort level in the computer science classroom has been shown to be a predictor of

success in a course (Wilson & Shrock, 2001). A positive environment for students to feel

safe admitting errors in their programs and describing the challenges they are experiencing

was deemed a necessary starting point for effective coaching, correction of errors, and

resolution of misconceptions, since it has been demonstrated that “comfort level in the

computer science class was the best predictor of success in [the] course” (Wilson & Shrock,

2001, p.187). Some students reported in the Individual Interviews and the open-ended

questions in the Student Exit Survey that they initially felt outclassed by some of their

fellow students, who they presumed to have significantly more programming experience.

 96

However, they uniformly indicated that they felt comfortable asking questions and

interacting with the instructor and peers in the classroom.

For cognitive apprenticeship to be effective, communication between the teacher and

learner must exist (Collins, Brown, & Holum, 1991). The Holistic Course Design sought to

make communication comfortable and to ensure broad participation. Students responded

often in the Student Exit Survey and Individual Interviews that they felt comfortable asking

questions and were not intimidated, e.g., “The professor knew that not everyone would

know how to write code” and that the course was “suited for many different kinds of

students.”

Creating an environment in which the student does not feel isolated or inhibited and

is shown respect enables students with a low self-efficacy or high feeling of intimidation to

master concepts (Sankar, Gilmartin, & Sobel, 2015). The instructor (and sometimes a

neighboring student) would assist or provide scaffolding to those experiencing errors, and

the broad participation of the students in this activity was viewed by the instructor of

evidence that a healthy classroom environment, conducive to effective coaching and

multilateral communication, had been produced.

Code Sprints

Test anxiety can prevent a student from performing at their best (Deloatch, Bailey, &

Kirlik, 2016; Adesola, Li, & Liu, 2019). Early feedback and specific feedback were shown

to be important to students so that the student could change in their thinking and develop

missing knowledge in time for it to still be helpful (Poulos & Mahony, 2008). Code Sprints

were utilized in the course to reduce the anxiety many students experience prior to and

 97

during high-stakes midterms. Code Sprints were conducted about every second Friday with

detailed feedback and scores returned on the following Monday. Students overwhelmingly

indicated that they preferred the Sprints over midterm exams (90.5%). In the Individual

Interviews students cited decreased anxiety associated with multiple, lower-stakes tests and

the rapid feedback loop—they had an objective measure of their mastery of the material

every two weeks, versus perhaps once or twice in a semester with high-stakes midterm

exam(s).

Tracing code before writing code, as practiced in the Code Sprints in this study, is

analogous to reading a language prior to writing it. A surprising result was that there was no

significant correlation demonstrated between the score on the code tracing and code writing

components of the Code Sprints. This is counterintuitive, and various studies have

previously indicated that code tracing is prerequisite and/or supplemental to code writing

(Lister, et al. 2004; Hertz & Jump, 2013; Kumar, 2015; Zavala & Mendoza, 2016; Griffin,

2016). An explanation may lie in the method employed: In the present study the code tracing

questions in the Code Sprints were multiple choice, while the code writing portion was

graded by the instructor with a likelihood of partial credit. This disparity in metrics may

have rendered the instrument less than ideal in correlating the two. While tracing and

programming did not appear be related, code tracing develops an awareness of syntax and

programming constructs (Kumar, 2013). Tracing code prior to starting to write code will be

retained in future offerings of the course.

 98

Problem Solving and Pseudocoding

Problem solving and pseudocoding is a form of articulation involving verbalization

or demonstration of knowledge and thinking processes (McLellan, 1994). Prior to starting a

Live Coding problem and in special sessions on Code Sprint days students would be

presented with a problem and then given a moment to think about the steps needed to solve

the problem. A list of steps would be compiled collaboratively as a class. Sometime students

would collectively produce a sequence of steps to solve the problem, and other times the

instructor would provide scaffolding to assist, leading the class in a minimal way so as to

ensure the class collectively arrived at a viable solution. The steps as verbalized by the class

were written on the whiteboard or typed as comments in a nascent Java program.

One intent and benefit of this problem solving and pseudocoding activity was that

students began to recognize templates, patterns of problem types that recur from one

problem to another. One of the first templates encountered in the Holistic Course Design

may be characterized as, “read data, manipulate data, display results.” Once students were

able to internalize this pattern the activity of listing steps needed to re-use and re-apply the

pattern to similar problems was anecdotally observed to be generally faster and easier. In

this way problem solving skills were abstracted away prior to coding in Java as broadly

recommended in the literature (Xie et al., 2019).

Pseudocoding was used throughout the entire semester as the preferred method when

starting a problem. While the instructor observed that student pseudocoding skill was

modest in the beginning, students were more at ease and developed stronger skills with

repetition. This is reflected by the trajectory of problem solving confidence as reported by

 99

students: On the Homework Reflection for HW2 there was a significant decrease in problem

solving confidence that resolved to a consistently higher level by HW4 (see Figure 4.3, p.

61).

Formative Quizzes

Scaffolding is a component of Cognitive Apprenticeship that supports students in

learning (Collins, et al., 1987). In addition to examples cited in conjunction with Live

Coding and Problem Solving, the Formative Quizzes incorporated significant scaffolding.

The quizzes were delivered online and Students were permitted to attempt the quizzes any

number of times, with their highest score attempt recorded as the grade for that quiz.

Questions that were answered incorrectly were programmed with feedback that directed the

learner to the textbook or to particular slides presented during lecture that were relevant to

the missed question.

The scaffolding integrated into the Formative Quizzes formed an adjunct to the

instructor since correction of misconceptions was immediate and direct, permitting rapid

iteration in the development of the student’s mental model around a concept. It may be

speculated that this had some relationship to a surprising finding around the Formative

Quizzes. It is reasonable to expect that students who often guessed on quizzes would earn a

lower final course score since guessing might indicate a lack of engagement of the course

material during lectures or in independent study, but the data do not support this expectation.

The instructor intended the quizzes to be a measure of student attentiveness and learning

during lectures, but it is possible that students who took the quizzes many times might have

utilized quizzes as a study opportunity, utilizing the scaffolding as a proxy for time under

 100

the tutelage of the instructor. While the formative quizzes were likely useful as a learning

implement, students did not like them as much as the hands-on Live Coding and Watching

the Instructor Code.

Homework Problems

 Homework problems also provided scaffolding through hints on course elements to

utilize in the solution and incorporated the Cognitive Apprenticeship component of

exploration. Exploration allows the student to “transfer the skill independently when faced

with a novel situation” (Collins, et al., 1991). Each assignment had at least one problem that

required the student solve a previously unexplored problem.

It is interesting that time to complete each homework assignment was fairly

consistent (1-3 hours) from assignment to assignment even though each homework

introduced a new topic while requiring the application of prior knowledge. This may be an

indicator that students adequately absorbed and mastered prior knowledge, were able to

focus time spent on new knowledge, and did not usually feel overwhelmed. Excepting

HW10, the time to complete the assignments did not generally increase as the semester

progressed and as problems began to require the incorporation of more prior knowledge.

HW10 was different in that the entire assignment was a single problem that built on

prior knowledge of loops and methods, two programming constructs that are somewhat

advanced for the introductory nature of the course. This assignment required the student to

model a restaurant order system and calculate the cost of an order, including gratuity. It was

a departure from the usual textbook-type problems of previous assignments and may have

been perceived as a more substantial project than a typical homework assignment. Students

 101

provided feedback on the Homework Reflection regarding the challenges they had with

HW10 with comments such as, “methods are hard to understand,” “organizing my code was

challenging,” and “using a while loop to call methods [was difficult].” The increase in

perceived difficulty makes it clear that the class was not fully prepared to apply so much

prior knowledge to a new and larger problem. At the request of the class, additional

scaffolding (in the form of a more substantial, parallel, worked example) was introduced

during class time just prior to the due date for HW10. Most of the student were ultimately

successful.

Soft homework deadlines were implemented to improve classroom climate and

enhance student success. Students were encouraged to submit work by due dates, but late

work was accepted with no deduction or a minor deduction to encourage students who had

fallen behind or had been impacted by life issues to complete the assignment. This was

deemed especially important in an introductory programming course since new topics

largely build upon the material in previously covered topics and assignments. The ultimate

objective of Cognitive Apprenticeship is that the student be able to work independently of

the instructor and produce correct solutions on their own—that the student effectively

become the expert (Collins, et al., 1991). Allowing occasional late submissions reduced

barriers to completing and submitting independent work, facilitating feedback and providing

needed scaffolding for subsequent assignments. Students reported that they liked being able

to submit work late (64 of 83, or 77.1%). It is interesting to observe that 22.9% of students

reported never having taken advantage of the policy; if they are removed from

consideration, 100% of the remaining students indicated the policy was Helpful.

 102

Reflection, or the action of students pausing to look back and analyze their

performance with a desire for understanding and improvement, is a component of Cognitive

Apprenticeship. Students completed a Homework Reflection after each assignment (refer to

Appendix D). The Homework Reflection was survey-like with an open-ended question to

capture the “triumphs” or “challenges” of the week. Students believed that this activity

helped them to assess their own comprehension of subject matter (55.4%), their performance

on the assignment (49.4%), and was a good closure before moving on to the next assignment

(54.2%). The student reflection was often paralleled by a reflection on the part of the

instructor: At milestone moments in the lecture period, the instructor would pause and bring

awareness to the class of how far the students had advanced in skill and knowledge during

this stretch of the course. Anecdotally, this was very well received by students with palpable

energy and visible smiles.

RQ5

Research Question 5. Does the neo-Piagetian stage of students change from the

beginning to the end of the Holistic Course Delivery?

It has been shown that students in introductory computer science courses progress

through the early neo-Piagetian stages (Lister, 2011). Measuring this progression in a CS1

course may provide stronger validation of the course design than examining final student

grades.

The analysis of movement between neo-Piagetian operational levels shows that the

majority of students advanced one or two levels. Little research has been published that

 103

quantifies movement of students between neo-Piagetian levels during a semester-long

introductory programming course. There are a few case studies of individual students that

provide insight into how students think and what enables them to advance to a higher stage

(Teague, 2015). Problem solving performance was examined at preoperational and concrete

operational levels (Kozuh, Krajnc, Hadjileontiadis, & Debevc, 2018), but studies have not

been conducted that analyze the semester-long progression of neo-Piagetian stages for

introductory programming students. This study demonstrates that an introductory student

can be staged and that progress in neo-Piagetian stages can be tracked. Educators desire that

every student reach the formal operational level. However, a novice will “…tend to move to

formal operational reasoning via the concrete operational level” (Lister, 2011). Therefore, it

is not unexpected that a large number of students exited the course at the Preoperational or

Concrete Operational levels. It is also likely that if these students continue programming

coursework they will continue to grow until they reach the Functional Operational level

(Lister, 2011).

The findings of this research support the idea that programming can be learned. It is

not an innate ability and novice students must first be taught at a level congruent with their

stage before they can grow to a higher level. All but one student advanced to a higher neo-

Piagetian stage than where they began the course, demonstrating that the Holistic Course

Delivery is an effective method to deliver an introductory programming course. An expert

on neo-Piagetian levels with reference to novice programmers concluded that the objective

of a first semester programming course should be to get the “bulk of our students to the

point where they can consistently reason at the concrete operational level” (Lister, 2011, p.

 104

17)—A noble objective, accomplished with half (41) of the students who completed the

Holistic Course Delivery in connection with this study.

Conclusion

Nascent programmers are built, not born. “We don’t know the limits of good

teaching. There is research evidence that we can use teaching to reduce differences that have

been chalked up to genetics” (Guzdial, 2015, p. 86). The present study sought to build

beginning Java programmers in a manner more effective than the Traditional Course

Delivery by arranging the content and delivery in a novel, holistic manner informed by four

fundamental theories: neo-Piagetian, Cognitive Apprenticeship, Cognitive Load, and Self-

efficacy.

This study engaged an introductory programming course with three sections and 96

students initially enrolled. 77 students completed the course with a grade of C or better, and

19 students withdrew from the course or received a grade of D or F (collectively, DFW).

This represents a DFW rate of 19.8%, versus 29.4% historically for the institution, and 28%

to 33% historically, worldwide.

The all-inclusive nature of the Holistic Course Design is believed to be essential to

its success. The theories were operationalized in several ways: Live coding, positive

classroom environment, carefully considered content progression, and low-stakes

assessments are not typically found in a traditional delivery of introductory programming.

Each element was included in the course design to assist students in their learning. Students

responded favorably to this design with improved DFW rate and in parting comments on the

course. For institutions that allow smaller class sizes of about thirty or fewer students, the

 105

Holistic Course Design is a design for an introductory programming course that could be

effective in reducing DFW rate.

In the current context of increasing university budget pressures and more attention

than ever on student retention, any mechanism that significantly reduces the historically high

DFW rate in introductory programming courses, while building confident students who feel

adequately prepared to advance to the next course in the sequence, will be most welcome.

While the quasi-experimental design of this study cannot demonstrate causation, the clear

relationship between the Holistic Course Design and student DFW rates suggests that the

Holistic Course Delivery may be such a mechanism.

Future Research

Among various possibilities, two directions for future research rose to the top as

promising areas that could produce results that are measurable and, more importantly,

actionable in improving CS1 DFW rates.

A follow-up study on same-gender role models and success for female students may

shed additional light on the significantly better performance of female students in the present

study, and may also pave the way for subsequent research on the value of role model

similitude in connection with other underrepresented minorities in the CS1 classroom.

Another area that a subsequent longitudinal study might address is the progression of

neo-Piagetian levels in the first several CS-sequence classes. It would be valuable to

understand how quickly students can progress from the Concrete Operational level to the

Formal Operational level (not generally reached in CS1) and what factors influence the rate

 106

and penetration of the progression. Does the Holistic Course Delivery have application in

the second and subsequent programming-sequence courses?

A third area of interest arose from the counterintuitive connection between student

prior, formal programming class experience and success in collegiate introductory

programming. What are the common misconceptions? How can they be intentionally and

systematically unwound to “clear the field” for subsequent development on a sound

foundation?

Fourth, as the results of this study were being analyzed and concluded, the COVID-

19 pandemic arose, sending students at most universities home to complete their courses

online and at distance. A future study could address how the Holistic Course Delivery might

be adapted and applied to an online course delivery.

Fifth, there is great variety in the languages taught in introductory programming

courses. Although the literature generally indicates that language of choice, early/late

objects, and other linguistic features have not had a significant effect on DFW rates, it would

be interesting to examine if the Holistic Course Delivery’s effect on DFW rate is orthogonal

to language choice.

Finally, a quasi-experimental design in the educational setting can indicate a

promising direction but cannot demonstrate causation. As such, it serves as a pilot for future

work with an experimental design that would remove confounding variables (e.g., the

individual instructor characteristics). Although it is difficult to imagine a context where a

true experimental design could be implemented (owing the inability to randomly select

participants for collegiate introductory programming), a delivery across multiple instructors

 107

and institutions is conceivable; as is a design where each instructor delivers both the Holistic

Course Delivery and the Traditional Course Delivery.

APPENDIX A

PRE-COURSE SURVEY

108

Initial Student Survey
* Required

1. Email address *

2. I think that a computer scientist mainly (check all that apply)

Check all that apply.

Uses computers and software to solve real world problems

Uses programs like Microsoft Word, Excel, PowerPoint, or Photoshop to accomplish his/her
work.

Installs and maintains computers and networks

Don't know

Other:

3. Did you graduate from a:

Mark only one oval.

Missouri public high school

Missouri private high school

Out-of-state public high school

Out-of-state private high school

Home school

International high school

Other

Other:

 109

4. Have you (check all that apply)

Check all that apply.

Had a formal class in Java, Scratch, C, C++, Python, or some other programming language

Written a program outside of a class

Had a formal class in an application like Word, PowerPoint, etc.

Created a webpage

Scripted in a video game

5. Have you taken one or more college-level Computer Science classes?

Mark only one oval.

Yes Skip to question 6

No Skip to question 9

6. If yes, how many? *

7. Which programming languages did you uses? *

8. Would you consider taking more computer science courses?

Mark only one oval.

Yes

No

Maybe

110

9. Did your high school offer a formal computer programming class?

Mark only one oval.

Yes Skip to question 10

No Skip to question 12

10. Did you take it?

Mark only one oval.

Yes

No

11. What languages were you taught?

Check all that apply.

C/C++/C#

Java

Python

Scratch

Other

Don't Know

Skip to question 13

12. Would you have taken a Computer Science class had one been available?

Mark only one oval.

Yes

No

Maybe

111

Cutting Edge

Anti-social

High income

Long working hours

Interesting

More for males

Boring

Sitting all day

Nerd

13. Which of the following do you associate with the field of Computer Science? *

Mark only one oval per row.

Strongly Agree Agree Unsure Disagree Strongly Disagree

14. Did you take any of the following advanced placement or dual credit courses?

Check all that apply.

AP Computer Science

AP Science (Chemistry, Biology, Physics, etc.)

Dual Credit Math

AP Calculus

Other AP

Dual Credit Science

112

15. Are you planning to be certified to be a teacher?

Mark only one oval.

Yes Skip to question 17

No Skip to question 18

16. If teacher certification in Computer Science were available, would you be
interested in becoming certified?

Mark only one oval.

Yes

No

17. What area do you want to be certified in?

Check all that apply.

Secondary Math

Elementary

Science

Other/Unsure

18. Are you a transfer student?

Mark only one oval.

Yes

No

113

19. Are you in the military or have you been in the military?

Yes

No

20. Year of Study:

Mark only one oval.

Freshman

Sophomore

Junior

Senior

21. Gender

Mark only one oval.

Female

Male

Prefer not to say

22. Major (Please specify major or write undecided)

114

APPENDIX B

PRE- POST-COURSE TEST

115

Pre-course Test & Post Course Test

1. After executing the following line of code:

int f = 7 + 3;

What is the value of f ?

A. 3

B. 5

C. 7

D. 10

E. None of the above

2. Given the following two sets of code:

(1) int f;

f = 2;

(2) int f;

2 = f;

After the execution of which of the above parts of code will the variable f contain the
value 2?

A. (1)
B. (2)
C. (1) and (2)
D. None of the above

3. Given then following code,

int f = 2;

f = 3;

What is the value of f after the code is executed?

A. f is 2

B. f is 2 and 3

C. f is 3

116

D. None of the above

4. Given the following code:

int f = 5;

int a = f;

What are the values of the variables f and a after the code is executed?

A. a is 5; f is 5

B. a is 5; f is 0

C. a is 0; f is 5

D. None of the above

5. Given the following code:

int a;
int b;
a = 3;
b = a;
a = 4;

After this code is executed, what are the values of a and b?

A. a is 3; b is 3

B. a is 4; b is 4

C. a is 3; b is 4

D. a is 4; b is 3

E. None of the above

6. After which set of code will the variable f contain the value 4?

(1)

 int f;
 f = f + 4;

(2)
 int f = 0;
 f = f + 4;

A. (1)
B. (2)

117

C. (1) and (2)
D. None of the above

7. After the following code is executed, what is displayed on the console?

int width = 0;
int height = 0;
int area = width * height;
width = 4;
height = 4;
System.out.println(area);

A. 0
B. 4
C. 8
D. 16
E. None of the above

8. After the following code is executed, what are the values of a, b, c, d, and e?

int a = 0;
int b;
int c = 10 + 5;
int d = 23;
int e = 4;
b = c;
c = a;
a = b;
e = c + 3;
d = c;
c = d;

Answer:
a is ____
b is ____
c is ____
d is ____
e is ____

118

9. You are given the variables a, b, and c that have been properly declared as integers
and initialized. Which triplet of code will result in a and b being swapped? Assume
code will execute top to bottom.

A. c = a;
 b = a;
 a = c;

B. c = a;
 a = b;
 b = c;

C. c = b;
 a = b;
 b = c;

D. None of the above

10. After the following coded is executed, what is displayed on the console?

int a = 9;
if (a == 10){

 System.out.print("first ");

 }

 System.out.print("second ");

 a = 10;

 A. first

 B. second

 C. first second

 D. None of the above

119

11. If the following code is executed, what is the output when the user enters a value of
6 at the prompt?

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int num = input.nextInt();
if (num > 5){
 System.out.print("Big Number! ");
}
System.out.print("Small Number! ");

A. Big Number!

B. Small Number!

C. Big Number! Small Number!

D. Nothing is displayed

12. In one sentence, state the purpose of this code, or respond Don’t know.

if (y1 < y2){
 t = y1;
 y1 = y2;
 y2 = t;
}

if (y2 < y3){
 t = y2;
 y2 = y3;
 y3 = t;
}

if (y1 < y2){
 t = y1;
 y1 = y2;
 y2 = t;
}

Your response:

120

13. In one sentence state the purpose of the following code. Do NOT give a line-by-line
description of what the code does. Instead, tell the purpose of the code. If you do not
know, respond “Don’t know”.

if (a > b){
 if (b > c){
 System.out.print(c);
 } else {
 System.out.print(b);
 }
}else if (a > c){
 System.out.print(c);
} else {
 System.out.print(a);
}

Your response:

14. What is the output of the following code?

int counter = 0;
while (counter < 2){
 System.out.print("A");
 counter = counter + 1;
 System.out.print("B ");
}

A. AB AB A
B. AB AB
C. AB AB AB
D. AB A
E. None of the above

121

15. What is the output from executing the following program?
public class RandomTest{
 public static void main(String[] args){
 int a = 5;
 int b = 6;
 mystery(a);
 }

 public static void mystery(int b){
 System.out.println(b);
 }
}//RandomTest

A. 5
B. 6
C. 11
D. None of the above

16. State in one sentence the purpose of the following code. If you do not know, state
“Don’t know”.

int x;
int[] w = {3,2};
if (w[0] > w[1]){
 x = w[0];
 w[0] = w[1];
 w[1] = x;
}

Your response:

122

17. What is the output of the following code?

public class RandomTest{
 public static void main(String[] args){

int[] a = {1, 2, 3};
int[] b = {4, 5, 6};
mystery(a);
System.out.print(a[0] + " " + b [0]);

 }

 public static void mystery(int[] b){

b[0] = 7;
 }

}//end RandomTest

A. 1 4
B. 7 4
C. 4 7
D. 7 7
E. None of the above

123

APPENDIX C

POST-COURSE SURVEY

124

1. Email address *

Course Delivery

2.

Online Quizzes

3.

Student Exit Survey Fall 2019
Please complete this survey for 30 points. Your responses will not be reviewed until after final
grades are submitted, so please feel free to respond honestly. It has been a joy to work with you
this semester and I wish you the very best for your future.
* Required

*

Mark only one oval per row.

Extremely
helpful

Helpful
Slightly
helpful

Not
helpful

Watching the instructor live code was

Coding along side the instructor during
class was

Practice with problem solving before
Sprints was

Watching the instructor live code was

Coding along side the instructor during
class was

Practice with problem solving before
Sprints was

*

Mark only one oval per row.

Extremely helpful Helpful Slightly helpful Unhelpful

Online quizzes wereOnline quizzes were

125

4.

Mark only one oval per row.

Homework

5.
Mark only one oval per row.

6.

7.

*

Always Sometimes Never

How often did you seek out knowledge for
questions that you missed on quizzes prior
to retaking the quiz.

How often did you seek out knowledge for
questions that you missed on quizzes prior
to retaking the quiz.

Extremely helpful Helpful Slightly helpful Unhelpful

Homework problems wereHomework problems were

*

Mark only one oval per row.

About right Too many Not enough

Number of problems on each assignment
was

Frequency (weekly) of assignments was

Number of problems on each assignment
was

Frequency (weekly) of assignments was

*

Mark only one oval per row.

Too difficult About Right Too easy

Difficulty of problems on each homeworkDifficulty of problems on each homework

126

8.

Helped me to assess my own comprehension of subject matter

Helped me assess my own performance on the assignment

Were a good closure before moving onto the next assignment

Were not of much use for me

Other

Sprints

9.

Sprints

Midterm Exams

Don't care

10.

Future plans

Reflections after homework (check all that apply) *

Check all that apply.

Do you prefer having sprints or midterm exams? *

Mark only one oval.

*

Mark only one oval per row.

Always Usually Rarely Never

Did you feel prepared for the code tracing
question on the sprint?

Did you feel prepared for the code writing
portion of the sprint?

Did you feel prepared for the code tracing
question on the sprint?

Did you feel prepared for the code writing
portion of the sprint?

127

11.

Yes Skip to question 12

No Skip to question 14

Don't know Skip to question 12

Skip to question 14

Preparation for future

12.

Totally unprepared

1 2 3 4 5

Well prepared

13.

Programming Ability

Are you planning to take CS 1110 Computer Programming II *

Mark only one oval.

How prepared do you feel to take CS 1110 Computer Programming II? *

Mark only one oval.

If you feel unprepared, what are your concerns?

128

14.

Due Dates, etc.

15.

16.

Parting Thoughts...

17.

*

Mark only one oval per row.

Poor Average
Above

Average
Excellent

I feel that my programming ability at the
beginning of the semester was

I feel that my programming ability today is

I feel that my ability to break a problem
into steps is

I feel that my programming ability at the
beginning of the semester was

I feel that my programming ability today is

I feel that my ability to break a problem
into steps is

*

Mark only one oval per row.

Never Rarely Sometimes Often

How often did you turn in homework late?How often did you turn in homework late?

*

Mark only one oval per row.

Help Don't know Unhelpful

Soft deadlines for late work were....Soft deadlines for late work were....

What did like about this course?

129

18.

19.

20.

21.

Other:

Installs and maintains computers and networks

Don't know

If you were the instructor, what would you change?

If you were the instructor, what would you keep the same?

Please share any thoughts you have about your experience in this course, either
positive or negative.

I think that a computer scientist mainly (check all that apply)

Check all that apply.

Uses computers and software to solve real world problems
Uses programs like Microsoft Word, Excel, PowerPoint, or Photoshop to accomplish

his/her work.

130

22. Which of the following do you associate with the field of Computer Science? *

Mark only one oval per row.

Strongly Agree Agree Unsure Disagree Strongly Disagree

Cutting Edge

Anti-social

High income

Long working hours

Interesting

More for males

Boring

Sitting all day

Nerd

Cutting Edge

Anti-social

High income

Long working hours

Interesting

More for males

Boring

Sitting all day

Nerd

131

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

APPENDIX D

HOMEWORK REFLECTION

132

Homework Reflection HWX

Complete this from after you have submitted your homework assignment *
Required

1. Email address *

2. How much time did you spend on the assignment? *

Mark only one oval.

1-3 hours

4-6 hours

7-9 hours

more than 9 hours

3. Please select level of use of the following resources. *

4. 4. Rate your confidence in Java programming after completing this assignment. *

133

Mark only one oval.

 1 2 3 4 5

5. The first problem on the assignment was *

Mark only one oval.

Difficult to solve

Completed with substantial effort and review of course materials

Fairly easy and straightforward with some review of course material

Easy with hardly any need to review course materials.

None of the above

6. Overall, the homework problems were useful to practice and to learn the concepts in this
course? *

Mark only one oval.

 1 2 3 4 5

7. List your Challenges and Triumphs from this assignment. If you had nothing to respond,
reply "None" *

8. Do you feel that you are getting stronger in programming each week? *

Mark only one oval.

Yes

No

Maybe

134

9. Do you believe that your are getting stronger at solving problems each week? *

Mark only one oval.

Yes

No

Maybe

10. Please list any concerns you have regarding this class.

This content is neither created nor endorsed by Google.

 Forms

135

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms
https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

APPENDIX E

HOMEWORK ASSIGNMENTS

136

CS1100 Homework 1 Due Date: Wed 9/04/2019, 11:59 pm Total points: 24 points
 + 5 points reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember
to properly indent your code, include appropriate comments and the required header.
Deductions will be made for improperly formatted programs.

Complete the reflection after you submit your assignment. There is a link in the homework
folder to the reflection. You will receive an email confirmation of the submission but no
indication will appear in the gradebook until I manually add the completion grade.

A header is comments at the top of your file with your name and brief description of the
problem.

Programs must compile and run for full credit.

Please submit your 3 .java files through the link for HW1 on Blackboard. You will submit
each file individually. Please do not zip your work.

1. (8 points) Create a Java program that prints your name, your major, and your favorite
food. For example, for Belinda, the program would display:

Belinda
Computer Science
Lasagna

2. (8 points) Problem 1.3 from the textbook. Write a program that displays the following
pattern as shown in the text:

 J A V V A
 J A A V V A A
 J J AAAAA VV AAAAA
 J J A A V A A

3. (8 points)

Write a program that displays the sum of 5 and 10.

 The output from running the program will be:

15

137

CS1100 Homework 2 Due Date: 9/11/2019, 11:59 pm Total points: 24 points
+ 5 points reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember to properly
indent your code, include appropriate comments and the required header. Deductions will be made for
improperly formatted programs.

A header is comments at the top of your file with your name and brief description of the problem. Programs must
compile and run for full credit.

Please submit your 3 .java files through the link for HW2 on Blackboard. You will submit each file individually. Please
do not zip your work. You will need to submit pseudocode for Problem 3 through the link HW2-Psuedo

1. (7 points) (Area and perimeter of a rectangle)

Write a program that prompts and reads user input for the width and height of a rectangle. You program
will calculate and display the area and perimeter of the rectangle. The values for width and height
should be treated a a number with a decimal point. Area and perimeter are calculated as shown below.

area = width × height

perimeter = (2 x width) + (2 x height)

The output from running the program with a width of 5.5 and height of 2.2 will be:

Please enter the width: 5.5

Please enter the height: 2.2

(you will likely have more to the right of the decimal point, and that is ok.)

Area is 12.100000
Perimeter is 15.4

2. (7 points) Create a Java program that will calculate the volume and area of a sphere. To calculate the
area, use this formula

area = 4 π r2

volume = 4
3
𝜋𝜋𝑟𝑟3

• Your program will need to read a value for the radius (r) for the console. Radius should be a

double.

• Create a constant for π with the value 3.14159.

For example, if the user enters a value of 5.5 for radius, your program should display 138

Area is 380.13239

Volume is 696.909381666666

3. (10 points) (2 points for submitting pseudocode prior to Java code & 8 points Java program)

You are in a job where you earn a tip for service. You need a program that will calculate how much to
add to the bill after calculating gratuity. Write the pseudocode that would solve this problem and submit
to HW2-Psuedo on Blackboard prior to writing any Java code. Your program will read the subtotal and
the gratuity rate from the user, computes the gratuity and total and displays the results to the user.

For example, if the user enters 10 for subtotal and 15 for gratuity rate, the program displays $1.5 for
gratuity and $11.5 as total. Don’t worry that the format of the output is “$X.X” rather than “$X.XX”.

To calculate a tip, calculate subtotal * rate / 100

To calculate the total bill, use the above calculation and add to the subtotal.

Sample run:

Enter the subtotal or the bill 10

Enter the gratuity rate 15

The amount for gratuity is $1.5

The total final bill is $11.5

139

CS1100 Homework 3 Due Date: 9/18/2019, 11:59 pm Total points: 24 points

 + 5 points for Reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please
remember to properly indent your code, include appropriate comments and the
required header. Deductions will be made for improperly formatted programs.

A header is comments at the top of your file with your name and brief description of the
problem. Programs must compile and run for full credit.

Please submit your 4 .java files through the link for HW3 on Blackboard. You will submit each
file individually. Please do not zip your work.

1. (6 points) Create a Java program that takes an integer value entered from the
console and displays whether the number is even or odd. (Hint: use % operator
and if-statement)
For example, the use enters 53 at the prompt:
 Please enter an integer => 53
The program will displays,
 53 is odd.

2. (8 points) Problem 3.19 from the textbook.
Write a program that will read in three integer values from the console that
represent the sides of a triangle. Display whether the sides form a legal triangle.
For a triangle to be legal, the sum of each pair of sides must be greater than the
third side. If your triangle is “legal”, display the perimeter. If the triangle is
“illegal” display a message to the user that the sides to not form a valid triangle.

Please enter 3 sides of a triangle: 1 2 3

The sides 1 2 3 make an illegal triangle.

Please enter the 3 sides of a triangle: 3 4 5
The perimeter is 12

Problem 3 – We will cover this material on Monday, 9/17.

3. (10 points) Problem 3.17 from the textbook, with modification.
Rock, Paper, Scissors. Write a program that plays the popular scissor-rock-paper
game. (A scissor can cut paper, a rock can crush scissor, and a paper can cover
rock). The program randomly generates a number 0, 1, or 2 representing the

140

scissor, rock, and paper. The program prompts the user to enter a number 0, 1, or
2 and displays a message indicating whether the user or the computer wins, loses,
or ties. See the sample output, as provided in your textbook. (See section 3.7 for
instructions on how to generate a random number.)

Submit your pseudo-code to HW3-Pseudo prior to coding. (2 points)

141

CS1100 Homework 4 Due Date: 9/25/2019, 11:59 pm Total points: 24 points

 +5 points reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please
remember to properly indent your code, include appropriate comments and the
required header. Deductions will be made for improperly formatted programs.

A header is comments at the top of your file with your name and brief description of the
problem. Programs must compile and run for full credit.

Please submit your 2 .java files through the link for HW4 on Blackboard. You will submit each
file individually. Please do not zip your work.

1. (12 points) Problem 3.17 from the textbook, this time with a Switch statement.

Rock, Paper, Scissors. Write a program that plays the popular scissor-rock-paper
game. (A scissor can cut paper, a rock can crush scissor, and a paper can cover
rock). The program randomly generates a number 0, 1, or 2 representing the
scissor, rock, and paper. The program prompts the user to enter a number 0, 1, or
2 and displays a message indicating whether the user or the computer wins, loses,
or ties. See the sample output, as provided in your textbook. (See section 3.7 for
instructions on how to generate a random number.)

Instead of the if…else version from HW3, use a Switch statement. You must use
a switch statement to receive credit. No pseudo-code submission is required.

2. (12 points) Extend the NumberPalindrome example to read a 4-digit number and
determine if the value entered is a palindrome.

Examples of palindromes include: 1221 3443

Examples that are not a palindrome 1231 3453

Hint: you will need to add code to isolate the 1000’s, 100’s, 10’s and 1’s digits.
You will need a variable for each place.

Sample run:
Please enter a 4-digit number: 1221

1221 is a palindrome.

142

CS 1100 Homework 5 Due Date: 10/2/2019, 11:59 pm Total points: 24 points

 +5 points Reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please
remember to properly indent your code, include appropriate comments and the
required header. Deductions will be made for improperly formatted programs.

A header is comments at the top of your file with your name and brief description of the
problem. Programs must compile and run for full credit.

Please submit your 2 .java files through the link for HW5 on Blackboard. You will submit each
file individually. Please do not zip your work.

1. (10) Write a Java program that will read three integers from the user and display the
numbers in ascending order. Your input and output should be similar to the
following.

Please enter 3 integers: 55 33 44

 The numbers in order are: 33 44 55

2. (14 points) Problem 4.15 from the textbook.
 The international standard letter/number mapping found on the telephone is
shown below:

143

 image from https://www.dcode.fr/phone-keypad-cipher

Write a program that prompts the user to enter a lowercase or uppercase letter and
display its corresponding number. For a non-letter input, display “invalid input”.
(Hint: if the user does not enter ‘A’ –‘Z’ or ‘a’-‘z’, then the input is invalid.)

This is a great problem to practice the switch-statement.

Sample from three different runs:

Enter a letter: T

The corresponding number is 8

Enter a letter: r

The corresponding number is 7

Enter a letter: %

% is invalid input

144

CS 1100 Homework 6 Due Date: 10/9/2019, 11:59 pm Total points: 24 points

 + 5 points reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember
to properly indent your code, include appropriate comments and the required header.
Deductions will be made for improperly formatted programs. A header is comments at the top
of your file with your name and brief description of the problem. Programs must compile and
run for full credit. Please submit your .java files through the link for HW6 on Blackboard. You
will submit each file individually. Please do not zip your work.

1. (8 points) Problem 4.25 from the textbook.
 (Generate vehicle plate numbers) Assume that a vehicle plate number consists of
three uppercase letters followed by four digits. Write a program to generate a plate
number.
Hint: to generate a random capital letter – generate a number between 65 and 90, inclusively.
To generate the code for a number, generate a number between 48 and 57, inclusively. You
will need to convert the random number to a displayable ASCII character. See Section 4.3.1
and 4.3.3 in the text for details on how to covert between the code for a character and the
displayed character.

Examples of license plate: ABC1234 ZBG5387

If you need a hint on generating a range of numbers, please refer to RandomNumbers.java
that we did in class:
 // Generating a number from any range...
 //Let's generate a random number between
 // min and max, inclusively
 // How about a number between 20 and 100, inclusively.
 int max = 100; //biggest value to generate
 int min = 20; //smallest value to generate
 int range = max - min + 1; //number of values in range

 int rand = (int)(Math.random() * range) + min;
 System.out.println("rand is " + rand);

Also, recall that

int rand = (int)(Math.random() * range) + min; //min is code for A and range is 26
 char c = (char) rand;
 System.out.println(c);

Will display the character represented by rand in the ASCII table. You can generate a
random number in the appropriate range and assign to a variable of type char by casting rand
to a char.

145

2. (8 points) Write a program the reads a string from the user that represents dollars and
cents. The user will enter the dollar-sign and amount, $XXX.XX. The user will enter
the $ sign and decimal point as part of the string. The output should be how many
dollars and how many cents are represented by the amount entered.
For example:
 Please enter an amount: $35.46
 The output will be
 There are 35 dollars and 46 cents.

Hint: You will want to use the indexOf and substring methods to solve this problem.

3. (8 points)
Write a program to display the multiplication facts for a number. The user will enter a
value and then a table will be displayed showing the multiplication facts for that
value.

Please enter a number: 3

Multiplication table for 3
Multiplier Result

1 3
2 6
3 9
4 12
5 15
6 18
7 21
8 24
9 27
10 30
Press any key to continue . . .

Please use a while-loop to solve this problem.

Hint: The header (column names and the ----‘s) will be printed prior to entering the
while loop.

146

CS 1100 Homework 7 Due Date: 10/16/2019, 11:59 pm Total points: 24 points
 +5 points reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember
to properly indent your code, include appropriate comments and the required header.
Deductions will be made for improperly formatted programs. A header is comments at the top
of your file with your name and brief description of the problem. Programs must compile and
run for full credit. Please submit your .java files through the link for HW7 on Blackboard. You
will submit each file individually. Please do not zip your work.

1. (8 points)
Revisit of HW6 – Problem 3, now with a for-loop. Write a program to display the
multiplication facts for a number. The user will enter a value and then a table will be
displayed showing the multiplication facts for that value.

Please enter a number: 3

Multiplication table for 3
Multiplier Result

1 3
2 6
3 9
4 12
5 15
6 18
7 21
8 24
9 27
10 30
Press any key to continue . . .

Use a for-loop to solve this problem.

Hint: The header (column names and the ----‘s) will be printed prior to entering the
while loop.

2. (8 points) Problem 5.3 from the textbook.
(Conversion from kilograms to pounds) Write a program that displays the following
table (note 1 kilogram is 2.2 pounds):

147

Kilograms Pounds

1 2.2
3 6.6
5 11.0
7 15.4
9 19.8
11 24.2
13 28.6
15 33.0
17 37.4
19 41.8
Press any key to continue . . .

Please use a for-loop to solve this problem. Additionally, to format your output into
the nice columns, please use printf and formatters. See 4.6 on how to format. Table
4.12 explanation of %10.f is a good hint.

Hint: The header (column names and the ----‘s) will be printed prior to entering the
for loop.

3. (8 points) Write a program that reads integers greater than zero, and displays the
average and sum of the numbers entered. The program will continue to prompt for
numbers until the user enters a -1, to indicate termination of input. A sample run is a
follows:

Please enter a values and terminate with -1: 10
Please enter a values and terminate with -1: 3
Please enter a values and terminate with -1: 4
Please enter a values and terminate with -1: -1
The sum is 17
The average is 5.666666666666667
Press any key to continue . . .

Hint: Recall that to obtain a double value from integer division, you will need to cast
the result to a double.

i.e. 5/3 is a result of 1, but, (double)5/3 is a result of 1.6666666666666667

Hint: You will need to use a sentinel controlled while loop in your solution.

148

CS 1100 Homework 8 Due Date: 10/24/2019, 11:59 pm Total points: 24 points
 +5 points Reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember
to properly indent your code, include appropriate comments and the required header.
Deductions will be made for improperly formatted programs. A header is comments at the top
of your file with your name and brief description of the problem. Programs must compile and
run for full credit. You will submit each file individually. Please do not zip your work.

1. (12 points) Write a program that reads 10 integers and displays the largest value that was
entered. Use a for-loop, do…while loop, or while loop -- your choice.

Enter 10 values:

10 15 25 5 4 12 33 20 22 12

The largest value is: 33

Press any key to continue . . .

2. (12 points) Write a program using two nested for loops to display the following:

10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79

149

CS 1100 Homework 9 Due Date: 10/31/2019, 11:59 pm Total points: 24 points

 +5 points reflecton

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember
to properly indent your code, include appropriate comments and the required header.
Deductions will be made for improperly formatted programs. A header is comments at the top
of your file with your name and brief description of the problem. Programs must compile and
run for full credit. Please submit your 3 .java files through the link for HW9 on Blackboard.
You will submit each file individually. Do not zip your work.

1. (8 points) Problem 6.5 from the textbook (You sorted three numbers in a previous
assignment and can reuse that solution, now in a method.)
Write a method with the following header to display three number in increasing
order:

public static void displaySortedNumbers(int num1, int

num2, int num3)

You will need to include a main that prompts the user for three values and makes a
call to (or invokes) the method displaySortedNumbers.

2. (8 points) Problem 6.17 from the textbook
(Display matrix of 0s and 1s) Write a method that displays an n-by-n matrix using the
following header:

public static void printMatrix(int n)

You will prompt the user for the value n, and then invoke the method printMatrix.
Each element is 0 or 1, will be generated randomly. A sample run is as follows:

Enter n: 3

0 1 0
0 0 0
1 1 1

note: since the 0’s and 1’s are generated randomly, your output will vary, but in this
case there will be 3 rows by 3 columns of output. You will need to use nested loops
in your solution.

3. (8 points) problem 6.21 from the textbook

150

The international standard letter/number mapping for telephones is given in problem
Exercise 4.15 (which we did in an earlier assignment). Write a method that returns a
number, given an uppercase letter, as follows:

public static int getNumber(char uppercaseLetter)

You will prompt the user to enter a phone number as a string. The input number may
contain letters. The program translates a letter (uppercase or lowercase) to a digit and
leaves all other letters intact. Here are sample input and output:

Enter a string: 1-800-Flowers
 1-800-3569377

Enter a string: 1800flowers
18003569377

Hint: You solved the problem of going from a character to number on a keypad in a
previous homework. Turn this code into method getNumber. Your main will need to
prompt and read the string and then loop from the beginning of the string to the end.
If the character is a a number or non-alpha symbol, output to the console. If the
character is alpha, call getNumber and then display the value that is returned.

151

CS 1100 Homework 10 Due Date: 11/7/2019, 11:59 pm Total points: 24 points

 +5 points reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember to
properly indent your code, include appropriate comments and the required header. Deductions will
be made for improperly formatted programs. A header is comments at the top of your file with your
name and brief description of the problem. Programs must compile and run for full credit. Please
submit your .java file through the link for HW10 on Blackboard. You will submit each file individually.
Do not zip your work. Don’t forget to complete the survey.

This program models a restaurant ordering system. You will need to have the following methods:

public static int displayMenu()

This method will display the menu items and price per item. I had 5 items, you can add items
or feel free to have different food items. You need an option so that the customer can
indicate that ordering is done. This method will read the choice from the customer and return
that number.

public static double getQuantityAndCost(int x)

This method will prompt the user for the quantity for the menu choice and then multiply by
the appropriate amount. For example if the user had selected Tacos, then x would be passed
in as the value 2 and the return value for this method would be 2 * 4.00.

public static double AddTipAmount(double sum)

This method will prompt the user for a tip amount. The method receives sum which is the
total on the bill after the user has selected Done ordering. For example the method is called
with a sum of 22.00 and the user indicate 10 percent for the tip, the method should return
22.00 + 2.20, or 24.20.

The menu will be displayed and get the customer’s item, quantity and cost for will be calculated until
the user has selected the Done option.

After Done option is selected, ask the user for a tip amount. Then finally display the total bill.

Sample run below

152

Welcome to Belinda’s Restaurant. Please make your choices and select 6 when you are finished.

Menu
1 : Pizza $2.50
2 : Tacos $4.00
3 : Lasagna $5.00
4 : Sushi $3.00
5 : Fish $7.00
6 : Done ordering

Please enter your choice: 2

Please enter quantity: 2

Menu
1 : Pizza $2.50
2 : Tacos $4.00
3 : Lasagna $5.00
4 : Sushi $3.00
5 : Fish $7.00
6 : Done ordering

Please enter your choice: 5

Please enter quantity: 2

Menu
1 : Pizza $2.50
2 : Tacos $4.00
3 : Lasagna $5.00
4 : Sushi $3.00
5 : Fish $7.00
6 : Done ordering
Please enter your choice: 6

Enter tip amount as % i.e. 15: 10

The total bill is $24.20

153

CS 1100 Homework 11 Due Date: 11/17/2019, 11:59 pm Total points: 24 points

 +5 points reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember to
properly indent your code, include appropriate comments and the required header. Deductions will
be made for improperly formatted programs. A header is comments at the top of your file with your
name and brief description of the problem. Programs must compile and run for full credit. Please
submit your .java file through the link for HW11 on Blackboard. You will submit each file individually.
Do not zip your work. Don’t forget to complete the survey.

Problem 1 (12 points)

This program is practice on the concept of method overloadoing. See Section 6.8 Overloading
Methods for more information.

Write a program that contains the following overloaded methods:

public static void add(int n1, int n2) //Will display the sum of n1 and n2

public static void add(String s1, String s2) //Will display the concatenation of s1 and s2

public static void add(int n1, int n2, int n3) //Will display the sum of n1, n2, and n3

You need to complete each method and write a main that invokes each method. You may choose to
hardwire values to pass to the method, or read input.

Sample run:

Sum of 2 3 is 5
dog added to cat is dogcat
Sum of 2 3 4 is 9
Press any key to continue . . .

Problem 2 (12 points)

Download and open the file HW11_Problem2.java. Your task is to improve the solution by modularizing,
or moving chunks of code into methods. Your program should include 3 methods and produce the same
output as the sample run shown below. Have your main read in all input.

Sample run:

Enter height and width of a rectangle: 5 10
The area is 50
The perimeter is 30

154

Enter height and width of a rectangle: 2 4
The area is 8
The perimeter is 12

Enter height and width of a rectangle: 25 35
Width is greater than height
Press any key to continue . . .

155

CS 1100 Homework 12 Due Date: 12/01/2019, 11:59 pm Total points: 24 points
+5 points Reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember
to properly indent your code, include appropriate comments and the required header.
Deductions will be made for improperly formatted programs. A header is comments at the top
of your file with your name and brief description of the problem. Programs must compile and
run for full credit. Please submit your .java file on Blackboard.

Problem 1 (8 points) Write a program that declares an array to hold 12 integers.
The contents of the array should be the values 2,4,6,8,10,12,14,16,18,20,22,24.
Use a for-loop to initialize the contents of the array to these values. After
initializing the array to these values, the program should display the contents of
the array.

Suggested output:

The contents of the array is:
Index Value
0 2
1 4
Etc…..

Problem 2 *7.1 (Assign grades) (8 points) Write a program that reads student
scores, gets the best score, and then assigns grades based on the following
scheme:
• Grade is A if score is ≥ best −10;
• Grade is B if score is ≥ best −20;
• Grade is C if score is ≥ best −30;
• Grade is D if score is ≥ best −40;
• Grade is F otherwise.

The program prompts the user to enter the total number of students, then
prompts the user to enter all of the scores, and concludes by displaying the
grades. Use an array of int to store the input. The array size will depend on the
number of students the user enters. Here is a sample run:

Enter number of students: 7

Enter 7 scores: 97 85 88 35 72 79 82

Student 0 score is 97.0 and grade is A
Student 1 score is 85.0 and grade is B
Student 2 score is 88.0 and grade is A
Student 3 score is 35.0 and grade is F
Student 4 score is 72.0 and grade is C

156

Student 5 score is 79.0 and grade is B
Student 6 score is 82.0 and grade is B

Problem 3 7.3 Modified (8 points) (Count occurrence of numbers) Write a program that
reads the integers between 1 and 10 and counts the occurrences of each. Assume the
input ends with 0. Use an array to keep track of occurrences. Here is a sample run of the
program:

Enter the integers between 1 and 10: 1 3 5 4 2 1 7 8 4 4 2 1 0
1 occurs 3 times
2 occurs 2 times
3 occurs 1 time
4 occurs 3 times
5 occurs 1 time
7 occurs 1 time
8 occurs 1 time

157

CS 1100 Homework 13 Due Date: 12/06/2019, 11:59 pm Total points: 24 points
+5 points Reflection

Instructions: Programs are due by 11:59 pm on the due date via Blackboard. Please remember
to properly indent your code, include appropriate comments and the required header.
Deductions will be made for improperly formatted programs. A header is comments at the top
of your file with your name and brief description of the problem. Programs must compile and
run for full credit. Please submit your .java file on Blackboard.

Write a program that:

1. Declares and array capable of holding 4 integers. Only values > 0 can populate the
array.

2. Loop prompting the user to enter values to insert into the array until they enter a -1.
3. You will need to check to see if the array is full before inserting the value in the next

available spot in the array.
4. If the array is full you will need to invoke the method, public static int[] expandArray(int[

] array) that will double the size of the array and copy in the contents of the array.
5. Include the method public static void displayArray(int[] array) that will display the

contents of the array.
6. Your main will contain the loop that prompts user to enter a value or -1 to indicate to

quit. If a value greater than 0 is enter, insert the value into the next available slot in the
array. You need to check to see if there is room in the array prior to inserting. After the
user enters -1 and the loop terminates, display the contents of the array by calling
displayArray. Hint: your main will want to keep track of the next available index into
the array.

7. When testing your program try to enter 10 values.

Sample run:

Please enter values to insert into the array or -1 to quit.

5
15
4
12
3
6
8
22
16
11
-1

158

The contents of the array:
Index Value
0 5
1 15
2 4
3 12
4 3
5 6
6 8
7 22
8 16
9 11

159

APPENDIX F

CODING SPRINTS

160

Sprint 1

Problem 1

What output does the following program produce?

public class CodeTrace_1{
 public static void main(String[] args){
 System.out.println("The result is " + (3 +7));
 }
}

A. The result is 10

B. The result is 37

C. 10

D. The result is (3 + 4)

Problem 2

Write a Java program (and submit through an attachment) that will display:

3

2

1

Blast Off!

161

Sprint 2

Problem 1:
What is the output of the following statements?

int num = 0;
int x = num + 3;
if (x > 0)
 System.out.print("x is greater than 0");
else if (x < 0)
 System.out.print("x is less than 0");
else
 System.out.print("x equals 0");

A. x equals 0
B. x is less than 0
C. x is greater than 0
D. No output is produced

Problem 2

Download the skeleton file CodeSprint2A.java and follow the instructions presented in the
comments.

Submit your .java file (not your .class file) CodeSprint2A.java

//This program reads a number that represents the number
//of items meals purchased at a restaurant. The program displays
//the appropriate reward based on number of meals purchase.

//The following rules apply:
// 1 <= meals < 3 meals receive a free drink
//4 <= meals <= 7 meals receive a free dessert
//greater than 7 meals, receive a free meal.

import java.util.Scanner;

public class CodeSprint2A {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);

 // Prompt the user to enter weight in pounds
 System.out.print("Enter number of meals purchased: ");
 int numMeals = input.nextInt();

 //Add the code to display the appropriate reward.

 }
}

162

https://ucmo.blackboard.com/bbcswebdav/xid-37751071_1

163

Sprint 3

Problem 1

What is the output of the following code snippet?

 int a = 2;
 int b = 5;

 a = a + b;
 b = a - b;
 a = a - b;

 System.out.println("a = " + a + "\n b = " + b);

A. a=2

b=5

B. a= 5
b = 2

C. a = 5
b = 5

D. a = 2
b = 2

Problem 2
CodeSprint3.java Write a program that prompts the user to enter a String. The program
will display the first character and whether the input is a least 3 characters long.
A sample run:

Please enter a string: Apple

The first character is A
 Apple is longer than 3 characters.
Press any key to continue . . .

Another sample run:

Please enter a string: go
The first character is g
go is NOT longer than 3 characters.
Press any key to continue . .

164

https://ucmo.blackboard.com/bbcswebdav/xid-38032488_1

Please attach your Java file for grading.

//Write a program that prompts the user to
//enter a String and displays the first character
//and
//displays whether the string is a least 3 characters long.

import java.util.Scanner;

public class CodeSprint3{
 public static void main(String[] args){
 Scanner input = new Scanner(System.in);

 System.out.print("Please enter a string: ");
 String str = input.nextLine();

 //Display the first character of str

 //Display whether str has greater than two characters.

 }
}

165

Sprint 4

Problem 1

What is the output of this code snippet?

 for (int i = 10; i <= 30; i+=5){
 System.out.print(i + " ");
 }

A. 10 15 20 25 30

B. 10 20 30 40

C. 10 15 20 25 30 35

D. 5 10 15 20 25 30 35

Problem 2

Write program that displays the following:

3 9 15 21 27 33

You must use a while loop

Here is a skeleton file to start with, if you wish. CodeSprint4_9AM.java

//Write program that displays the following:
//3 9 15 21 27 33
//You must use a while loop

//There is not input for this program
public class CodeSprint4_9AM{
 public static void main(String[] args){

 }//end main
}//end class CodeSprint4_9AM

166

https://ucmo.blackboard.com/bbcswebdav/xid-38330066_1

Sprint 5

Problem 1

What is the output of the following program:

public class CodeTrace5{
 public static void main(String[] args){
 int x = 5;
 int y = 10;

 int z = doubleIt(x,y);
 System.out.println(z);
 }//end main

 public static int doubleIt(int x, int y){
 return x * 2;
 }
}//end class CodeTrace5

A. 5
B. 10
C. 20
D. 50

Problem 2
Download CodeSprint5.java. CodeSprint5.java Instructions are contained in the comments of
the code.
Two different sample runs:

Please enter width: 5
Please enter height: 4
The area is 20
This is a rectangle.

Please enter width: 5
Please enter height: 5
The area is 25
This is a square.

//CodeSprint5
//This program reads two integers from the user that represent
//two sets of adjacent sides of a four sided shape.
//Think two sides of a square or a rectangle....
//The program will display the area of the shape.
//The program will display whether the shape is
//a square or rectangle.

167

https://ucmo.blackboard.com/bbcswebdav/xid-38992957_1

//You need to complete the two methods and complete the
//main to invoke the methods.

import java.util.Scanner;

public class CodeSprint5{
 public static void main(String[] args){
 Scanner input = new Scanner(System.in);

 //Prompt and read the width
 System.out.print("Please enter width: ");
 int width = input.nextInt();

 //Prompt and read the height
 System.out.print("Please enter height: ");
 int height = input.nextInt();

 //Call method to calculate the area
 //and display the result from the method call.

 //invoke the method to display whether this is
 //a square of a rectangle.

 }//end main

 //method calculateArea will receive a value
 //for height and width of a 4-sided shape and return
 //the area which is height times width
 //public static int calculateArea(int h, int w)
 //PUT METHOD HERE

 //method squareOrRectangle will receive a value for height
 //and width and will compare the height and width to display
 //whether the two sides make a square or a rectangle.
 //A square has all sides the same length.
 //Rectangles have sides that are not the same length.
 //This method does not return a value, just displays
 // "square" or "rectangle"
 //public static void squareOrRectangle(int h, int w)
 //PUT METHOD HERE

}//end class CodeSprint5

168

Sprint 6

Problem 1

What is the output of the following program?

public class CodeTrace6_9AM{

 public static void main(String[] args){

 int x = 5;
 int y = 10;

 mystery(x,y);

 System.out.println("x is " + x);
 System.out.println("y is " + y);
}//end main

 public static void mystery(int x, int y){

 int temp;
 temp = x;
 x = y;
 y = temp;

 }
}//end class CodeTrace6_9AM

A. x is 5

y is 10
B. x is 10

y is 5
C. x is 10

y is 10
D. x is 5

y is 5

Problem 2

Download the attached skeleton file and follow the instructions included in the comments.

Sprint6_9AM.java Upload your completed file here.
import java.util.Scanner;

public class Sprint6_9AM{
 public static void main(String[] args){
 Scanner input = new Scanner(System.in);

169

https://ucmo.blackboard.com/bbcswebdav/xid-39539450_1

 System.out.print("Please enter a number: ");
 int num = input.nextInt();

 //invoke a method that will display whether num
 //is a multiple of 3. Recall that num % 3 can
 //be used to determine if num is equally divisble by 3.
 }
}//end Sprint6_9AM

170

Sprint 7

Problem 1

What is the output of the following program:

public class CodeTrace7{

 public static void main(String[] args){

 int[] array = {1,2,3};
 mystery(array[0], array[1]);
 System.out.print(array[0] + " " + array[1]);

 } //end main

 public static void mystery(int x, int y){

 x = 5;
 y = 6;

 }
}//end CodeTrace7

A. 1 2
B. 2 1
C. 5 6
D. 6 5

Problem 2
Down load the following file. Instructions are included in the comments.

CodeSprint7_9AM.java Submit your solution through this link.

public class CodeSprint7_9AM{
 public static void main(String[] args){

 //declare an array of integers to hold 10 integers

 //initialize the contents of the array to
 //0 10 20 30 40 50 60 70 80 90
 //by using a for loop.

 //Display the contents of the array at indexes 0,2,4,6,8
 //You can use a loop or not to solve this part.

 }//end main
}//end CodeSprint7_9AM

171

https://ucmo.blackboard.com/bbcswebdav/xid-39691121_1

APPENDIX G

FINAL EXAM PROGRAMMING QUESTIONS

172

CS 1100 Final Exam Programming portion Fall 2019

Name: __
Directions: Create solutions to each of these problems. You will submit a separate solution for
each problem to Blackboard. Partial credit will be given when possible. Please include
comments if you are needing partial credit. Formatting and commenting is not required. You
may use your textbook, but no other reference material.

1. (40 points) Write a program where the main reads in three integers and then invokes a
method that displays whether the three integers are equal.

 public static void isEqual(int x, int y, int z)

A sample run,

Enter 3 integers: 3 10 15

The three values are not equal.

Another sample run,

Enter 3 integers: 5 5 5

The three values are equal.

2. (40 points) Book Club Points
Serendipity Booksellers has a book club that awards points to its customers based on the
number of books purchased each month. The points are awarded as follows:

 If a customer purchases 0 books, he or she earns 0 points.
 If a customer purchases 1 book, he or she earns 5 points.
 If a customer purchases 2 books, he or she earns 15 points.
 If a customer purchases 3 books, he or she earns 30 points.
 If a customer purchases 4 or more books, he or she earns 60

points.

Write a program that asks the user to enter the number of books that he or she has purchased
this month and then displays the number of points awarded.

A Sample Run…

Please enter number of books purchased: 3

You have earned 30 points.

173

3. (40 points)
Write a program that do the following (in the order listed):

1. Declare and array of integers capable of holding 5 integers.
2. Read in 5 integer values from the console and store them in the array.
3. Change the value at index 2 by doubling the value.
4. Change the value at index 4 with the sum of the values at index 1 and 3.
5. Call a method public static void displayArray(int[] numbers) that will display the

contents of the array.
6. The method displayArray must use a loop to display the values.

Sample Run…

Enter 5 integers: 3 5 4 2 1

The contents of the array is:

Index Content

0 3
1 5
2 8
3 2
4 7

174

APPENDIX H

QUALITATIVE INTERVIEW QUESTIONS

175

Qualitative Interview Questions

The following questions will be a starting point for discussions about the course and the
student’s experience in the course.

1. Did you accomplish your objectives for this course?

2. Did you feel prepared to tackle each programming assignment and coding sprint?

3. Do you believe that the way this course was delivered helped you? Why or why not.

4. What specific elements in the course did you find helpful?

5. If you were teaching this course, what would you do differently?

176

APPENDIX I

CURRICULUM DAILY OUTLINE

177

Date Topic Slides presented Live Coding Assignments

8/19/2019 Introduction to CS1100

Complete Pre-course Surveys & Pretest by Tuesday 11:59
pm.

See Blackboard for details.

8/21/2019
What is a Computer?
Chapter 1 Sections 1.0-1.4; HelloWorld Chapter 1 slide 3-5; 9-16

Students type HelloWorld.java from printed
paper into Textpad, Compile and Run. Complete Q1 by 9/1, 11:59 pm

8/23/2019
The basics of a Java program
Chapter 1 Sections 1.7, 1.8 Chapter 1 slide 18; 25-27; 31-43

Walk-thru and Revision of HelloWorld.java to
include more print statements and dislaying a
simple mathematical expression (5+3) Complete Q2 by Mon. 8/26, 11:59 pm am HW1 Posted

Qui

8/26/2019

Chapter 1 The concept of syntax, runtime
errors, logic errors; formatting; Sections
1.9, 1.10
Ch. 2 What is an Algorithm?, Variables

Chapter 1 slides 44-53
Chapter 2 slide 4

Revisit HelloWorld.java to demonstrate syntax
errors and compiler messages

Quiz 3 posted, due Wed. 11:59 pm.

8/28/2019

Chapter 2 Writing a Simple Program,
Reading Input from the Console,
Identifiers, Variables, Assignment
statement, 2.1, 2.3, 2.4, 2.5, 2.6,

Chapter 2 slides 5-10

Board exercise on how to do a load of laundry
Write a program that displays area of circle with
radius of 20. ComputerArea.java
Write a program that takes radius as input and
display area of circle. (With pseudocoded steps to
solve the problem)
ComputerAreaWithConsoleInput.java

8/30/2019
Chapter 2 Constants, Numeric data types
and operations 2.7, 2.8, 2.9 Chapter 2 slides 11-24

Write a program that reads two integers as input
and displays (A+B), (A-B), (A*B), A/B)

Quiz 3 posted after class - due 9/4, 11:59 pm; Quiz 4 posted

9/2/2019 University Holiday, NO CLASSES

9/4/2019 Chapter 2 2.9, 2.10, 2.11, 2.13, 2.14 Chapter 2 slides 26-44

Code walkthru Chapter2Examples.java
Write a program that calculates the average of 3
numbers. Numbers are doubles read as input.
Write a program that takes a number
representing seconds and displays the number of
minutes and seconds (division and modulo) HW1 DUE TONIGHT 11:59 pm; Quiz 5 posted

9/6/2019 Sprint Day

In-class programming assignment - Write a
program that prompts user for distance, mpg,
and price per gallon and displays cost. (pseudo
coding followed by Java coding) Coding & Code Tracing Sprint #1

3.4

9/9/2019

Wrap-up Chapter 2
Chapter 3 Introduction of Boolean logic
and concept of an expression and
relational operators 3.2

Chapter 2 slides 44-45
Chapter 3 slides 1-18

Code walk thru and revision MathPractice.java
(casting numeric types) Wrap up CH 2 & start CH 3

9/11/2019

Chapter 3 Recap of Boolean logic
Introduction to IF and If..else statements
In-class practice with IF; 3.3, 3.4

Chapter 3 slides 19-27

Code walk thru SimpleIfDemo.java
CompareTwoNums.java
CompareTwoNumsIfElse.java
CompoundIf.java HW2 Due; Quiz 6 posted after class

9/13/2019 No Class - at a conference

9/16/2019

Chapter 3 Nested if, Dangling else,
common pitfalls with if…else,
Math.random()
3.5, 3.6, 3.7

walk thru and revision to RandomNumbers.java
walk thru SubtractionQuiz.java In class practice with random numbers and if...else

9/18/2019
Chapter 3 In-class coding and live coding
of switch statement

ComputeBMI.java
DailyPlanner.java
walk thru ChineseZodiac.java

HW3 DUE; Wrap on CH 3; Switch stmt; In-Class coding of 4
problems; Quiz 7 posted

9/20/2019 Sprint Day OneTensHundreds.java Coding & Code Tracing Sprint #2

9/23/2019
Chapter 4 -Math functions, char datatype
4.2, 4.3 Chapter 4 slides 1-22

GuessNumber.java
DessertCalculator.java (recap of switch)
Code walkthru: MathFunctionExamples.java,
MoreMathFuntions.java, ComputeAngles.java,
CharacterExamples.java

9/25/2019

Chapter 4 -Char data type continued and
String datatype 4.3, 4.4
primitive datatypes vs. String type and
memory storage Chapter 4 slides 23-38

Code walkthru
StringExamples1.java,OrderTowCities.java
Live coding StringPractice.java

HW4 DUE Quiz 8 posted

9/27/2019 Chapter 4 - InClass Coding
Code walkthru StringExamples2.java
Live coding MajorStatus.java, MonthDays.java

hw7

9/30/2019
Chapter 4 WrapUp; printf; operator
precedence, 4.6

Chapter 3 slide 73
Chapter 4 slide 40-42; 44

Code walkthru StringExamples2.java
Common mistakes examples (; at end of if,
dangling else, switch w/o default, printf errors)
PrintFpractice.java
Code walkthru FormatDemo.java

10/2/2019
Chapter 5 Loops, motivation, while loop,
5.2, 5.3, 5.4, 5.5 Chapter 5 slides 2-15

Code walkthru PrintWelcome.java,
PrintWelcomeLoop.java,
RepeatAddictionQuiz.java, SentinelValue.java
Live coding GuessNumberLoop.java

HW 5 DUE & Quiz 8 due 11:59 pm

10/4/2019 Sprint Day

In-class programming sort 3 numbers from
smallest to largest; sort three strings from
smallest to largest Coding & Code Tracing Sprint #3

10/7/2019 Chapter 5 Crazy about While loops
Live coding RockPaperScissorsLoop.java,
PrintWithWhile.java, CircleAreas.java Quiz 9 and 10 posted, SOFT Due Dates

10/9/2019 Chapter 5 for-loops, 5.7 Chapter 5 slides 22-34
Code walkthru ForLoopFun.java, Live coding
HeadsTailsLoop.java HW 6 DUE

10/11/2019
Chapter 5 Converting from while to for and
viceversa

Live coding Problem 10112019B.java,
Problem10112019A.java, modification of
LicensePlate.java to use loop

178

1 0/ 1 4/ 2 0 1 9 N o cl a s s N O F a c e- 2- F a c e cl a s s

1 0/ 1 6/ 2 0 1 9

C h a pt er 5 D o.. W hil e l o o p, 5. 6, c o d e

tr a ci n g l o o p s

C o d e w al kt hr u D o W hil e E x a m pl e.j a v a,

L o o p F u n.j a v a a n d L o o p F u n 2.j a v a H W 7 D U E

1 0/ 1 8/ 2 0 1 9 S pri nt D a y

I n- Cl a s s pr o bl e m s ol vi n g a n d c o di n g

R e v er s e Stri n g.j a v a C o di n g & C o d e T r a ci n g S pri nt # 4

1 0/ 2 1/ 2 0 1 9

C h a pt er 5 N e st e d l o o p s; br e a k & c o nti n u e,

5. 9, 5. 1 2, 5. 1 3 C h a pt er 5 sli d e s 3 9, 4 6- 4 8

C o d e w al kt hr u M ulti pli c at o n T a bl e.j a v a,

T e st Br e a k.j a v a, T e st C o nti n u e.j a v a,

P ali n dr o m e.j a v a

Li v e c o di n g T e st C o nti n u e N u m s.j a v a

1 0/ 2 3/ 2 0 1 9

C h a pt er 6 M oti v ati o n f or M et h o d s,

s y nt a x,i n v o ki n g,, 6. 2, 6. 3, 6. 4 C h a pt er 6 sli d e s 1- 9

C o d e w al kt hr u M oti v ati o n.j a v a

Li v e c o di n g M et h o d F u n.j a v a H W 8 D U E 1 0/ 2 4, 1 1: 5 9 p m T h ur s d a y

1 0/ 2 5/ 2 0 1 9

C h a pt er 6 r et ur n t y p e v oi d, n o n- v oi d r et ur n

t y p e, n o ar g u m e nt m et h o d, m et h o d wit h

ar g u m e nt s, C h a pt er 6 sli d e s 1 0- 1 2 Li v e c o di n g M et h o d F u n.j a v a, c o nti n u e d Q ui z 1 1, 1 2, & 1 3 p o st e d D u e 1 1/ 1 5

1 0/ 2 8/ 2 0 1 9 C h a pt er 6 P a s s b y v al u e, C h a pt er 6 sli d e s 1 3- 2 4

C o d e w al kt hr u T e st V oi d M et h o d.j a v a,

T e st R et ur n Gr a d e M et h o d.j a v a, I n cr e m e nt.j a v a,

T e st P a s s B y V al u e.j a v a

Li v e c o di n g Cir cl e M et h o d s.j a v a Q ui z 1 4 p o st e d D u e 1 1/ 3

1 0/ 3 0/ 2 0 1 9

C h a pt er 6 S c o p e, A b str a cti o n 6. 8, 6. 6, 6. 9,

6. 1 1 C h a pt er 6 sli d e s 2 5- 2 9 Li v e c o di n g M et h o d Pr a cti c e 1.j a v a H W 9 D u e Fri d a y 1 1 / 1

1 1/ 1/ 2 0 1 9

S pri nt D a y - n o cl a s s; s pri nt o nli n e d uri n g

cl a s s p eri o d C o di n g & C o d e Tr a ci n g S pri nt # 5 o nli n e;
N O F A C E- 2- F A C E Cl a s s

1 1/ 4/ 2 0 1 9 C h a pt er 6 O v erl o a di n g, S c o p e 6. 8, 6. 9 C h a pt er 6 sli d es 3 3- 4 1

C o d e w al kt hr u T est M et h o d O v erl o a di n g.j a v a

1 1/ 6/ 2 0 1 9 C h a pt er 6 S c o p e, 6. 9 Li v e c o di n g S c o p e Pr a cti c e.j a v a H W 1 0 D u e 1 1 / 1 1

1 1/ 8/ 2 0 1 9 C h a pt er 6 Li v e C o di n g P a ss w or d C h e c k er.j a v a St art C H 7. H W 1 0 D U E 1 1/ 1 1 1 1: 5 9 p m

1 1/ 1 1/ 2 0 1 9 C h a pt er 7 I ntr o O n e- Di m e n si o n al Arr a ys C h a pt er 7 sli d es 1- 1 1 Li v e C o di n g Arr a y Of N u m b ers.j a v a

1 1/ 1 3/ 2 0 1 9 C h a pt er 7 L o o pi n g a n d Arr a y s C h a pt er 7 sli d e s 3 1- 3 6

W or k s h e et o n Arr a y

Li v e C o di n g Fi n d Bi g S m all.j a v a

A n al y z e N u m b er s.j a v a H W 1 1 D u e 1 1 / 1 7

1 1/ 1 5/ 2 0 1 9 C h a pt er 7 Pr o bl e m S ol vi n g - Ei g ht B all G a m e C o di n g & C o d e Tr a ci n g S pri nt # 6

1 1/ 1 8/ 2 0 1 9 C h a pt er 7 Arr a y s a n d M et h o d s C h a pt er 7 Sli d e s 1 2- 1 5; 4 8- 5 1;

Li v e C o di n g R oll Di c e.j a v a

P a s s Arr a y s.j a v a

1 1/ 2 0/ 2 0 1 9 C h a pt er 7 Arr a ys a n d M et h o d s C h a pt er 7 Sli d es 5 5; 5 7; 1 0 8

T est P a ss Arr a y.j a v a

C o u nt L ett ersI n Arr a y.j a v a

H W 1 2 D u e 1 2 / 0 1

1 1/ 2 2/ 2 0 1 9 C h a pt er 7

I n Cl a s s Pr o bl e m S ol vi n g E x p a n d Arr a y wit h i nt,

wit h Stri n g C o di n g & C o d e Tr a ci n g S pri nt # 7

1 1/ 2 5 - 1 1/ 2 9 T h a n k s gi vi n g Br e a k

1 2/ 2/ 2 0 1 9 C h a pt er 7 R e c a p pi n g Arr a y s

1 2/ 4/ 2 0 1 9 R e vi e w f or t h e Fi n al E x a m R e vi e w f or Fi n al E x a m H W 1 3 D u e 1 2 / 6

1 2/ 6/ 2 0 1 9 Writt e n p orti o n of Fi n al E x a m I n Cl a ss

1 2/ 9/ 2 0 1 9

1 2/ 1 1/ 2 0 1 9

1 2/ 1 3/ 2 0 1 9

1 0 A M S e cti o n Fi n al 1- 3 p m

9 A M S e cti o n Fi n al 8- 1 0 a m 1 1 A M S e cti o n Fi n al E x a m 1- 3 p m

1 7 9

APPENDIX J

COURSE SYLLABUS

180

School of Computer Science and Mathematics
College of Health, Science, and Technology
University of Central Missouri
Course Syllabus

3 Credit Hours
3 Contact Hours

Course: CS 1100 - Computer Programming I
Semester: Fall 2019
Class Time: MWF 09:00 – 09:50 a.m. CRN 10692
 MWF 10:00 – 10:50 a.m. CRN 10150
 MWF 11:00 – 11:50 a.m. CRN 10898
 Classroom: HUM 110

Instructor: Belinda Copus
Email: copus@ucmo.edu
Office Hours: MW 1:30 – 3 pm*,
 Tues. 2 – 3 p.m.
 Fri. 1 – 2 pm* & by appointment
Office: WCM 206C
Phone: 660-543-4354

*There will be times when I am called into a meeting during office hours on MWF, alternate times will
be announced, or you may request an appointment.

Textbook : Introduction to Java Programming, 11h edition, by Daniel Liang, Pearson, 2017 (10th edition
is fine too!)

Prerequisite: None.

Description: An introduction to computer programming in the structured programming paradigm using a
modern high-level programming language. Topics include foundational programming concepts, data
types, variables, operators, selections, loops, methods, and arrays.

Objectives:

1. Develop and analyze algorithms to solve
problems.

2. Write programs to solve various problems.
3. Understand and use recursion.

 Course Content Outline:
1. Introduction to Computers, Programs

and Java
2. Elementary Programming
3. Selections
4. Mathematical Functions, Characters,

and Strings
5. Loops
6. Methods
7. Single-Dimensional Array
8. Multidimensional Array
9. Recursion

ABET Outcomes:
Computer Science and Cybersecurity
SO2 - Design, implement, and evaluate a computing-based solution to meet a given set of computing
requirements in the context of the program’s discipline.

Software Engineering
SE SO1 - an ability to identify, formulate, and solve complex engineering problems by applying
principles of engineering, science, and mathematics.
SE SO3 - an ability to communicate effectively with a range of audiences.

181

mailto:copus@ucmo.edu

SE SO4 - an ability to recognize ethical and professional responsibilities in engineering situations and
make informed judgments, which must consider the impact of engineering solutions in global,
economic, environmental, and societal contexts.
SE SO6 - an ability to develop and conduct appropriate experimentation, analyze and interpret data, and
use engineering judgment to draw conclusions.
SE SO7 - an ability to acquire and apply new knowledge as needed, using appropriate learning
strategies.

Course Format This class is a lecture format with opportunity for hands-on in-class practice exercises.
There will be online quizzes that must be completed outside of class and prior to the next lecture. These
will usually occur after Monday and Wednesday lectures. In addition, you will need to complete outside
homework with self-reflections, in-class programming exercises, and a final exam. There will be extra
resources for content knowledge posted on Blackboard for your use.

Course Guidelines:

1. You are expected to attend all lectures. Three unexcused absences will be allowed during the
semester. More than three unexcused absences will result in a deduction from the participation
component of this course. Advance arrangements for unavoidable absence(s) will be made when
possible. Contact me by email prior to the class you would miss.

2. You are expected to complete all programming assignments by the designated due date. Work is
considered late if it is not submitted by the assigned deadline. Work submitted after the assigned
deadline will receive a 10% deduction for one day late and, 20% deduction for two days late,
30% deduction for three days late, and will not be accepted after 3 days. Prior arrangement must
be made with me and will only be allowed for extraordinary circumstances.

3. Please silence all cellphones and do not text, receive calls, or make calls during class.

Grading This course totals to a maximum 1000 points.
Homework (377 points) There will be 13 homework assignments worth approximately 29 points each.
Each homework will consists of programming problems of 24 points and a self-reflection of 5 points.
Homework must be submitted according to homework submission instructions to be eligible for full
credit. Homework will be submitted through Blackboard. Self-reflections will be through a google link
listed with the homework posting on Blackboard. Please see Course Guideline #2 regarding late policy.

Online Quizzes (160 points) There will be 20 online quizzes, 1-2 per week, in Blackboard, worth 8
points each. The quiz will cover material from the lecture. The quiz can be re-taken multiple times, until
mastery of content is demonstrated. Quizzes for the week must be completed with an 85% or better in
order to begin homework problems for the week.

Coding & Code Tracing Sprint (175 points) There will be 7 tracing and coding problems completed
every other Friday during class. Each sprint is worth 25 points. The sprint will cover material from the
current two-week period of content.

Final Exam (175 points) The final exam will be worth 175 points and will be comprehensive.

182

Attendance/Participation (53 points) There will be up to 53 points subjectively given toward expected
attendance and class participation.

Misc. points (60 points): There will be pre-course and post course surveys to complete. Submission of
the survey earns full marks. Each survey set (pre- post-) is worth 30 points.

Grading Scale (1000 points possible) A: 900-1000, B: 800-899, C: 700-799, D: 600-699, F: 0-599

Other Information and Policies
1. Your UCM email account will be used, frequently, by the instructor, to communicate messages. It is

your responsibility to check this account regularly.
2. Class notes and assignments will be posted by email and on Blackboard. It is the responsibility of the

student to frequently check their email and Blackboard for course changes and updates.
3. The assigned textbook is required, either physical or digital.
4. Completion of all homework is encouraged. Please submit your homework even if it is late.
5. Students with documented disabilities who are seeking academic accommodations should contact the

Office of Accessibility Services, Union 222, 660.543.4421.
6. Advanced arrangement for unavoidable absences should be made whenever possible. Neither absence nor

notification of absence relieves you of the responsibility of meeting all course requirements.
7. Make-up exams will be given only for valid excuses with proof and have to be completed within 5 days

of the regular exams. A make-up exam will be different from the regular exam.
8. Homework is to be done independently unless otherwise directed.
9. Individual homework grading sheet will be shared via Google with the student and grade posted to the

gradebook in Blackboard.
10. During tests, no communication tools are allowed. Any form of academic dishonesty will be dealt with

according to the guidelines found in the UCM Student Planner/Handbook or at
http://www.ucmo.edu/student/documents/honest.pdf.

183

 184

REFERENCES

Abernethy, M. (2012). Reducing “Death by PowerPoint”. Journal of Teaching and

Learning with Technology, 1(1), 63. Retrieved from

https://scholarworks.iu.edu/journals/index.php/jotlt/article/view/2044

Adams, J. C. (2014). Computing is the safe STEM career choice today. Retrieved from

https://cacm.acm.org/blogs/blog-cacm/180053-computing-is-the-safe-stem-career-

choice-today/fulltext#

Adesola, S., Li, Y., Liu, X. (2019). Effect of emotions on student learning strategies. ICEIT

2019: Proceedings of the 2019 8th International Conference on Educational and

Information Technology, 153-156.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood

principle. Proceedings of the 2nd International Symposium of Information Theory,

267-281.

Akinola, S. (2015). Computer programming skill and gender difference: an empirical study.

American Journal of Scientific and Industrial Research, 7(1), 1-9.

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ.:

Prentice Hall.

https://cacm.acm.org/blogs/blog-cacm/180053-computing-is-the-safe-stem-career-choice-today/fulltext
https://cacm.acm.org/blogs/blog-cacm/180053-computing-is-the-safe-stem-career-choice-today/fulltext

 185

Bandura, A. (2008). An agentic perspective on positive psychology. In S. Lopez (Editor),

Positive psychology: Exploring the best in people, Vol. 1, (p. 167-196). Westport, CT:

Praeger Publishers.

Bareiss, R., & Radley, M. (2010). Coaching via cognitive apprenticeship. Proceedings of

the 41st ACM Technical Symposium on Computer Science Education, 162-166.

Beaubouef, T., & Mason, J. (2005). Why the high attrition rate for computer science

students: Some Thoughts and Observations. SIGCSE Bulletin, 37(2), 103-106.

Becker, B., Murray, C., Tao, T., Song, C., McCartney, R., & Sanders, K. (2018). Fix the

First, Ignore the Rest: Dealing with Multiple Compiler Error Messages. SIGCSE ‘18

Proceedings of the 49th ACM Technical Symposium on Computer Science Education,

634-639.

Beggs, J., Bantham, J., & Taylor, S. (2008). Distinguishing the factors influencing college

students’ choice of major. College Student Journal, 42(2), 381-394.

Bennedsen, J., & Caspersen, M. (2007). Failure rates in introductory programming. ACM

SIGCSE Bulletin, 39(2), 32-36.

Bennedsen, J., & Caspersen, M. (2019). Failure rates in introductory programming – 12

years later. ACM Inroads, 10(2), 30-36.

Bergersen, G., & Gustafsson, J. (2011). Programming skill, knowledge, and working

memory among professional software developers from investment theory perspective.

Journal of Individual Differences, 32(4), 201-209.

 186

Bolting, G., Schneider, Y., Muhling, A. (2019). It’s like computers speak a different

language. Proceedings of the 19th Kolli Calling International Conference on

Computing Education, 1-5.

Bouvier, D., Lovellette, E., Matta, J., Bedour, A., Becker, B., Craig, M., Jackova, J.,

McCartney, R., Sanders, K., & Zarb, M. (2016). Novice programmers and the problem

description effect. ITiCSE ‘16: Proceedings of the 2016 ITiCSE Working Group

Reports, 103-118.

Brown, N., & Altadmri, A. (2017). Novice Java programming mistakes: Large-scale data

vs. educator beliefs, ACM Transaction on Computing Education, 17(2), 1-21.

Bruner, J. (1960). The process of education. Cambridge, MA: Harvard University Press,

retrieved from

http://edci770.pbworks.com/w/file/fetch/45494576/Bruner_Processes_of_Education.p

df

Caspersen, M., & Bennedsen, J. (2007). Instructional design of a programming course – A

learning theoretic approach. ICER ‘07 Proceedings of the Third International

Workshop on Computing Education Research, 111-122.

Christ, T. (2014). Scientific-based research and randomized controlled trials, the “gold”

standard? Alternative paradigms and mixed methodologies. Qualitative Inquiry, 20(1),

72-80.

Collins, A., Brown, J., & Newman, S. (1987). Cognitive apprenticeship: Teaching the craft

of reading, writing, and mathematics. Center for the Study of Reading Technical

Reports. Retrieved from

 187

https://www.ideals.illinois.edu/bitstream/handle/2142/17958/ctrstreadtechrepv01987i0

0403_opt.pdf?sequence

Collins, A., Brown, J, & Holum, A. (1991). Cognitive apprenticeship: Making thinking

visible. American Educator, 6, 38-46.

Code.org (2019). Retrieved from https://code.org/about

Corbett, C., & Hill, C. (2015). Solving the equation: The variables for women’s success in

engineering and computing. American Association of University Women.

https://www.aauw.org/app/uploads/2020/03/Solving-the-Equation-report-nsa.pdf

Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012). Some empirical results for Neo-

Piagetian reasoning in novice programmers and the relationship to code explanation

questions. Proceedings of the Fourteenth Australasian Computing Education

Conference, 77-86.

Copus, B. (2015). Computer science and the hiring gap: Understanding why the gap exists.

Unpublished manuscript, School of Computer Science and Mathematics, University of

Central Missouri, Warrensburg, Missouri.

Cotner, S, Ballen, C., Brooks, D., & Moore, R. (2011). Instructor gender and student

confidence in the sciences: a need for more role models? Journal of College Science

Teaching, 40(5), 96-101.

Deloatch, R., Bailey, B., & Kirlik, A. (2016). Measuring effects of modality on perceived

test anxiety for computer programming exams. SIGCSE ‘16: Proceedings of the 47th

ACM Technical Symposium on Computer Science Education, 291-296. doi:

10.1145/2839509.2844604

https://www.ideals.illinois.edu/bitstream/handle/2142/17958/ctrstreadtechrepv01987i00403_opt.pdf?sequence
https://www.ideals.illinois.edu/bitstream/handle/2142/17958/ctrstreadtechrepv01987i00403_opt.pdf?sequence

 188

Espinosa, L. (2015, March). Where are the women in STEM? Higher Education Today.

Retrieved from http://higheredtoday.org

CS Education Coalition (2016). An open letter to U.S. Senate: Every Student in America

Should Have this Opportunity [web log post]. Retrieved July 7, 2020,

https://www.change.org/p/offer-computer-science-in-our-public-schools-csforall

Fisher, K., & Kenny, S. (1986). The environmental conditions for discontinuities in the

development of abstractions. In R. Mines & K. Kitchener (Eds.), Adult cognitive

development: Methods and models (pp. 57-75). New York, NY: Praeger.

Griffin, J. (2016). Learning by taking apart: deconstructing code by reading, tracing, and

debugging. SIGITE ’16: Proceedings of the 17th Annual Conference on Information

Technology Education, 148-153.

Guzdial, M. (2015). Learner-centered design of computing education: Research on

computing for everyone. Williston, VT: Morgan & Claypool.

doi:10.2200/s00684ed1v01y201511hci033

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate students

in an introductory-level computer programming course. Computers & Education, 54,

1127-1136.

Herrmann, S., Adelman, R., Bodford, J., Graudejus, O., Okun, M., & Kwan, V. (2016). The

effects of a female role model on academic performance and persistence of women in

STEM courses. Basic and Applied Social Psychology, 38(5), 258-268.

 189

Hertz, M. (2010). What do CS1 and CS2 mean? Investigating differences in the early

courses. SIGCSE ‘10 Proceedings of the 41st ACM Technical Symposium on Computer

Science Education, 199-203.

Hertz, M. & Jump, M. (2013). Trace-based teaching in early programming courses.

SIGCSE ’13 Proceedings of the 44th ACM Technical Symposium on Computer Science

Education, 561-566.

Hiebert, J., Carpenter, T. Fennema, E., Fuson, K., Human, P., Murray, H., Olivier, A. &

Wearne, D. (1996). Problem solving as a basis for reform in curriculum and

instruction: The case of mathematics. Educational Researcher, 25(4), 12-21.

Horton, D. & Craig, M. (2015). Drop, fail, pass, continue: Persistence in CS1 and beyond

in traditional and inverted delivery. SIGCSE ‘15 Proceedings of the 2015 ACM

SIGCSE Technical Symposium on Computer Science Education, 235-240.

Kaczmarczyk, L., Petrick, E., East, J., & Herman, G. (2010). Identifying student

misconceptions of programming. SIGCSE ‘10: Proceedings of the 41st ACM Technical

Symposium on Computer Science Education, 107-111.

Kallia, M., & Sentance, S. (2018). Are boys more confident than girls? The role of

calibration and students’ self-efficacy in programming tasks and computer science.

WiPSCE ‘18: Proceedings of the 13th Workshop in Primary and Secondary

Computing Education, 1-4.

Kallia, M., & Sentance, S. (2019). Learning to use functions: The relationship between

misconceptions and self-efficacy. SIGCSE ‘19 Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, 752–758.

 190

Kinnunen, P., & Simon, B. (2010). Experiencing programming assignments in CS1: The

emotional toll. ICER ’10: Proceedings of the Sixth International Workshop on

Computing Education Research, 77-85.

Kinnunen, P., & Simon, B. (2011). CS majors’ self-efficacy perceptions in CS1: Results in

light of social cognitive theory. ICER ‘11 Proceedings of the Seventh International

Workshop on Computing Education Research, 19-26.

Knight, C. & Sutton, R. (2004). Neo-Piagetian theory and research: enhancing pedagogical

practice for educators of adults. London Review of Education, 2(1), 47- 60.

Kozuh, I., Krajnc, R., Hadjileontiadis, L., & Debevc, M. (2018). Assessment of problem

solving ability in novice programmers. PLoS ONE, 13(9), retrieved from

https://doi.org/10.1371/journal.pone.0201919

Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM,

50(4), 36-42.

Kumar, A. (2013). A study of the influence of code-tracing problems on code-writing

skills. ITiCSE ’13: Proceedings of the 18th ACM Conference on Innovation and

Technology in Computer Science Education, 183-188.

Kumar, A. (2015). Solving code-tracing problems and its effects on code-writing skills

pertaining to program semantics. ITiCSE ’15: Proceedings of the 2015 ACM

Conference on Innovation and Technology in Computer Science Education, 315-319.

Kutscha, T. (2017). Towards a Practical Application of the Neo-Piagetian Theory for

Novice Programmers. (Master’s thesis, Radboud University Nijmegen). Retrieved

from https://www.ru.nl/publish/pages/769526/timkutschamasterthesis.pdf

https://www.ru.nl/publish/pages/769526/timkutschamasterthesis.pdf

 191

Lishinski, A., Yadav, A., Good, J., & Endody, R. (2016). Learning to program: gender

differences and interactive effects of students’ motivation, goals, and self-efficacy on

performance. ICER ’16: Proceedings of the 2016 ACM Conference on International

Computing Education Research, 211-220.

Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,

Mostrom, R., Sanders, K., Seppala, O., Simon, B., & Thomas, L. (2004). A multi-

national study of reading and tracing skills in novice programmers. SIGCSE Bulletin

36(4), 119-150.

Lister, R. (2011). Concrete and other Neo-Piagetian forms of reasoning in the novice

programmer. ACE ‘11 Proceedings of the Thirteenth Australasian Computing

Education Conference, 114, 9-18.

Lockwood, P. (2006). Someone like me can be successful: Do college students need same-

gender role models? Psychology of Women Quarterly, 30, 36-46.

Loksa, D., Ko, A., Jernigan, W., Oleson, A., Mendez, C., & Burnett, M. (2016).

Programming, problem solving, and self-awareness: Effects of explicit guidance. CHI

’16: Proceedings of the 2016 CHI Conference on Human Factors in Computing

Systems, 1449-1461.

Mascolo, M. (2015). Neo-Piagetian Theories of Cognitive Development. In J. Wright (Ed.),

International Encyclopedia of the Social & Behavioral Sciences (pp. 501-510).

Retrieved from https://www-sciencedirect-

com.proxy.library.umkc.edu/science/article/pii/B9780080970868230973

 192

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Yifat, B., … Wilusz, T.

(2001). A multi-national, multi-institutional study of assessment of programming skills

of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-140.

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2006). Pair programming improves

student retention, confidence, and programming quality. Communications of the ACM,

49(8), p. 90-95.

McGill, T. & Volet, S. (1997). A conceptual framework for analyzing students’ knowledge

of programming. Journal of Research on Computing in Education, 3, 276-298.

McLellan, H. (1994). Situated learning: continuing the conversation. Educational

Technology, 34, 7-8.

Merriam, S., Caffarella, R., & Baumgartner, L. (2007). Learning in adulthood: A

comprehensive guide. San Francisco, California: Jossey-Bass.

Misa, T. (Ed.). (2017). Communities of Computing: Computer Science and society in the

ACM. Association for Computer Machinery and Morgan & Claypool. doi:

10.1145/2973856

Morgado, C., & Barbosa, F. (2012). A structured approach to problem solving in CS1.

ITiCSE ’12: Proceedings of the 17th Annual Conference on Innovation and Technology

in Computer Science Education, 399.

National Academy of Sciences, Engineering, and Medicine. (2018). Accessing and

responding to the growth of computer science undergraduate enrollments.

Washington, DC.: The National Academies Press. retrieved from

https://doi.org/10.17226/24926

 193

National Science Foundation, National Center for Science and Engineering Statistics.

(2017). Women, minorities, and persons with disabilities in science and engineering:

2017. Special Report NSF 17-310. Arlington, VA. Available at retrieved from

www.nsf.gov/statistics/wmpd/.

Ndum, E., Allen, J., Way, J., & Casillas, A. (2018). Explaining gender gaps in English

composition and college algebra in college: The mediating role of psychosocial

factors. Journal of Advanced Academics. 29(1), 56-88.

Ogeyik, M. (2017). The effectiveness of PowerPoint presentation and conventional lecture

on pedagogical content knowledge attainment. Innovations in Education and Teaching

International, 54(5), 503-510.

Owolabi, J., Olanipekun, P., & Iwerima, J. (2014). Mathematics ability and anxiety,

computer and programming anxieties, age and gender as determinants of achievement

in basic programming. GSTF International Journal of Computing. 3(4), 109-114.

Poulos, A., & Mahony, M. (2008). Effectiveness of feedback: the students’ perspective.

Assessment & Evaluation in Higher Education, 33(2), 143-154.

Petersen, A., Craig, M., Campbell, J., & Tafliovich, A. (2016). Revisiting why students

drop CS1. Koli Calling ‘16 Proceedings of the 16th Koli Calling International

Conference on Computing Education, 71-80.

Pillay, N., & Jugoo, V. (2005). An investigation into student characteristics affecting

novice programming performance. Inroads – The SIGCSE Bulletin, 37(4), 107-110.

 194

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in

introductory programing: A literature review. ACM Transactions on Computing

Education, 18(1), 1-24.

Ramalingam, V., & Wiedenbeck, S. (1998). Development and validation of scores on a

computer programming self-efficacy scale and group analyses of novice programmer

self-efficacy. Journal of Educational Computing Research, 19(4), 367-381.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and mental models

in learning to program. ITISCS ‘04: Proceedings of the 9th Annual SIGCSE

Conference on Innovation and Technology in Computer Science Education, 171-175.

Rolka, C. & Remshagen, A. (2015). Showing up is half the battle: assessing different

contextualized learning tools to increase the performance in introductory computer

science courses. International Journal for the Scholarship of Teaching and Learning,

9(1), article 10.

Rubio, M., Romero-Zaliz, R., Manoso, C., & Madrid, A. (2015). Closing the gender gap in

an introductory programming course. Computers & Education, 82, 409-420.

Sankar, P., Gilmartin, J., & Sobel, M. (2015). An examination of belongingness and

confidence among female computer science students. SIGCAS Computers & Society,

45(2), 7-10.

Sax, L., Lehman, K., & Zavala, C. (2017). Examining the enrollment growth: Non-CS

majors in CS1 courses. SIGCSE ‘17 Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, 513-518.

 195

Sharmain, S., Zingaro, D., Zhang, L., & Brett, C. (2019). Impact of open-ended

assignments on student self-efficacy in CS1. CompEd ‘19, 215-221.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1982). What do novices know about

programming? In A. Badre & Shneiderman (Eds.), Directions in Human-Computer

Interactions, (pp. 27-54). Norwood, NJ: Ablex.

Stachel, J., Marghitu, D., Brahim, T., Sims, R, Reynolds, L., & Czelusniak, V. (2013).

Managing cognitive load in introductory programming courses: A cognitive aware

scaffolding tool. Transactions on the SDPS: Journal of Integrated Design and Process

Science, 17(1), 37-54.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive

Science, 12, 257-285.

Teague, D., Corney, M., Ahadi, A. & Lister, R. (2013). A qualitative think aloud study of

the early Neo-Piagetian stages of reasoning in novice programmers. Proceedings of the

15th Australasian Computing Education Conference, 136, 87-95.

Teague, D., & Lister, R. (2014). Programming: Reading, writing, and reversing. ITICSE

‘14 Proceedings of the 2014 Conference on Innovation & Technology in Computer

Science Education, 285-290.

Teague, D. (2015). Neo-Piagetian theory and the novice programmer (Doctoral thesis,

Queensland University of Technology, Queensland, Australia). Retrieved from

https://eprints.qut.edu.au/86690/1/Donna_Teague_Thesis.pdf

Turner, A. (1991). Computing curricula 1991. Communications of the ACM, 34(6), 68-84.

 196

United States Department of Education, National Center for Education Statistics. (2013).

STEM attrition: College students’ path into and out of STEM fields. Retrieved from

https://nces.ed.gov/pubs2014/2014001rev.pdf

United States Department of Labor, Bureau of Labor Statistics. (2018). Occupational

Outlook Handbook. Retrieved from https://www.bls.gov/ooh/computer-and-

information-technology/home.htm

VanDeGrift, T., Bouvier, D., Chen, T., Lewandowski, G., McCartney, R., & Simon, B.

(2010). Commonsense computing (episode 6): Logic is harder than pie. Koli Calling

‘10: Proceedings of the 10th Koli Calling International Conference on Computing

Education Research, 76-85.

Veerasamy, A., D’Souza, D., & Laakso, M. (2016). Identifying novice student

programming misconceptions and errors from summative assessments. Journal of

Educational Technology, 45(1), 50-73.

Veerasamy, A., D’Souza, D., Linden, R., & Laakso, M. (2018). The impact of prior

programming knowledge on lecture attendance and final exam. Journal of Educational

Research, 56(2), 226-253.

Ventura, P. and Ramamurthy, B. (2004). Wanted: CS1 students. No experience required.

SIGCSE ‘04 Proceedings of the 35th SIGCSE Technical Symposium on Computer

Science Education. 36(1), 240-244.

Vihavainen, A., Paksula, M., & Luukkainen, M. (2011). Extreme apprenticeship method in

teaching programming for beginners. SIGCSE 2011: Proceedings of the 42nd ACM

Technical Symposium on Computer Science Education, 93-98.

 197

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes.

Cambridge, MA: Harvard University Press, retrieved from http://ouleft.org/wp-

content/uploads/Vygotsky-Mind-in-Society.pdf

Watson, C. and Li, F. (2014). Failure rates in introductory programming revisited. ITiCSE

‘14 Proceedings of the 2014 Conference on Innovation & Technology in Computer

Science Education, 39-44.

Watson, C., Li, F., & Godwin, J. (2014). No tests required: comparing traditional and

dynamic predictors of programming success. SIGCSE ‘14 Proceedings of the 45th

ACM Technical Symposium on Computer Science Education, 469-474.

Wilson, B., & Shrock, S. (2001). Contributing to success in an introductory computer

science course: A study of twelve factors. SIGCSE ‘01 Proceedings of the Thirty-

Second SIGCSE Technical Symposium on Computer Science Education, 184-188.

Xie, B., Dastyni, L., Nelson, G., Davidson, M., Dong, D., Kwik, H., Li, M., & Ko, A.

(2019). A theory of instruction for introductory programming skills. Computer Science

Education, 29, (2-3), 205-253. DOI: 10.1080/08993408.2019.1565235

Zavala, L, & Mendoza, B. (2016). Precursor skills to writing code. Journal of Computing

Sciences in Colleges, 32(3), 149-156.

Zweben, S., & Bizot, B. (2019). 2019 Taulbee Survey: Total undergraduate CS enrollment

rises again, but with fewer new majors; doctoral degree production recovers from last

year’s dip. Retrieved from Computer Research Association website:

https://cra.org/wp-content/uploads/2020/05/2019-Taulbee-Survey.pdf

 198

VITA

Belinda Joan Copus was born in 1970 in Dallas, Texas. She graduated from Plano

East Senior High School, Plano, Texas, in 1988. She attended the University of Texas at

Austin and earned a degree of Bachelor of Science in Computer Science in 1993.

Ms. Copus worked many years in the telecommunications industry as a software

engineer and co-launched a start-up company which produced workstation graphics

subsystems for industrial applications. She later earned a Master of Science degree in

Computer Science in May 2014.

Ms. Copus joined the faculty in the School of Computer Science and Mathematics at

the University of Central Missouri in 2013 and currently serves as Assistant Professor. She

has served as the program coordinator for Computer Science and Software Engineering

programs since August 2017. In addition to teaching and program administration she serves

on several committees within her department, college, and university, including Assessment,

College Curriculum, and the Institutional Review Board.

Copus began work toward a Ph.D. in Curriculum and Instruction and Computer

Science in 2015. Upon completion of her degree requirements, Ms. Copus plans to continue

her career and service in higher education, to pursue research interests, and to continue to

work with young students to introduce and develop interest in the field of Computer

Science.

Ms. Copus is a member of the Association for Computing Machinery, Upsilon Pi

Epsilon, Computer Science Teachers Association, Consortium for Computing Sciences in

 199

Colleges, National Academic Advising Association, and Missouri Academic Advising

Association.

	Dissertation-Copus-Summer-2020-5.5
	Appendices-Copus-Summer-2020-4.9
	APPENDIX A TITLE
	APPENDIX A PRE-COURSE SURVEY

	Appendix A
	APPENDIX B TITLE
	APPENDIX B PRE- Post-COURSE TEst

	Appendix B
	APPENDIX C Title
	APPENDIX C Post-COURSE Survey

	Appendix C
	APPENDIX D Title
	APPENDIX D Homework reflection

	Appendix D
	APPENDIX E Title
	APPENDIX E Homework Assignments

	Appendix E
	HW1
	HW2
	HW3
	HW4
	HW5
	HW6
	HW7
	HW8
	HW9
	HW10
	HW11
	HW12
	HW13

	APPENDIX F Title
	APPENDIX F coding sprints

	Appendix F
	Sprint 1
	Sprint 2
	Sprint 3
	Sprint 4
	Sprint 5
	Sprint 6
	Sprint 7

	APPENDIX G Title
	APPENDIX G Final exam programming questions

	Appendix G
	APPENDIX H Title
	APPENDIX h Qualitative interview questions

	Appendix H
	APPENDIX I Title
	APPENDIX i curriculum daily outline

	Appendix I
	Sheet1

	APPENDIX J Title
	APPENDIX J course syllabus

	Appendix J

