Science and $\tau e c h n o l o g y ~$

Irrigation Cost and Return Analysis: Summary

Mark Peterson and C. F. Cromwell, Jr., Department of Agricultural Engineering
Herman Workman, Department of Agricultural Economics, College of Agriculture

Four Guides provide a procedure for complete economic analysis of an irrigation system. Use this Guide with others on Gerieral Information, Annual Ownership Costs, and Annual Operating Costs.

Follow the step-by-step procedure in this Guide for completing a cost analysis and then use information from your farm to complete your analysis.
Item 1: Transfer annual ownership costs (total and per acre) for the example from Guide 1691.
Item 2: Transfer annual operating costs (total and per acre) for the example in Guide 1692.
Item 3: Add items 1 and 2 to determine total and per acre annual irrigation costs.
Item 4: Total cost per acre-inch of water pumped is calculated by dividing the total annual irrigation cost, $\$ 4,113.00$, by the volume of water pumped in one year, 720 acre-inches, to obtain $\$ 5.71$ per acre-inch.
Item 5: Determine total cost per hour of pumping by dividing the total annual irrigation cost, $\$ 4,113.00$ by the annual hours of pumping, 270. Total cost per pumping hour is $\$ 15.23$.

Item 6: Calculate the expected gross income per acre of dryland crop to compare with irrigation. In this example we assume an average dryland corn yield of 80 bushels per acre for the 120 acres, at $\$ 1.15 /$ bushel
Item 7: Determine the total gross income per acre of irrigated crop needed to make irrigation at least as profitable as dryland, by adding per acre values for Items 3 and 6.
Item 8: Divide total gross income per acre in Item 7 by price per unit of crop to determine total irrigated crop production or yield needed to break even with dryland production.
Item 9: Estimate increased yield per acre due to irrigation.
Item 10: Calculate the increase in gross income per acre due to irrigation. Multiply the added yield per acre times the price per unit.
Item 11: Calculate the estimated increase in returns per acre irrigated by substracting the added cost per acre in Item 3 from the estimated added gross income per acre.
Item 12: Multiply the added returns per acre in Item 11 by the number of irrigated acres to obtain the estimated total added returns due to irrigation.

Total

1.	Annual ownership costs	$\$$
2.	Annual operating costs	$\$$
3. Total added irrigation costs $(1+2)$	$\$$	
4. Total cost per acre-inch	$\$$	
5. Total cost per hour pumping	$\$$	

Comparing Dryland vs. Irrigation

6. Gross income per acre from dryland crop___yield/acre x $\$$ price/unit =
\qquad
$\$$
/acre
7. Break even gross income per acre from irrigated crop: (item 3, per acre) + (item 6); \$ \qquad + \$ \qquad $=$
$\$$
\qquad /acre
8. Break even yield per acre from irrigated crop $\$$ \qquad (item 7) \div
\$ \qquad price/unit =
9. Estimated added yield per acre from irrigated crop
\square bu./acre

bu. /acre
10. Estimated added gross income per acre from irrigated crop \qquad (item 9) x \$ \qquad price/unit =
$\$$
bu./acre
11. Estimated added returns per acre from irrigated crop: (item 10) - (item 3, per acre); \qquad - \$ \qquad =
$\$$ \qquad
/acre

$\$$

12. Estimated total added returns from irrigation $\$$ \qquad (item 11) x acres irrigated $=$

Irrigation Cost and Return Analysis
 \section*{(from UMC Guides 1690, 1691, 1692, \& 1693)}

General Information

1. Pumping rate, gpm gpm
2. Pumping head
a. Elevation from water level at source to high point on irrigated acres feet
b. Pipe friction loss feet
c. Flexible hose friction loss:

\qquad psi $\times 2.31=$ feetd. Sprinkler discharge pressure:
\qquad psi $\times 2.31=$ feet
e. Miscellaneous friction losses: elbows, riser height, traveling sprinkler machine, etc. feet
f. Total operating head feet
3. Continuous brake horsepower required by the pump, bhp
$\operatorname{bhp}=\frac{\text { (__ total feet of head) (__ gpm) }}{(4000) \text { (___ drive efficiency) }}=$ $=\quad$ __bhp
4. Engine size needed:

\qquad
bhp x
\qquad
Horsepower adjustment factor $=$
Maximum (See UMC Guide 1690)
corrected
horsepower
\qquad acres x \qquad inches $=$
5. Volume of water pumped in one year: \qquad
6. Estimated annual pumping hours:
Pumping Hours $=\frac{(\ldots \text { ac.in. })(450)}{\text { (pumping rate,_ } \quad=}=$
7. Fuel, \qquad , cost per unit
\square
$\$$
8. Interest rate .

Annual Ownership Costs

Est. yrs. of life	Investment		Cost Factor			Annual Cost
\$		x		$=$	\$	
\$		x		$=$	\$	
\$		x		$=$	\$	
\$		x		$=$	\$	
\$		x		$=$	\$	
\$		x		$=$	\$	
\$		x		$=$	\$	
\$		x		$=$	\$	
\$		x		$=$	\$	
\$		X		$=$	\$	
\$		X		$=$	\$	
\$		X		$=$	\$	
\$						
l investment x .01)					\$	
otors)					\$	
reage out of production, \$	\$___/ac				\$	
investment					\$	
					\$	
re $=\$$	_acres =				\$	

Annual Operating Costs

1. Fuel: Kind \qquad .
a. From your records, amount used: \qquad x \$ \qquad per unit $=$
b. If records not available, estimate from Table 1: \qquad bhp x \qquad hrs. pumping $\times \$$ \qquad /unit of fuel : \qquad bhp-hrs./unit of fuel = . $\$$
c. If engineering pumping test was made, \qquad fuel/hr. x hrs. used \qquad X \$__ /unit = $\$$
2. Oil-Engine
a. From your records, amount used \qquad x \$ \qquad /gal. =

$\$$

b. Estimate from Table 2: \qquad bhp x \qquad hrs. pumping x \$ \qquad /gal. \div \qquad bhp-hrs./gal. =

$\$$

3. Oil-Gear Drive or Electric Motor
a. From your records, amount used: \qquad gal. $\mathrm{x} \$$ \qquad /gal.
$\$$
b. Estimate from pumping test or Table 2: \qquad bhp x \qquad hrs. pumping x \$ \qquad /gal. : \qquad bhp-hrs./gal. =
4. Subtotal: Annual Pumping Costs (1. + 2. + 3.)
a. Pumping cost per acre-inch: $\$ \ldots \quad$ acre-inches $=\$$
b. Pumping cost per hour : \$ \qquad \div \qquad hours $=$ $\$$
5. Repairs and Maintenance-Power Unit
a. Amount spent during season $=$
$\$$
b. Estimated from Table 3:___ bhp x__ hrs. pumping x $\$ \ldots \quad / \mathrm{bhp}-\mathrm{hr} .=\$$
$\$$
6. Repairs and Maintenance-Irrigation Equipment
a. Amount spent during season $=$
$\$$
b. Estimate at . 005 x purchase price of irrigation equipment $\$$ \qquad $=$
7. Irrigation Reservoir Maintenance $=$
$\$$
$\$$
8. Maintenance of fields put to grade:
a. From your records:
b. Estimate: \qquad /acre x \qquad acres $=$

$\$$

$\$$
9. Labor
a. From your records, \qquad hrs. x \$ \qquad /hr. = $\$$ \qquad
b. Estimate from Table 4: \qquad hrs./acre/application x \qquad applications x acres $\div \$$ \qquad hr. =
$\$$
10. Additional seed, fertilizer, and other chemicals, plus additional harvesting costs: $\$$ \qquad /acre x \qquad acres $=$
$\$$
$\$$
$\$$

Irrigation Cost and Return Analysis Summary

	Total		Per Acre
1.	Annual ownership costs \$		
2.	Annual operating costs \$		
3.	Total added irrigation costs (1+2) \$		
4.	Total cost per acre-inch \$		
5.	Total cost per hour pumping \$		
Comparing Dryland vs. Irrigation			
6.	Gross income per acre from dryland crop \qquad yield/acre x $\$$ \qquad price/unit =	\$	_/acre
7.	Break even gross income per acre from irrigated crop: (item 3, per acre) + (item 6); \$ \qquad + \$ \qquad $=$	\$	_/acre
8.	Break even yield per acre from irrigated crop \$ \qquad (item 7) \div \$ \qquad price/unit =		bu./acre
9.	Estimated added yield per acre from irrigated crop		bu./acre
10.	Estimated added gross income per acre from irrigated crop \qquad (item 9) x \$ \qquad price/unit =	\$	_/acre
11.	Estimated added returns per acre from irrigated crop: (item 10) - (item 3, per acre); \$ \qquad - \$ \qquad $=$	\$	_/acre
12.	Estimated total added returns from irrigation \$ \qquad (item 11) x \qquad acres irrigated $=$	\$	

Issued in furtherance of cooperative extension work, acts of May 8 and June 30, 1914, in cooperation with the United States Department of Agriculture. Carl N. Scheneman, Vice-President for Extension, Cooperative Extension Service, University of Missouri, Columbia, Mo. 65201. The University of Missouri-Columbia is an equal employment and educational opportunity institution.

