
Lifetime of a quasiparticle in an electron liquid

Zhixin Qian
Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871, China

and Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

Giovanni Vignale
Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

sReceived 31 May 2004; published 18 February 2005d

We calculate the inelastic lifetime of an electron quasiparticle due to Coulomb interactions in an electron
liquid at low sor zerod temperature in two and three spatial dimensions. The contribution of “exchange”
processes is calculated analytically and is shown to be non-negligible even in the high-density limit in two
dimensions. Exchange effects must therefore be taken into account in a quantitative comparison between
theory and experiment. The derivation in the two-dimensional case is presented in detail in order to clarify the
origin of the disagreements that exist among the results of previous calculations, even the ones that only took
into account “direct” processes.
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I. INTRODUCTION

The calculation of the inelastic scattering lifetime of an
excited quasiparticle in an electron liquid, due to Coulomb
interactions, is a fundamental problem in quantum many-
body theory. According to the Landau theory of Fermi
liquids1 the inverse lifetime of an electron quasiparticle of
energyjp srelative to the Fermi energyEFd at temperatureT
in a three-dimensionals3Dd electron liquid should scale as

"

te
~ 5 S jp

EF
D2

, kBT ! jp ! EF,

SkBT

EF
D2

, jp ! kBT ! EF, s3Dd,6 s1d

where kB is the Boltzmann constant. In a two-dimensional
s2Dd electron liquid the above dependencies are modified as
follows:2

"

te
~ 5S

jp

EF
D2

ln
EF

jp
, kBT ! jp ! EF,

SkBT

EF
D2

ln
EF

kBT
, jp ! kBT ! EF, s2Dd.

h s2d

In addition to its obvious importance for the foundations
of the Landau theory of Fermi liquids,1 the inelastic lifetime
also plays a key role in our understanding of certain transport
phenomena, such as weak localization in disordered metals.
In this case, the distance an electron diffuses during its in-
elastic lifetime provides the natural upper cutoff for the scal-
ing of the conductance, and thus determines the low-
temperature behavior of the latter.3–5

During the past decade some newly developed experi-
mental techniques, combined with the ability to produce
high-purity 2D electron liquids in semiconductor quantum
wells have enabled experimentalists to attempt for the first
time a direct determination of the intrinsic quasiparticle life-
time, i.e., the lifetime that arises purely from Coulomb inter-
actions in a low-temperature, clean electron liquid.6–8 In

Refs. 7 and 8, for example, the quasiparticle lifetime was
extracted directly from the width of the electronic spectral
function obtained from a measurement of the tunneling con-
ductance between two quantum wells. In the case of large
wells separation, like the oness175–340 Åd studied in Ref.
8, the couplings between electrons in different well are weak
and can be ignored. For such weakly coupled wells, the life-
time is principally due to interactions among electrons in 2D,
while the contribution of the impurities is relatively small.

In spite of these wonderful advances, a quantitative com-
parison between theory and experiment remains very diffi-
cult. There are several reasons for this to be so. First of all,
the 2D samples studied in the experiments are not yet suffi-
ciently “ideal,” namely disorder and finite width effects still
play a non-negligible role: as a result, the measured lifetimes
are typically found to be considerably shorter than the theo-
retically calculated ones. Secondly, the electronic density in
these systems falls in a range in which the traditional high-
density/weak-coupling approximations,1,9–12 are not really
justified. Finally, there is still confusing disagreement among
various theoretical results in 2D,2,13–20 even in the random
phase approximationsRPAd.

This paper is devoted to a critical analysis of the last
question, i.e., specifically, we calculateanalytically the con-
stants of proportionality in the relationss1d and s2d in the
weak coupling regime, and try to clear up the differences that
exist among the results of different published calculations.
One particular aspect of the confusion is the widespread be-
lief that the Fermi golden rule calculation of the lifetime,
based on the RPA screened interaction, is exact in the high-
density/weak-coupling limit. In fact, this is only true in 3D,
but not in 2D. To our knowledge, this fact was first recog-
nized by Reizer and Wilkins,20 who introduced what they
called “non-golden-rule processes,” i.e., exchange processes
in which the quasiparticle is replaced in the final state by one
of the particles of the liquid. In point of truth, these processes
are still described by the Fermi golden rule, provided one
recognizes that the initial and final states are Slater determi-
nants, rather than single plane wave states. In three dimen-
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sions, such exchange contributions to the lifetime were cal-
culatedsnumericallyd in Refs. 11 and 12, but they are easily
shown to become irrelevant in the high-density limit. In 2D,
by contrast, the exchange contribution remains of the same
order as the direct contribution even in the high density limit.
Reizer and Wilkins found the exchange contribution to re-
duce to 1

2 of the direct oneswith the opposite signd in the
high-density limit, while we find it here to be only14 of the
direct contribution in the same limit. More generally, we give
an analytical evaluation of both the “direct” and the “ex-
change” contributions vs density, for bohkBT!jp and jp
!kBT.

The rest of this paper is organized as follows. In Sec. II,
we provide the general formulas for" /te including exchange
processes. We then devote Sec. III to the analytical calcula-
tion of " /te in 3D and Sec. IV to the same calculation in 2D.
The 2D calculation is presented in greater detail in order to
explain the origin of the disagreements among the results of
previous calculations. We explain the reason for the much
stronger impact of exchange on the lifetime in 2D than in 3D
at high density. Section V presents a comparison between the
present theory and the experimental data of Ref. 7 and sum-
marizes the “state of the art.”

II. GENERAL FORMULAS

We consider an excited quasiparticle with momentump
and spins. Its inverse inelastic lifetime due to the electron-
electron interaction is a sum of two terms, corresponding to
the contributions from the “direct” and “exchange” pro-
cesses, respectively,

1

tesjp,Td
=

1

ts
sDd +

1

ts
sexd , s3d

where jp;p2/2m−m is the free-particle energy measured
from the chemical potentialm ssee Fig. 1d. We useD to
denote the direct term and ex the exchange term.

Making use of the Fermi golden rule, we get,1

1

ts
sDd = 2po

k,q
o
s8

W2sqdn̄p+qsnks8n̄k−qs8

3 dsjp + jks8 − jk−qs8 − jp+qsd s4d

and

1

ts
sexd = − 2po

k,q
Wsp − k + qdWsqdn̄p+qsn̄k−qsnks

3 dsjp + jks − jk−qs − jp+qsd, s5d

whereWsqd is the effective interaction between two quasi-
particlesnks=1/sebjk +1d the Fermi-Dirac distribution func-
tion at temperatureb=1/kBT, and we have set"=1. Thed
functions ensure the conservation of the energy in the colli-
sions. Obviously, from Eqs.s4d ands5d, one can see that the
contribution from the exchange process tends to cancel that
from the direct process.

As can be seen from Eq.s4d, there are two types of col-
lisions contributing to the direct term, the collisions with
same-spin electronsss8=sd, and those with opposite-spin
electronsss8=−sd. We denote the former 1/tss, and the
latter 1/tss̄, wheres̄=−s. It can be easily shown that

1

tss
sDd ù −

1

ts
sexd . s6d

In the paramagnetic state, one evidently has

1

tss
sDd =

1

tss̄
sDd . s7d

Therefore,

1

2ts
sDd ù −

1

ts
sexd . s8d

The effective interactionWsqd between quasiparticles is
short-ranged compared to the bare Coulomb potential due to
the screening effects from the remaining electrons. Such
screening effects are normally characterized by a screening
wave vectorks. Following this practice we approximate

Wsqd =5
4pe2

q2 + ks
2 s3Dd,

2pe2

q + ks
s2Dd,

h s9d

where

ks =5Î
4kF

pa0

s3Dd,

2

a0
s2Dd

h s10d

andkF anda0 are the Fermi wave vector and the Bohr radius,
respectively. At very low density, the screening wave vector
becomes much larger than the Fermi wave vector. It can be
shown that, in this limit,

FIG. 1. sad A typical scattering process between electrons of the
same spin orientation near the Fermi surface has contributions from
both a “direct”ssolid lined and an “exchange”sdotted lined term.sbd
A special class of low momentum transfer processes gives the
leading-order contribution to the scattering amplitude in 2D at high
density.
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1

tss
sDd = −

1

ts
sexd , s11d

or, in other words, by using Eq.s7d

1

2ts
sDd = −

1

ts
sexd . s12d

Equations8d and the low density limit result of Eq.s12d are
exact results, which, to the best of our knowledge, were not
explicitly established before. The validity of the results in
Eqs.s11d and s12d is of course questionable in the low den-
sity limit of a real system since it is obtained from the per-
turbative formula of Eqs.s4d ands5d, which are supposed to
be valid only in the high-density/weak-coupling regime.
However, they help us understand the mathematical structure
of the weak-coupling formulas.

In what follows we will only consider the case of the
paramagnetic electron liquid, which allows us to trivially dis-
pose of the spin indices. Furthermore, by making the change
of variablek →k +q in the momentum summation in Eq.s5d,
and correspondingly,k →−k in Eq. s4d, we rewrite Eqs.s4d
and s5d as

1

tsDd = 2po
k,q

o
s8

W2sqdn̄p+qnkn̄k+qdsjp + jk − jk+q − jp+qd

s13d

and

1

tsexd = − 2po
k,q

Wsp − kdWsqdn̄p+qn̄knk+q

3 dsjp + jk+q − jk − jp+qd. s14d

By using the identity

Im x0sq,vd
1 − e−bv = − 2po

k
nkn̄k+qdsv + jk − jk+qd, s15d

where x0sq,vd is the Lindhard functionsi.e., the density-
density response function of the noninteracting electron gasd,
we rewrite 1/tsDd in Eq. s13d as

1

tsDd = − 2E
−`

`

dv
1

f1 + ebsv−jpdgf1 − e−bvg

3 o
q

W2sqddsv − jp + jp+qdIm x0sq,vd. s16d

In obtaining Eq.s16d, we have also used the fact that

n̄p+qdsv − jp + jp+qd =
1

1 + ebsv−jpddsv − jp + jp+qd.

s17d

Similarly, one has

1

tsexd = − 2pE
−`

`

dv
1

1 + ebsv−jpdo
k,q

Wsqdn̄knq+k

3 dsv − jk + jq+kddsv − jp + jq+pdWsp − kd.

s18d

The fact that 1/tsDd and 1/tsexd depend only of the mag-
nitude of p allows us to average over the unit vector ofp̂
=p /p on the right-hand side of Eqs.s16d and s18d. To this
end, we define

V±sqd ; ±
pq

m
−

q2

2m
s19d

and use the fact that

1

2d−1p
E dp̂dsv − jp + jq+pd

= Qsp,qdufV+sqd − vgufv − V−sqdg, s20d

whereusxd=1 for x.0, usxd=0 for xø0, and

Qsp,qd =5
m

2pq
s3Dd,

2m

pÎ4p2q2 − s2mv + q2d2
s2Dd.

h s21d

Therefore 1/tsDd can be rewritten as

1

tsDd = − 2E
−`

`

dv
1

f1 + ebsv−jpdgf1 − e−bvg

3 o
q

W2sqdIm x0sq,vdQsp,qdufV+sqd − vg

3ufv − V−sqdg. s22d

We note that this equation is not restricted to the regime of
kBT!EF, but holds for arbitrary temperature.

In this paper, we are only interested in the case thatkBT
!EF, and therefore the Fermi energyEF is always well de-
fined andEF.m. To perform the average overp̂ in Eq. s18d,
we use the fact that, forkBT, jp!EF, the contribution to
1/tsexd only arises from the region in whichjk, uvu!EF.
Furthermore, the firstd function in Eq.s18d fixes the angle
betweenk and q to be such as to satisfy the conditionjk
−jq+k =v<0. With this in mind, one obtains

1

2d−1p
E dp̂dsv − jp + jq+pdWsp − kd

= Fsp,qdufV+sqd − vgufv − V−sqdg, s23d

where
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Fsp,qd

=5
m

2pqks

4pe2

Îks
2 + 4kF

2 − q2
s3Dd,

me2

Îp2q2 − smv + q2/2d2F 1

ks
+

1

Î4kF
2 − q2 + ks

G s2Dd.6
s24d

A detailed derivation of this key result is presented in the
Appendix. Thus finally

1

tsexd =E
−`

`

dv
1

f1 + ebsv−jpdgf1 − e−bvg

3 o
q

WsqdIm x0sq,vdFsp,qdufV+sqd − vg

3ufv − V−sqdg. s25d

III. THE INVERSE LIFETIME IN 3D

The theory of the electron inelastic lifetime in 3D is rather
well established9,10 at zero temperature. However, no analyti-
cal expression including the exchange has been presented so
far, even though Kleinman,11 and later Penn,12 have reported
numerical calculations of the exchange contribution. This de-
ficiency is remedied in the present section. Our calculation is
done at nonzero temperature, with zero temperature as a spe-
cial case.

In 3D, Eq. s22d becomes

1

tsDd = −
m

2s2pd3p
E

−`

`

dv
2

f1 + ebsv−jpdgf1 − e−bvg

3E dqW2sqd
1

q
Im x0sq,vdufV+sqd − vg

3ufv − V−sqdg. s26d

We are interested in the case thatkBT,jp!EF. Therefore we
only need consider the region ofv!EF, in which,

Im x0sq,vd = −
m2v

2pq
us2kF − qd. s27d

Substituting Eq.s27d into s26d leads to

1

tsDd =
m3

s2pd3p
E

−`

`

dv
2v

f1 + ebsv−jpdgf1 − e−bvg

3 E
0

2kF

dqW2sqd. s28d

The integrations overq and v can be carried through, and
one obtains

1

tsDd =
m3e4

ppks
3

p2kB
2T2 + jp

2

1 + e−bjp
F l

l2 + 1
+ tan−1 lG , s29d

wherel=2kF /ks.
Next we move to evaluate the contribution from the ex-

change process. In 3D, Eq.s25d becomes

1

tsexd =
pe2m

s2pd3pks
E

−`

`

dv
2

f1 + ebsv−jpdgf1 − e−bvg

3E dqWsqd
Im x0sq,vd

qÎks
2 + 4kF

2 − q2
ufV+sqd − vg

3ufv − V−sqdg. s30d

By using Eq.s27d, one has

1

tsexd = −
m3e2

s2pd2pks
E

−`

`

dv
2v

f1 + ebsv−jpdgf1 − e−bvg

3 E
0

2kF

dqWsqd
1

Îks
2 + 4kF

2 − q2
. s31d

After carrying out the integrations, one obtains the final re-
sult

1

tsexd = −
m3e4

ppks
3

p2kB
2T2 + jp

2

1 + e−bjp

1
Îl2 + 2

3Fp

2
− tan−1S1

l
Î 1

l2 + 2
DG . s32d

We plot the ratio of 1/tsexd to 1/tsDd vs the Wigner-Seitz
radius rs in Fig. 2. Notice that at very high density,
u1/tsexdu! u1/tsDdu, and the direct-process-only theory is then
relatively good. On the other hand, at low density, 1 /tsexd

=−1/2tsDd, which agrees with the general conclusion of Eq.
s12d. The contribution from exchange processes therefore
cannot be ignored in most density range. Once again, the
validity of Eqs.s29d ands32d is limited to the weak-coupling
regime. They might well not hold in the low-density regime
of a real system, and should be regarded as mathematical
properties of the weak-coupling equations.

In the limiting case of small excitation energy,jp!kBT
!EF, Eq. s29d reduces to

1

tsDd =
pm3e4

2pks
3 kB

2T2F l

l2 + 1
+ tan−1 lG . s33d

In the opposite of very low temperaturekBT!jp!EF one
has

FIG. 2. The ratio of 1/tsexd over 1/tsDd via rs in 3D.
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1

tsDd =
m3e4

ppks
3jp

2F l

l2 + 1
+ tan−1 lG . s34d

In the high density limitl→`, Eq. s34d becomes

1

tsDd =
m3e4

2pks
3jp

2, s35d

a result obtained earlier by Quinn and Ferrell.9

IV. THE INVERSE LIFETIME IN 2D

As mentioned in the Introduction, there is still some dis-
agreement among the results of previous calculations of 1/te
in 2D. The main purpose of this section is to exactly evaluate
the prefactors of 1/tsDd and 1/tsexd in 2D, and at the same
time attempt to clarify the origin of those disagreements. We
present our derivations in the two different regimes ofkBT
!jp!EF and jp!kBT!EF separately. For greater clarity,
we also show our derivations for the “direct” and “exchange”
contributions in separate subsections.

A. kBT™jp: Direct process

In 2D, for kBT!jp!EF, Eq. s22d becomes

1

tsDd = −
2m

p2E
0

jp

dvFE
−kF+ÎkF

2+2mv

kF−ÎkF
2−2mv

dq+E
kF−ÎkF

2−2mv

kF+ÎkF
2−2mv

dq

+E
kF+ÎkF

2−2mv

kF+ÎkF
2+2mv

dqGqW2sqd
Im x0sq,vd

Î4p2q2 − s2mv + q2d2
.

s36d

The three regions of integration, at a given value ofv are
shown in Fig. 3. It can be shown22 below that the first and
the third terms in the square bracket make no contributions
to the leading order ofOsjp

2 ln jpd, which arises only from
the second term. We denote the contributions from the first
and the third terms to 1/tsDd as 1/tI+III

sDd . We start with the
expression for Imx0sq,vd in 2D, which is

Im x0sq,vd =
m

pq2hufkF
2q2 − smv + q2/2d2g

3ÎkF
2q2 − smv + q2/2d2 − ufkF

2q2

− smv − q2/2d2gÎkF
2q2 − smv − q2/2d2j.

s37d

Therefore,

1

tI+III
sDd =

m2

p3E
0

jp

dvFE
−kF+ÎkF

2+2mv

kF−ÎkF
2−2mv

dq+E
kF+ÎkF

2−2mv

kF+ÎkF
2+2mv

dqG
3 q−1W2sqdÎkF

2q2 − smv − q2/2d2

p2q2 − smv + q2/2d2 . s38d

It is straightforward to show that

kF
2q2 − smv − q2/2d2 , p2q2 − smv + q2/2d2 s39d

in the above integral. Thus, we have

1

tI+III
sDd ,

m2

p3E
0

jp

dvFE
−kF+ÎkF

2+2mv

kF−ÎkF
2−2mv

dq

+E
kF+ÎkF

2−2mv

kF+ÎkF
2+2mv

dqGq−1W2sqd. s40d

Evidently the leading order of the two terms on the right-
hand side of the above inequality is bothOsjp

2d. Hence we
have shown that the first and third terms in Eq.s36d have no
contributions to the leading order ofOsjp

2 ln jpd.
Hereafter we therefore focus only on the calculation of

the second term. In region II, for smallv,

Im x0sq,vd = −
2m2v

pqÎ4kF
2 − q2

. s41d

Substituting the above equation into Eq.s36d leads to

1

tsDd =
4m3

p3 E
0

jp

dvvE
kF−ÎkF

2−2mv

kF+ÎkF
2−2mv

dqW2sqd

3
1

Îf4kF
2 − q2gf4p2q2 − s2mv + q2d2g

. s42d

Thus we have

1

tsDd =
4m3

p3 E
0

jp

dvvQ1svd, s43d

where

Q1svd =E
kF−ÎkF

2−2mv

kF+ÎkF
2−2mv

dqW2sqd
1

qs4kF
2 − q2d

s44d

or, to leading order,

FIG. 3. The three regions of integration overq, at givenv, in
Eq. s36d are labeled I, II, and III, respectively. Only region II con-
tributes to the leading order in 2D.
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Q1svd =E
mv/kF

2kF−mv/kF

dqW2sqd
1

qs4kF
2 − q2d

. s45d

Evidently, the integral in Eq.s45d has a logarithmic diver-
gence at both the upper and lower limits. We split it into two
parts

Q1svd = Q1
sadsvd + Q1

sbdsvd, s46d

where

Q1
sadsvd =E

mv/kF

kF

dqW2sqd
1

qs4kF
2 − q2d

s47d

and

Q1
sbdsvd =E

kF

2kF−mv/kF

dqW2sqd
1

qs4kF
2 − q2d

. s48d

To leading order,Q1
sadsvd andQ1

sbdsvd can be evaluated as

Q1
sadsvd = − W2s0d

1

4kF
2 ln

mv

kF
2 s49d

and

Q1
sbdsvd = − W2s2kFd

1

8kF
2 ln

mv

kF
2 . s50d

Therefore, in summary,

Q1svd = −
1

8kF
2 f2W2s0d + W2s2kFdgln

mv

kF
2 . s51d

Substituting Eq.s51d into s42d, and performing the integra-
tion overv, we finally arrive at

1

tsDd =
jp

2

4pEF
FW̄2s0d +

1

2
W̄2s2kFdGln

2EF

jp
, s52d

where we have defined the dimensionless quantity

W̄sqd ;
m

p
Wsqd. s53d

The quantity in the square brackets of Eq.s52d can be ex-
pressed in terms of the Wigner-Seitz radiusrs as follows:

W̄2s0d +
1

2
W̄2s2kFd = 1 +

1

2S rs

rs + Î2
D2

. s54d

The fact that Eq.s45d also has a logarithmic contribution
from the upper limit of integration atq.2kF was missed in
almost all previous analytical calculations. This is one of the
main reasons leading to errors in the numerical prefactor of
the lifetime. The second term in the square brackets of Eq.
s52d is absent in the works of Refs. 2, 18, and 20. Jungwirth
and MacDonald17 were the first to clearly recognize the ex-
istence of the 2kF term: however, they made a further ap-
proximation in replacing the square of the effective interac-

tion W̄2sqd by the average ofW̄s0d2 and W̄s2kFd2. Equation
s52d above shows that to leading order injp

2 ln jp this is not

quite correct:W̄s2kFd2 enters the expression for the inverse

lifetime with half the weight ofW̄s0d2. Of course Eq.s52d is
only valid swithin the RPAd at the very lowest energies and
temperatures, where the frequency dependence of the effec-
tive interaction becomes irrelevant. Jungwirth and
MacDonald17 have shown that at higher energies and/or tem-
peratures the use of the “average” approximation for the
wave-vector dependence of the interaction results in very
good agreement with their full-fledged numerical calcula-
tions. We have nothing to say about this: our aim here is
simply to obtain the correct low-energy asymptotics for the
lifetime, of which Eq.s52d gives the direct part within the
RPA.

Except for the work by Reizer and Wilkins,20 all the cal-
culations cited above in 2D explicitly consider only the di-
rect process, without taking account of the exchange process,
which we deal with in the next subsection.

B. kBT™jp: Exchange process

In 2D, for kBT!jp!EF, Eq. s25d becomes

1

tsexd =
2m

s2pd2E
0

jp

dvFE
−kF+ÎkF

2+2mv

kF−ÎkF
2−2mv

dq+E
kF−ÎkF

2−2mv

kF+ÎkF
2−2mv

dq

+E
kF+ÎkF

2−2mv

kF+ÎkF
2+2mv

dqGqWsqdfWs0d + WsÎ4kF
2 − q2dg

3
Im x0sq,vd

Î4p2q2 − sq2 + 2mvd2
. s55d

Again only the second term in the square bracket contributes
to the leading order. Thus,

1

tsexd = −
4m3

ps2pd2E
0

jp

dvvQ2svd, s56d

where

Q2svd =E
kF−ÎkF

2−2mv

kF+ÎkF
2−2mv

dq
1

qs4kF
2 − q2d

WsqdfWs0d

+ WsÎ4kF
2 − q2dg. s57d

To the leading order,

Q2svd = −
1

4kF
2 Ws0dfWs0d + 2Ws2kFdgln

mv

kF
2 . s58d

Substituting Eq.s58d into Eq. s56d and performing the inte-
gration overv, we arrive at

"

tsexd =
jp

2

16pEF
W̄s0dfW̄s0d + 2W̄s2kFdgln

jp

2EF
. s59d

In Fig. 4, we show the ratio of 1/tsexd to 1/tsDd vs rs. The
remarkable fact is that, at variance with the 3D case, this
ratio does not vanish forrs→0. The reason for this differ-
ence can be understood as follows. In 3D atypical scattering
process near the Fermi surface, such as the one shown in Fig.
1sad, involves two particles that are well separatedsby a
wave vector of the order of 2kFd in momentum space. The
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direct scattering amplitude for such a process is maximum
when the momentum transferq is much smaller thankF, and
is thus typically proportional toWs0d. The exchange scatter-
ing amplitude, on the other hand, is of the order ofWs2kFd
for all values ofq: hence the ratio of 1/tsexd to 1/tsDd goes as
Ws0dWs2kFd /Ws0d2, which vanishes forrs→0. The reason
why this argument fails in 2D is that the logarithmic contri-
bution to the inverse lifetime in the high density limit does
not arise from typical scattering processes, but rather, from
special ones in which the two colliding particles are very
close in momentum spacefsee Fig. 1sbdg: hence the direct
and the scattering amplitude are comparable, and give simi-
lar contributions to the inverse lifetime. A careful analysis of
the integrals involved shows that in the high density limit,
the exchange contribution cancels1

4 of the direct contribution
to the inverse lifetime. This result is at variance with that of
Ref. 20, according to which the exchange contribution can-
cels 1

2 of the direct one. We find that the relation 1/tsexd

=−1/2tsDd holds only in the low density limitfsee Eq.s12d
and Fig. 4g, where the weak coupling theory is not reliable.

Combining direct and exchange contributions in a single
formula we finally find that

1

te
=

jp
2

4pEF
F3

4
W̄s0d2 +

1

2
W̄s2kFd2 −

1

2
W̄s0dW̄s2kFdGln

2EF

jp
,

s60d

where the quantity in the square brackets is given by

3

4
−

rs

Î2srs + Î2d2
. s61d

Thus in the high density limit the total inverse lifetime dif-
fers by a factor34 from the result of the direct-scattering-only
calculation, and by a factor32 from the result of Ref. 20.

C. jp™kBT: Direct process

For jp!kBT!EF, Eq. s22d becomes

1

tsDd = −
m

p2FE
−`

0

dvE
−q−svd

q+svd

dq+E
0

m+jp

dvE
q−svd

q+svd

dqG
3

1

shbv

qW2sqdIm x0sq,vd
Î4p2q2 − s2mv + q2d2

, s62d

whereq±svd are the solutions of the equationV+sqd=v,

q±svd = fp ± Îp2 − 2mvg. s63d

Again, only the regime ofv!EF contributes to 1/tp
sDd to the

accuracy of the leading order. Thus, by using Eq.s41d, one
has

1

tsDd =
2m3

p3 E
−`

`

dv
v

shbvFE−kF+ÎkF
2+2muvu

kF−ÎkF
2−2muvu

dq

+E
kF−ÎkF

2−2muvu

kF+ÎkF
2−2muvu

dq+E
kF+ÎkF

2−2muvu

kF+ÎkF
2+2muvu

dqG
3 W2sqd

1
Î4p2q2 − s2mv + q2d2

1

Î4kF
2 − q2

. s64d

Once again only the second term in the bracket makes con-
tribution to the leading order, and we find

1

tsDd =
2m3

p3 E
−`

`

dv
v

shbv
Q1svd, s65d

whereQ1svd is defined in Eq.s45d and evaluated in Eq.s51d.
Therefore

1

tsDd = −
m3

4p3kF
2 f2W2s0d + W2s2kFdgE

−`

`

dv
v

shbv
ln

mv

kF
2 ,

s66d

which can be further evaluated leading to

"

tsDd =
spkBTd2

8pEF
FW̄2s0d +

1

2
W̄2s2kFdGln

2EF

kBT
. s67d

As in the low-temperature case, the second term in the
square brackets of this equation was missed in almost all the
previous theories except the one by Jungwirth and
MacDonald,17 which, however, overestimates it by a factor 2.
Without the second term in the square bracket, Eq.s67d
would agree with the expression obtained by Zheng and Das
Sarma18 and by Reizer and Wilkins,20 but it would be four
times smaller than the result of Fukuyama and Abrahams,13

andp2/4 times larger than the result of Giuliani and Quinn.2

D. jp™kBT: Exchange process

In 2D, for kBT@jp, Eq. s25d becomes

1

tsexd =
m

4p2FE
−`

0

dvE
−q−svd

q+svd

dq+E
0

m+jp

dvE
q−svd

q+svd

dqG
3

1

shbv

Im x0sq,vd
Î4p2q2 − s2mv + q2d2

WsqdqfWs0d

+ WsÎ4kF
2 − q2dg. s68d

FIG. 4. The ratio of 1/tsexd over 1/tsDd via rs in 2D.
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Proceeding as in the previous section we rewrite this as

1

tsexd = −
m3

2p3E
−`

`

dv
v

shbv
Q2svd, s69d

whereQ2svd is defined in Eq.s57d and evaluated in Eq.s58d.
Therefore

1

tsexd =
m3

8p3kF
2 Ws0dfWs0d + 2Ws2kFdgE

−`

`

dv
v

shbv
ln

mv

kF
2 ,

s70d

which can be, to the leading order, further simplified to

1

tsexd =
spkBTd2

32pEF
W̄s0dfW̄s0d + 2W̄s2kFdgln

kBT

2EF
. s71d

The ratio of 1/tsexd to 1/tsDd is therefore found to be the
same as that in the case ofkBT!jp, which has been plotted
in Fig. 4.

Combination of 1/tsDd in Eq. s67d and 1/tsexd in Eq. s71d
thus yields

1

te
= −

spkBTd2

32pEF
f3W̄2s0d + 2W̄2s2kFd − 2W̄s0dW̄s2kFdgln

kBT

2EF
.

s72d

Notice the difference between the above result and the one
obtained in Ref. 20.

V. COMPARISON WITH EXPERIMENTAL RESULTS
IN 2D

Consider two identical 2D electron liquids in closely
spaced quantum wells between which a small potential dif-
ferenceV is maintained. We expect a small tunneling current
between the layers. However, as Fig. 5 shows, no tunneling
is possible in the absence of impurities and electron interac-
tions. This is because under those unrealistic assumptions
both the energy and the momentum of the electron must be
conserved during tunneling, and there are simply no states
satisfying these conditions.

The situation changes profoundly if electron-electron in-
teractions are allowed. Now momentum is still conservedsif
impurity scattering and surface roughness are negligibled but
the energy of the electron quasiparticle is no longer a well
defined quantity, due to the possibility of inelastic scattering
processes involving other electrons in each quantum well. As
a result, tunneling becomes possible in a region of voltages
−G,V,G, whereG is the width at half maximum of the
plane-wave spectral function in a well,7 i.e.,

AsE,jpd =
1

2p

Gsjp,Td
sE − jpd2 + fGsjp,Td/2g2 . s73d

From the well-known relation AsE,jpd
=−s1/pdIm GretsE,jpd, where GretsE,jpd is the retarded
Green’s function, one can show that the spectral widthG is
just the inverse of the lifetime of a plane wave state, which is
the sum of the lifetimes of electron and hole quasiparticles in
the following manner:17,21

Gsjp,Td =
1

tesjp,Td
+

1

thsjp,Td
. s74d

The principle of detailed balance demands

nsjp,Td
te

=
1 − nsjp,Td

th
, s75d

wherensjp,Td is the thermal occupation number at tempera-
ture T. If we assumejp!kBT and approximateGsjp,Td by
Gsjp=0,Td, we see from the above equations that the half
width at half maximum of the tunneling conductance peak is
expressed in terms of the electron quasiparticle lifetime as
follows:

G =
2

tes0,Td
. s76d

We can now attempt a comparison between the experi-
mental values ofG from Ref. 7 and the theoretical values of
2/tes0,Td. This is shown in Fig. 6. It must be kept in mind
that, in order to perform a meaningful comparison, one must
first subtract from the experimental data aspresumablyd
temperature-independent constant due to residual disorder.

FIG. 5. Momentum- and energy-conserving tunneling between
two identical free-electron bands separated by a potential difference
eV is possible only if the spectral width of the single particle states
in each bandsindicated by the shaded regionsd is at least as large as
eV.

FIG. 6. Electron relaxation rateG in 2D. Experimental data are
from Ref. 7, calculated ones are from Eq.s72d. HereTF=EF /kB.
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The value of this constant is determined by the condition that
G tend to zero forT→0. Even after this subtraction we see
that the theoretical curve lies well below the experimental
data. Furthermore, the shortcomings in Refs. 17 and 18 as
revealed in this paper imply that the “excellent agreement”
with experiment claimed in those papers is overly optimistic,
as pointed out earlier by Reizer and Wilkins.20

We note that all derivations presented in this paper are to
the accuracy of the leading logarithmic term. Calculations
including higher order terms might bring in a better agree-
ment with the experimental data. However, it seems too op-
timistic to believe that the huge differencesroughly a factor
4d between theory and experiment is totally due to such
higher order contributions. The size of the discrepancy sug-
gests that there might be other factors playing a role, such as
the finite width of the quasi-two-dimensional system,
electron-impurity scattering, electron-phonon scattering, and
surface roughness. While the inclusion of these effects may

help to produce better agreement with experiments, it re-
mains a great challenge for experimentalists to device the
conditions that will eventually allow them to probe the truly
intrinsic behavior of the electron liquid.

ACKNOWLEDGMENTS

We gratefully acknowledge support by NSF Grant Nos.
DMR-0074959 and DMR-0313681. We especially thank
Gabriele Giuliani for many valuable discussions.

APPENDIX

In this appendix, we give the details of the derivation of
Eq. s23d. To this end, we denote the left-hand side of Eq.s23d
as A3 and A2 for 3D and 2D cases, respectively. In 3D,A3
can be rewritten as

A3 = e2E
0

p

du8 sinu8E
0

2p

df8dSv +
pqcosu8

m
+

q2

2m
D 1

p2 + k2 + ks
2 − 2pkfcosu cosu8 + sinu sinu8 cossf − f8dg

, sA1d

wheresu ,fd andsu8 ,f8d are the spherical angles ofk andp,
respectively, relative toq. Carrying through thef8 integra-
tion, one obtains

A3 = 2pe2E
−1

1

dxdSv +
pqx

m
+

q2

2m
D

3
1

Îsp2 + k2 + ks
2 + 2pkcosuxd2 − 4spksinud2s1 − x2d

.

sA2d

The integral in the above equation is trivial due to thed
function, and it leads to

A3 =
2pme2ufV+sqd − vgufv − V−sqdg

pqÎfp2 + k2 + ks
2 − k ·qg2 − fk2 − sk · q̂d2gf4p2 − q2g

,

sA3d

where we have used the fact that 2mv!ks
2. Putting in this

expression the approximate equalitiesk,p,kF and k ·q,
−q2/2 fwhich follows from the conditionjk −jq+k =v.0
due to the firstd function in Eq.s18dg one easily arrives at
Eq. s23d in the 3D case.

In 2D, A2 can be explicitly written as

A2 = e2E
0

2p

df8dsv + pqcosf8/m+ q2/2md

3
1

Îp2 + k2 − 2pkcossf − f8d + ks

sA4d

or

A2 = e2E
0

p

df8dsv + pq/mcosf8 + q2/2md

3 F 1
Îp2 + k2 − 2pkcossf − f8d + ks

+
1

Îp2 + k2 − 2pkcossf + f8d + ks
G . sA5d

Carrying out the integration overf8 yields

A2 =
me2ufV+sqd − vgufv − V−sqdg

Îp2q2 − smv + q2/2d2

3 S 1

Îp2 + k2 + k ·q − Îfk2 − sk · q̂d2gf4p2 − q2g + ks

+
1

Îp2 + k2 + k ·q + Îfk2 − sk · q̂d2gf4p2 − q2g + ks
D .

sA6d

Substituting, as in the 3D case, the approximate equalities
k,p,kF andk ·q,−q2/2 one finally arrives at Eq.s23d in
2D.
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