

GUI FOR DEBUGGING AND DEVELOPMENT OF
RECONFIGURABLE, EVOLVING SYSTEMS ENABLED

BY EMBEDDED HARDWARE BLOCKS

A Thesis

presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

KITTISAK SAJJAPONGSE

Dr. Tina Smilkstein, Advisor

MAY 2010

The undersigned, appointed by the Dean of the Graduate School, have examined the

thesis entitled

GUI FOR DEBUGGING AND DEVELOPMENT OF
RECONFIGURABLE, EVOLVING SYSTEMS ENABLED

BY EMBEDDED HARDWARE BLOCKS

presented by Kittisak Sajjapongse

a candidate for the degree of

Master of Science

and hereby certify that in their opinion it is worthy of acceptance.

Dr. Tina Smilkstein, Assistant Professor, Department of Electrical and Computer

Engineering

Dr. James M. Keller, Professor, Department of Electrical and Computer Engineering

Dr. Yunxin Zhao, Professor, Department of Computer Science

 ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Tina Smilkstein for her assistance and guidance through

out my research. I would also like to thank Dr. James Keller and Dr. Yunxin Zhao for

therir valuable suggestions and for serving on my committee.

I wish to thank my research mates, Kiran Kumar Tati and Parashar Barve, for

their comments, help preparing this paper and friendship.

I would especially thank to my parents, Dr. Adisak Sajjapongse and Tommarat

Sajjapongse, and my elder sisters, Nok Jurairat Sajjapongse and Mam Naovarat

Sajjapongse, for their love, care and support.

I am in deep gratitude and admiration to Parn Sasiwimon Yoo-eam who has

always kept me optimistic and stayed beside me all the time.

I take this opportunity to thank my friends, Rocky Surachat Pumipuntu, Frank

Surachai Pumipuntu, Prite Chaowalit Thamsonglar, Ju Kanchana Songkittiphong and all

my friends who stood by my side for their suggestions and friendship.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

LIST OF TABLES .. viii

LIST OF FIGURES ... x

ABSTRACT .. xiv

CHAPTER

1. INTRODUCTION ... 1

1.1. Introduction ... 1

1.2. Review of Evolutionary Computation .. 3

1.2.1. Chromosome and Gene Representation ... 4

1.2.2. Reproduction .. 6

1.2.2.1. Crossover .. 6

1.2.2.2. Mutation .. 7

1.2.3. Selection ... 8

1.2.4. Evaluation .. 10

1.2.5. Termination Criteria... 10

1.2.6. The General flow for algorithm ... 12

1.3. Evolutionary Computation on Hardware .. 13

1.3.1. Implementation Problems .. 13

1.3.2. Debugging Problems .. 16

1.3.3. Hardware Platforms ... 17

 iv

1.4. Report organization ... 22

2. REVIEW OF THE EVOLUTIONARY HARDWARE TESTBED (GPEAT) .. 23

2.1. Introduction ... 23

2.2. GPEAT User Interface and Parameters mapping ... 25

2.3. Structures for the hardware framework .. 27

2.3.1. Initial Population Generation blocks ... 28

2.3.2. Crossover and Mutation Control blocks .. 29

2.3.3. Central Control blocks ... 30

2.3.4. Output Control blocks .. 31

2.3.5. Fitness Function blocks.. 32

2.3.6. Sensors blocks .. 33

2.4. Debugging GPEAT system ... 33

3. GRAPHICAL USER INTERFACE DESIGN ... 36

3.1. Parameters Entry GUI ... 36

3.1.1. Workspace .. 37

3.1.1.1. Creating/Loading/Saving Project .. 38

3.1.1.2. Creating/Loading/Saving Source .. 38

3.1.2. System .. 38

3.1.3. Input (Sensors) .. 42

3.1.4. Default Output ... 43

3.1.5. Initial Population .. 44

3.1.6. Fitness Rules .. 47

3.1.7. Debugger .. 49

 v

3.1.8. Generating GPEAT core .. 50

3.2.Binary Data File Encoder (.dat Encoder) .. 51

4. DEBUGGING HARDWARE FOR EVOLUTIONARY HARDWARE TESTBED

.. 53

4.1. Introduction ... 53

4.2.Essentials for Debugging Interface .. 54

4.3. The RS-232 Connection .. 54

4.3.1. RS-232 Connector .. 56

4.3.2. RS-232 Protocol ... 57

4.3.3. USB-to-RS232 Converter .. 59

4.4.Hardware Architecture ... 60

4.4.1. Overall Hardware Design .. 61

4.4.2. The Debugger Controller (DC) ... 64

4.4.3. Memory (RAM) .. 68

4.4.4. The TX Controller (TXC) ... 73

4.4.5. The TX Interface (TXI) .. 76

4.4.6. The RX Controller (RXC) .. 79

4.4.7. The RX Interface (RXI) .. 81

4.5.Interaction between Debugging Hardware and Debugging GUI 84

4.5.1. Identification Package .. 86

4.5.2. GPEAT System Information Package ... 87

4.5.3. Chromosome Package .. 87

5. DEBUGGING GRAPHICAL USER INTERFACE .. 88

 vi

5.1. Introduction ... 88

5.2. Debugging Graphical User Interface (DGUI) .. 88

5.2.1. Workspace .. 88

5.2.1.1. Loading debugging data .. 89

5.2.1.2. Saving debugging data .. 90

5.2.2. Working with GPEAT hardware ... 90

5.2.2.1. Connecting to GPEAT hardware .. 90

5.2.2.2. Obtaining data from hardware .. 92

5.2.3. Evolutionary Progress Graph ... 94

5.2.4. Browser .. 95

5.2.5. Population Dump ... 97

6. SIMULATION AND DATA ... 99

6.1. Hardware simulation ... 99

6.1.1. The Debugger Controller ... 99

6.1.2. The TX Controller (TXC) ... 103

6.1.3. The TX Interface (TXI) .. 106

6.1.4. The RX Controller (RXC) .. 107

6.1.5. The RX Interface (RXI) .. 109

6.2.Hardware usage .. 111

7. CONCLUSION AND FUTURE WORK .. 118

7.1.Conclusion ... 118

7.2.Future work .. 119

8. REFERENCE ... 123

 vii

9. APPENDIX .. 126

10. SOURCE CODE .. Media Folder

 viii

LIST OF TABLES

Table Page

1.1 SPLD Characteristic ... 18

1.2 CPLD Characteristic .. 19

1.3 FPGA Characteristic .. 19

1.4 Design analysis table .. 21

3.1 System Parameter descriptions .. 40

3.2 System Parameters ... 41

3.3 Input parameters description .. 42

3.4 Parameters for sensor ... 43

4.1 Signal-Pin mapping in RS-232 connection .. 56

4.2 Parameters for RS-232 protocol ... 58

4.3 Command recognized by the DC ... 66

4.4 Parameters for RS-232 protocol in TXI ... 76

4.5 Parameters for RS-232 protocol in RXI ... 81

4.6 Commands recognized by Debugging Hardware .. 85

6.1 Simulation Setup for Debugger Controller (DC) ... 100

 ix

6.2 Simulation Setup for TX Controller (TXC) ... 104

6.3 Simulation Setup for TX Interface (TXI) .. 106

6.4 Simulation Setup for RX Controller (RXC) .. 108

6.5 Simulation Setup for RX Interface (RXI) .. 109

6.6 Basic Macros recognized ... 112

6.7 Design summary for debugging hardware .. 116

 x

LIST OF FIGURES

Figures Page

1.1 An example of Search space ... 4

1.2 An example of Search space ... 5

1.3 A Roulette-wheel selection ... 9

1.4 The general flow for EC ... 12

2.1 Simplified EC hardware flow ... 24

2.2 GPEAT configuration flow ... 26

2.3 Hardware Block Diagram ... 28

2.4 Debugging connection diagram .. 35

3.1 Workspace... 37

3.2 System parameters window .. 39

3.3 Default output examples for two types of gene .. 44

3.4 An example of initial population for binary type of gene 45

3.5 An example of initial population for integer type of gene 46

3.6 The Fitness Rules window .. 47

3.7 The window for specifying name for a rule .. 49

 xi

3.8 Debugger window ... 50

3.9 Workspace containing VHDL codes generated .. 51

3.10 GPEAT binary file encoder ... 52

4.1 Communication topology .. 55

4.2 Front view of DB9 connector ... 56

4.3 Null-Modem cable wiring ... 57

4.4 Timing diagram for a frame transferred in RS-232 connection 58

4.5 A USB-to-RS232 converter .. 59

4.6 Hierarchical diagram for modules .. 61

4.7 Overall architecture for debugging hardware ... 62

4.8 The ASM chart for the DC unit .. 65

4.9 Data mapped in the RAM module .. 68

4.10 RAM architecture for the DC .. 69

4.11 The ASM chart for sub-state in state ‘FETCH_DATA’ of the DC 72

4.12 The ASM charts for TXC in mode-0 and mode-1 ... 74

4.13 The ASM chart for TXI ... 78

4.14 The ASM charts for RXC .. 80

 xii

4.15 The ASM charts for BRG (left) and RXI (right) ... 83

4.16 Structure of EOP .. 85

4.17 Identification Package .. 86

4.18 GPEAT System Information Package ... 87

5.1 DGUI workspace .. 89

5.2 RS-232 Setup .. 91

5.3 A dialog showing hardware signature and version ... 92

5.4 A window showing GPEAT parameters ... 92

5.5 Interfacing windows in a workspace ... 94

5.6 Evolutionary Progress Graph .. 95

5.7 A Browser window ... 96

5.8 Population Dump window .. 97

5.9 Export to SpreadSheet dialog .. 98

6.1 Timing diagram for response of 0x69 command .. 102

6.2 Timing diagram for response of 0x73 command .. 102

6.3 Timing diagram for response of 0x72 command .. 103

6.4 Timing diagram for TXC mode-0 ... 105

 xiii

6.5 Timing diagram for TXC mode-1 ... 105

6.6 Timing diagram for TXI ... 107

6.7 Timing diagram for RXC .. 108

6.8 Timing diagram for RXI ... 110

6.9 FPGA slices used for debugging hardware implementation 115

 xiv

GENERAL PURPOSE EVOLUTIONARY ALGORITHM
TESTBED

Kittisak Sajjapongse

Dr. Tina Smilkstein, Advisor

 ABSTRACT

A flexible hardware testbed for Evolutionary Computation is developed in our

research. The purpose is to realize a system with an ability to implement a wide variety of

Evolutionary Computation applications. In this literature, General Purpose Evolutionary

Algorithm Testbed (GPEAT) is described. GPEAT provides a flexible substrate for

Evolutionary Computation applications on hardware platform using reconfigurable

device such as FPGA. GPEAT consists of GPEAT core, debugging hardware,

configuring GUI (Parameter-entry GUI) and debugging GUI. Parameter-entry GUI

enables users to construct an Evolutionary Computation system on hardware with

minimal knowledge on hardware designing. The GPEAT core obtains system parameters

through the GUI and operates accordingly as users specify to find appropriate solutions

from search space. Debugging interface is also provided through debugging hardware and

debugging GUI to assist users in evaluating implemented system.

GPEAT provides users friendly environment to instantiate and debug

Evolutionary Computation application on hardware. VHDL code is generated according

to the system description parameters by the GUI. The design, then, be programmed into

reconfigurable device. Xilinx ISE and ModelSim XE-III (MXE-III) simulator are used as

tools for implementing the GPEAT system on Xilinx® Spartan 3E™ starter kit.

 xv

Chromosomes, fitness values and other information of the implemented system is pulled

out from the device through debugging hardware, which is attached to the GPEAT core,

and is visualized by debugging GUI. With this system we tried to decrease the barrier of

evolutionary algorithm designers to implement their designs in hardware and allow for

easier debugging, revision and research on evolutionary hardware systems.

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Evolutionary Computation (EC) is a method for finding a set of appropriate

solutions to optimization problems. It is a heuristic search process which imitates the

process of gradual development found in natural habitats. Living organisms evolve

through the interaction of competition, selection, reproduction and mutation processes.

EC has been used to solve many kinds of real world problems. It provides efficient search

and optimization tools for very large dataset and does not require mathematical modeling.

The effectiveness of ECs include their high suitability for parallel computer

implementation, particular success in large search and optimization problems and an their

ability to learn complex relationships in incomplete datasets [1]. Mathematicians and

computer scientists have been exploring the possibilities of ECs for many years [2-4].

Running ECs on software have a number of disadvantages over running them on

hardware. These include slower execution speed when emulated by software on a

conventional computer and the need to build a dedicated platform for mobile device or

embedded system which may not be able to provide sufficient mobility or memory to

execute programs that require a large dataset. Also, for mathematicians and computer

 2

scientists, the idea of moving EC into hardware may be too much of a challenge due to

the required need of hardware knowledge. Implementing an EC system on hardware

seems to be painful since each building block in the system must be customized for one

set of parameters in a particular optimization problem. Changing parameters could mean

changing the hardware structure of a building block which requires many design

considerations including debugging the hardware block, design time and how it interfaces

with other blocks. Once the hardware is built, debugging and performance analysis tools

are needed. Each time a new system is built a new way to debug and evaluate must also

be developed. To enable mathematicians and scientists who need to yield the benefits of

hardware parallelism, we have designed a reconfigurable EC testbed (General Purpose

Evolutionary Algorithm Testbed, GPEAT) to provide an easy platform to design and

debug hardware EC systems.

 GPEAT is a hardware framework generalized for EC application. Common

hardware structures for EC are used to enable efficient execution. Field-Programmable-

Gate-Array (FPGA) is used as a substrate for these hardware structures. In the design of

GPEAT, not only was design effort put into the development of hardware structures,

much effort was also put into making the user interface specific to the development of EC

systems. GPEAT can be reconfigured and debugged through Graphical-User-Interface

(GUI) provided as a configuring and debugging tool. In this way we developed GPEAT

which can be used to design and run a wide variety of EC application as well as allowing

a person with minimal hardware knowledge to design EC systems in hardware.

 3

 1.2 Review of Evolutionary Computation

Evolutionary Computations are search techniques that are biologically inspired.

The techniques search for qualified solutions, or candidates, in a search space for

particular problems. The search space is an abstract surface which can have as many

dimensions as required by the problem. EC search for a region or a point in the search

space in which local-minima (-maxima) or global-minima (-maxima) is located. A set of

candidates, namely a population, represents a specific region of the search space. Fitness

value is introduced to evaluate and categorize candidates and used to represent attribute

for a point in the search space. Fitness value can be calculated by a function which is

defined by the problem to be solved or optimized. Each candidate can be represented in a

bio-inspired form called chromosome; and each chromosome consists of a number of

genes.

An example of search space is shown in Figure 1.1, the entire search space for 2-

dimension (2-gene) problem is presented with many local-minima (-maxima) and one

global-maxima. A population can represents any specific region of the surface; and if the

population is large enough, it virtually represents the entire search space. If this is the

case, the technique search for a peak point which can be any local-maxima or the global-

maxima for optimizing the problem. The search space in Figure 2.1 can be depicted

because it is generated from a deterministic sinc function. In real world application,

search space might be unable to be depicted due to non-deterministic characteristic of the

problem. A problem can have more than two dimensions which can make the

 4

solutionspace harder to describe. Sometimes, we only know how to evaluate each

individual candidate so it is impossible to construct the entire search space but, because a

number of candidates representing the entire search space can be uncounted, the problem

becomes tractable.

Figure 1.1 an example of Search space

1.2.1 Chromosome and Gene Representation

 In a population, each candidate has some information encoded in it in some

fashion. This information must be appropriate in order to solve or optimize a problem. A

group of blocks containing numeric or symbolic data are combined to form a single

candidate which can be interpreted as a single possible solution to a particular problem.

This resembles to biological chromosome which contains sequences of genes. For this

-8 -6 -4 -2 0 2 4 6 8
-10-5

0
510

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Dimension 1Dimension 2

F
itn

es
s

V
al

ue

 5

reason, we call a single block containing data as a gene and a candidate a chromosome in

EC. A Basic Structure for a chromosome is shown in Figure 1.2.

Gene 1 Gene 2 Gene 3 ……………. Gene N

Figure 1.2 Chromosome structure

The commonly used encoding or value of each block include binary strings,

integer numbers, fixed-point numbers, floating-point numbers, graphs and hybrid values.

This means each gene can contain a binary bit-string, a number, or some combination of

symbols. Genes in a chromosome are considered as a unit and are evaluated as a solution

as such. The quality or fitness of a chromosome as a solution to a problem is evaluated by

looking at how, when the gene values are used as a group as the input values to a

problem, how well the problem is solved. This evaluation of how good a solution a

chromosome is can be donr by using a set of rules or by comparing performance from a

test run in an actual environment or simulation. Chromosome evaluation will be

described in section 1.1.4.

A popular example for EC will be used here to illustrate. Suppose that there is a

salesman who wants to travel to all 50 states in the U.S. but also wants to minimize the

cost of travelling given a starting state. A chromosome presented here contains 50 genes

where a single gene is recognized as node or state being visited at a time and the order of

genes represents the sequence of states to be visited. A symbol or a number representing

the states can be filled into genes depends on how the chromosome will be evaluated.

Rules or functions for evaluating each chromosome (solution) are defined accordingly to

 6

the requirements and constrains of the problem. In this case, the requirement is

minimizing the cost as much as possible. The conformity of a chromosome to the

requirement can be evaluated by using rule set or a single function, multiple functions,

attest in an actual environment or using the results of a simulator. The mechanism that

used to determine the fitness of a chromosome as a solution is called a Fitness function.

1.2.2 Reproduction

Reproduction plays an important role for the search techniques because it

produces off-springs (new chromosomes or solutions) from existing parents. Off-springs

produced in each generation can have as more, less or same quality as a solution as their

parents are. This can be visualized as moving from a specific region, represented by

previous population, on search space to other specific location, represented by current

population. This is one of the processes that move the algorithms toward convergence.

Two commonly used genetic operators are crossover and mutation. These two operators

have different role in producing off-springs and will be described in the following section

(1.1.2.1 and 1.1.2.2). There are probabilities associated with the operators. These

probabilities describe chances for these two operators to take place during evolution.

1.2.2.1 Crossover

Crossover is a genetic operator which uses two parents to produce one or more

off-springs. Two parents are selected from a population to exchange their genes and form

a complete, new off-spring. By exchanging the genes of parents to create off-spring, the

off-springs inherit some properties of their parents. It is not necessarily true that selecting

better parents will form better off-spring. It is an assumption that selecting better parents

 7

might produce off-spring that inherit some preferred properties and exhibit more

conformity to the requirement of the problem. Better parents mean having higher

chromosome quality and the population tends to move ascending a peak region.

According to the assumption, this would move the population toward the local or global-

minima (-maxima) moving the search toward convergence. A problem occurs when some

of chromosomes start moving toward local-minima (-maxima). The population may

converge on this peak point which sometimes is unacceptable by the termination criteria

defined by the problem.

1.2.2.2 Mutation

Mutation is another genetic operator which is commonly used. In this operation,

one parent chromosome is selected to produce one or more off-spring. New off-spring is

produced by applying some modification to one or more genes in the selected parent.

This kind of reproduction would assist in exploring search space by introducing

randomness and the ability to not get caught in a local-minima (-maxima). An example of

a place that mutation might be potentially useful is when the search starts to converge

towards a local-minima (-maxima) and almost all individuals have like content. Since the

genes of each individual are alike, crossover might not move then away from the local-

minima (-maxima) by randomly altering one gene of a selected individual it might help

get the search out of that specific region and jump to others which might be better or

worse. In this way, increases the probability not getting stuck in a local minima or

maxima and give a more complete search of the search space.

 8

1.2.3 Selection

Selection is one important mechanism for EC. It is the process of selecting

individuals in current population to form a new population. Commonly, selection helps to

propagate good chromosomes to the next generation while it also preserves diversity in

population by selecting other kind of chromosome as well. There is a large number of

selection methods used in ECs. Some commonly used selection methods are elitism,

roulette-wheel, tournament and generational selection. Sometimes, using only one

method of selection may not provide the required number of selected individuals to form

a new population. Absent chromosomes can be filled by combining one method of

selection with others or generating chromosomes randomly or according to some set of

rules. These would help in exploring a larger search space and prevent the population

from being concentrated around a local solution when there may be a better, global

solution available. Increasing randomness by reducing the number of individuals selected

by selection methods also increases diversity in a population increases the ability of the

search to discover more solutions from a search space. If the randomness is increased too

much, the system may be unlikely to find reasonable solutions. In other words, the

system is likely to guess for solutions more than evolving towards a solution. This is a

trade-off in forming new populations that designers should take into account.

Elitism selection selects a number of individuals according to a specified number

or the percentage of the total number of individuals in the population. Mostly, elitism

selection selects only the best solutions available in the population to propagate to the

next. This ensures that while the search explores the search space, best solutions found

are reserved.

 9

Roulette-wheel selection derives its concept from the roulette game where the

entire space of the wheel is divided based on individuals’ fitness values. The selection is

virtually done by randomly spinning the wheel. The chance of picking an individual is

proportional to its fitness value. There are some variations of this kind of selection which

perform better in some applications. Figures 1.3 illustrates Roulette-wheel selection.

Figure 1.3 A Roulette-wheel selection

In tournament selection, each population is sub-divided into groups and a single

best individual is taken from each group to form the new population.

 10

In generational selection, all the individuals from previous generation are taken to

be the next generation.

1.2.4 Evaluation

Evaluation is a process of measuring quality of a chromosome as a solution to a

particular problem. In the evaluation process, fitness values, which can be considered as

scores for individuals, will be assigned to all chromosomes in the population. An

Objective Function is used to define the method for calculating fitness values so that

particular chromosome may be ranked against all the other chromosomes. Selection

process makes use of fitness value for selecting chromosomes for future generation.

Generally, fitness values are mapped onto a real-number scale. Sometimes, the range for

fitness values for some applications cannot be determined; only relative magnitudes of

the values are take into account to judge individuals in the population. In this case, the

fitness values may be turned into percentages of the sum of all fitness values.

1.2.5 Termination Criteria

Termination criteria define how many generations the EC should run before

supplying final solutions. Commonly, a search stops when a specified number of

generations have been processed (generations based termination criteria) or when the

fitness values are high enough for a particular application (fitness based termination

criteria). These two termination criteria can also be combined together.

In generations based termination criteria, the search always runs for a certain

specified number of generations. The advantage of this type of termination criteria is that

we can limit the number of iterations. In some applications, the search process can

 11

converge very fast compared to the specified number of generations. Even if an

individual that would satisfy the needs of the application, the search still continues the

run until it reaches the n-th generation specified in the termination criteria. This results in

the wasting of time, power and effort to run the search. Usually, this type of termination

criteria is used to find optimal point where search starts to be convergent and we are

satisfied with individuals in current population. We can do the tune-up for the number of

generations to that optimal point.

In fitness based termination criteria, a minimum value for the fitness value is

specified. The search runs until it finds one or more individuals meeting that fitness

criteria irrespective of the number of generations that has been processed [27]. If the

specified fitness value is too high the search can take a very long time to run even

individuals found are applicable for application. If no satisfactory solution is found the

system may run indefinitely. We can do a trial-and-error experiment with this type of

termination criteria to observe the range of fitness values that will be appropriate for this

type of termination criteria.

We can mix the two termination criteria described above to form an intermediate

termination criteria. By mixing the termination criteria, the search runs until one or more

individuals with fitness values satisfy the minimum fitness value specified, or the number

of generation specified is reached. The problems of generations based termination criteria

and fitness based termination criteria, which are time wasting and infinite loops

respectively, are solved but satisfactory individual is not always guaranteed.

 12

1.2.6 The General flow for algorithm

The processes described in section 1.1.1 – 1.1.5 are the basic processes that are

used in general EC applications. Figure 1.4 shows the flow-chart describing the basic

flow for EC.

Figure 1.4 The general flow for EC

First, an EC starts by generating initial population. Generating initial population is

required and important because it places the search in a specific region on search space

which can either be near or far from the optimal solution. Sometimes, placing the search

near local-minima (-maxima) can result in the search convergencing quickly to a local-

minima (-maxima). Locating the initial population too far from a solution might mean

 13

many generations will be needed for convergence. Generating initial population can be

done randomly or some knowledge can be applied to the process.

Then next step is reproduction in which crossover and mutation are performed in

order to produce off-spring. Both parents and off-spring are evaluated in the evaluation

step to obtain fitness values for every chromosome. The termination criteria, previously

described in section 1.1.5, are applied to the population after the evaluation to see if an

appropriate chromosome has been found. If the termination criteria are not met, the

selection process performs individuals’ selection to reduce the number of chromosomes

that can propagate to the next generation. Without this reproduction the number of

chromosomes will be accumulated resulting in processing time and memory problems.

After the selection process is completed, the reproduction step is re-visited and

crossovers and mutations are performed on the new population. This cycle is repeated

until the termination criteria are met.

1.3 Evolutionary Computation on Hardware

1.3.1 Implementation Problems

Evolutionary Computation (EC) has been used to solve many kinds of problems

in the real world. The effectiveness of EC consists of its high suitability for parallel

computer implementation; particular success in large search and optimization problems

and in an ability to learn complex relationships in incomplete datasets [1]. There are

many efforts to try to speed-up the process of solution evolution by implementing EC on

a reconfigurable hardware platform such as FPGAs [21-24]. An application shown in [1]

claims that a hardware-based EC with 1MHz clock-speed operates 2,200 times faster than

 14

EC written in C and running on 100MHz workstation. This can be achieved by

implementing the function of parent selection, crossover, mutation and survival in

hardware in such a manner that each function can be executed in a single machine cycle.

Implementing an EC system in hardware is a hardship for those without hardware

knowledge. To design an EC system knowledge, on low-level hardware interactions and

debugging is required. In addition, different EC applications require different EC

hardware architectures [24]. This makes changing an EC system in hardware much more

difficult when the specifications of the application are changed.

Normally, changing parameters or methodologies used in a software-based EC

system such as chromosome size, gene size and population size (or even crossover and

mutation methods) requires a good framework and well designed system. Debugging can

be done by inserting debugging statements and observe the probed variables through

Graphical User Interface (GUI). Changing parameters and methodologies in a hardware-

based EC system can be difficult because the user is not only required to have some

knowledge on the EC system itself; but is also required to have some knowledge on

hardware structure implementation and much forethought is needed to determine

debugging channels for a particular hardware structure. Many EC systems have been

implemented on a dedicated system designed for a specific application [5-7]. There is

also a flexible hardware core for EC system which supports a number of applications

[24]. Some of these are implemented on reconfigurable hardware in a Hardware

Description Language (HDL). Changing parameters and methodologies can be done

relatively easily by altering some parts of modules described by HDL. But this, too,

requires knowledge on the particular hardware structure and HDL. A debugger is

 15

convenient to have during development of an EC system but the debuggers that are used

in HDL development platforms do not offer functionality to easily evaluate

characteristics of EC systems. Getting information on the volutionary progress of a

system is inconvenient at best with these HDL development tools and the amount of data

needed to evaluate. And, even if a debugging system is developed for a particular EC

application it will, most likely, not be appropriate for a different EC application.

The purpose of developing the GPEAT system for EC application is to obtain a

General Purpose Evolutionary Algorithm Testbed which is flexible and reconfigurable

for many EC applications. GPEAT is a substrate for implementing EC applications in

hardware. GPEAT also facilitates the implementation of EC applications by providing a

Graphical User Interface (GUI) which is used to quickly enter a description of a

particular EC system that the user would like to put into hardware. This GUI is called

Parameter entry GUI which will be described in chapter 3.

Our ultimate goal is to create a substrate for EC application in hardware that

requires the user to only have minimal hardware skills to develop EC systems on and is

flexible enough that it can be used for any number of applications. The structure for the

substrate would be similar to FPGA which has Logic Elements (LE) and Memory Blocks.

Some functional elements that could be reconfigured according to user specification

would be derived to enable efficient EC implementation. A Graphical User Interface

(GUI) for configuring this flexible substrate for EC application would greatly ease the

implementation of EC application on hardware and reduce implementation time.

 16

1.3.2 Debugging Problems

Debugging an EC system in hardware is similar to debugging an SoC (System-on-

a-Chip). One major problem for debugging SoCs is visibility. Normally, an EC system

takes input from users (initial population, parameters for Random Number Generator

etc.) and produces outputs which are possible solutions to the problem. If something goes

wrong and the system does not produce appropriate outputs, debugging is needed to

correct the problem. Since we have no access to components of EC system on silicon,

some methodologies such as signal tapping (routing internal nodes to external pins to see

what is happening) [28] are needed. To facilitate the debugging process, a debugging

platform has to be defined for the GPEAT.

An example of low-cost debugging platform for SoC is proposed in [29] where a

dedicated TAM (Test Access Mechanism) controller controls communication between

CUDs (Core-Under-Test) and IEEE 1500 modules. “IEEE 1500 standard is a scalable

standard architecture for enabling test reuse and integration for embedded cores and

associated circuitry” [30]. The CUD in our case is the GPEAT core and the IEEE 1500

modules would be the debugging modules. This is an example which suggests to us how

to build a reusable debugging platform for GPEAT system that can be used for any

system developed to run on GPEAT.

One may argue that a simulator can also be used for debugging a hardware model

before being downloaded to a reconfigurable device. One major problem for using

simulator is that the user has to have a great deal of knowledge or experience with the

GPEAT system architecture. Users would be required to understand signals integrity in

 17

the system. A simulator shows the circuit responses for a fixed time period and, since we

cannot determine how long the algorithm would take to converge, it would require a

tremendous amount of data logging on a simulator to make sure we have the necessary

data for analysis after a run. Users would have a lot of work to get the stored numerical

data into a form that would give them useful data.

In this version of GPEAT, a hardware platform for debugging EC systems and

debugging software are described. They will assist the user in debugging of the system

and to perform performance checks on the implemented EC system. The software only

provides simple visualization and data tracking for evolutionary process but makes a

complete set of the data from the run available to the user for specific evaluations. One of

our goals is to distribute GPEAT core and associated software as an open-source package

in research communities. Further improvement can be achieve by distributing the

debugging software to groups of users and obtain feedback and additional requirements

from users. Different applications may need different requirements and visualizations for

observing their evolutionary process, but we believe that some of them share

commonality for building a generalized debugging software. Because complete data is

made available to the user, building customized debugging software for a particular

application is also possible.

1.3.3 Hardware Platforms

The development of EC applications on artificial systems has been investigated

for many years. Currently, there are no programmable substrates available made

specifically for EC systems though flexible reconfigurable devices are most commonly

 18

used as substrates for EC systems in publications. Since most applications for EC are

combinatorial optimization problems, (function optimization problems) these problems

can be implemented using chromosome representation in binary-string, integer and real-

valued form. For example in [24], it is presented that “binary encoding is the most

probable form for many of the problem in the industrial engineering world. Real-valued

encoding is best used for function optimization problems. Integer encoding is best for

combinatorial optimization problem.” These three representations can be implemented

on platforms for reconfigurable digital devices and, therefore, we limit our discussion to

these platforms. There are three categories of programmable platforms available and they

are SPLDs (Simple Programmable Logic Devices), CPLDs(Complex Programmable

Logic Devices) and FPGAs (Field Programmable Gate Arrays). The description and

characteristic of these three platforms are shown in Table 1.1 to Table 1.3.

SPLD Characteristic Range

Number of pins 16 to 28 pins

Number of macro cells 8 to 24 logic cells

Number of flip-flops (FFs) 8 to 24 FFs

Configuration technology EPROM, EEPROM

Power-up status Nonvolatile

Programmability Can be reprogrammed after being erased

Programming mechanism Generally programmed off-board

Size Small

Table 1.1 SPLD Characteristic [25]

 19

CPLD Characteristic Range

Number of pins 44 to 300+ pins

Number of macro cells 32 to 500+ logic cells

Number of flip-flops (FFs) 32 to 500+ FFs

Configuration technology EEPROM, EPROM, FLASH

Power-up status Nonvolatile

Programmability Can be reprogrammed

Programming mechanism Can be programmed in-circuit

Size Medium

Equivalent Gate Count 900 to 20,000+ equivalent gates

Table 1.2 CPLD Characteristic [25]

FPGA Characteristic Range

Number of pins 50+

Number of macro cells 5,000+

Number of flip-flops (FFs) 5,000+

Configuration technology Flash, EEPROM

Power-up status SRAM: volatile, OTP: nonvolatile

Programmability SRAM: can be reprogrammed, OTP: no

Programming mechanism SRAM: can be programmed in-circuit

Size Medium to Large

 20

Equivalent Gate Count 10,000+ equivalent gates

Table 1.3 FPGA Characteristic [25]

Hardware Description Language (HDL) to describe hardware architecture such as

VHDL (VHSIC Hardware Description Language) or Verilog can be used to program

these reconfigurable digital platforms. Hardware architecture designed with VHDL or

Verilog is synthesized by a Synthesis Tool which compiles and maps HDL codes into an

implementation technology for reconfigurable devices of ASIC (Application Specific

Integrated-Circuit). Examples for synthesis tools are Xilinx® XST, Synopsis Synplify

and Sonata. Then, this synthesized design will be used to generate a configuration

bitstream by tools provided by reconfigurable device manufacturers such as Xilinx®,

Altera®, Aldec® and Actel®. In this literature, we use a reconfigurable device provided

by Xilinx®; Xilinx® XST and Xilinx® ISE for synthesis process and generating

configuration bitstream.

The reconfigurable device platform most commonly used in this literature is an

FPGA which has a high-density of logic cells. The GPEAT design includes a core which

performs general tasks for EC application and an embedded-debugger providing

interfaces with host-PC for debugging purpose. The sizes of these two components of

GPEAT system vary according to size of the chromosomes and the population size of the

system. The component which utilizes the most resources in FPGA is the GPEAT core.

As suggested in [26], experiments were conducted on the GPEAT system and the

resource usage is shown in Table 1.4. The equivalent numbers of gates used in these

particular applications vary from 10,000 to 30,000 gates which suggest that a high-

density reconfigurable device must be used.

 21

Table 1.4 Design analysis table [26]

Actual
number

Old New

Exp 1 Exp 3 Exp 1 Exp 3

L
og

ic
 u

ti
li

za
ti

on

Total Number Slice
registers

 used as Flip
Flops

 used as
Latches

9,312 889
(9%)

856

33

1264
(13%)

1,250

14

1,498
(16%)

1,464

34

753
(8%)

739

14

Number of 4 input
LUTs

9,312 1,343
(14%)

1,559
(16%)

1,927
(20%)

1,186
(12%)

L
og

ic
 D

is
tr

ib
u

ti
on

Number of occupied
Slices

 only related
logic

 unrelated
logic

4,656 1,114
(23%)

1,114

0

1,416
(30%)

1,416

0

1,734

1,734

0

977
(20%)

977

0

Total Number of 4
input LUTs

 used as logic
 used as a

route-thru
 used for

Dual Port
RAMs

9,312 1,628
(17%)

1,343

253

32

1,799
(19%)

1,559

218

22

2,212
(23%)

1,927

253

32

1,426
(15%)

1,186

218

22

Number of bonded
IOBs

 IOB Flip
Flops

232 81 (34%)

48

81(34%)

11

81(34%)

50

81(34%)

9

Number of GCLKs 24 4 (16%) 3(12%) 4(16%) 3(12%)

Number of
MULT18X18SIOs

20 1 (5%) 1(5%) 1(5%) 1(5%)

Total equivalent
gate count for
design

 21,070 24,091 30,098 17,731

Additional JTAG
gate count for IOBs

 3,888 3,888 3,888 3,888

 22

1.4 Report organization

In Chapter 1, we presented the basic theory for Evolutionary Computation along

with the hardware implementation and issues for EC. Chapters 2 present the background

for GPEAT and prior works. Specification and functionality of GPEAT is also described.

The GUI which is used to configure GPEAT is described in Chapter 3 along with the tool

for designers to integrate design of GPEAT into the GUI. Chapter 4 describes the

architecture and ASM charts of debugging hardware which is attached to GPEAT core.

The Debugging GUI which is the associating software used with debugging hardware is

presented in Chapter 5. The results for hardware simulation for debugging hardware and

hardware usage in FPGA are reported in Chapter 6. Conclusion and Future work is

described in Chapter 7.

23

CHAPTER 2

REVIEW OF THE EVOLUTIONARY HARDWARE

TESTBED (GPEAT)

2.1 Introduction

The GPEAT system is a testbed which implements its hardware framework on a

Field-Programmable-Gate-Array (FPGA). GPEAT is a general purpose evolutionary

algorithm testbed which allows users to create and run EC systems without hardware

knowledge. This claim is supported by analysis of the patterns found in 40 to 50

published papers on EC hardware systems and the information from books and experts.

The paper [8-18] were some of the more important papers used in this analysis. The

pattern found through the analysis of these references allowed us to find a general

framework which all of the systems we examined could be reproduced. This EC flow can

be generalized as shown in Figure 2.1.

24

Figure 2.1 Simplified EC hardware flow

Each block of Figure 2.1 [19] has a specified function that was found to be

necessary in satisfying at least one of the applications and/or references examined. The

initial data is generated by the initial sequence generation block, and is either generated

randomly or according to some set of rules. The fitness calculation block supports only

intrinsic or extrinsic evaluation on this version of GPEAT but will support internal

evaluation according to a user specified rule set by GPEAT in future versions. If the

termination criteria is met the system stops. Termination criteria may be a maximum

number of cycles through the flow or when the system finds a solution with a suitable

fitness. The selection block picks which members of the present iteration through the

flow should go on to the next iteration of the flow. The new sequence generation block

uses fixed types of genetic operators to create the next set of possible solutions to the

problem. To extend this system for flexibility and to give it the ability to be programmed

easily to implement a different EC system each and every block shown in Fig 2.1 must be

generalized. This generalization is achieved by hardware constructs specific to

25

implementing each EC system block that are reconfigurable through a simple set of

parameters and created to specifically carry out the block’s job efficiently in time and

hardware resources. For example, the new sequence generation block is easily

reconfigured to use a variety of genetic operators as specified by the user. The system as

a whole must also be flexible. For example, the fitness block should support both intrinsic

and extrinsic evaluations. Our system provides all the necessary features needed for

reconfiguring to a variety of EC systems.

2.2 GPEAT User Interface and Parameters mapping

The hardware framework is functionally divided into multiple sections. A section

will be configured by parameters to be provided by the user. The user needs to be given

the ability to enter these parameters by some means which is flexible, user-friendly and

no hardware knowledge required. A good user interface is needed for general purpose

system in order to hide the details of the hardware and make design and fine tuning of a

system easy. These requirements lead to the creation for a Graphical-User-Interface

which is called GPEAT user interface (GUI) in this thesis. Our system provides a friendly

graphical interface through which the user can communicate easily with the system.

The GUI provides six sets of parameters which are used to configure the hardware

framework for a particular EC application. These six groups contain information

regarding initial population generation, crossover and mutation control, system control,

output control, fitness function information and sensors interface information. Some of

26

these parameters are mandatory while others are optional. This will be discussed in detail

in Chapter 3.

As mentioned, the parameters are entered through the GUI. The GUI maps the

parameters into a VHDL include file which is accessible by the GPEAT main VHDL

code. The Main VHDL, the include file and other essential files are generated by the GUI

accordingly to the settings that user has specified. These VHDL sources are then

configured using the Xilinx® Design Tools Suit (ISE) for upload to the FPGA. Xilinx®

tools are used to partition and place and route design, generate bit files and, finally,

downloading designs to the Xilinx® Spartan 3E™ board. This flow is shown in Figure

2.2.

Figure 2.2 GPEAT configuration flow

27

2.3 Structures for the hardware framework

Based on the EC parameters set through the GPEAT user interface, the FPGA is

programmed. The blocks shown in Fig. 2.2 can be divided into the six parameter groups

mentioned in the previous section. The initial population generation parameters,

crossover and mutation control parameters, central control parameters, output control

parameters, fitness function parameters and sensors parameters. The thicker arrows in

Figure 2.3 specify blocks whose function is determined by user input through the GUI.

The function of the central control block is to control all the other blocks and is

sequential logic. The other blocks are memory or largely combinational blocks and

depend on the instructions from the central control block. The functions of these blocks

are explained in the following sections.

28

Figure 3.2. Hardware block diagram.

DATAPATH

To external
evaluation

block

Input
Sequence

Generation
Rules

User
Defined Generate

Input
Sequence

Memory
for Input

Sequences

User defined
(Commands

etc)

Fitness
Function

Information

Fitness
Function
Data Reset

Crossover /
Mutation
Control

Data

User
Defined

Control:
Generate Input Sequence
Store Input to Memory
Selection of Addresses

Select Datapath Function
Solution Memory Control

 Crossover/ Mutation Control

 …

Solution
Memory

Do Task

Se
n
so
rs

Fitness
Function
Control

Data

CONTROL GOES TO ALL BLOCKS

Sort Fitness

Function

Crossover

Mutation

Default
Behavior

User
Defined

Fitness
controldata

From external
evaluation block

Figure 2.3 Hardware Block Diagram

2.3.1 Initial Population Generation blocks

The initial population generation section of GPEAT is made up of the input

sequence generation rule database block, input sequence generation block and the

memory for storing the generated chromosomes (Figure 2.3 [19]). In the input

chromosome rules generation block, rules provided by the user through the GUI are

framed to generate initial chromosomes. The input sequence generation block will

generate chromosomes based on the input chromosome rules generation block’s

information. Here, one option is to use a random number generator to generate those

chromosomes. The user may also specify a single value for all chromosomes or exact

values for each chromosome. As an example of a case where all initial population

29

individuals are all set to be equal (of population size 3) could be 1111, 1111, 1111 but,

after a random flip bit mutation, they might become 1011, 1110 and 0111.These

generated or user specified chromosomes form the initial population. The initial

population size is given by the input parameter “population size”. As the initial

population is sent for reproduction a new set of chromosomes is produced for the

subsequent generation. This is one example of where hardware has an advantage over

software: As the present population is being evaluated and reproduced, the next, new

population members can be generated in parallel. In software the processing would be

done in series and one process would not be able to start until previous one was done.

The user has the option of setting rules to check the eligibility of the chromosomes

generated. In that case, if a check is run, the initial population will be a set of legal

chromosomes. If the system does not find a legal chromosomes after a specified number

of iterations, the system will show an error message. Memory for the input sequence

block stores initial population for that run, as all the chromosomes of initial population

are not sent to the next block at once, the remainder must be held until needed. The size

of the memory is determined by the size of the population.

2.3.2 Crossover and Mutation Control blocks

In this part of GPEAT, there are three blocks: The crossover/mutation control

information database block, crossover/mutation control block and crossover-and-

mutation block. The crossover/mutation control information database block stores all

information from the GUI regarding the reproduction operations to be performed upon

generation of new chromosomes. It also determines the crossover type or mutation type

to perform if the user opts for an exclusive reproduction type. The crossover/mutation

30

control block internally controls the two blocks in this group which are crossover and

mutation blocks. In the crossover and mutation blocks, user specified crossover and

mutations are carried out.

2.3.3 Central Control blocks

The central control database block and central control block are included in this

group. Mainly, this group of blocks holds the GPEAT system parameters that have been

entered by the user through the GUI and then controls each and every block of the system

shown in Figure 2.3. The central control database block specifically holds the GPEAT

system parameters which describe the flow of the system and how the central control

block should operate the system. The central control block connects to every building

block of the GPEAT system. It sends control signals to blocks to activate or disable each

block depending on the information stored in the central control data block. The central

control block also controls the sequence of operations and data flow between blocks. In

the initialization step, the control signal is sent to initial population generation blocks to

generate an initial population. After having an initial population, crossover and mutation

blocks are activated to perform the reproduction operations. The fitness evaluation blocks

are then activated next. Fitness evaluation can be done internally or externally depending

on the options that have been chosen by the user. The control signals activate the internal

evaluation block if internal evaluation is chosen. Otherwise, the same control signals

disables the internal evaluation block and operate the external evaluation part of GPEAT.

After finishing the fitness evaluation process, the sorting block and the output block are

31

activated respectively. Again, because this is in hardware, processing is run in parallel as

often as possible when there is no conflict.

2.3.4 Output Control blocks

The sorting block, solution memory block and default output block comes under

this group. This group’s work is to sort all the solutions based on their fitness value and

decide whether the default output or the best of the sorted solutions should be outputted.

Chromosomes are also stored here for use in future generations. The sorting block carries

out the sorting and the solution memory block stores the sorted chromosomes. The

default output block holds the user specified default output and will output that until a

solution is found that satisfies the threshold criteria set by the user.

Sorting is the slowest procedure in many systems. The best of the sorting

techniques works at O(n log n) [20]. For example, the random number generator,

crossover and mutation works at O(n). According to “Amdahl’s law” to speed up the

GPEAT system, the sorting block must be improved. For that, we have replaced the sort

hardware with three bins labeled 80%-100% solutions (bin1), 60%-80% solutions (bin2)

and 0%-60% solutions (bin3). Solutions are stored in respective bins depending on their

fitness percentage. For example, solutions with fitness percentage between 90-100 goes

to 90%-100% bin in no special order. The bins only need to be the size of the number of

individuals that might be carried over to the next population (elitism rate x population

size). In this way, sorting becomes on the order of O(constant) and the memory needed is

only

 PopulationeElitismRatbinsSizeSortMemory  3 s

32

The best solution by fitness value is always stored separately and will not be lost

by overflow of bin 1.

2.3.5 Fitness Function blocks

The fitness function blocks consist of the fitness function information block,

fitness function data reset block, fitness function control data block and fitness function

calculation block. These blocks are used to determine fitness value for chromosome

based on specified parameters by user. Fitness values calculation can either be done

internally or externally as explained in the previous sections (section 2.3.3.). In an

internal evaluation, a set of rules defined by the user is stored in the fitness function

information block. These rules are used by the fitness function data reset block and

fitness function control data block to realize an objective function. Information from

sensors can be used as input to objective function to make a dynamic objective function

which evaluates chromosomes according the present operating environment. The fitness

function block performs calculation described by the realized objective function. In an

external evaluation, chromosomes stored in GPEAT system are sent out to some external

evaluating environment. These external components then return the fitness values of

chromosomes back to GPEAT system in system-usable format. When a chromosome is

being sent out from the GPEAT system, it is sent out along with a start signal to the

external evaluating component. The start signal synchronizes chromosome switching

with chromosome acquisition process of the external component. When fitness value is

completely calculated by the external component, the external component will send the

fitness value back to the GPEAT system along with a done signal so that GPEAT knows

33

that a fitness value has been found for the chromosome under test and that fitness value

should be stored.

2.3.6 Sensors blocks

The use of sensor block is not available in this version of GPEAT. The GPEAT

system breaks the barrier between the EC hardware system and real-life events by

providing a bread board area to connect sensors to provide information about the

environment. Sensors which are connected through the sensor block collect the raw data

from operating environment and that information can be used for fitness values

calculation. The objective function created for the fitness values calculation can be set up

to change accordingly to the operating environment to find appropriate chromosomes at a

particular time. Data from the sensors need to be converted into a system-usable format

by some means such as using an analog-to-digital converter (ADC), a decoding block or

some type of amplification. This conversion is needed because of the wide variety of

sensors. For example, if a thermal sensor was used for a particular application, the output

from those sensors would be analog and so must be converted to binary through an

analog to digital converter. Once converted to a binary form the data can be used for

processing.

2.4 Debugging GPEAT system

When a GPEAT system is configured for a particular application, the user

provides configuration information to the system. Sometimes the user might never have

envisioned the problems that would come with their settings. For an application, the

configuration and development of the system may involve a trial-and-error process which

34

may require many iterations of setting parameters and then watching the results. Besides

providing inputs and obtaining outputs from the system, the user might want to see the

intermediate states and how the internal mechanisms are working in order to explain why

a particular output resulted, or to tune up the system for optimal performance.

GPEAT configuration flow in Figure 2.2 but, in addition to the basic EC system,

GPEAT also provides a debugging interface for the user to obtain information and trends

of the system during runs. GPEAT has a built-in debugging hardware interface used for

obtaining and verifying the system parameter information and all population- and

chromosome-data. The debugging hardware sends information back to host PC where a

debugging Graphical-User-Interface runs. Information is sent back from the system

through an RS-232 connection and where it is displayed in graphical form. Figure 2.4

shows the connection diagram for GPEAT debugging interface.

35

Figure 2.4 Debugging connection diagram

36

CHAPTER 3

GRAPHICAL USER INTERFACE DESIGN

3.1 Parameters Entry GUI

The Parameters Entry GUI is used to configure the GPEAT system. It

provides a graphical interface for user to enter the parameters to configure GPEAT

system for a particular application. Some of these parameters are required and some

are optional but they all are used to generate VHDL codes which are used to construct

the GPEAT core and built-in debugging hardware. As shown in Figure 2.2, the GUI

generates GPEAT core accordingly to the parameters that a user has specified by

mapping the parameters into a VHDL include file. Then, these VHDL files are joined

in an FPGA project file using Xilinx® Design Tools Suit (ISE) to generate a FPGA

configuration file (.bit file).

The GUI stores the information for the VHDL codes and parameter mapping

into a single binary file (GPEAT.dat). When the GUI generates the VHDL codes for

the GPEAT core and debugging hardware, it reads this binary file to obtain

information regarding the codes generation such as the amount of file required to

construct GPEAT, the content of the codes and information for parameter mapping.

The binary file can be generated by a GPEAT developer using GPEAT binary data-

file encoder which is another GUI used together with the parameter entry GUI. The

binary data-file encoder will be described in section 3.2.

37

The parameter entry GUI separates parameters into five categories which are

Input (Sensors), Default Output, Initial Population, Fitness Rules and Debugger. Each

of these categories is described in following section (section 3.1.2-3.1.7). First, the

workspace of the GUI will be described in section 3.1.1.

3.1.1 Workspace

The workspace shows the files which contain VHDL codes for the GPEAT

core and debugging hardware. It contains a file panel, which summarizes the files

required for constructing system and separate windows showing content of the files.

These windows will be visible only when the user chooses to view the contents of the

files. If user wants to view the contents of a file but the window showing the contents

of the file does not appear, the user can recall the window by doing double-click on

the file listed in file panel and then the window of the file will appear. Figure 3.1

shows workspace of the GUI.

Figure 3.1 Workspace

38

3.1.1.1 Creating/Loading/Saving Project

Before working with the parameter entry GUI, the user has to create or load a

project. A project file is named with the extension “.gpt” and stores values for the

GPEAT parameters. Creating a new project initializes all GPEAT parameters to

default values and then the user has to specify the parameter values they want to

override those default values manually. This will be discussed in section 3.1.2 to

3.1.7. Saving a project will allow the user to continue work later or save the values of

the parameters in a file. The user can create, load and save project by clicking

FilesProjectNew Project, FilesProjectOpen Project and

FilesProjectSave Project respectively.

3.1.1.2 Creating/Loading/Saving a Source

User can also add additional sources as required in addition to the GPEAT

core codes. The added code can be used to work with GPEAT as, for example, an

intrinsic testing block would need to do. The GUI does not help the user create these

additional blocks and the user would have to have hardware design skills in order to

create them. The user can create, load and save added source by clicking Files  New

Source, Files  Open Source and Files  Save Source/Save Source as respectively.

3.1.2 System

The system parameters window can be access by clicking Define  System

from the menu bar of the GUI. The system parameters are used to define the

input/output of the system, operations during runs and the behavior of the GPEAT

system. Some of these parameters are essential for VHDL generation because they are

used to define the structure of GPEAT system for a particular application. In the

39

Define System window, the window is divided into three sections grouped by the

functions of the parameters. Figure 3.2(a), Figure 3.2(b) and Figure3.2(c) show three

sections of Define System window which are the overall section, the crossover and

mutation section and the random number generator section.

(a) Overall section (b) Crossover and mutation section

(c) Random number generator section

Figure 3.2 System parameters window

40

In the overall section, the parameters which define the structure of the GPEAT

system are set. For example: the chromosome size, gene size, gene type and

population size are grouped in this section. These parameters are the same parameters

shown in Figure 3.2(a) and are described and summarized below in Table 3.1 and

Table 3.2 respectively.

Parameter

Description

Chromosome size

The length of chromosome (number of genes contained in

a chromosome).

Gene type

Specify data type contained in each gene. This can be a

binary number or integer number (32-bit).

Gene size

Specify number of bits contained in a gene for binary

typed gene.

Population size

Specify number of chromosomes in a population (each

iteration)

Elitism rate

Specify number of best chromosomes in percent that will

propagate to next generations.

Stopping criteria type

Specify condition for system to stop run. It can based on

number of iteration or fitness-value based.

Maximum iteration

The maximum number of generations processed.

Acceptable Fitness

The acceptable fitness value (for termination), if Fitness-

based termination criteria are chosen.

Min. Fitness Value

Minimum Fitness Value that will possibly be found in the

41

system. Maps to 0% fitness value

Max. Fitness Value

Maximum Fitness Value that will possibly be found in the

system. Maps to 100% fitness value.

Fitness Evaluation type

Selects module for fitness evaluation. The type can be

internal module or external module.

Table 3.1 System Parameter descriptions

Parameter

Values Default Value Unit

Chromosome size 2 to 128 8 Genes

Gene type Binary / Integer Binary

Gene size 1 to 1024 1 Bits

Population size 1 to 100 20 Chromosomes

Elitism rate 1 to 100 10 Percent

Stopping criteria type Iteration / Fitness Iteration

Maximum iteration User specified 0

Acceptable Fitness User specified 0

Min. Fitness Value User specified 0

Max. Fitness Value User specified 0

Fitness Evaluation type
Internal / Intrinsic-

Extrinsic

Internal

Table 3.2 System Parameters

42

3.1.3 Input (Sensors)

This category of parameter has not been implemented in the GUI because the

sensors blocks (previously explained in chapter 2) have not been completed but will

be completed for the next version of GPEAT. This category of parameters is for

configuring sensors inputs to the GPEAT system and is used as a part for fitness

evaluation process. Users can add sensors to the system through the GUI. The user

must specify the type of sensors and its type of input. The parameters for each sensor

are summarized in Table 3.4.

Parameter Description

Sensor Name

The name for sensor which will be used as

signal name in VHDL code.

Type

Output type of sensor (analog or digital).

Number of Bits (Digital)

Number of bits from output of sensor.

Supply Voltage

Supply voltage to the sensor.

Upper Limit for sensor (Analog)

Maximum voltage or current from output of

analog sensor.

Lower Limit for sensor (Analog)

Minimum voltage or current from output of

analog sensor.

FPGA I/O Name

FPGA Input/Output name used for Xilinx®

Design Tool Suit.

Table 3.3 Input parameters description

43

Parameter Values

Sensor Name User specified

Type Digital/Analog

Number of Bits (Digital) 4/8/10/12/16

Supply Voltage 3.3V/5V/10V/12V

Upper Limit for sensor (Analog) User specified

Lower Limit for sensor (Analog) User specified

FPGA I/O Name User specified (depends on the model of FPGA)

Table 3.4 Parameters for sensor

3.1.4 Default Output

This category of parameters is used for defining a default output of system in

case there is no chromosome satisfies the “acceptable solution” criteria of system. The

size of default output depends on the parameters in the first category (system). The

user must specify the size of the genes and chromosomes and also the type of gene

which will result in a specific size and type of default output chromosome. Figure

3.3(a) and Figure 3.3(b) show two example windows for two separate default output

specifications. Figure 3.3a shows the settings of a system where the gene size = 32,

the chromosome size = 8 and the gene type = integer. Figure3.3b shows the settings of

a system where the the gene size = 6, the chromosome size = 4 and the gene type =

binary.

44

(a) Integer gene (b) Binary gene

Figure 3.3 Default output examples for two types of gene

As shown in Figure 3.3(a) and Figure 3.3(b), the number of boxes that the user

can enter integer or binary values into depends on the chromosome size (number of

genes) set in the system parameters category. The number of digits that the user can

specify in each box also depends on gene size specified in the system parameters

category for binary gene. For an integer gene, the maximum number of digits that can

be entered is nine digits.

For the case that user does not specify numbers in every box, the empty box

will be automatically filled with a zero value for integer genes and an all-zero bit-

string for binary gene.

3.1.5 Initial Population

The Initial Population window can be accessed by clicking Define  Initial

Population. This window is used for defining the first population that will be

45

generated in a GPEAT system. If the user does not specify any chromosomes in this

window the random number generator will be used for generating chromosomes in the

initial population. Otherwise, a set of chromosomes specified in this window will be

used for initial population. The window for defining initial population is shown in

Figure 3.4 and Figure 3.5.

Figure 3.4 An example of initial population for binary type of gene

46

Figure 3.5 An example of initial population for integer type of gene

An example of binary type of gene (chromosome size = 4, gene size = 8,

population size = 10) and an example of integer type of gene (Chromosome size = 4,

Population = 10) are shown in Figure 3.4 and Figure 3.5 respectively. The number of

genes (chromosome size) specifies the number of columns in the frame and number of

rows is specified by the size of population. Thus, chromosomes in this window are

viewd by looking along a row. The checkbox above the frame for defining

chromosomes is used if user wants to ignore the initial population entered and use

random number generator instead.

47

3.1.6 Fitness Rules

Fitness rules are used for defining rules on how a chromosomes in a

population will be evaluated if internal evaluation is selected. This depends on the

application that will be run on GPEAT. The fitness rule window can be accessed by

clicking Define  Fitness Rules. This window provides the user the ability to define a

set of rules to evaluate the fitness of chromosomes. Figure 3.6 shows the Fitness

Rules window.

Figure 3.6 The Fitness Rules window

Rules-tree (1) (2) (3) (4)

(5)

48

The rules for chromosomes evaluation are implemented as a rules-tree which

is similar to IF-THEN-ELSE statements in programming languages. In figure 3.6, (1)

shows implemented rules in a rules-tree. A rule can be defined as an ancestor or

descendant of another rule or it can be both. For example, according to the figure,

Rule-1 is the ancestor of, for example, Rule-1-0, Rule-1-1, Rule-1-2, Rule-1-2-0. Rule-

1-2-1, Rule-1-2-2 and Rule-1-2-3. Rule-1-2-0, Rule-1-2-1. Rule-1-2-2 and Rule-1-2-3

are the descendants of Rule-1-2. All rules defined by the user has at least one

ancestor in common and that is the root-rule and named Rule in Figure 3.6 at the top

of the window. A rule is defined by selecting an ancestor and then clicking on Add

Rule. A window for specifying the name of the rule will appear as shown in Figure

3.7. Once a rule is defined then chromosomes matching the pattern specified in the

fules will be evaluated according to the If-Then clause statements. For example, a

chromosome will be evaluated by a set of rules which has a root-rule named Rule.

First the chromosome will be examined using Rule-0, Rule-1 and Rule-2 in that order.

If the chromosome falls into Rule-1, the chromosome will further be examined with

Rule-1-0, Rule-1-2 and Rule-1-2. Then, if after being evaluated using Ruls-1, the

chromosome also falls into Ruls-1-2, then it will be examined using the set of

descendant rules of Rule-1-2 which are Rule-1-2-0, Rule-1-2-1, Rule-1-2-2 and Rule-

1-2-3. The descendant rules of Rule-1-2 are the leaf-node rules in which a fitness

value will be assigned to the chromosome. Final fitness values will be assigned to a

chromosome at the leaf-node rule.

49

Figure 3.7 The window for specifying name for a rule

In Figure 3.6, the user selects genes that are to be examined by a particular

rule by checking the checkboxes in the column of (2). The user can specify the

contents of genes that will be categorized into a rule in (3). (4) is the gene mask and

used to indicate which bit in a gene will be considered in an examination. (5) is for

specifying fitness value for chromosome which falls into a particular rule. This fitness

value will be assigned to a chromosome when the rule is a leaf-node rule and matches

the chromosomes. The default fitness value for a chromosome that does not fall into a

rule is zero.

3.1.7 Debugger

This category of parameters indicates whether the debugging hardware should

be enabled or not. It also notifies the GPEAT core whether to run continuously or in

the single-step mode. The window for this category of parameters can be accessed by

clicking Define  Debugger. Figure 3.8 shows the window of the parameters for

debugger.

50

Figure 3.8 Debugger window

The debugging hardware can be enabled by checking the check box (1). This

will indicate that the debugging hardware is to be included in the design and should

send data back to the computer. The type of run can be selected from the drop-down

list (2) to indicate to the GPEAT system whether to run continuously or in the single-

step mode. If a single-step run is selected, the user must press a button or trigger

FPGA I/O in order to continue to the next step.

3.1.8 Generating GPEAT core

After the user is finished setting all the parameters for a particular application,

the next step is to generate the VHDL code required to realize the GPEAT system for

the application. A user can use the parameter entry GUI to generate the VHDL code

by clicking Implement  Generate. Then the codes will be generated and all

parameters set will be mapped into the code as shown in Figure 3.9.

(1)

(2)

51

Figure 3.9 Workspace containing VHDL codes generated

The user is required to save the generated VHDL code in some working

directory which can be accessed by Xilinx® Design Tool Suit (ISE). ISE is used to

synthesize VHDL code and generate the FPGA configuration file.

3.2 Binary Data File Encoder (.dat Encoder)

As discussed in section 3.1, the parameters entry GUI loads all information

related to the code generation and parameters for mapping from a binary file

(GPEAT.dat). This file contains two parts which are the header and body. The header

part stores information about the size of VHDL code and the offsets of the code stored

in the body part of the file. The header also stores information on parameter mapping.

The body part stores the VHDL code. All VHDL files created by the designer of the

GPEAT system will be stored together in this part. The GPEAT.dat file packs all the

VHDL files in itself.

52

The GPEAT binary file encoder is used by the designer to store all required

files for realizing GPEAT system into the GPEAT.dat file. It generates a binary file

which is understandable by the parameter entry GUI so it can be saved and reloaded

when needed. The GPEAT binary file encoder is shown in Figure 3.10.

Figure 3.10 GPEAT binary file encoder

As shown above in Figure 3.10, the designer gathers all the design files into

the encoder by clicking Add or removes some files from the encoder by clicking

Remove. On the right column of the encoder shows information of each individual file

and its content. The designer starts the encoding process by clicking Encode. When

Encode is pushed, all required files for GPEAT system are packed together and the

binary file (GPEAT.dat) is generated.

53

CHAPTER 4

DEBUGGING HARDWARE FOR EVOLUTIONARY

HARDWARE TESTBED

4.1 Introduction

In this chapter, we will introduce the concept of debugging a GPEAT system. To

make the GPEAT debugging system, a graphical user interface was created that displays

progress of the system towards a solution and gives the user the ability to view all data

generated by the system including chromosome values and fitness values. To gather the

data on the hardware side, a debugging (hardware) core was created that interacts with

the GPEAT core and gathers and formats the data for transmission to the computer. To

transfer the data between the hardware side to and from the computer and interface based

on the UART protocol was also implemented. The debugging hardware interacts with

host PC through RS-232 connection which is standardized, easy-to-setup and has

moderate data transfer speed. The architecture of debugging and transmission hardware is

described by six distinct modules which are integrated to serve as a data-transfer

controller between GPEAT system and host PC. The data-transfer format for the

debugging hardware and host PC is also described in this chapter.

54

4.2 Essentials for Debugging Interfaces

The principle for debugging software is to insert debugging statements into source

code to observe values of variables to gauge the progress of complicated tasks. In

hardware debugging, a group of hardware modules (debugging hardware) responsible for

debugging is inserted into the design to do the observation. Two examples of where this

type of approach is used is the insertion of test access mechanism (TAM) and wrappers

into SoCs core [29, 30].

The main functionality of debugging hardware is to provide designers visibility

inside hardware core with minimal disturbance to the core. Some information must be

supplied or pulled out from hardware core through debugging hardware; so designers can

analyze responses of the hardware core. While providing and supplying information to

the hardware core, debugging hardware should not alter the functionality of the core. If

the debugging hardware did alter the core the designer would not be able to determine the

functional verification of hardware core precisely. Another feature that is required for

most applications is that the debugging hardware should consume a minimal amount of

resources. If designers desire to attach debugging hardware onto core, the debugging

hardware should reduce the availability of resources that could be provided to the core as

little as possible.

4.3 The RS-232 Connection

The RS-232 serial communication protocol is a standard protocol used in

asynchronous communication. The protocol was defined by a standards committee

known as the Electronic Industries Association.

55

The communication lines used here are called TX-line (Transmitting line) and

RX-line (Receiving line). Note that, due to duplex data transmission, the TX-line may be

considered as the RX-line in from another peripheral’s perspective. It all depends on what

peripheral that we use as a reference. In this thesis, we consider the debugger hardware as

the reference. When TX-line and RX-line are referred, these are the lines looked at from

the perspective of the debugging hardware. The communication topology of host-PC-to-

debugging-hardware is shown in Figure 4.1.

Figure 4.1 Communication topology

56

4.3.1 RS-232 Connector

The connectors used in RS-232 connectors used here are D-subminiature with 9-

pin, called DB9. The front view of a DB9 Male connector (DB9M) and a DB9 Female

connector are shown in Figure 4.2.

(a) DB9M connector (Male)

(b) DB9F connector (Female)

Figure 4.2 front view of DB9 connector

Male connectors (DB9M) are the terminals out from a PC. The GPEAT

debugging hardware will use a DB9 Female connectors (DB9F). The link cable is made

up with two-conductor shielded cable which each end of the cable is connected with

DB9F. The signal-pin mapping here follows the EIA-232 standard which is shown below

in Table 4.1.

Pin Signal Pin Signal

1

CD – Carrier Detect

6 DSR – Data Set Ready

2

RXD – Received Data (RX-line)

7 RTS – Request To Send

3

TXD – Transmitted Data (TX-line)

8 CTS – Clear To Send

57

4

DTR – Data Terminal Ready

9 RI – Ring Indicator

5

GND – Signal Ground

Table 4.1 Signal-Pin mapping in RS-232 connection

There are many communication schemes for connecting cables using an RS-232

connection. In this literature, the scheme called Null-Modem is used which is simple and

does not use some of the handshaking methods used in other RS-232 communication

schemes. In null-modem wiring scheme, the TX-line at one end is connected to RX-line

of the other end. RTS and CTS is directly connected together because we are not using a

data-flow-control handshake. GND terminals are of the two ends are connected together

for signal reference. Null-Modem cable wiring is shown in Figure 4.3.

Figure 4.3 Null-Modem cable wiring

4.3.2 RS-232 Universal Asynchronous Receiver/Transmitter (UART) Protocol

Data sent and received through the RS-232 connection is divided into frames. A

frame is a non-divisible packet of bits. It consists of both data byte (information) and

58

overhead (start-bit and stop-bit). One frame is made up of one start-bit, seven bits of

information, one parity-bit and one stop-bit in accordance with UART protocol. If a

frame was sent previously and next frame is about to be sent immediately without delay,

the stop-bit of the previous frame will be replaced with the start-bit of the next frame.

The protocol used in this literature does not use the parity-bit and the parity bit will not

be used for error checking. The parameters for RS-232 protocol used are summarized in

Table 4.2 and a timing diagram for a frame is shown in Figure 4.4.

Figure 4.4 Timing diagram for a frame transferred in RS-232 connection

Comm. Port Parameters Value Unit

Data bits 8 Bits

Stop bit 1 Bit

Parity bit None

Flow Control None

DTR line Not applicable

RTS line Not applicable

Table 4.2 Parameters for RS-232 protocol

59

4.3.3 USB-to-RS232 Converter

Many computers today especially most of laptops do not provide an RS-232 port.

Because of this we used a port converter in order to connect an existing computer port to

the board’s RS-232 port. The USB-to-RS232 converter is an ideal solution for this. It can

be recognized as a built-in RS-232 port in certain operating systems and is able to work

according to EIA-232 standard and, therefore, does not need extra programming on the

computer side to send and receive UART formatted data. In addition, a USB port has

very high-speed data transfer rate of 400Mbps which is an advantage for a converted

RS232 port. Normally, RS232 port has a limit for data transfer rate of 57600 bps but with

our configuration the port can transfer data at a rate up to 921600 bps. By using the

transfer rate of 921600 bps, the bit-error-rate (BER) is high due to the timing problem

caused by the clock speed used in GPEAT system which is 50MHz. The feasible data

transfer rate for RS-232 connection used in this literature is 460800 bps which is still

faster than the normal rate. Figure 4.5 shows a USB-to-RS232 converter.

Figure 4.5 A USB-to-RS232 converter

60

4.4 Hardware Architecture and Implementation

The debugging hardware is implemented as an add-on component for the GPEAT

system. It obtains all information on every individual in each population and sends this

information back to the host PC through the RS-232 connection. The debugging

hardware consists of 10 main modules. Five of these modules are implemented in finite

state machines (FSMs). The FSMs in these designs generate control signals and monitor

for notifying signal to interact among the modules. These controllers are organized in a

manner similar to a microcontroller. The main unit (debugger controller [DC]) performs

like a CPU which controls its peripheral controllers and interacts with the memory unit.

The transmitting controller (TXC) and receiving controller (RXC) is responsible for RS-

232 communications and acts like peripheral controllers of the microcontroller. The DC

provides control signals to TXC, RXC and the memory unit (RAM). It also interacts with

the GPEAT system which in turn can be considered as a controlling system for the DC.

The DC can be considered as a peripheral controller from the perspective of the GPEAT

system.

In the following sections, we limit our interest to the hardware modules of the

debugger. Again, the debugger is a component that communicates with the GPEAT

system in order to capture the values being used in the GPEAT system. We describe the

hardware modules and illustrate the ASM charts for each controller.

61

4.4.1 Overall Hardware Design

We introduce the overall hardware design in this section and describe the high-

level hardware interactions and specifications. Figure 4.6 shows the hierarchical diagram

of controller interactions.

Figure 4.6 Hierarchical diagram for modules

Five FSMs are in charge of controlling data flow from GPEAT to the host PC.

The DC unit accepts debugging information, such as chromosome size, gene size,

chromosome content and fitness value from GPEAT, and sends this information back to

host PC as bytes package through RS-232 connection using TXC and TXI. There is no

information that is sent from the host PC to GPEAT. RXC and RXI are only responsible

for receiving commands from host PC to the DC unit.

62

Figure 4.7 Overall architecture for debugging hardware

Figure 4.7 shows the high-level block diagram describing the interactions among

hardware modules. Modules (1), (3), and (4) are controllers whereas (9) and (10) are line-

interfaces. All of the controllers and interfaces are FSMs whose behaviors can be

described using ASM charts. The ASM charts are explained in details in the following

sections (4.4.2 – 4.4.7). There are some hardware modules which are not FSMs. These

blocks include latches for data being processed and three memory modules for data-

buffering purpose.

63

The DC provides control signals to TXC and RXC and monitors for notifying

signals from those controllers. When GPEAT has some information to send back, the DC

checks if TXC is busy or not. If TXC is not busy it interacts with TXC by sending data

accepted from GPEAT core to FIFO of TXC and designates TXC to initiate a sending

transaction through TXI.

Whenever RXC receives a command (a data byte) from the host PC through RXI,

it stores the command in its FIFO making a queue of commands to be sequentially

executed by the DC. RXC notifies the DC when its FIFO is not empty. After a

notification the DC will strobe the commands out from the FIFO one at a time. Normally

commands will not be accumulated in the FIFO of RXC since RXC notifies the DC every

time a single command is received but the concept of queuing commands in the FIFO is

important in that it is the mechanism for preventing loss of commands if the DC cannot

completely execute commands before the next command arrives.

TXI and RXI are FSMs that communicate with the host PC through the RS-232

TX- and RX-line. These FSMs have to meet the timing requirements for the baud rates

defined in the EIA-232 standard. When a command is received, RXI requests RXC to

stores this command in the FIFO and, when a data package needs to be sent, TXC

requests TXI to send the package one byte at a time.

64

4.4.2 The Debugger Controller (DC)

The DC controls TXC and RXC directly and receives/sends data packages for the

RS-232 connection through these controllers. TXC and RXC provides a ready signal for

the DC in order to indicate that they are ready and are available to interact with the DC

unit.

65

Figure 4.8 The ASM chart for the DC unit

66

The Finite State Machine (FSM) for the DC unit has six states for carrying out the

processes of receiving commands and sending data back through RS-232 connection to

and from the computer. In state_0 (WAIT_CMD), the controller waits for an incoming

command sent by the host PC. The controller will stay idle as long as it is not receiving a

command from the host PC. After the RXC signifies to the DC that its FIFO is not empty,

the DC immediately proceeds to state_1 (FETCH_CMD) to interact with RXC by

changing the mode of RXC to the (receiving mode)—modes of RXC will be described in

section 4.4.5 (RX Controller). When RXC is in receiving mode, the DC strobes the

command or data out from the RXC FIFO by providing a data-strobe signal to RXC. Two

clock cycles after data-strobe has been received, RXC presents valid data on its 8-bit data

terminal to the DC. The presented command is obtained by the DC and then decoded in

state_2 (INST_DEC) of the DC. Three commands are recognized by the DC and are

summarized in Table 4.3. The command format for the DC is a bit-string with a length of

eight bits (recognized as a byte).

Command Description

0x72 (‘r’ in ASCII) Request for Chromosome Package

0x73 (‘s’ in ASCII) Request for System Information. Package

0x69 (‘i’ in ASCII) Request for Identification Package

Table 4.3 Command recognized by the DC

When the DC receives a 0x72 command (sending data), the controller proceeds

into next state, state_3 (WAIT_START). The DC waits for start signal from GPEAT

system in this state. The GPEAT system has to present the binary content of a

chromosome to be sent and a 32-bit binary value of that particular chromosome to the DC

67

then the debugger is called by raising the start signal high for two clock cycles. After

finishing this initialization for sending a chromosome and its fitness value back to the

computer, the DC fetches all data in its RAM and sends that data back in state_4

(FETCH_DATA) and state_6 (SEND). A chromosome and its fitness value given to the

DC will be stored into the RAM of the DC. This mechanism is explained in the following

section 4.4.2 – Memory (RAM).

The 0x73 command (request to send system information) informs the DC to send

information about the system back to the host PC. This system information package

consists of chromosome size, gene size, gene type and population. When the host PC

receives this package, it recognizes the received data in the domain of EC and treats the

data as GPEAT does. When the DC receives this command, it immediately steps through

to state_6 (SEND) and sends the information package back. This is sent immediately

since this information has already been defined when the GPEAT system was

synthesized.

The 0x69 command notifies the DC to send an identification package back to the

computer. An identification package contains the hardware signature and GPEAT version

and will be recognized by the debugging GUI running on the host PC and used to verify

the debugging hardware. When the DC receives this command it accesses an

identification ROM which can only be altered by the GPEAT designers.

68

4.4.3 Memory (RAM)

The memory addressing model used here is a linear address space model where

all the memory address can be expressed completely with no offset, by a value stored in a

single register. This memory module is accessed by the DC as a RAM module. The DC

uses an 8-bit register, a BI (Byte Indexing register), to address the RAM which contains

both information packages and data packages. Data mapping is illustrated in Figure 4.4.

Figure 4.9 Data mapped in the RAM module

Figure 4.4 shows how data packages are mapped into the 256 x 8 bits RAM. The

DC accesses address 0x00 for internal uses and accesses addresses 0x01 and 0x02 for

69

content for the information package which contains GPEAT gene size and chromosome

size. Addresses from 0x03 to 0x06 store fitness values for chromosome. Addresses

beyond address 0x06, namely 0x07 to 0xFF, are reserved space for storing chromosome

content. The chromosome content area can store up to 1992 bits (249 multiplied by 8).

Figure 4.10 RAM architecture for the DC

Figure 4.10 shows the architecture for the RAM module for the DC. Note that the

diagram only partially shows the required elements in the RAM module—and does not

70

entirely shows what is inside the RAM modules. This diagram describes the low-level

signal connections which can be used to control the behavior of the RAM module.

We start the explanation of the RAM module with the data latching operation of

the RAM—which is similar to write operation of commonly used RAM. The DC presents

chromosome content and fitness value in bits through Chromosome Content and Fitness

Value terminals of the RAM while it holds the Latch Enable (LE) signal high. When the

LE signal is high, the values in the D-Latch arrays change simultaneously with the

chromosome content and Fitness value data. The chromosome content and Fitness value

data is presented by the DC. The DC makes sure that the data to be sent is not changed by

keeping the LE signal low. In this case, the data is latched and stored in a D-Latch arrays.

The data is held and will not change even when the data presented at the RAM terminals

is changed. The data at the RAM terminal is ignored and will not be stored in D-Latch

arrays as long as the LE signal is low.

The read operation is performed by changing the LE signal to low. In this case

too, the D-Latch arrays hold the data as explained above. Then the DC asserts the address

to be read at the address terminals of the RAM. A triggering signal, namely Data-Strobe

(DStrb), is raised to high by the DC to signify to the RAM module to change the data

value at the Data-out terminals according to the address presented at the RAM terminals.

To understand how the RAM is accessed by the DC, we previously introduce the

BI register in the DC. Here we will introduce another 8-bit register, the PS (Package Size

register), which is associated with the BI register and contains the number of bytes to

send in one transaction. The PS register will be loaded with either a value of 0x04 or the

71

value stored in address 0x00 depending on whether the DC is operating command 0x73

or 0x72. For command 0x73, the DC sends a system information package back to host

PC. In this case the PS register is loaded with value 0x04. If the host PC requests for a

data package by sending command 0x72 to the DC, the PS register will automatically be

loaded with the value stored in the RAM at address 0x00 (Data Package Size). This value

depends on the size of chromosome in the GPEAT system and the value can be

determined by the size of chromosome in bits divided by eight. If there is a remainder

when the chromosome size has been divided by eight, the data package size is rounded up

to the next number of bytes so all bits can be accommodated. For both commands, the

DC has an internal mechanism that automatically loads the size of package into the PS

register. No command needed to direct this action. This is described in the ASM chart

below in Figure 4.11.

72

Figure 4.11 The ASM chart for sub-state in state ‘FETCH_DATA’ of the DC

Note that these states described in Figure 4.11 are the sub-states which are

performed in state 4 -‘FETCH_DATA’ of the DC. The DC starts fetching data by

obtaining the obtain the size of data package by accessing the value stored at the address

0x00 of the RAM. It loads the PS register with 0x04 if the received command is 0x73 and

73

loads the value stored in the RAM location 0x00 into the PS register if the received

command is 0x72. The next step is to increase the BI register by 1 and present the value

stored in the BI register to the RAM so that the next byte will be read. This step (state 2)

through the final step (state 7) will be repeated until the DC reads the number of bytes

specified in PS register. The next step is state 4 and state 5 where the DC grabs the data

presented at the data-out terminals of the RAM. After obtaining data from the RAM, it is

necessary for the DC to buffer the data in TXC by requesting TXC to store each

individual byte in the TXC FIFO in state 6 and state 7. After finishing all sub-state (s0-

s7) in state 4 (FETCHING_DATA), the DC moves on to the next state which is state 6

(SEND) which tells TXC to send the data stored in TXC FIFO.

4.4.4 The TX Controller (TXC)

The tasks for TXC is to communicate and exchange data with the FIFO. This

includes controlling TXI for sending data back to host PC. TXC operates in two modes

which are TX Interface Controller Buffering (Mode-0) and TX Interface Controller

Sending (Mode-1). The DC determines the mode for TXC and changes the mode. Figure

4.12 shows ASM charts for TXC in each mode.

74

Figure 4.12 The ASM charts for TXC in mode-0 and mode-1

The FIFO can be considered as a built-in unit in the TXC block. The FIFO will

receive control signals directly from either the DC or TXC. In mode-0, which is

described by Figure 4.12 (mode-0), TXC suspends all control signals to FIFO except for

the R/W signals, the signals which control whether the FIFO will receive or providing

75

data. The R/W signals in mode-0 will be cleared to low indicating that the FIFO will

receive data directly from the DC. TXC also bypasses the data-in strobe signal that it

receives from the DC to the FIFO in this mode.

TXC will be active in mode-1. All control signals are overridden by TXC in this

mode; and the DC will no longer be able to control the FIFO. In this mode, TXC controls

the FIFO and TXI directly and is responsible for obtaining data stored in FIFO

(previously stored in mode-0) and sending this data to TXI.

As shown in Figure 4.12 (mode-1), TXC starts the process in state-0 (s0) by

observing the empty signal from the FIFO. This signal indicates whether there is data left

in the FIFO or not. If this signal is high, TXC provides a data-out strobe signal to the

FIFO and obtains data byte one-at-a-time. There are two sets of data-in terminals from

the FIFO to TXC. In this state, only one set of data-in terminals will be used to obtain

data from FIFO. TXC determines which set of terminals will be active and it toggles the

status (active/inactive) of these sets of terminals after each use. The purpose of having

two sets of data-in terminals from the FIFO is that TXC can receive data bytes from the

FIFO continuously even when TXI is busy. When TXI is available again, TXC has

already obtained next data byte from the FIFO and this data byte will be immediately

presented at the other set terminals of TXI and sent through TXI when TXI becomes

available.

76

4.4.5 The TX Interface (TXI)

TXI is the FSM that responsible for sending data byte through RS-232

connection. TXI sends data bytes accordingly to the UART protocol. The parameters for

RS-232 connection specified in TXI are summarized below in Table 4.4.

Comm. Port Parameters Value Unit

Data bits 8 Bits

Stop bit 1 Bit

Parity bit None

Flow Control None

DTR line Not applicable

RTS line Not applicable

Baud rate

110, 300, 1200, 2400,

4800, 9600, 19200,

38400, 57600, 115200,

230400, 460800, 921600

Bps

Table 4.4 Parameters for RS-232 protocol in TXI

TXI has a built-in baud-rate-generator (BRG) which produces the clock signal.

TXI uses this baud clock for sending data back to host PC and it also uses this clock

signal for its FSM. This BRG continuously generates the clock signal with clock speed

according to baud-rate value in Table 4.4. This is in contrast with the BRG in RXI which

will be explained later.

77

TXC divides the data package or information packages into bytes then sends each

byte to TXI. TXI receives one byte from the TXC FIFO at a time and sends it along with

a start- and stop-bit. TXI starts each transaction by clearing the TX-line to low first for

one bit worth of data (the start bit). This indicates to the host PC to be ready to receive

data. Bits following start-bit are eight data bits and then a stop-bit. After TXI successfully

the sends start-bit, it immediately changes the state of TX-line accordingly to data bits

and then sets TX-line to high for the final stop bit which effectively ends the transaction.

This process can be illustrated in details in Figure 4.8.

78

Figure 4.13 The ASM chart for TXI

According to the ASM chart in Figure 4.13, TXI continuously sends the stop-bit

value through TX-line to host PC in state-0 (IDLE) as well as setting the busy signal low

79

indicating that it is available to the TXC. Simultaneously, it monitors for the enable

signals from TXC. If the enable signal is set to high by TXC, TXI changes the state to

state-1 (START) and starts sending the start-bit. In state-1 (START), TXI holds the TX-

line to the state of start-bit for one baud-clock cycle and indicates to the TXC that it is

busy by raising busy signal to high. Two sets of data-in terminals, previously mentioned

in section 4.4.4, are used again here in state-1 (START). One of these two sets of

terminals is selected by TXC to obtain data byte from the TXC FIFO. TXC provides a

data-in terminal select signal to choose which set of terminals will be used. If data-in

terminal select signal is high, terminal-1 will be used to obtain data from TXC FIFO.

Otherwise terminal-0 is used. After obtaining data from the TXC FIFO, TXI proceeds to

next state, state-2 (SEND), to send the data byte grabbed. State-2 (SEND) will be

repeated nine times because every time state-2 is repeated TXI sends only one bit of data

byte and, at the ninth iteration, the stop-bit is sent and the enable signal is observed again.

If the enable signal is high, TXI goes back to state-1 (START) again immediately

sending the start-bit for the next byte that will also come from TXC FIFO. If the enable

signal is low, TXI goes back to state-0 (IDLE) and waits to be reactivated once enable

signal goes high again.

4.4.6 The RX Controller (RXC)

RXC is the controller responsible for receiving data byte (command) from host

PC. RXC controls the RXC FIFO and RXI for receiving and buffering data for the DC.

The DC obtains command stored in the RXC FIFO when RXC notifies the DC that one

or more commands is available in its FIFO. The two operation modes and ASM charts for

RXC are shown in Figure 4.14.

80

Figure 4.14 The ASM charts for RXC

Similar to those in TXC, RXC also has two operation modes and they are mode-0

(RX Interface Controller Buffering) and mode-1 (RX Interface Controller Active). In

mode-0, the DC sends control signals to RXC to obtain the commands stored in the

FIFO. RXC suspends all control signals except the R/W signals to the FIFO. The R/W

signal is set to high to indicate to the FIFO that is should present the data stored when it

receives a data-out strobe. The data-out strobe signal from the DC is directly fed to the

FIFO because RXC bypasses this signal and allows the DC to control when to clock the

data out from the FIFO. In mode-1, RXC is active and that means it is receiving

commands from the host PC and storing the commands in the FIFO. The two main steps

for receiving a command from host PC are the ‘monitoring RXI/obtain command if RXI

has one’ and the ‘buffering command in the FIFO’. For hardware construction reasons,

81

these two main steps are distributed into four states as shown in the ASM chart (mode-1).

First, RXC monitors for a busy signal from RXI in the state-0 (bs0). If RXI is busy it will

wait in state-0, otherwise it moves to state-1 (bs1). RXC raises data-out strobe signal to

RXI to high for obtaining the received command from RXI then it moves to state-2 (bs2).

RXC stores the received command from RXI in the FIFO by raising data-in strobe signal

to the FIFO to high. After storing the received command it moves to state-3 (bs3). In

state-3, RXC clears all strobe signals to low and goes back to state-0 to wait for another

command to be received.

4.4.7 The RX Interface (RXI)

RXI is the FSM that is responsible for receiving data bytes from host PC. RXI

receives data bytes accordingly to the UART protocol. The parameters for RS-232

connection specified in TXI are summarized below in Table 4.5.

Comm. Port Parameters Value Unit

Data bits 8 Bits

Stop bit 1 Bit

Parity bit None

Flow Control None

DTR line Not applicable

RTS line Not applicable

Baud rate
110, 300, 1200, 2400,

4800, 9600, 19200,
Bps

82

38400, 57600, 115200,

230400, 460800, 921600

Table 4.5 Parameters for RS-232 protocol in RXI

TXI has previously been described in section 4.4.5. It sends data bytes to host PC

through the TX-line. The same process occurs here but in the reversed order. We will

now explain the reversed process in which host PC sends data to RXI through RX-line.

The RXI unit has a built-in baud-rate-generator (BRG) block similar to the TXI’s. The

difference is that the BRG in RXI will only be active when RXI receives a start-bit and

will be inactive while RXI receives a stop-bit. When the BRG is active, it provides a baud

clock to RXI. Figure 4.15 shows the ASM charts for both the BRG (on the left) and RXI

(on the right).

83

Figure 4.15 The ASM charts for BRG (left) and RXI (right)

First, we explain the ASM chart for the BRG on the left of Figure 4.15. When

BRG is in active, it checks the state of RXI. If RXI is in state-1 (RECEIVE), it enables

baud clock circuitry to provide the clock signal for RXI. Otherwise it monitors for a stop-

bit. If a stop-bit is received, it disables the baud clock circuitry and stops feeding the

clock signal to RXI.

The ASM chart for RXI on the right has two states for monitoring and receiving

command from host PC. In state-0 (IDLE), RXI monitors for a start-bit on RX-line. Note

that at this time RXI is not receiving the clock signal from the BRG. The consequence is

84

that RXI cannot change the state to state-1 (RECEIVE), when BRG is in active. As soon

as BRG captures a start-bit and becomes active, RXI receives the clock signal from BRG

and is able to change the state to state-1. RXI receives all the bits in a command by

repeating state-1. It starts monitoring for a stop-bit when all the bits in a command are

received. If a stop-bit is received, it notifies RXC to read the command received from its

register.

4.5 Interaction between Debugging Hardware and Debugging GUI

The debugging hardware (DH) and the debugging GUI (DGUI) exchanges

commands and data through the RS-232 connection and is explained in previous sections.

In this section, we will explain the transmission method and data transfered between the

DH and the DGUI.

The DH is built-in hardware on the GPEAT system whereas DGUI is software

running on host PC. DGUI sends commands to the DH to obtain the hardware

identification, GPEAT system information and the GPEAT data. Table 4.6 summarizes

commands recognized by the DH. The DH responds by sending a package back to the

DGUI for further processing. There are three types of packages that DH sends back to

DGUI which are the identification package, system information package and

chromosome package. These three types of packages have various lengths in bytes. Each

package is followed by an End-of-Package (EOP) byte-cluster to indicate to the DGUI

that a transaction has ended. An EOP consists of three signature bytes along with number

of bytes sent preceding the EOP. Figure 4.16 shows the structure of EOP.

85

Command

(Single byte)
Description Response

“i” (0x69)

Request for system

identification
Identification Package

“s” (0x73)

Request for GPEAT system

information

GPEAT System

Information Package

“r” (0x72)

Request for chromosome

information
Chromosome Package

Table 4.6 Commands recognized by Debugging Hardware

Figure 4.16 Structure of EOP

Figure 4.16 above shows the response from the DH through RS-232 connection.

The package can be identification package, a GPEAT System information package or a

chromosome package. Every type of packages will end with an EOP as shown above.

The first N-Bytes of the package contain data or information sent back from the DH. The

last four bytes make up the EOP byte-cluster. The first three bytes of the EOP are called

86

the signature bytes. They are used to indicate to the DGUI that the package is ending at

that particular point. The signature bytes consist of three bytes which are 0x45 (E), 0x4E

(N) and 0x44 (D). The last byte of the EOP indicates the number of data or information

bytes that have been transferred before the occurrence of EOP.

When the DGUI receives a package it reads and buffers the last byte of the

package which is the last byte of the EOP. Then it checks if the signature bytes of EOP

are valid (containing 0x45 [E], 0x4E [N] and 0x44 [D]). If the EOP is valid, it checks

whether the amount of data in bytes arrived as specified in the last byte of EOP. In

conclusion, if all conditions described are valid, it accepts the received package. If any of

these conditions are not satisfied, it requests for resending of the package. Section 4.5.1,

4.5.2 and 4.5.3 will describe the structure of each type of package.

4.5.1 Identification Package

The identification package is sent back to host PC when DH received “i” (0x69)

command from host PC. This type of package is normally sent back when DGUI initiates

connections with the DH to check the validity of DH and verify the version of DH and

GPEAT system. The structure of Identification Package is shown in Figure 4.17.

Figure 4.17 Identification Package

87

4.5.2 GPEAT System Information Package

The GPEAT system information package carries information on the GPEAT

system implemented. This type of package will be sent back whenever DGUI request for

system information by sending command “s” (0x73) to DH. The structure of GPEAT

System Information Package is shown below in Figure 4.18.

Figure 4.18 GPEAT System Information Package

4.5.3 Chromosome Package

The chromosome package is the most frequently requested package. Only one

chromosome can be sent within a chromosome package. DGUI requests for chromosome

packages by sending “r” (0x72) command to DH. The structure of chromosome package

is shown in Figure 4.16.

88

CHAPTER 5

DEBUGGING GRAPHICAL USER INTERFACE

5.1 Introduction

The debugging graphical user interface (DGUI) provides an access for user to

observe the progress of evolutionary process on the GPEAT system. Graphical and

numeric representation of data obtained from GPEAT system is presented in the DGUI.

DGUI performs as a storage system for all populations of chromosomes generated from

GPEAT and can also be used as an analysis tool. It does not assist in any operations

performed in GPEAT system but obtains data from the GPEAT system for debugging

and analysis purposes. The DGUI interfaces with GPEAT system through debugging

hardware described in chapter 4. In this chapter, the structure and features of DGUI is

described.

5.2 Debugging Graphical User Interface (DGUI)

5.2.1 Workspace

The workspace is the area that contains the windows for displaying information

obtained from the GPEAT system. The workspace window is shown in Figure 5.1.

89

Figure 5.1 DGUI workspace

The windows contained in workspace will be visible only when user chooses to

view them by accessing the View menu on the menu bar. On the menu bar, the user can

open or save previously obtained data to/from a file by accessing Files menu. The user

can also connect/disconnect to GPEAT system, start/stop evolutionary process on

GPEAT and configure RS-232 connection by accessing Device menu. To view obtained

data that has been sent from GPEAT, the user would select from the View menu.

5.2.1.1 Loading debugging data

The user can open debugging data that has previously been received from the

GPEAT system without connecting to the system. Debugging data is stored in a binary

format with file extension of .gdi. A .gdi file stores all chromosomes in all populations

along with their fitness values. A .gdi file is opened by clicking Files  Open.

90

5.2.1.2 Saving debugging data

After receiving data from the GPEAT system, the user can save this data in a .gdi

file for later analysis. Received data can be saved by clicking File  Save.

5.2.2 Working with GPEAT hardware

The DGUI connects with GPEAT system through an RS-232 connection. In order

to connect to the built-in debugging hardware (described in chapter 4) with DGUI, the

user has to enable the built-in debugging hardware in the parameter entry GUI (described

in chapter 3). Otherwise, the DGUI will still connect to the GPEAT system but it will not

be able to obtain data. The following section 5.2.2.1 and 5.2.2.2 assume that the built-in

debugging hardware is enabled and show the steps for connecting and obtaining data

from the GPEAT system.

5.2.2.1 Connecting to GPEAT hardware

Before connecting to the GPEAT system, the user is required to configure an RS-

232 connection which will be used as the channel for communication. Figure 5.2 shows

the setup window for configuring RS-232 connection. This window can be accessed by

clicking Device  Setup.

91

Figure 5.2 RS-232 Setup

There are two parameters that have to be specified in the setup window which are

communication port (1) and baud rate (2). The communication port drop-down list (1)

shows all available physical RS-232 ports on the computer that can be used to connect to

the GPEAT system. The user has to select only one port that is connected. The baud rate

determines the speed of the data transfer. If the baud rate selected in this setup window

does not matches with the speed set in the system, no communication will be established.

In this literature, we chose communication port as COM5 and baud rate is 460800 bit-

per-second.

After configuring the RS-232 connection, the next step is to connect to the

hardware. This step verifies the hardware signature and version and obtains the GPEAT

parameters previously configured through the parameter entry GUI. To connect to the

hardware, user selects Device  Connect. Figure 5.3 shows a dialog showing hardware

signature and version.

(1)

(2)

92

Figure 5.3 A dialog showing hardware signature and version

After the hardware is recognized by the DGUI, the DGUI requests the GPEAT

parameters by sending a request-for-information-package command (described in chapter

4) to GPEAT. The window shown in Figure 5.4 shows the GPEAT parameters obtained

from the hardware. The window can be toggled between show and hide by selecting View

 System Information from menu bar.

Figure 5.4 A window showing GPEAT parameters

5.2.2.2 Obtaining data from hardware

When the connection has been established, DGUI sends a request to GPEAT to

send the chromosome information and then stores that information in memory. The

DGUI provides two ways to request chromosomes information and they are continuous

requests and manual requests.

93

In the continuous request mode, the DGUI continuously sends request-for-

chromosome-package command to the hardware until the evolutionary process stops.

Each chromosome will be processed and stored in memory which is accessible to the

user. Notice that when the debugging hardware is enabled (by parameter entry through

the GUI), the evolutionary process cannot be started without interaction by the user

through the DGUI interface. It is necessary to start the process through DGUI and then

the DGUI will grab all chromosomes and store them. The user can start the process by

selecting Device  Start after connecting to the hardware.

In the manual request mode, the DGUI provides an interfacing window for

sending commands to the hardware. The user can send the commands defined in chapter

4 by typing commands in this window. If the request-for-chromosome-package command

is initiate by the user, the chromosome packages received will also be processed and

stored in a memory that is accessible to the user and can be used for debugging and

analysis purposes. Figure 5.5 shows the interfacing windows contained in DGUI

workspace.

94

Figure 5.5 Interfacing windows in a workspace

 (1) and (2) in Figure 5.5 are “Sent Data” and “Received Data” windows. The user

can manually type a command in (1) and see the received bytes in (2). Each character in

(1) is recognized as a command and each value in parenthesis in (2) represents values of

received bytes. Each line in (2) also represents an each individual package received from

the hardware.

5.2.3 Evolutionary Progress Graph

In EC applications, evolutionary progress observation is one of the important

performance measurements. Fitness-value tracking is the common method of

evolutionary progress observation for many EC applications. The best, average and worst

fitness values are plotted against their generation number which shows time to

convergence for the algorithm. The best fitness values are picked from the chromosomes

(1) (2)

95

to generate the best fitness curve, and worst values are picked from ones that have lowest

fitness values to generate the worst fitness curve. The average fitness values used to

create the mean of the fitness value curve. The evolutionary progress graph can be used

to check if the algorithm has converged. A graph which shows the progress for

evolutionary process is shown in Figure 5.6.

Figure 5.6 Evolutionary Progress Graph

5.2.4 Browser

A Browser is a window which is provided for browsing chromosomes from your

choice of generation. The user can have as many browser windows open as he needs. A

browser window can be added to the workspace by selecting View  New Browser.

Figure 5.7 shows a browser window.

96

Figure 5.7 A Browser window

Three mode of browsing are provided and they are the normal mode, the best

mode and the worst mode. Two numerical text inputs (1), (2) and one drop-down list (3)

are used for browsing chromosomes and selecting browsing mode. Numerical text inputs

(1) and (2) are used to specify the population number and the index-of-

chromosome/number-of-chromosome respectively. Drop-down list (3) is used for

selecting browsing mode (Normal/Best/Worst).

Normal mode shows all the chromosomes contained in a specified population, if

no index of chromosome is specified. One chromosome will be shown, if there is an

index of a chromosome specified. The user specifies the population number that will be

accessed in (1) and the index of chromosome in (2). (2) can be left blank if user wishes to

view all chromosomes in that particular population.

(1) (2) (3)

97

The best mode browses for a specified number of the best chromosomes in a

specified population, while the worst mode browses for a specified number of worst

chromosomes in a specified population. The user specifies the population number

(generation) that will be accessed in (1) and a number of best/worst chromosomes in (2).

5.2.5 Populations Dump

The population dump window shows all chromosomes in all populations.

Chromosomes are shown in text form with indexes, contents (genes) and fitness values.

Figure 5.8 shows population dump window. Text generated can either be saved to a text

file or exported in a spreadsheet format for further analysis using a spreadsheet

application like Microsoft Excel. To save or export text, the user selects Files  Save or

Files  Export respectively from the file menu in the population dump window.

Figure 5.8 Population Dump window

98

Figure 5.9 Export to SpreadSheet dialog

By selecting File  Export in the population dump window, a dump of all the

chromosomes to a file in spreadsheet format will be carried out. The window which is

shown in Figure 5.9 shows headers for columns for the spreadsheet dump. The user can

customize the header order and inclusion and choose whether headers will be visible or

hidden in the spreadsheet. After clicking OK, the user will be prompted for a filename for

the file to be saved to. This will store all chromosomes in spreadsheet format to a

specified text file.

99

CHAPTER 6

SIMULATION AND DATA

6.1 Hardware simulation

In this chapter the system is simulated and the debugger abilities are

demonstrated.

In the hardware simulation, the debugging hardware is broken down into the

following modules: The DC (debugger controller), TXC (transmitting controller), TXI

(transmitting interface), RXC (receiving controller), and RXI (receiving interface). The

modules are tested separately to verify their individual functionalities and analyze signal

integrity. Each module is tested with a testbench that is specially design for that particular

module. A testbench is an entity written in VHDL which is not synthesizable but

provides the essential signals for a module in order to function normally in a simulation.

We use ModelSim XE-III (MXE-III) to obtain the simulation results. Once the VHDL

files for debugging the hardware are compiled together with the testbenches then,

simulations can be started and compatibility among the modules can be tested.

6.1.1 The Debugger Controller

When the Debugger Controller (DC) receives one of the following commands

request-for-identification-package (0x69), request-for-information-package (0x73) or

100

request-for-chromosome-package (0x72), it will carry out the actions described earlier

chapter 4. In the simulation, the DC is tested with all of the commands with the

simulation setup shown in Table 6.1.

Simulation Setup

Parameters Value

Clock speed 50 MHz (50% Duty cycle)

Baud rate 462962.963 bit-per-second

System Identification “GPEAT1.00”

Population size 20

Chromosome size 5

Gene size 10

Gene type Integer

Test Chromosome

Gene0: 0x0BC (0010111100B, 10-bit)

Gene1: 0x303 (1100000011B, 10-bit)

Gene2: 0x07F (0001111111B, 10-bit)

Gene3: 0x3FE (1111111110B, 10-bit)

Gene4: 0x3F7 (1111110111B, 10-bit)

Bytes:

- 0x2F (47D)

- 0x30 (48D)

- 0x31 (49D)

- 0xFF (255D)

101

- 0xFE (254D)

- 0xFD (253D)

- 0xC0 (192D)

Test Fitness Value 0x DE7B7EFF (3732635391D)

Bytes:

- 0xDE (222D)

- 0x7B (123D)

- 0x7E(126D)

- 0xFF (255D)

Table 6.1 Simulation Setup for Debugger Controller (DC)

As noted in Table 6.1, the test chromosome has five 10-bit integer numbers for

five genes. All bit strings representing values will be concatenated to form a 50-bit bit-

string in order to be processed by the DC. Because that 50-bit string cannot be exactly

divided into equal number of bytes, the last two bits have six zeros concatenated in order

to form one whole byte. Once the zeros are added to the last byte the string will have 56-

bits and can be chopped into 7 bytes. These 7 bytes contain same information as the

chromosome does. The chromosome will be reconstructed with the Debugging GUI

(DGUI) and the six unused zeros will be ignored by the DGUI. The process of

concatenation will be internally done by the DC. The GPEAT core is only responsible for

feeding unprocessed chromosome to the DC. We only want to clarify the process of

sending chromosome back in this chapter.

102

Simulation Result

Figure 6.1 Timing diagram for response of 0x69 command

Figure 6.1 shows the timing diagram for RS-232 connection which is the

simulation result of testing the DC with the 0x69 command (request-for-identification

package). The command is fed through the RX Pin as shown and the TX Pin shows the

response of the DC. The identification string is ‘GPEAT1.00’ as shown in Table 6.1. This

string is sent out followed by EOP as shown in Figure 6.1.

Figure 6.2 Timing diagram for response of 0x73 command

Figure 6.2 shows the timing diagram for the simulated result of sending the 0x73

command (request-for-information-package) to the DC. Gene size is sent out first

followed by chromosome size, gene type and population size. In this particular case, the

103

first byte contains 10D which is the gene size, 5D which is the chromosome size for the

second byte, 1D for the third byte indicating integer-typed gene is used and 20D for the

fourth gene specifying the population size. The EOP also appears here as the last byte-

cluster.

Figure 6.3 Timing diagram for response of 0x72 command

The test chromosome is sent back in this simulation result. A 0x72 command is

sent to the DC. In response, the DC sends the chromosome followed by an EOP back. In

Figure 6.3, 11 individual bytes are sent back sequentially. The first four bytes contain 32-

bit integer number for fitness value. Following 7 bytes contains the chopped chromosome

shown earlier in Table 6.1.

6.1.2 The TX Controller (TXC)

The simulation shown in this section shows the internal interactions between the

TXC and the DC. The testbench for the TXC does not act exactly the same as the DC

does but it provides adequate control signals to verify the functionality of the TXC. In

this simulation, TX FIFO, TXC and TXI are also being verified for their functionality

since the TX FIFO and TXI are considered to be built-in modules in the TXC. Table 6.2

104

shows the simulation setup. FIFO size is limited to four bytes and four test-vectors are

provided.

Simulation Setup

Parameters Value

Clock speed 50 MHz (50% Duty cycle)

Baud rate 462962.963 bit-per-second

FIFO size 4 bytes

Data bytes (Test-Vector)

1: 0x55 (01010101B, 85D)

2: 0xF0 (11110000B, 240D)

3: 0x0F (00001111B, 15D)

4: 0xCC (11001100B, 204D)

Table 6.2 Simulation Setup for TX Controller (TXC)

In this simulation, all 4 test-vectors will be clocked into the FIFO while the TXC

is operating in mode-0. Then, the mode of TXC will be changed to mode-1 in which the

test-vectors will be transferred serially through TX Pin.

105

Simulation Result

Figure 6.4 Timing diagram for TXC mode-0

Figure 6.4 shows the process of clocking four test-vectors in the TX FIFO through

the TXC in mode-0. The four arrows on the bottom of Figure 6.4 indicate the rising-

edges of the In-Strobe signal which is used to tell the TXC to grab the data (test-vector)

being presented at Din (Data-in) pins. The order for clocking test-vectors in is 0x55,

0xF0, 0x0F and 0xCC respectively. When all test-vectors have been clocked in, the FIFO

is full and TXC notifies the DC that the FIFO is full by sending a txfull signal. The

arrows on the top of Figure 6.4 shows when txfull is high indicating that no more data

(test-vectors) can be accepted.

Figure 6.5 Timing diagram for TXC mode-1

106

After all test-vectors are clocked into the the FIFO of TXC, the testbench changes

the TXC mode to mode-1. In mode-1, TXC automatically checks the availability of the

data stored in the FIFO and sends data bytes out. Figure 6.5 shows that test-vectors are

sent out through tx_intf (Transmitting Pin) in the same order as the order of clocking that

test-vectors came in. In Figure 6.5, the first byte, which is 0x55, is sent out followed by

0xF0, 0x0F and then 0xCC.

6.1.3 The TX Interface (TXI)

The TXI is the module that transmits data serially. The testbench provides test-

vectors to the TXI in parallel (8 terminals for 1 byte), and the TXI transmit this data

serially. The TXI has two sets of Data-in terminals (2 sets of 8-terminal inputs), Din0 and

Din1. After clocking data through one input, the next data can be clocked in through the

other after a rdy (Ready) signal goes low and then back again to high. The test-vectors

and simulation setup are shown in Table 6.3.

Simulation Setup

Parameters Value

Clock speed 50 MHz (50% Duty cycle)

Baud rate 462962.963 bit-per-second

Data bytes (Test-Vector)

1: 0xAA (10101010B, 170D)

2: 0x55 (01010101B, 85D)

3: 0xF0 (11110000B, 240D)

4: 0x0F (00001111B, 15D)

Table 6.3 Simulation Setup for TX Interface (TXI)

107

Simulation Result

Figure 6.6 Timing diagram for TXI

As shown in Figure 6.6, Din0 and Din1 data inputs are used to clock the test-

vectors in. Din_sel indicates the active data input and is toggled between test-vectors.

The first test-vector is fed through Din0, the second through Din1, the third through Din0

and the fourth through Din1. When the first bit of first vector (0xAA) is sent out, RXI

pulls rdy low and then back high again when the second bit of the first test-vector is

being sent. This indicates that RXI is ready to grab new data from the other data input.

The second test-vector is then fed through Din1.

6.1.4 The RX Controller (RXC)

The simulation for the RXC is as same as the TXC. It shows the internal

interactions between the DC and the RXC but the DC does not act exactly the same as it

did in the TXC simulation. In this test, the integration of RXC, RX FIFO and RXI is

108

verified. Table 6.4 shows the simulation setup and test-vectors used to verify these

blocks’ functionality.

Simulation Setup

Parameters Value

Clock speed 50 MHz (50% Duty cycle)

Baud rate 462962.963 bit-per-second

FIFO size 4 bytes

Data bytes (Test-Vector)

1: 0xAA (10101010B, 170D)

2: 0x55 (01010101B, 85D)

3: 0xF0 (11110000B, 240D)

4: 0x0F (00001111B, 15D)

Table 6.4 Simulation Setup for RX Controller (RXC)

Simulation Result

Figure 6.7 Timing diagram for RXC

109

Because the RXC controls the receiving process that receives data serially from

RS-232 connection, the test-vectors are fed through the rx_intf (RX Pin). When the RXC

receives data through rx_intf, it stores a complete transmission of received data in the

FIFO and waits for the data to be clocked out. In Figure 6.7, all four test-vectors are fed

serially through rx_intf as the RXC stores the completely received transmission of data

simultaneously in mode-0. When all four test-vectors have been received, the RXC raises

the Full signal to high indicating that the FIFO is full. To clock the data out, Mode is

changed to mode-1 and dstrb (Data-out strobe) is used to signify to the RXC when to

present the data at Dout (Data-out terminal). New data will be presented when RXC

receives rising-edge of dstrb.

6.1.5 The RX Interface (RXI)

In the simulation for RXI, the testbench provides test-vectors to RXI serially to

verify the correct performance of the receiving mechanism of RXI. RXI has only one

register to store received data; so, the received data has to be clocked out immediately in

order to receive new data. After the testbench provides a complete test-vector to RXI, it

immediately clock the data out from RXI register before feeding a new test-vector in. The

simulation setup and test-vectors are shown in Table 6.5.

Simulation Setup

Parameters Value

Clock speed 50 MHz (50% Duty cycle)

Baud rate 462962.963 bit-per-second

110

Data bytes (Test-Vector)

1: 0xAA (10101010B, 170D)

2: 0x55 (01010101B, 85D)

3: 0xF0 (11110000B, 240D)

4: 0x0F (00001111B, 15D)

Table 6.5 Simulation Setup for RX Interface (RXI)

Simulation Result

Figure 6.8 Timing diagram for RXI

As shown in Figure 6.8, test-vectors are fed in through rx_intf (RX Pin). When a

complete test-vector (data) is received, RXI raises the rdy (Data Ready) signal high,

indicating that new data has been received. After the testbench has seen the rdy signal, it

clocks the data out by providing a strobe, Dstrb (Data-out strobe), to RXI. RXI will

present the new data at the Dout (Data-out) terminals after seeing a rising-edge on the

Dstrb signal.

111

6.2 Hardware Usage

In this section, we analyze the hardware usage for the debugging hardware to see

the resource consumption of the debugging hardware. Each module is observed for

FPGA resource utilization. In this analysis, the debugging hardware is attached to a

dummy GPEAT core which acts the same as a GPEAT core would except that the same

chromosome will be sent back to host PC for each parameter setting. The dummy

GPEAT core and the debugging hardware are synthesized according to the GPEAT

parameters. We fixed the gene size to 4 bits and gene type to binary. Chromosome size is

varied from 2 to 14 which yields a range of bits for one chromosome from 8 to 56.

112

 4x2 4x3 4x4 4x5 4x6 4x7 4x8 4x9 4x10 4x11 4x12 4x13 4x14

#Memory 3 3 3 3 3 3 3 3 3 3 3 3 3

Dual-port

distributed RAM
14x8x2 14x8x2 15x8x2 15x8x2 16x8x2 16x8x2 17x8x2 17x8x2 18x8x2 18x8x2 19x8x2 19x8x2 20x8x2

ROMS 10x8x1 10x8x1 10x8x1 10x8x1 10x8x1 10x8x1 10x8x1 10x8x1 10x8x1 10x8x1 10x8x1 10x8x1 10x8x1

#Adder/Subtractors 4 4 4 4 4 4 4 4 4 4 4 4 4

4-bit adder 2 2 2 2 2 2 2 2 2 2 2 2 2

8-bit adder 1 1 1 1 1 1 1 1 1 1 1 1 1

8-bit subtractor 1 1 1 1 1 1 1 1 1 1 1 1 1

#Counters 11 11 11 11 11 11 11 11 11 11 11 11 11

16-bit up counter 4 4 4 4 4 4 4 4 4 4 4 4 4

4-bit up counter 5 5 5 5 5 5 1 1 1 1 1 1 1

5-bit up counter 0 0 0 0 0 0 4 4 4 4 4 4 4

4-bit updown

counter
2 2 2 2 0 0 0 0 0 0 0 0 0

5-bit updown

counter
0 0 0 0 2 2 2 2 2 2 2 2 2

#Register 153 153 153 153 153 153 153 153 153 153 153 153 153

113

Flip-Flops 153 153 153 153 153 153 153 153 153 153 153 153 153

#Latches 9 10 10 11 11 12 12 13 13 14 14 15 15

1-bit latch 2 2 2 2 2 2 2 2 2 2 2 2 2

8-bit latch 7 8 8 9 9 10 10 11 11 12 12 13 13

#Comparators 7 7 7 7 7 7 7 7 7 7 7 7 7

16-bit comparator

less
4 4 4 4 4 4 4 4 4 4 4 4 4

4-bit comparator

gratequal
1 1 1 1 1 1 1 1 1 1 1 1 1

4-bit comparator

less
2 2 2 2 2 2 2 2 2 2 2 2 2

#Multiplexers 1 1 1 1 1 1 1 1 1 1 1 1 1

8-bit 256-to-1

multiplexer
1 1 1 1 1 1 1 1 1 1 1 1 1

#Xors 2 2 2 2 2 2 2 2 2 2 2 2 2

1-bit xor2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 6.6 Basic Macros recognized

114

We use ‘Xilinx XST’ as the HDL synthesis tool. In the HDL synthesis process

Xilinx XST tries to recognize basic macros, e.g. flip-flops, counters multiplexer and, in

the overall design. After performing the synthesis process, Xilinx XST reports resource

use and that resource use for this system is shown in Table 6.6. The headers indicate the

gene size and chromosome size specified in parameter settings: For example, “4x2”

means gene size of 4 and chromosome size of 2. The first column of each row shows the

type of the macros recognized and the data in the table shows amount of a particular type

of macro used.

From Table 6.6, we observe that as we increase the chromosome size the

hardware resources used increases. The resources that increase notably are latches,

counters and RAM. In our design of debugging hardware, we know that the number of

latches used increases because as the chromosome size increases, the number of genes

concatenated together is higher resulting in the increasing of the number of total bits—

and, because, during processing all chromosomes are held locally in flip-flops rather than

in RAM, the number of latches required to hold data increases. The number of latches

used increases when the chromosome size increases to an odd number. This occurs

because four additional bits are added into the system for each increase in the number of

genes but the information is stored as bytes. So, even through only four new bits are

needed, an 8-bit space is used. For an odd number of genes, the extra bits are filled with

zeros. The four additional bits have to be filled because the RS-232 protocol transmits

bytes. Filling extra bits with zeros was explained in section 6.1.1.

We found that as the chromosome size increased from 2 to 14 genes, the RAM

also increased from 14 to 20 words. The RAM is also used as two separate macros. I

115

found that the recognized RAM modules are not used as a memory unit of the debugging

hardware because the operation of memory unit is to latch data which can be achieve by

using D-flip-flops and multiplexer as shown in Figure 4.10. Another reason is that the

word size of RAM modules is not 256. The word size of 256 words is fixed for the

memory unit. The other units that can be using RAM are RX-FIFO and TX-FIFO

because these units are also implemented using memory macros and the size can be

varied according to our HDL design. Thus, we strongly believe that the dual-port RAM

macros are used for implementing FIFO modules.

The result in Table 6.6 suggest us that the overall resource consumption does not

depend much on the GPEAT core except for the memory modules (debugging hardware’s

memory unit and the FIFOs). To conclude this, we also show the mapping statistics for

FPGA in Figure 6.9.

Figure 6.9 FPGA slices used for debugging hardware implementation

0

20

40

60

80

100

120

4
x2

4
x3

4
x4

4
x5

4
x6

4
x7

4
x8

4
x9

4
x1
0

4
x1
1

4
x1
2

4
x1
3

4
x1
4

GPDC_0

Memory0

RX0

RX_FIFO0

RX_interface0

TX0

TX_FIFO0

TX_interface0

TX_latch0

116

A slice is one of the basic units used to describe an FPGA. There are four slices in

a single configurable logic block (CLB). A CLS includes resource to implement two

four-input or one five-input logic block plus provides two flip-flops. We used a Spartan

3A chip which has 5968 total slices. We can see from Figure 6.9 that the numbers of

slices used for FIFOs varied as the chromosome length increases from 7 to 8. The number

of slices used by other components stay relatively constant. Table 6.7 shows the design

summary for debugging hardware which is attached to the dummy GPEAT core

(Chromosome size: 14, Gene size: 4).

Logic Utilization:

Used Available Utilization

Total Number Slice Registers: 267 11,776 2%

Number used as Flip Flops: 249

Number used as Latches: 18

Number of 4 input LUTs: 527 11,776 4%

Logic Distribution:

Number of occupied Slices: 307 5,888 5%

Number of Slices containing only related logic: 307 307 100%

Number of Slices containing unrelated logic: 0 307 0%

Total Number of 4 input LUTs: 529 11,776 4%

Number used as logic: 463

Number used as a route-thru: 2

Number used for Dual Port RAMs: 64

117

Number of bonded IOBs: 4 372 1%

Number of BUFGMUXs: 4 24 16%

Table 6.7 Design summary for debugging hardware

The design summary is for the implementation of the debugging hardware using

the dummy GPEAT core on a Xilinx Spartan-3A FPGA. The total look-up-tables (LUTs)

and Registers used in slices are 529 and 267 respectively which are 4% and 2% of

elements provided in the FPGA. The overall slice usage can be seen in the Logic

Distribution section of Table 6.7. The number of occupied slices is 307 out of 5,888

which is 5% of total slices provided in the FPGA.

We conclude that the major change in resource consumption in an FPGA for debugging

hardware depends on memory modules (including the debugging hardware’s memory

unit and FIFOs). The resource consumption in these memory modules could reduce

overall performance of the GPEAT system since they vary according to chromosome size

and gene size. As of now, GPEAT is capable of running a variety of EC applications in

hardware satisfactorily [26] and the percentage of resource consumption of debugging

hardware is relatively low for modern FPGAs.

118

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Evolutionary computation has been widely used to solve many problems. Much

research was conducted in implementing EC systems on hardware using reconfigurable

platforms such as FPGAs and Microcontrollers [21-24]. Flexible platform for EC

implementation is also described in [24]. Our research concentrates on implementing a

flexible reconfigurable platform for EC called GPEAT (General Purpose Evolutionary

Algorithm Testbed). The main objective is to allow scientists or engineers with minimal

hardware knowledge to implement an application on EC quicker and easier than if they

had to build the system from scratch. The architecture and implementation of the GPEAT

core is described in [19]. In this thesis, we describe the architecture of the debugging

hardware which works with the GPEAT core to further facilitate design and

implementation of EC systems in hardware. The GUIs used to configure GPEAT core

(Parameter entry GUI) and debug the core (Debugging GUI) are also described.

GPEAT enables quick implementation of a variety of applications that use

evolutionary computation on hardware. Common operations in EC can be done faster on

hardware with lower clock speed. The parameter-entry-GUI provides a friendly interface

119

through which parameters for different algorithms can be specified. The GPEAT core is

configured according to the parameters provided from the parameter-entry-GUI. GPEAT

also provides a debugging interface for users to so that they may observe the evolutionary

process going on inside the hardware. The debugging hardware communicates with the

GPEAT core in order to gather information on the EC being run. The communication

allow the debugging hardware to gather data on chromosomes which is then sent back to

the computer for performance analysis and debugging purposes. The debugging GUI

provides a friendly environment for debugging. Chromosomes and their fitness values are

graphically displayed which helps the user in analyzing the design’s performance.

7.2 Future work

To be able to achieve our ultimate goal, we plan to make some improvements for

the next version of GPEAT. The next version of GPEAT would be more flexible,

dynamic and support a broader range of applications. The GPEAT storage system

(memory block) can be improved greatly by polishing the memory block in GPEAT core

by reducing chromosome storage regions. The current version of GPEAT stores

chromosomes categorized by the range of their fitness values in 3 memory regions (each

region is called ‘bin’). Implementing three bins for storing chromosomes reduces time for

sorting process but it also consumes more hardware resources. This is because not all

chromosomes are stored in a single bin. Storing chromosomes in single partitioned bin

frees up hardware resources but the speed of sorting may be increased. The tradeoffs

need to be evaluated. Further improvement to the GPEAT system can be achieved by

introducing pipelining. In this version of GPEAT, after a chromosome has been

processed from reproduction block and is moving to fitness evaluation block, the

120

reproduction block stays idle until the chromosome is fully processed. Introducing

pipelining in this situation would help speed up the system. With pipelining, the

reproduction block would process the next chromosome while the first chromosome is

being processed in the fitness evaluation block.

A sensor block will be added to GPEAT system providing channels for

interfacing with external circuits. Additional buffering and converting circuitry will be

required for the sensor bank. The sensor block will provide options for interfacing with

digital sensors or analog sensors. Analog-to-digital converter (ADC) will be required to

interface with an analog sensors. The parameter-entry-GUI will need to accommodates

these new options by providing a friendly interface for users to set up all sensors. Adding

the sensor block will make GPEAT more interactive with the operating environment. The

objective function used to evaluate chromosomes will be dynamically functioning rather

than a fixed function.

In the first version of GPEAT, the user can only specify a rule-based fitness

evaluation where multiple rules are used to categorize chromosomes into ranges of fitness

values. The ability to specify an objective function in mathematical form (equation) is

one of the major keys to make GPEAT more flexible and generalized. In the next version,

we are planning to make the parameter-entry-GUI able to parse mathematical expressions

that the users enter and convert the expression into VHDL code. Supporting more

specific kind of rule-based objective functions is one of objectives for next version of

GPEAT. We aim to release GPEAT as an open-system to be used in research

communities and obtain feedback from groups of users to refine GPEAT specification.

121

Another objective for the next version of GPEAT is to embed the functionality for

synthesizing a design and generating the configuration file for an FPGA in the parameter-

entry GUI. This would provide the users a one-for-all application. The benefits of doing

so are that FPGAs from many manufacturers could be supported by GPEAT and also that

it will reduce the complexity for the user in the processes from generating VHDL to

downloading configuration file to programmable devices. Having all the tools through a

single interface will enable users with minimal hardware knowledge to implement

GPEAT on any FPGA. One more feature that we would like to add to the parameter-

entry-GUI is the ability to inspect and verify parameters user have entered for their

validity. This features, could be called a ‘design rule check’, and would be a tool for

checking conflicts among parameters or whether each parameter is in a valid range.

When debugging GPEAT, the system speed can be improved by using a universal

serial bus (USB) for the debugging channel. USB can theoretically transfer data up to 400

Mbps which is more than 800 times faster than RS-232 connection that we have used in

this implementation which has a transfer rate of 460800 bps. So that bigger variety of

information choices can be accessed from the computer, more commands will be added

to support new types of information packages. For example, GPEAT would keep a record

of how each chromosome was reproduced and transfer the record back to DGUI.

Information from the sensor blocks might also be needed to understand if an EC system

is running correctly. The debugging GUI has to be polished to support the features that

would be added to the debugging hardware. Information visualization can also be added

to assist users in performance analysis and debugging.

122

 For future versions, the addition of learning abilities would be considered to

support complex applications. Supporting more reproduction types would also increase

the ability of GPEAT to do a better search. The implementation of the first version of

GPEAT showed us that the theory is sound and that there is a chance to move on to the

next step for developing a flexible tool for quick implementation of EC in hardware.

123

REFERENCES

1) M. Gh. Negoita, S. Hintea: Bio-Inspired Technology for the Hardware of Adaptive
System: real-world implementations and applications. Springer-Verlag Berlin
Heidelberg (2009)

2) Bentley, P.J., ed.: Evolutionary Design by Computers. Morgan Kaufmann (1999)

3) O’Neill, M., Ryan, C.: Grammatical Evolution – Evolving programs in an arbitrary
language Kluwer MIT Press (1992)

4) Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection. MIT Press (1992)

5) Exploration in Design Space: Unconventional Electronics Design Through Artificial
Evolution Adrian Thompson, Paul Layzell, and Ricardo Salem Zebulum

6) Horia-Nicolai Teodorescu, Lakhmi C. Jain, Abraham Kandel: Hardware
Implementation of Genetic Algorithm Modules for Intelligent Systems, Physica-
Verlag (2001)

7) A Case for Using Minipop as the Evolutionary Engine in a CTRNN-EH Control
Device: An Analysis of Area Requirements and Search Efficacy

8) Thomas Komarek and Peter Pirsch, “Array Architecture for Block Matching
Algorithm”, IEEE Transaction on Circuit and Systems, Vol.36, No.10, October
1989

9) S.V. Hum, M. Okoniewski, R.J. Davies, An evolvable antenna platform based on
reconfigurable reflect arrays. Proceedings of 2005 NASA/DoD Conference on
Evolvable Hardware, June 29 – July 1, 2005, pp.139-146

10) P.Salek, J. Tarasiuk, K. Wierzbanowski, Application of Genetic Algorithm to
Textture Analysis. Crystal Research and Technology, Volume 34, pp. 1073-1079,
1999.

124

11) I. Kajitani, T. Hoshino, N. Kajihara, M. Iwata, T. Higuchi, An evolvable hardware
chip and its application as a multi-function prosthetic hand controller. Innovative
applications of artificial intelligence conference innovative applications of
artificial intelligence, Orlando, Florida, United States, 1999, pp. 182 - 187.

12) M. Fatih Tasgetiren, P. N. Suganthan, P. Quan-Ke, L. Yun-Chia, A genetic algorithm
for the generalized traveling salesman problem. IEEE Congress on Evolutionary
Computation, 25-28 Sept. 2007 pp. 2382 – 2389

13) A. Carter, Design and Application of Genetic Algorithms for the Multiple Traveling
Salesperson Assignment Problems. Dissertation submitted to the faculty of the
Virginia Polytechnic Institute and State University, 2003.

14) F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, Optimizing Area Loss in
Flat Glass Cutting. Second International Conference On Genetic Algorithms in
Engineering Systems: Innovations and Applications, 2-4 Sep 1997 pp. 450 - 455.

15) G. B. Shelbe, K. Brittig, Refined genetic algorithm-economic dispatch example.
IEEE Transactions on Power Systems, Volume 10, Issue 1, Feb. 1995 pp. 117 -
124.

16) M. A. Abido, A New Multiobjective Evolutionary Algorithm for
Environmental/Economic Power Dispatch. IEEE Power Engineering Society
Summer Meeting, 2001, Volume 2, Issue , 2001 Page(s):1263 - 1268 vol.2.

17) L. M. Garder, M. E. Hovin, Robot Gaits Evolved by Combining Genetic Algorithms
and Binary Hill Climbing. Genetic algorithms: papers, 2006, pp. 1165 – 1170

18) E. Stomeo, T. Kalganova, C. Lambert, A Novel Genetic Algorithm for Evolvable
Hardware. IEEE Congress on Evolutionary Computation, 2006, 16-21 July 2006
pp. 134 – 141

19) Smilkstein, T.; Tati, K.K.; Barve, P.; Hai, M.L.; Sajjapongse, K.; Sharma, D.K. “An
evolutionary algorithm testbed for quick implementation of algorithms in
hardware”, EDIS, 2009. IEEE Workshop on Volume, March 30 2009-April 2
2009 Page(s):51 – 57

20) Sorting algorithms. (n.d.). Retrieved from the Wiki: http://en.wikipedia.org/wiki/Sorting_
algorithm

21) Scott, S.D.; Samal, A.; Seth, S., HGA: A Hardware-based Genetic Algorithm.
Proceedings of the Third International ACM Symposium on Field-Programmable
Gate Arrays, 1995. FPGA '95, pp. 53-59

125

22) Karnik, C.; Reformat, M.; Pechycz, W., Autonomous Genetic Machine. Canadian
Conference on Electrical and Computer Engineering, 2002. IEEE CCECE 2002,
pp. 828-833 vol.2

23) C. Pei-Yin, C. Ren-Der, C. Yu-Pin, and S. Leang-San, “Hardware Implementation for
a Genetic Algorithm”, IEEE Transaction on Instrumentation and Measurement,
vol. 57, no. 4, April 2008.

24) Pimery, J.; Kumhom, P., Development of A Flexible Hardware Core for Genetic
Algorithm. Conference on Intelligent Computing and Intelligent Systems, 2009.
ICIS 2009. IEEE International, pp. 867-870

25) R.C. Cofer, Ben Harding: Rapid System Prototyping with FPGAs, Newnes (2006)

26) Tati, Kiran Kumar, General Purpose Evolutionary Algorithm Testbed. Master thesis
submitted to the faculty of the Universoty of Missouri—Columbia, 2009.

27) G. W. Greenwood, A. M. Tyrrell, “Introduction to Evolvable Hardware”. IEEE Press
Series on Computational Intelligence, New Jersey, USA. 2007

28) Kuen-Jong Lee; Si-Yuan Liang; Su, A., “Low-Cost SOC Debug Platform Based on
On-Chip Test Architectures” SOC Conference, 2009. SOCC 2009. IEEE
International, 2009, pp.161-164

29) Schultz, K.; Paranjape, K., SOC Debug Challenges and Tools. Conference on Very
Large Scale Integration, 2006 IFIP International, pp.385-390

30) IEEE Standard Testability Method for Embedded Core-based Integrated Circuits,
IEEE Std 1500-2005

126

APPENDIX

See code available at the University of Missouri website

https://mospace.umsystem.edu/xmlui/handle/10355/3986

VHDL Codes (Developed with Xilinx ISE Version 10 and ModelSim XE-III) for:

Debuggin Hardware (List of files for VHDL codes)

1. debouncer.vhd

2. dlatch.vhd

3. example_RYB.vhd

4. FIFO.vhd

5. GPDC.vhd

6. GPEAT1.vhd

7. GPINC.vhd

8. icontroller.vhd

9. interface.vhd

10. memory.vhd

11. reference.vhd

12. rx_interface.vhd

13. rxicontroller.vhd

14. tx_latch.vhd

127

Java Codes (Developed with Eclipse Platform Version: 3.4.1 Build id: M20080911-

1700) for:

Parameter-entry GUI (List of files for Java codes)

1. DefaultOutput.java

2. DRC.java

3. FitnessIFRule.java

4. GPEATData.java

5. InitialPopulation.java

6. Project.java

7. DebugFrame.java

8. DebuggerFrame.java

9. DefaultOutputFrame.java

10. DefineSystemFrame.java

11. WarningDialog.java

12. DRCFrame.java

13. FitnessIFFrame.java

14. RuleNameFrame.java

15. InitialPopulationFrame.java

16. MainFrame.java

17. ProjectFileFrame.java

18. NumericTextField.java

19. ProjectFile.java

128

Debugging GUI (List of files for Java codes)

1. Data_Manipulation.java

2. GPEAT_Chromosome.java

3. GPEAT_Info.java

4. GPEAT_Population.java

5. Memory.java

6. MainFrame.java

7. CommInterface.java

8. CommSetting.java

9. SpreadSheetDialog.java

10. BrowserPanel.java

11. NumericTextField.java

GPEAT Encoder (List of files for Java codes)

1. Enc.java

2. FileComponent.java

3. FileGrouping.java

4. Symbol.java

5. SymbolFrame.java

6. TXTEncoder.java

