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We present a study of ground-state energies and densities of quantum dots in a magnetic field, which takes
into account correlation effects through the current-density-functional theory. The method is first tested against
exact results for the energy and density of two- and three-electron quantum dots, and it is found to yield an
accuracy better than 3%. Then we extend the study to larger dots and compare the results with available
experimental data. The orbital and spin angular momenta of the ground state, and the evolution of the density
profile as a function of the magnetic field are calculated. Quantitative evidence of edge reconstruction at high

magnetic field is presented.

Recent progress in nanofabrication techniques has al-
lowed the realization of microstructures in which electrons in
a two-dimensional electron gas are confined to an approxi-
mately circular region, of radius varying from several hun-
dreds to several thousand angstroms. At the densities charac-
teristic of these quantum dots (n~10''-10'2 cm™?), as a
consequence of the material that hosts the system, a mag-
netic field B of the order of few tesla is already “‘strong,”
i.e., it has a magnetic length A = \Zic/eB of the order of the
interelectron distance. For this reason, particular attention
has been devoted to the evolution of the ground-state prop-
erties as function of an applied magnetic field. Experiments
using conductance! and single-electron capacitance? spec-
troscopy have led to the measurement of the electronic spec-
trum of the dot, and of its addition energy, namely, the en-
ergy necessary to add one electron to the system, as a
function of the magnetic field. The occurrence of frequent
cusps in these functions has been interpreted in terms of
crossings between energy levels characterized by different
values of spin and orbital angular momentum. In the strong
magnetic-field regime, interesting effects, such as “magic”
angular momentum quantum numbers, formation of Wigner
molecules, and edge reconstruction, have been theoretically
predicted.>*

From the standpoint of the theory, the main obstacle to the
determination of the energy level structure of quantum dots
is the strong electron-electron interaction—the noninteract-
ing problem being exactly solvable, at least in the approxi-
mation of parabolic confinement.” Exact diagonalization
studies have been carried out for dots with a small number of
electrons®® (N<8), and have yielded a very rich scenario.
In the case of larger systems, one has to resort to some ap-
proximations in order to carry on the calculations. Approxi-
mation schemes such as the constant interaction modq:l,]0
self-consistent Thomas-Fermi method,"! the Hartree-
Fock,*'? or other mean-field approximations,'* all have the
common feature of not including correlation effects. The im-
portance of the latter is all but negligible when the number of
electrons in the dot is less than a few hundred. For the un-
polarized two-electron case, correlation effects make up to
~10% of the energy,” which is quite a sizable quantity. At
the same time the corresponding Hartree-Fock density profile
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is incorrect. Moreover, the magnetic-field values at which
changes in the quantum numbers occur are influenced by
correlation effects. All the above are compelling reasons for
including correlations in any model that wants to describe
quantitatively the properties of quantum dots.

A full fledged many-body approach appears to be prohibi-
tively difficult at present, for dots containing more than a few
electrons. On the other hand, density-functional theory14
(DFT) is known to have been successfully applied to many
atomic and molecular systems, and it provides—via the
local-density approximation (LDA)—a simple method to ap-
proximately include electronic correlations. In the present
paper, we employ the generalization of DFT known as
current-density-functional theory (CDFT),’> which is appro-
priate to deal with systems in the presence of a magnetic
field. We emphasize that this theory had never been previ-
ously tested against exact results. Quantum dots with only
few electrons have enabled us to conduct such a test.

The CDFT scheme for electronic systems in a magnetic
field has been reviewed extensively.!> Here we limit our-
selves to the essentials of the formulation for quantum dots.
We consider circularly symmetric dots, and assume a para-
bolic confining potential V(r)=%mw3r2 of frequency wg,
with m the effective electron mass. The vector potential cor-
responding to the uniform magnetic field in the symmetric
gauge is A(r)=B/2(—y,x,0). The ground-state energy E,
the density n(r), and the paramagnetic current density
Jp(r) are all expressed in terms of a set of Kohn-Sham orbit-
als

l/’jla(r)ze_”o¢jltr(r)y (1)

which are eigenstates of the z component of the angular mo-
mentum —/, and satisfy the Kohn-Sham equation

B2 10 1?2\ ehl mQ? ehl Ay,
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o being the z component of the spin and ug=e#/2mc the
effective Bohr magneton. The renormalized frequency
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FIG. 1. (a) Ground-state energy for the two-
electron quantum dot, for S,=0 and 1. The tran-
sition from (M,,2S,)=(0,0) to (M,,25,)=(2,0)
is marked by an arrow. In the inset the density
profiles for the two spin configurations are plot-
ted and compared with the exact and Hartree-
Fock (HF) (Ref. 7) results. (b) Ground-state en-
ergy per electron for S =% and ; in a three-

ol 1 . N electron quantum dot. The transition points from
0 1 2 8 4 5 6  orbital angular momentum M, to M, are indi-
B[T] .
cated as M,;—M,,. Parameters appropriate for
GaAs have been chosen, i.e., m=0.067m,, with
58 (b) \ Ref. (8) S=3/2 m, electron mass, k=12.4, which give a Bohr
\ R ng'(rs) ij‘;‘g radius ag~98 A, wy=3.37 meV. The Zeeman
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Q=i+ wc7/4, where w,. is the cyclotron frequency. Ex-
plicit expressions for the relevant quantities are

NU
na<r>={121} | bisolr)]? 3)
for the spin density (o={T1,[}),
Jp(r)=jp(r)ée=— —2 I biro(r)|?ey @)

mriiig}

for the paramagnetic current density, with €, the azimuthal
unit vector,

n(r)n(r’)
E= Ee,,a ZkJJd dr'———— I

—E Jdrn,,(r)Vm,(r)— ;I dr j,(r)-Ay(r)

+En,¢77] ©)

for the energy. In all cases the summation is extended to the
N lowest eigenvalues, where N is the number of electrons
(N=N;+N). The Kohn-Sham equation includes the self-
consistent Hartree potential

o2
Vy(r)=2m ;—j dr'r'n(r')/|r—r'|,

(6)
the exchange-correlation potential
OEy[n, £, 7] .]p(r)
Vi B)=— — —Ay 7
C(T( ) 5"0-(1') ”_U,W ( ) ( ) ( )
and the exchange-correlation vector potential
e e mc J[OE,[n, &7 ]
zAxc—'EAxceH_ en(r) —67( 7 ] § (8)

These last two quantities are formally defined as functional
derivatives of the exchange-correlation energy functional
E,—a functional of the density n, the spin polarization
&= (”T_”l)/(”T“"”i)’ and the vorticity Z(r)=Z1r)e,
=— mc/erd[rj,(r)/n(r))/dr &,. The exchange-correlation
energy has been calculated in the LDA
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FIG. 2. (a) Magnetic-field dependence of the ground-state en- e
ergy for the nine-electron dot. (b) Same for the ten-electron dot. The 0.15 B=55T 0.15
quantum numbers (M,,2S,), of the ground states for the nine and (51,10)
ten electrons are shown, and they refer to the regions of magnetic = o1 = 01
field between two successive arrows. (c) Magnetic-field dependence RS @
of the addition energy for the nine-electron dot. The triangles rep- g z
resent the experimental points (Ref. 2), and the dashed line is a 0.05 0.05 \
guide to the eye. A g factor of g= —0.44, and wy=3.31 meV have “
been assumed. 0 0 L I h
0 8 0 2 4 6 8
r [ag] rlag]

Exc=J drn(r)en(r),&(r), Z(r)], )

where €, is the exchange-correlation energy density of the
uniform two-dimensional electron gas in an effective mag-
netic field Z7(r) which, in the LDA is taken to be approxi-
mately equal to the external magnetic field B. Following Ra-
solt and Perrot'® we have chosen

61, & Z1= (6, n,v]+ vt encn, £)/(1+ %),
(10)

where v=2m\2n is the filling factor. The expression con-
nects the fitted form of Levesque, Weis, and MacDonald'’
€YM[ n,v], which is valid for small filling factor (or large
magnetic field), to the form given by Tanatar and Ceperley'®
eIf[n,f] for zero magnetic field. Different Padé polynomials
that reproduce the known limiting cases do not change ap-
preciably the general behavior in the regions where they con-
tribute to the energy. It must be underlined that, in contrast to
previous approaches, the present method does not use a trun-
cated basis set of Landau or Fock-Darwin orbitals as a basis
in which to expand the solution of the Kohn-Sham equation.
For this reason, our approach is completely unbiased with
respect to the strength of the magnetic field and should work
equally well, a priori, for weak and strong magnetic fields.
The accuracy of our method has been tested in the two-
and three-electron cases, where exact results are available.
This is a very severe test for any uniform electron-gas-based
energy functional. Our results are summarized in Fig. 1. For
two electrons, we plot the ground-state energies of the S=0
and 1 symmetry states versus the magnetic field. It is seen
that the deviation from the exact energy is contained to

FIG. 3. Evolution of the density profile with the magnetic field
for the ten-electron quantum dot of Fig. 2. The classical distribution
(Ref. 13) is given by the dashed line, while the density correspond-
ing to filling factor v=1=1/2m\? is represented by the horizontal
line. The quantum numbers (M,,2S,) are also shown.

=3%. A remarkable improvement is achieved in the S=0
case upon the Hartree-Fock calculation,” which gives an er-
ror of ~10%. Another satisfying feature is that the orbital
angular momentum—which is known to increase in steps
with increasing magnetic field—is correctly obtained, apart
from a slight difference in the value of the magnetic field at
which the discontinuities occur. Excellent agreement is also
obtained in the ground-state density distributions for each
spin symmetry state [see inset of Fig. 1(a)], which again
shows considerable improvement upon the Hartree-Fock re-
sult for the singlet. With increasing magnetic field, the den-
sity distribution moves inward and becomes more localized
about the origin, as long as the angular momentum remains
zero. This leads to an increase in electrostatic energy which
is suddenly released when the angular momentum jumps to a
finite value, and the density peak moves outward to a finite
radius. This pattern is repeated every time that the orbital
angular momentum increases. The inward displacement of
the density at constant angular momentum is followed by a
sudden outward expansion when the angular momentum in-
creases.

In the three-electron case,s we have plotted in Fig. 1(b)
the ground-state energies per particle of the S=3 and }
ground states. An energy of £} per particle has been sub-
tracted in order to show more clearly the rich structure of the
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ground-state energy, featuring several changes in orbital an-
gular momentum. Even for this small part of the total energy,
CDFT is able to correctly reproduce the exact behavior, with
an error that even in the worst situation is below ~5%,
being much lower in general. As in the two-electron case, we
note a loss of accuracy for very high magnetic field, due to
the increase in the number of quasidegenerate Kohn-Sham
orbitals. We also notice that the exchange-correlation vector
potential A, gives a very small contribution to the energy.
The above results provide convincing evidence that CDFT
is a powerful tool to predict qualitatively—and quantita-
tively, within an accuracy of few percent—the evolution of
the ground-state properties of quantum dots with magnetic
field. We next apply it to the calculation of quantum dots
with a larger number of electrons. Figure 2 shows the
ground-state energies and orbital symmetries of nine- and
ten-electron quantum dots, as well as the addition energy for
the nine-electron system. A comparison of the results with
the experimental data® is shown in the lowest panel of Fig. 2.
Following Hawrylak'® we have assumed a dependence of the
effective confining potential wy on the number of electrons
N in the dot, of the form wy= w3+ e*N/mkd>, where d is
the distance of the positive charge background from the
plane of the dot, and w, is the “empty dot” confining fre-
quency. A vertical rigid shift of the theoretical curve has also
been performed on the basis that there is a constant term for
the energy at a fixed number of electrons in the dot, depend-
ing on the geometry of the environment in which the system
is created and on the probe that measures the addition ener-
gies. Although the patterns of cusps in the theoretical and
experimental curves appear to be very different, we suggest
that the discrepancy may be attributed, in large part, to a
systematic underestimation of the values of the magnetic
field at which the quantum number transitions occur. In other
words, a rigid shift of the theoretical curve to higher mag-
netic field would considerably improve the agreement with
experiment. In general, however, the observed difference
suggests that the conventional model of a confinement essen-
tially independent on N and B may not be an adequate rep-
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resentation of reality, at the level of accuracy considered
here.

As a final point of interest, we have studied the evolution
of the density profile as a function of magnetic field, and
some results for the ten-electron dot are presented in Fig. 3.
According to the classical electrostatic analysis,'> the distri-
bution should look like the dome shown in Fig. 3, which is
magnetic-field independent, with small corrections induced
by the quantized kinetic energy. While at low values of the
magnetic field the electrostatic behavior is reasonably repro-
duced, apart from oscillations, with increasing magnetic field
significant changes take place, reflecting the different values
of quantum numbers. At B=3.9 T the ten-electron dot be-
comes fully spin polarized, and its orbital angular momen-
tum M ,=45 corresponds to the “maximum density droplet,”
i.e., all the orbitals with /[=0,1,...,9 are occupied by a
spin-up electron.?’ As the magnetic field is further increased,
some electrons are promoted to orbitals with />9 leaving
some of the orbitals with /<<9 empty. In terms of the density
profile, this effect appears as an edge reconstruction, similar
to the one discussed in Ref. 4, whereby the charge density
first decreases and then increases in the edge region, before
falling to zero. The physical reason is that the exchange-
correlation energy favors a higher density in the edge region,
while the electrostatic energy, of course, opposes it. The pre-
cise size and shape of the edge is determined by the compe-
tition of these two energies. As can be seen, this phenomenon
is not restricted to large dots, but occurs even in small sys-
tems. More details on this problem will be published else-
where.
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