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ABSTRACT 

 Bwa Mawego is a small-scale horticultural community (~500 people) on the 

island of Dominica that has been the site of a longitudinal health research project for 

more than 30 years. Cardiovascular diseases and metabolic health are growing local 

concerns. Here we analyze longitudinal growth data, cardiometabolic metrics, and 

genome-wide single nucleotide polymorphism (SNP) data from this population to 

investigate sources of variation in anthropometric and cardiometabolic outcomes. Mixed-

effect heritability models indicate that (1) variation in body mass index (BMI) is 

significantly shaped by genetic variation, and (2) variation between longitudinal BMI 

curves has not been consistently impacted by secular environmental trends from 1997-

2017. In order to assess genetic variation in more detail, we first characterize the 

population structure and admixture in this Caribbean community using high-density SNP 

data and global reference samples in the Human Genome Diversity Panel. We detect four 

distinct family clusters and admixture from African, European, and Amerindian ancestral 

populations that occurred 5-6 generations ago (~130-150 years). Amerindian haplotypes 

represented in Bwa Mawego associate with deeply diverged lineages in Karitiana and 

Surui peoples, highlighting the regionally variable nature of admixture throughout the 

Caribbean and unique historical outcomes in Dominica. Genome-wide association tests 

of cardiometabolic phenotypes identify a genomic region of interest downstream of the 

ANK3 gene that associates with BMI in Bwa Mawego, after controlling for confounding 

variation from ancestral population structure and relatedness. Any functional relationship 

between ANK3 and BMI is currently uncharacterized, and there is unique potential to 

further explore complex gene-environment-phenotype landscapes in Bwa Mawego.  
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CHAPTER ONE 

Introduction 

 

 The detail with which genetic data capture patterns of human variation is 

unparalleled, and our genomes simultaneously reflect demographic histories and impact 

current biology and health. The physical mapping of the human genome in the early 

2000’s (Lander et al., 2001) expanded our ability to characterize sequence variation 

(Sachidanandam et al., 2001), protein-coding functionality (MacArthur et al., 2012), non-

coding regulatory systems (Zhang and Lupski, 2015), and a myriad of complex 

interactions between genetic and environmental sources of variation (Portela and Esteller, 

2010; Marsit, 2015). Interpretations of genetic, health, and biocultural variation are 

limited by the individuals represented in research datasets, and more inclusive work is 

needed to reach underserved populations and represent global human diversity in health-

oriented research (Bustamante et al., 2011).  

 

Human Genomic Diversity  

 Several large-scale projects have aimed to capture global population genetic 

diversity, including the International HapMap Project (International HapMap 

Consortium, 2003), the Human Genome Diversity Panel (HGDP) (Cann et al., 2002), and 

the 1,000 Genomes Project (Delaneau and Marchini, 2014). Analyses of global datasets 

detect strong associations between genomic similarity and geographic distance 

(Relethford, 2004), which reflects what is referenced as genetic “population structure”.  

Globally, population structure is in part shaped by continental geography (Rosenberg et 

al., 2002), and demographic processes (e.g. fertility, migration, mortality) have shaped 
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global genomic variation through time and space via generational recombination of 

inherited genetic sequences (haplotypes) and migrations throughout human evolutionary 

history. 

Global genomic patterns show concentrated haplotype heterozygosity (i.e. high 

amounts of genomic variation) in sub-Saharan Africa where our species first evolved; 

genetic variation decreases proportionally with distance from eastern Africa, showing 

evidence of successive migrations of small groups who dispersed out from this region 

over time (Li et al., 2008). Different migrations saw different (and reduced) 

representations of parental genetic variation out of Africa, and factors such as population 

size, geographic and/or cultural boundaries, and natural selection have subsequently 

shaped population structures and sub-structures. Structure of this nature varies regionally 

and is related to patterns of linkage disequilibrium (Campbell and Tishkoff, 2008).  

 Linkage disequilibrium (LD) refers to nonrandom association between alleles at 

different loci, largely impacted by the physical distance between genetic markers on a 

chromosome. Alleles that are located close to one another are less likely to be separated 

by recombination from one generation to the next as inherited chromosome pieces 

(haplotypes) are shuffled during meiosis, but linkage erodes over time as haplotypes 

recombine and break into smaller segments each generation. Assuming negligible 

inbreeding, increasingly diverse haplotypes emerge in a population with each 

generational recombination event. Thus, African populations with the most haplotype 

diversity also have the lowest levels of LD, and both of these attributes result from our 

species’ evolutionary origin in sub-Saharan Africa where human genomes have been 

recombining for the largest number of generations (Campbell and Tishkoff, 2008). 
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Genotype-Phenotype Associations  

In a biological context, LD is a critical factor that determines our ability to detect 

associations between genetic variants and observed traits (Zondervan and Cardon, 2004). 

“Complex” traits and diseases that result from interactions between many genetic variants 

and environmental factors present structural and statistical challenges. Many genetic 

variants of small to moderate phenotypic effect contribute, and markers are scanned 

genome-wide in an untargeted manner to identify genetic regions of interest.  Efficient, 

cost-effective genotype datasets can sequence up to 1-2 million variants per array (panel 

of markers sequenced for each individual), which may or may not actually include causal 

loci for observed traits (LaFramboise, 2009). Thus, genome-wide association studies 

(GWAS) rely on sufficient levels of LD between tagged markers and actual causal 

variants to detect informative genotype-phenotype associations. Several factors impact 

our ability to detect associations in this manner, including the allele frequencies of 

associated variants, phenotypic effect sizes of causal variants, sample size, confounding 

sources of genetic and/or phenotypic variation, and sufficient array coverage of variation 

across the genome. GWAS can detect associations between markers in high LD with 

common alleles of small phenotypic effect (given sufficient sample size), or with rare- 

but not very rare (freq < 0.01)- alleles of moderate phenotypic effect (Zondervan and 

Cardon, 2004).   

 GWAS have had unprecedented successes identifying functionally verified 

associations for several phenotypes, including type II diabetes (Zeggini et al., 2007), 

body mass index (BMI) (Frayling et al., 2007), asthma (Moffatt et al., 2007), and some 

cancers (Gudmundsson et al., 2007; Stacey et al., 2007). With higher mapping resolution  
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and broader potential than other methods such as linkage mapping or candidate gene 

studies, GWAS remain the primary tool for identifying associations between genetic 

variants and phenotypes (Wu et al., 2017). Despite these successes, GWAS have only 

been able to explain small proportions of estimated heritabilities for complex traits and 

diseases, and the majority of genetic variance that underlies phenotypic variation remains 

uncharacterized (Manolio et al., 2009). This is also known as “missing heritability”.     

 More than 90% of GWAS have only included individuals of recent European 

ancestry (Need and Goldstein, 2009). There is vast potential to both reduce missing 

heritability and improve mapping resolution to reveal causal variants by conducting 

GWAS with more diverse populations (McCarthy et al., 2008). As robustly demonstrated 

by variants of the FTO gene, meaningful genotype-phenotype associations may extend 

across populations but only be detectable in specific regions due to population structure, 

low allele frequencies, and other sample-specific factors. Multiple studies have confirmed 

the causal effects of FTO variants on fat storage and body weight regulation across 

people of diverse ancestries, but targeted investigation of causal alleles has also shown 

that their frequencies are much lower in Asian and African populations than among 

European cohorts, rendering this biologically informative association less likely to be 

detected in non-European samples (Loos and Yeo, 2014). Nevertheless, the vast majority 

of GWAS contain only European genotypes, thus our current knowledge of genotype-

phenotype relationships is biased and largely limited to those variants that meet 

detectable criteria in European populations (Bustamante et al., 2011).  

 Most GWAS are limited to include individuals of a single continental ancestry, 

and many have more specific inclusion criteria than that (Rosenberg et al., 2010). Such 
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parameters aim to reduce heterogeneity in a study’s sample from population structure and 

variable patterns of LD, which are sources of genetic variation that confound the 

detection of variant-phenotype associations. Case-control ratios and quantitative 

phenotype distributions may also vary across race and ethnicity for myriad reasons, 

creating another potential confounding pattern that limits sample diversity in many 

studies.  

Several factors that have contributed to European sample bias in GWAS can now 

be easily mediated in order to improve inclusivity across global populations. Higher LD, 

reduced haplotype diversity, and relatively homogenous genetic population structure 

across most people of European descent were beneficial when SNP arrays were more 

limited in size, because fewer markers are needed to capture variation across genomes 

with less haplotype diversity. Technological advances and commercialization have 

lowered costs and enabled researchers to genotype study participants at higher densities 

across their genomes with SNP arrays commonly ranging from 500,000 to more than 2.5 

million variants now, improving the detection of associations on shorter haplotypes (Ha 

et al., 2014). Additionally, dimension-reduction techniques efficiently allow researchers 

to control for some confounding sources of genetic variation, and principal component 

analyses enable us to account for heterogeneous population structure with the inclusion of 

principal component loadings in GWA models as covariates (Price et al., 2006).  

Large-scale GWAS typically exclude related individuals because genetic variants 

that are identical by descent (IBD) between relatives are another confounding influence 

on patterns of genomic variation. However, in a community-based sample of related 

individuals, we can include pairwise measures of relatedness (e.g. kinship coefficients) as 



 

6 
 

a GWA covariate to account for this population attribute (Laird and Lange, 2006). 

Furthermore, family-based designs have some benefit in the GWA framework as 

genotype-phenotype associations that are enriched in family lineages will be more 

detectable at higher frequencies (Li et al., 2006). GWAS among related participants in 

unique, localized populations have identified genetic variants of physiological importance 

(e.g. for glucose metabolism), demonstrating the potential of these methods in diverse 

communities and ecologies (Li et al., 2007). Reduced environmental heterogeneity 

between individuals from localized study populations may also enhance detection of 

meaningful genotype-phenotype associations compared with association tests in more 

clinical research designs that often include participants with broad lifestyle variation 

among them (Kulminski et al., 2016). GWAS in localized populations also capture 

associations within specific ecological contexts, adding another potential set of 

environmental interactions to explore (McCarthy et al., 2008).   

Ancestral variation within a GWA sample can be confounding if it is not 

accounted for (e.g. with principal component analysis loadings), but recently mixed 

ancestry (admixture) can actually enhance our ability to detect genotype-phenotype 

associations in a population with relatively long haplotypes produced by recent ancestral 

recombination and diverse representation of continental ancestries (Medina-Gomez et al., 

2015). Admixture mapping takes advantage of this long-range haplotype structure as well 

as structure in phenotypic outcomes that vary by ancestry to detect genotype-phenotype 

associations (Winkler et al., 2010), thus demonstrating that admixed populations have 

unique potential to expand our understandings of human variation. Large proportions of 

the world’s population are admixed (e.g. African Americans, communities throughout 
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Latin America and the Caribbean), and more inclusive research is needed to mitigate 

existing European bias in health and genetic research.    

       

Study Population 

 Bwa Mawego is a small-scale horticultural community in the Commonwealth of 

Dominica, a small island in the Lesser Antilles with a unique colonial history. This 

community is one of the most isolated and remote on the island, located on the steep 

windward coast near the largest indigenous reserve (Kalinago Territory) in the Caribbean 

(Flinn et al., 1999; Quinlan, 2004). The majority of Bwa Mawego’s residents (~500 

people) have been engaging in anthropological and psychological research for more than 

30 years, producing more than 20 years of longitudinal health data and a population-

wide, 11-generation genealogy amidst a multitude of health and behavioral research 

(Flinn, 1999; Flinn, 2009; Flinn and England, 1997; Flinn et al., 1999; Flinn et al., 2012;  

Quinlan, 2004; Quinlan and Flinn, 2005; Quinlan and Hagen, 2008; Macfarlan et al., 

2012; Ponzi et al., 2015).  

 The ecology of Bwa Mawego has been characterized in detail, and the community 

has an environmentally-shaped history beginning in the mid-19th century following the 

emancipation of enslaved peoples (mostly of African descent) and indentured servants 

(mostly of European descent) on the island who sought protection and refuge by settling 

in the island’s steepest, heavily forested terrain (Quinlan, 2004). Bwa Mawego’s specific 

ecology is exceptionally steep and difficult to traverse, even by Dominica standards. 

Flexible matrifocal structure shapes the social environment in Bwa Mawego such that 

households are relatively fluid in their compositions over time, and resources (including 

products of horticultural labor) are commonly shared beyond immediate kin (Quinlan, 
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2006). Longitudinal ethnographic data, health reports, and hormone profiles (cortisol, 

testosterone, etc.) have characterized specific aspects of family-based social 

environments in Bwa Mawego and established associations between child growth, stress, 

and household composition (e.g. living with step-parents) (Flinn et al., 1999; Flinn et al., 

2012). Previous research highlights the unique potential to investigate biocultural 

interactions and trends in Bwa Mawego, especially across generations.  

Cardiometabolic traits, including type II diabetes and hypertension, have become 

top local health priorities in Bwa Mawego over the past several decades. Technological 

developments throughout the community such as piped water, electricity, and internet 

access have altered lifestyles to an extent beginning in the late 1990’s (Quinlan and Flinn, 

2005), yet most residents continue to practice traditional subsistence horticulture full-

time and are curious as to why cardiometabolic conditions appear to cluster as they do in 

the community despite a lack of obvious environmental or behavioral explanation.     

 This dissertation examines anthropometric, cardiometabolic, and genetic variation 

in Bwa Mawego, Dominica in an integrated manner. First, a pedigree-based analysis of 

longitudinal growth data estimates the extent to which variation in height, weight, and 

BMI is shaped by additive genetic variation and environmental secular trends. This 

content (Chapter Two) was published in the American Journal of Physical Anthropology 

in 2019 (Keith et al., 2019). Second, population genetic analyses of high-density SNP 

data provide the first genome-wide characterization of admixture and population structure 

in this unique Caribbean region. Lastly, GWAS of cardiometabolic and SNP data test for 

genotype-phenotype associations while controlling for ancestral population structure and 

family relatedness. Together, these analyses address health traits of local importance in 
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Bwa Mawego to enhance our understandings of human variation both in the community’s 

unique ecology and in a broader genetic context that increases diverse representation.     
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CHAPTER TWO 

Anthropometric Heritability and Child Growth in Rural Dominica 

 

Abstract 

Body size and composition vary widely among individuals and populations, and long-

term research in diverse contexts informs our understanding of genetic, cultural, and 

environmental impacts on this variation. We analyze longitudinal measures of height, 

weight, and BMI from a Caribbean village, estimating the extent to which variation in 

these anthropometrics is shaped by genetic variance in a small-scale population of mixed 

ancestry. An 11-generation pedigree enables us to estimate the proportions of phenotypic 

variation in height, weight, and BMI attributed to genetic variation. We assess variation 

within individual growth curves as well as heritabilities of these traits for 260 individuals 

using Bayesian variance component estimation. Analyses of longitudinal anthropometrics 

show high repeatabilities (>0.75) within individual growth curves independent of age or 

sex. Moderate heritabilities (h2
height=0.68, h2

weight=0.64, h2
BMI=0.49) reveal clear genetic 

signals, accounting for large proportions of the variation in body size observed between 

families. Secular trends indicate that height has increased by approximately 2 inches and 

weight by 13 pounds (averaged across age and sex) between 1997 and 2017. Body mass 

varies widely between individuals in this population without a clear secular trend and is 

significantly shaped by genetic variation, warranting further exploration with other 

physiological correlates and associated genetic variants. 
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Introduction 

Variation in body size and child growth is shaped by combinations of biological, 

cultural, and environmental factors that are often ecologically dependent and population-

specific. Body size and growth patterns vary widely among populations in developing 

countries and small-scale societies (Walker et al., 2006), many of whom are transitioning 

nutritionally and behaviorally to more Westernized, processed foods and decreased 

physical activity (Popkin et al., 2012). Cardiometabolic health is a growing concern in the 

Caribbean, yet we know little of the specific biological, cultural, and environmental 

influences on anthropometric variation in this region, particularly in rural areas (Boyne, 

2009; Rueda-Clausen et al., 2008). Longitudinal measures of height, weight, and body 

mass index (BMI) reflect secular trends in human growth and development (Cole, 2003) 

and inform public health concerns of undernutrition and overnutrition (Monteiro et al., 

2003). We assess the repeatabilities and heritabilities of longitudinal height, weight, and 

BMI in a rural Caribbean village during a period of nutritional transition to quantify 

variation within individual growth trajectories and to estimate the proportion of variation 

between individuals attributed to genetic versus non-genetic variance.  

 Body size and composition vary among geographic regions (de Onis et al., 2004), 

in part reflecting climate adaptations such that temperature and BMI generally show 

inverse relationships in indigenous populations (Wells, 2012). Small-scale societies that 

share similar tropical climates show considerable variation among their growth patterns, 

shaped partially by life-history trade-offs that balance growth rates with mortality risk 

and fertility to produce taller individuals through faster growth (Walker et al., 2006). The 

extent to which height, weight, and BMI are phenotypically plastic depends upon genetic 
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variants, environmental inputs, and developmental/epigenetic backgrounds (Godfrey et 

al., 2010). The relative impacts of these factors vary within and between populations as 

well as across age over the course of the human lifespan (Visscher et al., 2008). 

  Heritabilities quantify the proportions of variation in observed phenotypes that 

are explained by genetic variation in a population (Falconer, 1960, Lynch & Walsh, 

1998). Heritability estimates do not reflect the extent to which a trait’s phenotypic 

outcome is determined by an individual’s genes, but instead partition the variance in an 

observed trait into genetic and non-genetic components (Lewontin, 1974; Vitzthum, 

2003). Methods for estimating heritabilities use known genetic relationships to assess the 

extent to which the proportion of alleles shared among individuals associates with 

phenotypic variation (Vandemark, Kelly, & Eckhardt, 1985), and larger pedigrees with 

many generations provide varied kinship coefficients that produce more robust estimates 

of genetic variance than those based on only ancestor-descendant pairs, sib-ships, etc. 

(Kruuk, 2004; Wilson et al., 2010). 

 Quantities of phenotypic and genotypic variation are population-specific, and 

heritability estimates range from 0.26-0.90 for height, 0.22-0.85 for weight, and 0.17-

0.90 for BMI (Dubois et al., 2012; Elks et al., 2012; Nan et al., 2012; Starkweather and 

Keith, 2018; Yang et al., 2015). Few heritabilities are published from Caribbean 

populations, but an analysis from Jamaica reports estimates of 0.74 for height, 0.63 for 

weight, and 0.53 for BMI (Luke et al., 2001). Larger heritabilities can result from larger 

quantities of genetic variation or from relatively low amounts of environmental variance. 

The proportional impact of genetic variance generally increases under stable and more 

favorable environmental conditions (Hoffmann et al., 1999), however heritabilities may 
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also decrease when environmental conditions change drastically between generations. 

Lower anthropometric heritabilities in some immigrant populations reflect the context-

dependent nature of genetic variance components when environmental conditions differ 

dramatically between ancestors and their descendants (Gravlee et al., 2003). Across the 

lifespan, Elks et al. (2012) found higher heritabilities for BMI in twin children than adult 

twins but found no detectable relationships between BMI heritability and age among 

other types of family studies. We estimate heritabilities for height, weight, and BMI in a 

Caribbean village population to capture the proportional influence of genetic variance on 

body size and child growth during a population-wide period of nutritional transition using 

longitudinal anthropometric data.  

 Longitudinal data require within-individual analyses to account for variation in 

repeated measures over time in addition to between-individual analyses of phenotypic 

variation. Repeatabilities reflect how consistent traits remain for an individual as they age 

by regressing an individual’s measurements against themselves over time, and any 

aspects of an individual’s identity (including genetic and non-genetic attributes) that 

impact the observed phenotypes are captured in repeatability ratios (Wilson et al., 2010). 

Repeatability estimates generally indicate the upper limits for heritability estimates in a 

population given that individuals share 100% of their genetic variation with themselves 

(Dohm, 2002; Falconer and Mackay, 1996). Our repeatability estimates of height, weight, 

and BMI measure phenotypic variation within-individual growth curves during a period 

of nutritional and behavioral transition.   

 We expect repeatabilities and heritabilities to be higher for height than for weight 

or BMI given that height is less variable as an additive, long-term measure that remains 
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constant once adult height is reached until bone loss occurs at elderly ages (Dey et al., 

1999). Weight and BMI are constrained by height but can fluctuate in response to short-

term conditions across the lifespan. BMI is a composite measure of height and weight 

used to define clinical underweight, overweight, and obese categories, despite its variable 

relationship with adiposity and metabolic health across ethnicities and ancestries (Carroll 

et al., 2012; Hall & Cole, 2006; Prista et al., 2003). BMI remains a readily available 

metric of body size that may be more useful in diverse populations when tracked 

longitudinally over time to assess population-specific trends in changing body mass 

rather than relying on standardized cut-offs to categorize metabolic status (Hall & Cole, 

2006). We capture secular trends in height, weight, and BMI from 1997-2017 in rural 

Dominica to assess how the global nutrition transition (Popkin et al., 2012) has 

influenced growth and body size in a small-scale horticultural population.  

Body size, composition, and metabolic health in the Caribbean are uniquely 

impacted by sugar cultivation, other aspects of historic colonialism, alcohol production, 

tourism, and recent economic transition (Cherry et al., 2014; Mintz, 1985). 

Cardiometabolic health is an increasing concern in this region as cardiovascular disease 

and type II diabetes climb in prevalence (Rueda-Clausen et al., 2008). Sugar was widely 

cultivated throughout the Caribbean from the 18-20th centuries, mostly for export to 

European countries who transported enslaved laborers to the islands from west Africa in 

the 17-18th centuries (Mintz, 1985). Sugarcane is still grown throughout much of the 

Caribbean, and gene flow from Europe and Africa into indigenous Caribbean 

communities has shaped genetic variation throughout the region. Middle-

income/wealthier Caribbean nations such as St. Lucia report negative metabolic 
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outcomes characteristic of the global nutrition transition (Popkin et al. 2012) that result 

from decreasing physical activity levels, increased alcohol consumption, urbanization, 

and changing diets due to imports and increased tourism (Cherry et al., 2014). Poorer, 

less developed Caribbean nations appear to be suffering similar health outcomes, but 

their data are sparse and secular trends poorly understood, particularly in rural areas 

(Boyne, 2009).   

 The Commonwealth of Dominica is one of the least developed Caribbean islands, 

and the village of Bwa Mawego is one of the most remote communities on the island. 

There are approximately 500-600 residents in Bwa Mawego, most of whom continue to 

practice traditional horticulture in tandem with increased access to cash goods and 

modern technology (e.g. cell phones, high-speed internet) (Decker and Flinn, 2011). 

Several varieties of taro, yams, and other root vegetables are the primary components of 

the traditional diet, which are boiled and eaten with plantains, other crops, and sometimes 

fish (Quinlan, 2004). Observational data from several decades of research at this field site 

indicate that processed foods, sweets, sugary beverages, and meat are increasingly 

available in local rum shops, transforming diets population-wide to include a combination 

of horticultural products and foods with more caloric sweeteners, oils, and animal 

products since the 2000’s. Coinciding with dietary shifts characteristic of the global 

nutrition transition (Popkin et al., 2012), the transport of piped water and electricity to 

most homes in the village as of the early-mid 2000’s has decreased physical activity 

demands (Decker & Flinn, 2011). We analyze longitudinal anthropometric data spanning 

20 years (1997-2017) by capturing secular trends in growth curves during this transitional 
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period and estimating the relative influence of genetic variation on observed variation in 

height, weight, and BMI. 

 

Materials and Methods 

Longitudinal anthropometric data were collected in Bwa Mawego, Dominica at 

varying timepoints between 1997-2017 in accordance with procedures approved by the 

University of Missouri’s Institutional Review Board. All participants provided informed 

consent, and parental consent was also obtained for all individuals under the age of 18 at 

the time of data collection. This study includes data for 260 individuals (126 males and 

134 females) for whom there were repeated measures of height and weight over the study 

period that met our quality-control criteria, and ages of this sample range from birth to 27 

years (Table 2.1). The number of repeated measures per individual ranges from 2-16 with 

a mean of 7.56, and the average time between a person’s data points is 0.90 years, 

ranging from 4 months to 10 years (Table 2.1).  The height of individuals old enough to 

stand upright was measured with a stadiometer on a flat surface; those too young to stand 

were laid on a flat surface and measured to the nearest millimeter by stretching a tape 

measure from heel to crown. Weight was measured using an electronic scale, and 

children too young to be weighed independently were weighed with a parent, whose 

weight was then subtracted from the combined total. 

 

N 260 

Males 126 (48.5%) 

Females 134 (51.5%) 

Age range (years) 0-27 

Data collection period 1997-2017 (mean=2002, SD=3.5 years) 

Number of repeated measures 2-16 (mean=7.56, SD=4.85) 

Time between data points (years) 0.36-10.01 (mean=0.90, SD=1.01) 

Table 2.1. Sample characteristics of longitudinal growth data.  
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Growth data were visually inspected and cleaned using the Sitar package in R 

v.3.4.3 to account for errors in data collection over the 20-year study period and to 

remove outliers exceeding three standard deviations in an individual’s growth curve 

(Cole, 2015; R Core Team, 2017). BMI was calculated using the standard equation 

(weight (kg)/height(m)2). A pedigree that includes 11 generations was compiled for this 

village in the 2000’s from interview data and historical records (Quinlan & Hagen, 2008), 

providing kinship coefficients needed for estimating trait heritabilities (Table S2.1; 

Figure S2.1). 

We used Bayesian linear mixed models (LMMs) to analyze repeatabilities, 

heritabilities, and secular trends in longitudinal height, weight, and BMI among the 

sample of Bwa Mawego residents described above. Height, weight, and BMI were log-

transformed to account for heteroscedasticity as variation increases in these variables 

with age. All LMMs included three fixed effects as control variables: age modeled as a 

cubic spline with knot points at 7 and 12 years, sex, and year of data collection (z-

scored). Modeling age as a spline provided flexibility in accommodating these 

longitudinal data by allowing growth trends to vary between early childhood (birth-7 

years), middle childhood (7-12 years), and adolescence (12+ years). This cubic 

polynomial spline allowed us to control for age across different stages of growth such 

that the relationships between anthropometrics and age later in adolescence were not 

impacted by trends very early in childhood, balancing complexity in different stages of 

growth with flexibility in a smooth curve that eases linear model fit (Buja et al., 1989; 

Harrell et al., 1988). The inclusion of data collection year in these LMMs controlled for 

secular trends across the 1997-2017 timespan during which these longitudinal data were 
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collected. This captured period effects independently from the effects of individual aging 

and indicates how height, weight, and BMI have changed among younger generations 

across this population during a period of nutritional and behavioral transition.  

Repeatability LMMs included individual ID as a random effect, producing 

variance component estimates that measure the amount of variation in growth curves for 

height, weight, and BMI explained by an individual’s ID, thereby capturing within-

individual variation over time. Heritability models included two random effects: an ID 

variable to control for repeated measures and a second “identity” variable to connect each 

individual to the population’s pedigree. This second random effect produced estimates of 

additive genetic variance by using Mendelian rules of allele sharing between individuals 

to explain the observed variation between their heights, weights, and BMIs independent 

of any variation within individual growth curves.  

This method of estimating heritabilities is referenced as the “animal model” and 

uses complex multigenerational relationships (parents, siblings, half-siblings, 

grandparents, cousins, etc.) to capture the extent to which proportions of shared alleles 

influence the variance in observed traits (Kruuk, 2004; Teplitsky et al., 2008). This 

provides more robust heritability estimates than other common methods that rely on only 

two generations of parent-offspring relationships or single-generation twin studies. The 

pedigree for this village population in Dominica goes back 11 generations, ensuring that 

we capture as many kinship coefficients as possible, including relationships between 

more extended kin that are less likely to share common household environments (Table 

S2.1; Figure S2.1).  
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Although animal models allow for the inclusion of random household effects 

(Thomson et al., 2018), we do not include common household environment as a variance 

component in our models because of the flexibility and fluctuation in household 

composition in this matrifocal community. Households in Bwa Mawego fluctuate in 

composition as both children and adults change residence frequently related to short-term 

economic opportunities, temporary migrations, and changing family dynamics (Quinlan, 

2004). Many people in this sample resided in more than one household over the timespan 

of their data points. In many cases, “households” are not discrete units, as many 

dwellings are organized to varying degrees into larger compounds with extended kin 

(Quinlan & Flinn, 2003). Additionally, the extensive depth of this population’s pedigree 

reduces confounding effects of common environments since many smaller kinship 

coefficients contribute to estimates of genetic variance between relatives who do not 

share household environments.    

Bayesian LMMs produce posterior probability distributions of fixed effect beta 

coefficients and random effect variance components by updating prior probability 

distributions with data (McElreath, 2015). This method of linear modeling is robust to 

sample size and accommodates complexity in regression-based analyses by controlling 

for repeated measures and accounting for other sources of heterogeneity that vary among 

individuals (Zhao et al., 2006). Fixed effects such as age and sex are simultaneously 

incorporated in a multivariable fashion such that the coefficients of each variable are 

measured independently from the rest. We captured Bayesian posterior distributions of 

repeatability and heritability variance components using Markov chain Monte Carlo 

sampling with the MCMCglmm package in R (Hadfield, 2010). This method samples 
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posteriors in a step-wise fashion rather than directly computing distributions in their 

entirety, which becomes less feasible as models increase in their complexity (McElreath, 

2015).   

All LMMs ran for 5,200,000 iterations with a burn-in of 200,000 and thin of 

5,000 to produce 1,000 estimates of within-individual variance and additive genetic 

variance of height, weight, and BMI from the posteriors. We used parameter expanded 

priors for all models to facilitate chain mixing and obtain sufficient effective sample sizes 

(>900) by setting prior means to 0 [alpha.mu=0] and prior covariance matrices to 

1,000 [alpha.V=1000] (Hadfield, 2010). Repeatabilities and heritabilities were 

calculated as variance component ratios, also representing 1,000 retained samples from 

the posteriors. Repeatability estimates reflect the proportion of total variation in each 

outcome due to the random effects of individual IDs (Equation 1), controlling for the 

fixed effects of sex, age, and data collection year. Heritability estimates reflect the 

proportion of phenotypic variation in each outcome captured by the additive genetic 

variance components derived from each individual’s relatedness to everyone in the 

pedigree, also controlling for repeated measures, sex, age, and data collection year 

(Equation 2).  

   r = 
𝑉𝐼

𝑉𝐼+𝑉𝑒
     (1) 

h2 = 
𝑉𝐴

𝑉𝐴+𝑉𝐼+𝑉𝑒
    (2) 

VI is the vector of 1,000 retained ID variance components that capture within-individual 

variation, VA is the vector of additive genetic variance components, and Ve is the vector 

of residuals in each model. Ratios of these vectors produced 1,000 estimates of either 
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repeatability or heritability for each outcome from which we report posterior modes and 

credible intervals. 

 

Results 

 The pedigree from Bwa Mawego, Dominica includes 1,455 individuals, spans 11 

generations, and dates back to 1899 (Figure S2.1; Table S2.1). We have longitudinal 

growth data for 260 of those individuals, and the 662 people marked by dots in Figure 

S2.1 show the members of the pedigree who are related to them such that they contribute 

to estimates of genetic variance. Pedigree statistics calculated with the Pedantics 

package in R (Morrissey, 2018) show that inbreeding is negligible in this population 

despite the small founding structure of the community (Table S2.1). 

 Individual growth curves from this population are plotted with WHO percentiles 

overlaid for comparison (Figures 2.1-2.3). WHO growth percentiles range from birth-19 

years for height and BMI, and from birth-10 years for weight (de Onis et al., 2007). 

Therefore, height and BMI plots include only individuals with 2 or more measurements 

recorded by age 19, and the weight plot includes only those with 2 or more measurements 

by age 10. We plot WHO curves for the 5th, 50th, 85th, and 95th percentiles due to their 

significance in reference to BMI (Barlow, 2007).  

Growth curves show that males are slightly taller than females and females 

slightly heavier than males across all ages (Figures 2.1 and 2.2), and female BMI appears 

to increase substantially around age 12 (Figure 2.3). BMI is the most variable of the three 

traits, as we expect for such a composite trait with a less direct relationship to age than 

either height or weight. This variation is characterized by both fluctuations in individual  
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Figure 2.1. Height (cm) curves for 251 children (ages 0-19 years) with WHO percentiles for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Weight (kg) curves for 158 children (ages 0-10) years with WHO percentiles for comparison.  
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Figure 2.3. BMI curves for 251 children (ages 0–19) years with WHO percentiles for comparison. 

 

 

BMI curves and the large population-wide spread of BMI measurements that increases 

substantially throughout adolescence (Figure 3). Children and teens who fall below the 

5th BMI percentile are considered underweight by one broadly accepted clinical standard, 

those between 5-85% are healthy, those between 85-95% are considered overweight, and 

those above 95% are considered obese (Barlow, 2007). Table 2.2 displays descriptive 

statistics for child height, weight, and BMI in Bwa Mawego alongside height-for-age, 

weight-for-age, and BMI-for-age Z-score statistics based on the 2007 WHO reference 

tables (de Onis et al., 2007). Stunting (height-for-age < -2SD), underweight (weight-for-

age < -2SD), and wasting (BMI-for-age <-2SD) appear to be uncommon in this  

population given that no more than 2 children fall into any one of these categories in any 

age class (Table 2.2). Higher proportions of children fall above 1 standard deviation in  
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Table 2.2. Descriptive anthropometrics with WHO-reference z-score statistics.  

 

 

HEIGHT 

Age (years) N Mean (cm) SD (cm) Range (cm) Mean HAZ HAZ SD %<-2SD %<-1SD %>+1SD %>+2SD 

Females 

0-3 21 90.13 6.35 (74.0, 100.3) 0.70 1.70 0 (0%) 3 (14.3%) 2 (9.5%) 4 (19.0%) 

3-5 26 103.34 5.73 (95.4, 116.6) 0.00 0.97 1 (3.8%) 2 (7.7%) 3 (11.5%) 1 (3.8%) 

5-10 32 119.95 9.49 (107.7, 142.2) 0.07 0.78 0 (0%) 1 (3.1%) 4 (12.5%) 0 (0%) 

10-15 30 154.98 8.45 (142.5, 175.0) 0.03 1.03 1 (3.3%) 3 (10.0%) 6 (20.0%) 1 (3.3%) 

15-19 18 162.38 5.94 (155.0, 178.1) -0.06 0.91 0 (0%) 2 (11.1%) 1 (5.6%) 1 (5.6%) 

Males 

0-3 13 90.62 5.27 (78.10, 98.55) 0.08 1.15 1 (7.7%) 1 (7.7%) 1 (7.7%) 1 (7.7%) 

3-5 33 103.56 6.78 (90.6, 122.8) 0.00 1.19 1 (3.0%) 4 (12.1%) 3 (9.1%) 3 (9.1%) 

5-10 29 124.30 10.30 (101.1, 138.5) 0.00 0.90 1 (3.4%) 2 (6.9%) 3 (10.3%) 1 (3.4%) 

10-15 22 151.10 11.79 (122.7, 167.5) -0.34 1.01 1 (4.5%) 4 (18.2%) 2 (9.1%) 0 (0%) 

15-19 22 169.34 9.52 (137.3, 183.7) -0.63 1.23 1 (4.5%) 4 (18.2%) 1 (4.5%) 0 (0%) 

WEIGHT 

Age (years) N Mean (kgs) SD (kgs) Range (kgs) 
Mean 
WAZ WAZ SD %<-2SD %<-1SD %>+1SD %>+2SD 

Females 

0-3 20 13.15 2.57 (8.62, 17.69) 0.99 1.37 0 (0%) 1 (5.0%) 6 (30.0%) 4 (20.0%) 

3-5 27 16.70 2.55 (13.15, 21.77) 0.13 1.00 1 (3.7%) 3 (11.1%) 4 (14.8%) 1 (3.7%) 

5-10 32 22.45 4.66 (15.06, 33.57) -0.04 0.80 0 (0%) 3 (9.4%) 3 (9.4%) 0 (0%) 

Males 

0-3 14 13.66 0.96 (12.25, 14.97) 0.53 0.59 0 (0%) 0 (0%) 2 (14.3%) 0 (0%) 

3-5 33 16.74 2.56 (12.70, 24.04) 0.07 1.00 0 (0%) 7 (21.2%) 4 (12.1%) 1 (3.0%) 

5-10 29 24.74 4.93 (14.06, 34.02) 0.03 1.04 1 (3.4%) 3 (10.3%) 5 (17.2%) 1 (3.4%) 

BMI 

Age (years) N Mean SD Range Mean BAZ BAZ SD %<-2SD %<-1SD %>+1SD %>+2SD 

Females 

0-3 16 17.04 2.83 (13.29, 22.13) 0.88 1.73 0 (0%) 2 (12.5%) 1 (6.3%) 6 (37.5%) 

3-5 26 15.72 1.54 (12.95, 18.59) 0.24 1.06 0 (0%) 4 (15.4%) 6 (23.1%) 1 (3.8%) 

5-10 32 15.48 1.69 (12.71, 20.05) -0.16 1.00 1 (3.1%) 5 (15.6%) 2 (6.3%) 1 (3.1%) 

10-15 30 19.10 2.65 (13.47, 25.64) -0.01 1.00 1 (3.3%) 1 (3.3%) 6 (20.0%) 0 (0%) 

15-19 18 21.90 4.27 (17.73, 33.85) 0.12 1.09 0 (0%) 2 (11.1%) 4 (22.2%) 1 (5.6%) 

Males 

0-3 13 16.82 1.70 (12.83, 19.72) 0.65 1.34 1 (7.7%) 0 (0%) 5 (38.5%) 1 (7.7%) 

3-5 33 15.57 1.46 (12.44, 18.89) 0.11 1.10 2 (6.1%) 1 (3.0%) 3 (9.1%) 3 (9.1%) 

5-10 29 15.87 1.57 (12.97, 19.55) 0.01 1.09 1 (3.4%) 3 (10.3%) 2 (6.9%) 1 (3.4%) 

10-15 22 18.01 2.66 (14.61, 25.42) -0.18 0.99 1 (4.5%) 4 (18.2%) 0 (0%) 1 (4.5%) 

15-19 22 20.59 2.08 (14.56, 23.93) -0.23 0.90 1 (4.5%) 1 (4.5%) 0 (0%) 0 (0%) 
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Table 2.3. Growth LMM posterior modes and 90% credible intervals for within-individual 

variance (VI), additive genetic variance (VA), repeatability and heritability ratios, and secular 

trends.  

 

BMI-for-age z-scores, but less than 10% are considered overweight (> +2SD) after age 3 

by WHO standards (WHO, 2010).  

   Bayesian LMMs characterize the variation observed in height, weight, and BMI. 

Although sex and age were modeled as fixed effects in all LMMs, we do not report their 

coefficients since these control variables are better visualized (Figures 2.1-2.3), and age 

was modeled as a spline which complicates interpretations of its model coefficients. We 

report beta coefficient estimates for the period effect control (secular trends) in Table 2.3. 

The collection year variable used to measure this effect was z-scored (mean=2002, 

SD=3.5) and height, weight, and BMI were log-transformed as outcome variables.  

 

 
Height Weight BMI 

VI 0.019 (0.016, 0.021) 0.199 (0.170, 0.233) 0.107 (0.097, 0.131) 

Repeatability 0.817 (0.790, 0.838) 0.813 (0.787, 0.841) 0.772 (0.743, 0.802) 

VA 0.014 (0.009, 0.022) 0.162 (0.105, 0.246) 0.071 (0.028, 0.112) 

Heritability 0.683 (0.450, 0.836) 0.640 (0.453, 0.837) 0.487 (0.213, 0.704) 

Beta (period) 0.011 (0.008, 0.014) 0.026 (0.016, 0.035) 0.005 (-0.003, 0.012) 

R2
m 0.924 (0.914, 0.934) 0.891 (0.876, 0.905) 0.580 (0.534, 0.614) 

R2
c 0.986 (0.986, 0.987) 0.981 (0.979, 0.982) 0.905 (0.893, 0.913) 

 

R2
m measures the proportion of observed variation explained by only the fixed effects of each heritability 

model (sex, age, and period effect), and R2
c is that explained by all of the fixed and random effects (sex, 

age, period effect, within-individual variance, and additive genetic variance). 

 

Exponentiating the beta coefficients indicates that for every 3.5-year increase over 

the 1997-2017 data collection period, height increased by approximately 1.01 cm, weight 

increased by approximately 1.03 kgs, and these secular trends are independent of age or 

sex (Table 2.3). Credible intervals indicate that height and weight show clearly increasing 

secular trends, whereas the 90% interval for BMI spans zero and does not show a 

significantly positive trend. Height, weight, and BMI in 5-year-olds plotted from 1997-
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2007 show secular trends in the raw anthropometric data for a single age of significance 

and also support these model coefficients (Figures 2.4-2.6). We show secular trends at 

this age because body fat is typically at its lowest percentage between 5 and 6 years, and 

children who are overweight at this age show increased risks of metabolic disorders later 

in life (Moore et al., 2003; Nader et al., 2006). Height and weight show increasing secular 

trends in 5-year-olds during the 1997-2007 decade that are slightly higher in males than 

females (Figures 2.4-2.5). BMI trends are less clear, and there is a larger spread of 

variation in this metric than for either height or weight at this specific age (Figure 2.6). 

BMI appears to increase slightly in 5-year-old females between 1997-1999 before 

plateauing, and males show a modest increase between 2005-2007.   

 

 

 

 

 

 

 

 

Figure 2.4. Height of children between ages 5 and 6 years from 1997-2007. 128 data points for 80 children 

(33 males and 47 females) are plotted with loess curves showing moving averages and 95% confidence 

intervals.  
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Figure 2.5. Weight of children between ages 5 and 6 years from 1997-2007. 128 data points for 80 children 

(33 males and 47 females) are plotted with loess curves showing moving averages and 95% confidence 

intervals.  

 

 

 

 

 

 

 

 

 

Figure 2.6. BMI of children between ages 5 and 6 years from 1997-2007. 128 data points for 80 children 

(33 males and 47 females) are plotted with loess curves showing moving averages and 95% confidence 

intervals.  

 

LMM results show that height, weight, and BMI are all highly repeatable for the 

260 individuals in this analysis (Table 2.3; Figure 2.7). We report modes and credible 

intervals to characterize posterior probability distributions. Unlike confidence intervals 

that reflect accuracy in reference to theoretical probability distributions, credible intervals 
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describe ranges of variation in parameter estimates to describe the shape of posterior 

distributions that have been produced by updating prior probability distributions with 

observed data (McElreath, 2015). Modes reflect the most probable beta coefficient and 

variance component values, and 90% credible intervals encompass 90% of the values 

sampled from posterior distributions. High posterior modes with small credible intervals 

indicate that approximately 82% of the variation in height and 81% of the variation in 

weight are explained by variance within individual growth curves in this population when 

also controlling for sex, age, and secular trends in these longitudinal data. BMI is less 

predictable than height or weight as individuals age, but variance within individuals still 

explains 77% of the population-wide variation not captured by age, sex, or secular trends 

(Table 2.3).  

 

 

 

 

 

 

 

 

Figure 2.7. Repeatability and heritability estimates from Bayesian growth LMMs. Plotted modes and 90% 

credible intervals summarize 1,000 samples from posterior distributions of within-individual variance 

components and additive genetic variance components.   

 

Heritability estimates reveal that, after accounting for the impacts of sex, age, and 

secular trends, genetic variation explains substantial proportions of variation observed 
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between individuals’ height, weight, and BMI, and also explains large proportions of the 

repeatabilities modeled in the set of LMMs with only one random effect (Table 2.3). 

Heritability estimates reflect only the proportions of variation between individuals that 

are explained by shared genes because these LMMs also included individual IDs as a 

random effect to account for variation within individual growth curves. Thus, heritability 

estimates are independent of repeated measures within individuals, but repeatability 

estimates do encompass what is measured in heritabilities because all aspects of an 

individual’s identity (including genetic and non-genetic attributes) that impact the 

observed phenotypes are captured in repeatability ratios. Additive genetic variance 

accounts for approximately 68% of the observed variation between individuals in height, 

64% for weight, and 49% for BMI when also controlling for repeated measures within 

individuals. Although 90% credible intervals are much wider for heritabilities than 

repeatabilities, the lower limits for all heritability intervals are greater than 0.20, 

indicating that genetic variation significantly impacts phenotypic variation for all three 

traits (Figure 2.7).  

We report two R2 statistics defined specifically for LMMs by Nakagawa and 

Scheilzeth (2013) (Table 2.3). R2
m values measure the proportion of variation in growth 

phenotypes explained by only the fixed effects of each model. Sex, age, and secular 

trends explain approximately 92% of the observed variation in height, 89% of the 

variation in weight, and 58% of the variation in BMI in this population. R2
c values 

measure the proportion of variation in phenotypes explained by both fixed and random 

effects of each model (Nakagawa & Scheilzeth, 2013). We report conditional R2 

estimates from the set of heritability models, and the combination of sex, age, secular 
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trends, within-individual variance, and additive genetic variance explains approximately 

99% of the observed variation in height, 98% of the variation in weight, and 91% of the 

variation in BMI (Table 2.3). These statistics indicate that age, sex, and secular trends 

explain the majority of anthropometric variation, leaving relatively small amounts of 

variation to be explained by within-individual and additive genetic variances. However, 

repeatability and heritability variance components account for much more of the variation 

observed in BMI than for variation observed in height or weight (Table 2.3).  

 

Discussion 

 We analyzed longitudinal measures of body size in a small-scale Caribbean 

population that has recently transitioned nutritionally and behaviorally to include more 

Westernized dietary products and technologies alongside traditional subsistence 

horticultural practices. Height, weight, and BMI measurements track growth for 260 

individuals in Bwa Mawego, Dominica. Individual BMI growth curves show large 

increases for many females in adolescence and into adulthood while more males appear 

to be overweight earlier in childhood (Figure 2.3).  

Sex-specific differences in growth and variation are population-specific and age-

dependent, related to environmental stressors, morbidity, gender-biased resource 

distributions, and life-history trade-offs (Stinson, 1985). Growth phenotypes from Bwa 

Mawego follow general patterns observed in other small-scale tropical societies in which 

males exhibit less variation than females (Walker et al., 2006), a pattern also seen in BMI 

across Australia and several European countries (Schousboe et al., 2003). The 

combination of higher levels of adiposity in females with substantial genetic variation in 

different patterns of fat distribution may contribute to greater variation in female versus 
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male BMI (Samaras et al., 1997). Additional data regarding more detailed body 

composition, morbidity, specific behavioral and dietary variables, and activity levels are 

needed to address potential underlying causes of patterns observed between male and 

female anthropometric variation in Bwa Mawego.  

 The individuals in this study range in age from birth to 27 years old throughout 

the 20-year data collection period (1997-2017). We modeled age, sex, and collection year 

simultaneously to capture secular trends independent of age or sex, and period effect beta 

coefficients show that height and weight have increased over these decades during which 

the population as a whole has gained access to imported and processed foods, piped 

water, electricity, and other resources such as internet and cell phones (Table 2.3). 

Averaged across age and sex, height has increased by approximately 5.8 cm (2.3 inches) 

and weight has increased by 5.9 kgs (13 lbs). Similar data from the Seychelles that span a 

nutritional transition show larger gains of 10-13 cm in height and 9-15 kgs in weight over 

a 50-year period comparing 15-year-old adolescents (Vidal et al. 2008). Secular trends in 

weight and BMI among U.S. children and adolescents show comparable increases in 

weight from 1960-2002 (+12-15 lbs), with relatively smaller gains in height (0.6-0.8 

inches) to be expected in populations where stunting is less common (Ogden et al., 2004). 

Few individuals in Bwa Mawego fall into clinically defined overweight or obese 

categories at any timepoint in these longitudinal data (Table 2.2; Figure 2.3), and we do 

not find clear evidence of a population-wide increase in BMI in these younger 

generations (Table 2.3; Figure 2.6).  

 Age, sex, and secular trends account for the majority of variation in 

anthropometric phenotypes in Bwa Mawego, but far less in BMI than height or weight 
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(marginal R2 in Table 2.3). Repeatabilities and heritabilities measure the proportions of 

phenotypic variation explained by within-individual and additive genetic variances that 

are residual to the variation explained by sex, age, and secular trends. Repeatability 

estimates show that aspects of an individual’s identity, including both genetic and non-

genetic factors such as behavior, are highly predictive of these anthropometrics as 

individuals age. All repeatabilities are greater than 75% (Table 2.3), leaving low residual 

variances unexplained in these repeated measures.  

Heritability estimates for height (0.68), weight (0.64), and BMI (0.49) in Bwa 

Mawego are lower than many published estimates from twin studies (Elks et al., 2012; 

Silventoinen, 2003; Silventoinen et al., 2017), but well within the range of estimates from 

other types of family-based designs that are likely less inflated from common 

developmental environments than those shared by twins (Elks et al., 2012). We 

acknowledge that common environments may inflate our estimates of heritability 

slightly, however, flexible and fluctuating residence patterns in Bwa Mawego diffuse 

much of the household/spatial clustering known to influence anthropometric variation 

and heritability estimates in other populations (Heckerman et al., 2016; Saunders & 

Gulliford, 2006). Much of the variance in anthropometrics left unexplained by age, sex, 

and secular trends is attributed to additive genetic variance in this Caribbean population 

(Table 2.3; Figure 2.7), and further molecular research is needed to characterize specific 

genetic influences on variable anthropometric and metabolic health outcomes. This is 

particularly warranted in reference to body mass given that age, sex, and secular trends 

explain much less of the variation in BMI than in height or weight, bolstering the relative 

importance of genetic variation (Table 2.3). 
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Variation in BMI between populations is best explained by environmental, 

ecological, and behavioral factors, but most of the variation within populations appears to 

be explained by genetic variation (Bogardus, 2009). Despite estimating moderate to large 

heritabilities in a multitude of populations, geneticists have yet to account for most of this 

alleged genetic variation with specific variants, creating a problem of “missing” 

heritability. Diverse, small-scale populations that are under-represented in the current 

genetic literature may be valuable resources for discerning how biological, cultural, and 

environmental factors intersect to shape anthropometric variation and health on a more 

inclusive, global scale (Popejoy & Fullerton, 2016). Substantial contributions of additive 

genetic variance to anthropometric variation in this Caribbean population of mixed 

ancestry (Morena-Estrada et al., 2013) warrant further investigation, especially given the 

large amount of variation in body mass between individuals and the lack of population-

wide secular trends throughout this transitional period (Table 2.3; Figure 2.3; Figure 2.6).  

We have assessed the impacts of age, sex, secular trends, within-individual 

variance, and additive genetic variance on phenotypic variation in height, weight, and 

BMI in a Caribbean community that has recently transitioned to include more Western 

foods and technologies into traditional horticultural diets and subsistence practices. 

Anthropometric heritabilities are moderate in this population and body mass varies 

considerably between individuals, but metabolic health correlates of anthropometric 

variation remain unknown at this time. Additional data regarding specific behavioral, 

dietary, environmental, and genetic factors will enhance our understandings of 

anthropometric variation and health in the future.  
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CHAPTER THREE 

Genetic Ancestry and Population Structure 

 

Abstract 

The Caribbean is a genetically diverse region with heterogeneous admixture 

compositions that reflect local island ecologies, migrations, colonialist forces, and 

demographic histories. The Commonwealth of Dominica is an exceptionally mountainous 

island in the Lesser Antilles historically known to have unique pockets of ancestry and 

demographic structure. Single nucleotide polymorphism data from 159 people in a 

localized horticultural community provide insights on genetic ancestry and population 

structure in Dominica. We detect four distinct family clusters using fastSTRUCTURE, 

and there is clear evidence of admixture between African, European, and indigenous 

Amerindian ancestries that occurred approximately 130-150 years ago shown via 

phylogenetic methods in TreeMix, correlated linkage disequilibrium decay in ALDER, 

and visualizing Dominica samples and Human Genome Diversity Panel (HGDP) 

genotypes in Principal Component space. Our results are consistent with other genetic 

evidence that shows substantially higher proportions of indigenous ancestry and lower 

proportions of African ancestry in Dominica compared to variation sampled on other 

Caribbean islands. We detected significantly correlated linkage disequilibrium with 

Karitiana and Surui HGDP samples but not with other Amerindian groups, indicating that 

more deeply diverged indigenous lineages are likely present in Dominica that may not be 

widely represented elsewhere.  
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Introduction 

The Caribbean is a diverse region where migration, local island ecologies, and 

colonialist forces have uniquely shaped demographic patterns and population structures 

(Belbin at el., 2018; Benn-Torres et al., 2008; Fitzpatrick and Keegan, 2007). The 

Commonwealth of Dominica is a mountainous island nation in the Lesser Antilles where 

exceptionally steep terrain is historically known to have provided refuge for people of 

African and indigenous ancestries fleeing enslavement by European colonists (Beckles, 

1992; Quinlan, 2004). Given the challenges inherent to navigating mountainous tropical 

landscapes, little is known about the relatively isolated rural communities in this region 

(Montenegro and Stephens, 2006). We characterize population structure and genetic 

ancestry in a horticultural community on the windward coast of Dominica using high-

density single nucleotide polymorphism (SNP) data from 159 people.  

 The 2010 Census counted 72,862 people among Dominica’s ten parishes, and St. 

David’s Parish along the eastern coast reports the highest proportions of indigenous 

Kalinago ancestry among its 6,043 residents (Pan American Health Organization, 2012). 

Historical documents and archaeological evidence indicate that at least two distinct 

waves of migration from South America brought the earliest human inhabitants to the 

island. Taino people of the South American Arawak group arrived around 400 CE, and 

Island Caribs, also known as Kalinago, followed around 1,000 CE (Beckles, 1992). An 

earlier population of Ortoiroid hunter-gatherers may have migrated from South America 

prior to the Taino as early as 3,000 BCE (Honychurch, 1995). Taino and Kalinago groups 

are known to have joined forces against Spanish invaders following Christopher 

Columbus’s contact at Dominica in 1493, and it is estimated that the Kalinago population 
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declined by as much as 90% between the late 15th and early 18th centuries as Spanish, 

British, and French conquests reached the Lesser Antilles (Beckles, 1992). Labor from 

enslaved Africans, indigenous Carib groups, and European indentured servants in the 17th 

and 18th centuries enabled a mix of French and British plantations to produce coffee and 

sugar, respectively, until approximately 14,000 enslaved people were legally emancipated 

in Dominica in 1834 (Beckles, 1992; Honychurch, 1995).         

 Bwa Mawego is a rural horticultural community in Dominica located on the 

island’s steep eastern coast, south of the indigenous Kalinago reserve (Quinlan, 2004). 

This village is one of the most remote on the island and is thought to have been populated 

by newly emancipated people who settled in the exceptionally steep windward landscape 

during the mid-19th century. The majority of Bwa Mawego’s residents (approximately 

500 at any given timepoint) have been engaging in anthropological and psychological 

health research for the past 30 years (Flinn et al., 1999; Macfarlan et al., 2012; Quinlan, 

2004). Cardiometabolic health and related chronic conditions are growing local concerns 

in Bwa Mawego. Much of the variation observed in longitudinal health traits is explained 

by genetic variation in this population (Keith et al, 2019), yet genetic variation in this 

region has yet to be explored in detail. We aim to characterize population structure and 

genetic ancestry in order to explore how recent admixture has shaped this Caribbean 

community using high-density genotype data from more than 30% of Bwa Mawego’s 

residents.  

 Caribbean and Latin American groups are heterogeneous in their ancestral 

compositions, and indigenous components of these genomes are particularly variable 

(Belbin et al., 2018; Moreno-Estrada et al., 2013). People with recently mixed ancestries 
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are under-represented in genetic research (Bustamante et al., 2011; Popejoy and 

Fullerton, 2016), and relatively isolated communities are known to have otherwise rare 

genetic variants reach high frequencies, reflecting unique local histories and founder 

effects (Belbin et al., 2018; Hunley and Healy, 2011). As genetic variants become 

increasingly informative in managing complex diseases, including uniquely admixed 

genomes enhances our understanding of polygenic traits and mitigates European bias in 

genetic research (Pulit et al., 2010).  

 An analysis of admixture throughout the English-speaking Caribbean used a 

targeted set of ancestry informative markers (AIMs) and found significantly more 

indigenous and European ancestry in a sample of 37 people from Dominica relative to 

more African ancestry sampled on other islands, indicating that patterns of genetic 

admixture in Dominica  are particularly unique (Benn-Torres et al., 2013). Our samples 

represent more than 30% of a rural horticultural community in Dominica and capture 

genome-wide variation with a high-density SNP array (Illumina Human OmniExpress). 

Genetic research that is inclusive to people from ancestrally heterogeneous populations, 

such as those in the Caribbean and Latin America, requires sampling and analyses at finer 

scales (Belbin et al., 2018). We describe population structure and admixture in a 

community that is both culturally and geographically defined in a unique region of the 

Caribbean. 

 

Materials and Methods 

We extracted DNA from buccal swabs to produce genotype data from 160 people 

in Bwa Mawego, Dominica. These data were collected during July-August 2017 

following research approvals from both the University of Missouri Institutional Review 
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Board and the local village council in Dominica. All participants gave written informed 

consent prior to any data collection, and parental consent was also obtained for 

participants under the age of 18.  

 Isohelix buccal swabs were stabilized at room temperature using Dri-Capsules 

(Boca Scientific) during data collection, and samples were extracted with the Buccal-Prep 

Plus DNA Isolation Kit (Boca Scientific) and purified with the MinElute PCR 

Purification Kit (Qiagen). 160 samples were genotyped for 960,923 SNPs on the Human 

OmniExpress BeadChip (Illumina, 2018). This high-density array has genome-wide 

coverage and captures variants across diverse human populations defined in the 1,000 

Genomes Project (Illumina, 2018). 

 We filtered SNP data using PLINK v1.9 (Purcell et al., 2007) to remove SNPs 

with call rates < 0.9 or Hardy-Weinberg Equilibrium (HWE) p-values < 1x10-40 and 

individuals with call rates < 0.9. Filtering removed 1,181 SNPs due to low call rate, one 

SNP due to HWE p-value, and one individual due to low call rate. For population-

comparison analyses, we used genotyped individuals from the Human Genome Diversity 

Panel (HGDP) (Cann et al., 2002). Individuals in the HGDP were genotyped on Illumina 

650Y array. We filtered the HGDP data as above, removed populations with less than 

five individuals, then merged with the remaining 159 Dominica samples. The resulting 

dataset contained 1,078 total individuals (159 Dominica and 919 HGDP) genotyped at 

468,721 SNPs shared across panels.   

 We inferred population structure and admixture proportions via K-means 

clustering in a variational Bayesian framework using fastSTRUCTURE (Raj et al., 

2014). Allowing the number of clusters (K) to vary from 2-10, we assessed genetic 
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clustering within only the Dominica genotypes as well as among the Human Genome 

Diversity Panel (HGDP) with a subset of Dominica samples (Cann et al., 2002). Using 

PLINK’s ‘--rel-cutoff’ flag, we down-sampled individuals from Dominica to 

exclude close relatives (r<0.025, n=22). This subset of Dominican individuals was used 

for clustering with the HDGP dataset in fastSTRUCTURE to infer ancestry with less 

confounding family-based structure. In order to visualize potential sex-biased admixture, 

we also ran fastSTRUCTURE to compare clustering between autosomes and X 

chromosomes for 336 females from the down-sampled dataset.  

 We used a generalized linear mixed model (GLMM) to compare genetic 

clustering among all 159 genotyped individuals from Bwa Mawego, Dominica with an 

11-generation village-wide pedigree that dates back to 1899 (Table S2.1). We used the 

cluster affinities for the K number of clusters that had the highest likelihood from 

fastSTRUCTURE as the outcome variable in this GLMM. Using the MCMCglmm 

package in R v.3.6.3, we modeled the pedigree-derived kinship matrix as a random 

effect to assess the extent to which genetic population structure in Bwa Mawego is 

explained by close family relatedness (Hadfield, 2010; R Core Team, 2019).     

We ran a principal component analysis (PCA) in PLINK with the HGDP SNPs 

and projected all 159 samples from Dominica onto the HGDP space. This enabled 

visualization of the Dominican genotypes with globally diverse samples while preventing 

our relatively large Caribbean sample from disproportionately influencing the principal 

components that reflect global genetic variation more broadly.  

 We used f statistics to test for admixture in Bwa Mawego, Dominica and 

visualized historical relationships between these Caribbean samples and populations in 
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the HGDP dataset using the ‘threepop’ and ‘fourpop’ programs implemented in 

TreeMix (Pickrell and Pritchard, 2012). HGDP reference populations serve as proxies 

for actual ancestral populations from which we expect to detect admixture.  f3 statistics 

test the phylogenetic structure underlying allele frequencies among three different 

populations (Peter, 2016; Reich et al., 2009), operating from a non-admixed null 

hypothesis that variation in allele frequencies follows a tree-like process of population 

differentiation over time with positive branch lengths. f4 statistics test the tree-like 

structure among four populations, allowing for one internal branch that will have a length 

of zero among populations with no detectable admixture (Peter, 2016; Reich et al., 2009). 

Using f4 ratio estimation, f4 statistics can be used to estimate ancestry contributions from 

two diverged populations in an admixed population of interest (Patterson et al., 2012). 

In f4 ratio estimation, the mixing parameter is calculated as 
𝑓4 (𝐴,𝑂;𝑋,𝐶)

𝑓4 (𝐴,𝑂;𝐵,𝐶)
 where B 

and C are populations hypothesized to have formed X, A is a sister population to B, and O 

is an outgroup to A, B, C, and X. is interpreted as an estimate of the relative contribution 

of population B to X, while the relative contribution of C (β) is 1-α. We estimated f4 

admixture ratios using four different combinations of African, European, and Amerindian 

HGDP populations informed by initial f3 results. Neither f3 nor f4 statistics directly test for 

admixture in a fourth population from three divergent source populations as we expect to 

find in Dominica, therefore, we interpret these phylogenetic tests with context from 

admixture analyses.      

We used ALDER to date admixture events and infer minimum mixture proportions 

in Bwa Mawego, Dominica by assessing correlations of linkage disequilibrium decay 

with HGDP reference populations (Loh et al., 2013). Recombination events increasingly 
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dissociate alleles from one another each generation with a likelihood that increases with 

genetic distance along each chromosome, thus detailed evolutionary relationships can be 

inferred between admixed and reference populations based on the decaying correlation of 

linkage disequilibrium across increasingly long chromosome tracts (Moorjani et al., 

2011). We ran ALDER with pairs of HGDP reference populations, and also with 

individual reference populations one at a time, to estimate the timing of admixture events 

and the mixture proportions among 159 people in rural Dominica. Together, these 

clustering, dimension reduction, phylogenetic, and linkage disequilibrium analyses 

characterize population structure in a localized horticultural community and reveal 

historical admixture in a unique area of the Caribbean. 

 

Results 

 We assessed population structure in Bwa Mawego, Dominica from 468,721 SNPs 

in a sample of 159 people using fastSTRUCTURE (Raj et al., 2014). The two values of 

K reported from fastSTRUCTURE indicate the number of clusters that maximize the 

marginal likelihood of observed genetic variation (Raj et al., 2014), and the lower bound 

estimate of K=4 indicates that we are most likely to observe this population-wide variation 

from four well-defined genetic groups (Figure 3.1). The upper bound estimate of K=9 

accounts for additional weaker population structure in Bwa Mawego. We utilize the well-

defined K=4 clusters in subsequent analyses. GLMM results that compared these four 

cluster affinities with an 11-generation population-wide pedigree (Figure S2.1; Table S2.1) 

show that these four groups largely reflect family relatedness. Pedigree-based relatedness 
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Figure 3.1. Genetic structure in Bwa Mawego, inferred from fastSTRUCTURE. Each color represents a 

cluster (for K number of clusters in each model), and each individual (n=159) is a vertical line with colored 

segments that correspond to the proportion of cluster similarity.  

 

 

explains approximately 99% of red cluster affinity, 77% of orange affinity, 72% of yellow 

affinity, and 98% of green cluster affinity (for K=4) estimated from GLMM variance 

component ratios. 

We inferred ancestry clusters in Bwa Mawego using a subset of 22 individuals that 

excludes close relatives (r<0.025) in reference to data from 919 people across 53 

populations in the HGDP dataset (Cann et al., 2002). For the lower bound of strong genetic 

structure, fastSTRUCTURE indicates that six clusters maximize the marginal likelihood 

across the HDGP data and 22 Dominica samples, and seven clusters maximize the amount 

of variation explained when accounting for additional weaker structure (Figure 3.2). Bwa 

Mawego samples share ancestry with African, European, and Amerindian populations in 

substantial proportions, showing clear evidence of admixture from three genetically 

distinct ancestries. 
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K=5 maximizes the marginal likelihood of ancestral variation among only females 

sampled from Dominica and the HGDP. Comparing cluster affinities along autosomes to 

X chromosomes shows 10-13% less European admixture along X chromosomes in 

Dominica than along autosomes (Figure 3.3).  

 

Figure 3.2. Ancestry proportions inferred from fastSTRUCTURE among 919 samples from the HGDP 

and a subset of 22 unrelated Dominica samples for K=6 (top panel) and K=7 (bottom panel). 

 

 

 

 
Figure 3.3. Ancestry proportions of autosomes (top panel) and X chromosomes (bottom panel) among 

females, inferred from fastSTRUCTURE (K=5).  

 

 

We derived the first two principal components in the HGDP reference dataset in 

PLINK and then mapped the loadings of all 159 genotypes from Dominica onto that two-
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dimensional space (Figure 3.4). As shown consistently in other HGDP analyses, the first 

principal component captures increased genetic variation in African populations relative 

to non-African groups, and the second differentiates European and Asian clusters 

(Lawson et al., 2012; Li et al., 2008). Samples from Dominica form a diffuse cluster 

spread along this African-European vector and also show varying similarity to 

Amerindian HGDP samples along PC2 (Figure 3.4). 

 
Figure 3.4. Dominica samples (n=159) projected onto HGDP PCA axes (PC1= first HGDP principal 

component, PC2=second HGDP principal component). HGDP loadings are plotted as triangles, and 

Dominica loadings are plotted as closed circles with colors that correspond to the four clusters identified in 

fastSTRUCTURE (Figure 1). Individuals were assigned a matching color (red, orange, yellow, or green) 

if one of the four fastSTRUCTURE clusters accounted for more than 90% of their genetic variation, and 

un-assigned individuals who do not meet this cluster affinity threshold are plotted in blue. 

 

Phylogenetic inferences from TreeMix indicate that individuals in Bwa 

Mawego, Dominica share the most ancestry with African populations and more similarity 



 

55 
 

with individuals sampled from Yoruba and Mandenka populations than with San groups 

(Table 3.1). f3 statistics show the most significant negative branch lengths between 

Dominica and Yoruba, French, and Karitiana samples (Table 3.1). Strong genetic drift 

and founder effects can mask signals of admixture captured by this statistic (Patterson et 

al., 2012), yet we detect highly significant negative branch lengths in these data. We 

detect significant admixture from African/European and African/Amerindian source pairs 

but not from European/Amerindian pairs (Table 3.1).  f4 admixture ratios estimate a larger 

contribution to ancestry in Bwa Mawego from African populations than European 

populations, and a larger contribution from European populations than Amerindian 

populations (Table 3.2).  

 We ran two-reference admixture models in ALDER for a subset of African, 

European, and Amerindian HGDP populations in relation to all 159 genotypes from 

Dominica and report date estimates from the reference pairs with significant LD 

correlations (Table 3.3). Correlated LD begins to significantly decay beginning at lengths 

around 1.00 centimorgan. With a generation length of 25 years, two-reference weighted 

LD curves indicate that admixture occurred between approximately 130-150 years ago in 

rural Dominica, with slightly more recent date estimates from European and Amerindian 

ancestries (Table 3.3). Mixture proportions from single-reference models in ALDER 

support our f4 admixture ratio results (Table 3.2), indicating that at least 40% of genetic 

ancestry in Bwa Mawego is African, more than 20% is European, and at least 6% is 

shared with indigenous Amerindian ancestors (Table 3.4) captured by the HGDP data 

(Cann et al., 2002). 
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Table 3.1. f3 statistics from TreeMix. Negative values indicate non-phylogenetic relationships as evidence 

of admixture and positive values represent branch lengths resulting from phylogenetic relationships.   

Admixed Ref A Ref B f3 Standard error Z-score 

Dominica Yoruba French -0.008 0.00011 -72.44 

Dominica Yoruba Orcadian -0.008 0.00012 -69.44 

Dominica Yoruba Pima -0.010 0.00015 -65.91 

Dominica Karitiana Yoruba -0.011 0.00017 -64.52 

Dominica Yoruba Surui -0.011 0.00017 -63.71 

Dominica Mandenka French -0.007 0.00011 -63.05 

Dominica Mandenka Orcadian -0.007 0.00012 -61.77 

Dominica Mandenka Karitiana -0.010 0.00017 -60.67 

Dominica Mandenka Pima -0.009 0.00016 -60.30 

Dominica Mandenka Surui -0.010 0.00017 -58.94 

Dominica San Orcadian -0.007 0.00016 -40.31 

Dominica San French -0.006 0.00016 -40.04 

Dominica San Surui -0.009 0.00024 -38.35 

Dominica San Karitiana -0.009 0.00024 -37.56 

Dominica San Pima -0.008 0.00022 -37.25 

Dominica Surui French 0.014 0.00030 45.67 

Dominica Surui Orcadian 0.014 0.00030 46.52 

Dominica Karitiana Orcadian 0.014 0.00028 50.77 

Dominica Karitiana French 0.014 0.00026 52.07 

Dominica Orcadian Pima 0.015 0.00027 55.44 

Dominica French Pima 0.014 0.00025 55.81 

Dominica San Yoruba 0.011 0.00014 76.83 

Dominica Mandenka San 0.011 0.00014 77.54 

Dominica French Orcadian 0.026 0.00027 97.47 

Dominica Mandenka Yoruba 0.012 0.00012 101.39 

Dominica Surui Pima 0.047 0.00043 107.80 

Dominica Karitiana Pima 0.047 0.00043 109.39 

Dominica Karitiana Surui 0.053 0.00048 110.86 
 

 

 

 

 

 



 

57 
 

Table 3.2. f4 ratio estimates of pairwise mixture proportions.   

Population Position Estimate f4 test 

French B 0.370 (San,Basque;Yoruba,Dominica)/(San,Basque;Yoruba,French) 

Yoruba C 0.630 (San,Basque;Yoruba,Dominica)/(San,Basque;Yoruba,French) 

Orcadian B 0.370 (San,Basque;Yoruba,Dominica)/(San,Basque;Yoruba,Orcadian) 

Yoruba C 0.630 (San,Basque;Yoruba,Dominica)/(San,Basque;Yoruba,Orcadian) 

Karitiana B 0.261 (San,Surui;Yoruba,Dominica)/(San,Surui;Karitiana,Yoruba) 

Yoruba C 0.739 (San,Surui;Yoruba,Dominica)/(San,Surui;Karitiana,Yoruba) 

Surui B 0.260 (San,Karitiana;Yoruba,Dominica)/(San,Karitiana;Yoruba,Surui) 

Yoruba C 0.740 (San,Karitiana;Yoruba,Dominica)/(San,Karitiana;Yoruba,Surui) 

 

 

Table 3.3. Dates of admixture in Dominica computed in ALDER from pairs of HGDP reference 

populations. Date estimates are in generations, and genetic distances (d) are the lengths (in centimorgans 

(cM)) at which weighted LD correlations significantly decay. 

Ref 1 Ref 2 d (cM) Weighted LD amplitude Date estimate  z-score 

Mandenka Orcadian 1.20 0.00086 ± 0.00003 5.89 ± 0.22 27.15 

Yoruba Orcadian 1.60 0.00089 ± 0.00003 5.81 ± 0.22 26.75 

Mandenka French 1.80  0.00083 ± 0.00003 5.81 ± 0.23 25.66 

Yoruba French 1.80 0.00088 ± 0.00003 5.80 ± 0.23 25.45 

Mandenka Karitiana 1.20 0.00124 ± 0.00004 5.49 ± 0.25 21.89 

Yoruba Karitiana 1.60 0.00128 ± 0.00005 5.44 ± 0.25 21.43 

Mandenka Surui 1.20 0.00124 ± 0.00004 5.47 ± 0.26 21.32 

Yoruba  Surui 1.60 0.00128 ± 0.00005 5.41 ± 0.26 21.14 

Surui Orcadian 1.00 0.00035 ± 0.00002 5.40 ± 0.30 17.92 

Karitiana Orcadian 1.10 0.00033 ± 0.00001 5.39 ± 0.32 16.64 

French  Surui 1.80  0.00035 ± 0.00002 5.26 ± 0.33 16.00 

French  Karitiana  1.80 0.00033 ± 0.00001 5.26 ± 0.34 15.29 

 

 

Table 3.4. Dates of admixture in Dominica computed in ALDER from single HGDP reference populations. 

Date estimates are in generations, and mixture proportions are lower bound estimates. Genetic distances (d) 

are the lengths (in centimorgans (cM)) at which weighted LD correlations significantly decay. 

Ref pop d (cM) Weighted LD amplitude Date estimate z-score Mixture % 

Yoruba  1.40 0.00023 ± 0.00001 5.42 ± 0.25 21.57 40.7 ± 0.8 

Mandenka  1.00 0.00021 ± 0.00001 5.43 ± 0.28 19.35 34.5 ±  0.8 

French  1.60 0.00033 ± 0.00001 6.32 ± 0.25 24.84 20.4 ±  0.5 

Orcadian 0.80 0.00034 ± 0.00001 6.42 ± 0.26 25.09 19.4 ± 0.4 

Karitiana 0.90 0.00070 ± 0.00001 5.62 ± 0.34 16.63 6.7 ± 0.3 
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Discussion 

We found signals of admixture between African, European, and indigenous 

Amerindian ancestries that occurred approximately 130-150 years ago in rural Dominica 

(Figure 3.2; Tables 3.1-3.4), with the largest proportion of African ancestry and smallest 

proportion of indigenous ancestry (Tables 3.2 and 3.4). Oral history in Bwa Mawego 

indicates that a Canadian family founded the community prior to 1840 when it first 

appeared on historic maps (Quinlan, 2004), and the mid-late 19th century admixture date 

estimates that we detected indicate that the community quickly grew to include people of 

African, European, and indigenous ancestries in the decades between its founding and the 

20th century.  

The current population of Bwa Mawego has mostly African ancestry, a substantial 

proportion of European ancestry, and at least 6% of these genotype data correlate with 

indigenous Amerindian ancestry (Figure 3.2; Table 3.4). Bwa Mawego is geographically 

less than ten kilometers from the only indigenous reservation in the Caribbean 

(Kalinago), yet ALDER shows consistent decay curves across relatively short lengths of d 

(<2.0 cM) that indicate admixture was localized to a specific time period (Loh et al., 

2013) an average of 5-6 generations ago (Tables 6-7). Continuous admixture is 

characterized by LD that extends over longer (>10 cM) chromosome tracts (Pfaff et al., 

2001) and tends to produce more varied decay parameters in ALDER (Loh et al., 2013). 

Mixture proportion estimates from ALDER are lower bounds, and our ability to detect 

indigenous ancestry in these admixed genotypes depends on how similar surviving 

indigenous lineages in the Lesser Antilles are to those sampled in the HGDP Amerindian 



 

59 
 

reference groups, which are proxies for ancestral source populations (Montinaro et al., 

2015).   

Some admixture introgression in Bwa Mawego appears to be sex-biased (Figure 

3.3), and 10-13% less European ancestry along X chromosomes compared with 

autosomes suggests that there may have been a higher proportion of European males than 

females among the community’s founders. This is consistent with historical accounts and 

genetic data across the English-speaking Caribbean, and there is prior evidence for 

relatively higher proportions of non-African male admixture in Dominica based on Y 

chromosome short tandem repeats (STRs) (Benn-Torres et al., 2007). The small number 

(5-6) of generations (Tables 3.3-3.4) since admixture occurred in Bwa Mawego’s 

founding generations lead us to interpret our X chromosome comparisons with caution, 

since calculated mixture fractions from males and females can oscillate for up to 5-10 

generations as they approach their mean proportion limit in an admixed population 

(Goldberg and Rosenberg, 2015).   

Consistent with other admixture analyses across the Americas and Caribbean, the 

closest HGDP match to the African ancestry in Bwa Mawego is Yoruba (Tables 3.1 and 

3.4) (Montinaro et al., 2015). We identified significantly correlated LD between 

Dominica and Yoruba, Mandenka, and Bantu South Africa groups, but not with Bantu 

Kenya (Table 3.3). We also detected correlated LD with indigenous Karitiana and Surui 

groups, but not with Pima. Karitiana and Surui are Amazonian groups historically known 

to have been isolated from other indigenous and non-indigenous groups, and they share a 

small portion of genetic ancestry with indigenous groups in Australia and Oceania that is 

not found in other Amerindian populations (Skoglund et al., 2015). Although at least 40% 
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of the ancestry in Bwa Mawego is African, this estimate is significantly lower than 

African mixture components in other Caribbean populations and is consistent with 

another ancestry analysis that includes samples from Dominica (Benn-Torres et al., 

2013). These results indicate that Dominica’s admixture composition is especially unique 

and includes significantly more indigenous ancestry than other Caribbean groups (Benn-

Torres et al., 2013), with lineages that may not be widely represented among other 

Caribbean or Amerindian populations.   

We found strong genetic structure within Bwa Mawego, Dominica, and the four 

distinct clusters in this community appear to reflect relatedness and family-based 

similarity more so than differing admixture proportions between clusters (Figure 3.4). 

Despite some evidence that Dominica has less genetic diversity than other Caribbean 

islands that could potentially reflect founder effects and confound demographic signals 

(Benn-Torres et al., 2007), we were able to detect clear admixture signals and family-

based structure to form a detailed analysis of structured SNP variation (Figures 3.1-3.2; 

Tables 3.3-3.4). The ability to distinguish arbitrary and admixed structure impacts our 

ability to characterize linkage signals and map traits in heterogeneous populations 

(Belbin et al., 2018; Pfaff et al., 2001). Our results highlight the need to assess detailed 

demographic histories in diverse populations since we detect clear, localized admixture 

signals as well as structured clusters based on demography following the initial admixture 

in Bwa Mawego (Figures 3.1-3.2; Tables 3.3-3.4).  

As modern globalization continues to transform patterns of migration and genetic 

variation, admixture is becoming more common at the individual level such that it creates 

substantial genetic heterogeneity among people sampled from cosmopolitan areas in 
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study designs that do not account for genetic structure or sub-structure based on ancestry 

and demography (Cooper et al., 2008). Genetic variation is increasingly informing our 

understandings of human biological variation and health traits, and admixed populations 

enhance our ability to map complex, polygenic traits more precisely when structure is 

modeled explicitly. Mapping causal genetic variants depends on our ability to isolate 

them from surrounding LD, and admixed populations often have heterogeneous 

distributions of ancestral haplotypes that enhance our ability to detect trait associations 

and localize genetic signals (Cooper et al., 2008; Patterson et al., 2010).  

While we detect clear admixture signals in Bwa Mawego, Dominica, admixture 

compositions vary among individuals (Figure 3.2) and do not cluster neatly according to 

the four-group structure that is specific to this rural community (Figures 3.2 and 3.4). 

Unique genetic ancestry and haplotype structure in combination with longitudinal health 

data in this localized horticultural community (Keith et al., 2019) may present unique 

opportunities to identify biologically significant genetic variants through admixture 

mapping and other analyses that utilize population structure to inform gene-trait, gene-

gene, and gene-environment associations (Patterson et al., 2010). Additionally, the shared 

local ecology reduces environmental heterogeneity in this small-scale community 

compared to variation in lifestyles, resource access, etc. represented among participants 

in most genotype-phenotype studies (Kulminski et al., 2016). The combination of 

relatively low environmental heterogeneity, diverse admixture compositions, and clearly 

defined population structure indicate that this culturally and geographically defined 

community presents unique opportunities for admixture mapping, epigenetic exploration, 

and association analyses.  
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CHAPTER FOUR 

Genome-Wide Association (GWA) Tests of Cardiometabolic Traits  

 

Abstract 

Increasing diverse representation in genome-wide association studies (GWAS) enhances 

our understanding of genotype-phenotype associations and mitigates strong European 

sample bias in genetic research. Bwa Mawego is a small-scale horticultural community in 

Dominica with increasing cardiometabolic health concerns. We tested genotype-

phenotype associations between cardiometabolic phenotypes and 371,835 single 

nucleotide polymorphisms (SNPs) among 159 people in this Caribbean community of 

mixed continental ancestry. After assessing family relatedness and ancestral population 

structure to obtain kinship coefficients and structural principal components, we ran mixed 

model single-variant association tests for anthropometric traits, blood pressure, and 

glucose levels that controlled for confounding variation from sex, age, population 

structure, and relatedness as covariates. We detect a potentially significant association 

between body mass index (BMI) and 2 SNPs downstream of the ANK3 gene on 

chromosome 10. Further research is needed to investigate any functional relationship 

between ANK3 and body mass, and there is unique potential to explore complex gene-

environment-phenotype landscapes in Bwa Mawego, Dominica.  
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Introduction 

The genetic components of most health phenotypes remain largely 

uncharacterized (Manolio et al., 2009), and genome-wide association studies (GWAS) 

remain a primary tool for detecting novel associations to incrementally increase the 

proportions of variation explained and enhance our functional understandings of complex 

traits and diseases (Visscher et al., 2017). GWAS have limited ability to detect 

associations given that they rely on common genetic variants in linkage disequilibrium 

(LD) with causal features, are sensitive to genetic architecture (allele frequency and 

variant effect size distributions), and must account for confounding variables (ancestral 

variation, population structure, phenotypic covariates, etc.) in order to detect associations 

between genetic loci and target phenotypes. These features are population- and sample-

specific (Cooper et al., 2008). Strong European bias in GWAS samples thus far leaves 

much genetic variation unexplored and under-represented, potentially skewing our 

understandings of genetic risk and trait variation (Bustamante et al., 2011). We test 

genotype-phenotype associations for cardiometabolic traits using 371,835 single 

nucleotide polymorphisms (SNPs) in a small-scale Caribbean community of mixed 

continental ancestry. 

 Bwa Mawego is a rural horticultural community of approximately 500 people in 

the Commonwealth of Dominica that has engaged in longitudinal health research for 

several decades (Flinn et al., 1999; Macfarlan et al., 2012; Quinlan, 2004). 

Cardiometabolic phenotypes (including type II diabetes and hypertension) are primary 

local health concerns, and we measured anthropometrics (height, weight, arm 

circumference, triceps skinfold), blood pressure, and glucose levels among a majority of 
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the community’s residents in 2017, providing point of care information to participants. 

Longitudinal anthropometric data indicate that despite increasing market integration 

(including the introduction of processed foods) over the past two decades, secular trends 

do not predict variation in body mass index (BMI) in Bwa Mawego, and a substantial 

proportion of observed BMI variation is explained by shared genetic variation (h2=0.49) 

(Keith et al., 2019). We further explore the genetic components of phenotypic variation in 

this study using SNP data to test single variant-trait associations. 

 Bwa Mawego was established in the mid-19th century in the steepest, harshest 

terrain along Dominica’s windward coast (Quinlan, 2004). Dominica has uniquely mixed 

ancestry that includes higher proportions of Amerindian ancestry relative to other 

Caribbean islands (Benn-Torres et al., 2013). Bwa Mawego has minimum proportions of 

40% African, 20% European, and 6% Amerindian ancestry with LD patterns that indicate 

representation of deeply diverged indigenous South American lineages found among 

Karitiana and Surui peoples (Keith et al., in prep). Genotype-phenotype tests may 

identify novel associations in Bwa Mawego given its unique representations of multiple 

ancestries and enriched family lineages. Furthermore, environmental sources of variation 

are relatively reduced among this small-scale horticultural population compared with the 

variation in lifestyles and environments represented among participants in most GWAS 

designs (Kulminski et al., 2016). Reduced non-genetic heterogeneity in Bwa Mawego 

may enhance our ability to detect meaningful genotype-phenotype associations.   

 In order to mitigate strong European bias and increase diverse representation in 

genetic research, we must explicitly model population structure and other confounding 

sources of heterogeneity that impact the ability to detect variant-trait associations. This is 
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essential among people with recently-mixed ancestries, including a large proportion of 

the world’s population in Latin America and the Caribbean where recent historical 

patterns of admixture vary regionally (Belbin et al., 2012). The population structure of 

Bwa Mawego, Dominica is well-defined (Keith et al., in prep), and we test associations 

between autosomal SNPs and cardiometabolic phenotypes while controlling for 

confounding impacts of age, sex, population structure, and family relatedness in this 

small-scale Caribbean community.      

 

Methods 

 Genotype and phenotype data were collected during July-August 2017 following 

research approvals from both the University of Missouri Institutional Review Board and 

the local village council in Dominica. All participants gave written informed consent 

prior to any data collection, and parental consent was also obtained for participants under 

the age of 18. Height was measured with a stadiometer on a flat surface, weight was 

measured using a digital scale, and body mass index (BMI) was calculated with the 

standard equation [weight(kg)/height(m)2]. Tricep skinfolds were measured 

with manual calipers and upper arm circumference was measured with a tape measure. 

Blood pressure was measured using a digital arm cuff after participants had been seated 

with feet flat on the ground and backs supported for a minimum of 10 minutes. 

Participants were surveyed about their known diabetic status. We tested glucose 

concentrations in urine samples using Bayer Diastix Glucose Reagent Strips for 

Urinalysis by dipping test strips into each sample at the time of collection and recording 

the strip color after 30 seconds. 
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 DNA samples were collected using Isohelix buccal swabs that were stabilized at 

room temperature with Dri-Capsules (Boca Scientific). Samples were extracted with the 

Buccal-Prep Plus DNA Isolation Kit (Boca Scientific) and purified with the MinElute 

PCR Purification Kit (Qiagen). 160 samples were genotyped for 960,923 single 

nucleotide polymorphisms (SNPs) on the Human OmniExpress BeadChip (Illumina, 

2018). This high-density array has genome-wide coverage and captures variants across 

diverse human populations defined in the 1,000 Genomes Project (Illumina, 2018).  

 SNP data were filtered using the SNPRelate package in R v.4.0.0 (Zheng et 

al., 2012; R Core Team, 2020). We excluded non-autosomal and monomorphic SNPs and 

removed SNPs with call rates < 0.90, minor allele frequencies (maf) <0.10, or Hardy-

Weinberg Equilibrium p-values <1x10-6 as well as individuals with call rates <0.90 

(Marees et al., 2018). 24,306 SNPs were non-autosomal, 185,415 were monomorphic, 

and we removed 1,181 SNPs for low call rates, 185,383 SNPs for maf<0.10, 25,446 

SNPs for low Hardy-Weinberg p-values, and one individual for low call rate. The 159 

individuals retained in these analyses range from 5-88 years old and include 88 males and 

71 females.   

 After the initial filtering, we pruned SNPs for linkage disequilibrium (LD) <0.2 

in order to obtain a set of independent markers for measuring relatedness and population 

structure (Marees et al., 2018). We used this independent set of 31,968 SNPs to measure 

identity by descent (IBD) with the KING moment estimator method in the SNPRelate 

package (Zheng et al., 2012). The kinship coefficient matrix derived from this IBD 

analysis was then included in a Principal Component Analysis (PCA) in order to adjust 

for family relatedness when analyzing ancestral population structure using the PC-AiR 
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function in GENESIS (Gogarten et al., 2019). We used the recommended kinship 

threshold of 0.022 to partition the dataset into related and unrelated subsets. PC-AiR 

used the unrelated subset of 32 individuals for a traditional PCA that returned 32 

eigenvectors to then predict PC values for the related subset of 127 people. We retained 

the first 2 PCs from this PCA in our subsequent analyses upon visualization of the 

variable loadings and scree plot (Figure S4.1) in order to account for population structure 

in this community of recently mixed ancestry (Keith et al., in prep). We then re-

calculated IBD probabilities and kinship coefficients with GENESIS using the PC-

Relate function that included the first 2 PCs from PC-AiR as controls. This approach 

enabled us to distinguish patterns based on ancestral population structure (PCs) from 

those resulting from recent family relatedness (IBD), which are both known components 

of population-wide genetic variation in Bwa Mawego (Keith et al., in prep).   

 We ran SNP-phenotype association tests with GENESIS by first fitting null 

mixed models to control for phenotypic covariates (age and sex), ancestral population 

structure (PC1 and PC2), and family relatedness (genetic relationship matrix (GRM) of 

pairwise kinship coefficients). We fit linear mixed models for BMI, weight, height, mean 

upper arm circumference (MUAC), triceps skinfold, systolic blood pressure, and diastolic 

blood pressure as continuous outcomes (Table 4.1) which all included sex, age, and the 

first two Principal Component vectors from PC-AiR as fixed effect covariates as well 

as the GRM from PC-Relate as a random effect covariate. These covariates control for 

the impacts of age, sex, population structure, and family-based similarity on each 

phenotype outcome. We fit generalized linear mixed models with the binomial 

distribution for two binary phenotypes: known diabetic status (1/0=participant has/has 
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not been diagnosed as diabetic) and positive glucose test (1/0=urine glucose test had 

color change/had no color change) (Table 4.1). The same fixed effect (age, sex, PC1, 

PC2) and random effect (GRM) covariates were included in these generalized mixed 

models as well.  

 
Table 4.1. Cardiometabolic phenotype statistics (n=159; 88 males, 71 females).  

 Min Q1 Median Mean Q3 Max 

Age (yrs) 5.80 15.40 41.50 38.94 55.45 88.20 

Height (in) 43.81 60.89 64.53 62.61 66.95 72.09 

Weight (lbs) 44.20 111.20 137.80 136.20 164.10 323.00 

BMI 14.80 19.10 22.40 23.86 27.75 55.00 

MUAC (in) 6.20 9.10 10.60 10.53 12.10 16.70 

Tri skinfold (mm) 3.00 5.00 7.00 10.31 14.00 35.00 

Systolic Blood Pressure 90.00 113.00 126.00 130.10 145.80 178.00 

Diastolic Blood Pressure 58.00 69.00 78.00 79.59 87.75 117.00 

  Yes No     

Glucose test 7 152     

Diabetic  9 150     
 

Using our initially filtered set of SNPs, we applied an LD threshold of 0.8 to 

exclude SNPs in high LD from subsequent association analyses (Carlson et al., 2004). 

371,835 SNPs passed this LD threshold and the previous quality-control filtering, and 

159 individuals (88 males and 71 and females, ages 5-88 years) are included in all 

models. We used the assocTestSingle function in GENESIS to run single variant 

association tests between the pruned set of 371,835 SNPs and the phenotype outcomes 

detailed above (Table 4.1). We ran score tests for all continuous outcomes and applied 

saddle point approximation (SPA) to the score test statistics for the binary outcomes with 

a p-value threshold to recalculate the statistic at 0.05 (Zhou et al., 2018). SPA reduces 

type I errors, which become increasingly problematic as case-control ratios become more 

unbalanced in binary trait outcomes.        
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Table 4.2. Heritability estimates from cardiometabolic null linear mixed models. Sex, age, PC1, and 

PC2 were included as fixed effects in all models.    

 

 

Results 

 

 The null mixed model results contain beta coefficient estimates for the fixed 

effect covariates in each model (sex, age, PC1, and PC2) (Table S4.1). Height, BMI, and 

triceps skinfolds are significantly associated with sex such that males are generally taller, 

and females are more likely to have higher BMI and thicker triceps skinfolds. All 

modeled phenotypes positively associate with age except for triceps skinfolds. PC1 

significantly associates with height, weight, and diastolic blood pressure, and PC2 

significantly associates with systolic blood pressure and elevated glucose (Table S4.1). 

Fitting the genetic relationship matrix (GRM) of pairwise kinship coefficients as a 

random effect in the null models produced variance component estimates of heritability 

for all continuous phenotypes (Table 4.2). These point estimates range from 0.0001 

(triceps skinfold) to 0.341 (systolic blood pressure), representing the proportions of 

observed phenotypic variation explained by shared alleles in Bwa Mawego while 

controlling for the impacts of sex, age, and population structure.   

 

 h2 confidence interval (95%) 

BMI 0.108 (-0.218, 0.435) 

Weight 0.132 (-0.170, 0.435) 

Height 0.095 (-0.218, 0.408) 

MUAC 0.078 (-0.204, 0.359) 

Triceps Skinfold 0.0001 (-0.293, 0.294) 

Systolic Blood Pressure 0.341 (-0.048, 0.731) 

Diastolic Blood Pressure 0.102 (-0.238, 0.442) 

 

 Mixed model association tests calculated Rao scores to test the associations 

between 371,835 SNPs with each modeled phenotype (while controlling for sex, age, 
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population structure, and relatedness), and we report score test statistics for SNPs with 

the 5 smallest p-values for each trait (Table 4.3; Table S4.2). Quantile-Quantile (Q-Q) 

plots show the distributions of p-values (plotted with -log10 transformations to enhance 

visualization of small values) for each phenotype (Figures 4.1, S4.2-S4.9). SNPs 

rs10994198 and rs2393599 deviate significantly from their expected BMI score p-values 

and from the observed score value trend below them (Figure 4.1; Table 4.3). These two 

SNPs are within 1,000 base pairs of one another on Chromosome 10.  

 
Table 4.3. BMI association score test statistics for SNPs with the 5 smallest p-values.  

variant.id chr pos Freq MAC Score Score.SE Score.Stat Score.pval Est Est.SE PVE 

rs11761744 7 153374029 0.101 32 4.236 0.810 5.228 1.71E-07 6.452 1.234 0.177 

rs10994198 10 60096277 0.286 91 6.809 1.308 5.206 1.93E-07 3.980 0.765 0.176 

rs2393599 10 60097103 0.110 35 4.690 0.906 5.178 2.24E-07 5.717 1.104 0.174 

rs12200377 6 132607877 0.358 113 6.068 1.293 4.692 2.71E-06 3.627 0.773 0.143 

rs2487031 9 104941947 0.195 62 4.554 1.002 4.543 5.55E-06 4.532 0.998 0.134 
            

freq=minor allele frequency, MAC=minor allele count, Score.SE=Score standard error, Score.Stat=Score z-

test statistic, Est=effect size estimate per copy of minor allele, Est.SE=effect size standard error, 

PVE=proportion of phenotype variance explained 

 

  Manhattan plots show the distributions of score p-values (with -log10 

transformations) by chromosome and position (Figures 4.2, S4.10-S4.17). We applied a 

Bonferroni correction at the 0.05 significance level for 371,835 SNP tests to obtain a p-

value threshold of 1.34x10-7, recognizing that this cutoff is conservative given weak to 

moderate levels of LD between many non-independent SNPs included below our 0.8 LD 

threshold. The BMI Manhattan plot shows 3 SNPs (2 overlapping) just below the 0.05 p-

value threshold with noticeably smaller values than the rest (Figure 4.2; Table 4.3). These 

3 high points on the Manhattan plot include rs10994198 and rs2393599 in close 

proximity on Chromosome 10 which have observed score p-values significantly beyond 

the expected distribution (Figure 4.1).   



 

75 
 

 

 

 

 

 

 

Figure 4.2. BMI Manhattan plot for 371,835 autosomal SNPs. Dashed line marks the p-value threshold of 

1.34x10-7 (Bonferroni correction at 0.05 significance).   

 

Figure 4.1. BMI Q-Q Plot of p-values for 371,835 SNPs. Expected p-values are plotted in red with the 

95% confidence interval in gray.    

 

 



 

76 
 

 

Discussion 

Our null mixed model results indicate that many cardiometabolic phenotypes in 

Bwa Mawego vary with population structure shown via PC1 and PC2 beta coefficients 

(Table S2). This Caribbean horticultural community has minimum estimates of 40% 

African ancestry, 20% European ancestry, and 6% Amerindian ancestry that contribute to 

its genetic structure (Keith et al., in prep), and body composition and cardiovascular traits 

are known to vary by ancestry both phenotypically and genetically, particularly in Latin 

and Caribbean populations (Noel et al., 2017; Muñoz et al. 2016). These associations 

further highlight the need to account for population structure and ancestry when testing 

genotype-phenotype associations.  

Heritability estimates from null linear mixed models suggest that kinship 

coefficients explain relatively low amounts of phenotypic variation observed in these 

cardiometabolic traits (Table 4.2). All confidence intervals span zero, and heritability 

point estimates for cross-sectional height (0.095), weight (0.132), and BMI (0.108) are 

substantially lower than pedigree-derived estimates for the same population calculated 

previously in a Bayesian framework from longitudinal data (h2
height=0.683, h2

weight=0.640, 

h2
BMI=0.487) (Keith et al., 2019). Bayesian longitudinal estimates included sex, age, and 

data collection year as covariates but had no measure of ancestry or population structure; 

one potential explanation for some discrepancy between estimates is inflation in 

previously calculated heritabilities due to unmodeled ancestry or population structure.    

 SNPs rs10994198 and rs2393599 that appear to associate with BMI variation in 

Bwa Mawego (Figures 4.1-4.2) are located on chromosome 10 at positions 60096277 and 
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60097103, respectively (Table 4.3). These intron variants are downstream of the protein-

coding ANK3 gene, both overlap eight transcripts, and rs2393599 overlaps a regulatory 

enhancer for ANK3 (Yates et al., 2020). rs2393599 has global allele frequencies of 0.88 

(G) and 0.12 (A), and frequencies of 0.81 (G) and 0.19 (A) in African populations, 0.93 

(G) and 0.07 (A) in European populations, 0.95 (G) and 0.05 (A) in Amerindian 

populations, and 0.89 (G) and 0.11 (A) in Bwa Mawego, Dominica (Yates et al., 2020; 

Table 3).  

The ANK3 gene is located at 10q21.2 (Chromosome 10: 60026298-60733490) 

and encodes the Ankyrin-G protein involved in sodium-ion channel function and 

neuronal development and stability (Kordeli et al., 1995; Rasband et al., 1999; Yates et 

al., 2020). Initially identified in nodes of Ranvier, there are multiple known isoforms of 

Ankyrin-G that result from alternative splicing and are expressed differentially in a 

variety of tissues including brain, skeletal muscle, kidney, and heart (Peters et al., 1995; 

Yamankurt et al., 2015). ANK3 has reported associations with bipolar disorder, 

schizophrenia, BMI, height, bone mineral density, blood pressure, and a variety of 

neurological and psychiatric conditions (Cook et al., 2018). ANK3 has a particularly 

robust association with bipolar disorder, and the consistently significant SNPs for this 

phenotype are also in regulatory regions (MacKenzie et al., 2013; Rueckert et al., 2013). 

ANK3 has been identified as an informative marker of early-life stress as a gene whose 

expression and methylation patterns are consistently modified by perinatal stress, 

establishing epigenetic evidence for regulatory importance of ANK3 (Luoni et al., 2016).  

In addition to our SNP-BMI findings, 3 large European studies have detected 

significant associations between BMI and ANK3 variants (Kichaev et al., 2018; Pulit et 
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al., 2019; Zhu et al., 2019), but any functional relationships between ANK3/Ankyrin-G 

and cardiometabolic traits are currently unknown. In addition to the direct association 

between ANK3 and bipolar disorder, there is a well-established phenotypic association 

between bipolar disorder and BMI (McElroy and Keck, 2012; Sicras et al., 2012). SNP 

rs12772424, an intron of the TCF7L2 transcription factor on chromosome 10, has been 

functionally identified as a BMI-dependent mediator of psychiatric risk as well as a 

strong genetic risk variant for type II diabetes (Winham et al., 2014; Cuellar-Barboza et 

al., 2016). These associations suggest that regulatory variants may reveal functional 

pleiotropic relationships between health phenotypes, and additional research is needed to 

further investigate regulation, expression, and epigenetic modification of the ANK3 

region.         

 The smooth and uniform observed p-value trends in our Q-Q plots indicate that 

the mixed association models adequately accommodate covariates for continuous 

phenotypes, but the null expected p-value distribution tracks less well for height and 

weight, perhaps due to the influence of additional un-modeled covariates (Figures 4.1, 

S4.2-S4.9). Unbalanced case-control ratios present computational challenges in this 

mixed association model framework for binary phenotypes, and saddle point 

approximation does not correct for these adequately in our related sample of 159 (Figures 

S4.10-S4.17) (Zhou et al., 2018). More precise, continuous glucose phenotypes are 

needed to investigate genetic components of diabetic outcomes in Bwa Mawego in more 

detail. However, we are able to clearly visualize potential associations for continuous 

traits with this small, localized sample of mixed ancestry when population structure and 

relatedness are accommodated (Figures 4.1-4.2).     
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 As genetic data increasingly inform our understandings of human health, more 

inclusive research is needed in populations of non-European and mixed ancestries (Pulit 

et al., 2010; Petrovski and Goldstein, 2016). We have identified a potential genetic region 

of interest associated with BMI variation in a horticultural Caribbean community that 

may indicate a role of ANK3 regulation in metabolic phenotypes. Regulatory variants are 

increasingly recognized for their functional roles in GWAS, also highlighting the 

importance of characterizing epigenetic variation and other influences on gene expression 

(Gallagher and Chen-Plotkin, 2018). Given the context-specific properties of 

environmental and inter-generational impacts on epigenomic variation (Carja et al., 

2017), there is unique potential to explore complex gene-environment-phenotype 

landscapes in Bwa Mawego with its small-scale community structure and longitudinal 

research engagement (Keith et al., 2019). Admixture mapping analyses in this Caribbean 

population may also yield additional association insights given their increased statistical 

power over traditional GWAS and potential to detect rare variants (Qin et al., 2019).   
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CHAPTER FIVE 

Summary of Key Findings 

 

 The horticultural community of Bwa Mawego, Dominica has unique patterns of 

genomic variation that influence health and biology, and the localized scale of this 

population presents opportunities to elucidate complex interactions between genetic, 

environmental, and phenotypic variation. This three-part project used a combination of 

longitudinal growth, pedigree, genome-wide single nucleotide polymorphism (SNP), and 

cardiometabolic data to assess sources of variation in genomic patterns as well as 

anthropometric and cardiometabolic traits. Population genetic analyses clarify unique 

historical events over the past few centuries in this region of the Caribbean, and we have 

identified significant genetic components of phenotypic variation in Bwa Mawego, most 

specifically for body mass index (BMI). 

 Bayesian analyses of longitudinal growth data from 1997-2017 show that BMI 

varies widely between individual growth curves but is fairly consistent 

(repeatability=0.77) within individuals over time. Secular trends across this 20-year 

timespan do not show consistently increasing (or decreasing) BMI population-wide, and 

pedigree-derived heritability estimates indicate that up to 49% of the observed variation 

in BMI is explained by genetic variance in Bwa Mawego. 

 There is strong genetic structure in this admixed community, and four family-

based clusters indicate that there are several well-defined family lineages in which to 

assess genetic associations. Admixture appears to have been localized between 5-6 

generations (~130-150 years) ago in Bwa Mawego, and minimum estimates calculated in 

reference to the Human Genome Diversity Panel (HGDP) indicate that at least 40% of the 
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community’s genetic ancestry is African, at least 20% is European, and more than 6% of 

the tagged SNP variation in Bwa Mawego correlates with Amerindian populations 

sampled in the HGDP.  

Genomic patterns in Bwa Mawego correlate closely with samples from West 

African, French, and Karitiana/Surui populations. West African and French haplotypes 

reflect the island’s 18th century French (and British) colonial occupation. Dominica has 

significantly more Amerindian ancestry than other Caribbean populations throughout the 

English-speaking Caribbean, in part reflecting its role as a destination for indigenous 

people fleeing colonial violence and seeking refuge in the island’s steep, forested terrain. 

Karitiana and Surui groups are genetically distinct Amerindian peoples with globally-

rare, deeply-diverged lineages shared with some indigenous groups in Australia and 

Oceania, and the affinity of haplotypes in Bwa Mawego to these samples indicates that 

the admixture composition in Dominica uniquely represents diverse global variation. 

 Ancestral genomic structure resulting from recent admixture is a source of 

phenotypic variation for height, weight, diastolic blood pressure, systolic blood pressure, 

and elevated glucose levels in Bwa Mawego. Genome-wide association (GWA) tests 

between 371,835 autosomal SNPs and cardiometabolic phenotypes revealed associations 

between 2 SNPs on chromosome 10 (rs10994198 and rs2393599) and BMI. These SNPs 

are within 1,000 base pairs of one another, downstream of the ANK3 gene, and rs2393599 

overlaps a regulatory enhancer. Any functional relationship between ANK3 and body 

mass remains to be verified and characterized, and known epigenetic evidence shows that 

ANK3 expression associates with stress and associated physiological stress responses 
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early in life, indicating that further exploration of ANK3’s role across genetic-

environmental-phenotypic interactions is warranted.  

 Additional analyses of SNP data from this study could reveal unique signatures of 

selection across the admixed haplotypes sampled in Bwa Mawego to address the impact 

of evolutionary forces on patterns of genomic variation. In the future, assigning local 

ancestry across this SNP dataset will facilitate admixture mapping to further explore 

genotype-phenotype associations, which may uncover additional insights given the 

increased statistical power and potential to detect rare variants. More data is needed to 

capture environmental sources of variation on anthropometric and cardiometabolic 

outcomes in Bwa Mawego. In addition to characterizing more detailed cultural and 

biocultural sources of variation in health outcomes, this would facilitate epigenetic 

analyses of differential gene expression and inter-generational trends in this rural 

Caribbean community.  
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SUPPLEMENTAL MATERIALS 

Figures 

 

Figure S2.1. 11-generation pedigree of Bwa Mawego, Dominica. Lines indicate ancestor-descendant 

relationships. This complete population pedigree includes 1,455 individuals, and dots mark the 662 

individuals who are related to and/or included in the 260 individuals for whom we have longitudinal growth 

data from 1997-2017. 

 

 

 

 
 

Figure 4.1. Scree plot of eigenvalues for 32 Principal Components derived from 31,968 independent SNPs.  
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Figure S4.2. Weight Q-Q Plot of p-values for 371,835 SNPs. Expected p-values are plotted in red with the 

95% confidence interval in gray.    

 

 

 
Figure S4.3. Height Q-Q Plot of p-values for 371,835 SNPs. Expected p-values are plotted in red with the 

95% confidence interval in gray.    
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Figure S4.4. MUAC Q-Q Plot of p-values for 371,835 SNPs. Expected p-values are plotted in red with the 

95% confidence interval in gray.    

 

 

 

Figure S4.5. Triceps Skinfold Q-Q Plot of p-values for 371,835 SNPs. Expected p-values are plotted in red 

with the 95% confidence interval in gray.    
 

 



 

91 
 

 
Figure S4.6. Systolic Blood Pressure Q-Q Plot of p-values for 371,835 SNPs. Expected p-values are plotted 

in red with the 95% confidence interval in gray.    

 

 

 
Figure S4.7. Diastolic Blood Pressure Q-Q Plot of p-values for 371,835 SNPs. Expected p-values are 

plotted in red with the 95% confidence interval in gray. 
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Figure S4.8. Diabetic Q-Q Plot of p-values for 371,835 SNPs. Expected p-values are plotted in red with the 

95% confidence interval in gray.    

 

 

 

 
Figure S4.9. Glucose Test Q-Q Plot of p-values for 371,835 SNPs. Expected p-values are plotted in red 

with the 95% confidence interval in gray.    
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Figure S4.10. Weight Manhattan plot for 371,835 autosomal SNPs. Dashed line marks the p-value 

threshold of 1.34x10-7 (Bonferroni correction at 0.05 significance).   

 

 

 

 
Figure S4.11. Height Manhattan plot for 371,835 autosomal SNPs. Dashed line marks the p-value threshold 

of 1.34x10-7 (Bonferroni correction at 0.05 significance).   
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Figure S4.12. MUAC Manhattan plot for 371,835 autosomal SNPs. Dashed line marks the p-value 

threshold of 1.34x10-7 (Bonferroni correction at 0.05 significance).   

 

 

 

 

 
Figure S4.13. Tricep Skinfold Manhattan plot for 371,835 autosomal SNPs. Dashed line marks the p-value 

threshold of 1.34x10-7 (Bonferroni correction at 0.05 significance).   
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Figure S4.14. Systolic Blood Pressure Manhattan plot for 371,835 autosomal SNPs. Dashed line marks the 

p-value threshold of 1.34x10-7 (Bonferroni correction at 0.05 significance).    

 

 

 

 

 
Figure S4.15. Diastolic Blood Pressure Manhattan plot for 371,835 autosomal SNPs. Dashed line marks the 

p-value threshold of 1.34x10-7 (Bonferroni correction at 0.05 significance).   

 



 

96 
 

 
Figure S4.16. Diabetic Manhattan plot for 371,835 autosomal SNPs. Dashed line marks the p-value 

threshold of 1.34x10-7 (Bonferroni correction at 0.05 significance).   

 

 

 

 

 

 

 

 
Figure S4.17. Glucose Test Manhattan plot for 371,835 autosomal SNPs. Dashed line marks the p-value 

threshold of 1.34x10-7 (Bonferroni correction at 0.05 significance).   
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Tables 

 
Table S2.1. Population-wide pedigree statistics. 

Individuals 1455 Maternal grandmothers 879 

Maternities 1097 Maternal grandfathers 842 

Paternities 1062 Paternal grandmothers 696 

Full sibs 1487 Paternal grandfathers 727 

Maternal sibs 1992 Maximum pedigree depth 11 

Maternal half sibs 505 Founders 328 

Paternal sibs 1733 Non-zero F 114 

Paternal half sibs 246 F > 0.125 1 

Mean pairwise relatedness 0.0085     
Parental, grand-parental, and sibling relationship counts include all relationships among individuals, 

therefore one female may have multiple maternities, sibships, etc. Values of F denote inbreeding 

coefficients. 
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Table S4.1. Fixed effect results from linear and generalized linear mixed models fit with fitNullModel 

in GENESIS. The matrix of pairwise kinship coefficients (GRM) was included as a random effect in all 

models to control for family relatedness. 

FIXED EFFECT COEFFICIENTS 

 

 Beta SE χ2 p-value Beta SE χ2 p-value 

 BMI HEIGHT 

Intercept 22.601 1.283 310.251 1.93E-69 142.859 3.096 2128.792 0.00E+00 

Sex (male) -3.493 1.037 11.338 7.60E-04 10.171 2.511 16.412 5.10E-05 

Age 0.083 0.022 14.307 1.55E-04 0.289 0.053 29.879 4.60E-08 

PC1 -0.640 5.051 0.016 8.99E-01 -35.729 12.207 8.567 3.42E-03 

PC2 -1.748 4.889 0.128 7.21E-01 19.643 11.820 2.762 9.66E-02 

 WEIGHT TRICEP SKINFOLD 

Intercept 49.515 3.974 155.227 1.25E-35 14.909 1.202 153.920 2.41E-35 

Sex (male) -1.221 3.198 0.146 7.03E-01 -8.276 1.003 68.104 1.55E-16 

Age 0.349 0.067 26.932 2.11E-07 -0.002 0.021 0.013 9.09E-01 

PC1 35.543 15.606 5.187 2.28E-02 -2.342 4.831 0.235 6.28E-01 

PC2 15.506 15.094 1.055 3.04E-01 6.557 4.684 1.960 1.62E-01 

 MUAC SYSTOLIC BP 

Intercept 9.168 0.388 557.930 2.37E-123 99.554 4.858 419.982 2.46E-93 

Sex (male) -0.243 0.316 0.593 4.41E-01 5.581 3.549 2.473 1.16E-01 

Age 0.040 0.007 35.449 2.62E-09 0.698 0.081 73.375 1.07E-17 

PC1 -2.474 1.534 2.601 1.07E-01 -26.243 18.997 1.908 1.67E-01 

PC2 1.584 1.486 1.135 2.87E-01 36.142 17.900 4.077 4.35E-02 

 DIASTOLIC BP DIABETIC 

Intercept 65.739 3.006 478.110 5.51E-106 -6.002 1.634 13.493 2.00E-04 

Sex (male) 3.751 2.266 2.740 9.79E-02 -1.307 0.901 2.101 1.47E-01 

Age 0.314 0.052 36.915 1.23E-09 0.060 0.023 6.713 9.60E-03 

PC1 32.668 11.966 7.454 6.33E-03 2.079 5.673 0.134 7.14E-01 

PC2 14.987 11.230 1.781 1.82E-01 6.680 4.999 1.786 1.81E-01 

 GLUCOSE TEST     

Intercept -6.024 2.192 7.551 6.00E-03     

Sex (male) -2.217 1.270 3.047 8.09E-02     

Age 0.063 0.033 3.725 5.36E-02     

PC1 -6.078 7.098 0.733 3.92E-01     

PC2 16.059 8.187 3.848 4.98E-02     
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Table S4.2. Association score test statistics for SNPs with the 5 smallest p-values. freq=minor allele frequency, 

MAC=minor allele count, Score.SE=Score standard error, Score.Stat=Score z-test statistic, Est=effect size estimate per 

copy of minor allele, Est.SE=effect size standard error, PVE=proportion of phenotype variance explained 

 

variant.id chr pos n freq MAC Score Score.SE 
Score
.Stat 

Score. 
pval Est Est.SE PVE 

WEIGHT 

rs11761744 7 153374029 159 0.10 32 1.36 0.26 5.19 2.12E-07 19.74 3.80 0.18 

rs1579730 15 70953639 159 0.23 72 1.77 0.38 4.65 3.26E-06 12.27 2.64 0.14 

rs7607123 2 33416865 159 0.14 43 1.43 0.31 4.63 3.51E-06 15.07 3.25 0.14 

rs10123214 9 122815896 159 0.11 34 1.26 0.28 4.54 5.54E-06 16.43 3.62 0.13 

rs12898513 15 60984546 149 0.14 43 1.28 0.28 4.54 5.64E-06 16.16 3.56 0.13 

HEIGHT 

rs10269661 7 89486165 159 0.13 41 -1.56 0.33 -4.72 2.34E-06 -14.31 3.03 0.15 

rs875727 1 70908055 159 0.24 76 -2.30 0.49 -4.69 2.72E-06 -9.57 2.04 0.14 

rs2997550 9 7446748 159 0.41 130 2.59 0.56 4.65 3.40E-06 8.32 1.79 0.14 

rs13424719 2 10963283 159 0.44 141 -2.60 0.57 -4.59 4.46E-06 -8.09 1.76 0.14 

rs2509814 11 95096350 159 0.12 63 -1.86 0.41 -4.58 4.70E-06 -11.27 2.46 0.14 

MUAC 

rs1579730 15 70953639 159 0.23 72 17.93 3.85 4.66 3.15E-06 1.21 0.26 0.14 

rs11761744 7 153374029 159 0.10 32 11.94 2.66 4.49 7.19E-06 1.69 0.38 0.13 

rs11621381 14 61241678 159 0.20 64 16.11 3.64 4.43 9.61E-06 1.21 0.28 0.13 

rs9371382 6 155653262 155 0.48 149 -18.48 4.24 -4.36 1.31E-05 -1.03 0.24 0.12 

rs7645376 3 188207114 159 0.12 37 11.48 2.67 4.30 1.70E-05 1.61 0.38 0.12 

TRICEP SKINFOLD 

rs10994198 10 60096277 158 0.29 90 6.11 1.33 4.58 4.65E-06 3.43 0.75 0.14 

rs11685957 2 134015266 158 0.15 47 4.63 1.02 4.54 5.63E-06 4.45 0.98 0.14 

rs2393599 10 60097103 158 0.11 35 4.12 0.92 4.48 7.42E-06 4.87 1.09 0.14 

rs2902280 3 176855946 156 0.22 70 4.78 1.07 4.47 7.71E-06 4.19 0.94 0.14 

rs1398548 4 66492500 158 0.11 35 3.79 0.85 4.46 8.10E-06 5.25 1.18 0.14 

SYSTOLIC BLOOD PRESSURE 

rs11968187 6 155857851 134 0.46 124 1.64 0.36 4.57 4.82E-06 12.75 2.79 0.16 

rs9595638 13 47280373 138 0.17 47 1.26 0.28 4.46 8.30E-06 15.73 3.53 0.15 

rs2846690 11 128939032 138 0.30 84 1.55 0.35 4.38 1.19E-05 12.37 2.82 0.14 

rs7861242 9 84300627 138 0.20 55 -1.28 0.29 -4.35 1.36E-05 -14.82 3.41 0.14 

rs13379337 14 34755224 138 0.32 88 -1.56 0.36 -4.32 1.54E-05 -12.00 2.78 0.14 

DIASTOLIC BLOOD PRESSURE 

rs17153801 7 77466146 137 0.23 63 -2.57 0.52 -4.92 8.88E-07 -9.42 1.92 0.18 

rs232405 21 21437359 138 0.21 58 2.23 0.47 4.75 2.05E-06 10.10 2.13 0.17 

rs1842840 3 157010268 138 0.42 116 2.73 0.58 4.72 2.41E-06 8.13 1.73 0.17 

rs3811259 14 22312080 137 0.22 59 -2.28 0.49 -4.61 4.13E-06 -9.32 2.02 0.16 

rs4836864 9 116818456 138 0.26 72 2.68 0.58 4.59 4.34E-06 7.89 1.72 0.16 

DIABETIC 

rs17170837 7 37017687 159 0.13 42 4.89 1.06 4.59 4.24E-05 4.31 0.94 0.46 

rs4822763 22 26664677 159 0.15 47 4.84 1.17 4.14 1.20E-04 3.53 0.85 0.37 

rs2636870 9 114339766 159 0.27 86 6.36 1.59 4.00 1.59E-04 2.52 0.63 0.35 

rs12429891 13 43062428 159 0.12 38 4.64 1.18 3.95 1.59E-04 3.36 0.85 0.34 

rs7117475 11 11485544 156 0.12 36 4.41 1.05 4.21 1.71E-04 4.02 0.95 0.39 

GLUCOSE TEST 

rs8023607 15 61829409 103 0.07 14 3.06 0.70 4.35 9.19E-05 6.21 1.43 0.62 

rs10845474 12 12085383 103 0.18 36 5.68 1.39 4.09 9.60E-05 2.95 0.72 0.55 

rs3823311 6 151444161 103 0.13 26 3.61 0.98 3.67 1.41E-04 3.73 1.02 0.44 

rs12257289 10 16228813 102 0.13 27 4.50 1.13 3.99 1.81E-04 3.53 0.89 0.52 

rs12526978 6 109987833 103 0.09 19 3.48 0.98 3.54 2.26E-04 3.59 1.02 0.41 
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