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Continuum elasticity theory of edge waves in a two-dimensional electron liquid
with finite-range interactions

Irene D’Amico and Giovanni Vignale
Department of Physics, University of Missouri, Columbia, Missouri 65211

~Received 21 January 1999!

We make use of continuum elasticity theory to investigate the collective modes that propagate along the
edge of a two-dimensional electron liquid or crystal in a magnetic field. An exact solution of the equations of
motion is obtained with the following simplifying assumptions:~i! The system ismacroscopicallyhomoge-
neous and isotropic in the half-plane delimited by the edge.~ii ! The electron-electron interaction is of finite
range due to screening by external electrodes.~iii ! The system is nearly incompressible. At sufficiently small
wave vectorq we find a universal dispersion curvev;q independent of the shear modulus. At larger wave
vectors the dispersion can change its form in a manner dependent on the comparison of various length scales.
We obtain analytical formulas for the dispersion and damping of the modes in various physical regimes.
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I. INTRODUCTION

The dynamical behavior of the edge of a two-dimensio
electron gas~2DEG! in a strong magnetic field is receivin
considerable attention. The interest has been spurred b
cent experiments1,2 in which an unusual tunneling curren
voltage relation of the formI 5V1/n0, where V is the bias
voltage andn0 is the bulk filling factor, has been observe
Such a distinctly non-Fermi-liquid-like behavior can b
explained3–5 on the assumption that there is only one bran
of collective edge waves~the so-called charged mode!, and
that the tunneling electron is initially accommodated as
coherent superposition of such waves spreading in time
cording to hydrodynamic equations of motion.

Unfortunately, a complete theory of edge waves is not
available. For example, there is considerable controve
about the existence of additional ‘‘neutral modes,’’ a
whether they contribute to the tunneling characteristics
not.6–8

Even the more conventional charged mode has not b
fully analyzed yet. The two most successful theories
far9,10 focus exclusively on the long-range part of the Co
lomb interaction, and should therefore be viewed as ma
scopic versions of the random-phase approximation~RPA!.
A complete description of the long-wave dynamics requir
however, the inclusion of short-range forces that arise fr
the relative motion of adjacent parts of the fluid. These c
be pressure forces arising from the bulk modulus of
quantum-mechanical fluid, as well as shear forces aris
from more subtle positional correlations. Shear forces are
course, essential in the crystalline phase, but they are
present in the liquid phase at nonzero frequency.11 In addi-
tion, there are viscous forces—completely ignored in
RPA—that cause damping of the collective modes.

These post-RPA effects are well established in the the
of the dynamics of the uniform electron gas, where they
usually described in terms of ‘‘local field corrections’’~see
Ref. 11!. For purely longitudinal bulk modes these corre
tions are not too important, as the direct Coulomb interact
PRB 600163-1829/99/60~3!/2084~9!/$15.00
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controls the physics of long-wavelength longitudinal fluctu
tions. The situation can be quite different for edge modes
even for bulk modes in a magnetic field, because in th
cases longitudinal and transverse channels are stro
coupled, and one cannot talk of purely longitudinal or tran
verse modes.

In a recent study,11 we showed that, in the absence of
magnetic field, the response of an interacting electron liq
to an external potential can be described as the response
continuum viscoelastic medium when we consider the c
lective regime, that is, long wavelengths (q!qF ,whereqF is
the Fermi wave vector! and frequenciesv higher than the
electron-hole excitation energies (qvF!v!EF /\, wherevF

andEF are the Fermi velocity and energy!.
We believe that this description is even more appropri

for the collective dynamic of electrons in a strong magne
field ~the physically most interesting case!, since in this case
the electrons are strongly correlated and seem to form
elastic network that is locally similar to a Wigner crystal~in
this regime, low-energy electron-hole excitations are alm
entirely suppressed!.

Indeed, we have recently shown4 that the collective dy-
namics of auniform electron gas, in the limit of infinite
magnetic field~i.e., in the lowest Landau level!, must neces-
sarily include a shear force term, otherwise the frequenc
of the collective modes vanish. This led us to a description
the electron gas as a continuum elastic medium, charac
ized by elastic constants~the bulk and the shear modulus!
which control the dynamical response, and by viscosity
efficients, which control dissipation. Encouraged by t
qualitative success of the continuum elasticity approach
the dynamics of theuniform electron gas, in this paper w
present its application to the problem ofedge dynamicsin a
magnetic field.

On a macroscopic scale, our system is modeled as a
form continuum in the half-plane delimited by the edge. T
external potential, that confines the electrons to the h
plane, is constant in the bulk of the system, and rises sha
at the edge. A great mathematical simplification follow
2084 ©1999 The American Physical Society
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PRB 60 2085CONTINUUM ELASTICITY THEORY OF EDGE . . .
from the assumption that the electron-electron interactio
of finite ~microscopic! range. This assumption is justified fo
structures in which the long-range Coulomb interaction
screened by metallic electrodes. The short range of the in
action results in equations of motion for the elastic displa
ment field that are linear differential equations, as oppose
integral equations in the approach of Refs. 9 and 10.

The distinctive feature of our theory is that the presen
of the edge is taken into account viaboundary conditions. In
an infinite system, the solutions of the equations of mot
are purely longitudinal or transverse plane waves charac
ized by areal wave vector. The presence of the edge allo
the existence of solutions with animaginary wave vector
perpendicular to the edge, which therefore vanish expon
tially as one moves into the bulk. It is evident that the
‘‘bound’’ solutions exist independently of the nature of th
bulk, in particular, irrespective of whether the bulk is incom
pressible or not. In addition, these solutions must have
property that the elastic stress vanish at the edge. Bec
the boundary conditions are linear, the problem can
solved exactly by elementary techniques, and analytic res
for the dispersion and damping of the collective modes
be obtained.~The qualitative changes brought about by t
long range of the Coulomb interaction will be discussed
the Appendix.! A particularly elegant solution can be ob
tained for nearly incompressible systems, in which a la
electrostatic charging energy strongly opposes density fl
tuations.

Our main result is that, at sufficiently long wavelengt
and high magnetic field, there is onlyone low-frequency
edge mode, whose dispersion depends on the strengths o
confining electric and magnetic fields, but not on the b
and shear moduli of the system. The nature of this solu
does not change when the system has crystalline order
shorter wavelengths, the dispersion can change its form
manner dependent on the comparison of various len
scales. In particular, we point out the possibility of a cro
over from a linear dispersion, controlled by the confini
electric field, to a quadratic dispersion, controlled by t
shear modulus of the electronic system, if the latter
sufficiently large. Our result is at variance with a previo
work12 in which, for a crystal and in the long wavelength
regime, Monarkha, Peeters, and Sokolov predicted a q
dratic edge wave dispersion. The discrepancy is due to
fact that these authors did not include the effect of the c
fining electric potential in the boundary conditions.

Our results support the idea that the dynamics of a sh
edge in a 2DEG is completely dominated by asinglecharged
mode, with any additional structure associated with pecu
characteristics of the system~such as the fractional quantum
Hall effect! becoming irrelevant at long wavelengths.

II. MODEL

We consider a two-dimensional electron fluid on a u
form background of positive charges, in a constant magn
field B5Bẑ. The system extends indefinitely forx,0 while
presenting a sharp edge atx;0, parallel to they axis. Since
the widtha of the edge is much smaller than the charact
istic wavelength of the modes under consideration, we mo
the edge settinga.0. Themassdensity, at equilibrium, is a
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constantr0 for x,0, and vanishes forx.0. Consistent with
this assumption, the external electrostatic potentialVext(x),
created by the background of positive charges and by ne
gates, is taken to be constant forx,0, and to rise sharply a
x50 with a derivative

g[
e

m S dVext

dx D
x50

. ~1!

Here2e is theeffectiveelectron charge, i.e., the bare char
divided by the square root of the static dielectric constan
the host semiconductor, andm is the effectivemass of the
electron in the host semiconductor. The quantityg is the
acceleration imparted by the external potential to an elec
at the edge. The effect of this acceleration on the collec
edge modes is analogous to the effect of gravity on surf
waves in a liquid—hence the notation.

To describe the dynamics of the system we introduce
displacement fieldu(x,y,t) of the infinitesimal volume ele-
ment at point (x,y) from its equilibrium position. This obeys
the linearized equation of motion of continuum elastic
theory:13

]2ui

]t2
5

1

r0
(

j
] js i j 1vcS ẑ3

]u

]t D
i

, ~2!

wherei and j are Cartesian indices,] i is the derivative with
respect tor i , vc5eB/mc is the cyclotron frequency, and

s i j 5K¹•ud i j 1m~] iuj1] jui2¹•ud i j ! ~3!

is the elastic stress tensor with bulk modulusK and shear
modulusm. The first term on the right-hand side of Eq.~2! is
the force exerted on the volume element by the surround
medium, the second term is the Lorenz force. In writi
these equations, we have assumed that the electron-ele
interactionv(r2r 8) is of finite range in space. This mean
that v(q50)[*v(r )dr is finite, and is included as part o
the bulk modulus

K5v~q50!n0
21K̃, ~4!

where K̃ is the ‘‘proper’’ contribution arising from the ki-
netic and exchange-correlation energy andn0[r0 /m is the
particle density. This procedure is, of course, only justifi
when the spatial variation of the density is small over d
tances of the order of the range of the interactiond, so that
qd!1, whereq is the wave vector. We must also haveqa
!1 for the ‘‘sharp edge’’ description to be valid. Clearl
both conditions are satisfied at sufficiently long wavelengt

Substituting Eq.~3! into Eq. ~2!, we obtain the standard
form of the equation of motion

]2u

]t2
5C2¹~¹•u!1Ct

2¹2u1vcẑ3u̇, ~5!

where

Ct
25

m

r0
~6!

is the square of the transverse sound velocity in the abse
of the magnetic field, and
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C25
K

r0
5Cl

22Ct
2 , ~7!

whereCl
2 is the square of the longitudinal sound velocity

the absence of a magnetic field. As stated in Sec. I, we
sume that the system is nearly incompressible, in the se
that the charging energyv(q50)n0 gives the dominant con
tribution to the bulk modulus, and is much larger than a
other energy scale in the problem, such asm/n0 or \vc .
This implies thatCl@Ct , so that the difference betweenC2

andCl
2 can and will be ignored in the following. We emph

size that this assumption~which is expected to be reasonab
for an electrically charged system! simplifies the calcula-
tions, but is not otherwise essential.

To complete the definition of the model we must no
specify the boundary conditions on the solution of Eq.~5!. In
elasticity theory, the normal form of the boundary conditi
at a free surface is13

(
j

s i j uedgen̂j50, ~8!

where i 5x or y, n̂ (5 x̂ in this case! is the unit vector per-
pendicular to the edge, and the subscript ‘‘edge’’ means
the quantity on the left hand side must be evaluated at
position of themovingedge, that is, at the point of coord
s-
se

y

at
e

nates@ux(0,y),y#. The physical significance of this conditio
is that there is no matter beyond the edge to exert a force
the system.

This boundary condition must be slightly modified he
because the external potential produces a stress in the
region even when the system is in equilibrium. Let us den
this equilibrium stress bys i j

(0) . Then the free boundary con
ditions take the form

(
j

@s i j
(0)~ux ,y!1s i j ~ux ,y!#n̂ j50. ~9!

From the symmetry of the problem one sees that only
xx component of the equilibrium stress tensor is nonze
and from the equilibrium condition dsxx

(0)(x)/dx
1e(r0 /m)dVext(x)/dx50, one sees that

S dsxx
(0)

dx D
x50

5gr0 , ~10!

with g defined in Eq.~1!. Finally, one is free to choose
sxx

(0)(x50,y)50 so as to satisfy the free boundary conditio
at equilibrium.

Expanding Eq.~9! to first order inu, and making use of
Eq. ~10!, we finally obtain explicit forms for the two bound
ary conditions:
itive
Cl
2¹•u~0,y!1Ct

2S ]ux~0,y!

]x
2

]uy~0,y!

]y D1gux~0,y!50, ~11!

]uy~0,y!

]x
1

]ux~0,y!

]y
50. ~12!

Together with the condition that the displacement field vanishes forx˜2`, Eq. ~5! and Eqs.~11! and~12! completely define
the mathematical problem under consideration.

III. EDGE WAVES IN A MAGNETIC FIELD

Ignoring the boundary conditions at first, it is easy to see that the solutions of Eq.~5! that vanish forx˜2` can be chosen
to have the form

u~x,y,t !5ũeiqy1lx2 ivt, ~13!

whereq is a real wave vector parallel to the edge, andl is, in general, a complex number, whose real part must be pos
in order to ensure decay in the interior of the system.

Taking the divergence and the curl of the equations of motion~5! and making use of Eq.~13!, we obtain

@2v22Cl
2~l22q2!#¹•u2 ivvc~¹3u!z50, ~14!

ivvc¹•u1@2v22Ct
2~l22q2!#~¹3u!z50. ~15!

These two linear homogeneous equations are compatible if and only if the square of the wave vectorl2 has one of the two
values

l25q22
v2~Ct

21Cl
2!

2Ct
2Cl

2 6AS v2~Ct
21Cl

2!

2Ct
2Cl

2 D 2

2
v2~v22vc

2!

Cl
2Ct

2 . ~16!
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In the limit Cl@Ct the two solutions forl2 ~which we de-
notel l

2 andl t
2) take the simple forms

l l
25q21

vc
22v2

Cl
2

, ~17!

l t
25q22

v2

Ct
2

2
vc

2

Cl
2

. ~18!

With a little algebra, it is possible to calculate the corr
sponding eigenfunctions in the limitCl˜`:

ul}@ x̂1 i sgn~q!ŷ#eiqy1uqux2 ivt, ~19!

ut}@ x̂1 i sgn~q!A12v2/Ct
2q2ŷ#eiqy1uquA12v2/Ct

2q2x2 ivt.
~20!

Let us now turn to the problem of satisfying the bounda
conditions~11! and~12! at x50. This can be done by form
ing a suitable superposition of the two independent soluti
ul andut, namely,
-
-
la

te
n

qu
-

s

u5aul1but, ~21!

wherea and b are complex coefficients. In order to imple
ment the boundary conditions of Eq.~11! we must calculate
the limit for Cl˜` of the productsCl

2¹–ul (t) . To accom-
plish this, we need to refine our calculation of the eigenfu
tions ul (t) by including terms of order 1/Cl

2 . This can be
done straightforwardly, with the help of Eqs.~17! and ~18!,
and the results are

limCl˜`Cl
2¹–ul~0,y!5

v@vc2v sgn~q!#

q
eiqy ~22!

and

limCl˜`Cl
2¹–ut~0,y!5

vvc

q
eiqy. ~23!

Substituting Eqs.~22! and ~23! in boundary conditions
~11! and~12! yields the following set of linear homogeneou
equation for the coefficientsa andb:
Fg1
vvc2v2 sgn~q!

q
12Ct

2uquGa1S g1
vvc

q
12Ct

2A12v2/Ct
2q2uqu Db50,

2a1~22v2/Ct
2q2!b50. ~24!

These two equations are compatible if and only if the frequencyv satisfies the algebraic equation

~22j2!22j2~jZ1X!54A12j2, ~25!

where

X5
g

uquCt
2

, ~26!

Z5
vc

uquCt
, ~27!

j5
v

qCt
. ~28!

The complete solution for the displacement field is

u~x,y,t !5$@~22j2!euqux22euquA12j2x# x̂1 i sgn~q!@~22j2!euqux22A12j2euquA12j2x# ŷ%ei (qy2vt). ~29!
is
one
-
ine
ear
Equations~25! and ~29! are the central results of this pa
per. In particular, Eq.~25! is the generalization of the clas
sical equation for the dispersion of surface waves in an e
tic medium—the so called ‘‘Rayleigh waves’’~see Ref.
13!—to which it reduces when the dimensionless parame
X andZ, measuring the strength of the external electric a
magnetic fields relative to the shear elastic forces, are e
to zero.
s-

rs
d
al

The solutions of Eq.~25! will be discussed in Sec. IV for
various physical regimes. Before doing that, however, it
necessary to clarify a delicate point which arises when
attempts to take the limitCt˜0 of the above theory. Physi
cally this corresponds to the very relevant case of a genu
liquid system, which is expected to have a vanishing sh
modulus at low frequency. It is evident from Eq.~29! that
this limit is singular: the variablej tends to infinity, imply-
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ing that only theul component of the solution@that is, the
part proportional toj2 in Eq. ~29!# survives. Nevertheless
the presence of a rapidly oscillating component of the so
tion with wave vectorl; iquju, which does not vanish fo
x˜2`, is disturbing. This difficulty becomes more evide
when one tries to solve the equation for the dispersion: in
limit Ct˜0, j˜`, the argument of the square root lies o
the negative real axis, where the presence of the branch
prevents us from finding a solution.

The resolution of these difficulties lies in the followin
physical considerations. Every system, liquid or solid, ha
nonvanishingshear viscosityh at finite frequency. The shea
viscosity contributes an additional term to the stress ten
~see Ref. 14!, which can be accommodated within our fo
malism simply through the replacementm˜m2 ivh or,
equivalently,

Ct
2
˜C̃t

2[Ct
22 ivn, ~30!

where n[h/r0 is the so-called kinematic viscosity.14 In a
solid, Ct remains finite forv˜0, and thereforen can be
safely neglected. In a liquid, however,Ct tends to 0 faster
than v, while n remains finite: the low-frequency limit is
therefore dominated by the viscosity. It is easy to see that
inclusion of viscosity eliminates the singularity of the sol
tion in the limit Ct˜0 andn˜0. This is because, after th
replacement indicated in Eq.~30!, the wave vectorqA12j2

in the limit Ct˜0 reduces toA2 iv/n5Av/2n(12 i ),
which, for smalln, has a very large positive real part, an
therefore vanishes very rapidly away from the edge. Co
spondingly, a solution of Eq.~25! can always be found~at
small q) if the viscosity is added according to the substi
tion indicated in Eq.~30!. In practice, the viscosity is ex
pected to be small. In Sec. IV we shall present our res
treatingn, Ct

2 , g, andvc as formal parameters. The actu
values of these parameters will be discussed in Sec. V.

IV. DISPERSION RELATION IN VARIOUS PHYSICAL
REGIMES

The behavior of the solutions of Eq.~25! as functions of
the dimensionless parametersX andZ is rather complicated
It is convenient to distinguish three different regimes acco
ing to whether the magnetic field, the edge electric field (g),
or the shear modulus dominates.

~a! Strong magnetic field.This regime is characterized b
uqu!uvc /C̃tu and uqu!uvc

2/gu. Therefore,uZu@1 and uXu
!uZu2. It is easy to see that Eq.~25! has two solutions in this
limiting case. The first solution is

j52
X

Z
1

1

Z S X2

Z2 24
A12X2/Z221

X2/Z2
24D . ~31!

The explicit form of the dispersion depends on the value
X. The most interesting case isuXu@uZu, which corresponds
to long wavelengthsuqu!g/Ct

2 and vanishing shear modulu
vcCt!g, and is appropriate for the liquid state. In this ca
substituting the definitions~26!, ~27!, and ~28! in Eq. ~31!,
one obtains, after simple manipulations,
-

e

ut

a

or

e

-

-

ts

-

f

,

v52
gq

vc
2

4Ct
2ququ
vc

1
g2uquq

vc
3 24in

guqu3

vc
2 , ~32!

where we have used Eq.~30! to obtain the imaginary part o
the frequency. Thus, at sufficiently long wavelength, the d
persion is linear and independent of the visco-elastic c
stants.

Recalling the definition of the ‘‘gravity acceleration’’ in
Eq. ~1!, we see that the phase velocity for long waveleng
v/q coincides with the classical drift velocityv5cE/B,
whereE is the magnitude of the electric field at the edg
Other cases, compatible with our definition of the stron
field regime, can also be calculated from Eq.~31!. For ex-
ample, in the limit of vanishing electric fieldg˜0 or large
shear modulus, such thatuXu!1, ug/Ct

2u!uqu!uvc /Ctu we
obtain

v52
gq

vc
2

2Ct
2ququ
vc

24i
Ct

2nq4

vc
2 . ~33!

Settingg50 in this expression, we obtain the dispersion
surface elastic waves~‘‘Rayleigh waves’’!13 in the presence
of a strong magnetic field. Notice that, due to the presenc
the strong magnetic field, the dispersion is quadratic rat
than linear inq.

The second solution is

j.Z1~X14!/Z, ~34!

which implies

v5vc sgn~q!1
gq

vc
1

4Ct
2q2

vc
sgn~q!24inq2. ~35!

Notice that the two solutions obtained in this section descr
waves propagating in opposite directions~i.e., the sign of the
ratio v/q is opposite in the two cases!, and that the second
solution, for q˜0, is simply the manifestation of the un
form Kohn mode15 at the edge of the system.

~b! Strong electric field (gravity waves).Let us now as-
sume that the edge electric field is large, in the sense
vc

2/g!uqu!g/Ct
2 . This implies uXu@1 and uXu@uZu2. No-

tice thatq cannot tend to zero in this regime, unlessvc50.
The solutions of Eq.~25! are then found to be

j;6AX6ZAX14, ~36!

v56AguquS 11
2Ct

2uqu
g D 1

vc

2
22inq2 ~37!

It is comforting to notice that, for zero magnetic field an
shear modulus, we recover the classical results for the
persion and damping of ‘‘gravity waves’’ on the surface o
liquid.14

~c! Large shear modulus (Rayleigh waves).Next, consider
the case that the shear modulus dominates, in the sense
uqu@vc /Ct and uqu@g/Ct

2 . This implies uXu!1 and uZu
!1. Again, this definition does not allow one to take t
limit q˜0 unlessg andvc are both zero.

The doubly degenerate solution of Eq.~25! in this case is
j560.955, which implies~for q!ACt

2/n)
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PRB 60 2089CONTINUUM ELASTICITY THEORY OF EDGE . . .
v560.955Ctuqu2 i ~0.456!nq2. ~38!

This is nothing but the familiar Rayleigh wave on the surfa
of an elastic solid,13 with a small damping due to viscosity
and no correction from external electric and magnetic fie

~d! Zero shear modulus limit (liquid state).In this case
~and for zero viscosity! the equations of motion can b
solved exactly. The expression for the two branches of
dispersion relation is

v65
vc

2
sgn~q!6AS vc

2 D 2

1guqu. ~39!

For q!vc
2/g andq@vc

2/g we recover expressions~32! and
~37!, respectively. The corresponding eigenfunctions
given byul in Eq. ~19!.

We have thus exhausted all the physically different
gimes. In cases~a!–~c!, the form of the eigenfunction is ob
tained by substituting the appropriate value ofj in Eq. ~29!.
Results for the lower branch of the complete numerical
lution of Eq. ~25!, exhibiting crossovers between the vario
regimes discussed in this section, are shown in Figs. 1 an
In Fig. 1, the real part of the phase velocityuvvc /gqu is
plotted againstqCt /vc for decreasing values of the ratioR
[g/Ctvc (R51, 0.7, and 0.5), that is, for increasing ma
netic field or shear modulus or decreasing electric field. T
figure clearly shows the universal long-wavelength behav
uvvc /gqu'1 for very smallq. For R50.5 ~strong magnetic
field and finite shear modulus! and smallq (q!vc /Ct), the
exact curve agrees with the approximate expression Eq.~33!
~labeled in the figure as ‘‘lw’’!. For R51 ~strong magnetic
field and small shear modulus! the third term in Eq.~32!
becomes predominant and the exact curve lies below 1.
largeq the exact curves in all cases approach the ‘‘Rayle
wave’’ regime, that is, the linesuvvc /gqu50.955/R.

FIG. 1. Real part of the dimensionless phase velocityuvvc /gqu
vs qCt /vc for three values ofR5g/Ctvc . For each curve the
short-wavelength limituvvc /gqu50.955/R—coinciding with the
dispersion of classical Rayleigh waves—is plotted for comparis
For the curve withR50.5, we also plot the long-wavelength lim
uvvc /gqu5112Ct

2uqu/g ~‘‘lw’’ curve !.
e

s.

e

e

-

-

2.

e
r

or
h

In Fig. 2 we plot the real part ofuvvc/2q2Ct
2u versus

qCt
2/g for uqu!uvc /Ctu for R50.01 ~solid line!. This figure

clearly shows a crossover from the linear dispersion c
trolled by the electric field to the quadratic dispersion co
trolled by the shear modulus in the case of strong magn
field @see Eq.~33!#. The dashed line is the approximate cur
for the ‘‘linear regime’’ (uqu!ug/Ct

2u, uvvc/2q2Ct
2u

5ug/2qCt
2u), while the dotted line corresponds to the ‘‘qu

dratic regime’’ (ug/Ct
2u!uqu!uvc /Ctu, uvvc/2q2Ct

2u51).
In Fig. 3 we plot uv/vcu againstqg/vc

2 for the case of
zero shear modulus@Eq. ~39!#. For the low-frequency branch

.

FIG. 2. Real part ofuvvc/2q2Ct
2u vs qCt

2/g for R50.01 ~solid
line!. The dashed line is the approximate curve for the ‘‘line
regime’’ (uqu!ug/Ct

2u, uvvc/2q2Ct
2u5ug/2qCt

2u), while the dotted
line corresponds to the ‘‘quadratic regime’’ (ug/Ct

2u!uqu!uvc /
Ctu, uvvc/2q2Ct

2u51).

FIG. 3. Real part of the upper~‘‘ 1’’ ! and lower ~‘‘ 2 ’’ !
branches of the dimensionless dispersion curveuv/vcu vs qg/vc

2

for vanishing shear modulus. The dashed line represents the l
wavelength limit (uv/vcu5qg/vc

2), and the dotted line the short
wavelength limit (uv/vcu5Aqg/vc

221/2), of the lower branch.
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~labeled with ‘‘2 ’’ !, we also plot the leading term for long
wavelength (uv/vcu5qg/vc

2 , dashed line! and short-
wavelength@Eq. ~37!, dotted line# approximate behaviors.

It is interesting to note that no acceptable solution
found in the transition region between regimes~b! and ~c!,
that is, forvc /Ct&q;g/Ct

2 .

V. DISCUSSION

Up to this point our classification of different physic
regimes has been purely formal: we have not yet speci
the values of the parameters. We now wish to state the c
crete predictions of our theory for typical systems at h
magnetic field.

The value of the electric acceleration at the edge is ea
estimated as

g5
e2n0

m

d

a
, ~40!

wheren05r0 /m is the equilibrium density,d is the range of
the interaction, anda is the width of the edge, which is
typically of the order of the magnetic lengthl 5A\c/eB. In
a magnetic field, it is convenient to introduce the filling fa
tor n0[2pn0l 2. Then our estimate forg takes the form

g5
e2n0

2p\
vc

d

a
. ~41!

The calculation of the shear viscosity is considera
more difficult. A mode-coupling calculation for the two
dimensional electron gasat zero magnetic field16 yields nu-
merical results that can be accurately described by
formula11

n.~59r s
23/21c1r s

211c2r s
22/31c3r s

21/3!21
\

m
, ~42!

where r s5A1/pn0a0
2 is the usual electron-gas paramet

a05\2/me2 is the effective Bohr radius of the host semico
ductor, andc050.25, c1520.6, c2522.7, andc3512.8. We
are not aware of any calculation of the viscosity in the pr
ence of a magnetic field, but we expect Eq.~42! to give at
least the right order of magnitude at a given density.

As for the shear modulus, we expect it to vanish, if t
system is liquid, at low frequency, leaving us withC̃t

25

2 ivn. If, instead, the system is a solid, thenCt
2 has a finite

value which can be estimated from dimensional consid
ations:

Ct
2.

e2n0
1/2

m
. ~43!

It is the viscosity that can be neglected in this case.
example, in the classical two-dimensional Wigner crys
with Coulomb interactions (d5`), the exact result isCt

2

.0.24e2n0
1/2/m11.
s

d
n-

ly

y

e

,

-

r-

r
l

Let us first consider the dispersion of edge waves in
liquid. BecauseCt50, andn is very small we immediately
see thatuXu@1 and uZu@1 at all realistic wave vectorsq
!1/a;1/d. The inverse lengthvc

2/g is given by

vc
2

g
5a0

21 2p

n0

a

dS a0

l D 2

. ~44!

This is of the order of 1/a or larger for typical quantum Hal
systems in which the density isn0;1010–1011 cm22, and
the filling factor is less than 1. Therefore, these systems
within the ‘‘strong-magnetic-field regime’’ of Sec. IV. Be
cause the frequency vanishes linearly withq, the ratioX/Z
5g/vcA2 ivn tends to infinity, and the dispersion is ther
fore given by Eq.~32!:

v52
gq

vc
1

g2ququ
vc

3 24in
guqu3

vc
2 . ~45!

The eigenfunction has the simple form

u}@ x̂1 i sgn~q!ŷ#euqux1 iqy, ~46!

which describes a circular motion of each volume eleme
Then, making use of our estimate~41! for the electric accel-
eration, the phase velocity of the wavev5g/vc5(e2n0 /
h)(d/a) is obtained at once.

Let us now consider the case that the low-frequency sh
modulus doesnot vanish: this would happen, for example,
the electrons solidified in a Wigner crystal structure. Acco
ing to our general discussion it might be possible, with
creasing wave vector, to cross over to an ‘‘intermedi
wavelength regime,’’ in which the dispersion is controlled
the shear modulus, and varies asq2 @see Eq.~33!#.

Unfortunately, this crossover is not likely to occur with
the region of wave vectors in which our theory applie
namely,q!1/a;1/d. Indeed, from Eqs.~40!, ~41!, and~43!,
we see that, ford comparable to, but somewhat larger tha
the average distance between electrons, both the ratiosg/Ct

2 ,
andvc /Ct are of the order of the inverse of the interelectr
distance. This implies that forq!1/a,1/d both X andZ are
@1, and we clearly fall into the ‘‘long-wavelength regime
of Sec. IV. The only possibility to observe the crossover
shear-modulus-sustained waves in the present model, w
arise if the range of the interactiond were much less than th
typical interelectron distance—not an easily realizable sit
tion.

Thus, in summary, we have shown that the tw
dimensional electron gas on a neutralizing background
charge sustains onlyonemacroscopically charged collectiv
mode which decays exponentially as one moves away f
the edge.The scale of this exponential decay is the same
the scale of variation of the density along the edge. We have
derived analytical and numerical expressions for the disp
sion relations and eigenfunctions in various physically d
tinct regimes. An important result of our study is that t
character of the edge waves in this model is controlled
most exclusively by the strength of the electric field at t
edge, and does not depend significantly on the shear m
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lus: therefore, the dispersion is the same, to leading orde
q, for the liquid and the solid state@see Eq.~31!#. These
results suggest that the behavior of theI -V tunneling char-
acteristics at low bias voltage would be the same at the e
of a liquid and of a Wigner crystal: in particular, the pow
law I;V1/n0, wheren0 is the bulk filling factor, is expected
in both cases.3
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APPENDIX: EXTENSION TO LONG-RANGE
INTERACTION

In this paper we have taken advantage of some m
ematical simplifications arising from the assumption that
electron-electron interaction is of finite range in space. E
tending the theory to properly include Coulomb interactio
is nontrivial. In this appendix we want to sketch an appro
mate method to do this extension, which entails minim
changes in the structure of the equations. The metho
nonrigorous, yet it yields qualitatively correct results for t
long-wavelength dispersion.

To begin, we observe that, in the equation of motion~5!,
the termC2¹(¹•u) should be replaced~ignoring the small
contribution fromK̃) by

¹E e2

ur2r 8u
¹8•u~r 8!dr 8. ~A1!

In an infinite system this term would pose no problem:
Fourier transformation it could be recast in the form of E
~5!, with a q-dependent longitudinal ‘‘sound velocity’’

C2~q!5
2pe2n0

mq
, ~A2!

which tends to infinity asq tends to zero. In a semi-infinite
system, however, things are not so simple, and the Coulo
interaction cannot be simply absorbed in aq-dependent
sound velocity.

The idea of our approximation scheme is to neglect
effect of the edge on the bulk equation of motion, whi
therefore retains the form of Eq.~5!, with C2 tending to
infinity in the long-wavelength limit. The effect of the edg
will be taken into account only via the boundary conditio
~11! and~12!, which force the solution to be a certain supe
position of bulk waves.

So far the theory is formally identical to the short-ran
case. However, observe that the key quantityg, which enters
the boundary conditions, is ill defined in the case of t
Coulomb interaction. The external potential in this case
simply the electrostatic potential created by a uniform dis
bution of positive charge precisely compensating for
electronic charge in the half-plane. The electric field p
in

ge

e

4,
r

h-
e
-
s
-
l
is

.

b

e

-

e
s
-
e
-

duced by this charge tends to infinity~logarithmically! at the
edge of the half-plane, and thereforeg is infinite @see Eq.
~1!#.

In order to obtain the correct form of the boundary co
ditions in the Coulomb case we return to Eq.~9!, and note
that from the equilibrium conditionsxx

(0)(r ) is given by

sxx
(0)~r !52n0

2E E
x8,0

e2

ur2r 8u
dr 8, ~A3!

where the integral is restricted to the half-planex8,0.
Consider a point in the vicinity of the geometric edge w

r5(e1ux(0,y),y), wheree is a length of the order of the
physical width of the edgea. Similarly to what we did in the
short-range case in Sec. II we now expandsxx

(0) to first order
in ux and discard the constant zero-order contribution. Af
integrating with respect tox8, we obtain

sxx
(0)~ux ,y!.n0

2E
2`

` e2

Ae21~y2y8!2
ux~0,y8!dy8.

~A4!

Specializing to solutions with definite wave vector alo
the edge@i.e., ux(0,y)}eiqy#, we see that Eq.~A4! takes the
simpler form

sxx
(0)~ux ,y!.n0

22e2K0~ uqeu!ux~0,y!, ~A5!

whereK0 is the modified Bessel function. Unfortunately, th
e˜0 limit of this expression does not exist, due to the log
rithmic divergence of the Bessel functionK0(x);2 ln(x)
for x˜0. However, the divergence is very weak, and,
view of the fact that the position of the edge is defined with
an uncertainty of the order ofa (;0 in our theory! it is
legitimate ~with logarithmic accuracy! to replaceK0(uqeu)
by K0(uqau).

Substitution of this expansion in Eq.~9! leads to our
boundary conditions: these can still be written in the form
Eqs.~24!, but now both the longitudinal sound velocity, an
the electrical accelerationg are functions ofq: the former is
given by Eq.~A2!, while for the latter

g˜g~q!52e2
n0

m
K0~ uqau!. ~A6!

From this point on, all calculations proceed as in t
short-range case. In particular, the logarithmic divergence
the effectiveg causes the dispersion of the edge waves
vary as 2(2n0e2/h)q ln(qa) in a magnetic field, and as
A2e2n0Aq ln(qa) without a magnetic field. It is amusing t
observe that in the three-dimensional case the effectiveg at
the surface would beg(q)52pr0e2/m2q , leading, in the
absence of a magnetic field, to the well-known result for
frequency of surface plasmons, namely,v5Agq
5A2pe2n0 /m.
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5U. Zülicke and A. H. MacDonald, cond-mat/9802019~unpub-
lished!.

6A. V. Shytov, L. S. Levitov, and B. I. Halperin, Phys. Rev. Le
80, 141 ~1998!.

7D. H. Lee and X. G. Wen, cond-mat/9809160~unpublished!.
8A. Lopez and E. Fradkin, cond-mat/9810168~unpublished!.
9V. A. Volkov and S. A. Mikhailov, Zh. E´ksp. Teor. Fiz.94, 217

~1988! @Sov. Phys. JETP67, 1639~1988!#.
10I. L. Aleiner and L. I. Glazman, Phys. Rev. Lett.72, 2935~1994!.
11S. Conti and G. Vignale, cond-mat/9811214~unpublished!. For a

review of post-RPA effects in the uniform electron gas, see K
Singwi and M. P. Tosi, inSolid State Physicsedited by H.
Ehrenreich, F. Seitz, and D. Turnbull~Academic, New York,
1981!, Vol. 36, p. 177.

12Y. S. Monarkha, F. M. Peeters, and S. S. Sokolov, J. Phys.: C
dens. Matter9, 1537~1997!.

13L. D. Landau and E. Lifshitz,Theory of Elasticity, 3rd ed., Course
of Theoretical Physics, Vol. 7~Pergamon Press, Oxford, 1986!.

14L. D. Landau and E. Lifshitz,Mechanics of Fluids, 2nd ed.,
Course of Theoretical Physics, Vol. 6~Pergamon Press, Oxford
1987!.

15W. Kohn, Phys. Rev.123, 1242~1961!.
16R. Nifosı́, S. Conti, and M. P. Tosi, Phys. Rev. B58, 12 758

~1998!.


