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Time-dependent density-functional theory in the adiabatic approximation has been very successful
for calculating excitation energies in molecular systems. This paper studies nonadiabatic effects for
excitation energies, using the current—density functional of Vignale and K@iys. Rev. Lett77,

2037 (1996 ]. We derive a general analytic expression for nonadiabatic corrections to excitation
energies of finite systems and calculate singlets ands— p excitations of closed-shell atoms. The
approach works well fors—s excitations, giving a small improvement over the adiabatic
local-density approximation, but tends to overcorreetp excitations. We find that the observed
problems with the nonadiabatic correction have two main soufdgshe currents associated with

the s—p excitations are highly nonuniform and, in particular, change direction between atomic
shells,(2) the so-called exchange-correlation kernels of the homogeneous electrdbcgamijC,
are incompletely known, in particular in the high-density atomic core region20@} American
Institute of Physics.[DOI: 10.1063/1.1756865

I. INTRODUCTION infrared. In the absence of disorder and phonon scattering,
ALDA would give infinitely sharp plasmon lines, ignoring
Time-dependent density-functional theoffDDFT)**  damping due to electronic many-body effects. This effect is
has become a popular tool for calculating excitationincluded in the VUC formalism, with good quantitative
energied™ of complex molecular systenisincluding sys-  agreement with experimental linewidth dafanve also men-
tems of biochemical interést (see also Ref. 9 for an over- tion an application of the VUC formalism for Hooke’s atom
view of recent applicationsAlmost all present applications with a time-periodic force constaft.
of TDDFT employ the adiabatic approximation for time-  van Faasseet al. recently used the VUC formalism to
dependent exchange-correlatior) effects: in constructing  calculate static axial polarizabilities in molecular chaing’
the xc potential at time, all functional dependence of the which are greatly overestimated within the ALDA. For many
time-dependent density prior tois ignored. In the linear- systems, a significant improvement over ALDA was
response regime, this implies frequency-independent and regthieved, in excellent agreement wieth initio quantum
xc kernels. The simplest of these is the adiabatic localchemical methods. On the other hand, no improvement was
density approximatioALDA ).*° obtained for hydrogen chains with alternating bond lengths,
There have been several attempts to construct a TDDF{hich can be viewed as a model for conjugated polymers.
approach beyond the ALDA. Gross and Kohn suggested us-  The vUC formalism is thus showing considerable prom-
ing the frequency-dependent xc kernel of the uniform elecjse for modeling nonadiabatic effects in applications of TD-
tron gas;" but this was was shown to violate the harmonic pET byt there are still many open questions: For what sys-
potential theorent’ Vignale and Kohr(VK)** showed that &  tems can nonadiabatic effects be expected to be important,
nonadiabatic local approximation requires the time-ang when is the VUC formalism applicable and successful?
dependent current as the basic variable, rather than the defi/hat are the reasons for failures of the VUC formalism, and
sity. This formalism was later cast in a physically more transyyhat are the possible remedies?
parent form by Vignale, Ullrich, and Con(-VUC?,” using The purpose of the present paper is twofold. We derive a
the language of hydrodynamics: nonadiabatic xc effectgimplified procedure for calculating excitation energies from
manifest themselves as viscoelastic stresses in the electrel rent—TDDFT within the VUC approximation. This is an
quui.d. A Qetailed account of the VK/VUC functionals is aytension of the so-called small-matrix approximation
available in Ref. 15. (SMA).® The resulting analytic expression yields an intuitive

The first application of the VUC formalism was to cal- jnterpretation of nonadiabatic effects in terms of energy dis-
culate linewidths of intersubband plasmons in sem|conduct0§.'ipaﬁ0n in the viscous electron liquid.

quantum wells®* These intersubband plasmons are collec-  \ys then test our formalism and calculate singlets

tive electronic excitations with frequencies in the far- ands— p excitation energies in closed-shell atoms and ions.
Formally, VUC is justified for systems with slowly varying
dElectronic mail: ullrichc@umr.edu densities and currents such as quantum wells and long mo-
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lecular chains, where it gives sensible results. However, to *
test its usefulness for molecular calculations, one needs to X(r,r’,w)zzz (fk—15)
apply and analyze the VUC approximation in situations with Ik

P (DY gr ) g (r')
e—ejtwtin

rapidly varying ground-state densities and current responses, “)
such as in atomic systems. We find that VUC breaks downs related toy,,, as follows:

for certain atomics— p excitations, and our SMA analytic

expression allows us to perform a detailed diagnosis of the ;o i , ,

oroblems. X1 w)= wzﬂiv YV X1 @), )

We note that the SMA as well as its simplified version,
the so-called single-pole approximatibare justified for ex- ] is calculated in Eq(1) as the current—density response of
citations involving states that are energetically well separated@ noninteracting system to an effective vector potential. The
from the rest of the spectruiiThis is the case for low-lying many-body effects enter through the linearized Hartree vec-
atomic states, but is often not true in larger systems or in th&or potential
presence of near-degeneracieb practice, full TDDFT cal- v
culations of excitation energies beyond the ShMaxe fea- al(r,w)= _sz 37
sible even for large molecules. ' (iw)

This paper is organized as follows: Section Il contains an, through the xc vector potential(r,w). The simplest

overview of linear current—density response theory, and Approximation fora’® is the ALDA, which is defined as
derivation of an analytic expression for nonadiabatic correc-

V()
[r=r’|

; (6)

tions to ALDA excitation energies. Numerical results, to- e ALDA ; . _ ALDA
gether with an analysis of the performance of the VUC func- &, (I, 0)= (iw)? f a 'V j(r' ) fie(r,r'),
tional, are presented in Sec. lll. We give our conclusions in (7)
Sec. IV. We use Hartree atomic unitss{m=7%=1) unless
indicated otherwise. where
d%e

feh =g 8r=r’) ®
Il. FORMALISM n=no(r)
A. Linear current—density response is the frequency-independent ALDA xc kerne,( is the xc
within and beyond the adiabatic approximation energy density of a homogeneous electron).g@embining

We consider systems that are everywhere nonmagnetig?'s with the integral kernel of the Hartree teii®), we de-

such as closed-shell atoms or molecules, and we considé'F‘e

only singlet excitations. The spin degree of freedom is there-

fore ignored. In TDDFT, the linear current—density response A2 (r,r')=
j(r,m) to an external, frequency-dependent vector potential

a*{(r, ) is given by In contrast with the xc scalar potential, the xc vector poten-
tial admits a frequency-dependent local approximation®
i (rw)=>, f A3 x (1, ) [a®(r, ) The resulting expression can be written as follows:
ASE] PASELE v y

|r_r,|+fﬁc"DA(r,r’). 9)

AR ) - T T 0)

)= fwng(r) %
(10)

+all(r' w)+a(r',w)], (1) a,(r,w)=a
where 4 and v denote Cartesian coordinates. Equatip
features the noninteractingKohn—Sham current—current Here, o’ is the xc viscoelastic stress tensor:
response tensoy,,, , defined as
T30 = Mo VUt Vi, = 3V 08,0 + oV - ud,,, (1D
Xl T @) =No(1) (1 =1") 8,4+ R, (1.1 w). (2 * ’ *
_ _ _ where u(r,w)=j(r,w)/ny(r) is the velocity field, andsp,,
No is the ground-state density, and the paramagnetic part @fnd ;. are complex viscosity coefficients defined as

the response tensor is ,

n
__ _ ¢T
Rulrr' o) =53~ Belm) == Frln), 12
PALELE 29% sk—sj+w+i7] , . ;
—_n_ L _ T _ €xc
X[ (N V(1) = (D) V5 (1)] Genw) == fid(n o) = g fine) = 5= (13
XL (r )V gnr') = (r VL (r')]. f(n,0) and f;(n,w) are frequency-dependent xc kernels

3 for the homogeneous electron gas, and are reasonably well
known!'?22%|n Eq. (11), 7y and ,. are both evaluated at
The noninteracting density—density response function the localng(r).
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B. Excitation energies from the current—density Equations(14) and (15) can in principle be solved numeri-
response: Small-matrix approximation cally, for instance by generalizing Casida’s technigue-

To determine the excitation energies of the system, Wétead, we procc_eed to_ derive an approximati_on for the excita-
search for those frequencies where there exist solutions ¢fon  €nergy involving levels p  (occupied and q
Eq. (1) with finite j(r,) in the absenceof any external (unoccupied both of which are assumed to be
perturbatiorf: These solutions can be viewed as the “eigen_nondegenerat%‘.The' Kohn—ShaniKS) orbitals are taken to
modes” of the system. The current response equation thee real. We approximate the current—current response tensor
s

becomes a
iw)?) 1 1
. (r ):2 d3r/ (r. r’ )aHXC(rr ) (14) X (r,rl’w)%(lwz) _
J’u, , W ~ X/.LV ’ , W v ), 4 prq w+wpq w—wpq
where XPRArPY(r"), (16)
Vv, wherew,,=¢,— ¢4, and
al:XC(r’w):(i ) fd3r’V"j(r',w)fﬁigA(r,r') pa p q
@ PR = ¢p(1) V(1) — g (1) V,uhp(1). 17)
. 1 E V.0 (r, ). (15) We will corr_1ment later on the motivation for this approxima-
iwng(r) < tion. Equation(15) thus becomes

Hxc (iw)z @pq VV 3,1 ¢ALDA ’ 'oPAy 7 3, 1mpPAs 1\ SHXC 11
a, (rw)= 7|22 Eg (iw)? dor’flaxe (r,r)VLPR(r") | dor"Pei(r")a " (r", w)
pa \ “pq o

K qu(r) qu(r) 3,7 1\ AHXC/ 1
‘WW“") Yot Vo) “ rPETAr o)
2 Pf"q(r) 3,7 1\ aHXC/ 1
+ {Xc(r,w)—gnxc(r,w) 5”% V., no(1) fd r qu(r Jag (r', @) |. (19
|
Operating withS ,[d*rPP9(r) on Eq.(18) allows us to can- , iw .
cel H(w) ==,/ d3PPY(r)a"™(r, ), which leads to w :wpq+2wpqqu_w_qu d°r
1
)2 X4 (1) 5 2 [V,URY(r) + V,ub(r)]?
(Iw) Wpq 3, P 25
127— m 2 d I'PV (r)
pg |\ @pq K 2
\v + §xc(f,w)—§7lxc(r.w) [V.UDQ([—)]ZJ, (21)
X| = fd3r’fﬁ';CDA(r,r’)V'KPg‘*(r')
(iw)
where
e Pq pq
iwno(r)["“(r'w)[v”u“ (T qu=2f d3rf A (1) (1)
+ zxc<r,w>—§nxc<r,w> 5VKV-u§1‘*(r>]). (19 XA (1 r ) dp(r ) gg(r). (22

Equation(21) features a nonadiabatic correction to the well-
known ALDA-SMA,

whereuP9=PP%n, is the velocity field associated with the ) 5

p—q excitation under study. We perform partial integra-  ®ALDA = @pgt 2@paSpq- (23)

tions, and use We can rewrite Eq(21) as

)
U1V 2g(1) = (1) V24 (1) = 20 qthy(1) (1) (20) w®= 0 pa~ w—pqE dProfd, (o) Vubd(r), (249
where ofd is the xc stress tensdill) with the exactu,
in the ALDA part. After some further manipulations, this replaced byuP9. For the numerical analysis later on in Sec.
leads to the following expression: 111 B, we define the integral kernd®?%(r,w) via
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TABLE |. Excitation energiegin eV) for the lowests— s transitions in closed-shell atoms and ions.

Transition Expt. Bare KS ALDA VUC fiyc=0) VUC (finite pyc)
Be 25— 3s 6.779 5.564 5.622 5.6650.038 5.669-0.037
B* 2s—3s 16.812 15.166 15.490 15.649.143 15.664-0.127
B* 2s—4s 20.821 17.760 17.826 17.830.020 17.840-0.017
Mg 3s—4s 5.394 4.719 4777 4.8230.041 4.829-0.046
Al* 3s—4s 11.822 11.182 11.409 11.533®.142 11.558-0.127
Al 3s—5s 15.048 13.395 13.442 13.45®.020 13.454-0.018
Cask—5s 4131 3.765 3.814 3.8590.055 3.865-0.055
Sc' 4s—5s 8.603 8.200 8.350 8.4420.139 8.469-0.128
Sc" 4s—6s 10.065 10.095 10.10610.021 10.106-0.019
Sr 55— 6s 3.793 3.495 3.539 3.5820.058 3.589-0.057
Y* 5s—6s 7.609 7.313 7.436 7.5190.141 7.545-0.131
Y* Bs—7s 9.047 9.072 9.0780.023 9.083-0.020

d®r o g (1, @)V ubi(r). see that VUC leads to atomic excitation energies with finite

f mate xc functionals based on the electron gas, and we will
(25) (but usually smajlimaginary parts.

fwdrrszq(r,w)z I—wE

0 wpq VK

The ALDA—_SMA, Eq.(23), is nqrmally derived _startlng Il RESULTS AND DISCUSSION
from the density response equation and replacing the re-

sponse functiori4) by A. Excitation energies of closed-shell atoms and ions
X(r,r" @) =24, (r) (1) (1) ihg(r") We now apply our formalism to calculate nonadiabatic
corrections to ALDA excitation energies for closed-shell at-
> 1 _ 1 (26) oms and ions. To evaluate EQ1), one needs the viscoelas-
0= 0+’ tic xc stress tensor expressed in spherical polar coordinates

keeping only those terms which contain that Kohn—Shan{+¢:¢). In particular, see Ref. 25 for the incompressible
excitatione,q which we want to correct. Notice that relation Part 0f oxc. Notice further that if the excitation frequency
(5) only holds between thexact density and current re- acauires a.fmlte imaginary part, an.alytlc qonnguauon of the
sponse functions, and should therefore not be used to derivé Kemels into the complew plane is required:
a corresponding expression fgy,, from an approximatey, Ip the following caI(Z:;JIatmns, we h'ave' used the LDA
or vice versa. Instead, our approximation fgr, , Eq. (16) functional of Voskoet al“" and the longitudinal and trans-

. ] v . ] L T . .
is a direct consequence of the requirement that it reduces {'S€ XC kemels,(n,w) andf,(n, ) in the parametriza-
the ALDA result(23) in the appropriate limit. tion of Qian and VignalgQV).”> The QV parametrization

In classical fluid dynamic& the average rate of energy "€duIres as mputzghe xc energy densiy(n)"" and the xc
dissipation per unit time in a viscous fluid is shear modulug.,.~° of a homogeneous electron gas of den-

sity n. At present, the shear modulys, is only approxi-
27) mately known for a few values in the metallic density range
1<r <5 (see Table 1 in Ref. 23We will therefore present

. . . . later two different VUC results(a) using u,.=0 in the QV
where o is the viscoelastic stress tensor of the fluid. In de'parametrization,(b) including ., but only in the range

riving Eq. (27), the viscosity coefficienty and¢ are usually 1<r.<5 where it is known
assumed to be real, positive constants. In our case, they are VSVe have calculated ex.citation energies associated with
frequency dependent and complex, so the rate of energy dis-

sipation (27) has both real and imaginary part, Assuming S—s ands—p singlet transitions of the closed-shell atoms
. it ; + + + +
small nonadiabaticity, Eq24) becomes Be, Mg, Ca, Sr, and the positive ions"BAI™, Sc™, Y.

For the neutral atoms, only the lowest excitation energies
JEgss . REgiss were calculated. For the positive ions, LDA yields more un-
- (28 occupied bound KS orbitals, which allows one to consider
some additional higher excitations. The results are given in
to lowest order iNEges/wa pa - Thus, energy dissipation Tables | and II, showing experimentaf®and calculated val-
from xc viscoelastic stresses leads to nonadiabatic correwes:wy (bare KS, wa pa [ALDA, Eq. (23)], andw [VUC,
tions to wp pa i the form of a frequency shift and a finite Eq. (21)].
linewidth. We first discuss the—s transitions in Table I. We find
A finite linewidth is an important physical property of in all cases that the VUC functional produces a small but
collective excitations in extended systems, such as intersulmoticeable improvement upon the ALDA excitation energies.
band plasmons in quantum welf}’ However, for bound- The up-shift is around 1% for the lowest excitations of the
to-bound transitions in finite systems the linewidth should beneutral atoms and the ions, but less than 0.1% for the higher
exactly zero. This condition is difficult to satisfy for approxi- excitations of the ions. We also find that all excitation ener-

- — 3
EdiSS_ - 2 d rO-KVVKu v
VK

w~wppat ,
2w pa 2wp1pA

Downloaded 11 Jun 2010 to 128.206.162.204. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



32 J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 C. A. Ullrich and K. Burke

TABLE IlI. Excitation energiegin eV) for the lowests—p transitions in closed-shell atoms and ions. The
numbers in parentheses for Sr and Were calculated using EG28).

Transition Expt. Bare KS ALDA VUC feyc=0) VUC (finite )
Be X—2p 5.277 3.498 5.077 4.2760.500 6.236-0.689
B* 2s—2p 9.100 5.948 8.569 6.3841.094 11.709-1.955
B* 2s—3p 17.867 16.346 16.232 16.250.443 16.566-0.370
B* 2s—4p 21.151 18.072 18.050 18.049.105 18.1070.086
Mg 3s—3p 4.346 3.394 4571 4.5690.093 4.855-0.090
Al* 3s—3p 7.421 5.729 7.745 7.5270.183 8.071-0.173
Al* 3s—4p 13.256 12.462 12.474 12.648.128 12.679-0.113
Al 3s—5p 15.606 13.744 13.748 13.783.034 13.790-0.030
Cads—4p 2.933 2.394 3.381 2.9620.063 3.222-0.063
Sct 4s—4p 5.453 3.841 5.371 4.5360.099 4.917-0.097
Sct 4s—5p 9.213 9.204 9.3340.121 9.356-0.111
Sc' 4s—6p 10.353 10.352 10.3750.031 10.380-0.028
Sr 5—5p 2.690 2.215 3.105 £1.836-0.064) (—1.630-0.060)
Y* Bs—5p 5.526 3.505 4.850 £3.842-0.098) (—3.522-0.088)
Y* 5s—6p 8.279 8.275 7.9160.118 7.936-0.111
Y* 5s—7p 9.313 9.313 9.2110.035 9.216-0.032

gies in VUC acquire an imaginary part, which is of the orderor molecular excitation energies. The first issue concerns our
of the shift of the real part. The VUC results with and with- use of the SMA versus a full solution of the TDDFT response
out u,. are very close. equation. However, this is an unlikely source for the ob-
The situation is less straightforward for tee-p transi-  served VUC breakdown in some of tlse—p excitations:
tions in Table II. We observe the general trend that the VUCirst of all, there are no such problems in the ALDA-SMA,
corrections to the ALDA excitation energies are much largerand second, a similar failure was observed by van Faassen
than for thes— s transitions(real as well as imaginary pajts and de Boef}* in their full calculations for molecules. Full
For the positive ions, we see that the effect of the VUCs— p ALDA excitation energies for Be, Mg, Ca, and Sr were
functional becomes smaller for higher-p excitations. For  also calculated by Vasiliegt al.*? and all of them are lower
the lower excitations, there are pronounced differences fothan the ALDA-SMA by about 0.14 eV.
the case with and withoyt,. Next, one needs to consider the range of validity of the
VUC often corrects the ALDA excitation energies in the VUC functional itself for atomic excitations. In their original
right direction. Sometimes the performance is better withderivation based on a weakly inhomogeneous electron gas,
tye=0 (down-shift for Mg and Af 3s—3p), and some- VK3 gave the conditionk,q<kg,w/ve, wherekg andvg
times better with finiteu,. (up-shift for Be and B). There  are the local Fermi wave vector and velocity, respectiviely.
are cases of substantial improvement over the ALDA, in paris a measure for the degree of nonuniformity of the ground-
ticular for Mg and Ca. On the other hand, for Be and B state density, and we can rewrite the associated condition as
(finite u,.) we find that VUC drastically overcorrects the
ALDA. The calculation breaks down for Sr and"Yesulting |
in VUC down-shifts larger tharmw, pa [the corresponding No

numbers in Table Il were obtained from E@8), since EQ.  On the other handy measures the degree of spatial variation
(24) would yield imaginary excitation energies in this chse of the external perturbation. For finite systems like atoms

These trends are in qualitative agreement with a recer{nd molecules, one needs to consider instead the spatial
study by van Faassen and de Bdeiyho implemented the yariation of the current response, so that

VUC functional in benchmark studies of various molecular _
excitations. Their computational approach differs from ours &
in that they solve numerically the full current response Egs. jv
(14 a_md(15), but they ignore the imaginary part of the VUC With the velocity profile defined as=j/n,, conditions(29)
functional. They find that VUC gives good results foi* :
" . . ” - and(30) also imply
«—ar transitions, but in general fails fo#* <n transitions,
giving strong overestimates in many cases. Vu,

Nol

<k|:,w/l)|:. (29)

<kF,(,()/U|:. (30)

<k|:,(,l)/U|:. (31)

14
B. Analysis of the VUC functional

; oY Conditions (30) and (31) require that the gradients of the
for atomic excitations

current and velocity fields are small, in order for the hydro-
As we have seen in the previous section, going beyondlynamic VUC approach to be applicable. This indicates a

the ALDA works well for some excitations, but results in largely collective motion of the electron liquid, with only

overcorrections for others. In the following, we provide anlittle internal compression.

analysis of the situation. There are several potential issues It turns out that none of the conditioi29)—(31) is par-

when applying our VUC approach to a calculation of atomicticularly well satisfied for atoms. Close to the nucleus, the
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FIG. 2. LDA Wigner—Seitz radius, for Be (long-dashed ling Mg (dotted
line), Ca(full line), and Sr(dash-dotted ling

s—p excitations the results get slightly worse in the sense
that we obtain even stronger overestimates. The QV
parametrizatiod: which satisfies exact constraints for
fL(n,») andf(n,w) in the low-frequency limits, seems to
give overall better results.

As discussed earlier, the QV parametrization relies in
part on the xc shear modulys,, which is available only for
few values of the Wigner—Seitz radiug between 1 and 5.
While this is normally sufficient to describe systems in the
metallic density range, atomic densities are much higher near
the nucleus, which means that the regiom of 0.1 becomes
important. This is illustrated Fig. 2, which showsfor Be,

Mg, Ca, and Sr. Our results in Tables | and Il were calculated
setting u,.=0 in those regions withr¢<1, which is of

V37?377

Ve3P0 /37|

7 (a1 course a potential source for errors. It therefore remains a
very important task to develop parametrizationsf@(n,w)
FIG. 1. Test of criterioq30) for Be, Mg, Ca, and Sr. Dashed lines: lo&al. and fIC(n'w) that are accurate over the wide density range
Full and dotted linestV;jP¥jP9| for s—s ands—p excitations. occurring in atoms and molecules.

Indeed, our insufficient knowledge of the xc kernels is
another likely reason why the VUC functional performs pro-
ground-state densities change quite rapidly, so [fiap|/n,  gressively worse for heavier atoms and ions, for the case of
is typically of the same order or larger than the lokal(the  s—p excitations. To confirm this diagnosis, and to illustrate
condition involving w/vg is easily satisfied in the inner the importance of a more accurate treatment of the high-
atomic region. density regions, we plot in Figs. 3 and 4 the essential ingre-
The conditions involving , andu, depend on the par- dients of the nonadiabatic VUC correction formula for the
ticular kind of excitation under consideration. In general,excitation energies, E¢24).
condition (30) is better satisfied for the—s than for thes Figure 3 shows the radial derivatives of the radial com-
—p transitions. This is illustrated in Fig. 1, where we plot ponent of the velocity field,V,uP9|, associated with the low-
[V,jP9jP9 andkg for the s—s ands— p excitations. In the ests—s and s—p excitations. Derivatives of the velocity
former case, the criteriof80) is quite well satisfied. How- field enter quadratically in E¢24), weighted with the vis-
ever, fors—p excitations we find a sharp peak around cosity coefficientsy,. and {,.. One clearly sees that the
=1.8 a.u.(Be) and r=0.4-0.6 a.u.(Mg, Ca, Sj, which —p transitions have much larger values |&uP9 (and in
means that Eq30) is strongly violated. The reason for this addition, there are also components and derivatives afopng
sharp peak is that the radial current associated withp ~ which are absent for the— s transition$. This suggests that
excitations reverses direction between atomic shells and ithe large VUC frequency shifts for thee— p excitations arise
doing so passes through zero, so tf&§P9jP9 becomes predominantly from contributions in the high-density region
infinite. A similar behavior occurs for the polar curregf§  close to the nucleus. This region has a much smaller weight
(which are absent for the strictly radigl>s excitations. for the s—s excitations, because the velocity gradients are
We now direct our attention to the fact that the VUC much smaller.
functional requires the longitudinal and transverse xc kernels  Figure 4 shows the real part of the radial integrand of the
fL(n,») andf](n,w) of the homogeneous electron gas asVUC correctionr?RPY(r,w) [Eq. (25)], evaluated with finite
input, which are only approximately known. We have recal-u,. and atwa pa - For the two types of excitation, very
culated the excitation energies in Tables | and Il using thelifferent spatial regions contribute to the VUC correction:
parametrization of Nifoset al,?> and we find that for the the outer regionr(>5 a.u.) fors—s, and the region close to
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0.0001 g™ 3 of the so-called small-matrix approximatiohis formalism
le-05 B 1 L L L L ] is appealing because if features an explicit and relatively
0 1 2 3 4 5 6 simple expression for the nonadiabatic VUC corrections on
T (a.u.) top of the ALDA excitation energies. Furthermore, our ap-

FIG. 3. Radial derivative of the radial component of the velocity field, prc,)aCh §1||OWS for an Intl.JItIV(.B physical interpretation for non-

IVuP, for the lowests—s (dashed linesands—p (full lines) excitations ~ adiabatic frequency shifts in terms of the average rate of

of Be, Mg, Ca, and Sr. energy dissipation induced by the xc viscosity of the electron
liquid.

Our calculations of excitation energies for various
the nucleus fors—p (notice the logarithmic scale The closed-shell atoms and ions show that the VUC approach
broad hump for Be aroundy=1, which produces a positive works for some excitationdamely,s—s), but has problems
frequency shift, rapidly decreases and moves to the right fofor others 6—p). A detailed analysis identifies two likely
the heavier atoms. The dominant contributions for shep causes for the observed difficulties.
excitations in Ca and Sr, associated with frequency down- (1) The VUC functional is formally justified only if the
shifts, take place fors<1 (see Fig. 2 This again points out system under consideration has a slowly varying ground-
the need for a more accurate parametrizatioﬂ;g(h,w) and  state density, and if the currents associated with a particular
fIC(n,w) in that region. excitation are also slowly varying on the scale of the local
ke . These conditions are often not too well satisfied in prac-
tice, and sometimes even severely violated. Of course, our
experience with the LDA in ground-state DFT shows that a

The goal of this work was to gain deeper insight into themethod may be very successful in practice even though it is
nature of nonadiabatic effects beyond the ALDA in the cal-not very well formally justified. Thus, one cannot say with
culation of excitation energies with TDDFT. Such effects arecertainty that VUC always breaks down if conditiof29)—
best described in the framework of linear current—density(31) are violated. However, our comparison s and s
response, using the linearized xc vector potential first derivee- p excitations suggests that these criteria nevertheless pro-
by VK2 and later recast in the language of hydrodynamics/ide some useful guidance, in particularly if the violation is
by VUC.!* This approach has met with recent success invery strong(i.e., involving a singularity.
calculating axial polarizabilities of molecular chaifi€° but (20 The VUC functional requires the complex,
appears to perform inconsistently for molecular excitatidns. frequency-dependent xc kerneﬂ,%c and fIC of the homoge-

Starting from the full current—density response equationneous electron gas as input, which are only approximately
we have derived a simplified approach for calculating VUCknown. The last few years have witnessed steady progress in
excitation energies, which can be viewed as a generalizatioconstructing better parametrizations for the xc kernels, but

IV. CONCLUSION
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