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Continuum elasticity theory of edge waves in a two-dimensional electron liquid
with finite-range interactions
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We make use of continuum elasticity theory to investigate the collective modes that propagate along the
edge of a two-dimensional electron liquid or crystal in a magnetic field. An exact solution of the equations of
motion is obtained with the following simplifying assumptioris: The system isnacroscopicallyhomoge-
neous and isotropic in the half-plane delimited by the edigeThe electron-electron interaction is of finite
range due to screening by external electrodi@s. The system is nearly incompressible. At sufficiently small
wave vectorg we find a universal dispersion curee~q independent of the shear modulus. At larger wave
vectors the dispersion can change its form in a manner dependent on the comparison of various length scales.
We obtain analytical formulas for the dispersion and damping of the modes in various physical regimes.
[S0163-18299)07927-9

[. INTRODUCTION controls the physics of long-wavelength longitudinal fluctua-
tions. The situation can be quite different for edge modes, or

The dynamical behavior of the edge of a two-dimensionakven for bulk modes in a magnetic field, because in these
electron gag2DEG) in a strong magnetic field is receiving cases longitudinal and transverse channels are strongly
considerable attention. The interest has been spurred by reeupled, and one cannot talk of purely longitudinal or trans-
cent experiments in which an unusual tunneling current- verse modes.
voltage relation of the formi =V, whereV is the bias In a recent study® we showed that, in the absence of a
voltage andvy is the bulk filling factor, has been observed. magnetic field, the response of an interacting electron liquid
Such a distinctly non-Fermi-liquid-like behavior can be to an external potential can be described as the response of a
explained~° on the assumption that there is only one branchcontinuum viscoelastic medium when we consider the col-
of collective edge wave&he so-called charged modeand  lective regime, that is, long wavelengttg<€qr ,whereqg is
that the tunneling electron is initially accommodated as ahe Fermi wave vectgrand frequencies» higher than the
coherent superposition of such waves spreading in time a@lectron-hole excitation energieg < w<Eg /%, wherevg
cording to hydrodynamic equations of motion. andEg are the Fermi velocity and energy

Unfortunately, a complete theory of edge waves is not yet We believe that this description is even more appropriate
available. For example, there is considerable controversjor the collective dynamic of electrons in a strong magnetic
about the existence of additional “neutral modes,” andfield (the physically most interesting cassince in this case
whether they contribute to the tunneling characteristics othe electrons are strongly correlated and seem to form an
not8-8 elastic network that is locally similar to a Wigner crysta

Even the more conventional charged mode has not beehis regime, low-energy electron-hole excitations are almost
fully analyzed yet. The two most successful theories saentirely suppressed
far*1% focus exclusively on the long-range part of the Cou- Indeed, we have recently shofvthat the collective dy-
lomb interaction, and should therefore be viewed as macroramics of auniform electron gas, in the limit of infinite
scopic versions of the random-phase approximatRRA). magnetic field(i.e., in the lowest Landau levelmust neces-

A complete description of the long-wave dynamics requiressarily include a shear force term, otherwise the frequencies
however, the inclusion of short-range forces that arise fronof the collective modes vanish. This led us to a description of
the relative motion of adjacent parts of the fluid. These carthe electron gas as a continuum elastic medium, character-
be pressure forces arising from the bulk modulus of thezed by elastic constantdhe bulk and the shear modujus
guantum-mechanical fluid, as well as shear forces arisingvhich control the dynamical response, and by viscosity co-
from more subtle positional correlations. Shear forces are, oéfficients, which control dissipation. Encouraged by the
course, essential in the crystalline phase, but they are alsqualitative success of the continuum elasticity approach to
present in the liquid phase at nonzero frequetdy addi-  the dynamics of thainiform electron gas, in this paper we
tion, there are viscous forces—completely ignored in thepresent its application to the problem edge dynamicé a
RPA—that cause damping of the collective modes. magnetic field.

These post-RPA effects are well established in the theory On a macroscopic scale, our system is modeled as a uni-
of the dynamics of the uniform electron gas, where they ardéorm continuum in the half-plane delimited by the edge. The
usually described in terms of “local field correctiong8ee  external potential, that confines the electrons to the half-
Ref. 11). For purely longitudinal bulk modes these correc- plane, is constant in the bulk of the system, and rises sharply
tions are not too important, as the direct Coulomb interactiorat the edge. A great mathematical simplification follows
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from the assumption that the electron-electron interaction igonstanip, for x<<0, and vanishes for>0. Consistent with
of finite (microscopi¢ range. This assumption is justified for this assumption, the external electrostatic potentigl(x),
structures in which the long-range Coulomb interaction iscreated by the background of positive charges and by nearby
screened by metallic electrodes. The short range of the integates, is taken to be constant fox 0, and to rise sharply at
action results in equations of motion for the elastic displacex=0 with a derivative
ment field that are linear differential equations, as opposed to
integral equations in the approach of Refs. 9 and 10. _ E(dv_ext>
The distinctive feature of our theory is that the presence " m\ odx |
of the edge is taken into account \baundary conditionsin X0
an infinite system, the solutions of the equations of motionHere — e is theeffectiveelectron charge, i.e., the bare charge
are purely longitudinal or transverse plane waves characteflivided by the square root of the static dielectric constant of
ized by areal wave vector. The presence of the edge allowsthe host semiconductor, amd is the effectivemass of the
the existence of solutions with amaginary wave vector €lectron in the host semiconductor. The quangtys the
perpendicular to the edge, which therefore vanish exponercceleration imparted by the external potential to an electron
tially as one moves into the bulk. It is evident that theseat the edge. The effect of this acceleration on the collective
“bound” solutions exist independently of the nature of the €dge modes is analogous to the effect of gravity on surface
bulk, in particular, irrespective of whether the bulk is incom-Waves in a liquid—hence the notation.
pressible or not. In addition, these solutions must have the To describe the dynamics of the system we introduce the
property that the elastic stress vanish at the edge. Becausésplacement fieldi(x,y,t) of the infinitesimal volume ele-
the boundary conditions are linear, the problem can bénentat pointx,y) from its equilibrium position. This obeys
solved exactly by elementary techniques, and analytic resulfée linearized equation of motion of continuum elasticity
for the dispersion and damping of the collective modes caitheory:
be obtained(The qualitative changes brought about by the 5
long range of the Coulomb interaction will be discussed in v 1 S g0+
the Appendix. A particularly elegant solution can be ob- o2 po 5 175 Pe
tained for nearly incompressible systems, in which a large ] . o ) o )
electrostatic charging energy strongly opposes density fluc¥herei andj are Cartesian indices; is the derivative with
tuations. respect tar;, w,=eB/mcis the cyclotron frequency, and
Our main result is that, at sufficiently long wavelengths B
and high magnetic field, there is ontyne low-frequency 71 =KV - Uiy + (9 + ;Ui =V - udyy) )
edge mode, whose dispersion depends on the strengths of thethe elastic stress tensor with bulk modukisand shear
confining electric and magnetic fields, but not on the bulkmodulusu. The first term on the right-hand side of E8) is
and shear moduli of the system. The nature of this solutionhe force exerted on the volume element by the surrounding
does not change when the system has crystalline order. Ahedium, the second term is the Lorenz force. In writing
shorter wavelengths, the dispersion can change its form in these equations, we have assumed that the electron-electron
manner dependent on the comparison of various lengtinteractionv(r—r’) is of finite range in space. This means
scales. In particular, we point out the possibility of a cross-thatv(q=0)=[v(r)dr is finite, and is included as part of
over from a linear dispersion, controlled by the confiningthe bulk modulus
electric field, to a quadratic dispersion, controlled by the
shear modulus of the electronic system, if the latter is K=v(q=0)nS+R, 4
sufficiently large. Our result is at variance with a previous -
work'? in which, for a crystal and in the long wavelengths WhereK is the “proper” contribution arising from the ki-
regime, Monarkha, Peeters, and Sokolov predicted a qudtetic and exchange-correlation energy amge=po/m is the
dratic edge wave dispersion. The discrepancy is due to thearticle density. This procedure is, of course, only justified
fact that these authors did not include the effect of the conwhen the spatial variation of the density is small over dis-
fining electric potential in the boundary conditions. tances of the order of the range of the interactipiso that
Our results support the idea that the dynamics of a shargd<1, whereq is the wave vector. We must also hage
edge in a 2DEG is completely dominated bgiaglecharged <1 for the “sharp edge” description to be valid. Clearly,
mode, with any additional structure associated with peculiapoth conditions are satisfied at sufficiently long wavelengths.
characteristics of the systefauch as the fractional quantum  Substituting Eq(3) into Eq. (2), we obtain the standard
Hall effecth becoming irrelevant at long wavelengths. form of the equation of motion

@

~ du
ZX—
Jat

. @

2
u A .
Il. MODEL ?=C2V(V~u)+C§V2u+ wZX U, (5)

We consider a two-dimensional electron fluid on a uni-
form background of positive charges, in a constant magnetit/nere
field B=Bz. The system extends indefinitely ferx0 while w
presenting a sharp edge»at 0, parallel to they axis. Since Ct2=— (6)
the widtha of the edge is much smaller than the character- Po
istic wavelength of the modes under consideration, we modek the square of the transverse sound velocity in the absence
the edge setting=0. Themassdensity, at equilibrium, is a of the magnetic field, and
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nateq u,(0,y),y]. The physical significance of this condition
C?=—=C?-C?, (7) s that there is no matter beyond the edge to exert a force on
Po the system.

whereC? is the square of the longitudinal sound velocity in  This boundary condition must be slightly modified here
the absence of a magnetic field. As stated in Sec. |, we adgecause the external potential produces a stress in the edge
sume that the system is nearly incompressible, in the sensegion even when the system is in equilibrium. Let us denote
that the charging energy(q=0)n, gives the dominant con- this equilibrium stress by-i(jo). Then the free boundary con-
tribution to the bulk modulus, and is much larger than anyditions take the form
other energy scale in the problem, such %, or fiw,.
This implies thatC,>C;, so that the difference betwe@f

(0) . n =
andC? can and will be ignored in the following. We empha- 2,: Lo (U y) + oy (U, y) I =0 ©
size that this assumptigmwhich is expected to be reasonable
for an electrically charged systeénsimplifies the calcula- From the symmetry of the problem one sees that only the
tions, but is not otherwise essential. xx component of the equilibrium stress tensor is nonzero,

To complete the definition of the model we must nowand from the equilibrium condition do{Q)(x)/dx
specify the boundary conditions on the solution of E5. In +e(po/m)dVe,(X)/dx=0, one sees that
elasticity theory, the normal form of the boundary condition

i (0)
at afree surface i§® do
( o | 9o (10
x=0
Ej: ijledgd); =0, ®  with g defined in Eq.(1). Finally, one is free to choose

(r(x?()(XZ 0,y) =0 so as to satisfy the free boundary conditions
wherei=x ory, n (=X in this casgis the unit vector per- at equilibrium.
pendicular to the edge, and the subscript “edge” means that Expanding Eq(9) to first order inu, and making use of
the quantity on the left hand side must be evaluated at th&q. (10), we finally obtain explicit forms for the two bound-
position of themovingedge, that is, at the point of coordi- ary conditions:

dux(0y) duy(0y)
IX ay

C?V-u(0y)+C? +gu,(0y)=0, (12)

duy(0, Auy(0,
y(0y) | audOy) _ o

X ay (12

Together with the condition that the displacement field vanishes-for-«, Eq. (5) and Eqs(11) and(12) completely define
the mathematical problem under consideration.

Ill. EDGE WAVES IN A MAGNETIC FIELD

Ignoring the boundary conditions at first, it is easy to see that the solutions ¢5)Efat vanish forxx— — oo can be chosen
to have the form

u(x’y’t):aeiqy+)\x—ia)t, (13)

whereq is a real wave vector parallel to the edge, ani, in general, a complex number, whose real part must be positive
in order to ensure decay in the interior of the system.
Taking the divergence and the curl of the equations of madtrand making use of Eq13), we obtain

[—w?—C?(\2—g?) ]V -u—iww(VXxu),=0, (14)
iwwV-u+[—w?—C2(\?>—g?)](VXu),=0. (15)

These two linear homogeneous equations are compatible if and only if the square of the wava ¥baone of the two
values

° oo’ wp) 8
cic?

\m g w*(CP+CP) \/( w*(C{+CP)

2CiCt 2CZC?
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In the limit C,;>C, the two solutions foi? (which we de- u=au,+ bu,, (21)

note ? and\?) take the simple forms
wherea and b are complex coefficients. In order to imple-

w’— w? ment the boundary conditions of E@.1) we must calculate
2 2 c
AN =Q°+ cz (17 the limit for C/—x of the productsCfV-um). To accom-
: plish this, we need to refine our calculation of the eigenfunc-
2 2 tions uyyy by including terms of order 0,2. This can be
N2=(2— w__ﬂ_ (18) done straightforwardly, with the help of Eq4.7) and(18),
: c? c? and the results are
With a Ii'FtIe aIgebra, it'is posgible to calculate the corre- . ) o[ w.— o sgrq)] W
sponding eigenfunctions in the lim@;—oe: limc, ..CiV-u(0y)= q e (22
U [x-+i sgrig)yle® labier, 19
U+ sgr ) 1= w?/CEaPyJey FlahizefiCiaiot o,
(20) lime, _,.CFV-u(0y)= a ela, (23)

Let us now turn to the problem of satisfying the boundary
conditions(11) and(12) atx=0. This can be done by form- Substituting Egs(22) and (23) in boundary conditions
ing a suitable superposition of the two independent solution§11) and(12) yields the following set of linear homogeneous
u; andu,, namely, equation for the coefficients andb:

2
—w?s
g+w+zcﬂq| a+ g+“’;’°+2cf 1-w?/Cq?|q| |b=0,

These two equations are compatible if and only if the frequansatisfies the algebraic equation

(2—- 32— E(EZ+X)=4\1- &, (25)
where
X= % (26)
We
Z= [y (27)
= % (28)

The complete solution for the displacement field is

U(x,y,t) ={[ (2 £2)elax— 26l 1-E9% 1 sgrq)[ (2 £2) 9% — 24/1— 2l 1=y giay-an) (29)

Equations(25) and(29) are the central results of this pa-  The solutions of Eq(25) will be discussed in Sec. IV for
per. In particular, Eq(25) is the generalization of the clas- various physical regimes. Before doing that, however, it is
sical equation for the dispersion of surface waves in an elasiecessary to clarify a delicate point which arises when one
tic medium—the so called “Rayleigh waveslsee Ref. attempts to take the limi€,—0 of the above theory. Physi-
13—to which it reduces when the dimensionless parametersally this corresponds to the very relevant case of a genuine
X andZ, measuring the strength of the external electric andiquid system, which is expected to have a vanishing shear
magnetic fields relative to the shear elastic forces, are equahodulus at low frequency. It is evident from E@9) that
to zero. this limit is singular: the variabl€ tends to infinity, imply-
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ing that only theu; component of the solutiofthat is, the gq 4CZ4qlal  g?alq
part proportional to£? in Eq. (29)] survives. Nevertheless, w=="-""- T
the presence of a rapidly oscillating component of the solu-
tion with wave vector\~iq| €|, which does not vanish for where we have used E(BO0) to obtain the imaginary part of
x— —oo, is disturbing. This difficulty becomes more evident the frequency. Thus, at sufficiently long wavelength, the dis-
when one tries to solve the equation for the dispersion: in th@ersion is linear and independent of the visco-elastic con-
limit C,—0, £é—x, the argument of the square root lies on stants.
the negative real axis, where the presence of the branch cut Recalling the definition of the “gravity acceleration” in
prevents us from finding a solution. Eqg. (1), we see that the phase velocity for long wavelength
The resolution of these difficulties lies in the following w/q coincides with the classical drift velocity =cE/B,
physical considerations. Every system, liquid or solid, has avhere E is the magnitude of the electric field at the edge.
nonvanishingshear viscosityy at finite frequency. The shear Other cases, compatible with our definition of the strong-
viscosity contributes an additional term to the stress tensdiield regime, can also be calculated from Eg§1). For ex-
(see Ref. 1% which can be accommodated within our for- ample, in the limit of vanishing electric field—0 or large
malism simply through the replacemept—u—iwn or,  shear modulus, such thiX|<1, |g/C?|<|q|<|w./C,| we
equivalently, obtain

3
4ivglql

wC C

. (32

We We

2C? C?vqg*
_99_2Cialal . o 33

C

C2-C2=C—iwv, (30)

O O
where v=7/p, is the so-called kinematic viscosit§.In a _ o . . . .
solid, C, remains finite foro—0, and thereforev can be Settingg=0 in this expression, we obteign. the dispersion of
safely neglected. In a liquid, howeveE, tends to 0 faster Surface elastic waveSRayleigh waves’)™ in the presence
than w, while » remains finite: the low-frequency limit is of a strong magnetic field. Notice that, due to the presence of
therefore dominated by the viscosity. It is easy to see that thi'® Strong magnetic field, the dispersion is quadratic rather
inclusion of viscosity eliminates the singularity of the solu- than linear ing. o
tion in the limit C,—0 and»—0. This is because, after the ~ 1he second solution is

replacement indicated in E¢30), the wave vector /1 — &2

in the limit C,—0 reduces toy—iw/v=wl2v(1—i), §=2+(X+4)1Z, (34
which, for smallv, has a very large positive real part, and which implies

therefore vanishes very rapidly away from the edge. Corre-

spondingly, a solution of Eq.25) can always be foundat gq 4CZg? o,

small q) if the viscosity is added according to the substitu- 0= w:sgrq)+ w—c+ - sgn(q)—4ivq-. (39

tion indicated in Eq.(30). In practice, the viscosity is ex-
pected to be small. In Sec. IV we shall present our resultiotice that the two solutions obtained in this section describe
treating v, Ctz, g, and w. as formal parameters. The actual waves propagating in opposite directidns., the sign of the
values of these parameters will be discussed in Sec. V. ratio w/q is opposite in the two casgsand that the second
solution, forg—0, is simply the manifestation of the uni-
form Kohn modé® at the edge of the system.
(b) Strong electric field (gravity waveslet us now as-
sume that the edge electric field is large, in the sense that
The behavior of the solutions of E(R5) as functions of w?/g<|q|<g/CZ. This implies|X|>1 and|X|>|Z|?. No-
the dimensionless parametétsandZ is rather complicated. tice thatq cannot tend to zero in this regime, unless=0.
It is convenient to distinguish three different regimes accord-The solutions of Eq(25) are then found to be
ing to whether the magnetic field, the edge electric figly, (
or the shear modulus dominates. E~=+ \/XiZ\/§+4, (36)
(a) Strong magnetic fieldThis regime is characterized by
lg|<|w./C,| and |g|<|w?/g|. Therefore,|Z|>1 and |X|
<|Z|?. Itis easy to see that ER5) has two solutions in this w=*g[q|
limiting case. The first solution is

IV. DISPERSION RELATION IN VARIOUS PHYSICAL
REGIMES

1+

(37

2C?
t|q|)+%—2iqu

It is comforting to notice that, for zero magnetic field and

X 1/[x2 1-X2/72-1 shear modulus, we recover the classical results for the dis-
f=——+—| ——4 —4]. (31) persion and damping of “gravity waves” on the surface of a
z z\Zz? X2/ 72 liquid.*

(c) Large shear modulus (Rayleigh wavesgxt, consider
The explicit form of the dispersion depends on the value othe case that the shear modulus dominates, in the sense that
X. The most interesting case [|>|Z|, which corresponds |g|>w./C, and |g|>g/CZ. This implies |X|<1 and |Z|
to long wavelengthsg| <g/C? and vanishing shear modulus <1. Again, this definition does not allow one to take the
w.C¢<g, and is appropriate for the liquid state. In this case imit g—0 unlessg and w are both zero.
substituting the definition§26), (27), and (28) in Eq. (31), The doubly degenerate solution of Eg5) in this case is
one obtains, after simple manipulations, &= +0.955, which impliegfor q< \/Cf/v)
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FIG. 1. Real part of the dimensionless phase veldeity./gq| FIG. 2. Real part ofww/29°C{| vs qC{/g for R=0.01 (solid
vs qC,/w, for three values ofR=g/C,w.. For each curve the line). The dashed line is the approximate curve for the “linear
regime” (|q|<|g/C?|, |ow/29?C?|=|g/2qC?|), while the dotted

short-wavelength limif ww./gg|=0.955R—coinciding with the
dispersion of classical Rayleigh waves—is plotted for comparisonline corresponds to the “quadratic regime’|g{C?|<|q|<|w./

For the curve withR=0.5, we also plot the long-wavelength limit Ci|, 0w /2q?C2|=1).

|owe/gq|=1+2C2|qg|/g (“lw” curve).
In Fig. 2 we plot the real part ofww/29°C?| versus

w=~*0.95%C,|q|—i(0.456 vq>. (38)  qC?/g for |g|<|w./C,| for R=0.01(solid line). This figure

o . - ) clearly shows a crossover from the linear dispersion con-
This is nothing but the familiar Rayleigh wave on the surfacerolled by the electric field to the quadratic dispersion con-
of an elastic solid’ with a small damping due to viscosity, trolled by the shear modulus in the case of strong magnetic
and no correction from external electric and magnetic fieldsfield [see Eq(33)]. The dashed line is the approximate curve

(d) Zero shear modulus limit (liquid state)n this case  for the “linear regime” (q|<|g/C?|, |ww/20?C?|
(and for zero viscosity the gquauons of motion can be =|g/2th2|), while the dotted line corresponds to the “qua-
solved exactly. The expression for the two branches of th%iratic regime” (g/C2<|q|<|w./Cy|, |ww/29?C2|=1)

. . . . t Cc ' C t :
dispersion refation is In Fig. 3 we plot|w/w,| againstqg/w? for the case of

5 zero shear moduly€q. (39)]. For the low-frequency branch
w w
. =—-sgrg) = \/({) +9lql. (39

For q<w§/g andg> wglg we recover expression82) and
(37), respectively. The corresponding eigenfunctions are
given byu, in Eqg. (19.

We have thus exhausted all the physically different re-
gimes. In caseta)—(c), the form of the eigenfunction is ob-
tained by substituting the appropriate valueZah Eq. (29).
Results for the lower branch of the complete numerical so-
lution of Eq.(25), exhibiting crossovers between the various
regimes discussed in this section, are shown in Figs. 1 and 2.
In Fig. 1, the real part of the phase velocigw./gq| is
plotted againsfC;/w. for decreasing values of the rati®
=g/C,0. (R=1, 0.7, and 0.5), that is, for increasing mag-
netic field or shear modulus or decreasing electric field. The

|ew/wel

figure clearly shows the universal long-wavelength behavior 0 . . . . . . .
|ww/gg|~1 for very smallg. For R=0.5 (strong magnetic 0 05 1 15 2 25 3 35 4
field and finite shear modulusind smallg (q<w./C;), the q9/w?

[+

exact curve agrees with the approximate expressioE).
(labeled in the figure as “lwY). For R=1 (strong magnetic FIG. 3. Real part of the uppef‘ +”) and lower (* —")

field and small shear modulushe third term in Eq.32)  branches of the dimensionless dispersion cymhw,| vs qg/w?
becomes predominant and the exact curve lies below 1. Fdor vanishing shear modulus. The dashed line represents the long-
largeq the exact curves in all cases approach the “Rayleighwavelength limit {w/w¢=qg/w?), and the dotted line the short-
wave” regime, that is, the linegvw./gg|=0.955R. wavelength limit (w/w | = \/qg/w?—1/2), of the lower branch.
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(labeled with “—""), we also plot the leading term for long- Let us first consider the dispersion of edge waves in a
wavelength [(w/w.|=qg/w?, dashed ling and short- liquid. BecauseC,=0, andv is very small we immediately
wavelength Eq. (37), dotted lind approximate behaviors.  see thatX|>1 and|Z|>1 at all realistic wave vectorg

It is interesting to note that no acceptable solution is<1l/a~1/d. The inverse Iengthug/g is given by
found in the transition region between regim®s and (c),

that is, forw./C,;=q~g/CZ. 2 o a
_,-1cma

ap\?

(44)

Vo d
V. DISCUSSION This is of the order of H or larger for typical quantum Hall
Up to this point our classification of different physical Systems in which the density is~10'°-10"* cm™?, and
regimes has been purely formal: we have not yet specifiethe filling factor is less than 1. Therefore, these systems fall
the values of the parameters. We now wish to state the corwithin the “strong-magnetic-field regime” of Sec. IV. Be-
crete predictions of our theory for typical systems at highcause the frequency vanishes linearly withthe ratioX/Z
magnetic field. =g/w.y—iwv tends to infinity, and the dispersion is there-
The value of the electric acceleration at the edge is easil§ore given by Eq(32):
estimated as

2 3
U i P e
= — = Cc
9= 3 (40 ¢ c
The eigenfunction has the simple form
whereny= py/m is the equilibrium densityd is the range of
the interaction, anda is the width of the edge, which is U [X-+ sgr(q)y]edxHy, (46)

typically of the order of the magnetic lengthk VA c/eB. In
a magnetic field, it is convenient to introduce the filling fac-

tor vo=2nl2. Then our estimate fog takes the form which describes a circular motion of each volume element.

Then, making use of our estimat4l) for the electric accel-
2 q eration, the phase velocity of the wave=g/w.=(e?vy/
g= €k 9 (41) h)(d/a) is obtained at once.
27h ‘a Let us now consider the case that the low-frequency shear
modulus doesot vanish: this would happen, for example, if

The calculation of the shear viscosity is considerablythe electrons solidified in a Wigner crystal structure. Accord-
more difficult. A mode-coupling calculation for the two- ing to our general discussion it might be possible, with in-
dimensional electron gaat zero magnetic fiefd yields nu- ~ creasing wave vector, to cross over to an “intermediate

merical results that can be accurately described by th#avelength regime,” in which the dispersion is controlled by
formulatt the shear modulus, and variesgfs[see Eq(33)].

Unfortunately, this crossover is not likely to occur within
A the region of wave vectors in which our theory applies,

v=(59r ¥+ cirotcr Py ¥ t—, (42 namely,g<l/a~1/d. Indeed, from Eqsi40), (41), and(43),
m we see that, fod comparable to, but somewhat larger than,

_ the average distance between electrons, both the git@fs
where rs= y1/mnea; is the usual electron-gas parameter,and e, /C, are of the order of the inverse of the interelectron
ap="?/mé is the effective Bohr radius of the host semicon- gistance. This implies that fay<1/a,1/d both X andZ are
ductor, ancc,=0.25,¢,=20.6,c,=22.7, andc3=12.8. We  >1 and we clearly fall into the “long-wavelength regime”
are not aware of any calculation of the viscosity in the presof Sec. IV. The only possibility to observe the crossover to
ence of a magnetic field, but we expect E42) to give at  shear-modulus-sustained waves in the present model, would

least the right order of magnitude at a given density. arise if the range of the interactiahwere much less than the
As for the shear modulus, we expect it to vanish, if thetypical interelectron distance—not an easily realizable situa-
system is liquid, at low frequency, leaving us wi(ﬁfz tion.
—iwv. If, instead, the system is a solid, th€3 has a finite Thus, in summary, we have shown that the two-
value which can be estimated from dimensional considerdimensional electron gas on a neutralizing background of
ations: charge sustains onlgne macroscopically charged collective
mode which decays exponentially as one moves away from
e2nd/2 the edgeThe scale of this exponential decay is the same as
Ct’é‘z C (43) the scale of variation of the density along the edgfe have
m derived analytical and numerical expressions for the disper-

sion relations and eigenfunctions in various physically dis-
It is the viscosity that can be neglected in this case. Fofinct regimes. An important result of our study is that the
example, in the classical two-dimensional Wigner crystalcharacter of the edge waves in this model is controlled al-
with Coulomb interactionsd==), the exact result iC?  most exclusively by the strength of the electric field at the
=0.24’nym™, edge, and does not depend significantly on the shear modu-
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lus: therefore, the dispersion is the same, to leading order iduced by this charge tends to infinitpgarithmically) at the

g, for the liquid and the solid statssee Eqg.(31)]. These edge of the half-plane, and therefogeis infinite [see Eq.
results suggest that the behavior of 1R¥ tunneling char-  (1)].

acteristics at low bias voltage would be the same at the edge In order to obtain the correct form of the boundary con-
of a liquid and of a Wigner crystal: in particular, the power ditions in the Coulomb case we return to Ef), and note
law | ~V¥0, wherev, is the bulk filling factor, is expected that from the equilibrium conditiowf(?()(r) is given by

in both cases.
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Severa' interesting discussions_ physical width of the edga S|m|lar|y to what we did in the
short-range case in Sec. Il we now expa‘}ﬁ) to first order
APPENDIX: EXTENSION TO LONG-RANGE in u, and discard the constant zero-order contribution. After
INTERACTION integrating with respect t&’, we obtain

In this paper we have taken advantage of some math- 5
ematical simplifications arising from the assumption that the 2 € Ny
electron-electron interaction is of finite range in space. Ex- (ux,y)—nof_wmux(&y ydy”.
tending the theory to properly include Coulomb interactions (A4)
is nontrivial. In this appendix we want to sketch an approxi-
mate method to do this extension, which entails minimal o . . o
changes in the structure of the equations. The method is SPecializing to solutions with definite wave vector along
nonrigorous, yet it yields qualitatively correct results for thethe edgdi.e., u(0y)e'®], we see that E¢A4) takes the
long-wavelength dispersion. simpler form

To begin, we observe that, in the equation of motibp

0
ol

2 . ;
the t(?rm.C V(V li) should be replacedignoring the small UE&)(UX,y)2n32e2K0(|Qel)uX(O,y), (A5)
contribution fromK) by
o2 whereKj is the modified Bessel function. Unfortunately, the
VJ V' -u(r’)dr’. (A1)  €—0 limit of this expression does not exist, due to the loga-
[r—r’| rithmic divergence of the Bessel functidy(x)~ —In(x)

o _ for x—0. However, the divergence is very weak, and, in
In an infinite system this term would pose no problem: byview of the fact that the position of the edge is defined within
Fourier transformation it could be recast in the form of Eg.an uncertainty of the order ad (~0 in our theory it is

(5), with a g-dependent longitudinal “sound velocity” legitimate (with logarithmic accuracyto replaceKq(|qe|)
5 by Ko(lqa]).
C2(q)= 2meNo (A2) Substitution of this expansion in Eq9) leads to our
g mq ' boundary conditions: these can still be written in the form of

Egs.(24), but now both the longitudinal sound velocity, and

which tends to infinity agj tends to zero. In a semi-infinite 1o electrical acceleratiop are functions ofy; the former is
system, however, things are not so simple, and the Coulomgiyen by Eq.(A2), while for the latter

interaction cannot be simply absorbed ingadependent
sound velocity.
The idea of our approximation scheme is to neglect the Nog
effect of the edge on the bulk equation of motion, which g—>g(q)=2eZEK0(|qa|). (A6)
therefore retains the form of Eq5), with C? tending to
infinity in the long-wavelength limit. The effect of the edge ) ) ) .
will be taken into account only via the boundary conditions From this point on, all calculations proceed as in the
(11) and(12), which force the solution to be a certain super_short—range case. In particular, the logarithmic divergence of
position of bulk waves. the effectiveg causes the dispersion of the edge waves to
So far the theory is formally identical to the short-rangevary as —(2voe’/h)qIn(qa) in a magnetic field, and as
case. However, observe that the key quargjtwhich enters  v2e2no\/qIn(ga) without a magnetic field. It is amusing to
the boundary conditions, is ill defined in the case of theobserve that in the three-dimensional case the effectise
Coulomb interaction. The external potential in this case ighe surface would bg(q)=2mpee’/m?q , leading, in the
simply the electrostatic potential created by a uniform distri-absence of a magnetic field, to the well-known result for the
bution of positive charge precisely compensating for thefrequency of surface plasmons, namelyw=/gq
electronic charge in the half-plane. The electric field pro-=\27e?ny/m.
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