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Bound on the group velocity of an electron in a one-dimensional periodic potential
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By using a recently derived upper bound on the allowed equilibrium current in a ring, it is proved that
the magnitude of the group velocity of a Bloch electron in a one-dimensional periodic potential is always
less than or equal to the group velocity of the same Bloch state in an empty lattice. Our inequality also
implies that each energy band in a one-dimensional crystal always lies below the corresponding free-
electron band, when the minima of those bands are aligned.

In a recent study,1 one of us has shown that the equi-
librium orbital current I flowing through a cross section
of a toroidal body cannot exceed the fundamental limit
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where N is the total number of electrons, m is the free-
electron mass, e is the magnitude of the electron charge,
and
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is the average inverse-square distance of the electrons
from an axis threading the ring. This result is valid for
general interacting electron systems in the presence of
static but otherwise arbitrary electric and magnetic
fields.? In particular, it is valid for noninteracting elec-
trons in a periodic potential, and we shall show that this
fact leads to an unexpected—and hitherto unnoticed —
constraint on the band structure of a one-dimensional
crystal. Specifically, we shall prove here that the magni-
tude of the velocity of a Bloch electron in the nth band of
a one-dimensional periodic potential is always less than
or equal to the velocity of the same Bloch state in an
empty lattice approximation.®> Our inequality also im-
plies that each energy band in a one-dimensional crystal
lies below the corresponding free-electron band, when the
minima of those bands are aligned.

Let E, (k) be the Bloch energy levels of an electron in a
one-dimensional periodic potential of period a, where k is
the crystal momentum. We shall label the energy bands
according to n =0,1,2, ..., with Eo(k)<E,(k)<E,(k)
=< -+, so that n bands are completely filled when the
Fermi energy is in band n. The group velocity of an elec-
tron in band n is defined as
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which is also equal to the expectation value of the veloci-
ty operator p/m in the Bloch state ¢,;. Reality of the
Hamiltonian implies E,(k)=E,(—k) and v,(k)
=—v,(—k). The existence of at most two linearly in-
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dependent solutions of the Schrodinger equation at a
given energy implies that the bands cannot overlap (how-
ever, they may touch, either at kK =0 or at k =w/a, as
happens in the free-electron limit). For convenience we
shall define k, to be the crystal momentum at the
minimum of energy band n,
0, n even
k=1 4)

n

, n odd.
a

For a band structure with nonvanishing band gaps (that
is, with energy bands that do not touch), the velocity
clearly vanishes at k,,.

An upper bound on the magnitude of the group veloci-
ty may be obtained from the inequality I <1, as fol-
lows. Let us imagine that our one-dimensional crystal is
folded into a ring of circumference L having L /a unit
cells. A magnetic flux ¢ is now threaded through the
center of the ring. This flux induces an equilibrium per-
sistent current* I (¢), which is a periodic function of flux
with period ¢o=hc /e. It is easy to verify that only the
partially occupied band—the conduction band n—
contributes to the persistent current, and that the magni-
tude of the maximum persistent current is equal to
gevp /L, where vp=|v,(kg)| is the magnitude of the Fer-
mi velocity, and g =2 is a spin-degeneracy factor. The
band index n of the partially occupied band, and the Fer-
mi wave number kp, may be varied to assume any desired
value, by changing the number of electrons. Now, ac-
cording to the inequality derived in Ref. 1,
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Because there are n completely filled bands and one par-
tially filled band, the total number of electrons is
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where we have assumed that 0 <k <w/a. Substituting
this expression into (1), and using L =277, leads to our
principal result
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valid for (7 /a) <k <(m/a).

To understand the inequality (7), we shall recall the
“band structure’” of free electrons, also known as the
empty-lattice approximation. The energy bands in the
empty lattice are given by>
2
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where —(7/a) <k <(m/a). The magnitude of the group
velocity, v0(k), in the empty lattice is equal to
9
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Therefore, our inequality (7) says that the magnitude of
the velocity of a Bloch electron in one dimension is less
than or equal to the magnitude of the velocity of the
same state in the empty-lattice approximation,

lv, (k)| < w2(k)] . (10)

Integrating the inequality (7) with respect to k leads to
a bound on the energy bands themselves,

E,(k)—E,(k,)<EXk)—EQXk,) . (11)

Therefore, each energy band must lie below the corre-
sponding free-electron band when the minima of those
bands are aligned. In particular, the actual bandwidths
W, are bounded by the free-electron bandwidths
2 2
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As a final comment, we note that it is possible to prove
inequality (7) directly. We start with the well-known
identity
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are the usual oscillator strengths. Here
PunK)={ @ |pl@, ) are matrix elements of the

momentum operator between Bloch states with the same
crystal momentum. The oscillator strengths have the
properties f,,(k)=0 for n'>n, and f,, (k)= — f,., (k).
Note that
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for any band n. Also note that
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because the contribution from terms with n'’ <n van-
ishes, leaving only positive-definite oscillator strengths.
This inequality implies that
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Next, we integrate (13) from O to k =0 and use inequality
(18) to obtain
n—1
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According to (17), the integrand on the right-hand side of
(19) is positive definite, so
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or, upon using (16),
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valid for 0<k <m/a. The upper bound (21) is valid for
any band n, but it is not useful for odd n, which has nega-
tive velocities for 0 <k <m/a. However, we may also ob-
tain a lower bound on the velocity by integrating (13)
from k to 7 /a and using (18), which leads to
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For odd n and 0 < k < /a, this is equivalent to
1 |9E, | _ 1 7
7 | ak |= (n +l)a k (23)

The inequalities (21) and (23) together prove our upper
bound (7) directly.

This work was supported by the National Science
Foundation through Grant Nos. DMR-9100988 and
PHY89-04035. We thank Qian Niu for a useful discus-
sion.

*Permanent address.

1G. Vignale, preceding paper, Phys. Rev. B 51, 2612 (1995).

2We note here that (1) is modified by current-current interac-
tions, an order v?/c? relativistic effect of the magnetic field
produced at a point r by a moving electron at r’.

3The reduced-zone-scheme energy bands in the empty lattice

approximation are obtained by folding the free-electron
dispersion relation into the first Brillouin zone of the actual
crystal.

4M. Biittiker, Y. Imry, and R. Landauer, Phys. Lett. 96A, 365
(1983).



