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The Coulomb interaction between electrons of opposite spin orientations in a metal or in a doped semicon-
ductor results in a negative off-diagonal component of the electrical resistivity matrix—the so-called “spin-
drag resistivity.” It is generally quite difficult to separate the spin-drag contribution from more conventional
mechanisms of resistivity. In this paper I discuss two methods to accomplish this separation in a spin-valve
device.
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It is theoretically well established1–5 that the Coulomb
interaction between electrons in a metal or in a doped semi-
conductor has a deeper effect on spin-polarized currents than
on ordinary spin-unpolarized ones. The main reason for this
is that thedifferencebetween the momenta of the up-spin
and down-spin electrons is not conserved in a Coulomb scat-
tering event: the transfer of momentum between electrons of
opposite spin orientations therefore provides an intrinsic
mechanism for the decay of a spin current, even in the ab-
sence of electron-impurity scattering. This effect has been
called “spin Coulomb drag,”1 or just spin drag for brevity.
Mathematically, the spin-drag effect is best described in
terms of the so-called spin transresistivityr↑↓, which is de-
fined as follows: Letj↑ and j↓ be the electrical currents as-
sociated with up- and down-spin electronsswe consider here
for simplicity only currents in thex direction and neglect
spin-orbit effectsd, and let E↑, E↓ be the electrochemical
fields acting on the up and down spins, respectively.sThe
electrochemical fieldEs is defined as the gradient of the
electrochemical potentialms divided bye. The electrochemi-
cal potential itself is the sum of the true electric potential,
which determines the position of the bottom of the conduc-
tion band, and the chemical potential, which determines the
level of occupation of the band.d Then, for small departures
from equilibrium one has

Es = o
s8

rss8 js8, s1d

where the resistivity matrixrss8 has the form3

r =
m*

ne2t
S2 + gt − gt

− gt 2 + gt
D . s2d

In the above equationg is the spin-drag coefficient, i.e., the
intrinsic relaxation rate of the spin momentump↑−p↓, 1 /t is
the ordinary momentum relaxation rate due to electron im-
purity interactions,m* ande are the band mass and the ab-
solute value of the electron charge, andn is the total elec-
tronic density. Equations2d is valid under the assumption
that the spin-flip scattering rate is negligible in comparison to
g—a condition that should be well satisfied except at very
low temperatures.3,4,6 We have also assumed, for simplicity,
that the system is paramagnetic, i.e.,n↑=n↓=n/2, so that
r↑↑=r↓↓. Looking at Eq.s2d we notice an important fact:r↑↓

is negative, because it takes a negative electrochemical field
to prevent an up-spin current from flowing when a down-
spin current is present. On the other hand, the positivity of
dissipation requires both eigenvalues ofr to be positive—a
condition that is obviously satisfied by Eq.s2d providedg is
positive.

It is clear that an experimental determination ofg would
be of great interest since the value of this quantity is con-
trolled by many-body correlations, which are intrinsic to the
equilibrium state of the electron liquid. The main difficulty is
that the spin transresistivity cancels out in the ordinary resis-
tivity r=sr↑↑+r↑↓d /2, so one has to devise an experiment
that is somehow sensitive to the “spin resistivity”rspin
=sr↑↑−r↑↓d /2=rs1+gtd. An obvious way to proceed, pro-
posed in Ref. 1, is to measure the electrochemical potential
difference in the down-spin component when an up-spin-
polarized current is driven into the semiconductor via highly
spin-polarized ferromagnetic electrodessspin injectorsd. In
the limit that the level of spin-polarizationp of the ferromag-
netic electrodes is 100% “up,” and the spin diffusion length
of the semiconductor is much larger than its geometrical
length, the injected current is entirely in the up-spin compo-
nent. Under these conditions, the electrochemical potential
“drop” for down spins will be negative, ifg is a finite posi-
tive quantity, and will vanish ifg=0. If, on the other hand,
the polarization of the electrodes is less than 100% then the
down-spin electrochemical potential drop may remain posi-
tive, foiling our attempts to detect and measureg.

Thus, a very important question concerning this proposal
is: how large should the polarization of the electrodes be so
that one may observe anegativedown-spin electrochemical
potential differencesas opposed to the trivially positive elec-
tric potential differenced?

This paper is largely devoted to providing a sharp answer
to this question. It will be shownfsee Eqs.s9d and s10d
belowg that asp increases from 0 to 100% there is a critical
value of p, given by pc>1/s1+gtd, at which the electro-
chemical potential drop for down spins switches from posi-
tive to negative. Measuringpc amounts therefore to a mea-
surement ofgt. The experiment could be carried out in
a three-layer spin-valve structure,7–11 such as the one shown
in Fig. 1. The two electrodes/spin injectors could be made
out of a large-g-factor II-VI semiconductor, e.g.,
BexMnyZn1−x−ySe, whereg,100,12 which can be completely
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polarized by the application of a modest magnetic field.
These electrodes are used to inject a spin-polarized current
into a non-magneticsNMd lightly doped semiconductorse.g.,
GaAsd and the total resistance across the electrodes is mea-
sured. The main physical assumptions underlying the pro-
posed measurement are as follows.

s1d The spin drag effect is important only in the non-
magnetic semiconductorsGaAsd, where the density of carri-
ers is low. This is because it is theoretically well established
that the spin drag increases in magnitude as the density of the
electrons decreases.1

s2d The magnetic field, which is needed to spin polarize
the electrodes, has a negligible effect on the electronic states

in the non-magnetic semiconductor, in which theg factor is
small.

s3d The spin-resolved conductivities of the electrodess↑↑
f

and s↓↓
f scale in proportion to the corresponding electron

densities, i.e., s↑↑
f =fs1+pd /2gs f and s↓↓

f =fs1−pd /2gs f,
wheres f is the total conductivity of the homogeneous ferro-
magnet.sOf courses f itself may slightly depend onp: this
question will be discussed below.d

The analysis is based on the equation for the electro-
chemical potentials derived in Ref. 13. In the one-
dimensional geometry of Fig. 1 this takes the form

d2mssxd
dx2 = o

s8

Mss8ms8, s3d

where the 232 matrixMss8 is, for our purposes, completely
specified by its right eigenvectors, namely

S1

1
D , s4d

sthe charge moded with eigenvalue 0, and

S 1

− 1
D , s5d

sthe spin moded with eigenvalue 1/L2, whereL is the spin
diffusion length. The solution of Eq.s3d is straightforward.
To make the best use of symmetry we assume that the semi-
conductor layer extends fromx=−W/2 to x=W/2. The elec-
trochemical potentials are then odd functions ofx fmasxd
=−mas−xdg, and we can focus only on the regionx,0. In
this region we write

Sm↑
m↓

D =5
eJW

s f FF−
C0

2
+ S1

2
+

x

W
DGS1

1
D + 2C1e

sW/2+xd/LfS s1 + pd−1

− s1 − pd−1DG , x , −
W

2

eJW

ss F x

W
S1

1
D + 2C2 sinhS x

LsDS 1

− 1
DG , −

W

2
ø x ø 06 , s6d

whereJ is the charge current,s f andss are the conductivi-
ties of the electrodes and of the semiconductor, andLf andLs

the spin diffusion lengths in the electrodes and in the semi-
conductor, respectively. Notice that the continuity of the
charge current,J, is already built in Eq.s6d. The three con-
stantsC0, C1, andC2 are determined from the continuity of
the two electrochemical potentials and of the spin current
j↑sxd− j↓sxd at x=−W/2. Their explicit forms are easily found
to be

C0 =
s f

ss +
2p2

D sinhS W

2LsD ,

C1 = −
ps1 − p2d

2D sinhS W

2LsD ,

C2 =
pss

2s fD , s7d

with

D =
Ws1 − p2d

Lf sinhS W

2LsD +
Wss

Lss f

1

1 + gt
coshS W

2LsD .

s8d

As mentioned above, the solution forx.0 is obtained by
means of the symmetry relationmssxd=−mss−xd.

FIG. 1. Spin-valve device for the measurement of the spin drag
effect. A predominantly up-spin current is injected in a non-
magneticsNMd semiconductor via ferromagneticsFMd electrodes
between which a potential differenceV is applied. The voltage
probes are polarized opposite to the injectors and therefore measure
the down-spin electrochemical potential.
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The behavior of the solutionsexpressed in units of
eJW/ssd is shown in Fig. 2. Basically, we observe an accu-
mulation of down-spin electrons and a corresponding deple-
tion of up-spin electronssi.e., m↓.m↑d at the left interface,
where up-spin electrons are injected. The opposite happens
at the left interface, where up-spin electrons are extracted.
These spin accumulations effectively create a diffusion bar-
rier, which increases the resistance and reduces the efficiency
of spin-current injection. Under the assumptionLs@W the
electrochemical fields, defined as the slopes of the elctro-
chemical potentials divided bye, are nearly exactly uniform
in the non-magnetic region and their values are given by

E↑s0d =
J

ss +
JWp

Lss fD ,

E↓s0d =
J

ss −
JWp

Lss fD . s9d

Notice thatE↓ is always smaller thanE↑ and would tend
to zero forp→100% in the absence of the spin drag effect.
This is because as the polarization of the electrodes in-
creases, the down-spin component of the current must de-
crease: in the absence of spin drag this would imply that a
gradient in chemical potential of down-spin electrons must
be present to balance the electric field, resulting inE↓<0.
The spin drag upsets this balance. It is now necessary to have
a finite,negative E↓ in order to balance the momentum trans-
fer from up- to down-spin electrons. The change in sign inE↓
is an unmistakable signature of the spin Coulomb drag and
occurs when the spin polarization of the electrodes exceeds
the critical value

pc =

Î1 + 4a2 sinh2S W

2LsD + 2a sinhSW

LsD 1

1 + gt
− 1

2a sinhS W

2LsD
.

W!Ls
1

1 + gt
, s10d

wherea;Lss f /Lfss snotice thatpc.1 for g=0, that is, in
the absence of spin drag. Forgt=1 with the parameters of
Fig. 2 we havepc<0.85d. Thus by measuring the value ofp
at whichE↓s0d changes sign one can determinegt.

The main drawback of such an experimental design
swhich is conceptually analogous to the design of the Cou-
lomb drag measurement in bilayer systems14d is the need to
establish separate electrical contacts for the up- and down-
spin electrons. This could be accomplished by the introduc-
tion of ferromagnetic voltage probes, polarized opposite to
the current leads. Unfortunately, such “probes” are techni-
cally difficult to implant and complicate the analysis of the
experiment, for they disturb the equilibrium distribution of
the spin in the semiconductor. For this reason I now describe
what should be a simpler method to determine the quantity
1+gt. The idea of the measurement is simply to compare the
total resistanceR of the circuit atp=0 si.e., for unpolarized
electrodesd and p=1 si.e., 100% spin-polarized electrodesd.

No spin-polarized voltage probes are required. We assume
that the homogeneous resistance of the electrodes and the
external wiressdenoted byRc for brevityd is small compared
to the resistance of the non-magnetic semiconductor. The
polarization dependence ofRc presumably amounts to an
even smaller correction. Atp=0 the total resistance is thus
essentially equal to the ordinary resistance of the semicon-
ductor: the spin-drag effect is invisible here. Atp=1, on the
other hand, the resistance depends very much on whether
there is spin drag or not. If the spin drag were absent, then
the resistance would betwice the ordinary resistance of the
semiconductor, because only one of the two spin channels is
open to conduction. In the presence of spin drag the flow of
the up-spin current is hindered by collisions with down-spin
electrons, which are stationary on the average: as a result, the
resistance of the conductor becomes more than twice the
ordinary resistance—in fact we will show that it is 2+gt
times the ordinary resistance. Thus, by taking the difference
Rsp=1d−Rsp=0d and dividing it byRsp=0d we arrive at an
experimental determination ofgt. It should be noted that in
taking the differenceRsp=1d−Rsp=0d the resistanceRc of
the wires and the electrodes largely cancels out, except for its
polarization-dependent component, which we feel justified in
neglecting. Furthermore, this determination does not depend
on the value of the spin diffusion length in the semiconduc-
tor, Ls, provided the latter is much larger than the length of
the semiconductor itself—a condition that should not be too
difficult to satisfy in practice. Likewise, the value of the
spin-diffusion length in the electrodes,Lf, is essentially irrel-
evant as long as the potential drop is measured between
points that are much farther than a distanceLf from the
FM-NM interfaces.

Far from the FM-NM interfacessmore precisely, at a
distance much larger thanLfd the electrochemical potentials
of the two spin orientations tend to common valuesm−
=−eJWsC0−1d /2s f +eJx/s f for x→−` and m+= +eJWsC0

−1d /2s f +eJx/s f for x→ +`. The difference between these
two asymptotic behaviors ise times the voltage drop due to

FIG. 2. The behavior of the electrochemical potentialsm↑
sdashed linesd and m↓ ssolid linesd calculated from Eq.s6d for gt
=0 and gt=1 and expressed in units ofeJW/ss in the parallel-
electrodes configuration. The semiconductor is in the region −1/2
øx/Wø1/2. The other parameters arep=90%, s f /ss=10, Ls/W
=2, andLf /W=4. Noticethe negative slope ofm↓sxd at x=0 when
gt=1: such a negative slope is an unmistakable signature of the
spin drag.
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the presence of the semiconductor layer. Hence, the resis-
tance of our devicesper unit cross-sectional aread is given by

Rparallelspd = Rcspd + Rs +
2Wp2

Ds f sinhS W

2LsD , s11d

whereRcspd is the combined resistance of the electrodes and
the external wires, andRs=W/ss is the ordinary resistance of
the semiconductor. The last term on the right hand side of
this equation is due to the spin accumulations at the inter-
faces between the electrodes and the semiconductor. Figure 3
shows the behavior of the key quantityRparallelspd−Rcspd as a
function of p. It increases fromRs at p=0 to Rss2+gtd at
p=1. Interestingly most of the change occurs in the region of
p close to 1. This can be exploited to reduce the undesired
effect of thep dependence ofRc. Namely, rather than con-
sidering the change in resistance fromp=0 to p=1, it may be
sufficient to consider the change from sayp=0.5 to p=1.0
with correspondingly less variation inRc. Notice that heoreti-
cal calculations ofg as a function of temperature and elec-
tronic density can be found in Refs. 1–4. The temperature
dependence ofg is particularly interesting as it exhibits a
characteristic broad maximum at about the degeneracy tem-
perature of the carriers in the semiconductor.

For completeness, let us now see what happens in the
antiparallel-electrodes configuration. In this case, the electro-

chemical potentials obey the symmetry relationmssxd=
−m−ss−xd and it is easy to see that the new solution is now
obtained from the parallel case solution simply by inter-
changing the quantities sinhsW/2Lsd and coshsW/2Lsd. More
precisely, the solution forx,0 takes the form

Sm↑
m↓

D =5
eJW

s f HF−
C08

2
+ S1

2
+

x

W
DGS1

1
D + 2C18e

sW/2+xd/LfF s1 + pd−1

− s1 − pd−1GJ , x , −
W

2

eJW

ss H x

W
S1

1
D − 2C28 coshS x

LsDS 1

− 1
DJ , −

W

2
ø x ø 06 , s12d

where the constantsC08−C28 are given by

C08 =
s f

ss +
2p2

D8
coshS W

2LsD ,

C18 = −
ps1 − p2d

2D8
coshS W

2LsD ,

C28 =
pss

2s fD8
, s13d

and

D8 =
Ws1 − p2d

Lf coshS W

2LsD +
Wss

Lss f

1

1 + gt
sinhS W

2LsD .

s14d

The solution forx.0 is obtained by means of the symmetry
relationmssxd=−m−ss−xd. A representative plot ofm↑ andm↓
is shown in Fig. 4.

We can calculate the resistance of the antiparallel-
electrodes configuration in precisely the same way as in the
parallel-electrodes case. The result is

Rantiparallel = Rcspd + Rs +
2Wp2

D8s f sinhS W

2LsD , s15d

and the quantityRantiparallelspd−Rcspd is plotted versusp in
Fig. 5. The resistance of this configuration is of course much
larger than that of the parallel configurationfthis is the well
known giant magnetoresistancesGMRd effectg and it is easy
to see that in the limitp→1 it tends to to Rss1+gtd
3s2Ls/Wd2. Notice that the Coulomb enhancement in this
configuration is very sharply confined to the region ofp
,1. The results of the above calculation can be used to
determineLs/W, oncegt has been determined from the mea-
surement of the resistance in the parallel-electrodes configu-
ration.

In summary I have theoretically analyzed in this paper
two methods to measure the spin drag coefficient of a non-

FIG. 3. Behavior of the parallel-electrodes magnetoresistance
Rparallelspd−Rcspd sin units of the ordinary resistance of the semi-
conductor,Rsd as a function ofp for gt=0, 1, and 2. Notice the
sharp enhancement caused by the spin-drag resistivity for values of
p close to 100%. As explained in the text, this can be used to
determinegt.
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magnetic semiconductor sandwiched between highly spin-
polarized ferromagnetic electrodes. The first method builds
upon thegedanken experimentproposed in Ref. 1 showing
that an unambiguousqualitative signature of the spin drag
effect occurs when the spin polarization of the ferromagnetic
electrodes exceed the critical valuepc.1/s1+gtd. In the
second morequantitativemethod one simply measures the
extra resistance introduced by the relative motion of the up-
spin and down-spin electrons in the semiconductor region of
a basic spin-valve device. It is hoped that these discussions

will encourage further experimental work aimed at the ob-
servation of the spin Coulomb drag.
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FIG. 4. The behavior of the electrochemical potentialsm↑
sdashed linesd andm↓ ssolid linesd calculated from Eq.s12d for gt
=0 and gt=1, expressed in units ofeJW/ss in the antiparallel-
electrodes configuration. The parameters are the same as in the
caption of Fig. 2, namelyp=90%,s f /ss=10, Ls/W=2, andLf /W
=4.

FIG. 5. Behavior of the antiparallel-electrodes magnetoresis-
tanceRparallelspd−Rcspd sin units of the ordinary resistance of the
semiconductor,Rsd as a function ofp for gt=0, 1, and 2. The
enhancement caused by the spin-drag resistivity for values ofp
close to 100% is now amplified by a factors2Ls/Wd2 s5 16 in the
present cased. As explained in the text, this can be used to mesaure
Ls/W oncegt is known.
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