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Lifetime of a quasipatrticle in an electron liquid
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We calculate the inelastic lifetime of an electron quasiparticle due to Coulomb interactions in an electron
liquid at low (or zerg temperature in two and three spatial dimensions. The contribution of “exchange”
processes is calculated analytically and is shown to be non-negligible even in the high-density limit in two
dimensions. Exchange effects must therefore be taken into account in a quantitative comparison between
theory and experiment. The derivation in the two-dimensional case is presented in detail in order to clarify the
origin of the disagreements that exist among the results of previous calculations, even the ones that only took
into account “direct” processes.

DOI: 10.1103/PhysRevB.71.075112 PACS nunt®er71.10.Ay, 72.10-d

[. INTRODUCTION Refs. 7 and 8, for example, the quasiparticle lifetime was
extracted directly from the width of the electronic spectral

The calculation of the inelastic scattering lifetime of an function obtained from a measurement of the tunneling con-
excited quasiparticle in an electron liquid, due to Coulomb Y

interactions, is a fundamental problem in guantum many-d uctance between two quantum wells. In the case of large

' ) 'Wells separation, like the ong¢$75—340 A studied in Ref.
k_)od_y theory. Accordmg to the Landau theory_ of _Ferm|8, the couplings between electrons in different well are weak
liquids® the inverse liretime Of_ an electron quasiparticle of 5oy can pe ignored. For such weakly coupled wells, the life-
energy¢, (relative to the Fermi enerdlie) at temperaturd e is principally due to interactions among electrons in 2D,
in a three-dimensiondBD) electron liquid should scale as  hjle the contribution of the impurities is relatively small.

&)\2 In spite of these wonderful advances, a quantitative com-
5 =B keT< & <Eg, parison between theory and experiment remains very diffi-

LA Er (1) cult. There are several reasons for this to be so. First of all,
Te ksT 2 KT <E 3D the 2D samples studied in the experiments are not yet suffi-
Ec/’ & <keT <Er, (3D), ciently “ideal,” namely disorder and finite width effects still

_ _ _ play a non-negligible role: as a result, the measured lifetimes
wherekg is the Boltzmann constant. In a two-dimensional are typically found to be considerably shorter than the theo-
(2D) electron liquid the above dependencies are modified agetically calculated ones. Secondly, the electronic density in

follows:? these systems falls in a range in which the traditional high-
£\ E density/weak-coupling approximatioh;'? are not really
(Jl) In —, keT < &, < E, justified. Finally, there is still confusing disagreement among
13 . Er & 2 various theoretical results in 28320even in the random
To keT\2 Er phase approximatiofRPA).
E In T & <ksT <Eg, (2D). This paper is devoted to a critical analysis of the last

question, i.e., specifically, we calculaealytically the con-

In addition to its obvious importance for the foundationsstants of proportionality in the relationd) and (2) in the
of the Landau theory of Fermi liquidsthe inelastic lifetime  weak coupling regime, and try to clear up the differences that
also plays a key role in our understanding of certain transpomxist among the results of different published calculations.
phenomena, such as weak localization in disordered metal®ne particular aspect of the confusion is the widespread be-
In this case, the distance an electron diffuses during its inkef that the Fermi golden rule calculation of the lifetime,
elastic lifetime provides the natural upper cutoff for the scal-based on the RPA screened interaction, is exact in the high-
ing of the conductance, and thus determines the lowdensity/weak-coupling limit. In fact, this is only true in 3D,
temperature behavior of the latfef. but not in 2D. To our knowledge, this fact was first recog-

During the past decade some newly developed experirized by Reizer and Wilkin& who introduced what they
mental techniques, combined with the ability to producecalled “non-golden-rule processes,” i.e., exchange processes
high-purity 2D electron liquids in semiconductor quantumin which the quasipatrticle is replaced in the final state by one
wells have enabled experimentalists to attempt for the firsof the particles of the liquid. In point of truth, these processes
time a direct determination of the intrinsic quasiparticle life- are still described by the Fermi golden rule, provided one
time, i.e., the lifetime that arises purely from Coulomb inter-recognizes that the initial and final states are Slater determi-
actions in a low-temperature, clean electron ligtri#l.In nants, rather than single plane wave states. In three dimen-
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whereW(q) is the effective interaction between two quasi-

particlesn,,=1/(e®%+1) the Fermi-Dirac distribution func-
FIG. 1. (a) A typical scattering process between electrons of thetion at temperaturgg=1/kgT, and we have set=1. Thes

same spin orientation near the Fermi surface has contributions frofMnctions ensure the conservation of the energy in the colli-

both a “direct”(solid line) and an “exchange(dotted ling term.(b)  sions. Obviously, from Eqg4) and(5), one can see that the

A special class of low momentum transfer processes gives theontribution from the exchange process tends to cancel that

leading-order contribution to the scattering amplitude in 2D at highfrom the direct process.

density. As can be seen from E@4), there are two types of col-

lisions contributing to the direct term, the collisions with

sions, such exchange contributions to the lifetime were calS@me-spin electronés’ =o), and those with opposite-spin

culated(numerically in Refs. 11 and 12, but they are easily electrons(¢’=-0). We denote the former ¥/, and the

shown to become irrelevant in the high-density limit. In 2D, latter 1/7,;, whereo=-o. It can be easily shown that

by contrast, the exchange contribution remains of the same

order as the direct contribution even in the high density limit. 1 >_ 1 (6)

Reizer and Wilkins found the exchange contribution to re- AP) A

duce to% of the direct one(with the opposite signin the

high-density limit, while we find it here to be onfyof the " I Paramagnetic state, one evidently has

direct contribution in the same limit. More generally, we give 1 1
an analytical evaluation of both the “direct” and the “ex- ™~ 1D (7
change” contributions vs density, for bdgT<¢, and &, oo oo
<kgT. _ _ ) Therefore,
The rest of this paper is organized as follows. In Sec. Il,
we provide the general formulas fbf 7, including exchange 1 1
processes. We then devote Sec. Il to the analytical calcula- 2,D) =" T (8)

tion of /7. in 3D and Sec. IV to the same calculation in 2D.
The 2D calculation is presented in greater detail in order to The effective interactio(q) between quasiparticles is
explain the origin of the disagreements among the results afhort-ranged compared to the bare Coulomb potential due to
previous calculations. We explain the reason for the muclthe screening effects from the remaining electrons. Such
stronger impact of exchange on the lifetime in 2D than in 3Dscreening effects are normally characterized by a screening
at high density. Section V presents a comparison between theave vectork,. Following this practice we approximate
present theory and the experimental data of Ref. 7 and sum-

marizes the “state of the art.” 4e? (3D)
2 )
o+ K
W(a) = 9
Il. GENERAL FORMULAS 2me? (2D)
We consider an excited quasiparticle with momentpm ks
and sping. Its inverse inelastic lifetime due to the electron- yhere
electron interaction is a sum of two terms, corresponding to
the contributions from the “direct” and “exchange” pro- Ak 3
cesses, respectively, EO (3D),
k= (10
N 3 2 (2p
To(épT) A A a

where &,= p?/2m-pu is the free-particle energy measured andke anda, are the Fermi wave vector and the Bohr radius,

from the chemical potentiale (see Fig. L We useD to  respectively. At very low density, the screening wave vector

denote the direct term and ex the exchange term. becomes much larger than the Fermi wave vector. It can be
Making use of the Fermi golden rule, we det, shown that, in this limit,
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1 1 1 * 1 _
0= e (11 =T wa_w dor ey eﬁ(‘“‘fp)% W(Q) Ny Mgk
or, in other words, by using Eq7) X 8w = &+ Egui) Ao = &+ Egup) WP — K).
(18)
1 1
20 = e (12) The fact that 1#P and 1/ depend only of the mag-
o o nitude ofp allows us to average over the unit vector fof

. G =p/p on the right-hand side of Eq$16) and (18). To this
Equation(8) and the low density limit result of Eq12) are ?nd, we define

exact results, which, to the best of our knowledge, were no
explicitly established before. The validity of the results in

Egs.(11) and(12) is of course questionable in the low den- 0.(q) =+ S Q_2 (19)
sity limit of a real system since it is obtained from the per- == m 2m
turbative formula of Egs(4) and(5), which are supposed to
be valid only in the high-density/weak-coupling regime. _ 4 <o the fact that
However, they help us understand the mathematical structure
of the weak-coupling formulas.
In what follows we will only consider the case of the 1 dBS(w—& +£.r0)
paramagnetic electron liquid, which allows us to trivially dis- 2od-1 Polw= &+ &qup
pose of the spin indices. Furthermore, by making the change _
of variablek — k +q in the momentum summation in E), =0(p,9dQ(9) - w]dw - Q(q)], (20)
and correspondinglk — -k in Eq. (4), we rewrite Eqs(4)
and(5) as where 6(x)=1 for x>0, #(x)=0 for x<0, and
1 .
E = ZWkE 2 Wz(q)np+annk+q5(§p + &k - §k+q - §p+q) zi (3D),
a o Pq

(13) 0(p,g) = om o0 (21)

and AP’ - (2mw + @F)? '
1 _ Therefore 1#P can be rewritten as
peile 2wk2 WI(p = K)W(0) Mg MM
.
* 1
X 5(5’3 + §k+q - gk - §p+q) . (14) m = - 21_3@ d(u[l T eﬁ(w_gp)][l _ e_ﬁw]

By using the identity

Im xo(q, w) _
TR = - 203 gd0+ &~ ), (19

where xo(g,) is the Lindhard function(i.e., the density-

X 2, WA(Q)Im xo(q, )O(p,q) A[Q4(q) - w]
q

X0 ow-0Q.(q)]. (22

We note that this equation is not restricted to the regime of

density response function of the noninteracting electron, gaskgT < Eg, but holds for arbitrary temperature.

we rewrite 1#®) in Eq. (13) as

L
0774 T v P - e P

X 2 WA(Q) 8w = &+ &peg)IM Xo(G, ). (16)
q
In obtaining Eq.(16), we have also used the fact that

_ 1
r'|p+q5(w - ‘gp + §p+q) = mé(w - gp + §p+q)-
(17)

Similarly, one has

In this paper, we are only interested in the case khat
<Eg, and therefore the Fermi enery is always well de-
fined andEg = u. To perform the average ovgrin Eq. (18),
we use the fact that, fokgT, &,<Eg, the contribution to
1/7%9 only arises from the region in whicl, |o|<Eg.
Furthermore, the firsé function in Eq.(18) fixes the angle
betweenk and g to be such as to satisfy the conditigp
—&g+k=w=0. With this in mind, one obtains

1 .
ﬂ f dp(w - gp + §q+p)W(p -k)
=®(p, ) 1Q+(q) ~ 0]t - Q(a)], (23

where
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(I)(p,q) 0 T T T T T T T
m__ 47e? (3D) s 3-D |
) 2Pake VIG + 4kE - P
- mée 1 1 1/TE® o4
(2D).

, —+ ©)
VPP - (Mo + q%12)% [ ks Al - o + kg 1
-0.6 [ -
(24)
A detailed derivation of this key result is presented in the -08 | .
Appendix. Thus finally
i - Jx d(1) 1 - 0 2 4 6 8 10 12 14
7T [1 e[l -] Is
X > W(Q)IM xo(a, ©)P(p, ) A Q.(q) - ] FIG. 2. The ratio of 1#® over 1/7P) viargin 3D.
q
X @ ow-0_(q)]. (25) 1 mefm [~ do 2
7 2mipk) .. L+ef 1 -]
Ill. THE INVERSE LIFETIME IN 3D
Im XO(q’ w)
The theory of the electron inelastic lifetime in 3D is rather X dqW(q)—/ T 2 >0 Q.(0) - o]
well establishe¥l'® at zero temperature. However, no analyti- avks F=d
cal expression including the exchange has been presented so X w-Q_(g)]. (30)

far, even though KleinmaH,and later Penf? have reported )
numerical calculations of the exchange contribution. This deBY Using Eq.(27), one has

ficiency is remedied in the present section. Our calculation is m3 % 20
done at nonzero temperature, with zero temperature as a spe- =—-——— | do — —
cial case. 7 2mPpks) . [1+ef 1 -eF]
In 3D, Eq.(22) becomes 2Ke 1
w X d —_— 31
=30 f do 2 fo M o
D)~ 3 (0= — @ Bw
g 2@2mp). [+ - e After carrying out the integrations, one obtains the final re-
1 sult
X f dgWA ()~ Im xo(d, ) 1Q.4(0) = ]
q 1 m¥ TP+ & 1
Xtlo—-Q(g)]. (26) AT aplkd 1+ePh \2+2
We are interested in the case thaT, {,<Eg. Therefore we - 1 1
only need consider the region ef<Eg, in which, X| - -tan'{ =4/ : (32
2 N VA“+2
2
Im xo(q, @) = - Mﬁ(ZkF -q). (27) We plot the ratio of 1#9 to 1/7P) vs the Wigner-Seitz
2mq radius rg in Fig. 2. Notice that at very high density,
- - )| <|1/7P)|, and the direct-process-only theory is then
Substituting Eq(27) into (26) leads to |1/ <[1/7P)], an P y Y
ubstituting Eq(27) into (26) relatively good. On the other hand, at low density/%}
1 m (" 20 =-1/27D), which agrees with the general conclusion of Eq.
70~ 2mp)_, d“)[l + P B[ - P (12). The contribution from exchange processes therefore
cannot be ignored in most density range. Once again, the
2K W validity of Egs.(29) and(32) is limited to the weak-coupling
X . dqwWi(q). (28)  regime. They might well not hold in the low-density regime

of a real system, and should be regarded as mathematical
The integrations oveq and w can be carried through, and properties of the weak-coupling equations.
one obtains In the limiting case of small excitation energ§, <kgT

<Eg, Eq. (29 reduces to
1 _ m3e4 WzszT2+ §F2)|: \ F q ( )

+tan?t )\} . (29

D)~ -BE 2 1 mee? A
70 apkk 1+ef [A7+1 ﬁ:z % kéﬁ[kzﬂﬂan‘lx] (33
whereh =2kg/ks. P
Next we move to evaluate the contribution from the ex-  In the opposite of very low temperatukgT < §,<Eg one

change process. In 3D, E{R5) becomes has
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FIG. 3. The three regions of integration ov@rat givenw, in
Eq. (36) are labeled 1, 1I, and Ill, respectively. Only region Il con-
tributes to the leading order in 2D.

1. mee +tarit A (34)
'T(D) - nggp )\2+ 1 an )
In the high density limit\ —, Eq. (34) becomes
1 me,
= ==&, 35

a result obtained earlier by Quinn and FerPell.

IV. THE INVERSE LIFETIME IN 2D

PHYSICAL REVIEW B71, 075112(2005

m
Im xo(0, @) = 7T—qz{<9[k§q2 ~ (Mw + ¢%/2)?]

X IR — (Mo + q2/2)2 — o[ KkEq?
~ (Mo - ¢%/2)21VkE? - (mw - ¢%/2)3}.

(37)
Therefore,
1 m? (% ke kZ-2ma ke I+2ma
R =—sf dev fF\F Mdg+ [ dg
Tieme 7T Jo —kF+\fk,2:+2mw kF+\fk,2:—2mw
k202 - (Mw — ¢?/2)?
X o WA \/ £ . 38
q (Q) pzqz_(mw+q2/2)2 ( )
It is straightforward to show that
kZq? - (mw = q%/2)? < p?e? = (Mw + ¢%/2)>  (39)
in the above integral. Thus, we have
1 m (% ke— kZ—2mo
o <—3J do f“F ™ dq
T+ T Jo —ke+\ k2 +2me
ke+\k2+2me
+J T aq|a W), (40)
ke+VkE-2mo

Evidently the leading order of the two terms on the right-
As mentioned in the Introduction, there is still some dis-hand side of the above inequality is boiﬂ(gf,). Hence we
agreement among the results of previous calculations of 1/ have shown that the first and third terms in E86) have no
in 2D. The main purpose of this section is to exactly evaluateontributions to the leading order ﬁj(gg In&).
the prefactors of 172 and 1/® in 2D, and at the same  Hereafter we therefore focus only on the calculation of
time attempt to clarify the origin of those disagreements. Wehe second term. In region II, for smad,
present our derivations in the two different regimeskgf
<§,<Ep and §,<ksT<Er separately. For greater clarity, 2mlw 1)
— 41
—
mq\ 4Kz - o

we also show our derivations for the “direct” and “exchange” Im xo(g, @) ==

contributions in separate subsections.
Substituting the above equation into E§6) leads to

1 4md J‘ gpd f ke+kE-2ma
D = 3 ww
T( ) o 0 k

- \}skIZ:—me

A. kgT< &, Direct process

In 2D, for kgT< &,<Ef, Eq. (22) becomes dgWA(q)

1 om (% ke—\ k2—2mw ke+\k2—2me
=" dwUF‘F_dmf”f X —. (42
0 —ke+\ kE+2me ke—VkE-2mo V[4ks - g71[4p°g” — (2mw + g°)7]
. jkp+\k§+2mw dq} AWA(Q)— Im xo(q, @) ' Thus we have
Ke+ kE-2mae VApe? - (2me + g7)?
(36) L _dm d 43
A0~ 3 o 00Qy(w), (43
The three regions of integration, at a given valuewofire
shown in Fig. 3. It can be showhbelow that the first and Where
the third terms in the square bracket make no contributions —
to the leading order 0D(& In &), which arises only from 0y(w) = ket Vkg-2mo dqWA(q) 1 (44)
the second term. We denote the contributions from the first ! ke—\k2-2ma q(4kZ - )

(D)

and the third terms to ¥/® as 1/n,, . We start with the

expression for Ingy(q, w) in 2D, which is or, to leading order,
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2ke-molke

1
Qilw) = qu\f‘(Q)m : (45)

Maw/Ke

Evidently, the integral in Eq(45) has a logarithmic diver-

PHYSICAL REVIEW B 71, 075112(2005

lifetime with half the weight oWW(0)2. Of course Eq(52) is

only valid (within the RPA at the very lowest energies and
temperatures, where the frequency dependence of the effec-
tive interaction becomes irrelevant. Jungwirth and

gence at both the upper and lower limits. We split it into twoMacDonald” have shown that at higher energies and/or tem-

parts
Qi(w) = QP(w) + QP(w), (46)
where
@ o daW? 1
a, - 4
Qr'(w) - q (q)q( 22— (47)
and
" 2ke—Malke W 1
Qr'(w) = . dqg (Q)m- (48)

To leading orderQ(la)(w) and Q(lb)(w) can be evaluated as

QP )=~ w2(0)4—iE e (49)
and
QP w) =~ We(2Kke) =5 3! ";:’ (50)
Therefore, in summary,
Qu(w) = - %[2\/\/2(0) +W2(2ke)TIn r:—g’ (51)

Substituting Eq(51) into (42), and performing the integra-

tion over w, we finally arrive at
1 2| — 1— 2E
5 = —gp—{vvz(O) + —W2(2kF)}In =,
7 AnEe 2 &
where we have defined the dimensionless quantity

(52)

W(g) = ”;Wq). (59)

The quantity in the square brackets of Ef2) can be ex-
pressed in terms of the Wigner-Seitz radiysas follows:

W2(0) + l\X/Z(zk )=1+ E(L_)z (54)
20 7T 2\rg+1\2/

peratures the use of the “average” approximation for the
wave-vector dependence of the interaction results in very
good agreement with their full-fledged numerical calcula-
tions. We have nothing to say about this: our aim here is
simply to obtain the correct low-energy asymptotics for the
lifetime, of which Eq.(52) gives the direct part within the
RPA.

Except for the work by Reizer and Wilkirt8,all the cal-
culations cited above in 2D explicitly consider only the di-
rect process, without taking account of the exchange process,
which we deal with in the next subsection.

B. kgT<&,: Exchange process
In 2D, for kgT < ¢, <Eg, Eq. (25 becomes

1 2m Fp g
7'(ex>_(277)2 0 @

I —

[.2 [.2
ke=Vke—2me ke+Vke—2me
dg+ d
—ke+y k,:+2mw

1,2
ke=\k2-2me

ke kE+2ma
T }qW(q)[w 0) + W(V4KZ - )]
ke+\VkE—2mo
Im x0(0, w)
. (55
VAp°g° — (g° + 2mw)

Again only the second term in the square bracket contributes
to the leading order. Thus,

1 4m?

i (56)

&
2P f , dowQy(w),

where

ke+\kE-2me

Qxw) = W(a)[W(0)

—_—

ke—\k2-2mw

+ W(\"4k|: -q )]

Y@ -
(57)

To the leading order,

1 10}
Qo) = = 7 WOIW(O) + 20(2k)n T—z (58)

F F

The fact that Eq.(45) also has a logarithmic contribution Substituting Eq(58) into Eq. (56) and performing the inte-

from the upper limit of integration aj= 2k was missed in

gration overw, we arrive at

almost all previous analytical calculations. This is one of the

main reasons leading to errors in the numerical prefactor of
the lifetime. The second term in the square brackets of Eq. 7
(52) is absent in the works of Refs. 2, 18, and 20. Jungwirt
and MacDonal&f were the first to clearly recognize the ex-
istence of the R- term: however, they made a further ap-
proximation in replacing the square of the effective interac-

tion Wz(q) by the average ofV(0)2 and W(Zk,:)2 Equation
(52) above shows that to leading orderéf;lln &, this is not

o §E &
= lﬁwEFW(O)[W(O) + 2W(2k,:)]|n 2,

(59

n Fig. 4, we show the ratio of X*¥ to 1/7P) vs rs. The

remarkable fact is that, at variance with the 3D case, this
ratio does not vanish for;— 0. The reason for this differ-
ence can be understood as follows. In 3B gical scattering
process near the Fermi surface, such as the one shown in Fig.
1(a), involves two particles that are well separatdry a

quite correct W(2kF)2 enters the expression for the inverse wave vector of the order ofk2) in momentum space. The
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0 T T T ! ! ! ! m Gy (@) H*’fp q+(w)
I e o
— _(w)
\ | o1 ’qV\F(q)Im Xo(q, ®) | 62
1/7E0 04 shBw Vap?q” - (2mw + ¢?)?

y1® o6 F i whereq.(w) are the solutions of the equatiéh,(q)=w
0:(@) =[p £ Vp? - 2mw]. (63
-08 I N
Again, only the regime ob < Ef contributes to 142 to the
4 ! ! ! ! ! L ! accuracy of the leading order. Thus, by using Eznl.) one
0 2 4 6 8 10 12 14 has
I's
1 2m q 15) ke—VkE-2m|a|
FIG. 4. The ratio of 1#9 over 1/ via rgin 2D. D7 B wshﬁw izl
direct scattering amplitude for such a process is maximum + ko”\klzfzm‘” dq+ ko”\ké*zm"“' dq
when the momentum transfgris much smaller thakg, and ke—\IZ-2mlo| ke+\IZ—2mlo|
is thus typically proportional t®/(0). The exchange scatter-
ing amplitude, on the other hand, is of the ordeMd(2k;) X WA(Q) 1 / 1 . (64)
for all values ofg: hence the ratio of 1% to 1/7P) goes as VAP2Q% - (2me + g2)? V4KE - o

W(0)W(2kg)/W(0)?, which vanishes for,—0. The reason
why this argument fails in 2D is that the logarithmic contri-
bution to the inverse lifetime in the high density limit does
not arise from typical scattering processes, but rather, from 1 2m
special ones in which the two colliding particles are very - —3f w—Ql(w) (65)
close in momentum spadsee Fig. 1b)]: hence the direct ™ ) shBo

and the scattering amplitude are comparable, and give simMighereQ,(w) is defined in Eq(45) and evaluated in Eq51).
lar contributions to the inverse lifetime. A careful analysis of therefore

the integrals involved shows that in the high density limit,

the exchange contribution cancélsf the direct contribution 1 Mw

to the inverse lifetime. This resélt is at variance with that of  ,® =~ Z[ZWZ(O +W2(2kF)]f d“’ hBw n-a k2 ’
Ref. 20 according to which the exchange contribution can-

Once again only the second term in the bracket makes con-
tribution to the leading order, and we find

cels > of the direct one. We find that the relation A% (66)
=~1/27 holds only in the low density limifsee Eq(12)  which can be further evaluated leading to
and Fig. 4, where the weak coupling theory is not reliable.
Combining direct and exchange contributions in a single h_(mkgT)?| —, 2B
formula we finally find that D)7 8rE WAH0) + WZ(ZkF) In kgT ' (67)
5 As in the low-temperature case, the second term in the
1 3— 1— 1— — 2E i i i i
= & SW(0)2 + =W(2ke)? ~ ~WO)W(2ke) |In ==F square brackets of this equation was missed in almost all the
7. 4mEg| 4 2 2 & previous theories except the one by Jungwirth and
(60) MacDonald!’ which, however, overestimates it by a factor 2.

Without the second term in the square bracket, EY)
would agree with the expression obtained by Zheng and Das

where the quantity in the square brackets is given by Sarma® and by Reizer and Wilkin&) but it would be four
times smaller than the result of Fukuyama and Abrah&ms,
3 re and#?/4 times larger than the result of Giuliani and Qufn.
——- . (61)
4 \2(rg+ \2)2 D. £,<kgT: Exchange process

In 2D, for kgT> &,, EQ. (25) becomes
Thus in the high density limit the total inverse lifetime dif-

fers by a factmé from the result of the direct-scattering-only 1 {J dwfqm dq+ J’”gp dwfqm) dq]
4r?
()

calculation, and by a facto} from the result of Ref. 20. 7en =
Im XO(q! w)
C. £&,<kgT: Direct process Shﬁw Va2 - (2 + Z)QW(Q)Q[W(O)
For &, <kgT<Eg, Eq. (22) becomes + W(\J’4k,2: -P)]. (68)
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FIG. 5. Momentum- and energy-conserving tunneling between
two identical free-electron bands separated by a potential difference Fig 6. Electron relaxation rat€ in 2D. Experimental data are

eVis possible only if the spectral width of the single particle stateSfom Ref. 7. calculated ones are from HF2). Here Te=Eq/kg.

in each bandindicated by the shaded regigris at least as large as

eV.
Proceeding as in the previous section we rewrite this as

1 S [
SRl 2%3 f dww%sz(w). (69)

whereQ,(w) is defined in Eq(57) and evaluated in Eq{58).
Therefore

1
e T o 3.2
A& 8mke

s UL
shBw k,2: '
(70)
which can be, to the leading order, further simplified to
1 (mkeT)?
70" 327E,

W(0)[W(0) + 2W(2k,:)]fm dw

W(0)[W(0) + 2W(2kg) ]I 'Z‘B?T (71)

F

The ratio of 1+ to 1/7P) is therefore found to be the
same as that in the case IgfT < &, which has been plotted

in Fig. 4.
Combination of 1#P in Eq. (67) and 1/ in Eq. (71)
thus yields

1__ (mkgT)? _— — == kT
Te - 32mER [3W2(0) * ZWZ(ZkF) 2W(0)W(2kg) JIn ZEF'
(72)

The situation changes profoundly if electron-electron in-
teractions are allowed. Now momentum is still conser(ied
impurity scattering and surface roughness are negligtnlié¢
the energy of the electron quasiparticle is no longer a well
defined quantity, due to the possibility of inelastic scattering
processes involving other electrons in each quantum well. As
a result, tunneling becomes possible in a region of voltages
-I'<v<T, wherel is the width at half maximum of the
plane-wave spectral function in a wéll,e.,

1 I'(&,T)
AES = g mze P
From the well-known relation  A(E, &)

=—(1/m)Im G(E, &), where G(E,&,) is the retarded
Green’s function, one can show that the spectral widtis
just the inverse of the lifetime of a plane wave state, which is
the sum of the lifetimes of electron and hole quasiparticles in
the following mannet?-21

L&, T) = S (74)
: Te(gp-T) Th(gp:T) .
The principle of detailed balance demands
n(gpuT) - 1- n(gpaT) , (75)

Te Th

wheren(&,,T) is the thermal occupation number at tempera-

Notice the difference between the above result and the onfire T. If we assumef,<kgT and approximatd’(¢,, T) by

obtained in Ref. 20.

V. COMPARISON WITH EXPERIMENTAL RESULTS
IN 2D

Consider two identical 2D electron liquids in closely
spaced quantum wells between which a small potential dif-
ferenceV is maintained. We expect a small tunneling current

I'(¢,=0,T), we see from the above equations that the half
width at half maximum of the tunneling conductance peak is
expressed in terms of the electron quasiparticle lifetime as
follows:

e 2
T (0T

(76)

between the layers. However, as Fig. 5 shows, no tunneling We can now attempt a comparison between the experi-
is possible in the absence of impurities and electron interaomental values of’ from Ref. 7 and the theoretical values of
tions. This is because under those unrealistic assumptior&/ 7(0,T). This is shown in Fig. 6. It must be kept in mind
both the energy and the momentum of the electron must bthat, in order to perform a meaningful comparison, one must
conserved during tunneling, and there are simply no statefirst subtract from the experimental data (presumably

satisfying these conditions.

temperature-independent constant due to residual disorder.
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The value of this constant is determined by the condition thahelp to produce better agreement with experiments, it re-
I' tend to zero fofT— 0. Even after this subtraction we see mains a great challenge for experimentalists to device the
that the theoretical curve lies well below the experimentalonditions that will eventually allow them to probe the truly
data. Furthermore, the shortcomings in Refs. 17 and 18 &atrinsic behavior of the electron liquid.
revealed in this paper imply that the “excellent agreement”
with experiment claimed in those papers is overly optimistic,
as pointed out earlier by Reizer and Wilkitfs. ACKNOWLEDGMENTS
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timistic to believe that the huge differen¢@ughly a factor
4) between theory and experiment is totally due to such APPENDIX
higher order contributions. The size of the discrepancy sug-
gests that there might be other factors playing a role, such as In this appendix, we give the details of the derivation of
the finite width of the quasi-two-dimensional system,Eq.(23). To this end, we denote the left-hand side of &)
electron-impurity scattering, electron-phonon scattering, ands A; and A, for 3D and 2D cases, respectively. In 3By
surface roughness. While the inclusion of these effects magan be rewritten as

™ 2 ’ 2
0 1
po=e[ o sing [ apofws PO T — Ay
B 0 m 2m/ p®+k*+ ks — 2pK cosfcosd’ +sindsin 6’ codd— ¢')]

where(6, ¢) and(#', ¢') are the spherical angles bfandp, m 5
respectively, relative tq. Carrying through thep’ integra- A= ezf de' d(w + pg/mcosg’ +q2m)
tion, one obtains 0
1 2 1
- pax g9 X [ ,
A3—27T92f_ldx5<w+ m + Zm) \‘"p2+k2—2ka0i¢—¢)’)+ks
1
X ! . + [12 k2 k ! :| (A5)
V(p? + K2 + K2 + 2pk cosOx)2 — 4(pk sin 6)%(1 —x2) Vp“+ K= 2pkcogd + ¢') + ks
(A2)

The integral in the above equation is trivial due to the
function, and it leads to

As 2mme¢0.(q) - w]tfw - Q_(9)]
> p PP+ IR+~ k P - [Ke - (k - §)2[4p? - ¢

Carrying out the integration ovep’ yields

_ méH0,() - wlflw- ()]

A
(A3) 2 \er2q2 _ (mw + q2/2)2
where we have used the fact thah@<k2. Putting in this 1
expression the approximate equalities p~kg andk-q~ %
-g?/2 [which follows from the conditioné — &,k =w=0 \/p2 +I2+k -q-V[K? = (k -§)%][4p® - 7] + ks
due to the firsts function in Eq.(18)] one easily arrives at
Eq. (23 in the 3D case. + 1 )
In 2D, A, can be explicitly written as \/p2 +I2+k -q+ [k = (k -§)21[4p? - g7] + ks
2 ’ ’ 2 (AG)
A,=€?| d¢' 8w+ pgcosd’/m+g?/2m)
0
X ! (A4)
[2 12 — — Substituting, as in the 3D case, the approximate equalities
VP + K= 2pkeodd = ) +k k~p~ke andk -q~—-g?/2 one finally arrives at Eq23) in
or 2D.
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