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PHASE RETRIEVAL IN FRAME THEORY

Dorsa Ghoreishi

Dr. Peter G. Casazza, Dissertation Suppervisor

ABSTRACT

This dissertation is the study of phase retrieval in frame theory. The first part is

concerned with the analysis of phase retrieval and the complete classification of norm

retrieval. Norm retrieval is essential to transfer the properties of phase retrieval to

the complement space. The first section includes the results regarding projections

and also the characterization of phase retrieval and norm retrieval for subspaces. The

second part is the study of weak phase retrieval which was motivated by the idea of

reducing the number of vectors satisfying the properties close to phase retrieval. The

last section provides the correlation between weak phase retrieval and phase retrieval

properties along with the examples illustrating the relationship between weak phase

retrieval and the related concepts.
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Chapter 1

Introduction

Frames for Hilbert space were formally introduced by Duffin and Schaeffer in 1952

while studying deep questions in non-harmonic Fourier series. Frames have been

used in noise and erasure reduction, compressed sensing, sampling theory, data quan-

tization, quantum measurements, coding, image processing, wireless communications,

time-frequency analysis, speech recognition, bio-imaging, and much more. Nowadays,

frames have broad application to problems in pure mathematics, applied mathemat-

ics, engineering and more. Frame theory has proven to be a powerful area of research

with applications. One of the problems we can ask in frame theory is how to classify

and reconstruct frames to be able to use them in more applied problems. This can

often be very difficult if not impossible in practice.

This dissertation is dedicated to the study of phase retrieval properties for the

applications in different problems such as engineering problems. We will provide

the classifications for phase retrieval, norm retrieval and weak phase retrieval by

developing and generalizing the known results and distributing them to completely

study the norm retrieval properties over subspaces and in the complement space as

well as defining the weak phase retrieval property.
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1.0.1 Frames

In this section, we introduce some of the basic definitions and results from frame

theory. Throughout this dissertation, Hm denotes an m dimensional real or complex

Hilbert space and we will write Rm or Cm when it is necessary to differentiate between

the two. We start with the definition of a frame in Hm.

Definition 1.0.1. A family of vectors Φ = {φi}ni=1 in Hm is a frame if there are

constants 0 < A ≤ B <∞ so that for all x ∈ Hm

A‖x‖2 ≤
n∑
i=1

|〈x, φi〉|2 ≤ B‖x‖2,

we have:

1. A and B are the lower and upper frame bounds of the frame

2. The frame is called an A-tight frame if A = B

3. The frame is called a Parseval frame if A = B = 1

4. If we only assume 0 < B <∞ then it is called a B-Bessel sequence

5. Φ is called an equal norm frame if ‖φi‖ = ‖φj‖ for all i, j and is called a

unit norm frame if ‖φi‖ = 1 for all i ∈ [n]

In finite dimensions, the definition of a frame is equivalent to a spanning set.

However, in infinite dimensions there are examples of spanning sets which do not

satisfy the frame inequality. It is important to note that there are no restrictions on

the frame vectors. For example, if {ei}mi=1 is an orthonormal basis for Hm , then

{e1, 0, e2, 0, . . . , 0, em}
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and

{e1,
e2√

2
,
e2√

2
,
e3√

3
,
e3√

3
, . . . ,

em√
m
, . . . ,

em√
m
}

are both Parseval frames for Hm. Zeros and repetitions are allowed.

We refer to [1] for an introduction to Hilbert space frame theory and applications.

The following are certain operators associated with frames:

The analysis operator for a frame Φ = {φi}ni=1 is defined as the operator

T : Hm → `n2 to be

Tx = (〈x, φ1〉 , 〈x, φ2〉 , · · · , 〈x, φn〉) =
n∑
i=1

〈x, φi〉 ei = {〈x, φi〉}ni=1, for all x ∈ Hm.

Here, {ei}ni=1 is understood to be the natural orthonormal basis for `n2 .

The synthesis operator T ∗ which is the adjoint of the analysis operator T for

frame Φ = {φi}ni=1 is as:

T ∗({ai}ni=1) =
n∑
i=1

aiφi

It is clear that T ∗(ei) = φi.

Notice that we can represent it as a m× n matrix:

T ∗ =

 φ1 φ2 . . . φn



where the columns of T ∗ represents the coefficients of the frame vectors with

respect to {ei}ni=1.

Notice that the columns of the synthesis operator in the matrix format, represent

3



the coefficients of the frame vectors, then the square sum of each column represents

the square norm of the frame vectors. Therefore a frame is equal norm if the square

sum of all of the columns gives the same constant. Combining the synthesis operator

and analysis operator creates frame operator:

The frame operator for the frame Φ is defined as S = T ∗T : Hm → Hm. That

is,

Sx = T ∗T (x) =
n∑
i=1

〈x, φi〉φi for all x ∈ Hm

and the Gram matrix is GT = T ∗T = (〈φi, φj〉)ni,j=1

Note that the frame operator S is a positive, self-adjoint and invertible operator

satisfying the operator inequality A · I ≤ S ≤ B · I, where A and B are the frame

bounds and I denotes the identity on Hm.

Suppose GT is the Gram matrix. If {φi}ni=1 is a frame with frame operator S,

having eigenvalues {λi}mi=1, then

n∑
i=1

‖φi‖2 = Tr (GT ) = Tr (S) =
m∑
j=1

λj.

So if {φi}ni=1 is an equal norm Parseval frame then,

‖φ1‖2 =
1

n

n∑
i=1

‖xi‖2 =
m

n

We can use the frame operator to reconstruct the vectors in the space. To be

precise, any x ∈ Hm can be written as

x = SS−1x = S−1Sx =
n∑
i=1

〈
S−1x, φi

〉
φi =

n∑
i=1

〈
x, S−1φi

〉
φi (1.1)
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And also,

n∑
i=1

〈
x, S−1/2φi

〉
S−1/2φi = S−1/2

(
n∑
i=1

〈
S−1/2x, φi

〉
φi

)

= S−1/2(S(S−1/2x)) = x

so {S−1/2φi}ni=1 is a Parseval frame. One reformulation of the frame definition is

that the numerical range of S, the set 〈Sx, x〉 for all ‖x‖ = 1, is an interval in the

positive real numbers. Since S is invertible, the family {S−1φi} is also a frame for H

called the canonical dual frame. It is also known that a frame is Parseval if and

only if its frame operator is the identity operator.

The analysis operator of a Parseval frame is an isometry and the frame opera-

tor is the identity operator. Thus, if {φi}ni=1 is a Parseval frame, it follows from

equation (1.1) that

x =
n∑
i=1

〈x, φi〉φi for all x ∈ Hm

Let T : Hm → Hm be a linear operator. A nonzero vector x ∈ Hm is an eigenvector

of T with eigenvalue λ if

Tx = λx

The operator T is diagonalizable if there exists an orthonormal basis for Hm

consisting of eigenvectors for T . Notice that this definition is quiet different than

the standard definition which says an operator is diagonalizable if there is some basis

consisting of eigenvectors for T.

5



If P is a projection with respect to a frame in Hm , we have:

〈Px, x〉 =
〈
P 2x, x

〉
= 〈Px, Px〉 = ‖Px‖2

so that P is a positive operator. If P : Hm → W and dimW = m, then P has

eigenvalue 1 with multiplicity m and eigenvalue 0 of multiplicity m− n.

The next result, known as Naimark’s theorem, characterizes Parseval frames in a

finite dimensional Hilbert space. This theorem facilitates a way to construct Parseval

frames, and crucially it is the only way to obtain Parseval frames. Later, we use this

to obtain a classification of frames which satisfy norm retrieval.

Theorem 1.0.2 (Naimark’s Theorem). [2] Let Φ = {φi}ni=1 be a frame for Hm with

analysis operator T , let {ei}ni=1 be the standard basis of `n2 , and let P : `n2 → `n2 be the

orthogonal projection onto range T . Then {φi}ni=1 is a Perseval frame for Rm if and

only if Pei = Tφi for all i ∈ [n].

Moreover, the Naimark Complement is {(I − P )ei}ni=1.

Notice that the Naimark complement is only defined for Parseval frames and up

to a unitary equivalence, that is, if {φi}ni=1 ⊂ Hm and {ψi}ni=1 ⊂ Hn−m are Naimark

complements, and U and V are unitary operators, then {Uφi}ni=1 and {V ψi}ni=1 are

also Naimark complements.

With a slight abuse of notation we have:

Theorem 1.0.3. Φ = {φi}ni=1 is a Parseval frame for Hm if and only if there is an n

dimensional Hilbert space Hm ⊂ Kn with an orthonormal basis {ei}ni=1 such that the

orthogonal projection P : Km → Hm satisfies Pei = φi for all i ∈ [m]. Moreover the

Naimark complement of Φ is {(I − P )ei}ni=1

6



Throughout this dissertation, an orthogonal projection or simply a projection is a

self-adjoint projection.

In order to reconstruct an arbitrary frame without satisfying any strong properties

like Parseval frame properties we can use a type of frames called dual frames:

Let Φ = {φi}ni=1 be a frame for Hm. A frame {ψi}mi=1 is called a dual frame for

Φ if for all x ∈ Hm,

x =
m∑
i=1

〈x, φi〉ψi

What if the frame is linearly dependent? In this case the decomposition of a signal

with respect to a frame is not unique. In order to have a unique decomposition with-

out using strong conditions like orthogonality, we can use Riesz bases which provides

uniqueness without using any specific property.

Definition 1.0.4. A frame {φi}ni=1 in Hm is called Riesz basis for Hm, if for all

scalars {ai}ni=1,

A

n∑
i=1

|ai|2 ≤ ‖
n∑
i=1

aiφi‖2 ≤ B

n∑
i=1

|ai|2

when A and B are lower and upper Riesz bounds.

A frame {φi}ni=1 is said to be bounded if there is a constant C > 0 such that for

all i ∈ [n], ‖φi‖ ≥ C.

Two sets of vectors {φi}ni=1 and {ψi}ni=1 are equivalent if the operator L such that

L(φi) = ψi is a well defined bounded invertible operator.

7



One of the variations of frames is to scale its frame vectors . If by scaling a frame

we get a Parseval frame then we can say that the frame was scalable. Notice that

the scaling of frames is related to the notion of signed frames, weighted frames and

controlled frames (see [26], [27]). Here is the definition of scalable frames:

Definition 1.0.5. A frame Φ = {φi}i∈I for Hm is called scalable if there exist scalars

ci ≥ 0, i ∈ I, such that {ciφi}i∈I is a Parseval frame. Also we will have:

• If ci > 0 for all i ∈ I, then Φ is called positively scalable.

• If there exists δ > 0, such that ci ≥ δ for all i ∈ I, then Φ is called strictly

scalable.

For finite frames, positive and strict scalability are the same, and each scaling

{ciφi}i∈I of a finite frame {ci}i∈I with positive scalars ci is again a frame. In the

infinite dimensional situation this might not be the case. However, if there exist

m1,m2 > 0 such that m1 ≤ ci ≤ m2 holds for all i ∈ I, then also {ciφi}i∈I is a frame.

8



Chapter 2

Phase Retrieval and Norm
Retrieval

In this section, we will give the formal definitions of phase retrieval, phaseless recon-

struction, and norm retrieval.

2.0.1 Start of Phase Retrieval

Phase retrieval contains methods for recovering the phase of a signal given its inten-

sity measurements from a redundant linear system. Recovering signals when there is

partial loss of information is a significant challenge. Partial loss of phase information

occurs in application areas such as speech recognition, and optics applications such

as X-ray crystallography, and there is a need to do phase retrieval efficiently. X-ray

crystallography is the most well-known application of phase retrieval, in which physi-

cists expose a crystal to X-rays in order to determine its molecular geometry; First

the X-rays are taken repeatedly as the crystal rotates. When the X-ray beam hits

the atom, it gets diffracted in many patterns. Diffraction patterns will correspond to

the modulus-squared of the object’s Fourier transform.
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In the 1950’s this was the technology that led to the discovery that DNA is a

double helix which ultimately won Watson and Crick a Nobel Prize.

In recent years, phase retrieval has become foundational to the related applica-

tion of coherent diffractive imaging in which one attempts to image nanoscale objects

based on the diffraction pattern measured after the object is exposed to powerful

X-ray beams. In speech recognition technology, reconstruction of a signal using noisy

phase or its estimation can be a critical problem needing phase retrieval.

In the discrete setting, these measurements correspond to the magnitude of the

inner products with the given frame vectors, or | 〈x, φi〉 |. Measurements of this type

have an inherent ambiguity, since | 〈x, φi〉 | = |
〈
eiθx, φi

〉
| for all θ ∈ Rn. By phase,

we are referring to the unimodular portion of the polar decomposition of x i.e |eiθ|.

2.0.2 Main Problems and Definitions

Phase retrieval has been defined for vectors as well as for projections and in general

deals with recovering the phase of a signal given its intensity measurements from a

redundant linear system. Phase retrieval by projections, where the signal is projected

onto some lower dimensional subspaces and has to be recovered from the norms of the

projections of the vectors onto the subspaces, appears in real life problems such as

crystal twinning [17]. We refer the reader to [3] for a detailed study of phase retrieval

by projections.

Another related problem is that of phaseless reconstruction, where the unknown

signal is reconstructed from the intensity measurements. Recently, the two terms

phase retrieval and phaseless reconstruction were used interchangeably. However, it

is not clear from their respective definitions how these two are equivalent. Recently,

in [15] the authors proved the equivalence of phase retrieval and phaseless reconstruc-

tion in the real as well as in complex case.

10



For consistency in this dissertation, we restrict ourselves to provide results re-

garding phase retrieval. Further, a weaker notion of phase retrieval and phaseless

reconstruction [5] will be introduced in the next chapter.

In phase retrieval, one of the main questions is to figure out how to design measure-

ment vectors {φi}ni=1 so that any vector x can be determined from {| 〈x, φi〉 |2}ni=1?

There are two main approaches to this problem of phase retrieval. The first one is

to restrict the problem to a subclass of signals on which the intensity measurements

become injective which is known as classical phase retrieval . The other approach is

to use a larger family of measurements so that the intensity measurements map any

signal injectively.

Definition 2.0.1. (Classical Phase Retrieval) A family of vectors {φi}ni=1 in Hm

allows phase retrieval if for all x, y ∈ Hm satisfying |〈x, φi〉| = |〈y, φi〉| for all i ∈ [n],

then x = cy where c = ±1 in Rm (for Cm, c is in the complex unit circle)

The second approach in phase retrieval was first defined by Balan, Casazza and

Edidin [7] where they examine injectivity of intensity measurements for finite dimen-

sional Hilbert spaces. The definition of phase retrieval along with other definitions

that we mostly use throughout this dissertation is as follows:

Definition 2.0.2. Let Φ = {φi}ni=1 be a family of vectors ∈ Hm. For every non-zero

x, y ∈ Hm satisfying:

|〈x, φi〉| = |〈y, φi〉| for all i ∈ [n]

1. If this implies there exist |θ| = 1 such that xi = θyi then Φ yields phase re-

trieval with respect to an orthonormal basis {ei}mi=1 when xi = 〈x, ei〉.

11



2. A family of projections {Pi}ni=1 on Hm does phase retrieval if for all x, y ∈ Hm,

‖Pix‖2 = ‖Piy‖2 implies x = θy for some |θ| = 1.

3. phaseless reconstruction if there is a |θ| = 1 such that x = θy.

4. If this implies ‖x‖ = ‖y‖ then Φ yields norm retrieval.

We note that tight frames {φi}mi=1 for Hm do norm retrieval. Indeed, if

|〈x, φi〉| = 〈y, φi〉| for all i ∈ [m]

then

A‖x‖2 =
m∑
i=1

|〈x, φi〉|2 =
m∑
i=1

|〈y, φi〉|2 = A‖y‖2

Orthonormal bases fail to do phase retrieval, since in any given orthonormal

basis, the corresponding coefficients of a vector are unique. Phase retrieval in Rm is

classified in terms of a fundamental result called the complement property.

Definition 2.0.3. [7] A frame Φ = {φi}ni=1in Hm satisfies the complement prop-

erty if for all subsets I ⊂ [n], either span{φi}i∈I = Hm or span{φi}i∈Ic = Hm.

Notice that phase retrieval is impossible without injective intensity measure-

ments. In [7] the authors first introduced the complement property to analyze injec-

tivity in the classical phase retrieval settings. A fundamental result from [7] is:

Theorem 2.0.4 ([7]). If Φ does phase retrieval then it has complement property. In

a real Hilbert space, if Φ has complement property then it does phase retrieval.

This theorem classifies phase retrievable frames in the real setting. It follows

that if Φ = {φi}ni=1 does phase retrieval in Rm then n ≥ 2m− 1. It is also known [7]

that Φ never does phase retrieval when n < 2m− 1.

12



We can observe this by choosing n = 2m − 2. In this case, it is possible to

partition the vectors into two sets of cardinality m − 1. It is clear that complement

property fails since there are not enough vectors either of the two partitions to span

the m-dimensional space.

Notice that complement property is a necessary condition to satisfy phase re-

trieval in the complex case but the question of finding the minimum number of mea-

surements necessary to satisfy phase retrieval remains open. A counter example in

[25] disproves the conjecture which says the minimum number of vectors necessary to

satisfy phase retrieval in Cm is 4m− 4.

Full spark is another important notion of vectors in frame theory. A formal

definition is given below:

Definition 2.0.5. Given a family of vectors Φ = {φi}ni=1 in Hm, the spark of Φ

is defined as the cardinality of the smallest linearly dependent subset of Φ. When

spark(Φ) = m+ 1, every subset of size m is linearly independent, and in that case, Φ

is said to be full spark.

From the definition, it follows that full spark frames with n ≥ 2m− 1 have the

complement property and hence do phase retrieval. Moreover, if n = 2m − 1 then

the complement property implies full spark. Note that full spark is a much stronger

property than the complement property. The notion of spark is the measure of how

resilient a frame is against erasures, so full spark is a desired property of a frame.

In general, it is not necessary for a frame to be full spark in order to yield phase

retrieval; as long as our frame contains a full spark subset of 2m−1 vectors, it will do

phase retrieval. However, if the frame contains exactly 2m − 1 vectors, then clearly

it does phase retrieval if and only if it is full spark.

13



2.0.3 Subspaces and Projections

In this section we first state the properties of subspaces satisfying phase retrieval

which is based on the work in [3] and later we will provide the detailed characterization

for subspaces allowing norm retrieval. The definition of phase retrieval property for

subspaces is as follows:

Definition 2.0.6. Let {Wi}ni=1 be a collection of subspaces of Hm and let {Pi}ni=1

be the orthogonal projections of the subspaces respectively. Then we say {Wi}ni=1 on

{Pi}ni=1 does phase retrieval if for all x, y ∈ Hm satisfying

‖Pix‖ = ‖Piy‖ for all i ∈ [n]

then x = cy for some scalar |c| = 1.

Characterizing subspaces that allow phase retrieval has been studied in [3]. The

idea is to use self adjoint operators when the norms of projections was chosen as the

measurements.

The family of m×m self-adjoint real matrices with Hm×m is a m(m+1)/2 dimensional

vector space. For a family of subspaces {Wi}ni=1 in Rm with corresponding projections

Pi, define the operator T : Hm×m → Rm as TA(n) = 〈A,Pi〉HS where 〈, 〉HS is the

Hilbert-Schmidt inner product. Let {φi,j}Jij=1 be an orthonormal basis for Wi. Notice

for any x ∈ Rm,

T (xx∗)(i) = 〈xx∗, Pi〉 = Tr(xx∗Pi) = Tr(xx∗
Ji∑
j=1

φi,jφ
∗
i,j)

Since the trace has a cyclic property,

Tr(xx∗
Ji∑
j=1

φi,jφ
∗
i,j) =

Ji∑
j=1

φ∗i,jxx
∗φi,j =

Ji∑
j=1

| 〈x, φi,j〉 | = ‖Pix‖2

14



Therefore T (xx∗)(i) = ‖Pix‖2

The next lemma gives a characterization for when subspaces allow phase retrieval

in the classical phase retrieval.

Lemma 2.0.7. [8] Let Φ = {φi}ni=1 be a family of vectors in Rm. Then Φ allows phase

retrieval if and only if the null space of G : Hm×m → Rn given by GA(n) = 〈A, φiφ∗i 〉HS

does not contain a matrix of rank 1 or 2.

In [3] the authors generalized this result to projections of arbitrary ranks, it

turns out that the characterization is identical.

Corollary 2.0.8. Given subspaces {Wi}ni=1 in Rm with corresponding projections Pi,

{Wi}ni=1 allows phase retrieval if and only if there are no matrices of rank 1 or 2 in

the null space of T .

Notice that 2m − 1 is the minimum number of vectors required to do phase

retrieval, therefore we would hope to find the minimum number of subspaces required

to do phase retrieval by just analyzing the similarities between the lemma and the

corollary. The main issue here is that the space of rank 1 and rank 2 operators do not

form a subspace in Hm×m, and null spaces of T and G may (or may not) intersect this

space in fundamentally different ways. The minimal number 2m−1 for phase retrieval

with vectors since this is the least number of vectors which satisfy the complement

property in Rm. We do not have complement property for subspaces, therefore it

makes it harder to find the minimum number of subspaces satisfying phase retrieval.

The following results from [3] will provide the characterization for subspaces

doing phase retrieval which is based on lemma 2.0.7 and corollary 2.0.8 and we state

it without the proof.

Corollary 2.0.9. [3] Let {Wi}ni=1 be subspaces of Hm doing phase retrieval. For every

orthonormal basis {φi,j}Jij=1 of {Wi}, the set Φ = {φi,j}n,Jii=1,j=1 allows phase retrieval
15



in Rm.

Lemma 2.0.10. [3] Let P be the orthogonal projection onto an n-dimensional sub-

space W ⊂ Rm. Given x, y ∈ Rm the following are equivalent:

1. ‖Px‖ = ‖Py‖

2. There exists an orthonormal basis {φi}ni=1 for W such that | 〈x, φi〉 | = | 〈y, φi〉 |

for all i ∈ [n]

Combining the previous corollary and lemma, we can now see the characteriza-

tion of subspaces allowing phase retrieval in Rm in terms of the complement property.

Theorem 2.0.11. [3] Let {Wi}ni=1 be subspaces of Rm . The following are equivalent:

1. {Wi}ni=1 allows phase retrieval for Rm

2. For every orthonormal basis {φi,j}Jij=1 of {Wi} the set {φi,j}Jij=1 allows phase

retrieval in Rm and thus has the complement property.

It is interesting to observe that we can also use theorem 2.0.11 for subspaces

and not only vectors. Take each Wi and split this subspace into orthogonal subspaces

which span Wi. It is important to note that we used orthogonal bases in the previous

theorem since complement property is very convenient to apply.

Corollary 2.0.12. Let {Wi}ni=1 be subspaces of Rm . The following are equivalent:

1. {Wi}ni=1 allow phase retrieval for Rm

2. For every choice of orthogonal subspaces {Zi,j}Jij=1 where ⊕Jij=1Zi,j = Wi the sub-

spaces {Zi,j}n,Jii=1,j=1 allow phase retrieval in Rm

16



2.0.4 Norm Retrieval

One of the major questions in this context is about complements of the subspaces; If

{Wi}ni=1 do phase retrieval, do {W⊥
i }ni=1 yield phase retrieval? In other words, if we

move to the complements of our subspaces, do we still have phase retrieval property?

It is shown in [3] that this is not true in general. Norm retrieval is the property

needed to pass phase retrieval to orthogonal complements. In this section, we will

see some properties of norm retrieval along with certain related results, and pertinent

examples.

Definition 2.0.13. Let {Wi}ni=1 be a collection of subspaces in Hm and let {Pi}ni=1

be the orthogonal projections onto each of these subspaces. We say that {Wi}ni=1 (or

{Pi}ni=1) yields norm retrieval if for all x, y ∈ Hm satisfying ‖Pix‖ = ‖Piy‖ for all

i = 1, 2, . . . , n then ‖x‖ = ‖y‖.

In particular, a set of vectors {φi}ni=1 in Hm does norm retrieval, if for x, y ∈ Hm

satisfying |〈x, φi〉| = |〈y, φi〉| for all i ∈ [n] then ‖x‖ = ‖y‖.

Remark 2.0.14. It is immediate that a family of vectors allowing phase retrieval,

satisfies norm retrieval. However the converse might not hold in general since we

might have too few vectors to span the space.

An obvious choice of vectors which do norm retrieval are orthonormal bases. For

example, let {ei}mi=1 be an orthonormal basis in Hm. Now, for x ∈ Hm, |〈x, φi〉| =

|〈x, ei〉| = |xi| . Thus
m∑
i=1

|〈x, φi〉|2 =
m∑
i=1

|xi|2 = ‖x‖2.

The following theorem provides a sufficient condition under which the subspaces

spanned by the canonical basis vectors allow norm retrieval.

17



Theorem 2.0.15. Let {ei}mi=1 be an orthonormal basis in Hm. Let {Wj}kj=1 be sub-

spaces of Hm where each Wj = span{ei}i∈Ij , Ij ⊆ [m]. If there exists M such that for

all j, |{j : ei ∈ Wj}| = M , then {Wj}kj=1 does norm retrieval.

Proof. Let Pj be orthogonal projections onto Wj, for all j. Now, by assumption, we

have

k∑
j=1

‖Pjx‖2 =
k∑
j=1

∑
i∈Ij

|〈x, ei〉|2 = M

m∑
j=1

|〈x, ej〉|2 = M‖x‖2

It is easy to see that tight frames do norm retrieval:

Theorem 2.0.16. Tight frames do norm retrieval.

Proof. Let {φi}ni=1 in Hm be an A-tight frame. If

|〈x, φi〉| = 〈y, φi〉|, for all i ∈ [n]

then

A‖x‖2 =
n∑
i=1

|〈x, φi〉|2 =
n∑
i=1

|〈y, φi〉|2 = A‖y‖2

which proves that ‖x‖ = ‖y‖ which satisfies norm retrieval.

It is important to characterize different subspaces that do norm retrieval and see

if the union of subspaces also carry the same properties as each one. Observe that

if {φi}ni=1 ∈ Hm allow norm retrieval so does {φi}ni=1 ∪ {ψj}kj=1 for any {ψj} ∈ Hm.

This is generalized in the following proposition.
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Proposition 2.0.17. If the family of projections with respect to an orthonormal basis,

{Pi}ni=1 allow norm retrieval, then so does {Pi}ni=1∪{Qi}ki=1 for any projections {Qi}.

In particular, if a family of vectors Φ = {φi}ni=1 contains an orthonormal basis, then

it does norm retrieval.

Moreover, in this case, {φ⊥i }ni=1 also allows norm retrieval.

Proof. Let {ei}mi=1 be an orthonormal basis for Hm and let {Pi}mi=1 be the respective

projection onto φi
⊥, for each i ∈ [m]. Given x ∈ Hm, we have

m∑
i=1

‖Pix‖2 =
m∑
i=1

∑
j 6=i

|〈x, ej〉|2 = (m− 1)
m∑
i=1

|〈x, ej〉|2 = (m− 1)‖x‖2

The above proposition does not hold if the number of hyperplanes is strictly less

than m. This is proved in the next theorem.

Theorem 2.0.18. If {φi}mi=1 is an orthonormal basis for Rm then {Wi}i∈I where

{Wi} = {φi}⊥ cannot do norm retrieval for I ⊆ [m− 1].

Proof. Consider the family of subspaces {Wi}m−1i=1 , without loss of generality suppose

m > 2. Now suppose x and y are as follows:

x =
m∑
i=1

φi and y =

√
m− 1

m− 2

m−1∑
i=1

φi

now,

‖Pjx‖2 =
m∑
i=1
i 6=j

|〈x, φi〉|2 = m− 1

and,

‖Pjy‖2 =
m− 1

m− 2

m−1∑
i=1
i 6=j

|〈x, φi〉|2 = m− 1
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Therefore, ‖Pjx‖2 = ‖Pjy‖2. However,

‖x‖2 = m and ‖y‖2 =
(m− 1)2

m− 2

which shows that norm retrieval is not possible.

Now if we consider the collection {Wi}mi=1, then given x = (x1, x2, ..., xm) and

y = (y1, y2, ..., ym) such that ‖Pix‖2 =
∑

j 6=i ‖xj‖2 = ‖Piy‖2 =
∑

j 6=i ‖yj‖2. Then we

have

(m− 1)‖x‖2 =
m∑
i=1

‖Pix‖2 =
m∑
i=1

‖Piy‖2 = (m− 1)‖y‖2

Therefore the above theorem holds only if we have at least m hyperplanes.

We will make the above result stronger by excluding the orthogonality from its

properties in the next proposition, but first we need the following lemma:

Lemma 2.0.19. If {φi}mi=1 are linearly independent vectors in Rm, then ∀ c > 0 there

is a vector x ∈ Rm satisfying:

|〈x, φi〉| = c 6= 0, for all i ∈ [m].

Proof. Proof by induction on m.

Case m = 2 is obvious.

Now assume the equality holds for m− 1. Given a family of vectors {φi}mi=1, we can

find x such that x ∈ span {φi}m−1i=1 and satisfying

|〈x, φi〉| = c 6= 0, for all i ∈ [m− 1]
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Choose y ⊥ span {φi}m−1i=1 and note that linear independence of the {φi} implies

|〈y, φm〉| 6= 0

Consider x+ λy. For i ∈ [m− 1],

|〈x+ λy, φi〉| = |〈x, φi〉+ λ〈y, φi〉|

= |〈y, φi〉|

= c

Also,

〈x+ λy, φm〉 = 〈x, φm〉+ λ〈y, φm〉.

As λ varies from −∞ to +∞, the right hand side varies from −∞ to +∞ and for

some λ, we have

|〈x, φm〉+ λ〈y, φm〉| = c

Now in proof of the following proposition we will use the previous lemma:

Proposition 2.0.20. If {φi}m−1i=1 ∈ Rm are linearly independent and unit norm and

{Wi} = {φi}⊥, for all i ∈ [m− 1], then {Wi}m−1i=1 cannot do norm retrieval.

Proof. Suppose {Pi}m−1i=1 is a family of projections onto the respective subspaces

{Wi}m−1i=1 and choose a vector x with ‖x‖ = 1 so that:

x ∈
m−1⋂
i=1

Wi

By previous lemma 2.0.19, pick any c > 0 then there is a vector v ∈ span{φi}m−1i=1

so that |〈v, φi〉| = c 6= 0, for all i ∈ [m− 1].
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In particular, we may scale v and c simultaneously such that ‖v‖ = 1 and it follows

that 0 < c < 1.

Let y = λx + µv for some λ and µ, where λ2 + (1 − c2)µ2 = 1. Note that since

x ∈ {φi}⊥ then x ⊥ φi for all i ∈ [m− 1], implies that v ⊥ x, and so:

‖y‖2 = λ2 + µ2 6= 1.

Now, for all i ∈ [m− 1],

‖Piy‖2 = ‖y‖2 − |〈y, φi〉|2

= λ2 + µ2 − µ2c2

= λ2 + (1− c2)µ2

= 1

= ‖x‖2

= ‖Pix‖2.

But ‖x‖2 = 1 while ‖y‖2 6= 1, and so norm retrieval fails.

Previously we proved that we can not do norm retrieval with less than m vectors

in Hm. However, in the following theorem, we show that three proper subspaces of

codimension one can do norm retrieval in Rm.

Theorem 2.0.21. In Rm three proper subspaces of codimension one can do norm

retrieval.

Proof. Let {ei}mi=1 be an orthonormal basis for Rm. Let

φ1 = e1 φ2 = e2 φ3 = (e1 − e2)/
√

2
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Claim: {φ⊥i }3i=1 does norm retrieval.

Let Pi be the orthogonal projection onto φ⊥i and choose x = (a1, . . . , am).

We then have,

‖P1x‖2 = a22 +
m∑
k=3

ak
2

‖P2x‖2 = a21 +
m∑
k=3

ak
2

‖P3x‖2 =

(
a1 + a2√

2

)2

+
m∑
k=3

ak
2

=
a21 + 2a1a2 + a22

2
+

m∑
k=3

ak
2

We then have 2 cases:

• Case 1: If a1 = 0 or a2 = 0, we know that ‖x‖2 = ‖P1x‖2 or ‖x‖2 = ‖P2x‖2

respectively.

• Case 2: Assume both a1 6= 0 and a2 6= 0.Therefore both of the equalities below

hold:

−(a1 + a2)
2

2
· 1

a22
‖P1x‖2 + ‖P3x‖2 = c

m∑
k=3

ak
2

−(a1 + a2)
2

2
· 1

a12
‖P2x‖2 + ‖P3x‖2 = d

m∑
k=3

ak
2

where

c = −(a1 + a2)
2

2a22
+ 1 and d = −(a1 + a2)

2

2a21
+ 1

If either c or d is nonzero, we can express ‖x‖2 as a linear combination of ‖P1x‖2,

‖P2x‖2 and ‖P3x‖2 and this completes the proof.

Now, suppose c = d = 0:

If c = 0, then (a1 + a2)
2 = 2a2

2 and if d = 0, then (a1 + a2)
2 = 2a1

2. This
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implies that

2(a1 + a2)
2 = 2a1

2 + 2a2
2

which holds only if either a1 or a2 or both is zero which is not possible since it

contradicts our assumption.

The previous theorem gets even more interesting when we look at R3. It im-

plies that in R3, two 2-dimensional subspaces cannot do norm retrieval but three

2-dimensional subspaces can do norm retrieval.

It is important to understand the relationship between the subspaces that allow

norm retrieval and the complements of subspaces considering the dimensions of them.

Proposition 2.0.22. For every k ≤ m, there exist subspaces {Wi}k+1
i=1 in Hm which

do norm retrieval and {W⊥
i }k+1

i=1 span a k- dimensional space.

Proof. Let {ei}mi=1 be an orthonormal basis for Hm. Let W1 = span{ei}m−ki=1 and

Wi = span{W1, em−k+i−1} for all 2 ≤ i ≤ k + 1.

Suppose for a vector x such that x =
m∑
j=1

ajej, then:

‖P1x‖2 =
m−k∑
j=1

|aj|2

and

‖Pix‖2 =
m−k∑
j=1

|aj|2 + |am−k+i−1|2 for 2 ≤ i ≤ k + 1

therefore

‖x‖2 =
k+1∑
i=2

‖Pix‖2 − (k − 1) ‖P1x‖2
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Since Wi
⊥ ⊆ W1

⊥ for all i ∈ [k + 1], it’s clear that {Wi
⊥}k+1

i=1 is spanned by

{ei}mi=m−k+1, which has dimension k.

The following proposition shows a relationship between subspaces doing norm

retrieval and the sum of the dimensions of the subspaces. Notice that we are looking

for conditions on subspaces under which norm retrieval holds. Not only the dimension

of each subspace can be important but also as the following propositions suggests,

the sum of the dimensions also can be important.

Proposition 2.0.23. If a family of subspaces {Wi}ni=1 in Rm does norm retrieval

then
∑n

i=1 dimWi ≥ m.

Moreover,if
∑n

i=1 ki = Lm and ki > m then there exist {Wi}ni=1 doing norm retrieval

where dimWi = ki for each 1 ≤ i ≤ n.

Proof. If
∑n

i=1 dimWi < m then we may pick non-zero x such that x ⊥ Wi for each

i ∈ [n] so that ‖Pix‖ = 0 for all i ∈ [n] and therefore {Wi}ni=1 fails norm retrieval.

To prove the second part, let {gi}mi=1 be an orthonormal basis for Rm.

We represent this basis L-times as a multiset:

{φi}Lmi=1 =: {g1, . . . , gm, g1, . . . , gm, . . . , g1, . . . , gm},

and index it as: {ei}Lmi=1. We may pick a partition of [Lm] in the following manner:

I1 = {1, 2, . . . , k1}

I2 = {k1 + 1, . . . , k1 + k2}

I3 = {k1 + k2 + 1, . . . , k1 + k2 + k3}
...

Now define Wi = span{ej}j∈Ii with respective projections Pi. Then if x =
∑m

j=1 ajej25



then
n∑
i=1

‖Pix‖2 =
n∑
i=1

∑
j∈Ii

|aj|2 = L

m∑
j=1

|aj|2 = L‖x‖2

Hence the result.

Notice that the above proposition may fail if
n∑
i=1

ki 6= Lm.

2.0.5 Phase Retrieval and Norm Retrieval

It was shown in [3] if a family of projections {Pi}ni=1 yield phase retrieval then the com-

plements might not yields phase retrieval. The main reason to study norm retrieval

is to see how norm retrieval is vital in connecting phase retrieval to the complements.

In this section, we will study in detail the relationship between norm retrieval and

phase retrieval. We will also give a number of examples to illustrate norm retrieval

and phase retrieval.

The following theorem of Edidin [9] is significant in phase retrieval as it gives a

necessary and sufficient condition for subspaces to do phase retrieval.

Theorem 2.0.24. [9] A family of projections {Pi}ni=1 in Rm does phase retrieval if

and only if for every 0 6= x ∈ Rm, the vectors {Pix}ni=1 span the space.

Corollary 2.0.25. If {Wi}ni=1 in Hm does phase retrieval, then {W⊥
i }ni=1 spans the

space.

Proof. By the way of contradiction, suppose {Wi
⊥}ni=1 does not span Hm. There

exists 0 6= x ⊥ Wi
⊥ for all i. Therefore x ∈ Wi for all i and

Pix = x for all i ∈ [n]

Therefore, {Pix} can not span Hm. Thus, by Theorem 2.0.24, {Wi}ni=1 does not do
26



phase retrieval.

Corollary 2.0.26. Let {Wi}ni=1 be a collection of subspaces of Rm with Pi denoting

the projection onto Wi for each i ∈ [n]. If {Wi}ni=1 does phase retrieval in Rm then

for every I ⊂ [n] with |I| ≤ m− 2, the collection {W⊥
i }i∈Ic spans Rm.

Proof. By way of contradiction, suppose {W⊥
i }i∈Ic dose not span the space, pick a

non-zero x ⊥ {W⊥
i } for all i ∈ Ic. This implies x ∈

⋂
i∈Ic Wi and therefore {Pix}ni=1

contains at most m − 1 distinct vectors and can not span Rm. This contradicts the

theorem 2.0.24.

The following example shows that it is possible for subspaces to do norm retrieval

even if the complements do not span the space which we see as one of the main

differences between phase retrieval and norm retrieval.

Example 2.0.1. Let {ei}3i=1 be a orthonormal basis for R3, then let

W1 = span{e1, e2} W1
⊥ = span{e3}

W2 = span{e2, e3} W2
⊥ = span{e1}

W3 = span{e2} W3
⊥ = span{e1, e3}

Observe that:

‖x‖2 = ‖P1x‖2 + ‖P2x‖2 − ‖P3x‖2

so, we can see {Wi}3i=1 does norm retrieval but {Wi}⊥, i = 1, 2, 3 do not span R3.

Notice that in general, if W1 = Hm, then W1 itself does norm retrieval while W⊥
1 =

{0}.
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We realized so far from the definitions that any collection of subspaces which

do phase retrieval yields norm retrieval. However, the converse need not hold true

always. For instance, any orthonormal basis does norm retrieval in Rm but it has too

few vectors to do phase retrieval. Notice that we need at least 2m− 1 vectors to do

phase retrieval in Rm.

Given subspaces {Wi}ni=1 of Hm which yield phase retrieval, it is not necessar-

ily true that {W⊥
i }ni=1 does phase retrieval. The following result proves that norm

retrieval is the condition needed to pass phase retrieval to orthogonal complements.

Though the result is already proved in [4], we include it here for completeness.

Lemma 2.0.27. Suppose the family of subspaces {Wi}ni=1 does phase retrieval and

{Pi}ni=1 are their respective projections. Then {W⊥
i }ni=1 does phase retrieval if and

only if {W⊥
i }ni=1 does norm retrieval.

Proof. Assume that ‖(I − Pi)x‖ = ‖(I − Pi)y‖ for all i ∈ [n] and {(I − Pi)}ni=1 does

norm retrieval i.e. ‖x‖ = ‖y‖. Then

‖(I − Pi)x‖2 = ‖x‖2 − ‖Pix‖2 = ‖y‖2 − ‖Piy‖2 = ‖(I − Pi)y‖2.

Since ‖x‖ = ‖y‖, we have

‖Pix‖ = ‖Piy‖ for all i ∈ [n].

Since {Pi}ni=1 does phase retrieval, it follows that x = cy for some |c| = 1.

The other direction of the theorem is clear.

Next is an example of a family of subspaces {Wi}ni=1 which does phase retrieval

but the complement subspaces fail to do phase retrieval and hence fail norm re-

trieval [3].
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Example 2.0.2. Let {φi}3i=1 and {ψi}3i=1 be orthonormal bases for R3 such that

{φi}3i=1 ∪ {ψi}3i=1 is full spark. Consider the subspaces

W1 = span({φ1, φ3}) W1
⊥ = span({φ2})

W2 = span({φ2, φ3}) W2
⊥ = span({φ1})

W3 = span({φ3}) W3
⊥ = span({φ1, φ2})

W4 = span({ψ1}) W4
⊥ = span({ψ2, ψ3})

W5 = span({ψ2}) W5
⊥ = span({ψ1, ψ3})

Then {Wi}5i=1 allows phase retrieval for R3 while the orthogonal complements {W⊥
i }5i=1

do not.

The following corollary states that if a family of vectors contains an orthonormal

basis then phase retrieval can be transferred to the complements.

Corollary 2.0.28. If a family of vectors {φi}ni=1 does phase retrieval and contains

an orthonormal basis, then {φ⊥i }ni=1 does phase retrieval.

Proof. If {φi}i∈I is an orthonormal basis for some I ⊆ [n], then {φ⊥i }i∈I does norm

retrieval. Hence so does the larger set {φ⊥i }ni=1. Since {φi}ni=1 does phase retrieval,

and {φ⊥i }ni=1 does norm retrieval, we can conclude the latter does phase retrieval as

well which follows from Lemma 2.0.27.

In order to characterize subspaces satisfying norm retrieval, we need to study the

conditions under which norm retrieval holds and also the cases when norm retrieval

fails. The next result gives us a sufficient condition for the subspaces to do norm

retrieval. It is enough to check if the identity is in the linear span of the projections

in order for the subspaces to do norm retrieval. A similar result in the case of phase

retrieval is proved in [4].
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Proposition 2.0.29. [4] Let {Wi}ni=1 be subspaces of Rm with corresponding projec-

tions {Pi}ni=1. Then the projections, {Pi}ni=1 do norm retrieval, if for all i ∈ [n], there

exist ai ∈ Rm such that
∑n

i=1 aiPi = I, .

Proof. Given a vector x ∈ Rm, then

‖x‖2 = 〈x, x〉 =
〈 n∑
i=1

aiPix, x
〉

=
n∑
i=1

ai〈Pix, x〉

=
n∑
i=1

ai〈Pix, Pix〉 =
n∑
i=1

ai‖Pix‖2.

Since for each i ∈ [n], the coefficients ai and ‖Pix‖ are known, the collection {Pi}ni=1

does norm retrieval.

A counter example for the converse of the above proposition is given in [4] where

the authors construct a collection of projections, {Pi}ni=1, which does phase retrieval

but I 6∈ span{Pi}ni=1. To show it for the real case, For 2m ≤ n ≤ m(m+ 1)/2 choose

any full spark frame Φ = {φi}ni=1 for Rm such that {φiφ∗i }ni=1 is linearly independent.

Let S be the frame operator for Φ and define

ψi =
S−1/2φi
‖S−1/2φi‖

with Pi = ψiψ
∗
i . When Pi is a rank one orthogonal projection. Since {S−1/2φi}ni=1 is

a Parseval frame it follows that

I =
n∑
i=1

‖S−1/2φi‖2 Pi

Also, since {φi}ni=1 is linearly independent it follows that {Pi}ni=1 is linearly

independent and therefore the above equality is the only way to write I as a linear

combination of the {Pi}′s.
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Also since {φi}ni=1 is full spark, we know that ‖S−1/2φi‖ 6= 0 for every i ∈ [n].

Therefore it follows that if I ⊆ [n] then I /∈ span{Pi}i∈I . Furthermore, since n ≥ 2m

and {φi}ni=1 is full spark it follows that {Pi}i∈I yields phase retrieval (and hence norm

retrieval) whenever |I| ≥ 2m− 1.

Here, we provide another example for the same reason. We give a set of five

vectors in R3 which does phase retrieval; however the identity operator is not in

the span of these vectors. We need the following theorem that provides a necessary

and sufficient condition for a frame not to be scalable in R3. Recall that a frame

{φi}ni=1 ∈ Rm is said to be scalable if there exists scalars ci ≥ 0, i ∈ [n] such that

{ciφi}ni=1 is a Parseval frame [13]. Later in the next section, we prove that scalable

frames always do norm retrieval.

Theorem 2.0.30. [13] A frame φ in R3 − {0} for R3 is not scalabale iff all frame

vectors of φ are contained in an interior of an elliptical conical surface with vertex 0

and intersecting the corners of a rotated unit cube.

Figure 2.1: (a) shows a sample region of vectors of a non scalable frame in R2 .
(b) and (c) show examples of C−

3 and C+
3 which determine sample regions in R3 .

The next example is a counter example for the converse of 2.0.29 using a family

of five vectors in R3.

Example 2.0.3. A frame {φi}5i=1 in R3 which does phase retrieval but

5∑
i=1

aiφi 6= I, for any ai ∈ R
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Choose five full spark vectors in the cone referred in the previous theorem 2.0.30.

These vectors do phase retrieval and hence norm retrieval in R3.

Now, given ai ∈ R ,

5∑
i=1

aiφi =
5∑
i=1

|ai|(εiφi) for εi = ±1

but, εiφi is still inside the cone for each i. Therefore
∑5

i=1 |ai|(εiφi) 6= I.

We fully studied the cases when subspaces do phase retrieval and norm retrieval.

Now we want to study the conditions under which the complement subspaces {Wi}i∈Ic

satisfy norm retrieval when the family of subspaces {Wi}i∈I do norm retrieval. The

next proposition gives a sufficient condition for the complements to satisfy norm

retrieval when the subspaces do.

Proposition 2.0.31. If {Wi}ni=1 are subspaces of Rm with corresponding projections

{Pi}ni=1 such that
∑n

i=1 aiPi = I and
∑n

i=1 ai 6= 1. Then {I − Pi}ni=1 does norm

retrieval.

Proof. Observe the following

n∑
i=1

ai(I − Pi) =

(
n∑
i=1

ai

)
I −

n∑
i=1

aiP =

(
n∑
i=1

ai

)
I − I =

(
n∑
i=1

ai − 1

)
I

Let α =
∑n

i=1 ai − 1 then a short calculation shows
∑n

i=1
ai
α

(I − Pi) = I. By the

previous proposition this shows {I − Pi}ni=1 does norm retrieval.

It is possible that
∑
aiPi = I =

∑
biPi with

∑
ai = 1 but

∑
bi 6= 1, as we will

see in the following example.
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Example 2.0.4. Let {ei}3i=1 be an orthonormal basis for R3. Now let

W1 = span{e1} W1
⊥ = span{e2, e3}

W2 = span{e2} W2
⊥ = span{e1, e3}

W3 = span{e3} W3
⊥ = span{e1, e2}

W4 = span{e1, e2} W4
⊥ = span{e3}

W5 = span{e1, e3} W5
⊥ = span{e2}

Both {Wi} and {W⊥
i } do norm retrieval. Let Pi denote the projections on to

Wi, then
5∑
i=1

aiPi = P1 + P2 + P3 + 0 · P4 + 0 · P5 = I

and
5∑
i=1

biPi = −P1 + 0 · P2 + 0 · P3 + P4 + P5 = I

However,
∑5

i=1 ai = 3 6= 1 =
∑5

i=1 bi.

2.0.6 Classification of Norm Retrieval

In this section, we give a detailed classification of norm retrieval by projections.

The following theorem in [22] uses the span of the frame elements to classify norm

retrievable frames in Rm.

Theorem 2.0.32. [22] A frame {φi}ni=1 ⊂ Rm does norm retrieval if and only if for

any partition {Ij}2j=1 for j ∈ [n], span {φi}⊥i∈I1 ⊥ span {φi}⊥i∈I2.

Next, we prove one of the main results of this paper. This is an extension of the

previous Theorem 2.0.32 and it fully classifies the subspaces of Rm which do norm

retrieval.
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Theorem 2.0.33. Let {Pi}ni=1 be projections onto subspaces {Wi}ni=1 of Rm. Then

the following are equivalent:

1. {Pi}ni=1 does norm retrieval,

2. Given any orthonormal bases {φij}Iij=1 of Wi and any subcollection S ⊆ {(i, j) :

1 ≤ i ≤ n, 1 ≤ j ≤ Ii} then

span {φij}⊥(i,j)∈S ⊥ span {φij}⊥(i,j)∈Sc ,

3. For any orthonormal basis {φij}Iij=1 of Wi, then the collection of vectors {φij}ni=1,j∈Ii

do norm retrieval.

Proof. (1) ⇒ (2): Suppose x ∈ span {φij}⊥(i,j)∈S, and y ∈ span {φij}⊥(i,j)∈Sc and let

I = [n] then,

‖Pi(x+ y)‖2 =

Ii∑
j=1

|〈x+ y, φij〉|2

=
∑
j∈I∩Ii

|〈x, φi〉|2 +
∑

j∈Ic∩Ii

|〈y, φi〉|2

=

Ii∑
j=1

|〈x− y, φij〉|2

= ‖Pi(x− y)‖2

Since {Pi}ni=1 does norm retrieval, we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉 = ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉,

and so 〈x, y〉 = 0
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(2)⇒ (1): Assume that ‖Pix‖ = ‖Piy‖ for all 1 ≤ i ≤ n. Then, by ([3]) we can

find an orthonormal basis (φij)
Ki
j=1 for Wi such that

|〈φij, x〉| = |〈φij, y〉| ∀i, j.

Denote A = {(i, j) : 〈φij, x〉 = 〈φij, y〉} and B = {(i, j) : 〈φij, x〉 = −〈φij, y〉} .

Now we can see that

(x− y)⊥ span {φij : (i, j) ∈ A}

and also

(x+ y)⊥ span {φij : (i, j) ∈ B}

By (2), we must have that 〈x+ y, x− y〉 = ‖x‖2 − ‖y‖2 = 0, which implies that x

and y have the same norm.

The third equivalence is immediate from the result in Theorem (2.0.32).

The next Corollary will show that all scalable frames satisfy norm retrieval.

Corollary 2.0.34. If Φ = {φi}ni=1 does norm retrieval then Φ′ = {ciφi}ni=1, ci 6= 0

does norm retrieval. Hence all scalable frames do norm retrieval.

Proof. This is an immediate result of Theorem 2.0.33. Notice that the conditions in

Theorem 2.0.33 do not depend on the norm of each vector φi.

For the complex case we have:

Proposition 2.0.35. If {Pi}ni=1 does norm retrieval, then if we choose orthonormal

bases {φi,j}Iij=1 of Wi and any subcollection S ⊆ {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ Ii} then

x ⊥ span {φij}(i,j)∈S and y ⊥ span {φij}(i,j)∈Sc
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implies:

Re〈x, y〉 = 0

Proof. Given x, y as above:

|〈x+ y, φij〉| = |〈x− y, φij〉| for all (i, j)

Since our vectors do norm retrieval, we have

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x, y〉 = ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2Re〈x, y〉,

and so Re〈x, y〉 = 0.

One of the interesting results about norm retrieval is that we can show if a

set of n-vectors in Rm satisfy norm retrieval then they are orthogonal which is not

necessarily true for phase retrieval. Theorem 2.0.33 was helpful in simplifying the

proof of such a theorem which was stated in [3]. The following is a simple proof of a

result in [3] which has a very complicated proof in that paper.

Corollary 2.0.36. If {φi}mi=1 do norm retrieval in Rm, then the vectors are orthogo-

nal.

Proof. Suppose we have a set of vectors {φi}ni=1 such that ‖φi‖ = 1 and that for some

j ∈ [n], φj is not orthogonal to span{φi}i 6=j. Now, choose a unit vector x such that

x ⊥ φi for all i 6= j. Let vector y be such that

y = x− 〈x, φj〉φj

now,

〈φj, y〉 = 〈φj, x〉 − 〈x, φj〉〈φj, φj〉 = 0.
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Let I = {i : i 6= j}, then

x ⊥ span {φi}i∈I and y ⊥ φj,

but

〈x, y〉 = 〈x, x〉 − 〈x, φj〉〈x, φj〉 = 1− |〈x, φj〉|2 6= 0,

contradicting the theorem.

In order to classify norm retrieval, we will need to find the correlation between

the subspaces and the complement subspaces and study the conditions under which

norm retrieval is possible.

Corollary 2.0.37. Consider a frame Φ = {φi}ni=1. The followings are equivalent:

1. Φ does norm retrieval.

2. For i ∈ [n] if W1 = span{φi}i∈I and W2 = span{φi}i∈Ic then, W1
⊥ ⊆ W2.

Proof. By Theorem 2.0.33, it follows that:

Φ does norm retrieval ⇐⇒ W1
⊥ ⊥ W2

⊥

⇐⇒ W1
⊥ ⊆ W2

and this proves the theorem.

Both phase retrieval and norm retrieval are preserved when applying projections

to the vectors. Also, if we apply any invertible operator, phase retrieval will be

preserved. To learn more about the details we refer to [4]. On the other hand, this is

not the case with norm retrieval, in general.
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The next corollary will show that applying operators will not keep the norm retrieval

properties. Previously we discussed that it is possible to use invertible operators to

lift the properties of phase retrieval but we will see that is not the case for norm

retrieval.

Corollary 2.0.38. Norm retrieval is not preserved under the application of an in-

vertible operator, in general.

Proof. Let φ = {φi}mi=1 be linearly independent vectors in Rm which are not orthogo-

nal. Since all the vectors satisfying norm retrieval are orthogonal (Corollary 2.0.36),

Φ cannot do norm retrieval. But there exists an invertible operator T on Rm so that

{Tφi}mi=1 is an orthonormal basis and so does norm retrieval.

However, notice that unitary operators, which are invertible, do preserve norm

retrieval.

One of the classifications of norm retrieval with respect to the Parseval frames

suggests that if we partition the frame into two sets, then the vectors chosen from

each set would be orthogonal to each other. The following corollary holds in the

infinite dimensional case. The proof is the same as the previous corollary.

Corollary 2.0.39. If Φ is a Parseval frame, it does norm retrieval. Hence, if we

partition Φ into two disjoint sets, and choose a vector orthogonal to each set, then

these vectors are orthogonal.

Proof. Let Φ = {φi}i∈I be a Parseval frame and J ⊆ I. Let T be its analysis operator.

If

x ⊥ {φi}i∈J and y ⊥ {φi}i∈Jc

then Tx = (〈x, φi〉) and Ty = (〈y, φi〉) do not have any nonzero coordinates in com-

mon. Therefore,
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Tx ⊥ Ty

Since the analysis operator of a Parseval frame is an isometry, we have x ⊥ y.

We can generalize the following classical result in frame theory in Parseval

frames:

Property 2.0.40. Suppose {φi}i∈I is a Parseval frame. Let the subspace W be such

that W = span{φi}i 6=j. Now, if φj /∈ W then φj ⊥ W.

It turns out that a much more general result holds.

Corollary 2.0.41. Let {φi}ni=1 be a Parseval frame in Rm. For I ⊆ [n], let WI =

span{φi}i∈I and WIc = span{φi}i∈Ic. If WI

⋂
WIc = {0}, then WI ⊥ WIc.

Corollary 2.0.42. Suppose that a frame Φ = {φi}ni=1 in Rm satisfies norm retrieval.

Let S be the frame operator, then for every I ⊂ [m], if x ⊥ span{φi}i∈I then x ∈

span{S−1φi}i∈Ic.

In particular, if Φ is a Parseval frame, then x ∈ span{φi}i∈Ic.

Proof. Given x such that x ⊥ span{φi}i∈I ,

x =
n∑
i=1

〈x, φi〉S−1φi

=
∑
i∈Ic
〈x, φi〉S−1φi

We next provide a classification of norm retrieval using Naimark’s theorem. It

turns out that every frame can be scaled to look similar to Naimark’s theorem.
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Proposition 2.0.43. If {φi}ni=1 is a frame with Bessel bound 1 in Rm, then there is

an isometry T : Rm → `2n−12 with orthonormal basis {ei}2n−1i=1 so that the orthogonal

projection onto Rm satisfies:

Pei = Tφi for every i ∈ [n]

Proof. Let {gi}mi=1 be the eigenbasis for the frame with respective eigenvalues 1 =

λ1 ≥ λ2 ≥ · · · ≥ λm. For n+ 1 ≤ n+ i ≤ 2n− 1 let

φn+i =
√

1− λi+1 gi+1.

Now, for any φ ∈ Rm we have

2n−1∑
i=1

|〈φ, φi〉|2 =
n∑
i=1

|〈φ, φi〉|2 +
2n−1∑
i=n+1

|〈φ, φi〉|2

=
n∑
i=1

|λi〈φ, gi〉|2 +
n−1∑
i=1

|〈φ,
√

1− λi+1 gi+1〉|2

=
n∑
i=1

λi|〈φ, gi〉|2 +
n∑
i=2

(1− λi)|〈φ, gi〉|2

= |〈φ, g1〉|2 +
n∑
i=2

|〈φ, gi〉|2

= ‖φ‖2.

So {φi}2n−1i=1 is a Parseval frame. The analysis operator of this Parseval frame T :

Rm → `2n−12 is then an isometry where

Tφ =
2n−1∑
i=1

〈φ, φi〉ei

where {ei}2n−1i=1 is the unit vector basis of `2n−12 . Let P be the orthogonal projection
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of `2n−12 onto T (Rm). Then given i ∈ [2n− 1], we have for all j ∈ [2n− 1]:

〈Pei, Tφj〉 = 〈ei, Tφj〉 = 〈T ∗ei, φj〉 = 〈φi, φj〉 = 〈Tφi, Tφj〉.

It follows that Pei = Tφi for all i ∈ [n].

We can now prove one of the main results in this section.

Theorem 2.0.44. Let Φ = {φi}ni=1 be a frame for Rm. The following are equivalent:

1. Φ does norm retrieval.

2. By Proposition 2.0.43 if T : Rm → `2n−12 is an isometry and {ei}2n−1i=1 is the unit

vector basis for `2n−12 then for every φ, ψ ∈ Rm with |〈φ, φi〉| = |〈ψ, φi〉| for all

i ∈ [n], we have

‖
2n−1∑
i=n+1

〈Tφ, ei〉ei‖2 =
2n−1∑
i=n+1

|〈Tφ, ei〉|2 = ‖
2n−1∑
i=n+1

〈Tψ, φi〉ei‖2 =
2n−1∑
i=n+1

|〈Tψ, φi〉|2.

Proof. (1)⇒ (2): We have for i ∈ [n],

|〈φ, φi〉| = |〈Tφ, Tφi〉| = |〈Tφ, Pei〉| = |〈Tφ, ei〉| = |〈Tψ, Tφi〉|

By (1), we know that ‖φ‖ = ‖Tφ‖ = ‖ψ‖ = ‖Tψ‖. Hence,

‖Tφ‖2 =
n∑
i=1

|〈Tφi, ei〉|2 +
2n−1∑
i=n+1

|〈Tφ, ei〉|2

= ‖ψ‖2 =
n∑
i=1

|〈Tφi, ei〉|2 +
2n−1∑
i=n+1

|〈Tφ, ei〉|2.
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Since
n∑
i=1

|〈Tφ, ei〉|2 =
n∑
i=1

|〈Tψ, ei〉|2, the result follows.

(2) ⇒ (1): If |〈φ, φi〉| = |〈ψ, φi〉| for all i ∈ [n] then applying (2) as above we

have:

‖φ‖2 = ‖Tφ‖2

=
n∑
i=1

|〈Tφi, ei〉|2 +
2n−1∑
i=n+1

|〈Tφ, ei〉|2

=
n∑
i=1

|〈Tψ, ei〉|2 +
2n−1∑
i=n+1

|〈Tφ, ei〉|2 = ‖Tψ‖2

so ‖φ‖ = ‖ψ‖ and Φ does norm retrieval.
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Chapter 3

Weak Phase Retrieval

3.1 Defining weak phase retrieval

While investigating the relationship between phase retrieval and phaseless reconstruc-

tion, in [15] it was noted that if two vectors have the same phase then they will be zero

in the same coordinates. This gave way to a weakening of phase retrieval, known as

weak phase retrieval. In this work, we study the weakened notions of phase retrieval

and phaseless reconstruction. One limitation of current methods used for retrieving

the phase of a signal is computing power. Recall that a generic family of (2m − 1)-

vectors in Rm satisfies phaseless reconstruction, however no set of (2m − 2)-vectors

can (See [7] for details). By generic we are referring to an open dense set in the set

of (2m− 1)-element frames in Hm . We started with the motivation that weak phase

retrieval could be done with m + 1 vectors in Rm . However, it will be shown that

the cardinality condition can only be relaxed to 2m− 2. Nevertheless, the results we

obtain in this work are interesting in their own right and contribute to the overall

understanding of phase retrieval. We provide illustrative examples in the real and

complex cases for weak phase retrieval.

43



We start by defining the notion of weak phase retrieval and obtain the minimum

number of vectors required to satisfy weak phase retrieval.

Definition 3.1.1. Two vectors in Hm, x = (a1, a2, . . . , am) and y = (b1, b2, . . . , bm)

weakly have the same phase if there is a |θ| = 1 so that

phase(ai) = θ phase(bi), for all i ∈ [m] for which ai 6= 0 6= bi.

In the real case, if θ = 1 we say x, y weakly have the same signs and if θ = −1

they weakly have opposite signs.

In the definition above note that we are only comparing the phase of x and y

for entries where both are nonzero. Hence, two vectors may weakly have the same

phase but not have the same phase in the usual sense. We define weak phase retrieval

formally as follows:

Definition 3.1.2. A family of vectors {φi}ni=1 in Hm does weak phase retrieval if

for any x = (a1, a2, . . . , am) and y = (b1, b2, . . . , bm) in Hm, with

|〈x, φi〉| = |〈y, φi〉|, for all i ∈ [m]

then x, y weakly have the same phase.

Observe that the difference between phase retrieval and weak phase retrieval is

that in the later it is possible for ai = 0 but bi 6= 0.

3.1.1 Real Case

Now we begin our study of weak phase retrieval in Rm. The following proposition

provides a useful criteria for determining when two vectors have weakly the same or

opposite phases.
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Proposition 3.1.3. Let x = (a1, a2, . . . , am) and y = (b1, b2, . . . , bm) in Rm. The

following are equivalent:

1. We have

sgn (aiaj) = sgn (bibj), for all aiaj 6= 0 6= bibj.

2. Either x, y have weakly the same signs or they have weakly opposite signs.

Proof. (1)⇒ (2): Let

I = {1 ≤ i ≤ m : ai = 0} and J = {1 ≤ i ≤ n : bi = 0}.

Let

K = [m] \ (I ∪ J).

So i ∈ K if and only if ai 6= 0 6= bi. Let i0 = min K. We examine two cases:

Case 1: sgn ai0 = sgn bi0 .

For any i0 6= k ∈ K, sgn (ai0ak) = sgn (bi0bk), implies sgn ak = sgn bk. Since

all other coordinates of either x or y are zero, it follows that x, y weakly have the

same signs.

Case 2: sgn ai0 = −sgn bi0 .

Is similar the previous case.

(2)⇒ (1): This is immediate.

The next lemma will be useful in the following proofs as it gives a criteria for

showing when vectors do not weakly have the same phase.
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Lemma 3.1.4. Let x = (a1, a2, ..., am) and y = (b1, b2, ..., bm) be vectors in Rm. If

there exists i ∈ [m] such that aibi 6= 0 and 〈x, y〉 = 0, then x and y do not have weakly

the same or opposite signs.

Proof. We proceed by way of contradiction. If x and y weakly have the same phase

then ajbj ≥ 0 for all j ∈ [m] and in particular we arrive at the following contradiction

〈x, y〉 =
n∑
j=1

ajbj ≥ aibi > 0

If x and y weakly have opposite phases then ajbj ≤ 0 for all j ∈ [m] and by reversing

the inequalities in the expression above we get the desired result.

In the previous section we talked about the relationship between phase retrieval,

phaseless reconstruction and norm retrieval. Now the following result relates weak

phase retrieval and phase retrieval. Recall that in the real case, it is known that phase

retrieval, phaseless reconstruction and the complement property are equivalent [7, 15].

Corollary 3.1.5. Suppose Φ = {φi}ni=1 ∈ Rm does weak phase retrieval but fails

complement property, then there exists two vectors v, w ∈ Rm such that v ⊥ w and

|〈v, φi〉| = |〈w, φi〉| for all i ∈ [n] (3.1)

Further, v and w are disjointly supported.

Proof. By the assumption, Φ = {φi}ni=1 fails complement property so there exists

I ⊂ [n], such that A = span{φi}i∈I 6= Rm and B = span{φi}i∈Ic 6= Rm. Choose

‖x‖ = ‖y‖ = 1 such that x ⊥ A and y ⊥ B. Then for all i ∈ [n]

|〈x+ y, φi〉| = |〈x− y, φi〉|
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Let w = x+ y and v = x− y. Then u ⊥ v. Observe

〈w, v〉 = 〈x+ y, x− y〉 = ‖x‖2 + 〈y, x〉 − 〈x, y〉 − ‖y‖2 = 0.

Moreover, the assumption that Φ does weak phase retrieval implies u and w have

weakly the same or opposite phases. Then it follows from Lemma 3.1.4 that u and w

are disjointly supported.

Notice that in phase retrieval we proved that in the real case, a set of frame

satisfies phase retrieval if and only of it has the complement property. The next

example will show that this is not necessarily true for weak phase retrieval. In fact

the set of vectors fails complement property but it satisfies weak phase retrieval.

Example 3.1.1. In R2 let φ1 = (1, 1) and φ2 = (1,−1). These vectors clearly fail

complement property. But if x = (a1, a2), b = (b1, b2) and we have,

|〈x, φi〉| = |〈y, φi〉|, for i = 1, 2,

then

|a1 + a2|2 = |b1 + b2|2 and |a1 − a2|2 = |b1 − b2|2

By squaring these out and subtracting the result we get:

2a1a2 = 2b1b2.

Hence, either x, y have the same signs or opposite signs i.e. These vectors do

weak phase retrieval.

The question we can ask here is that under what conditions, a set of vectors

would satisfy weak phase retrieval but not phase retrieval.
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With some particular assumptions, the following proposition gives the specific form

of vectors which do weak phase retrieval but not phase retrieval.

Proposition 3.1.6. Let Φ = {φi}ni=1 be a family of vector in Rm such that Φ does

weak phase retrieval but fails the complement property. Let x = (a1, a2, . . . , am),

y = (b1, b2, . . . bm) ∈ Rm such that x+ y ⊥ x− y and satisfy equation 3.1. If aibi 6= 0,

ajbj 6= 0 for some i, j and all other co-ordinates of x and y are zero, then

|ai| = |bi|, for i = 1, 2

Proof. Without loss of generality, take x = (a1, a2, 0, . . . , 0) and y = (b1, b2, 0, . . . , 0).

Observe that both x+ y and x− y either weakly have the same phase or weakly have

the opposite phase. Thus, by Lemma 3.1.4, x+ y and x− y have disjoint support as

these vectors are orthogonal. Since,

x+ y = (a1, b1, a2 + b2, 0, . . . , 0) and x− y = (a1 − b1, a2 − b2, 0, . . . , 0)

it reduces to the cases where either a1 = b1, a2 = −b2 or a1 = −b1, a2 = b2. In

both cases, it follows from equation 3.1 that |ai| = |bi| for all i ∈ [m].

We have learned that phase retrieval requires at least 2m− 1 vectors in Rm, i.e.

a family of vectors {φi}ni=1 does phase retrieval then n ≥ 2m− 1. But for weak phase

retrieval we were able to show we can get a better bound.

The next theorem gives the main result about the minimum number of vectors re-

quired to do weak phase retrieval in Rm.

Theorem 3.1.7. If {φi}ni=1 does weak phase retrieval on Rm then n ≥ 2m− 2.
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Proof. We proceed by way of contradiction.

Assume n ≤ 2m − 3. If I = [m − 2] then |I| = m − 2 and |Ic| ≤ m − 1. For this

partition of [n], let x + y and x − y be as in Corollary 3.1.5. Then x + y and x − y

must be disjointly supported and therefore for each i ∈ [m], ai = εibi, where εi = ±1.

Observe the conclusion holds for a fixed x and any y ∈ (span{φ}i∈I)⊥ when

dim(span{φi}i∈I)⊥ ≥ 2. However this poses a contradiction since there are infinitely

many distinct choices of y in this space, while our argument shows that there are at

most 2m choices of y.

Contrary to the initial hopes, the previous result shows that the minimal number

of vectors doing weak phase retrieval is only one less than the number of vectors doing

phase retrieval. However it is interesting to note that a minimal set of vectors doing

weak phase retrieval is necessarily full spark, as is true for the minimal number of

vectors doing phase retrieval, as the next result shows.

Theorem 3.1.8. If Φ = {φi}2m−2i=1 does weak phase retrieval in Rm, then Φ is full

spark.

Proof. We proceed by way of contradiction. Assume Φ is not full spark. Then there

exists I ⊂ {1, 2, ..., 2m− 2} with |I| = m such that

dim span{φi}i∈I ≤ m− 1

Observe that the choice of I above implies |Ic| = m− 2. Now we arrive at a contra-

diction by applying the same argument used in (the proof of) Theorem 3.1.7.

It is important to note that the converse of Theorem 3.1.8 does not hold. In

other words, if Φ is full spark, it does not necessarily do weak phase retrieval. For
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example, the canonical basis in R2 is trivially full spark but does not do weak phase

retrieval.

If Φ is as in Theorem 3.1.8, then the following corollary guarantees it is possible

to add a vector to this set and obtain a collection which does phaseless reconstruction

and similarly phase retrieval.

Corollary 3.1.9. If Φ = {φi}2m−2i=1 does weak phase retrieval in Rm, then there exists

a dense set of vectors F in Rm such that {ψ} ∪ Φ does phaseless reconstruction for

any ψ ∈ F.

Proof. The result follows almost instantly from the observation that the set of ψ ∈ Rm

such that Φ
⋃
{ψ} is full spark, it is in fact dense in Rm.

To see this let

G =
⋃

I⊂[2m−2]
|I|=m−1

span{φi}i∈I

Then G is the finite union of hyperplanes so Gc is dense and {ψ}
⋃

Φ is full spark for

any ψ ∈ Gc. It suffices to verify that this collection of vectors is full spark. Either a

sub-collection of m-vectors is contained in Φ, then it spans Rm, or the subcollection

contains the vector ψ. In this case, denote I ⊂ [2m−2] with |I| = m−1 and suppose∑
i∈I aiφi + aψ = 0. Therefore aψ = −

∑
i∈I

aiφi and if a 6= 0 then:

aψ ∈ span{φi}i∈I

which is a contradiction. It follows a = 0 and since Φ is full spark (see Theorem

3.1.8), in particular {φi}i∈I are linearly independent, it follows that ai = 0 for all

i ∈ I.
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3.1.2 Complex Case

An extension of Proposition 3.1.3 in the complex case is given below:

Proposition 3.1.10. Let x = (a1, a2, . . . , am) and y = (b1, b2, . . . , bm) in Cm. The

following are equivalent:

1. If there is a |θ| = 1 such that phase (ai) = θ phase (bi), for some i, then

phase (aiaj) = θ2 phase (bibj), i 6= j and ai 6= 0 6= bi, for any i.

2. x and y weakly have the same phase.

Proof. (1) ⇒ (2): Let the index sets I, J and K be as in proposition 3.1.3. By (1),

there is a |θ| = 1 such that phase (ai) = θphase (bi) for some i ∈ K.

Now, for any j ∈ K, j 6= i,

phase (aiaj) = phase (ai) phase (aj) = θ phase (bi) phase (aj).

But

phase (aiaj) = θ2 phase (bibj) = θ2 phase (bi) phase (bj)

Thus, it follows that phase (aj) = θ phase (bj). Since all other coordinates of either

x or y are zero, it follows that x, y weakly have the same phase.

(2) ⇒ (1): By definition, there is a |θ| = 1 such that phase (ai) = θ phase (bi)

for all ai 6= 0 6= bi. Now, (1) follows immediately since

phase (aiaj) = phase (ai) phase (aj)
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3.2 Weak Phaseless Reconstruction

The notion of phaseless reconstruction and phase retrieval has been studied previously

and many times they were implemented to satisfy the same properties. Recently it

was shown in [15] that these two definitions are actually equal and we can use them

interchangeably. Now we want to study if it is the same case for weak phase retrieval

and weak phaseless reconstruction.

In this section, we define weak phaseless reconstruction and study its characteriza-

tions. A formal definition is given below:

Definition 3.2.1. A family of vectors {φi}ni=1 in Hm does weak phaseless recon-

struction if for any x = (a1, a2, . . . , am) and y = (b1, b2, . . . , bm) in Hm, with

|〈x, φi〉| = |〈y, φi〉|, for all i ∈ [m], (3.2)

there is a |θ| = 1 so that

ai = θbi, for all i = 1, 2, . . . ,m, for which ai 6= 0 6= bi.

In particular, {φi}ni=1 does phaseless reconstruction for vectors having all non-zero

coordinates.

Note that if Φ = {φi}ni=1 ∈ Rm does weak phaseless reconstruction, then it does

weak phase retrieval. The converse is not true in general:

Let x = (a1, a2, ..., am) and y = (b1, b2, ..., bm). If Φ = {φi}ni=1 ∈ Rm does weak phase

retrieval and |{i|aibi 6= 0}| = 2 then Φ may not satisfy weak phaseless reconstruction.

If aiaj = bibj where aibi 6= 0 and ajbj 6= 0 then we certainly cannot conclude in

general that |ai| = |bi| (see Example 3.3.1).
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Theorem 3.2.2. If x = (a1, a2, . . . , am) and y = (b1, b2, . . . , bm) in Rm. The following

are equivalent:

I. There is a θ = ±1 so that

ai = θbi, for all ai 6= 0 6= bi.

II. We have aiaj = bibj for all 1 ≤ i, j ≤ m, and |ai| = |bi| for all i such that

ai 6= 0 6= bi.

III. The following hold:

A. Either x, y have weakly the same signs or they have weakly the opposite

signs.

B. One of the following holds:

(i) There is a 1 ≤ i ≤ m so that ai = 0 and bj = 0 for all j 6= i.

(ii) There is a 1 ≤ i ≤ m so that bi = 0 and aj = 0 for all j 6= i.

(iii) If (i) and (ii) fail and I = {1 ≤ i ≤ m : ai 6= 0 6= bi}, then the

following hold:

(a) If i ∈ Ic then ai = 0 or bi = 0.

(b) For all i ∈ I, |ai| = |bi|.

Proof. (I)⇒ (II) : By (I) ai = θbi for all i such that both are non-zero, so

aiaj = (θbi)(θbj)

then aiaj = θ2 bibj. Since θ = ±1 it follows that aiaj = bibj for all i, j (that are

non-zero). The second part is trivial.
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(II)⇒ (III) :

(A) This follows from Proposition 3.1.3.

(B) (i) Assume ai = 0 but bi 6= 0. Then for all j 6= i we have aiaj = 0 = bibj

and so bj = 0.

(ii) This is symmetric to (i).

(iii) If (i) and (ii) fail, then by definition, for any i, either both ai and bi are zero

or they are both non-zero, which proves (A). (B) is immediate.

(III) ⇒ (I) : The existence of θ is clear by part A. In part B, (i) and (ii)

trivially imply I. Assume (iii) then for each i such that ai 6= 0 6= bi and |ai| = |bi|

then ai = ±bi.

Corollary 3.2.3. Let Φ be a frame for Rm. The following are equivalent:

1. Φ does weak phaseless reconstruction.

2. For any x = (a1, a2, . . . , am) and y = (b1, b2, . . . , bm) in Rm, if

|〈x, φi〉| = |〈y, φi〉| for all i ∈ [m],

then each of the equivalent conditions in Theorem 3.2.2 holds.

So far we realized that weak phase retrieval and weak phaseless reconstruction

are equal. The question we can ask here is under what conditions these two terms

are equal.

The following theorems provide conditions under which weak phase retrieval is equiv-

alent to weak phaseless reconstruction.
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Proposition 3.2.4. Let Φ = {φi}ni=1 do weak phase retrieval on vectors x = (a1, a2, ..., am)

and y = (b1, b2, ..., bm) in Hm. If |I| = |{i : aibi 6= 0}| ≥ 3 and aiaj = bibj for all

i, j ∈ I, then Φ does weak phaseless reconstruction.

Proof. If i, j, k are three members of I with aiaj = bibj, aiak = bibk and akaj = bkbj,

then a short calculation gives

a2i aj ak = b2i bj bk

and hence |ai| = |bi|. This computation holds for each i ∈ I and since Φ does phase

retrieval, there is a |θ| = 1 so that phase (ai) = θ phase (bi) for all i ∈ [m]. It follows

that ai = θ bi for all i ∈ [m].

It turns out that whenever a frame contains the unit vector basis, then weak

phase retrieval and phaseless reconstruction are the same.

Proposition 3.2.5. Let the frame Φ = {φi}ni=1 ∈ Rm do weak phase retrieval. If Φ

contains the standard basis vectors, then Φ does phaseless reconstruction.

Proof. Let x = (a1, a2, . . . , am), y = (b1, b2, . . . , bm) ∈ Rm. By the definition of weak

phase retrieval, Φ satisfies the equation 3.2. In particular, for φi = ei, the equation 3.2

implies that |ai| = |bi| , ∀ i ∈ [m]. Hence the theorem.

We conclude this section by showing the surprising result that weak phaseless

reconstruction is the same as phaseless reconstruction in Rm. In other words, it is

not really weak.

Theorem 3.2.6. Frames which do weak phaseless reconstruction in Rm do phaseless

reconstruction.
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Proof. For a contradiction assume Φ = {φi}ni=1 ⊂ Rm does weak phaseless recon-

struction but fails the complement property. Then there exists I ⊂ [n] such that

spani∈I φi 6= Rm and spani∈Ic φi 6= Rm.

Pick non-zero vectors x, y ∈ Rm such that x ⊥ spani∈I φi 6= Rm and y ⊥ spani∈Ic φi 6=

Rm. Then for any c 6= 0 we have

|〈x+ cy, φi〉| = |〈x− cy, φi〉| for all i ∈ [n]

Now we consider the following cases where xi and yi denotes the i-th coordinate

of the vectors x and y.

• Case 1: {i : xi 6= 0}
⋂
{i : yi 6= 0} = ∅

Set c = 1 and observe since x 6= 0 there exists some i ∈ [n] such that xi 6= 0

and yi = 0 and similarly there exists j ∈ [n] such that yj 6= 0 but xj = 0.

Then x + y and x − y have the same sign in the i-th coordinate but opposite

signs in the j-th coordinate, this contradicts the assumption that Φ does weak

phaseless reconstruction.

• Case 2: There exists i, j ⊂ [n] such that xiyi 6= 0 and xj = 0, yj 6= 0.

Without loss of generality, we may assume xi yi > 0 otherwise consider −x or

−y. If 0 < c ≤ xi
yi

, then the i-th coordinate of x + cy and x − cy have the

same sign whereas the j-th coordinates have opposite signs which contradicts

the assumption.

By considering y + cx and y − cx this argument holds in the case that yj = 0

and xj 6= 0.

• Case 3: xi = 0 if and only if yi = 0.

By choosing c small enough, we have that xi+cyi 6= 0 if and only if xi−cyi 6= 0.
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By weak phase retrieval, there is a |d| = 1 so that

xi + cyi = d(xi − cyi)

But this forces either xi 6= 0 or yi 6= 0 but not both which contradicts the

assumption for case 3.

It is shown in [4] that if Φ = {φi}ni=1 does phase retrieval or phaseless reconstruc-

tion in Hm and T is an invertible operator on Hm then {Tφi}ni=1 does phase retrieval.

It now follows that the same result holds for weak phaseless reconstruction. However,

this result does not hold for weak phase retrieval.

Indeed, if φ1 = (1, 1) and φ2 = (1,−1), then we have seen that this frame does weak

phase retrieval in R2. But the invertible operator T (φ1) = (1, 0), T (φ2) = (0, 1) maps

this frame to a frame which fails weak phase retrieval.
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3.3 Illustrative Examples

In this section, we provide examples of frames that do weak phase retrieval in R3 and

R4. As seen earlier, the vectors (1, 1) and (1,−1) do weak phase retrieval in R2 but

fail phase retrieval.

Our first example is a frame which does weak phase retrieval but fails weak

phaseless reconstruction.

Example 3.3.1. We work with the row vectors of

Φ =



φ1 1 1 1

φ2 −1 1 1

φ3 1 −1 1

φ4 1 1 −1



Observe that the rows of this matrix form an equal norm tight frame Φ (and hence

do norm retrieval ). Then if x = (a1, a2, a3) the following is the coefficient matrix

where the row Ei represents the coefficients obtained from the expansion |〈x, φi〉|2

1/2



a1a2 a1a3 a2a3

3∑
i=1

a2i

E1 1 1 1 1/2

E2 −1 −1 1 1/2

E3 −1 1 −1 1/2

E4 1 −1 −1 1/2



Then the following row operations give
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1/2



a1a2 a1a3 a2a3

3∑
i=1

a2i

F1 = E1 − E2 1 1 0 0

F2 = E3 − E4 −1 1 0 0

F3 = E1 − E3 1 0 1 0

F4 = E2 − E4 −1 0 1 0

F4 = E1 − E4 0 1 1 0

F5 = E2 − E3 0 −1 1 0



1/2



a1a2 a1a3 a2a3

3∑
i=1

a2i

F1 − F2 1 0 0 0

F3 + F4 0 0 1 0

F5 − F6 0 1 0 0



Therefore we have demonstrated a procedure to identify aiaj for all 1 ≤ i 6= j ≤ 3.

This shows that given y = (b1, b2, b3) satisfying |〈x, φi〉|2 = |〈y, φi〉|2 then by the

procedure outlined above we obtain

aiaj = bibj, for all 1 ≤ i 6= j ≤ 3.

By Proposition 3.1.3, these four vectors do weak sign retrieval in R3. However this

family fails to do weak phaseless reconstruction. Observe the vectors x = (1, 2, 0) and

y = (2, 1, 0) satisfy |〈x, φi〉| = |〈y, φi〉| however do not have the same absolute value

in each coordinate.

Our next example is a frame which does weak phaseless reconstruction but fails

phaseless reconstruction.
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Example 3.3.1. We provide a set of six vectors in R4 which does weak phase retrieval

in R4. In this case our vectors are the rows of the matrix:

Φ =



φ1 1 1 1 −1

φ2 −1 1 1 1

φ3 1 −1 1 1

φ4 1 1 −1 −1

φ5 1 −1 1 −1

φ6 1 −1 −1 1



Note that Φ fails to do phase retrieval as it requires seven vectors in R4 to do

phase retrieval in R4. Given x = (a1, a2, a3, a4), y = (b1, b2, b3, b4) we assume

|〈x, φi〉|2 = |〈y, φi〉|2, for all i = 1, 2, 3, 4, 5, 6. (3.3)

Step 1: The following is the coefficient matrix obtained after expanding |〈x, φi〉|2 for

i = 1, 2, . . . , 6.

1/2



a1a2 a1a3 a1a4 a2a3 a2a4 a3a4

4∑
i=1

a2i

E1 1 1 −1 1 −1 −1 1
2

E2 −1 −1 −1 1 1 1 1
2

E3 −1 1 1 −1 −1 1 1
2

E4 1 −1 −1 −1 −1 1 1
2

E5 −1 1 −1 −1 1 −1 1
2

E6 −1 −1 1 1 −1 −1 1
2


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Step 2: Consider the following row operations, the last column becomes all zeroes so

we drop it and we get:



F1 = 1
2
(E1 − E4) 0 1 0 1 0 −1

F2 = 1
2
(E2 − E5) 0 −1 0 1 0 1

F3 = 1
2
(E3 − E6) 0 1 0 −1 0 1

A1 = 1
2
(F1 + F2) 0 0 0 1 0 0

A2 = 1
2
(F1 + F3) 0 1 0 0 0 0

A3 = 1
2
(F2 + F3) 0 0 0 0 0 1



Step 3: Subtracting out A1, A2 and A3 from E1, E2, E3 and E4, we get:



E ′1 = 1 0 −1 0 −1 0

E ′2 = −1 0 −1 0 1 0

E ′3 = −1 0 1 0 −1 0

E ′4 = 1 0 −1 0 −1 0



Step 4: We will show that aiaj = bibj for all i 6= j.

Performing the given operations we get:



D1 = −1
2

(E ′2 + E ′3) 1 0 0 0 0 0

A2 0 1 0 0 0 0

D2 = −1
2

(E ′1 + E ′2) 0 0 1 0 0 0

A1 0 0 0 1 0 0

D3 = −1
2

(E ′3 + E ′4) 0 0 0 0 1 0

A3 0 0 0 0 0 1


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Doing the same operations with y = (b1, b2, b3, b4) we get:

aiaj = bibj, for all 1 ≤ i 6= j ≤ 4.

Remark 3.3.2. It should be noted that weak phase retrieval does not imply norm

retrieval. We may use the previous example to illustrate this. Let Φ = {φi}6i=1 be

as in Example 3.3.1. Suppose Φ does norm retrieval. Since there are only 6 vectors

Φ fails the complement property. Now, take x = (1, 1,−1, 1) ⊥ {φ1, φ2, φ3} and

y = (1, 1, 1, 1) ⊥ {φ4, φ5, φ6}. Then, we have |〈x+ y, φi〉| = |〈x− y, φi〉| for all

i = 1, 2, . . . 6. From the definition of norm retrieval, this implies ‖x + y‖ = ‖x − y‖

which is a contradiction.
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