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Spin Coulomb drag �SCD� constitutes an intrinsic source of dissipation for spin currents in metals and
semiconductors. We discuss the power loss due to SCD in potential spintronics devices and analyze in detail
the associated damping of collective spin-density excitations. It is found that SCD contributes substantially to
the linewidth of intersubband spin plasmons in semiconductor quantum wells, which suggests the possibility of
a purely optical quantitative measurement of the SCD effect in a parabolic well through inelastic light
scattering.
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Spintronics applications are receiving increasing attention
in the hope of revolutionizing traditional technology by a
powerful exploitation of the spin—as well as the charge—
degrees of freedom. An intense research effort is under way
to improve our understanding of spin dynamics, especially
related to nanocircuits and their components, such as quan-
tum wells and wires. In this context the theory of spin Cou-
lomb drag �SCD� was recently developed.1–5 This theory
analyzes the role of Coulomb interactions between different
spin populations in spin-polarized transport. Coulomb inter-
actions transfer momentum between different spin popula-
tions, so that the total momentum of each spin population is
not preserved. This provides an intrinsic source of friction
for spin currents, a measure of which is given by the
spin-transresistivity.1 SCD is generally small in metals, due
to a typical Fermi temperature of the order of 105 K, but can
become substantial in semiconductors, where the spin tran-
sresistivity can be larger than the Drude resistivity.3,5 As the
quest for defect-free materials with longer and longer spin-
decoherence times is continuing, spurred by practical re-
quirements in spintronics as well as in quantum computation
devices, the SCD is bound to become one of the most serious
issues in spin-polarized transport, since, due to its intrinsic
nature, it cannot be avoided even in the purest material. In
fact, the recent experimental observation of SCD by Weber
et al.6 shows that the effect dominates spin-diffusion currents
over a broad range of parameters, in agreement with theoret-
ical predictions.2,3,5

In this paper we discuss a critical issue for potential spin-
tronics devices, namely, the power loss in spin transport and
dynamics due to SCD. We shall analyze in detail its effect on
optical spin excitations, and propose an experiment to mea-
sure the intrinsic SCD linewidth enhancement of spin plas-
mons in parabolic semiconductor quantum wells. While up
to now SCD has been considered only in relation to spin
transport, the proposed experiment would provide an alter-
native way of measuring this subtle effect, and thus establish
unequivocally the influence of SCD on optical excitations.

Let us consider a system composed of spin-up and spin-
down electron populations, such as for example the electrons
in the conduction band of a doped semiconductor structure.
We are assuming spin-flip times long enough so that spin
populations are well defined on the relevant time scales. This
assumption—at the very core of spintronics—has been
proved reasonable, with experimentally measured spin-

decoherence times of the order of microseconds.7 Previous
papers on SCD have mainly analyzed the dependence of the
spin transresistivity over temperature;2–5 this paper will focus
on its frequency dependence,1 which is important for both ac
spintronics applications and spin-resolved optical experi-
ments.

In the linear response regime and for weak Coulomb cou-
pling one can write a phenomenological equation of motion
for the spin-� population.1 The SCD force is defined as the
Coulomb force �per unit volume� exerted by spin �̄ �=−��
electrons, moving with center-of-mass velocity v�̄, on spin-�
electrons, moving with center-of-mass velocity v�:

F��̄��� = − ����m
n�n�̄

n
�v� − v�̄� , �1�

where the number density n� of �-spin electrons of effective
mass m and the total density n=n↑+n↓ are those of a homo-
geneous reference system. The drag coefficient � appearing
in Eq. �1� is directly proportional to the real part of the spin
transresistivity �↑↓:

1

���,T� = −
ne2

m
Re �↑↓��,T;n↑,n↓� , �2�

where T is the electronic temperature. Re �↑↓ has a negative
value and �↑↓ can be defined through �E↑�j↑=0=−ej↓�↑↓, with
j� the number current density of the �-spin population, E↑
the effective electric field which couples to the ↑-spin popu-
lation and includes the gradient of the local chemical poten-
tial, and e the absolute value of the electronic charge.

As noted above, SCD provides an intrinsic decay mecha-
nism for spin-polarized currents, and is thus a source for
power loss in a spintronics circuit or device. From the gen-
eral definition of power and using Eq. �1�, the SCD power
loss density per unit time for the �-spin population is given
by

P���,n↑,n↓� = F��̄ · v� �3�

=e2�n�̄

n�

�j��2 − j�̄ · j�� � Re �↑↓��,T;n↑,n↓� . �4�

Notice that P� can change sign depending on the relative
strength and direction of the spin-resolved current densities,
a positive sign implying that the �-spin population is being
dragged along by the faster �̄-spin population. In particular,
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for a system with spin populations drifting at the same aver-
age velocity, P����=0. In a system with slowly varying den-
sity, we can use Eq. �4� to express the local power loss den-
sity in a volume element centered around position r. The
total power loss per unit time in the system can then be
calculated as

P̄���� = �
V

d3r�P�„r;�,n↑�r�,n↓�r�…� . �5�

Figure 1 shows the transresistivity Re �↑↓�� ;n↑ ,n↓� as a
function of frequency, calculated for GaAs at T=0, using a
generalized random phase approximation.1 We see that
Re �↑↓ has a maximum when EF�(n��z�) is of order �� �EF�

is the �-spin Fermi energy�. This maximum roughly scales
as3 �ha* /e2� /ns	140 �	 cm�
me / �mns� with s�1: It is
then reasonable to expect a sizable damping effect due to
SCD. We notice also that for very low densities, i.e., EF
���,

Re �↑↓��,T = 0;n↑,n↓� 
 −
�a*

e2 �2Ry*

��
�3/24


3
, �6�

independent of the carrier density �see Fig. 1 inset�.15

To estimate the SCD dissipation, let P����
e2j�
2 Re �↑↓

�see Eq. �4��. For a GaAs ac spintronic device operating at
terahertz frequencies around the maximum of Re �↑↓, with
j�=1 A/cm2 and n=1016 cm−3 �1018 cm−3�, we obtain P�


16 mW/cm3 �0.28 mW/cm3�. One finds P� / PD=25%
�44%�, where PD���
e2j�

2�D, and �D is the Drude resistivity
associated with a mobility 104 cm2/V s. This simple analysis
shows that the dissipation from SCD and from impurities can
be comparable. We expect an even higher SCD power loss in
devices based on low-dimensional structures.5

Due to problems with electrical injection8 and the neces-
sity of driving spin dynamics on subpicosecond time scales,9

much attention has been focused on optical spin injection7

and optically controlled spin dynamics;10 in the following,
we will explore how the SCD affects the lifetime and dynam-
ics of spin-dependent optical excitations.

The excitation spectrum of a system can be calculated in
principle exactly with time-dependent density-functional
theory �TDDFT�.11 In TDDFT, an interacting time-dependent

many-body system is described through a noninteracting
Kohn-Sham system, characterized by an exchange-
correlation �XC� vector potential. The latter is a functional of
the current,12 and needs to be approximated in practice.

Microscopically, the dissipation of spin currents can be
viewed as loss of coherence due to decay into multiple
particle-hole excitations of the underlying electronic many-
body system.13 Describing these effects in TDDFT within a
local approximation for the XC vector potential, one is natu-
rally led to the language of hydrodynamics14: dissipation
arises from viscoelastic stresses in the electron liquid, which
are proportional to the velocity gradients. This formal frame-
work is dictated by global conservation laws and symme-
tries; however, the viscosity coefficients that are required as
input come from detailed microscopic calculations.14 The
corresponding XC potential for spin-dependent systems15 has
an additional contribution accounting for the SCD.

Our derivation of the excitation energies for a spin-
dependent system closely follows the spin-independent
case.16 The starting point is the TDDFT current response
equation

j��r,�� =
e

c
� d3r��

= ��r,r�,��a��r�,�� . �7�

Here, �� ��r ,r� ,�� is the Kohn-Sham current-current response
tensor, which is diagonal in the spin channel. The effective
vector potential is defined as a�=a�

ext+a�
H+a�

XC, where a�
ext is

an external perturbation, and the Hartree and XC vector po-
tentials are given by

e

c
a��

H �r,�� =
��

�i��2 � d3r�
�� · j�r�,��

�r − r��
, �8�

e

c
a��

XC�r,�� = �
��

��

�i��2 � d3r��� · j���r�,��fXC,���
ALDA �r,r��

−
1

i�n��r� �
���

�����,���
XC �r,��

−
e2

�
n��r�n�̄�r��↑↓„�;n��r�n�̄�r�…

� �
��

���

n��r�n���r�
j����r,�� , �9�

where � ,� are Cartesian indices. In Eq. �9�,

fXC,���
ALDA �r,r�� = ��r − r��� d2eXC

h �n̄↑, n̄↓�
dn̄�dn̄��

�
n̄↑,↓=n0↑,↓�r�

�10�

is the frequency-independent XC kernel associated with the
adiabatic local-density approximation �ALDA�, where exc

h is
the xc energy density of a homogeneous electron gas and n0�

the ground-state spin density of the system. The other terms
in Eq. �9� represent nonadiabatic XC contributions, which
bring in the dissipation. In the second term, ���,���

XC is the
spin-resolved viscoelastic stress tensor of the electron
liquid.15 The key quantity in the last term of Eq. �9� is �↑↓.

We now consider a specific excitation p�→q� between
the Kohn-Sham levels �p� and �q�, and assume the ground
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FIG. 1. Spin transresistivity �Re �↑↓� vs rescaled frequency
�� /EF for n=10x cm−3, x=16,17,18 as indicated and GaAs para-
meters �m=0.067me, 
=12�. Inset: �Re �↑↓� in m	 cm vs �� in eV
for the same densities. Dashed line: high-frequency limit Eq. �6�.
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state to be spin unpolarized. To derive the TDDFT correction
to the bare Kohn-Sham excitation energy ��pq�, we apply
the so-called small-matrix approximation.16,17 The result is,
to lowest order in the nonadiabatic corrections,

�2�±�
2 = �2�pq�

2 + 2��pq���S��
H+ALDA ± S�̄�

H+ALDA�

+ �S��
VE ± S�̄�

VE� + �S��
SCD ± S�̄�

SCD�� , �11�

where the � or � sign refers to charge-or spin-density exci-
tations �CDE or SDE�, respectively. S���

H+ALDA, S���
VE , and S���

SCD

are the dynamical many-body corrections to the bare transi-
tion energy ��pq� between the single-particle levels p� and
q�. The Hartree+ALDA shift is given by

S���
H+ALDA =� d3r� d3r��p��r��q��r��p���r���q���r��

� � 1

�r − r��
+ fXC,���

ALDA �r,r��� , �12�

which causes no dissipation, fxc,���
ALDA being frequency indepen-

dent and real. The viscoelastic �VE� shift is given by

S���
VE =

i�

�pq�
2 �

��
� d3r ���,���

XC,pq �r,����� jpq�,��r�
n��r�

� , �13�

where ���,���
XC,pq is the XC stress tensor14–16 with the exact cur-

rent j�,� replaced by jpq��r�
��p��ĵ���q��, with ĵ� the para-
magnetic particle current density operator. Equation �13� can
be viewed as the average rate of energy dissipation per unit
time in a viscous fluid, where ���,���

XC,pq is the viscoelastic stress
tensor of the fluid, and ���jpq�,� /n�� the velocity gradient. In
contrast to the familiar expression from classical fluid
dynamics,18 SVE has both real and imaginary parts.

The SCD shift is a central result of this paper:

S��
SCD ± S�̄�

SCD =
ie2�

�pq�
2 � d3r �↑↓„�;n↑�r�,n↓�r��

� �n�̄�r�

n��r�
�jpq��r��2 � jpq�̄�r� · jpq��r�� . �14�

As we will show in an example below, under certain circum-
stances this new contribution to the broadening of an excita-
tion can actually dominate the damping process.

By comparison with Eqs. �4� and �5�, we immediately
recognize the structure of the power loss typical of the Cou-
lomb drag force.19 Like the viscoelastic term �13�, the SCD
term �14� contains both a real and an imaginary part. Notice
that if the external driving force couples in a different way to
the two spin components, such that the average spin veloci-
ties are different, the SCD term contributes to the charge
channel too. In this particular case the two spin populations
may be considered distinguishable, characterized by a spin-
dependent frequency �� in both the charge and the spin
channel. This implies that the Coulomb drag force exerted by
one population onto the other can be regarded as an external
force.

This concept can be clarified by considering the intersub-
band charge and spin plasmons in a quantum well.20–22 The

inset to Fig. 2 illustrates the two types of density oscillation
for a parabolic well, in which the n↑ and n↓ components
move back and forth, perpendicular to the xy plane of the
quantum well, in phase �CDE� or with opposite phase �SDE�.
In the case of the SDE, the average net momentum trans-
ferred by Coulomb interactions from the �̄- to the �-spin
population is directed opposite to the �-spin direction of mo-
tion, so that the SCD effect damps the motion of both spin
populations. For the charge plasmon the effect can become
more subtle: since the average spin velocities are in the same
direction, the net result of Coulomb interactions between the
two spin populations will be to transfer momentum from the
“hotter” to the “colder” population, until equilibrium is
reached. In this case the SCD effect will not damp the mo-
tion of both spin populations, but pump momentum from the
faster to the slower.

We now proceed to estimate the size of the SCD effect for
optical excitations in a parabolic quantum well. According to
the harmonic potential theorem,23 the intrinsic linewidth of a
CDE in a parabolic confining potential is strictly zero. The
TDDFT linear response equation �7� satisfies this require-
ment: CDE’s in a parabolic well have a uniform velocity
profile, so that the viscoelastic stress tensor vanishes. Like-
wise, in expression �13� for S���

VE , ���jpq�,� /n�� is very small.
The viscoelastic contributions to SDE’s are thus a higher-
order correction compared to the SCD contributions, which
give the dominant correction to the excitation frequency be-
yond the ALDA. The intrinsic SDE linewidth for a parabolic
quantum well therefore becomes �SDE	�SDE

SCD, where

�SDE
SCD��� =

e2Ns�

2�pq�
2 � dz Re �↑↓„�;n↑�z�,n↓�z�…

� �n�̄�z�

n��z�
�jpq��z��2 + jpq�̄�z� · jpq��z�� , �15�

with Ns the two-dimensional electronic sheet density.
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FIG. 2. Upper panel: Spin-plasmon linewidth �SDE
SCD for a para-

bolic quantum well versus curvature parameter �, for Ns=1010,
1011, and 1012 cm−2 and GaAs parameters. The inset illustrates the
collective motion of the two spin populations �CDE, in phase; SDE,
out of phase�. Lower panel: Rescaled linewidth �SDE

SCD/��.
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Numerical results for �SDE
SCD for a GaAs-based quantum

well are shown in Fig. 2. We assume only the first subband to
be occupied, i.e., n��z�=Ns��1��z��2, and approximate the
Kohn-Sham orbitals �q,p��z� entering Eq. �15� by the first
two eigenstates of a harmonic oscillator with external poten-
tial �2z2 /2m�4. Furthermore, to lowest order in the nonadia-
batic corrections �� can be replaced with �pq�. For this sys-
tem the parameters that govern the linewidth of the SDE
mode are Ns and the quantum well curvature parameter �.
The latter determines both the excitation frequency and the
characteristic width of the ground-state density distribution.
The results in Fig. 2 show that �SDE

SCD can be nonnegligible �a
large fraction of meV� for experimentally reasonable
parameters,24 and �SDE

SCD/�� can be of the order of a few
percent for a large range of curvature parameters and carrier
densities.

For a specific Ns, the linewidth exhibits a well-defined
maximum as a function of �. The position of this maximum
is determined by the competition of two distinct effects: �i�
The low-density saturation value of �↑↓ increases with � �i.e.
decreases with �; see Eq. �6��; �ii� the average particle ve-
locity decreases with � �i.e., decreases with the parabolic
curvature�. The two effects give opposite contributions to the
dissipation �see Eq. �3��, and the maximum occurs when the
second effect takes over. Due to the density dependence of
�↑↓ �see Fig. 1�, a substantial contribution to the integrand in
Eq. �15� can come from the lateral regions of the quantum
well, where the particle density is low. This is in contrast to
the VE contribution, which tends to be dominated by the
high-density regions.

The above example shows that, even when other forms of
damping, such as disorder and phonons, are drastically re-
duced by careful selection of the system characteristics, the
dissipation induced by SCD cannot be avoided, due to its
intrinsic nature.

Equation �15� suggests an experimental way to extract the
impact of SCD on spin dynamics, namely, by an optical mea-
surement of the linewidth of both charge and spin plasmons
in the same parabolic quantum well. Such an experiment can
be carried out using inelastic light scattering.25 Under the
reasonable assumption that �i� extrinsic �ext� damping �non-
magnetic impurities, phonons� affect the CDE and SDE in
the same way, and �ii� the viscoelastic term can be disre-
garded due to the parabolic system geometry, we have

�SDE − �CDE 	 ��SDE
ext + �SDE

SCD� − ��CDE
ext � 	 �SDE

SCD, �16�

i.e., the SCD contribution to the spin-plasmon linewidth is
given to a very good approximation by the difference be-
tween the SDE and the CDE linewidths. This provides a
valuable opportunity for comparison with microscopic mod-
els for the transresistivity via Eq. �15�, using the appropriate
Kohn-Sham single-particle orbitals of the system.

In conclusion, we have presented a discussion of the
power loss in a device due to dissipation of spin-dependent
currents induced by SCD forces. We have suggested a purely
optical method to measure the SCD effect in spin-density
excitations in parabolic quantum wells. In the �→0 limit, a
particularly interesting application of our formalism would
be to describe the SCD intrinsic dissipation in spin-
dependent transport through single-molecular junctions.26 As
the broad effort in spintronics, quantum computation, and
transport in micro- and mesoscopic systems continues, we
expect a growing impact of the SCD effect in future appli-
cations.
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