
LEVERAGING LARGE SCALE BEEF CATTLE GENOMIC DATA TO 

IDENTIFY THE ARCHITECTURE OF POLYGENIC SELECTION AND LOCAL 

ADAPTATION 

 

 _______________________________________  

 

A Dissertation Presented to the Faculty of the Graduate School  

at the University of Missouri-Columbia  

 

_______________________________________  

 

In Partial Fulfillment of the Requirements  

for the Degree  

Doctor of Philosophy 

  

_______________________________________  

 

by  

TROY ROWAN  

Dr. Jared E. Decker,  

Dissertation Advisor  

 

DECEMBER 2020  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Troy Rowan 2020  

All Rights Reserved   



 

APPROVAL PAGE  

The undersigned, appointed by the Dean of the Graduate School, have examined the 

dissertation entitled:  

LEVERAGING LARGE SCALE BEEF CATTLE GENOMIC DATA TO 

IDENTIFY THE ARCHITECTURE OF POLYGENIC SELECTION AND LOCAL 

ADAPTATION  

Presented by Troy Rowan, a candidate for the degree of Doctor of Philosophy, and 

hereby certify that in their opinion it is worthy of acceptance.  

 

_____________________________________  

Dr. Jared E. Decker, Animal Science, UMC  

 

_____________________________________  

Dr. Robert D. Schnabel, Animal Science, UMC  

 

_____________________________________  

Dr. Jeremy F. Taylor, Animal Science, UMC  

 

_____________________________________  

Dr. J. Chris Pires, Biological Science, UMC  

 

_____________________________________  

Dr. Wesley C. Warren, Animal Science, UMC 



 

DEDICATION 

 

I can’t say enough thank yous to Harly Durbin, my favorite co-worker, roommate, 

colleague, and best friend. You’ve been the person that has helped me with every 

problem: scientific or not, big or small. I look forward to life full of further collaborations 

of all kinds. To the pups, Nadia and Cupcake: bork woof woof bork. Thank you to my 

entire family (Lightfoots, Rowans, Durbins, et al.), especially my little brother Kyle, your 

support, encouragement, and love has made this possible. Finally, the biggest thank you 

my heart can muster to the people that have supported me since day one, my parents, 

Kurt and Theresa Rowan. Thank you for always pushing me, supporting me, and most 

importantly loving me unconditionally. The sacrifices that you all made to make this 

possible do not go unnoticed. 

 

This work is dedicated to the four most important men in agriculture that I know: 

David Hebbert, Harold Rowan, Vern Lightfoot, and Kurt Rowan. While my future won’t 

be tending the same land or cows as you all, I hope to leave as equally large impact on 

agriculture, the beef industry, and everyone that I interact with as you all did. 



ii 
 

ACKNOWLEDGEMENTS 

 I feel like I could write 200 pages of acknowledgements because my last 23 years 

of education has been a complete team effort. I was lucky to start my academic career out 

in what I realize now was an exceptional small-town school. I credit my 5th grade teacher 

(and favorite neighbor) Betty Brummett with jump-starting my love of science, and my 

other science teachers for deepening that passion (Rodney Vanderheiden, Jennifer Burn, 

and Neil Hall) throughout my time at Bedford Community Schools. I realize now that 

communication skills in science are every bit as important as technical science know-

how. I owe so much of my early development in those areas to the Speech and Drama of 

Bedford Schools (SADOBS) program, particularly to Deb Ritchie, Dee Rankin, and Carl 

Rankin. During my undergraduate studies at Creighton University, I was lucky to have an 

incredible set of research mentors (Dr. Karin van Dijk, Dr. Mike McConnell, and Dr. 

Carol Fassbinder-Orth) that deepened my interest in academic science and research. They 

prepared me exceptionally well for my Ph.D. program.  

I am grateful Dr. Cliff Lamb for pointing me towards the University of Missouri’s 

Animal Genomics program as a potential academic home, it has been the ideal spot for 

me. Thank you to Dr. Jared Decker, Dr. Bob Schnabel, and Dr. Jerry Taylor for being 

incredible mentors. The three of you have helped me develop a wide range of technical 

skills as well preparing me to navigate the academic world. Jared, thank you for taking a 

chance on a kid with no coding skills or quantitative/population genetics background, but 

a real passion for cows. You have allowed me to work independently and creatively 

approach a number of unique and interesting research questions. Bob, you always make 

me think deeply about each step of the scientific process. This habit that you’ve helped 



iii 

 

me develop will serve me well for the rest of my career. I’m also grateful to Dr. Chris 

Pires and Dr. Wes Warren for serving as members of my committee and important 

mentors throughout my time at Mizzou. I was also lucky to share an office with some of 

the brightest and kindest graduate students and postdocs. Dr. Jesse Hoff was critical in 

helping me get off the ground during my first year at Mizzou and has remained a close 

friend and colleague. I learned as much from Jesse on our afternoon walk breaks than in 

most of my classes! Thank you to all of the other members of the MU Genomics team 

that made my PhD special: Dr. Tamar Crum, Sara Nilson, Dr. Ruben Buckley, Dr. 

Lynsey Whitacre, Dr. Camila Urbano-Braz, Will Schaffer, Jenna Kalleberg, Esdras 

Tuyishimire, and Caleb Grohmann. 

Thank you to all of the other folks that made Mizzou Animal Science a special 

place to work. Thank you to Lauren Ciernia for being a constant source of baked goods, 

unwavering friendship, and being a perfect example of channeling a passion for science 

into your work every day. Jade Cooper, you are also an incredible example of hard-work, 

and one of the most supportive people  know. Thank you to the exceptional 

administrators that made my everyday life exponentially easier: Lena, Becki, Debbie, 

Gloria, and Rob. A special thank you to my friend Elaine, thank you for taking care of us, 

giving me grief, and lots of laughs over the last 4 ½ years. Thank you to Dr. Bill 

Lamberson for your leadership in the department and for the opportunity to teach Animal 

Breeding, that was a wonderful experience! I was lucky to have so many friends, 

collaborators, and colleagues from the “other side of campus” that broadened my 

exposure to genetics outside of cows. Thank you especially to Dr. Sarah Turner-Hissong 



iv 

 

(Alex and Sadie) and Dr. Makenzie Mabry (Dr. Paul Blischak), and Paul Petrowski for 

your friendship, support, and collaboration. 

I was lucky to spend six months of 2019 in Dr. John Hickey’s group at the Roslin 

Institute in Edinburgh, Scotland. I appreciate John’s willingness to host me, as well as the 

mentorship and friendship of the whole AlphaGenes team, especially Dr. Gregor Gorjanc, 

Romana Gorjanc, Dr. Ivan Porcnic, Dr. Chris Gaynor, Dr. Martin Johnsson, Dr. Owen 

Powell, and of course The Brazilians! This was an amazing visit, scientifically, culturally, 

and socially. Thank you all for making my time across the pond so special. 

My Ph.D. project would not have been possible without collaborations with three 

breed associations; the American Simmental Association, the American Gelbvieh 

Association, and the Red Angus Association of America. Thank you to the breed 

associations and their producers. The ability to utilize your genomic data has saved me 

years of DNA collection! In particular thank you to Dr. Jackie Atkins, Jordan Bowman, 

and Ryan Boldt for all of your assistance over the past 4 ½ years. 

  



v 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS …………………………………………………………… ii 

LIST OF FIGURES…………………………………………………………………….. x 

LIST OF TABLES …………………………………………………………………… xiii 

ABSTRACT …………………………………………………………………………... xvi 

CHAPTER 1…………………………………………………………………………….. 1 

LEVERAGING COMMERCIALLY-GENERATED GENOMIC DATA FOR 

BASIC SCIENCE IN BEEF CATTLE POPULATIONS……………………………. 1 

Genotype imputation………………………………………………………….... 1 

Polygenic selection……………………………………………………………… 4 

Local adaptation………………………………………………………………... 6 

CHAPTER 2…………………………………………………………………………….. 9 

A MULTI-BREED REFERENCE PANEL AND ADDITIONAL RARE 

VARIATION MAXIMIZE IMPUTATION ACCURACY IN CATTLE…………… 9 

 Abstract……………………………………………………………………….... 10 

 Background……………………………………………………………………. 11 

 Methods……………………………………………………………………….... 14 

  Quality control and filtering ……………………………………………. 15 

  Creating the imputation test set…………………………………………. 15 

  Building phasing and imputation reference panels……………………... 16 

  Measures of imputation accuracy………………………………………. 18 

 Results………………………………………………………………………….. 20 

Imputation accuracy metrics……………………………………………. 20 



vi 

 

Impact of the breed representation in the reference panel on imputation 

accuracy ……………………….……………………………………….. 24 

  Error profiles and regions of low imputation accuracy ………………... 27 

 Discussion ……………………………………………………………………... 28 

Imputation accuracy metrics……………………………………………. 28 

Impact of the F250 assay on imputation of rare variants……………….. 29 

Multi-breed vs. within-breed imputation reference panels …………….. 30 

Breed representation in the reference panel ……………………………. 32 

Starting assay marker number ………………………………………….. 33 

 Conclusions .………………………………………………………………….... 33 

Acknowledgements ……….…………………………………………………... 34 

Author Contributions ………………………………………………………… 35 

CHAPTER 3…………………………………………………………………………… 58 

POWERFUL DETECTION OF POLYGENIC SELECTION AND 

ENVIRONMENTAL ADAPTATION IN U.S. BEEF CATTLE ………………….. 58 

 Abstract……………………………………………………………………….... 59 

 Author Summary ……………………………………………………………... 60 

 Introduction …………………………………………………………………… 60 

 Results………………………………………………………………………….. 62 

Detecting ongoing polygenic selection with Generation Proxy Selection 

Mapping (GPSM)………………………………………………………. 62 

Detecting environmental adaptation using envGWAS ………………… 68 

  Discrete ecoregion envGWAS ………………………..………………... 70 



vii 

 

  Continuous environmental variable envGWAS ………………………... 72 

 Identifying loci undergoing region-specific selection with GPSM 

ecoregion meta-analysis ………………………………………………... 74 

 Discussion ……………………………………………………………………... 76 

 Materials and Methods ……….…………………………………………….... 79 

  Genotype data …………….……………………………………………. 79 

  Generation Proxy Selection Mapping (GPSM) ………………………... 80 

  Birth date variance component analysis ……………………………….. 81 

  Environmental data …………………………………………………….. 81 

  Environmental Genome-wide Association Studies (envGWAS) ……… 82 

  GPSM meta-analyses …………………………………………………..  83 

  Gene and tissue set enrichment analyses ………………………………. 84 

Acknowledgements ……….…………………………………………………... 85 

Supplemental Text …………………………………………………………... 135 

 Motivation for mapping polygenic selection …………………………. 135 

 Motivation for mapping local adaptation ……………………………..  136 

 Simulations …………………………………………………………… 138 

GPSM detects signatures of polygenic selection across and within three 

populations of U.S. Beef Cattle ………………………………………. 142 

Principal Component Analysis ……………………………………….. 145 

envGWAS identifies adaptive pathways and processes ……………… 146 

Tissue set enrichment analysis ……………………………………….. 149 



viii 

 

GPSM meta-analysis identifies loci responding to selection in an 

ecoregion-specific manner ……………………………………………. 152 

CHAPTER 4…………………………………………………………………………...154 

POWERFUL DETECTION OF POLYGENIC SELECTION AND 

ENVIRONMENTAL ADAPTATION IN U.S. BEEF CATTLE …………………..154 

 Abstract………………………………………………………………………...155 

 Introduction ………………………………………………………………….. 156 

 Results………………………………………………………………………… 158 

Quantitative genetic signals of polygenic selection…………………… 158 

 Generation Proxy Selection Mapping (Red Angus) ………………….. 159 

 Generation Proxy Selection Mapping (Simmental) …………………... 162 

 Ongoing selection at functional loci ………………………………….. 164 

 GPSM identifies breed-specific balancing selection in KHDRBS2 

regulatory regions …………………………………………………….. 166 

 Sweep mapping identifies known and  novel selected loci …………… 167 

 Ongoing polygenic selection acts on networks and pathways to drive 

complex trait changes ………………………………………………… 171 

 Discussion ……………………………………………………………………. 172 

 Conclusions …………………………………………………………………... 175 

 Methods ……….……………………………………………............................ 175 

  Genotype data and imputation ………………………………………....176 

  Generation proxy phenotypes .………………………........................... 176 

  Generation Proxy Selection Mapping (GPSM) ………………………. 177 



ix 

 

  Haplotype-based scans for selection ………………………………….. 178 

  Site frequency spectrum (SFS) scan for selection ……………………. 179 

  Gene &QTL annotation and enrichment ……………………………… 179 

REFERENCES ………………………………………………………………………. 203 

VITA …………………………………………………………………………………. 229 

   

 

 

 

  



x 

 

LIST OF FIGURES 

Figure           Page 

2.1 Minor allele frequency spectra for three commercially available assays………. 37 

2.2 Imputation quality score compared to other measures of accuracy ……………. 38 

2.3 Imputation accuracy across minor allele frequencies using various references .. 39 

2.4 Individual imputation accuracy changes when using breed vs. composite 

imputation reference panels …………………………………………………… 40 

2.5 Per-individual accuracy in different reported breeds …………………………..  41 

2.6 Scatter plot relating within-reference relatedness and imputation accuracy ..…. 42 

2.7 Effects of assay density on imputation accuracy across MAF spectrum ………. 43 

2.8 Impact of starting assay marker assay number on per-individual imputation 

accuracy………………………………………………………………………… 44 

2.9 Regions of low imputation accuracy across the genome ………………………. 45 

2.10 Representation of imputation accuracy testing scheme ………………………..  46 

2.11 Schematic representation of “one-round” vs. “two-round” imputation ………... 47 

2.12 Imputation quality across MAF spectrum ……………………………………… 48 

2.13 Impact of genetic similarity with reference on imputation accuracy in three breeds 

…………………………………………………………………………………... 49 

3.1 Simulated allele frequency trajectories and a model overview ………………... 86 

3.2 Generation Proxy Selection Mapping (GPSM) panel .………………………… 88 

3.3 Environmental GWAS (envGWAS) panel …………………………………….. 90 

3.4 Meta-analysis of within-ecoregion selection in Red Angus …………………… 92 

3.5 Distribution of continuous birth date in populations…………………………… 93 



xi 

 

3.6 Manhattan plots for discrete envGWAS in Red Angus ………………………... 94 

3.7 Manhattan plots for discrete envGWAS in Simmental ………………………… 96 

3.8 Manhattan plots for discrete envGWAS in Gelbvieh ………………………….. 98 

3.9 PCA (PCs 1-8) for Red Angus, Simmental, and Gelbvieh populations ……….. 99 

3.10 Manhattan plots for continuous envGWAS in Red Angus …………………… 100 

3.11 Manhattan plots for continuous envGWAS in Simmental …………………… 101 

3.12 Manhattan plots for continuous envGWAS in Gelbvieh ……………………... 102 

3.13 PM-plots and region-specific allele frequency changes for selected Red Angus 

GPSM meta-analysis SNPs …………………………………………………… 103 

3.14 PM-plots and region-specific allele frequency changes for selected Simmental 

GPSM meta-analysis SNPs …………………………………………………… 105 

3.15 PM-plots and region-specific allele frequency changes for selected Gelbvieh 

GPSM meta-analysis SNPs …………………………………………………… 107 

4.1  Red Angus GPSM Manhattan Plots …………………………………………... 181 

4.2 Comparison of Red Angus GPSM signatures with sweep mapping methods …182 

4.3 Simmental GPSM Manhattan Plots …………………………………………... 184 

4.4 Chromosome 23 GPSM and functional annotation …………………………... 185 

4.5 Birth date distributions ………………………………………………………... 187 

4.6 Raw birth date GREML residual and breeding value Q-Q plots ………………188 

4.7 Transformed and truncated birth date GREML residual and breeding value Q-Q 

plots …………………………………………………………………………… 189 

4.8 811K SNP GPSM Manhattan plots comparing effects of transformations and 

subsetting ……………………………………………………………………... 190 



xii 

 

4.9 Changing breed composition of Simmental ancestry over time ……………… 191 

4.10 Red Angus selective sweep mapping Manhattan Plots ……………………….. 192 

4.11 Simmental selective sweep mapping Manhattan Plots ……………………….. 193 

 

 

 

  



xiii 

 

LIST OF TABLES 

Table           Page 

 

2.1 Variant counts for masked genotypes in testing individuals ...………………… 50 

2.2 Breed representation in the composite reference after removing test set ……… 51 

2.3 Per-variant mean imputation accuracy by MAF bins ………………………….. 53 

2.4 Mean imputation quality by MAF bin for HD-specific markers imperfectly 

imputed using the “two-round” imputation method …………………………… 54 

2.5 Individual imputation accuracies by breed …………………………………...... 55 

2.6 Per-variant imputation accuracy based on starting assay density ……………… 56 

2.7  Per-individual imputation accuracy based on starting assay density …………... 57 

3.1 Variation in birth date explained by three classes of SNPs …………………... 109 

3.2 GPSM and envGWAS gene dropping simulation results …………………….. 110 

3.3 GPSM stochastic simulation results …………………………………………... 111 

3.4 Dataset summary statistics ……………………………………………………. 112 

3.5 Proportion of variation in birth date explained by markers in GPSM ………... 113 

3.6 Summary statistics for significant GPSM SNPs ……………………………… 114 

3.7 Allele frequency change per generation summary statistics ………………….. 115 

3.8 Significant GPSM variants identified in at least two populations ……………. 116 

3.9 Gene enrichment analysis of GPSM candidate genes ………………………… 118 

3.10 TissueEnrich results for GPSM gene sets …………………………………….. 119 

3.11 Tissue enrichment analysis results from pSI using GPSM candidate genes …. 120 

3.12 Counts of animal per ecoregion by population ………………………….......... 121 



xiv 

 

3.13 Univariate REML PVE estimates for continuous environmental variables …...122 

3.14 Univariate REML PVE estimates for ecoregion membership ………………... 123 

3.15 Candidate genes for discrete ecoregion associations in Red Angus ………….. 124 

3.16 envGWAS significant SNPs and candidate genes ……………………………. 126 

3.17 envGWAS candidate genes …………………………………………………… 127 

3.18 Gene enrichment analysis of envGWAS candidate genes ……………………. 130 

3.19 TissueEnrich results for envGWAS candidate genes ………………………… 131 

3.20 Tissue enrichment results from pSI using envGWAS candidate genes ………. 132 

3.21  Brain region and cell-type enrichments of envGWAS candidate genes ……… 133 

3.22 C. elegans cell-type enrichments for envGWAS candidate genes …………… 134 

4.1 Genetic architecture of GPSM COJO associations …………………………… 194 

4.2 Genetic architecture of nSL and RaiSD windows ……………………………. 195 

4.3 GREML estimates of proportion variance explained for various statistical 

transformations to birth date in Red Angus ………………………………….. 196 

4.4 GREML estimates of proportion variance explained for various statistical 

transformations to birth date in Simmental ………………………………….. 197 

4.5 Number of significant SNPs identified by different transformations or subsets of 

birth date at different significance thresholds in Red Angus .........…………… 198 

4.6 Number of significant SNPs identified by different data subsets at different 

significance thresholds in Simmental .........…………………………………... 199 

4.7 Significant COJO SNPs from full Red Angus GPSM analysis ………………. 200 

4.8 Significant COJO SNPs from young Red Angus GPSM analysis ……………. 200 



xv 

 

4.9 Significantly enriched QTL types near full Red Angus dataset GPSM COJO SNPs 

………………………………………………………………………………… 200 

4.10 Significantly enriched QTL types near young Red Angus dataset GPSM COJO 

SNPs…………………………………………………………………………… 200 

4.11 Significant COJO SNPs from full Simmental GPSM analysis …………….…. 200 

4.12 Significant COJO SNPs from purebred Simmental GPSM analysis …………. 201 

4.13 Significantly enriched QTL types near full Simmental dataset GPSM COJO SNPs 

………………………………………………………………………………… 201 

4.14 Significantly enriched QTL types near purebred Simmental dataset GPSM COJO 

SNPs…………………………………………………………………………… 201 

4.15 Red Angus outlier nSL windows and associated genes ………………………. 201 

4.16 Red Angus outlier RAiSD windows and associated genes …………………… 201 

4.17 Simmental outlier nSL windows and associated genes ………………………. 202 

4.18 Simmental outlier RAiSD windows and associated genes …………………… 202 

  



xvi 

 

LEVERAGING LARGE SCALE BEEF CATTLE GENOMIC DATA TO 

IDENTIFY THE ARCHITECTURE OF POLYGENIC SELECTION AND LOCAL 

ADAPTATION 

Troy Rowan 

Dr. Jared Decker, Dissertation Supervisor 

ABSTRACT 

Since the invention of the first array-based genotyping assay for cattle in 2008, 

millions of animals have been genotyped worldwide. Leveraging these genotypes offers 

exciting opportunities to explore both basic and applied research questions. Commercial 

genotyping assays are of adequate variant density to perform well in prediction contexts 

but are not sufficient for mapping studies. Using reference panels made up of individuals 

genotyped at higher densities, we can statistically infer the missing variation of low-

density assays through the process of imputation. Here, we explore the best practices for 

performing routine imputation in large commercially generated genomic datasets of U.S. 

beef cattle. We find that using a large multi-breed imputation reference maximizes 

accuracy, particularly for rare variants. Using three of these large, imputed datasets, we 

explore two major population genetics questions. First, we map polygenic selection in the 

bovine genome, using Generation Proxy Selection Mapping (GPSM). This identifies 

hundreds of regions of the genome actively under selection in cattle populations. Using a 

similar approach, we identify dozens of genomic variants associated with environments 

across the U.S., likely involved local adaptation. Understanding the genomic basis of 

local adaptation in cattle will enable select and breed cattle better suited to a changing 

climate.  
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CHAPTER 1 

LEVERAGING COMMERCIALLY GENERATED GENOMIC DATA FOR 

BASIC SCIENCE IN BEEF CATTLE POPULATIONS 

 

 In a landmark paper in 2001, Meuwissen, Hayes, and Goddard laid the foundation 

for the most important development in plant and animal breeding this millennium [1]. 

Their idea to use high-density SNP genotypes across the genome to more accurately 

estimate breeding values would change how breeding programs and whole industries 

operated. It would be another seven years until their theory could be realized in practice, 

as no high-density genomic assays for agricultural species existed at the time. The 

development of the BovineSNP50 in 2008 ushered in a new era of animal breeding and 

allowed the theory of Meuwissen, Hayes, and Goddard to be realized and implemented in 

genetic evaluations [2,3]. The impact of genomic selection was immediate. The ability to 

obtain accurate predictions of genetic merit on young animals did away with dairy 

progeny testing programs virtually overnight [4]. This shortened generation intervals and 

led to a massive acceleration in genetic gain [5]. In dairy cattle, the adoption of genomic 

technologies was instantaneous, and now over 700,000 animals are genotyped per year in 

the United States [6]. Genomic selection uptake was slower in the beef industry, but it 

has increased substantially in recent years, leading to millions of genotyped animals 

across breeds.  

 

Genotype Imputation 

In most cases, commercially-generated assays genotype between 7,000 and 

70,000 SNPs [7]. These assays are designed to genotype SNPs with moderate-to-high 

https://paperpile.com/c/nQfGtx/52vQ
https://paperpile.com/c/nQfGtx/0kWJ+Qoad
https://paperpile.com/c/nQfGtx/RQ5M
https://paperpile.com/c/nQfGtx/JkLt
https://paperpile.com/c/nQfGtx/KGek
https://paperpile.com/c/nQfGtx/Jg7S
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minor allele frequency (MAF) that are evenly spaced throughout the genome. The assays 

are of sufficient density to effectively define relationships between individuals for use in 

routine genomic prediction [8]. Adding more common markers tends to provide only 

subtle increases in prediction accuracy [9]. However, these assays are not of sufficient 

density to precisely map quantitative trait loci in genome-wide association studies 

(GWAS). As we attempt to leverage commercially-generated data for use in mapping 

studies, increasing the marker density is a crucial first step in adding utility to the data. In 

populations with large reference sets of individuals with high-density or full sequence 

genotypes, missing genotypes that occur when using low-density assays can be 

statistically inferred through imputation [10]. In the context of reusing commercially-

generated data or designing genome-wide association studies (GWAS), imputation allows 

the genotyping of large numbers of individuals (high power) without sacrificing marker 

resolution (high numbers of SNPs).  

 

 It is important to note that the utility of imputation in mapping studies or genomic 

prediction depends on its accuracy. Imputation accuracy is a function of multiple factors, 

some of which are algorithmic, and others that are dependent on the genetic architecture 

of the dataset and reference haplotypes. At its core, imputation is a pattern matching 

process, and accurate imputation of the missing alleles within a haplotype requires that 

the haplotype resides within the set of high-density reference haplotypes. In most of the 

major cattle breeds, large numbers of individuals have been genotyped using high-density 

assays and/or have sequenced at high coverage. Consequently, a large pool of haplotypes 

exists for use as reference sets in imputation to either high-density chip-level (~800,000 

SNPs) or full sequence (tens of millions of SNPs). In cattle, imputation directly from 

https://paperpile.com/c/nQfGtx/veNV
https://paperpile.com/c/nQfGtx/4WSC
https://paperpile.com/c/nQfGtx/CPTM
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low-density to full sequence genotypes results in substantial drops in accuracy, meaning 

that commercial assays first need to be imputed to a high-density chip level [11] prior to 

imputation to the level of whole-genome resequencing data.  

In Chapter 2 [7], we examine the effects of multiple non-algorithmic alterations 

on imputation accuracy to the high-density chip level. We test the impact of the 

imputation reference panel on downstream imputation accuracy using down-sampled 

genotypes from animals' true high-density genotypes. The down-sampled data allowed us 

to categorize and quantify the magnitude of imputation errors at the variant and 

individual level. By using a large multi-breed reference panel of high-density reference 

haplotypes, we demonstrate significant gains in imputation accuracy, particularly for rare 

variants. The multi-breed reference panel also increases the imputation accuracies of 

genotypes obtained for crossbred or admixed animals. This is especially important as 

much of the commercially-generated data that we receive from cattle breed associations 

includes crossbred animals, making it difficult to pinpoint the exact breed ancestry of 

individuals for which to assemble a within-breed imputation reference panel. The optimal 

imputation strategy and reference panel identified in Chapter 2 are implemented as a 

Snakemake [12] pipeline that is routinely used to perform genotype imputation for the 

Mizzou Animal Genomics group. The genomic data used to map polygenic selection and 

local adaptation in Chapters 3 and 4 were imputed based on the workflow described in 

Chapter 2. Ongoing improvements to this pipeline, both in software and reference panel 

content, will continue to increase the accuracy of imputation, and thus the usefulness of 

commercially-generated beef cattle genotypes for answering basic and applied research 

questions.  

https://paperpile.com/c/nQfGtx/wgNF
https://paperpile.com/c/nQfGtx/Jg7S
https://paperpile.com/c/nQfGtx/XV5K
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Leveraging high-density, imputed genotypes from tens of thousands of beef cattle 

genotyped over time and across diverse landscapes, we explore two major questions in 

population genetics in Chapter 3. First, we use genome-wide association study (GWAS) 

models to detect variants undergoing polygenic selection in a method called Generation 

Proxy Selection Mapping (GPSM) [13,14]. Next, we use these same GWAS models to 

identify genomic associations with an individual’s environment as means for mapping 

variants associated with local adaptation.  

 

Polygenic Selection 

 In both wild and domestic populations, selection occurs on phenotypes that 

increase fitness, or economically important traits, respectively. This selection on certain 

phenotypes changes the frequencies of the genetic variants that underlie variation in these 

traits [15]. When selected traits are simple or Mendelian in nature, controlled by 

relatively few loci, allele frequencies change rapidly. For these traits, beneficial causal 

loci are rapidly “swept” to fixation in the population, causing frequency changes at 

neighboring neutral sites due to linkage disequilibrium [16]. Much work has been done to 

map these selective sweeps in humans, cattle, and numerous other species [17–19]. It is 

becoming increasingly apparent that in most populations, most selection is polygenic, 

acting on complex traits, controlled by hundreds or thousands of loci spread throughout 

the genome [20]. The result is that polygenic selection can cause large shifts in a 

population’s mean phenotype without creating detectable shifts in allele frequency at any 

single locus [21,22]. 

Most traits under selection in cattle are complex in nature. While sweep mapping 

has identified numerous locations throughout the genome that have undergone strong 

https://paperpile.com/c/nQfGtx/Ovhl+uTVl
https://paperpile.com/c/nQfGtx/CXRa
https://paperpile.com/c/nQfGtx/sjpn
https://paperpile.com/c/nQfGtx/cvpu+4pRP+LL9p
https://paperpile.com/c/nQfGtx/TXZo
https://paperpile.com/c/nQfGtx/5Psn+Ba3v
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selection in the distant or intermediate past [23,24], it remains largely unknown how 

polygenic selection impacts the genome over short timescales. Commercially-sourced 

cattle genotype data presents an opportunity to understand the genomic changes due to 

ongoing polygenic selection, because: 1) it is distributed over time (widespread 

genotyping since 2008 and genotypes on early founder individuals), 2) the selection goals 

in populations are well-understood, 3) there is an enormous statistical power (thousands 

of genotyped individuals) to detect small allele frequency shifts. Decker et al. (2012) [13] 

developed a method to map polygenic selection in populations with temporally-stratified 

genomic data. Their method, Generation Proxy Selection Mapping (GPSM), utilizes 

genome-wide association study (GWAS) models to detect allelic associations with an 

individual’s generation, or some proxy for generation. In addition to being scalable to 

large numbers of individuals and marker tests, the use of GWAS models with a genomic 

relationship matrix (GRM) controls for population and family structure that exist in the 

dataset. These significant associations between an allele and an individual’s generation 

insinuate that a locus is undergoing changes in frequency greater than expected due to 

drift [25].  

In Chapter 3, we extend the GPSM method to three large genotyped beef cattle 

populations [14]. Additionally, we perform simulations to validate the method and infer 

how its power to detect selection varies under certain genomic architectures, effective 

population sizes, and strengths of selection. In addition to increasing the number of 

genotyped samples compared to Decker et al. (2012), we use significantly higher-density 

imputed genotypes (from methods described in Chapter 2). This allows the more precise 

mapping of selected variants and identification of their positional candidate genes. 

https://paperpile.com/c/nQfGtx/f6qf+5OnE
https://paperpile.com/c/nQfGtx/Ovhl
https://paperpile.com/c/nQfGtx/9F78
https://paperpile.com/c/nQfGtx/uTVl
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Chapter 4 further expands on this approach, using two cattle datasets of 50,000 and 

75,000 individuals imputed to 11 million variants. This is likely one of the largest non-

human selection mapping datasets to date. Using sequence-imputed genotypes allows for 

the functional annotation of GPSM SNPs and a deeper understanding of the genetic 

architecture that governs traits being selected in contemporary cattle populations. We 

demonstrate that GPSM can identify minute allele frequency shifts caused by selection 

over very short time periods (< 2 generations).  We compare GPSM signatures to 

traditional methods of selection mapping and find minimal overlap. Beyond identifying 

different selected loci, we show that polygenic selection identified by GPSM does not 

alter neighboring neutral diversity like the selective sweeps identified by other methods. 

The GPSM method offers an intriguing complement to other selection mapping 

approaches when temporally-stratified genotype data are available. It also offers a 

glimpse at the impacts of producer selection decisions in the beef industry. 

 

Local Adaptation 

 Beef cattle are the last major livestock species in the United States to reside 

largely in uncontrolled environments “outdoors”. As pork, poultry, and many dairy 

operations have moved into highly-controlled indoor environments, beef cattle remain 

exposed to the full suite of environmental stressors. These can be purely climatic like 

heat [26] or cold stress, or more complex environmental stressors like water availability 

[27] or presence of toxic fescue [28]. Gene-by-environment interactions are well-

documented in beef cattle populations [29–31], especially for growth traits. Still, the 

genetic variants underlying GxE interactions are not well understood. Most GxE mapping 

studies in beef cattle have focused on identifying SNPs with significant growth trait-by-

https://paperpile.com/c/nQfGtx/fQqw
https://paperpile.com/c/nQfGtx/xEzi
https://paperpile.com/c/nQfGtx/hkEs
https://paperpile.com/c/nQfGtx/oWxL+zpTy+ikR5
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environment interactions [32,33], treating GxE as a quantitative genetic problem. It is 

also clear that despite the use of national genetic evaluations used to select sires, cattle 

populations are directly selecting for animals that produce well in their herd’s 

environment. An experiment involving the reciprocal transplant of Line 1 Hereford cattle 

between Montana and Florida in the 1970s showed that highly-similar genetics selected 

in different environments experienced massive performance losses when exposed to a 

novel stressful environment [34]. Though the selection goals in two different 

environments may be the same, animals selected in each environment utilize different 

sets of variation to optimize performance in each environmental context. Over time we 

would expect that the genetic variants that confer local adaptation to animals would 

exhibit allele frequency differences along environmental gradients (i.e. temperature, 

precipitation, etc.) and between diverse regions [35,36].  

 Using a similar approach to GPSM in Chapter 3, we leverage large beef cattle 

populations distributed across a range of environments in the Continental United States to 

map DNA variants associated with continuous environmental variables at an animal’s 

birth location (30-year normal temperature, precipitation, elevation), or an individual’s 

membership in one of nine statistically-derived ecoregions [14]. We identified dozens of 

variant-environment associations, indicating that adaptive alleles do, in fact, exist and 

their frequencies differ between environments. While the associations were largely 

different between datasets from three different breeds, the biological pathways in which 

their positional candidate genes operate, were similar. The enriched pathways shared 

between breeds were overwhelmingly involved in neural development and signaling, 

despite being driven by entirely different loci and candidate genes. Further, using GPSM 

https://paperpile.com/c/nQfGtx/ex76+0Avc
https://paperpile.com/c/nQfGtx/xQLc
https://paperpile.com/c/nQfGtx/xLeo+A050
https://paperpile.com/c/nQfGtx/uTVl
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within environmental regions, we identified ongoing ecoregion-specific selection. While 

we might expect that producers recurrently select better-adapted cattle, the reality is that 

the use of national genetic evaluations and artificial insemination in beef cattle is eroding 

the existing allele frequency differences that exist between populations.  
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Abstract 

Background: During the last decade, the use of common-variant array-based single 

nucleotide polymorphism (SNP) genotyping in the beef and dairy industries has produced 

an astounding amount of medium-to-low density genomic data. Although low-density 

assays work well in the context of genomic prediction, they are less useful for detecting 

and mapping causal variants and the effects of rare variants are not captured. The 

objective of this project was to maximize the accuracies of genotype imputation from 

medium- and low-density assays to the marker set obtained by combining two high-

density research assays (~ 850,000 SNPs), the Illumina BovineHD and the GGP-F250 

assays, which contains a large proportion of rare and potentially functional variants and 

for which the assay design is described here. This 850 K SNP set is useful for both 

imputation to sequence-level genotypes and direct downstream analysis. 

 

Results: We found that a large multi-breed composite imputation reference panel that 

includes 36,131 samples with either BovineHD and/or GGP-F250 genotypes significantly 

increased imputation accuracy compared with a within-breed reference panel, particularly 

at variants with low minor allele frequencies. Individual animal imputation accuracies 

were maximized when more genetically similar animals were represented in the 

composite reference panel, particularly with complete 850 K genotypes. The addition of 

rare variants from the GGP-F250 assay to our composite reference panel significantly 

increased the imputation accuracy of rare variants that are exclusively present on the 

BovineHD assay. In addition, we show that an assay marker density of 50 K SNPs 

balances cost and accuracy for imputation to 850 K. 



 

11 

 

 

Conclusions: Using high-density genotypes on all available individuals in a multi-breed 

reference panel maximized imputation accuracy for tested cattle populations. Admixed 

animals or those from breeds with a limited representation in the composite reference 

panel were still imputed at high accuracy, which is expected to further increase as the 

reference panel expands. We anticipate that the addition of rare variants from the GGP-

F250 assay will increase the accuracy of imputation to sequence level. 

 

Background 

 High-density single nucleotide polymorphism (SNP) genotyping has driven rapid 

improvements in rates of genetic progress in livestock populations [5,37,38]. To increase 

the predictive capabilities of genomic prediction models further, the discovery of 

functional variants has become increasingly important. Although many large-effect or 

Mendelian variants that control important phenotypes in cattle have been identified [39–

43], the identification of moderate and small effect quantitative trait nucleotides (QTN) 

and other causal variants has proven challenging [44,45]. Early genome-wide association 

studies (GWAS) that focused on the detection of these variants were often forced to 

choose between the density of the SNP array (number of SNPs genotyped) and statistical 

power (number of individuals genotyped). Imputation, the use of statistical models, and a 

reference set of haplotypes to infer missing genotypes, allows researchers to genotype 

large numbers of individuals at relatively low-density and impute their genotypes to high-

density or even millions of SNPs from whole-genome resequencing data [46–48]. 

Low- to medium-density common variant SNP assays are widely used for genetic 

https://paperpile.com/c/nQfGtx/TPiQ+6ILV+JkLt
https://paperpile.com/c/nQfGtx/jEhk+nxOX+Iq1J+c1uT+2TzJ
https://paperpile.com/c/nQfGtx/jEhk+nxOX+Iq1J+c1uT+2TzJ
https://paperpile.com/c/nQfGtx/j4d1+EUfv
https://paperpile.com/c/nQfGtx/AY2s+NAau+crWC
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evaluation in both beef and dairy cattle. Since the development of the BovineSNP50 

(SNP50) BeadChip (Illumina, San Diego, CA) [2] in 2008 and the BovineHD (Illumina, 

San Diego, CA) array in 2009, more than 3 million dairy cattle in the United States alone 

have been genotyped using SNP assays that are derived from these progenitor assays 

[49]. Decker [50] noted the value of these commercially-generated datasets for uses 

beyond genetic prediction. Although lower-density assays work well for genomic 

prediction [1,4,49], the effects due to rare variants are not captured and they have a low 

resolution for the detection of quantitative trait loci (QTL) or causal variants. High-

quality imputation allows these datasets to be used to their full potential [11,51,52]. 

Seabury et al. [53] found that similar trait heritabilities were obtained with 50 K common 

variant genotypes and 778 K common variant imputed genotypes, but that the former 

were less powerful for QTL detection. Imputed 778 K genotypes identified 14 putative 

large effect QTL that were not identified using 50 K genotypes. Using these large 

publicly-funded or commercially-generated datasets imputed to high-resolution marker 

densities will increase prediction accuracies, aid in the detection of causal variants, and 

ultimately increase selection response in cattle [11,54–56]. 

To use these large datasets to their full potential, the accuracy of imputation must 

be maximized. The most accurate imputation software packages for cattle [51,57] were 

typically developed for human studies that were aimed at imputing from a high-density 

genotype panel to full-genome sequence. As a result, using these programs to impute 

genotypes directly from low-density to full-genome sequence, even in cattle breeds with 

high levels of linkage disequilibrium (LD), has been less accurate [11]. A “two-step” 

imputation strategy, first from a low-density assay (8 K to 70 K variants) to a high-

https://paperpile.com/c/nQfGtx/0kWJ
https://paperpile.com/c/nQfGtx/iOx4
https://paperpile.com/c/nQfGtx/4ZSJ
https://paperpile.com/c/nQfGtx/iOx4+RQ5M+52vQ
https://paperpile.com/c/nQfGtx/BMI5+eNp8+wgNF
https://paperpile.com/c/nQfGtx/NmrO
https://paperpile.com/c/nQfGtx/wgNF+eKun+r9g7+7Uaa
https://paperpile.com/c/nQfGtx/BMI5+FAVS
https://paperpile.com/c/nQfGtx/wgNF


 

13 

 

density assay (> 700 K variants) and then from imputed high-density to the sequence 

level was more accurate than genotypes imputed in “one-step” from low-density to full-

genome sequence in both cattle and humans [58,59]. In this study, we consider the first 

part of the “two-step” imputation processes, because the produced genotypes can be used 

as input for imputation to full-genome sequence or as an endpoint for a variety of 

downstream analyses. Regardless of its use, maximizing the accuracy of imputation to 

high-density genotypes is essential to the success of both approaches. 

Initially, SNP assays for cattle were designed with common, evenly spaced 

markers that would presumably be in LD with causal variants [2]. Whereas these assays 

have performed well in genomic prediction applications, there is growing interest in 

including rare variants into predictions [11,46,56,60]. Imputation accuracy has been 

shown to decline rapidly as minor allele frequencies (MAF) of SNPs decrease, thus 

increasing the confidence in the imputation of genotypes for rare variants has become a 

priority. In addition, most studies on optimizing imputation have focused on the 

imputation of genotypes for purebred animals using closely-related individuals from the 

same breed. As large numbers of genotypes for unpedigreed crossbred animals have 

become available, it is necessary to re-evaluate strategies for genotype imputation in 

these datasets. 

This study focuses on maximizing imputation accuracy from several 

commercially available low-density common variant SNP genotyping assays to a set of 

high-density variants (850 K), many of which are rare and potentially functional. We test 

the effectiveness of a large, multi-breed composite reference panel for imputation in 

several beef and dairy cattle populations that are genotyped with several commercially 

https://paperpile.com/c/nQfGtx/E0W1+DmGJ
https://paperpile.com/c/nQfGtx/0kWJ
https://paperpile.com/c/nQfGtx/AY2s+wgNF+7Uaa+5ABg
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available common variant SNP genotyping assays. We use both well-established and 

novel measures of imputation accuracy to categorize precisely the causes of imputation 

errors. These metrics provide insights for interpretation of imputation performance and 

define situations in which researchers should be cautious when using imputed variants. In 

addition, we explore how the starting chip density impacts the accuracy of imputation to 

850 K variants. Finally, we introduce and describe the design of the GGP-F250 

functional genotyping assay. The GGP-F250 is a tool not only for genotyping numerous 

functional variants but also for increasing the imputation accuracy of rare variants. 

 

Methods 

To identify the best practices for achieving imputation accuracies that approach 

the error rates of modern SNP genotyping arrays, we compared the impact of altering 

reference panels and marker numbers in the starting assay when imputing genotypes to 

the level of the combined Illumina BovineHD (Illumina, San Diego, CA) and GeneSeek 

Genomic Profiler F250 (GeneSeek. Lincoln, NE) referred to herein as the HD and F250 

assays, respectively. The HD assay contains 777,962 evenly spaced variants that have 

relatively high MAF across many breeds of cattle common to North America. The F250 

assay contains 227,234 markers, of which 31,392 are present on the HD assay and 

included in the assay design for use in imputation, and another 195,842 potentially 

functional markers, many of which are rare (MAF < 0.1). Due to these rare alleles, the 

MAF distribution for the F250 assay is more similar to the site frequency spectrum of the 

bovine genome (Figure 1). Details on the design of the F250 assay are in Additional file 

1: Tables S1–S4. In this study, we used 2718 animals that were genotyped with both the 
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F250 and HD assays, and 25,772 animals that were genotyped with only the F250, and 

7218 animals genotyped with only the HD assay. 

 

Quality control and filtering 

 Prior to sub-setting and masking genotypes for testing, we used the PLINK1.9 

software [61] to filter variants and individuals. The SNP positions were based on the 

ARS-UCD1.2 bovine reference genome assembly [62]. Non-autosomal variants were 

removed from the data. Variants and individuals with call rates lower than 0.90 were 

removed from the testing and reference datasets. Because many of the F250 variants are 

rare, no MAF filter was applied to any of the SNP arrays. Due to the diverse breed 

composition of the dataset, no Hardy–Weinberg equilibrium filter was applied. PLINK 

was used to estimate MAF in the filtered dataset for use in all downstream analyses. Two 

animals were removed due to low genotype call rates. The numbers of remaining variants 

after filtering for each of the assays in the masked testing set are in Table 1. 

 

Creating the imputation test set 

 To test the accuracy of imputation, PLINK1.9 [61] was used to down-sample 

genotypes for 307 animals with both HD and F250 genotypes to the densities found on 

several commonly used commercial genotyping arrays: SNP50 and GGP-LD, GGP-

90KT, GGP-HDv3, and GGP-ULD (all from GeneSeek, Lincoln, NE), which were then 

imputed to the combined high-density research chips (~ 850 K SNPs). The process of 

sampling and masking testing genotypes is described visually in Additional file 2: Figure 

S1. All tested commercial assays possess SNPs that are largely derived from the SNP set 

https://paperpile.com/c/nQfGtx/O1Ak
https://paperpile.com/c/nQfGtx/lWto
https://paperpile.com/c/nQfGtx/O1Ak
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of the HD assay (see Additional file 3: Table S5). 

A maximum of 50 individuals per breed that were genotyped with both the HD 

and F250 assays, were randomly chosen and masked to represent various commercial 

chip densities for testing imputation accuracy (Table 2). All test set individuals had their 

breed-composition estimated by the CRUMBLER pipeline [63]. To avoid depleting the 

reference panel of breeds with small numbers of research assay genotypes, no more than 

50% of a breed’s F250 or HD genotyped animals were removed for testing. The 

remainder of the HD and F250 genotypes were used in the composite reference panel 

(Table 2). Due to the unequal representation of breeds in the test dataset, we created three 

separate datasets for testing different aspects of our imputation pipeline. The first dataset, 

ALL, used all 307 masked individuals that passed genotype call rate filtering. Because 

some of the indicine breeds used in our testing dataset were not adequately represented in 

the imputation reference panel, or their testing dataset sample sizes were not sufficiently 

large to draw meaningful conclusions, we created a test dataset, TAUR, which comprised 

only Bos taurus animals, i.e. 281 Angus, Gelbvieh, Hereford, Holstein, Limousin and 

Simmental individuals. Finally, we used a test dataset, GEL that included 49 Gelbvieh 

individuals, to compare the accuracy of a within-breed imputation reference to the 

composite reference. 

 

Building phasing and imputation reference panels 

After removing 307 individuals for testing, the remaining 28,183 F250 and 9629 

HD genotyped reference individuals (Table 2) were merged in PLINK and then phased 

with Eagle 2.4 [64]. Missing genotypes inferred by Eagle were removed with the bcftools 

https://paperpile.com/c/nQfGtx/vgDO
https://paperpile.com/c/nQfGtx/2tBz
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program [65] such that only the phased, directly genotyped markers remained. 

The within-breed imputation reference panel consisted of 265 and 514 Gelbvieh 

individuals that were genotyped with the HD and F250 assays, respectively. These 

reference individuals had their genotypes merged and phased, and the inferred genotypes 

were removed separately for each assay. Reciprocal F250/HD imputation analyses 

performed with Minimac3 were used to fill in missing genotypes in the reference panel. 

 

Phasing and imputation 

Reference-based phasing was performed for 307 individuals with masked genotypes in 

Eagle using 9629 individuals with pre-phased HD assay genotypes as the reference 

haplotypes. To perform “one-round” imputation, phased assays were imputed against the 

complete imputed 850 K SNP composite reference panel using Minimac3 [66]. The 

reference panel for the “one-round” imputation process was created by imputing missing 

HD markers for individuals genotyped on the F250 assay, and missing genotypes for 

F250 markers for individuals genotyped on the HD assay with Minimac3 (see Additional 

file 4: Figure S2). Here, the reference panel contained both observed and imputed 

genotypes. 

For “two-round” imputation, two separate imputation steps were performed to 

reach the 850 K SNP density (see Additional file 4: Figure S2). In each step, only 

observed genotypes served as HD and F250 references, respectively (no imputed 

genotypes in reference). First, the testing individuals with masked and phased genotypes 

were imputed to HD density (759,329 SNPs), and then a second imputation step was 

performed that inferred genotypes for markers present on the F250, but not on the HD 

https://paperpile.com/c/nQfGtx/O1oS
https://paperpile.com/c/nQfGtx/gsZB
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(122,181 SNPs) assay. Both imputation methods resulted in a total number of 835,947 

variants, of which 835,926 segregated in the “one-round” CR panel and 835,933 in the 

“two-round” CR panel. 

For the within-breed imputation, 49 Gelbvieh animals, all of which were present 

in the multi-breed testing set, which had been genotyped with both the F250 and HD 

assays, were masked to SNP50 density. Genotypes for these individuals were phased 

using Eagle along with 1113 additional Gelbvieh individuals genotyped with the SNP50 

assay. This is representative of phasing strategies that involve a large number of 

individuals that have been genotyped using lower density assays. Phased genotypes were 

imputed against the breed-specific Gelbvieh reference (BR) panel. 

 

Measures of imputation accuracy 

Imputation accuracy was measured for both individuals and variants within each 

imputation scenario. By coding alternate allele counts as 0, 1, and 2 (for AA, AB, and BB 

genotypes, respectively), both Pearson’s correlation coefficient (r) and count-based 

metrics could be used to evaluate the imputation accuracy for each variant and individual. 

Pearson’s correlation coefficients for individuals were calculated in two ways. First using 

unscaled, raw genotype values and then using genotype values centered by the variant’s 

MAF in the entire set of research assays (all HD, F250, reference and testing). To center 

genotypes, twice the variant’s MAF was subtracted from the raw genotype value. For 

both methods, r values were calculated and compared. 

Although simple concordance (i.e., “correct/incorrect”) measures of accuracy are 

valuable, they overestimate the quality of imputation at low MAF and are ambiguous as 



 

19 

 

to the nature of the error that created an incorrectly imputed genotype. Rather than 

concordance rate, an imputation quality score (IQS) [67] was calculated for each variant. 

The IQS calculates concordances that are adjusted for the chance that an imputed 

genotype could be correctly guessed. This statistic provides similar conclusions to 

correlation coefficients for most markers, but it estimates more robustly imputation 

quality for variants with low MAF [67]. Since Pearson’s correlation coefficients cannot 

be calculated in the absence of variation, a marker that appears fixed with the reference in 

the true set of genotypes, but contains an alternate allele when imputed, cannot have an r 

computed, but can have an IQS. This idea also applies in all cases when a marker is fixed 

in the true or imputed set, but not in the other. IQS allows us to identify all of these 

specific error types, and thus provides a more complete account of imputation accuracy. 

In addition to the IQS, the exact nature of each error was catalogued and tallied 

for each individual and variant. This allowed the errors to be categorized as either false 

heterozygotes (genotyped AA or BB imputed as AB), false homozygotes (genotyped AB 

imputed as AA or BB) or completely discordant (BB imputed as AA or vice versa). 

These more detailed error descriptions, in conjunction with MAF, genome position, and 

assay-of-origin information, allow for a detailed analysis of how these factors influence 

imputation accuracy to 850 K in each scenario. 

To approximate how well represented each individual was in the composite 

reference, we created a standardized genomic relationship matrix (GRM) as described in 

[3] using the GEMMA software [68]. The resulting values provide quantitative measures 

of how far each individual is diverged from the members of the composite reference 

panel, i.e. larger values indicate that the individuals are more closely related to the 

https://paperpile.com/c/nQfGtx/y1O8
https://paperpile.com/c/nQfGtx/y1O8
https://paperpile.com/c/nQfGtx/Qoad
https://paperpile.com/c/nQfGtx/53Ex
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animals in the reference panel. To observe the impact of within-breed genetic similarity 

on imputation accuracy, we created four breed-specific standardized GRM using test 

individuals and individuals in the reference with more than 50% Angus (number in 

test = 50, number in reference = 15,013), Holstein (number in test = 50, number of 

reference = 5127), Gelbvieh (number of testing = 49, number of reference = 470), and 

Brahman/Nelore (number of testing = 50, number of reference = 2043) ancestry reported 

from the CRUMBLER pipeline [63]. Row means were calculated for each individual to 

quantify the relationship between each test individual and the members of their breed. 

 

Results 

 The MAF spectrum of the SNPs on the HD and F250 assays for the individuals 

that composed our reference panel is shown in Figure 1, which also displays data for the 

SNP50 assay for comparison. The SNP50 and HD assays have similar MAF spectra and 

include mostly common variants. In addition, the HD assay has an increased density of 

variants with a MAF ranging from 0.025 to 0.075. However, the F250 assay has a much 

higher proportion of SNPs with a MAF lower than 0.1, which is more similar to the site 

frequency spectrum of variants identified from genome resequencing [69]. 

 

Imputation accuracy metrics 

 Numerous statistics have been used to evaluate imputation quality. We compared 

two widely-used statistics [concordance rate and Pearson’s correlation (r)] with the 

imputation quality score (IQS), a metric that has been used in several human studies, but 

not in livestock [67,70]. We tested each of these metrics on the TAUR dataset at both the 

https://paperpile.com/c/nQfGtx/vgDO
https://paperpile.com/c/nQfGtx/OLLF
https://paperpile.com/c/nQfGtx/y1O8+f3Ij
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level of variants and individuals. For variants, IQS were lower than concordance rates, 

particularly at lower MAF (Figure 2a). In the TAUR dataset, IQS scores were lower than 

their corresponding r values for 81% of cases (Figure 2b). At moderate to high MAF, 

these metrics generally agreed with each other. However, when MAF were lower than 

0.1, both Pearson’s correlations and IQS penalized more heavily the imputation errors 

made for rare variants and resulted in lower averages and larger variances compared to 

concordance rates. 

 Since IQS is a metric for assessing variant accuracy, we used error type/count and 

Pearson’s correlation (r) between observed and imputed genotypes to determine the 

impacts of different intrinsic and extrinsic factors on accuracy of imputation for each 

individual. Individual r values using raw and centered genotypes were highly correlated 

(Pearson’s r = 0.9993 and Spearman’s r = 0.9998). Since these values were so highly 

correlated, we report only individual correlations calculated from the raw genotype 

values, hereafter. For our 307 test animals, individual r ranged from 0.7466 to 0.9993, but 

267 of these individuals had r higher than 0.990. In addition to characterizing these 

metrics, we also identified the type of error (complete discordance, false heterozygote, or 

false homozygote) that occurred on a SNP and individual basis. Individuals with the 

lowest r values (< 0.85) tended to have significantly more false heterozygote errors than 

false homozygote errors (p = 1.475 × 10−5), whereas well imputed animals showed no 

significant difference (p = 0.7891). 

Comparing multi-breed and within-breed imputation reference panels 

We used 50 Gelbvieh animals with both HD and F250 genotypes that were masked to 

SNP50 genotype density to compare the accuracy of imputation obtained when using a 



 

22 

 

multi-breed composite reference (CR) or a single-breed reference (BR) panel when 

imputing to 850 K SNPs. Gelbvieh had the most complete genotypes of any open 

herdbook breed in our reference, making it a best-case scenario for breeds with mixed 

ancestry. Imputation with the breed-specific imputation panel had a mean IQS score of 

0.982 (sd = 0.089). Because the breed-specific panel performed well, overall mean 

accuracy gains were modest but significant when using the composite panel (IQS 

mean = 0.990, sd = 0.073, paired T-test p < 2 × 10−16) (Figure 3a and see Additional file 5: 

Figure S3a). In addition to an increase in mean accuracy, the per-SNP accuracy variance 

decreased significantly when using the CR compared to the BR reference panel (F-test 

p < 2 × 10−16). Of the 107,110 SNPs for which IQS changed when imputed against the 

different reference panels, 89,930 had an increased score with the CR panel (average IQS 

increase compared to BR = 0.0797), whereas only 15,349 (average IQS decrease 

compared to BR = 0.0603) had a decreased score. For these two sets of SNPs, the average 

magnitude of the accuracy increases was significantly greater for the CR panel than for 

the BR panel (p < 2 × 10−16). 

 The most substantial accuracy gains from the use of the CR panel were observed 

for low MAF variants (Figure 3b and see Additional file 5: Figure S3b). Although 

accuracy gains were modest for variants with MAF higher than 0.1 (0.007 IQS increase), 

the increase in IQS for rare variants was 0.0182 when imputing with the CR panel. This 

increase in the quality of low MAF imputation was not detected when using concordance 

rate or r statistics (Table 3). Of the 122,288 markers that were not perfectly imputed 

using the BR panel, there was an increase in IQS of 0.059 (r increase 0.032) when 

imputed with the CR panel. 
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 One concern with using a large multi-breed reference panel for imputation is that 

it may introduce variation that does not actually exist in the population being imputed. 

Individuals had significantly fewer false heterozygote errors when using the CR panel 

compared to the BR panel (paired T-test p = 0.0039). There were, on average, 733 fewer 

false heterozygote calls per individual when the CR panel was used. 

Whereas the per-variant increases in imputation accuracy were significant, the 

most substantial improvements in imputation accuracy due to the use of the CR panel 

were found for specific individuals. The mean individual r increased significantly from 

0.9962 (s.d. = 0.0032) with the BR panel to 0.9979 (s.d. = 0.0010) with the CR panel 

(p = 0.0012). Animals that already had their genotypes accurately imputed using the BR 

panel did not show significant increases in accuracy with the CR panel. However, 

animals with the largest number of BR panel-induced imputation errors had much greater 

increases in accuracy when the CR panel was used (Figure 4). The 14 individuals with 

more than 5000 total errors when the BR panel was used had, on average, 5522 fewer 

imputation errors (s.d. = 2361.33) when the CR panel was used for imputation. 

Conversely, the 35 individuals with less than 5000 imputation errors when the BR panel 

was used had only 209 fewer imputation errors, on average (s.d. = 609.80), when the CR 

panel was used for imputation. 

Across the MAF spectrum, accuracies for the “one-round” imputation were 

consistently higher than those for the “two-round” method. However, the overall 

magnitudes of the differences were modest. The “one-round” imputation increased the 

overall accuracy of imputation by 0.000762 IQS units, and for low MAF variants by 

0.00256 units. In the “one-round” imputation, the addition of imputed rare variants from 
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the F250 into the combined reference also increased the imputation accuracy of rare 

variants that were exclusive to the HD panel. The HD markers with MAF lower than 0.05 

that were imperfectly imputed using the “two-round” method had an average increase in 

IQS of 0.0846 when imputed by the “one-round” approach (Table 4). For the HD variants 

with moderate to high MAF, imputation accuracy increased slightly with the “one-round” 

compared with the “two-round” approach. 

  

Impact of the breed representation in the reference panel on imputation accuracy 

Using individual imputation accuracy measures for 307 test animals, we identified 

the effects of an individual’s breed composition and of those breeds’ representations in 

the CR panel on individual imputation accuracy. Using the CR panel, individual r ranged 

from 0.747 to 0.999 while total imputation errors per individual ranged from 932 to 

219,737. The accuracy of imputation was strongly related to an animal’s identified breed 

(Table 5). Individuals from breeds that were adequately represented in the CR panel 

(Angus, Gelbvieh, Hereford, Holstein, Jersey, Limousin, Nelore and Simmental, Table 2) 

were generally well imputed (median r = 0.997, range = [0.930, 0.999]) (Figure 5). 

Gelbvieh individuals had the highest mean imputation accuracy (r = 0.998), which is 

likely due to the high proportion of Gelbvieh animals genotyped on both the F250 and 

HD in the reference panel. Gelbvieh comprised 10.66% of the reference panel individuals 

with complete 850 K genotypes, second only to Holstein (80.13% of total). Since HD 

markers represent the largest proportion of the 850 K SNP panel, individuals from breeds 

with large numbers of HD genotypes, but relatively few F250 genotypes, such as Nelore, 

were still imputed at high accuracy (median r = 0.981, range = [0.9774, 0.9844]). 



 

25 

 

Individuals from breeds that were only sparsely represented in the CR panel (Brahman, 

Gir, N’Dama, and Romagnola) had decreased mean accuracies and increased per-animal 

imputation accuracy variances (mean r = 0.890, range = [0.747, 0.961]). 

We used a GRM that was created with observed genotypes from all reference and 

test individuals to determine if an individual’s genetic similarity to individuals in the CR 

panel was related to its imputation accuracy (Figure 6). There was no direct relationship 

between an individual’s average relatedness to members of the CR panel and imputation 

accuracy. Rather, imputation accuracy was better predicted by the breed representation of 

the individuals in the CR panel. For example, individuals assigned by the CRUMBLER 

pipeline as Romagnola had relatively low imputation accuracies (mean individual 

r = 0.874, range = [0.8549, 0.8958]), although their genetic similarity values were 

comparable to those for the Hereford and Jersey samples. The low imputation accuracy 

for the Romagnola breed likely stems from the low representation of its haplotypes 

within the CR panel (15 HD and 8 F250 genotypes). We observed the opposite for 

Nelore; although the Nelore individuals were distantly related to the members of the CR 

panel as a whole, the larger number of samples contained in the reference panel (858 HD 

and 7 F250 genotypes) resulted in accurate imputation (mean individual r = 0.981). This 

was also observed for Gir, which is as diverged from taurines as the Nelore breed, but its 

reduced imputation accuracy was due to the presence of only 13 HD and nine F250 

individuals in the CR panel. The average genetic relationship with individuals of the 

same breed in the CR panel had varying magnitudes of correlation with individual 

imputation accuracies, depending on the breed (see Additional file 6: Figure S4). 

Measures of genetic similarity and individual imputation accuracy were highly correlated 
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in Brahman and Nellore (r = 0.940), negatively correlated in Gelbvieh (r = − 0.138), and 

moderately correlated in Angus and Holstein (r = 0.207 and 0.241, respectively). 

 Impact of the starting assay number of markers on 850 K imputation 

To test the impact of the starting assay number of markers on 850 K imputation accuracy, 

we used the TAUR dataset masked to represent the contents in markers of five common 

commercial assays. Each successive increase in assay marker number led to increases in 

imputation accuracy both overall and for low-MAF variants (Table 6 and Figure 7). The 

largest increase in imputation accuracy came between the number of markers used in 

ULD and GGP-LD assays. Imputation accuracies from the ULD were exceptionally poor 

for low-MAF variants. Although the decline in IQS at low MAF was also observed for 

other assays, it was much greater for the ULD variants (0.1385 IQS decrease). At marker 

densities higher than that of the GGP-LD assay, increases in overall imputation accuracy 

were smaller (GGP-LD → SNP50 = 0.0133, SNP50 → GGP-90KT = 0.0051, and GGP-

90KT → GGP-HD = 0.0036). Similar increases in accuracy were observed for low-MAF 

variants as the starting assay density increased (ULD → GGP-LD = 0.1249, GGP-

LD → SNP50 = 0.0152, SNP50 → GGP-90KT = 0.0099, and GGP-90KT → GGP-

HD = 0.0099). 

 Individual accuracies also increased as the starting assay number of markers 

increased. A one-way ANOVA using Tukey’s method for multiple comparisons indicated 

a significant difference in 850 K imputation accuracy between the ULD and GGP-LD 

(p = 9.05 × 10−5) assays, but not between the GGP-LD and SNP50 (p = 0.1486) assays 

(Figure 8). There were no significant differences between the SNP50 and GGP-90KT or 

GGP-HD assays. However, the starting GGP-LD marker number had a significantly 
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lower imputation accuracy compared to GGP-90KT (p = 0.0049). This suggests that 

imputation accuracy gains are minimal when the starting assay marker number is larger 

than 50,000 variants (Table 7). 

 

Error profiles and regions of low imputation accuracy 

Using the imputation accuracy information for the TAUR dataset, we identified a 

number of genomic regions for which markers had a low imputation accuracy. Although 

most markers were accurately imputed, most chromosomes have at least one small region 

that contained poorly imputed markers (Figure 9). The overall number of poorly imputed 

markers was quite small. Only 21,848 markers had an IQS lower than 0.8 (1.95% of 

imputed makers) (see Additional file 5: Figure S3a and S3b), and only 8963 markers had 

more than 10 imputation errors (1.07% of imputed markers). When using the IQS metric, 

we found that there are markers imputed with low accuracies on each chromosome, 

particularly low-MAF variants with relatively few errors (making IQS = 0) (Figure 9a). 

However, both IQS and total error counts (Figure 9b) reveal clusters of markers with a 

low imputation accuracy. Investigation of these regions indicated that the probe 

sequences for these variants had multiple equally likely matches to the genome, which 

indicates either that there were genome mis-assemblies or simply that the wrong location 

was chosen to represent the position of the marker. The latter can be easily rectified by 

changing the map files for these variants to reflect the correct alternate position. 
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Discussion 

 

Imputation accuracy metrics 

Most studies on imputation accuracy in livestock populations have used two 

methods to assess the adequacy of imputation: concordance rate, i.e. the proportion of 

correctly imputed genotypes, and the Pearson correlation (r) between observed and 

imputed genotypes. Although both statistics make sense at the level of individuals, their 

ability to identify markers for which genotypes are poorly imputed is not optimal, 

particularly for markers with a low MAF. Because our dataset contains a large proportion 

of rare variants (24.30% markers with MAF < 0.1), a statistic that more robustly 

represents the quality of imputation is essential. Using the IQS statistic, we show that r 

and especially concordance rate, overestimate the accuracy of imputation for low-MAF 

variants [67,71]. In the GEL test data, 2070 variants with an average MAF of 0.040 had 

high concordance rates (0.97 average), but very low IQS scores (0.0). Unlike r, which 

requires that markers be variable in both the true and imputed datasets, IQS can be 

calculated for variants that are not variable in either the observed or imputed datasets. 

This provides a more complete view of the imputation accuracy at each locus, 

particularly for those with an extremely low MAF. This information is lost when using r, 

and imputation accuracies are grossly inflated if measured using concordance rate. That 

said, r and IQS are highly correlated (r = 0.9892) and provide equally useful diagnostics 

for imputation quality at most sites. We note that while we treated the HD and F250 

genotype calls as being correct, a ~ 0.2% error rate is associated with these genotyping 

platforms [2] (see Additional file 1: Table S4). 

https://paperpile.com/c/nQfGtx/y1O8+8wdt
https://paperpile.com/c/nQfGtx/0kWJ
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Impact of the F250 assay on imputation of rare variants 

The F250 assay was designed to query genotypes at a large number of rare, 

potentially functional variants and is very gene-centric (i.e. they are not evenly spaced). 

Common variants were also included in the F250 assay design to allow for imputation 

and genomic prediction applications. The rare variants present on the F250 assay are 

important in the context of this work for two reasons. First, imputing an additional 

~ 170,000 variants at the population level will increase researchers’ ability to refine 

GWAS signals and identify putative QTN due to increased marker density within QTL 

regions. Second, because the variants are very gene-centric, it is anticipated that the 

accuracy of imputation to the whole-genome sequence level will be improved within 

genic regions. The inclusion of rare variants will likely increase the imputation accuracy 

of other rare variants that are not directly assayed, as strong LD (r2) requires that allele 

frequencies at two markers be similar. In the absence of selection, rare variants are 

assumed to have been recently derived, and thus are likely in LD with other recently 

derived rare alleles [72]. By adding rare variants to our reference panel with the F250 

assay and by genotyping a large number of individuals, we improve the imputation of 

rare variants that are not directly assayed by the F250. Although many individuals in our 

reference panel have only imputed F250 genotypes, their presence had a significant 

impact on the imputation accuracies of rare variants. Whereas at a reduced scale, our 

comparison of “one-round” vs. “two-round” imputation showed that leveraging rare F250 

variants helped impute low-MAF variants that are only assayed by the HD assay (Table 

4). We expect that these increases in imputation accuracy of rare variants that are 

https://paperpile.com/c/nQfGtx/qd47
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achieved from the use of the F250 assay will be carried over to subsequent imputation to 

whole-genome sequence-level. The positive impact of the F250 assay on imputation of 

rare variants underscores the need for additional complete 850 K data in our reference 

panel (individuals genotyped with both the HD and F250 assays). The highest imputation 

accuracies were observed for breeds that had the largest numbers of complete 850 K 

genotypes because more of the haplotypic diversity in those breeds was directly captured 

in the reference panel. 

 

Multi-breed vs. within-breed imputation reference panels 

Early imputation studies primarily concentrated on homogenous populations. 

When imputation is performed in closely related animals from breeds with small effective 

population sizes, such as Holstein [73,74], highly accurate imputation can be achieved 

from using a relatively small set of reference genotypes. Recently, large numbers of 

genotypes have been produced using low-density assays in outbred animals, admixed 

individuals, from both registered and commercial populations. In conjunction, many 

animals from a wide range of breeds have now been genotyped on high-density assays 

such as HD and F250. By combining all available high-density genotypes into a single 

multi-breed composite reference panel, we found increased imputation accuracy across 

the MAF spectrum. Comparing the composite reference panel with a breed-specific 

reference panel, the most substantial increases occurred at the level of individuals. 

Genotypes for individuals that were accurately imputed using the breed reference panel 

saw no substantial increases in accuracy when imputed using the CR panel. However, 

individuals with poorly imputed genotypes using the BR panel had a substantial reduction 

https://paperpile.com/c/nQfGtx/UiP7+a1Gu
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in the number of imputation errors when imputed using the CR panel. The increased 

haplotypic diversity present in the composite reference panel improves the accuracy of 

imputation of introgressed haplotypes that are not present in a more limited breed-

specific reference panel. It is important to be aware that in the context of routine 

genotyping and imputation, there is no a priori knowledge on which individuals may have 

poorly imputed genotypes. On the one hand, gains in accuracy from using the CR panel 

may be small in closed herdbook populations such as Holstein or Angus but they are 

unlikely to be worse than if the panel is restricted to a breed-specific reference. On the 

other hand, for open herdbook or composite breeds, increases in imputation accuracy are 

likely substantial. We did not detect an increase in false heterozygote or false 

homozygote genotype calls using the multi-breed reference panel, which suggests that the 

use of a CR panel does not introduce false variation into imputed genotypes at a higher 

rate than imputation using a within-breed reference panel. For breeds that are adequately 

represented in the CR panel, we found imputation accuracies (median r = 0.997) that 

were consistent with the error rates of the genotyping assays (see Additional file 1: Table 

S4), which suggests a near-perfect imputation process. 

Previous work recommended the use of multi-breed reference panels for whole-

genome sequence imputation [51,75]. Our findings for high-density genotypes with an 

allele frequency spectrum similar to that of the genome sequence supports this finding 

and suggests that improvements in imputation accuracy for outbred and admixed 

populations will benefit from the sequencing and inclusion of diverse animals that will 

capture more of the haplotypic diversity that is found in cattle. Further improvements in 

accuracy could be obtained by removing Mendelian inconsistencies from the raw dataset 

https://paperpile.com/c/nQfGtx/BMI5+wb02
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that is used to create the CR panel, which was not performed for this study. 

 

Breed representation in the reference panel 

An individual’s average relatedness to the entire CR panel was not a good 

predictor of imputation accuracy. Our multi-breed reference panel was heavily biased 

towards the most common and economically relevant American beef breeds but also had 

a diverse array of individuals from other breeds in varying numbers. We found that even 

low levels of admixture with breeds not adequately represented in the CR panel can lead 

to decreased imputation accuracies. Information on breed composition was valuable for 

identifying outlying individuals or breeds that, in theory, should have been accurately 

imputed. For example, the five individuals labeled as Angus with low imputation 

accuracies were found to be admixed with breeds that are not well represented in the CR 

panel (see Additional file 3: Table S6). Each of these individuals identified as Angus 

actually had relatively low proportions of Angus ancestry (0.107 to 0.532 Angus and Red 

Angus), and moderately high proportions of breeds sparsely represented in the CR panel. 

The most significant increases in imputation accuracy will likely come through the 

addition of high-density genotypes for breeds that are sparsely represented in our 

reference panel, and through the addition of more completely genotyped individuals, i.e., 

those with both HD and F250 genotypes. It is worth noting that the breed accuracies 

reported here for populations with a limited representation in our composite reference 

panel (Brahman, Gir, N’Dama, Romagnola) would have improved if we had not removed 

large proportions of each of the breeds to create the test set. We expect that the accuracies 

reported here are underestimated compared with those achieved by imputation against the 
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full CR panel. 

 

Starting assay marker numbers 

The starting assay marker number had a significant impact on the accuracy of 

imputation to 850 K. In agreement with the conclusions on LD of the Bovine HapMap 

project, we found that approximately 50 K SNPs are needed to impute to 850 K with high 

accuracy [76]. This observation likely has a larger impact on research applications that 

seek to identify QTN rather than applications that are targeted towards genomic 

prediction. At common allele frequencies (MAF > 0.1), IQS values were steady for all 

starting assay densities. The decline in imputation quality of rare variants (MAF < 0.1) 

relative to MAF was much more severe for low-density starting assays, particularly the 

ULD assay, than for higher density starting assays. When starting array densities are 

increased above 50 K SNPs, significant gains in imputation accuracy will come almost 

exclusively from improved imputation at rare variants. There is a large number of 

individuals that have been genotyped with assays with small numbers of common 

markers (< 10,000 markers) and these individuals can be accurately imputed to ~ 50 K 

common markers [73]. Studies that impute from these densities to 850 K and whole-

genome sequence should expect significantly more errors. If the aim is to perform both 

genomic predictions and downstream causal variant discovery, via imputation, our 

recommendation is to genotype new individuals with an assay density of ~ 50,000 SNPs. 

 

Conclusions 

We conclude that, in diverse samples, as seen in typical beef cattle populations, a 

https://paperpile.com/c/nQfGtx/167o
https://paperpile.com/c/nQfGtx/UiP7
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multi-breed phasing and imputation panel will provide the highest imputation accuracies. 

Individuals that have a moderately represented ancestry in the reference panel will have 

genotypes accurately imputed. Imputation accuracies were highest for rare variants when 

using the composite reference panel. The addition of rare variants from the F250 assay 

increased the imputation accuracy of rare variants in the HD assay. The addition of a 

large number of individuals that are genotyped for rare variants will likely improve 

imputation of rare variants to the sequence level. We confirm that for imputation to 850 

K, gains in accuracy reach a plateau as the starting assay marker number exceeds 50 K 

SNPs. We identified a small subset of SNPs with poor imputation accuracies, most of 

which seem to be caused by location errors of probe sequences that can be corrected. The 

largest gains in imputation accuracy are expected to come from the addition of 

individuals with complete (HD and F250) genotypes, with the largest gains coming from 

modest increases in the numbers of individuals from the less well-represented breeds. 

Imputation accuracies for the breeds that are adequately represented in the multi-breed 

composite-reference panel when the starting assay comprises at least 50 K SNPs should 

approach accuracies of 1.0 minus the genotyping assay error rate. We anticipate that the 

CR panel presented here will serve as a foundation reference panel, on which the global 

cattle community can build to further increase the accuracy of genotype imputation. 
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Figures 

 

Figure 2.1. Minor allele frequency spectra for three commercially available assays 

with different marker densities. Density plot of minor allele frequencies for the SNP50 

(yellow), F250 (purple), and HD (green) assays 

[Figure 1 in text]  
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Figure 2.2.  The imputation quality statistic (IQS) compared to concordance rate 

and correlation as measures of imputation accuracy. Three imputation accuracy 

measures calculated for the TAUR dataset. a concordance, and b Pearson correlation 

over-estimate imputation accuracies compared to the imputation quality statistic (IQS) 

resulting in bias and a false high imputation accuracy 

[Figure 2 in text]  
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Figure 2.3. The composite reference panel improves per-variant imputation 

accuracies, particularly for rare variants. Imputation quality statistics when using 

breed-specific (green) and composite (purple) reference panels for 850 K imputation in 

the Gelbvieh (GEL) dataset across the MAF spectrum (a), and at low MAF (b) 

[Figure 3 in text]  
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Figure 2.4. Improvements from the composite reference panel were greatest for 

individuals for which genotypes were poorly imputed. Comparing the total number of 

errors when imputing from SNP50 to 850 K in the Gelbvieh (GEL) dataset when using 

breed-specific vs. composite reference panels. Points are individuals, colored by the 

change in count of errors from the breed to composite reference panels. 

[Figure 4 in paper]  
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Figure 2.5. Per-individual accuracy by reported breed. Individual r by breed. Each 

point is an individual, colored by breed. 

[Figure 5 in text]  
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Figure 2.6. Relatedness to composite reference panel members is not a strong 

predictor of individual imputation accuracy. (a) Per-individual r for the entire testing 

dataset as a function of individual’s genetic similarity to the composite reference. (b) 

Zoom-in on high-imputation accuracy taurine individuals. Larger values indicate stronger 

relationships. 

[Figure 6 in text]  
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Figure 2.7. Effects of starting assay marker numbers on imputation accuracy across 

the MAF spectrum. Variant accuracy measures for 850 K imputation in the TAUR 

dataset based on five assays with different marker numbers. Binned mean IQS lines (per-

variant accuracy) across the MAF spectrum. 

[Figure 7 in text]  
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Figure 2.8. Impact of starting assay marker numbers on per-individual imputation 

accuracy. Per-individual accuracy measures for 850K imputation in the TAUR dataset 

based on five starting assays differing in marker numbers. Boxplots for total imputation 

errors based on each starting assay marker number. 

[Figure 8 in test]  
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Figure 2.9. Regions with low imputation accuracy exist across the genome but 

represent only a small subset of the markers. Regions of low imputation accuracy 

using the TAUR dataset identified by total imputation errors (a), and IQS (b) 

[Figure 9 in text]  
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Figure 2.10. Schematic representation of genotype masking for imputation testing 

[Figure S1 in text]
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Figure 2.11. Schematic representation of “one-round” vs. “two-round” imputation. 

Description: Dotted lines represent imputation. In “one-round” imputation (a), HD and 

F250 reference samples are cross-imputed to create a partially imputed composite 

reference panel (1). This is followed by a single round of imputation of low-density 

genotypes using the CR panel (2). For “two-round” imputation (b), two rounds of 

imputation occur: first from low-density to HD (1) and then from HD to 850 K (2) 

 

[Figure S2 in text]  
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Figure 2.12. Imputation quality metrics when using breed-specific (green) and composite 

(purple) reference panels for 850 K imputation in the GEL dataset across the entire MAF 

spectrum (a), and at low MAF (b). Points are individual variants. 

[Figure S3 in text]  
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Figure 2.13. Impact of genetic similarity to the reference on imputation accuracy. 

Genetic similarity is the mean genomic relationship between testing individual and 

reference individuals with > 50% ancestry of the same breed. Gelbvieh testing individuals 

(a) are colored by the change in r when using CR versus the BR. (b–d) show r vs. genetic 

similarity for Angus, Holstein, and Brahman/Nelore respectively. 

 

[Figure S4 in text]  
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Tables 

 

Table 2.1. Variant counts for masked genotypes of 307 testing individuals used in this 

analysis before and after filtering 

Assay Starting Assay Density Filtered Density 

GGP-ULD 8,672 6,394 

GGP-LDv3 26,504 16,854 

SNP50 58,336 44,366 

GGP-90KT 76,999 70,581 

GGP-HD 139,977 125,446 

GGP-F250 227,234 201,236 

HD 777,962 753,715 

 

[Table 1 in text]  



 

51 

 

Table 2.2. Breed representation of composite reference panel after removing 308 test 

individuals. 

Breed Number of 

testing 

individuals 

HD and 

F250a, b 

HDb, c F250b, c HD and 

F250a (%) 

HD (%) 

Holstein 50 1932 3170 1944 80.13 32.92 

Gelbvieh 49 257 265 514 10.66 2.75 

Angus 50 132 2067 14,454 5.47 21.47 

Simmental 50 67 427 1759 2.78 4.43 

Brahman 5 7 25 632 0.29 0.26 

Romagnola 4 4 11 4 0.17 0.11 

Nelore 4 3 855 4 0.12 8.88 

Jersey 4 3 21 5 0.12 0.22 

Gir 5 3 10 6 0.12 0.10 

N’Dama 4 3 7 4 0.12 0.07 

Brangus 0 0 990 1603 0.00 10.28 

Hereford 44 0 569 1834 0.00 5.91 

Mixed/crossbred 0 0 419 2830 0.00 4.35 

Red Angus 0 0 253 1905 0.00 2.63 

Limousin 38 0 215 142 0.00 2.23 

Shorthorn 0 0 136 218 0.00 1.41 

Charolais 0 0 125 284 0.00 1.30 

Santa Gertrudis 0 0 23 11 0.00 0.24 

Japanese Black 0 0 19 0 0.00 0.20 

Brown Swiss 0 0 15 0 0.00 0.16 

Norwegian Red 0 0 5 0 0.00 0.05 

Chianina 0 0 2 1 0.00 0.02 

Piedmontese 0 0 0 9 0.00 0.00 

Braunvieh 0 0 0 7 0.00 0.00 

Guernsey 0 0 0 7 0.00 0.00 

Beefmaster 0 0 0 3 0.00 0.00 

Sheko 0 0 0 2 0.00 0.00 

Maine Anjou 0 0 0 1 0.00 0.00 
 

aAnimals genotyped with both the HD and F250 
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bNumber of individuals in CR remaining after 307 testing individuals were removed 

cIncludes individuals genotyped on both HD and F250 

[Table 2 in text]  
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Figure 2.3. Per-variant mean imputation accuracy measures by MAF for Gelbvieh 

individuals imputed using the breed reference (BR) and composite reference (CR) panels. 

MAF bin BR Concord.a CR Concord.a BR R2 CR R2 BR IQS CR IQS 

0.00 - 0.05 0.999 0.999 0.984 0.982 0.910 0.926 

0.05 - 0.10 0.997 0.998 0.985 0.99 0.959 0.979 

0.10 - 0.15 0.996 0.998 0.986 0.992 0.974 0.989 

0.15 - 0.20 0.995 0.997 0.988 0.993 0.982 0.991 

0.20 - 0.25 0.994 0.997 0.990 0.995 0.986 0.993 

0.25 - 0.30 0.994 0.997 0.990 0.995 0.987 0.993 

0.30 - 0.35 0.994 0.997 0.991 0.996 0.988 0.994 

0.35 - 0.40 0.993 0.997 0.992 0.996 0.988 0.994 

0.40 - 0.45 0.993 0.996 0.992 0.996 0.988 0.994 

0.45 - 0.50 0.993 0.996 0.992 0.996 0.988 0.994 
a Genotype concordance 

[Figure 3 in text]  
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Table 2.4. The mean IQS by MAF for HD-specific markers that were imperfectly 

imputed using the “two-round” method 

MAF Bin 

Number of 

SNPs 

Two-round 

IQS 

One-round 

IQS IQS Change 

0.00 - 0.05 11,788 0.5453 0.6299 0.0425 

0.05 - 0.10 18,095 0.9221 0.9330 0.0067 

0.10 - 0.15 23,311 0.9724 0.9742 0.0017 

0.15 - 0.20 29,222 0.9772 0.9784 0.0012 

0.20 - 0.25 34,062 0.9803 0.9812 0.0009 

0.25 - 0.30 39,948 0.9807 0.9815 0.0009 

0.30 - 0.35 44,309 0.9815 0.9824 0.0009 

0.35 - 0.40 47,657 0.9814 0.9822 0.0008 

0.40 - 0.45 49,233 0.9815 0.9823 0.0008 

0.45 - 0.50 50,908 0.9816 0.9823 0.0007 

 

[Table 4 in text]  
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Table 2.5. Mean, minimum and maximum individual accuracies (r) by breed for the 

composite reference 850 K imputation 

Breed 

Mean 

Correlation 

Min 

Correlation 

Max 

Correlation 

Gelbvieh 0.9979 0.9935 0.9989 

Hereford 0.9971 0.9912 0.9988 

Holstein 0.9969 0.9947 0.9984 

Simmental 0.9963 0.9841 0.999 

Angus 0.9953 0.959 0.9993 

Jersey 0.995 0.9905 0.9966 

Limousin 0.9892 0.93 0.996 

Nelore 0.981 0.9774 0.9844 

Brahman 0.9412 0.932 0.9611 

Gir 0.9027 0.8689 0.9482 

Romagnola 0.8742 0.8549 0.8958 

N'Dama 0.7632 0.7466 0.8033 

 

[Table 5 in text]  



 

56 

 

Table 2.6. Per-variant mean and standard deviations for imputation quality statistic (IQS) 

for 850 K imputation in the TAUR dataset based on the starting assay density 

Starting 

Assay 

Starting 

Density Mean IQS SD IQS 

Mean IQS 

(Low MAF) 

SD IQS 

(Low MAF) 

ULD 6,394 0.9095 0.1766 0.7720 0.3503 

GGPLD 16,854 0.9612 0.1225 0.8969 0.2604 

SNP50 44,366 0.9745 0.1154 0.9121 0.2468 

GGP90KT 70,581 0.9796 0.1104 0.9220 0.2402 

GGPHD 125,446 0.9832 0.1032 0.9319 0.2264 

 

[Table 6 in text]  
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Table 2.7. Per-individual r mean and standard deviation values for 850 K imputation 

based on starting assay density 

Starting Assay Starting Density Median R2 SD R2 

ULD 6,394 0.989 0.6070 

GGPLD 16,854 0.995 0.0486 

SNP50 44,366 0.997 0.0314 

GGP90KT 70,581 0.998 0.0205 

GGPHD 125,446 0.999 0.0129 

 

[Table 7 in text]  
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Abstract 

Selection on complex traits can rapidly drive evolution, especially in stressful 

environments. This polygenic selection does not leave intense sweep signatures on the 

genome, rather many loci experience small allele frequency shifts, resulting in large 

cumulative phenotypic changes. Directional selection and local adaptation are actively 

changing populations; but, identifying loci underlying polygenic or environmental 

selection has been difficult. We use genomic data on tens of thousands of cattle from 

three populations, distributed over time and landscapes, in linear mixed models with 

novel dependent variables to map signatures of selection on complex traits and local 

adaptation. We identify 207 genomic loci associated with an animal’s generation number, 

representing ongoing selection for monogenic and polygenic traits. Additionally, 

hundreds of additional loci are associated with continuous and discrete environments, 

providing evidence for local adaptation. These candidate loci highlight the nervous 

system’s central role in local adaptation. While advanced technologies have increased the 

rate of directional selection in cattle, it has been at the expense of local adaptation, which 

is especially problematic in changing climates. When applied to large, diverse cattle 

datasets, these selection mapping methods provide an insight into how selection on 

complex traits continually shapes the genome. Further, by understanding the genomic 

loci involved in adaptation, we are able to both breed more adapted and efficient cattle 

and understand the basis for mammalian adaptation, especially in changing climates. 
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These selection mapping approaches clarify selective forces and loci in evolutionary, 

model, and agricultural contexts. 

Author Summary 

Interest in mapping the impacts of selection and local adaptation on the genome is 

increasing due to the novel stressors presented by climate change. Until now, approaches 

have largely focused on mapping “sweeps” on large-effect loci. Highly powered datasets 

that are both temporally and geographically distributed have not existed. Recently, large 

numbers of beef cattle have been genotyped across the United States, including 

influential cryopreserved individuals. This has created multiple powerful datasets 

distributed over time and landscapes. Here, we map the recent effects of selection and 

local adaptation in three cattle populations. The results provide insight into the biology of 

mammalian adaptation and generate useful tools for selecting and breeding better-adapted 

cattle for a changing environment.  

 

Introduction 

As climate changes, organisms either migrate, rapidly adapt, or perish. The genes 

and alleles that underlie adaptation have been difficult to identify, except for a handful of 

large-effect variants that underwent selective sweeps [77]. It is becoming increasingly 

apparent that for adaptation, hard sweeps are likely to be the exception, rather than the 

rule [78]. Polygenic selection on complex traits can cause a significant change in the 

mean phenotype while producing only subtle changes in allele frequencies throughout the 

genome [22]. Most selection mapping methods require discrete grouping of 

subpopulations, making the identification of selection within a largely panmictic 

https://paperpile.com/c/nQfGtx/bXQ68
https://paperpile.com/c/nQfGtx/8hzLq
https://paperpile.com/c/nQfGtx/Ba3v
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population difficult. Further, in many cases these models are unable to derive additional 

power from massive increases in sample size [79]. Millions of North American Bos 

taurus beef cattle have been exposed to strong artificial and environmental selection for 

more than 50 years (~10 generations) [13], making them a powerful model for studying 

the impacts selection has on genomes over short time periods and across diverse 

environments.  

Though domesticated, beef cattle are exposed to a broad spectrum of unique 

environments and local selection pressures, as compared to other more intensely managed 

livestock populations. This suggests that local adaptation and genotype-by-environment 

interactions play important roles in the expression of complex traits. Understanding 

genetic interactions with the environment will become increasingly important in changing 

climates. Herein, we use two methods (Figure 1), the first for detecting complex 

polygenic selection (Generation Proxy Selection Mapping, GPSM), and the second for 

identifying local adaptation (environmental Genome-Wide Association Studies, 

envGWAS). Both methods use genome-wide linear mixed models (LMM) incorporating 

novel dependent variables in large temporally and spatially dispersed datasets, while 

explicitly controlling for family and population structure as well as uneven sampling 

(Figure 1d). When applied to three US beef cattle populations, each with ~15,000 

genotyped individuals, we identified numerous genomic regions harboring directional or 

environmentally selected mutations. Further, using a meta-analysis approach, we 

identified loci responding to region-specific selection (Figure 1e,f), largely due to the 

erosion of local adaptation caused by gene flow among ecoregions from the use of 

artificial insemination sires. This study is the first step in assisting beef cattle producers 

https://paperpile.com/c/nQfGtx/RZybr
https://paperpile.com/c/nQfGtx/Ovhl
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to identify locally adapted individuals, which will reduce the industry’s environmental 

footprint by increasing efficiency and resilience to stressors. Further, this repurposing of 

commercially-generated genomic data provides us unprecedented power to gain insight 

into the biology of adaptation in mammalian species.  

 

Results 

Detecting ongoing polygenic selection with Generation Proxy Selection Mapping 

(GPSM) 

Though the first cattle single nucleotide polymorphism (SNP) genotyping assay 

was developed just over a decade ago [80], numerous influential males who have been 

deceased for 30 to 40 years have been genotyped from cryopreserved semen (Figure S1, 

Table S1). These powerful datasets provide a temporal distribution of samples spanning 

at least ten generations for the numerically largest US beef breeds. This temporal 

distribution of genotypes allows us to search for allelic associations with generation 

number, or a proxy such as birth date, to identify loci subjected to directional selection 

[13]. Using a LMM, we tested for associations between an individual’s generation proxy 

(i.e., birth date) and SNP alleles in three US cattle populations using ~830,000 SNPs. We 

controlled for the confounding effects of population structure, relatedness, and inbreeding 

by including a random effect accounting for dependency between samples using a 

genomic relationship matrix (GRM, Figure 1d). Significant associations with birth date 

indicate variants undergoing frequency changes that are greater than expected due to drift 

over the time span represented in a sampled dataset (Figure 1a,c). Our simulations show 

that GPSM effectively distinguishes between selection and drift under a variety of genetic 

https://paperpile.com/c/nQfGtx/PPHO
https://paperpile.com/c/nQfGtx/Ovhl


 

63 

 

architectures, selection intensities, effective population sizes, and sampled time periods 

(Figure 1, Tables S1-S2).  

We used continuous birth date and high-density SNP genotypes for large samples 

of animals from three large US beef cattle populations; Red Angus (RAN; n =15,295), 

Simmental (SIM; n =15,350), and Gelbvieh (GEL; n =12,031) to map loci responding to 

polygenic selection (Table S3, Figure S1). The LMM estimated that the proportion of 

variance in individuals’ birth dates explained by the additive genetic effects of SNPs was 

large [Proportion of Variance Explained (PVE) = 0.520, 0.588, and 0.459 in RAN, SIM, 

and GEL, respectively], indicating that we could theoretically predict an animal’s birth 

date from its multi-locus genotypes with an accuracy of ~70%. The ability to predict birth 

date from genotypic data is created by the time trend in allele frequencies. The PVE 

estimates indicate that there must be many genome-wide associations between genotype 

and birth date. The large amount of variance in birth date explained by the SNP 

genotypes persists even when the analysis is restricted to individuals born in the last 10 

years (~2 generations) or 20 years (~4 generations) (Table S4), demonstrating that 

GPSM can leverage the power of our large datasets to detect subtle changes in allele 

frequency over extremely short periods of time. We removed the link between generation 

proxy and genotype by randomly permuting the animals’ birth date and on reanalysis of 

the permuted data we observed PVE to decrease to zero (Table S4). 

The GPSM analyses for these three populations identified 268, 548, and 763 

statistically significant SNPs (q-value < 0.1), representing at least 52, 85, and 92 genomic 

loci associated with birth date in RAN, SIM, and GEL, respectively (Figure 2a-f, Table 

S5). Despite the tendency for genome-wide association studies (GWAS) to be biased in 
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its detection of moderate frequency variants [81], we identify significant associations 

across the minor allele frequency range in our GPSM simulations and analyses (Figure 

2g-i). This suggests GPSM can differentiate drift from selection across the allele 

frequency spectrum. Rapid shifts in allele frequency create highly significant GPSM 

signals. For example, rs1762920 on chromosome 28 has undergone large changes in 

allele frequency in all three populations (Figure 2g), which in turn creates highly 

significant q-values (2.810⨯10-27, 2.323⨯10-150, 2.787⨯10-265 in RAN, SIM, and GEL, 

respectively). The allele frequency changes observed for this locus are extremely large 

compared to other significant regions, most of which have only small to moderate 

changes in allele frequency over the last ~10 generations. When we regressed allele 

frequency (0, 0.5, or 1.0 representing AA, AB, and BB genotypes per individual) on birth 

date, the average allele frequency changes per generation (ΔAF) for significant GPSM 

associations were 0.017, 0.024, and 0.022 for RAN, SIM, and GEL, respectively (Table 

S6). In the analyses of each dataset, GPSM identified significant SNPs with ΔAF < 

1.1⨯10-4. The generally small allele frequency changes detected by GPSM are consistent 

with the magnitude of allele frequency changes expected for selection on traits with 

polygenic architectures [22]. Consequently, we suspect that many of these loci would go 

undetected when using most other selection mapping methods. 

We performed a genomic restricted maximum likelihood (REML) analysis to 

identify how much of the variation in birth date was explained by various classes of 

GPSM SNPs. We built three GRMs using different SNP sets: One set with GPSM 

genome-wide significant SNPs (q < 0.1), the second with an equivalent number of  the 

next most suggestive GPSM SNPs outside of loci (> 1 Mb from a q < 0.1 significant 

https://paperpile.com/c/nQfGtx/p29cu
https://paperpile.com/c/nQfGtx/Ba3v


 

65 

 

SNP), and the third an equivalent number of moderate minor allele frequency (MAF) 

(MAF > 0.15), non-significant SNPs (p > 0.5) intended to represent loci randomly 

drifting in the population. For each population, we observed that nearly all of the 

variation in birth date was explained by the significant and suggestive GRMs. While 

genome-wide significant loci explain the majority of genetic variance associated with 

birth year, an equivalent number of suggestive, but not significant SNPs have only 

slightly smaller PVEs (Table 1). We suspect that these SNPs are undergoing directional 

allele frequency changes too small to detect at genome-wide significance, even in this 

highly-powered dataset. Since GPSM continues to gain power with additional samples, 

we suspect that future sample size increases will detect more of these signatures of 

polygenic selection at a genome-wide significance level. Regardless of the number of 

SNPs used in the drift GRM, the variance associated with drift was consistently minimal 

(Table 1). 

As proof-of-concept, GPSM identified known targets of selection. In Simmental, 

we identified significant associations at three Mendelian loci that explain the major 

differences in appearance between early imported European Simmental and modern US 

Simmental (Figure 2h). These loci: POLLED (absence of horns [43]), ERBB3/PMEL 

(European Simmental cream color [82]), and KIT (piebald coat coloration [83]) have not 

appreciably changed in allele frequency since 1995, making their GPSM signature 

significant, but less so than other loci actively changing in frequency.  

In addition to these three known Mendelian loci, we detected numerous novel 

targets of selection within and across the populations. While the majority of the genomic 

regions detected as being under selection were population-specific (79.8%, 79.8%, and 

https://paperpile.com/c/nQfGtx/2TzJ
https://paperpile.com/c/nQfGtx/Yrxw8
https://paperpile.com/c/nQfGtx/vYzcs
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77.2% of the significant regions in RAN, SIM, and GEL, respectively), we identified 

seven loci that are under selection in all three populations, and fifteen more under 

selection in two (Table S7). While GPSM is able to detect Mendelian selection, the 

overwhelming majority of signatures identified represent selection on complex, 

quantitative traits. Of the regions identified in multiple populations, many correspond to 

genes with predicted production-related functions in cattle (DACH1-Growth, LRP12-

Growth, MYBPH-Muscle Growth, RHOU-Carcass Weight, BIRC5-Feed Intake). 

However, GPSM did not identify any of the well-established large-effect growth loci 

(i.e., PLAG1, LCORL). Growth phenotypes (e.g., birth, weaning, and yearling weights) 

are known to be under strong selection in all three populations [84], but antagonistic 

pleiotropic effects such as increased calving difficulty prevent directional selection from 

changing frequencies at these large-effect loci. We also identified immune function genes 

under polygenic selection (ARHGAP15, ADORA1, CSF2RA). While immune function has 

not been directly artificially selected in cattle, healthy cattle perform better than their sick 

counterparts [85]. We also identify a GPSM signature near PRDM9 on chromosome 1 in 

all three populations. This paralog has been previously-implicated as a target of selection 

in both cattle and other mammalian species for its role in modulating recombination 

[86,87]. Ongoing recent selection on PRDM9 may indicate either selection for 

differential recombination rates, or enhanced binding to novel motifs throughout the 

genome. Many of the selection signatures that were identified in at least two of the 

populations have no known functions or phenotype associations in cattle, highlighting the 

ability of GPSM to identify novel, important loci under polygenic selection without the 

need for any phenotype data.  

https://paperpile.com/c/nQfGtx/6QHsb
https://paperpile.com/c/nQfGtx/j8KUL
https://paperpile.com/c/nQfGtx/OQmjz+Gsr7H
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Biological processes and pathways enriched in genes located proximal to GPSM 

SNP associations point to selection on drivers of production efficiency and on 

population-specific characteristics (Table S8). In each population, we identified 

numerous biological processes involved in cell cycle control, which are directly involved 

in determining muscle growth rate [88], as being under selection. In Red Angus and 

Gelbvieh we identified multiple cancer pathways as being under selection. This likely 

represents further evidence of selection on cell cycle regulation and growth rather than on 

any cancer related phenotypes [89]. Red Angus cattle are known to be highly fertile with 

exceptional maternal characteristics [90]. We identified the “ovarian steroidogenesis” 

pathway as being under selection, a known contributor to cow fertility [91]. We also 

identify numerous other processes involved in the production and metabolism of 

hormones. Hormone metabolism is a central regulator of growth in cattle [92], but could 

also represent selection for increased female fertility in Red Angus. Further, Tissue Set 

Enrichment Analyses (TSEA) of Red Angus GPSM candidate genes showed suggestive 

expression differences (p < 0.1) in multiple human reproductive tissues (Tables S9-S10). 

Enrichments in these tissues did not exist in TSEA of Simmental or Gelbvieh GPSM 

gene sets, suggesting explicit within-population selection on fertility. Gelbvieh cattle are 

known for their rapid growth rate and carcass yield. Selection on these phenotypes likely 

drives the identification of the six biological processes identified which relate to muscle 

development and function in the Gelbvieh GPSM gene set. Consequently, this gene set is 

significantly enriched for expression in human skeletal muscle (Tables S9-S10). A 

complete list of genomic regions under population-specific selection and their associated 

candidate genes is in Table S5. 

https://paperpile.com/c/nQfGtx/bQsrg
https://paperpile.com/c/nQfGtx/xocku
https://paperpile.com/c/nQfGtx/0spuw
https://paperpile.com/c/nQfGtx/Y1Dfw
https://paperpile.com/c/nQfGtx/NKDH8
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Detecting environmental adaptation using envGWAS 

Using an equivalent form of model to GPSM, but with continuous environmental 

variables (30 year normals for temperature, precipitation, and elevation) or statistically-

derived discrete ecoregions as the dependent variable (rather than birth year in GPSM) 

allows us to identify environmental adaptive loci that have been subjected to artificial 

and, perhaps in this context more importantly, natural selection [93]. We refer to this 

method as environmental GWAS (envGWAS). envGWAS extends the theory of the 

Bayenv approach of Coop et al. (2010) which searches for allele frequency correlations 

along environmental gradients to identify potentially adaptive loci [94]. Our approach is 

similar to that used in Yoder et al. 2014, but applied to panmictic, biobank-sized 

mammalian populations [95]. Unlike many genome-environment association analyses 

which only used linear models [96,97], our large dataset and the use of multivariate 

models provides power to identify association while importantly controlling for 

geographic dependence between samples using a genomic relationship matrix (Figure 

S2, Figure S6). We used K-means clustering with 30-year normal values for temperature, 

precipitation, and elevation to partition the United States into 9 discrete ecoregions 

(Figure 3a). These ecoregions are largely consistent with those represented in 

previously-published maps from the environmetrics and atmospheric science literature 

[98], and reflect well-known differences in cattle production environments. The resulting 

ecoregions capture not only combinations of climate and environmental variables, but 

associated differences in forage type, local pathogens, and ecoregion-wide management 

differences to which animals are exposed. Thus, using these ecoregions as case-control 

https://paperpile.com/c/nQfGtx/xVJor
https://paperpile.com/c/nQfGtx/s5ImN
https://paperpile.com/c/nQfGtx/6HLLo
https://paperpile.com/c/nQfGtx/JPBst+vnDax
https://paperpile.com/c/nQfGtx/HX3UX
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phenotypes in envGWAS allowed us to detect more complex environmental associations. 

The three studied populations are not universally present in all ecoregions (Figure 3b, 

Figure S3b & S4b, Table S11) and since the development of these US populations in the 

late 1960s and early 1970s, registered seedstock animals from these populations have a 

small footprint in desert regions with extreme temperatures and low rainfall.  

Although environmental variables and ecoregions are not inherited, the estimated 

PVE measures the extent to which genome-wide genotypes change in frequency across 

the environments in which the animals were born and lived. The PVE explained by SNPs 

ranged from 0.586 to 0.691 for temperature, 0.526 to 0.677 for precipitation, and 0.585 to 

0.644 for elevation (Table S12). In Red Angus, PVE for ecoregion membership ranged 

from 0.463 for the Arid Prairie to 0.673 for the Fescue Belt (Table S13). We observe 

similar environmental PVE in both Simmental and Gelbvieh datasets. These measures 

suggest that genetic associations exist along both continuous environmental gradients and 

within discrete ecoregions.  Despite this genetic signal, principal component analysis 

(PCA) does not suggest that ecoregion-driven population structure exists in any of the 

populations (Figure S5). Permutation tests that shuffled environmental dependent 

variables, removing the relationship between the environment and the animal’s genotype, 

resulted in all PVEs being reduced to ~ 0, strongly suggesting that the detected 

associations between genotype and environment were not spurious. An additional 

permutation test that permuted animals’ zip codes, such that all animals from a given zip 

code were assigned the same “new'' zip code from a potentially different ecoregion 

provided similar results, indicating that bias due to sampling at certain zip codes was not 

producing envGWAS signals. From 10 rounds of permutation, there were no SNP 
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associations with p-values < 1⨯10-5. Consequently, we used this empirically-derived p-

value threshold to determine SNP significance in all of the envGWAS analyses, which is 

also in agreement with the significance threshold used by the Wellcome Trust Case 

Control Consortium [99]. Gene drop simulations suggest that a portion of the identified 

associations are likely due to pedigree structure or founder effects (Supplementary Text). 

However, in this data, the pedigree structure reflects selection decisions of farmers and 

ranchers that are not beyond the influence of performance differences relative to 

environmental differences.  

 

Discrete ecoregion envGWAS 

In Red Angus, we identified 54 variants defining 18 genomic loci significantly 

associated with membership of an ecoregion in the discrete multivariate envGWAS 

analysis (Figure 3c). Of these loci, only two overlapped with loci identified in the 

continuous envGWAS analyses, suggesting that using alternative definitions of 

environment in envGWAS may detect different sources of adaptation. Of the 18 

significant loci, 17 were within or near (< 100 kb) candidate genes (Tables S14-S15), 

many of which have potentially adaptive functions. For example, envGWAS identified 

SNPs immediately (22.13 kb) upstream of CUX1 (Cut Like Homeobox 1) gene on 

chromosome 25. CUX1 controls hair coat phenotypes in mice [100]. Alleles within CUX1 

can be used to differentiate between breeds of goats raised for meat versus those raised 

for fiber [101]. The role of CUX1 in hair coat phenotypes makes it a strong adaptive 

candidate in environments where animals are exposed to heat, cold, or toxic ergot 

alkaloids from fescue stress [102]. Other candidate genes identified by envGWAS have 

https://paperpile.com/c/nQfGtx/qckUO
https://paperpile.com/c/nQfGtx/NFQBO
https://paperpile.com/c/nQfGtx/wSsUZ
https://paperpile.com/c/nQfGtx/GQRxc
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previously been identified as targets of selection between breeds of cattle (MAGI2, 

CENPP), or in other species (DIRC1-humans, GORASP2-fish, ADRB1-dogs) (Table 

S14). Adaptive signatures shared between cattle and other species may point to shared 

biological processes that drive environmental adaptation. We also identified four adaptive 

candidate genes known to possess immune functions (RASGEF1B, SPN, ZMYND8, 

LOC100298064/HAVCR1). The envGWAS identified variants within or near immune 

function genes under ongoing selection in all three populations, thereby suggesting that 

genetic adaptations conferring resistance or tolerance to local pathogens and immune 

stressors may be as important as adaptations to abiotic stressors like heat or cold stress.  

In Simmental, we identified 11 loci tagged by 39 variants significantly associated 

with membership of an ecoregion in the multivariate envGWAS analysis (Figure S3).  In 

Gelbvieh, 66 variants identified 33 local adaptation loci (Figure S4). In the analyses of 

all three datasets, we identified a common local adaptation signature on chromosome 23 

(peak SNP rs1023574). Multivariate analyses in all three populations identified alleles at 

this SNP to be significantly associated with one or more ecoregions (q = 1.24 x 10-13, 

3.15 x 10-12, 4.82 x 10-5 in RAN, SIM, and GEL, respectively). In all three datasets, we 

identified rs1023574 as a univariate envGWAS association with membership of the 

Forested Mountains ecoregion. However, the most significant univariate association in 

Red Angus was with the Arid Prairie region which was excluded from both the 

Simmental and Gelbvieh analyses due to low within-region sample size. In the 

multivariate analysis for Red Angus, the associated locus spanned 18 SNPs from 

(1,708,914 to 1,780,836 bp) and contained the pseudogene LOC782044. The nearest 

annotated gene, KHDRBS2 (KH RNA Binding Domain Containing, Signal Transduction 
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Associated 2) has previously been identified by other adaptation studies in cattle, sheep, 

and pigs [103–105]. This variant was not significantly associated with any continuous 

environmental variable in Red Angus. However, rs1023574 was significantly associated 

with temperature, elevation, and humidity variables in Simmental. The KHDRBS2 locus 

was preferentially introgressed between Bos taurus and domestic yak [106]. Further, this 

locus shows an abnormal allele frequency trajectory (Figure 4c), indicating that it may be 

a target of balancing selection. 

 

Continuous environmental variable envGWAS 

Using continuous temperature, precipitation, and elevation data as quantitative 

dependent variables in a multivariate envGWAS analysis of Red Angus animals, we 

identified 46 significantly associated SNPs (Figure 3g). These SNPs tag 17 loci, many of 

which are within 100 kb of strong candidate genes. Univariate envGWAS identified 23, 

17, and 10 variants associated with temperature, precipitation, and elevation, respectively 

(Figure S6). The most significant multivariate association in Red Angus is located on 

chromosome 29 within BBS1 (Bardet-Biedl syndrome 1), which is involved in energy 

homeostasis [107]. BBS1 mutant knock-in mice show irregularities in photoreceptors and 

olfactory sensory cilia [108] functions that are likely important to an individual’s ability 

to sense its local environment. This region was not significantly associated in any of the 

univariate analyses of environmental variables, and was not identified in any of the 

discrete ecoregion envGWAS. Of the candidate genes identified in this Red Angus 

analysis, 9 have previously been implicated in adaptive functions in humans or cattle 

(DIRC1, ABCB1, TBC1D1, AP5M1, GRIA4, LRRC4C, RBMS3, GADL1, ADCYAP1, 

https://paperpile.com/c/nQfGtx/WotGK+w9VqU+qZy2h
https://paperpile.com/c/nQfGtx/h3NPG
https://paperpile.com/c/nQfGtx/tz6dL
https://paperpile.com/c/nQfGtx/0eOgG
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CUX1, and PLA2G12B) (Table S16). Significant SNPs and their corresponding candidate 

genes for all three datasets are reported in Table S15.  

While we found few candidate genes to overlap between populations, we 

identified multiple shared biological pathways and processes (Table S17) derived from 

lists of envGWAS candidate genes. Pathways in common between populations were 

driven by largely different gene sets. Across all populations, we identified the “axon 

guidance” pathway, and numerous gene ontology (GO) terms related to axon 

development and guidance as under region-specific selection. Ai et al. (2015) suggested 

that axon development and migration in the central nervous system is essential for the 

maintenance of homeostatic temperatures by modulating heat loss or production [109]. 

Further, the direction and organization of axons is an essential component of the olfactory 

system which is frequently implicated in environmental adaptation through the 

recognition of local environmental cues [17]. In addition to axonal development, a host of 

other neural signaling pathways were identified in multiple populations. A genome-wide 

association study for gene-by-environment interactions with production traits in 

Simmental cattle by Braz et al. (2020) identified a similar set of enriched pathways [33]. 

These common neural signaling pathways identified by envGWAS are regulators of 

stress response, temperature homeostasis, and vasoconstriction [110]. We identified other 

shared pathways involved in the control of vasodilation and vasoconstriction (relaxin 

signaling, renin secretion, and insulin secretion). Vasodilation and vasoconstriction are 

essential to physiological temperature control in cattle and other species [111]. The 

ability to mount a physiological response to temperature stress has a direct impact on 

cattle performance, making vasodilation a prime candidate for environment-specific 

https://paperpile.com/c/nQfGtx/d0qAW
https://paperpile.com/c/nQfGtx/cvpu
https://paperpile.com/c/nQfGtx/0Avc
https://paperpile.com/c/nQfGtx/xEXAC
https://paperpile.com/c/nQfGtx/0G04J
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selection. Further, vasodilation and vasoconstriction likely also represent adaptation to 

hypoxic, high elevation environments. Pathways and processes identified by envGWAS 

signals are reported in Table S17. 

To further explore the biology underlying adaptive signatures, we performed 

Tissue Set Enrichment Analysis of our envGWAS candidate gene lists. These analyses, 

using expression data from humans and worms (C. elegans), identified brain and nerve 

tissues as the lone tissues where envGWAS candidate genes show significantly enriched 

expression (Tables S18-S21). Tissue-specific expression in the brain further supports our 

observed enrichment of local adaptation pathways involved in neural signaling and 

development. 

 

Identifying loci undergoing region-specific selection with GPSM ecoregion meta-analysis 

envGWAS detects allelic associations with continuous and discrete environmental 

variables, but does not address whether selection is towards increased local adaptation, or 

whether local adaptation is being eroded by the exchange of germplasm between 

ecoregions via artificial insemination. We used the spatiotemporal stratification of 

genotyped animals to identify loci undergoing ecoregion-specific selection. We 

performed GPSM within each sufficiently genotyped ecoregion and identified variants 

with high effect size heterogeneity (Cochran’s Q statistic) between ecoregions. Variants 

with significant heterogeneity across regions that were also significant in at least one 

within-region GPSM analysis imply ecoregion-specific allele frequency change. These 

changes could have been due either to selection for local adaptation (Figure 1e), or 

locally different allele frequencies moving towards the population mean (Figure 1f). We 
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identified 59, 38, and 46 significant SNPs in Red Angus, Simmental, and Gelbvieh, 

respectively undergoing ecoregion-specific selection. These represent 15, 21, and 26 

genomic loci (> 1 Mb to nearest next significant SNP) (Figure 4a). In most cases, these 

variants have an effect (posterior probability of an effect: m-value > 0.9) in only one or 

two ecoregions (Figure 4b). Further, nearly all represent the decay of ecoregion-specific 

allele frequencies towards the population mean (Figure 4c) as opposed to on-going 

directional selection for ecoregion specific beneficial adaptations (Figure S9-S11). 

Despite the apparent ongoing decay of local adaptation, this meta-analysis of 

ecoregion-specific GPSM identified several interesting candidate genes for 

environmental adaptation. A significant locus on chromosome 1 at ~73.8 Mb (lead SNP 

rs254372) lies within OPA1 (OPA1 mitochondrial dynamin like GTPase), which was 

under selection in the Fescue Belt ecoregion. OPA1 has been implicated in the regulation 

of circadian rhythm in mice [112], and is known to regulate metabolic and cardiac 

adaptations [113] through mitochondrial interactions. We also identified variants within 

ADAMTS16 (ADAM Metallopeptidase With Thrombospondin Type 1 Motif 16), which 

regulates blood pressure in mice [114] and has previously been identified in other 

adaptation studies [115]. These genes are of particular interest, because the primary 

symptoms of fescue toxicosis are due to vasoconstriction caused by ergot alkaloids 

synthesized by endophytes in fescue [28]. Adaptive alleles at these loci are being driven 

in frequency towards the population mean allele frequency (Figure 4c), which is 

typically a low minor allele frequency.  

 

https://paperpile.com/c/nQfGtx/bQ3dF
https://paperpile.com/c/nQfGtx/tFXjj
https://paperpile.com/c/nQfGtx/I5MfH
https://paperpile.com/c/nQfGtx/p72ym
https://paperpile.com/c/nQfGtx/hkEs
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Discussion  

We leveraged large commercially-generated genomic datasets from three major 

US beef cattle populations to map polygenic selection and environmental adaptation 

using novel GWAS applications [50]. Using temporally-stratified genotype data we 

detected very small selection-driven changes in allele frequency throughout the genome. 

This is consistent with expectations of polygenic selection acting on a large number of 

variants with individual small effects. Which phenotypes are being selected and driving 

the allele frequency changes at particular loci is not definitively known. GPSM is a 

heuristic model, and as a result the SNP effects are not immediately intuitive to interpret 

in a population genetic context. That said, it allows us to identify the genomic loci 

responding to selection, and particularly subtle changes due to polygenic selection. 

GPSM is agnostic to the selected phenotypes, and identifies important loci changing in 

frequency due to selection without the need to measure potentially difficult or expensive 

phenotypes. Further, GPSM differentiates between selection and drift while accounting 

for confounding effects such as uneven generation sampling, population structure, 

relatedness, and inbreeding. With the availability of large samples our analytical 

frameworks solve the long-standing population genetics problem of identifying the loci 

subjected to polygenic selection. 

Future studies exploring the effects of selection from the context of complex trait 

networks could explain how hundreds or thousands of selected genes act together to 

shape genomic diversity under directional selection. Candidate genes identified by GPSM 

https://paperpile.com/c/nQfGtx/4ZSJ
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identify pathways and processes involved in production efficiency (growth, digestion, 

muscle development, and fertility). In addition to a small number of loci, for which 

function is known, we identify hundreds of novel signatures of ongoing selection.  

The envGWAS identified 174, 125, and 130 SNPs associated with both 

continuous or discrete environmental factors in Red Angus, Simmental, and Gelbvieh, 

respectively. Identified candidate genes have functions related to environmental 

adaptation. Using these environmentally-associated candidate genes we identified an 

enrichment of pathways and tissues involved in neural development and signaling. These 

envGWAS associations emphasize the role that the nervous system plays in recognizing 

and responding to environmental stress in mammals, which will be valuable as society 

and agriculture cope with climate change. In addition to neural pathways, we observe 

significantly enriched expression of envGWAS genes in the brain tissues of humans, 

mice, and worms.  Other pathways associated with environmental adaptation reveal the 

importance of mechanisms involved in regulating vasoconstriction and vasodilation, both 

of which are essential for responses to heat, cold, altitude, and toxic fescue stressors in 

cattle.  

The statistical power and wide geographical distribution of the cattle comprising 

these data highlights that the utilized approaches can be leveraged to understand the 

genomic basis of adaptation in many other studies and species. The small allele frequency 

differences identified by envGWAS are consistent with a polygenic model of local 

adaptation, likely driven by small changes in gene expression [116]. Further, envGWAS 

identifies candidate genes (i.e. KHDRBS2) and pathways previously implicated as 

domestication-related [106]. This suggests that these genes are under natural and 

https://paperpile.com/c/nQfGtx/xlJFb
https://paperpile.com/c/nQfGtx/h3NPG
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balancing selection to cope with environmental stress, and not specifically part of the 

domestication process. Further, because different genes in the same pathways were 

detected in the analyses of the different populations, we hypothesize that these pathways 

influence local adaptation in many mammals and should be studied in other ecological 

systems. This knowledge will become increasingly valuable as species attempt to adjust 

to a changing climate. 

Artificial insemination in cattle has allowed the ubiquitous use of males which 

have been found to be superior when progeny performance has been averaged across US 

environments. Our results suggest that environmental associations are widespread in 

cattle populations, but that the widespread use of artificial insemination has caused US 

cattle populations to lose ecoregion-specific adaptive variants. We identified 16, 21, and 

30 loci undergoing ecoregion-specific selection in Red Angus, Simmental, and Gelbvieh, 

respectively.  In almost every case, selection has driven allele frequencies within an 

ecoregion back towards the population mean allele frequency (Figure 1F and Figure 

4C). In three independent datasets, we identified a single shared environmentally-

associated locus near the gene KHDRBS2. This locus has been identified as introgressed 

in yak, and exhibits an irregular allele frequency trajectory which suggests that it may be 

subject to balancing selection [117]. Though we identified only a single common 

envGWAS locus, we observed significant overlap in the pathways regulated by candidate 

genes within the associated loci. This reveals that adaptive networks are complex and that 

adaptation can be influenced by selection on functional variants within combinations of 

genes from these networks. As we work to breed more environmentally-adapted cattle, 

https://paperpile.com/c/nQfGtx/MG9S6
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there will be a need for selection tools that incorporate genotype-by-environment 

interactions to ensure that cattle become increasingly locally adapted.  

We demonstrate that large commercially-generated genomic datasets from 

domesticated populations can be leveraged to detect polygenic selection and local 

adaptation signatures. The identification of adaptive loci can assist in selecting and 

breeding better adapted cattle for a changing climate. Further, both our statistical 

approaches and biological findings can serve as a blueprint for studying complex 

selection and adaptation in other agricultural or wild species. Our results suggest that 

neural signaling and development are essential components of mammalian adaptation, 

meriting further functional genomic study. Finally, we observe that local adaptation is 

declining in cattle populations, which will need to be preserved to sustainably produce 

protein in changing climates.  

 

Materials and Methods 

Genotype Data: 

SNP assays for three populations of genotyped Bos taurus beef cattle ranging in 

density from ~25K SNPs to ~770K SNPs were imputed to a common set of 830K SNPs 

using the large multi-breed imputation reference panel described by Rowan et al. 2019 [7]. 

Genomic coordinates for each SNP were from the ARS-UCD1.2 reference genome [62]. 

Genotype filtering for quality control was performed in PLINK (v1.9) [61], reference-

based phasing was performed with Eagle (v2.4) [64], and imputation with Minimac3 

(v2.0.1) [66]. Following imputation, all three datasets contained 836,118 autosomal SNP 

variants. All downstream analyses used only variants with minor allele frequencies > 0.01. 

https://paperpile.com/c/nQfGtx/Jg7S
https://paperpile.com/c/nQfGtx/lWto
https://paperpile.com/c/nQfGtx/O1Ak
https://paperpile.com/c/nQfGtx/2tBz
https://paperpile.com/c/nQfGtx/gsZB
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Upon filtering, we performed a principal component analysis for each population in 

PLINK. This was to assess if there were discrete subpopulations within the populations 

and if there were patterns of structure related to ecoregions. 

 

Generation Proxy Selection Mapping (GPSM): 

To identify alleles that had changed in frequency over time, we fit a univariate 

genome-wide linear mixed model (LMM) using GEMMA (Version 0.98.1) [118]. Here, 

we used the model: 

EQUATION 1:  

𝑦 =  𝑋𝑔 + 𝑍𝑢 + 𝑒 

𝑢 ∼ 𝑁(0, 𝐺𝜎𝑎
2) 

𝑒 ∼ 𝑁(0, 𝜎𝑒
2𝐼) 

where y is an individual’s generation proxy, in our case birth date, and X was an incidence 

matrix that related SNPs to birth dates within each individual and g was the estimated effect 

size for each SNP. An animal’s age as of April 5, 2017 was used as the generation proxy 

in GPSM. We control for confounding population structure, relatedness, and inbreeding 

with a polygenic term u that uses a standardized genomic relationship matrix (GRM) G [3] 

and we estimated 𝜎𝑎
2 𝑎𝑛𝑑 𝜎𝑒

2 using restricted maximum likelihood estimation. Here, 

continuous age served as a proxy for generation number from the beginning of the pedigree. 

Other than the tested SNP effects, no fixed effects other than the overall mean were 

included in the model. We tested each SNP for an association with continuous age. We 

converted p-values to FDR corrected q-values and used a significance threshold of q < 0.1. 

We performed additional negative-control analyses in each dataset by permuting the date 

https://paperpile.com/c/nQfGtx/Zred4
https://paperpile.com/c/nQfGtx/Qoad
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of birth associated with each animal’s genotypes to ensure that the detected GPSM signals 

were likely to be true positives. Permutation was performed ten times for each population. 

To visualize the allele frequency history of loci undergoing the strongest selection, we fit 

a loess and simple linear regressions for date of birth and allele frequencies scored as 0, 

0.5 or 1.0 within each individual using R [119]. Results were visualized using ggplot2 

[120].  

 

Birth date variance component analysis: 

To estimate the amount of variation in birth date explained by GPSM significant 

SNPs, we performed multi-GRM GREML analyses for birth date in GCTA (v1.92.4) [121]. 

We built separate GRMs using genome-wide significant markers and all remaining makers 

outside of significant GPSM loci (> 1 Mb from significant GPSM SNPs to control for 

markers physically linked to significant GPSM SNPs). To further partition the variance in 

birth date explained by subsets of SNPs, we performed a GREML analysis using three 

GRMs created with genome-wide significant (p < 1⨯10-5) SNPs, an equal number of the 

next most significant SNPs, and an equal number of unassociated (p > 0.5) markers with 

minor allele frequencies > 0.15, to match the allele frequencies of significant SNPs. These 

three GRM were each constructed using 268, 548, and 763 SNPs for Red Angus, 

Simmental, and Gelbvieh, respectively. 

 

Environmental Data: 

Thirty-year normals (1981-2010) for mean temperature ((average daily high (°C) + 

average daily low (°C)/2), precipitation (mm/year), and elevation (m above sea level) for 

https://paperpile.com/c/nQfGtx/6elUM
https://paperpile.com/c/nQfGtx/7MkCN
https://paperpile.com/c/nQfGtx/XQunm
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each 4 km2 of the continental US were extracted from the PRISM Climate Dataset [122], 

and used as continuous dependent variables in envGWAS analysis. Optimal K-means 

clustering of these three variables grouped each 4 km2 of the continental US into 9 distinct 

ecoregions. Using the reported breeder zip code for each individual, we linked continuous 

environmental variables to animals and partitioned them into discrete environmental 

cohorts for downstream analysis. For ecoregion assignments, latitude and longitude were 

rounded to the nearest 0.1 degrees. As a result, some zip codes were assigned to multiple 

ecoregions. Animals from these zip codes were excluded from the discrete region 

envGWAS but remained in analyses that used continuous measures as dependent variables. 

 

Environmental Genome-wide Association Studies (envGWAS): 

To identify loci segregating at different frequencies within discrete ecoregions or 

along continuous climate gradients, we used longitudinal environmental data for the zip 

codes attached to our study individuals as dependent variables in univariate and 

multivariate genome-wide LMMs implemented in GEMMA (Version 0.98.1). We fit three 

univariate envGWAS models that used 30-year normal temperature, precipitation, and 

elevation data as dependent variables. These used an identical model to EQUATION 1, 

but used environmental values as the dependent variable (y) instead of birth date. We also 

fit a combined multivariate model using all three environmental variables to increase 

power. To identify loci associated with entire climates as opposed to only continuous 

variables, we fit univariate and multivariate case-control envGWAS analyses using an 

individual’s region assignment described in the “Environmental Data” section as binary 

phenotypes. Proportion of variation explained (PVE), phenotypic correlations, and genetic 

https://paperpile.com/c/nQfGtx/xs2pf
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correlations were estimated for continuous environmental variables and discrete 

environmental regions using GEMMA’s implementation of REML. 

To ensure that envGWAS signals were not driven by spurious associations, we 

performed two separate permutation analyses. In the first, we randomly permuted the 

environmental variables and regions associated with an individual prior to performing each 

envGWAS analysis, detaching the relationship between an individual’s genotype and their 

environment. In the second, to ensure that envGWAS signals were not driven by the over-

sampling of individuals at particular zip codes, we permuted the environmental variables 

associated with each zip code prior to envGWAS analysis. These two types of permutation 

analyses were performed for each dataset and for each type of univariate and multivariate 

envGWAS analysis. We determined significance using a permutation-derived p-value 

cutoff (p < 1⨯10-5) [123]. 

 

GPSM meta-analyses: 

To identify variants undergoing ecoregion-specific allele frequency changes, we 

performed GPSM analyses within each region with more than 600 individuals. The SNP 

significance testing effects and standard errors from each of the within-region GPSM 

analyses were combined into a single meta-analysis for each population using 

METASOFT (v2.0.1) [124]. We identified loci with high heterogeneity in allele effect 

size, suggesting region-specific selection. An m-value indicating the posterior-probability 

of a locus having an effect in a particular ecoregion was calculated for each of these loci 

[125]. 

 

https://paperpile.com/c/nQfGtx/xhrpT
https://paperpile.com/c/nQfGtx/HQXWT
https://paperpile.com/c/nQfGtx/ZyGD0
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Gene set and tissue set enrichment analysis: 

Using the NCBI annotations for the ARS-UCD1.2 Bos taurus reference assembly, 

we located proximal candidate genes near significant SNPs from each of our analyses. We 

generated two candidate gene lists each from significant GPSM and envGWAS SNPs. Lists 

contained all annotated genes within 10 kb or 100 kb from significant SNPs. We 

consolidated significant SNPs from all envGWAS analyses to generate a single candidate 

gene list for each breed. Using these candidate gene lists, we performed gene ontology 

(GO) and KEGG pathway enrichment analysis using Clue GO (v2.5.5) [126] implemented 

in Cytoscape (v3.7.2) [127]. We identified pathways and GO terms where at least two 

members of our candidate gene list comprised at least 1.5% of the term’s total genes. We 

applied a Benjamini-Hochberg multiple-testing correction to reported p-values and GO 

terms with FDR corrected p-values < 0.1 were considered significant.  

 

Using the above gene sets, we performed three separate Tissue Set Enrichment 

Analyses (TSEA) using existing databases of human, mouse, and worm gene expression 

data. We searched for enriched gene expression with data from the Human Protein Atlas 

[128] and Mouse ENCODE [129] using the Tissue Enrich tool (v1.0.7) [130]. Additionally, 

we performed another Tissue Set Enrichment Analysis using GTEx data [131] and a 

targeted Brain Tissue Set Enrichment Analysis in the pSI R package (v1.1) [132]. Finally, 

we used Ortholist2 [133] to identify C. elegans genes orthologous with members of our 

envGWAS and GPSM gene lists. We then queried these lists in WormBase’s Tissue 

Enrichment Analysis tool [134,135] to identify specific tissues and neurons with enriched 

expression in C. elegans. We used each tool’s respective multiple-testing correction to 

https://paperpile.com/c/nQfGtx/NlD3A
https://paperpile.com/c/nQfGtx/8axUe
https://paperpile.com/c/nQfGtx/ecfqO
https://paperpile.com/c/nQfGtx/fEwBS
https://paperpile.com/c/nQfGtx/DEqvM
https://paperpile.com/c/nQfGtx/QMMLW
https://paperpile.com/c/nQfGtx/9mx3S
https://paperpile.com/c/nQfGtx/oXoeY
https://paperpile.com/c/nQfGtx/Qqebn+lOI7n
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determine significance. We deemed an enrichment in a tissue “suggestive” when its p-

value was < 0.1. 

 

Acknowledgments 

We appreciate comments from Wes Warren, Jeremy Taylor, and William 

Lamberson while writing this manuscript. We also appreciate farmers and ranchers for 

collecting this data and for data being shared from the Red Angus Association of 

America, American Simmental Association, and American Gelbvieh Association. 

  



 

86 

 

FIGURES 

 

Figure  3.1. Simulated allele frequency trajectories and model overview. (a-c) Allele 

frequency trajectories for 20 SNPs colored by relative effect sizes from stochastic 

selection simulations. (a) Effect size = 0, representing stochastic changes in allele 

frequency due to genetic drift. (b) Large-effect alleles rapidly becoming fixed in the 

population representing selective sweeps. (c) Moderate-to-small effect size SNPs 

changing in frequency slowly over time, representing polygenic selection. (d) An 
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overview of the linear mixed model approach used for Generation Proxy Selection 

Mapping and environmental GWAS. (e-f) A single SNP under ecoregion-specific 

selection. Different colors represent the trajectory of a given SNP in one of five different 

ecoregions. Ecoregion-specific selection can lead to allele frequencies that (e) diverge 

from or (f) converge to the population mean. 

 

[Figure 1 in text]  
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Figure  3.2. Generation Proxy Selection Mapping identifies signals of polygenic 

selection in three major U.S. cattle populations. Full and truncated (-log10(q)< 15) 

Manhattan plots for GPSM analysis of Red Angus (a & b), Simmental (c & d), and 

Gelbvieh (e & f). Purple points indicate SNPs significant in all three population-specific 

GPSM analyses and orange points indicate SNPs significant in two. Minor allele 

frequency plotted versus -log10(p) values for significant SNPs in (g) Red Angus, (h) 
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Simmental, and (i) Gelbvieh populations. (j) Smoothed allele frequency histories for the 

six most significant loci identified as being under selection in all three datasets. (k) Allele 

frequency histories for three known Mendelian loci that control differences in visual 

appearance between introduced European and modern US Simmental cattle. 

 

[Figure 2 in text]   
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Figure 3.3. Manhattan plots for discrete and continuous envGWAS in Red Angus 

cattle. (a) Nine continental US ecoregions defined by K-means clustering of 30-year 

normal temperatures, precipitations, and elevations. (b) Locations of sampled Red Angus 

animals coloured by breeder’s ecoregion and sized by the number of animals at that 

location. (c) Multivariate discrete envGWAS (case-control for six regions with > 600 
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animals). Locations of sampled Red Angus animals colored by (d) 30-year normal 

temperature, (e) 30-year normal precipitation, and (f) elevation. (g) Multivariate 

continuous envGWAS with temperature, precipitation, and elevation as dependent 

variables.  For all Manhattan plots the red line indicates the empirically-derived p-value 

significance threshold from permutation analysis (p < 1⨯10-5).   

[Figure 3 in text]  
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Figure 3.4. Meta-analysis of within-ecoregion GPSM for Red Angus cattle. (a) 

Manhattan plot of per-variant Cochran’s Q p-values. Points coloured green had 

significant Cochran’s Q (p < 1⨯10-5) and were significant in at least one within-region 

GPSM analysis (p < 1⨯10-5). (b) Ecoregion effect plots for lead SNPs from six loci from 

(a). Points are coloured by ecoregion and are sized based on Cochran’s Q value. (c) 

Ecoregion-specific allele frequency histories for SNPs from (b), coloured by ecoregion.  

[Figure 4 in text]
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Figure 3.5. Distributions of continuous birth date in sampled Red Angus, 

Simmental, and Gelbvieh populations. (a) Birth date histograms for complete datasets. 

(b) Histograms of animal birth dates born before 2000.   

[Figure S1 in text] 
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Figure 3.6. Manhattan plots of discrete envGWAS in Red Angus cattle. Q-Q plots for 

envGWAS p-values of (a) a linear model for Forested Mountains ecoregion membership, 

(b) a linear mixed model for Forested Mountain ecoregion membership, and (c) a 

multivariate linear mixed model of ecoregion membership. Univariate discrete 
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envGWAS for (d) Forested Mountain linear model, (e) Forested Mountains linear mixed 

model, (f) Southeast, (g) Fescue Belt, (h) Arid Prairie, (i) High Plains, and (j) Upper 

Midwest & Northeast ecoregions. In all Manhattan plots the red line indicates an 

empirically-derived p-value significance threshold from permutation testing (p < 1×10-

5). Note the drastically inflated p-values from the linear model in (a). Further, note that 

associated loci are not consistent between linear model and linear mixed model, 

highlighting the need to control for geographic dependency with a genomic relationship 

matrix. 

[Figure S2 in text]  
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Figure 3.7. Manhattan plots of discrete envGWAS in Simmental cattle. (a) Nine 

ecoregions of the continental United States defined by K-means clustering of 30-year 

normal temperature, precipitation, and elevation. (b) Locations of Simmental animals 

colored by breeder’s ecoregion and sized by number of animals at that location. (c) 

Multivariate envGWAS (case-control for regions with > 600 animals). Univariate 

discrete envGWAS for (d) Desert, (e) Southeast, (f) Fescue Belt, (g) Forested Mountains, 
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(h) High Plains, and (i) Upper Midwest & Northeast ecoregions. In all Manhattan plots 

the red line indicates an empirically-derived p-value significance threshold from 

permutation testing (p < 1×10-5). 

[Figure S3 in Text] 

  



 

98 

 

 

Figure 3.8. Manhattan plots of discrete envGWAS in Gelbvieh cattle. (a) Nine 

ecoregions of the continental United States defined by K-means clustering of 30-year 

normal temperature, precipitation, and elevation. (b) Locations of Gelbvieh animals 

colored by breeder’s ecoregion and sized by number of animals at that location. (c) 

Multivariate envGWAS (case-control for regions with > 600 animals). Univariate 

discrete envGWAS for (d) Desert, (e) Southeast, (f) Fescue Belt, (g) Forested Mountains, 

(h) High Plains, and (i) Upper Midwest & Northeast ecoregions. In all Manhattan plots 

the red line indicates an empirically-derived p-value significance threshold from 

permutation testing (p < 1×10-5). [Figure S4 in text]  



 

99 

 

 

Figure 3.9. Plots of first eight principal components from PCA analysis. Plots for Red 

Angus (A-D), Simmental (E-H), and Gelbvieh (I-L). Points indicate individuals, colored 

by their assigned ecoregion.  

[Figure S5 in text] 
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Figure 

3.10. Continuous environmental variable envGWAS in Red Angus cattle. Q-Q plots 

for envGWAS p-values of (a) a linear model for temperature, (b) a linear mixed model 

for temperature, and (c) a multivariate linear mixed model of temperature, precipitation, 

and elevation. Geographic distributions colored by (d) temperature, (e) precipitation, (f) 

elevation. Manhattan plots for univariate envGWAS analysis of (g) temperature, (h) 

precipitation, (i) elevation. Red lines indicate permutation-derived p-value cutoff of 1×10-

5. 

[Figure S6 in text]  
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Figure 3.11. Continuous environmental variable envGWAS in Simmental cattle. (a) 

Multivariate envGWAS of temperature, precipitation, and elevation for Simmental cattle. 

Geographic distributions colored by (b) temperature, (d) precipitation, (f) elevation. 

Manhattan plots for univariate envGWAS analysis of (c) temperature, (e) precipitation, 

(g) elevation. Red lines indicate permutation-derived p-value cutoff of 1×10-5. 

[Figure S7 in text]  



 

102 

 

 

Figure 3.12. Continuous environmental variable envGWAS in Gelbvieh cattle. (a) 

Multivariate envGWAS of temperature, precipitation, and elevation for Gelbvieh cattle. 

Geographic distributions colored by (b) temperature, (d) precipitation, (f) elevation. 

Manhattan plots for univariate envGWAS analysis of (c) temperature, (e) precipitation, 

(g) elevation. Red lines indicate permutation-derived p-value cutoff of 1×10-5. 

[Figure S8 in text]  



 

103 

 

 

Figure 3.13. PM-plots and region-specific allele frequency trajectories for meta-

analysis SNPs of interest in the Red Angus population ecoregions with > 1,000 

genotyped animals. (a) PM-plots for lead SNPs of significant within-region GPSM 

meta-analysis (Cochran’s Q p-value > 1×10-5 and significant in at least one region-

specific GPSM analysis p < 1×10-5). Each box represents the lead SNP, colored by 



 

104 

 

ecoregion, and sized by Cochran’s Q value (for heterogeneity). (b) Region-specific allele 

frequency trajectories for lead SNPs since 1980, generated by fitting smoothed loess 

regression of allele frequency on birth date. Trajectories are colored by ecoregion.  

[Figure S9 in text]  
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Figure 3.14. PM-plots and region-specific allele frequency trajectories for meta-

analysis SNPs of interest in the Simmental population ecoregions with > 1,000 

genotyped animals. (a) PM-plots for lead SNPs of significant within-region GPSM 

meta-analysis (Cochran’s Q p-value > 1×10-5 and significant in at least one region-
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specific GPSM analysis p < 1×10-5). Each box represents the lead SNP, colored by 

ecoregion, and sized by Cochran’s Q value (for heterogeneity). (b) Region-specific allele 

frequency trajectories for lead SNPs since 1980, generated by fitting smoothed loess 

regression of allele frequency on birth date. Trajectories are colored by ecoregion.  

[Figure S10 in text]  
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Figure 3.14. PM-plots and region-specific allele frequency trajectories for meta-

analysis SNPs of interest in the Gelbvieh population ecoregions with > 1,000 

genotyped animals. (a) PM-plots for lead SNPs of significant within-region GPSM 

meta-analysis (Cochran’s Q p-value > 1×10-5 and significant in at least one region-

specific GPSM analysis p < 1×10-5). Each box represents the lead SNP, colored by 
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ecoregion, and sized by Cochran’s Q value (for heterogeneity). (b) Region-specific allele 

frequency trajectories for lead SNPs since 1980, generated by fitting smoothed loess 

regression of birth of allele frequency on birth date. Trajectories are colored by 

ecoregion. 

[Figure S11 in text]  
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TABLES 

Tables 3.3, 3.6, 3.9, 3.11, 3.16, 3.18, 3.20, 3.21, 3.22 are too large for print, but can be 

found as tabs in the following spreadsheet: 

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing  

 

Table 3.1. Variation in birth date explained by three classes of SNPs. The PVE 

estimates (standard error in parentheses) from a genomic restricted maximum likelihood 

(GREML) variance component analysis of birth date using three GRMs created from: 1) 

genome-wide significant SNPs (q < 0.1), 2) an equivalent number of the next most 

significant SNPs outside of genome-wide significant associated regions, and 3) an 

equivalent number of non-significant SNPs (p>0.5) randomly sampled from genomic 

regions that did not harbor genome-wide significant associations.  

Population Genome-wide 

significant 

SNPs* 

Suggestive 

significant 

SNPs* 

Other SNPs* Total 

Red Angus  0.187 (0.026) 0.148 (0.015) 0.031 (0.004) 0.366 (0.023) 

Simmental 0.239 (0.020) 0.194 (0.014) 0.037 (0.004) 0.470 (0.016) 

Gelbvieh 0.225 (0.017) 0.193 (0.013) 0.008 (0.003) 0.426 (0.018) 

*Contained 268, 548, and 763 SNPs for Red Angus, Simmental, and Gelbvieh, 

respectively 

[Table 1 in text]  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.2. GPSM and envGWAS gene dropping simulation results. Ten repetitions of 

a 200,000 SNP gene dropping experiment through the complete Red Angus pedigree. 

Real GPSM and envGWAS phenotypes were used to identify significant SNPs (p-value < 

1×10-5). Multiple nearby SNPs were grouped as “genomic regions'' when they were 

within 1Mb of one another.  

Analysis 

Analyzed 

Individuals 

Median Number 

Significant SNPs 

(SD) 

Median Significant 

p-value (SD) 

GPSM 15,315 5 (3.931) 4.35x10-6 (3.08x10-6) 

envGWAS 15,315  5 (5.81) 3.89x10-6 (3.108x10-6) 

[Table S1 in text] 
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Table 3.3. GPSM stochastic simulation results. Descriptions of 36 selection scenarios, 

and the corresponding true and false positive rates for GPSM detecting simulated QTL 

under selection (simulated QTL GPSM p-value < 1⨉10-5). Each scenario’s true and false 

positive statistics were calculated based on 10 replicates starting with different founder 

populations and selected randomly (false positives) or based on true breeding value (true 

positives). For each scenario, we report the number simulated QTL, the number of total 

crosses performed using 50 males and 500 females, the distribution from which QTL 

effects were drawn from, and the number of generations of selection performed. In each 

case, 10,000 simulated individuals were randomly chosen to be genotyped (evenly each 

generation).  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S2 in text] [Tab S2 in linked spreadsheet above] 

  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.4. GPSM datasets from three major U.S. beef cattle populations. Sample 

sizes are reported prior to and after filtering on individual call rate individuals with 

reported birth dates.  

Breed 

Sample Size  

(After 

Filtering) 

Median 

Birth Date 

Mean 

Birth Date 

Min Birth 

Date 

Max Birth 

Date 

Red Angus 16,331 

(15,2951) 

2014-10-16 2013-12-26 1975-03-21 2017-04-23 

Simmental 17,468 

(15,350) 

2013-08-09 2011-08-11 1966-02-16 2016-04-06 

Gelbvieh 12,563 

(12,031) 

2015-01-11 2013-09-23 1970-12-02 2016-09-21 

1 After removing non-purebred animals 

[Table S3 in text]  
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Table 3.5. The proportion of variation in birth date explained (PVE) by markers in 

GPSM analysis. PVE calculated for each population dataset in full, and subsetted to 

individuals born within the last 20 or 10 years. The standard errors of PVE estimates are 

reported in parentheses. 

Population 

Full Dataset 

PVE (se) 

20-year PVE 

(se) 

10-year PVE 

(se) Shuffled PVE (se) 

Red Angus 0.520 (0.013) 0.358 (0.013) 0.406 (0.014) 9.82 x 10-6 (0.002) 

Simmental 0.588 (0.009) 0.551 (0.010) 0.401 (0.014) 9.70 x 10-4 (0.003) 

Gelbvieh 0.459 (0.015) 0.454 (0.015) 0.361 (0.014) 5.05 x 10-4 (0.004) 

[Table S4 in text] 
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Table 3.6. Summary statistics and candidate genes from significant GPSM SNPs for 

Red Angus, Simmental, and Gelbvieh populations. Variants are significant if GPSM 

q-value < 0.1. Genomic locations are reported based on coordinates from ARS-1.2 

genome assembly. Candidate genes were assigned to a SNP if within 10 kb of a 

significant SNP.  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S5 in text] [Tab S5 in linked spreadsheet above]  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.7. Summary statistics of allele frequency change (ΔAF) per generation for 

significant GPSM SNPs. ΔAF is the slope of a simple regression of allele frequency on 

birth date multiplied by a generation interval of 5 years. 

Breed 

N SNPs 

(GPSM 

q < 0.1) 

Mean ΔAF per 

generation (sd) 

Median 

ΔAF per 

generation 

Min ΔAF 

per 

generation 

Max ΔAF 

per 

generation 

Red Angus 268 0.018 (0.011) 0.017 4.97 x 10-5 0.076 

Simmental 548 0.024 (0.017) 0.022 6.79 x 10-5 0.093 

Gelbvieh 762 0.033 (0.028) 0.024 1.01 x 10-4 0.223 

 

[Table S6 in text]
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Table 3.8. Significant GPSM variants identified in at least two populations. Lead SNPs from significant loci identified in GPSM 

analyses of Red Angus, Simmental, and Gelbvieh cattle populations. Locus reported if it was identified in GPSM analysis of at least 

two populations. Candidate gene is the annotated gene closest to lowest p-value SNP in peak if < 200 kb away. Associations are from 

cattle literature unless otherwise reported. 

CHR POS 

Nearest Candidate Gene(s) 

(Distance) 

Known Candidate Gene 

Associations References Datasets 

1 157,913,264 LOC112448253 (within) lncRNA, PRDM9  ALL 

2 53,151,541 ARHGAP15 (within) Immune functions, 

Trypanosomiasis resistance  

[136–138] ALL 

12 46,730,506 DACH1 (182.1 kb) Feed efficiency/growth [139] ALL 

14 59,774,083 LRP12 (261.5 kb), 

LOC112449532 (113.6 kb) 

(LRP12) Feed efficiency/growth [53,140] ALL 

16 955,146 ADORA1 (within), 

MYBPH (2.0 kb) 

Fertility/immune 

(ADORA1)/muscle growth 

(MYBPH) 

[141–143] ALL 

23 1,768,070 LOC782044 (25.7 kb)   ALL 

28 640,998 RHOU (56.3 kb), 

Olfactory gene cluster (166.5kb) 

Bone development, Innate 

immune system 

[144] ALL 

1 3,144,864 URB1 (within) Embryonic lethal (pigs) [145] SIM/GEL 

1 73,642,609 > 200 kb to a gene   SIM/GEL 

https://paperpile.com/c/nQfGtx/hF49p+fs7iu+4jK8t
https://paperpile.com/c/nQfGtx/yVZmB
https://paperpile.com/c/nQfGtx/NmrO+FYvHU
https://paperpile.com/c/nQfGtx/2VNA8+jTIcC+Vn6ao
https://paperpile.com/c/nQfGtx/kkfnp
https://paperpile.com/c/nQfGtx/b8tGg


 

 

 

1
1

7
 

3 119,429,700 CSF2RA (within) TB Resistance [146] RAN/SIM 

5 5,266,489 ENSBTAG00000050164 (within) lncRNA  SIM/GEL 

8 113,265,058 > 200 kb to a gene   SIM/GEL 

 

9 78,704,840 PWWP2B  

(23.6 kb) 

Bovine fetus muscle expression [147] RAN/GEL 

9 104,228,150 PDCD2 (111 kb)   SIM/GEL 

10 940,793 MCC (within)   SIM/GEL 

12 518,595 PCDH20 (37.7 kb)   SIM/GEL 

15 77,106,772 DDB2 (within) Calving Ease [148] RAN/GEL 

15 84,680,379 LOC617614 Olfactory Receptor  SIM/GEL 

16 78,129,493 > 200 kb to a gene   SIM/GEL 

19 53,947,810 BIRC5 (within) RFI (DE), Fertility and 

Reproduction 

[149] RAN/GEL 

22 24,625,216 Between CNTN6 and CNTN4 Known Milk Yield QTL [150] SIM/GEL 

28 20,762,645 > 200 kb to a gene   SIM/GEL 

 

[Table S7 in text]

https://paperpile.com/c/nQfGtx/rsgRL
https://paperpile.com/c/nQfGtx/tnPd2
https://paperpile.com/c/nQfGtx/TQMLx
https://paperpile.com/c/nQfGtx/XA5xg
https://paperpile.com/c/nQfGtx/TNeua
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Table 3.9. Gene enrichment analysis of GPSM candidate genes in Red Angus, 

Simmental, and Gelbvieh populations. Candidate genes were annotated genes < 10 kb 

to significant GPSM SNPs (q < 0.1). Significant (FDR-corrected p-values < 0.1) KEGG 

pathways and GO biological processes are reported for each breed. 

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing  

[Table S8 in text] [Tab S8 in linked spreadsheet above] 

  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.10. TissueEnrich analysis using GPSM gene sets from Red Angus, 

Simmental, and Gelbvieh populations. TSEA from TissueEnrich software using 

Human Protein Atlas gene expression data. Enrichment analysis carried out for candidate 

genes within 10 kb of significant envGWAS SNPs. For each test, we report the number 

of tissue specific genes, their average fold change, and the FDR-corrected log10 p-value 

for tissue enriched expression.  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S9 in text] [Tab S9 in above linked spreadsheet] 

  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.11. Tissue enrichment analysis results from GPSM gene sets in Red Angus, 

Simmental, and Gelbvieh populations using the pSI R package and human GTEx 

expression data. Enrichment significance values for four specificity index thresholds 

(pSI) of 25 human tissues types. Each combination of stringency for enrichment (pSI) 

and tissue reports a p-value for Fisher’s Exact Test and a Benjamini Hochberg corrected 

p-value reported in parentheses. Tissue-gene-set combinations that are significant 

(Benjamini-Hochberg p-value < 0.1) are highlighted in red, those that are suggestive (raw 

p-value < 0.1) are highlighted in green. 

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S10 in text] [Tab S10 in above linked spreadsheet] 

  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.12. Ecoregion distribution of Red Angus, Simmental, and Gelbvieh 

populations. Counts of analyzed individuals in each region for each dataset after filtering 

and region assignment based on individual’s breeder zip code.  

Region Red Angus Simmental Gelbvieh 

Desert 3671 3211 4081 

Southeast 6151 1,0731,2 4221 

High Plains 2,7961,2 3,6451,2 4,0221,2 

Rainforest 0 62 1 

Arid Prairie 1,2061,2 181 87 

Foothills 136 0 0 

Forested Mountains 4,5251,2 2,5891,2 7041,2 

Fescue Belt 3,0111,2 4,3931,2 4,4821,2 

Upper Midwest & 

Northeast 

1,5131,2 2,5241,2 1,0721,2 

Total 14,169 14,788 11,198 

 

1 included in multivariate discrete envGWAS analysis 

2 included in “large region” multivariate envGWAS analysis 

[Table S11 in text]  
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Table 3.13. Univariate REML estimates of PVE for continuous environmental 

variables in genotyped Red Angus, Simmental, and Gelbvieh populations. Standard 

errors for PVE estimates are reported in parentheses.  

Variable Red Angus PVE 

(se) 

Simmental PVE (se) Gelbvieh PVE (se) 

Temperature 0.597 (0.010) 0.586 (0.011) 0.691 (0.010) 

Precipitation 0.526 (0.011) 0.602 (0.011) 0.677 (0.010) 

Elevation 0.594 (0.010) 0.585 (0.011) 0.644 (0.011) 

 

[Table S12 in text]  
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Table 3.14. Univariate estimates of PVE for discrete ecoregion assignment in 

genotyped Red Angus, Simmental, and Gelbvieh populations. Standard errors for 

PVE estimates are reported in parentheses.  

Variable Red Angus 

PVE (se) 

Simmental 

PVE (se) 

Gelbvieh 

PVE (se) 

Desert 0.646 (0.010) 0.517 (0.012) 0.726 (0.010) 

Southeast (SE) 0.408 (0.010) 0.547 (0.013) 0.478 (0.013) 

High Plains (HP) 0.641 (0.011) 0.588 (0.010) 0.694 (0.010) 

Arid Prairie (AP) 0.463 (0.011) 0.566 (0.014) NA 

Forested Mountains (FM) 0.575 (0.011) 0.594 (0.010)  0.615 (0.013) 

Fescue Belt (FB) 0.673 (0.010) 0.545 (0.011) 0.649 (0.011) 

Upper Midwest & 

Northeast (UMWNE) 0.548 (0.012) 0.509 (0.012) 0.609 (0.013) 

 

[Table  S13 in text]
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Table 3.15. Candidate genes for discrete ecoregion multivariate envGWAS in Red Angus cattle. Lead SNP in envGWAS peak is 

reported along with nearest plausible candidate genes (provided < 250 kb from lead SNP). If association was also identified in 

univariate analysis, it is reported. Potentially adaptive associations are reported along with references.  

CHR POS 

Nearest Candidate 

Gene(s) (Distance) 

Univariate 

Continuous 

Association 

Univariate 

Ecoregion 

Association 

Candidate Gene 

Adaptive Associations Reference 

2 7,571,508 

 

DIRC1 (110.3 kb),  

COL5A2 (212.7 kb) 

Multivariate, 

Temperature 

FM Sweep region (human), 

blood pressure (human) 

[17,151,152] 

2 25,519,381 GORASP2 (4.47 kb) N/A AP Adaptive signature (fish) [153] 

4 43,928,337 MAGI2 (within) N/A UMWNE Selection signature, 

imprinted (cattle) 

[154,155] 

5 59,498,938 LOC788524 (OR9K2) 

(1.42 kb) [Olfactory 

cluster] 

N/A FM Olfactory receptor 

cluster, selection 

signature (bison) 

[156] 

6 96,217,506 RASGEF1B (within) N/A HP Immune function, 

adaptation signature 

(human), Response to 

viral infections. 

[157,158] 

8 84,146,584 CENPP (within) N/A N/A African cattle CNV, 

hypoxia (human) 

[159,160] 

12 58,438,020 N/A N/A N/A   

https://paperpile.com/c/nQfGtx/cvpu+IWG3n+BgfoW
https://paperpile.com/c/nQfGtx/XWMHp
https://paperpile.com/c/nQfGtx/Vvth0+XKN9Z
https://paperpile.com/c/nQfGtx/un275
https://paperpile.com/c/nQfGtx/c7bFp+PlTis
https://paperpile.com/c/nQfGtx/0eofl+QO6Rf


   

 

1
2
5
 

13 75,784,164 ZMYND8 (within)   Immune function, DNA 

damage repair 

[161,162] 

13 81,716,869 PFDN4 (71.97 kb) N/A HP Dermatitis (humans) [163] 

22 48,873,180 DUSP7 (40.83 kb)   Heat stress/sperm 

motility (cattle), 

Stress response 

[164,165] 

23 1,768,070   AP, FM   

24 10,628,280 CDH7 (151.7 kb) MV AP Developmental 

processes 

[166] 

24 62,228,300 LOC100298064 

(HAVCR1) (15.2kb) 

 AP Immune function [167] 

25 26,511,450 SPN (CD43) (within) N/A SE MHC-Class I, Immune 

response (cattle) 

[168] 

25 35,085,041 CUX1 (67.8 kb) Multivariate N/A Hair phenotype (goats, 

mice) 

[100,101] 

26 34,432,722 ADRB1 (81.5 kb) Temperature  Selection (sporting 

dogs), climate 

adaptation (lizards) 

[169,170] 

 

[Table S14 in text]

https://paperpile.com/c/nQfGtx/ilfCQ+s8tHR
https://paperpile.com/c/nQfGtx/S5c7V
https://paperpile.com/c/nQfGtx/sY4ua+Jhsz8
https://paperpile.com/c/nQfGtx/CgZSS
https://paperpile.com/c/nQfGtx/qH4Aq
https://paperpile.com/c/nQfGtx/lQxVD
https://paperpile.com/c/nQfGtx/wSsUZ+NFQBO
https://paperpile.com/c/nQfGtx/fnkrm+47Uls
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Table 3.16. envGWAS significant SNPs and candidate genes. SNPs were significant 

when p < 1×10-5 . Candidate genes are genes within < 10 kb of significant envGWAS 

SNPs. We report significant SNPs from all univariate and multivariate analyses for both 

continuous environmental variables and discrete environments in Red Angus, Simmental, 

and Gelbvieh populations. 

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S15 in text] [Tab S15 in above linked spreadsheet]

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.17. Candidate genes identified in multivariate envGWAS analyses using continuous environmental attributes as 

dependent variables. Chromosome and genomic positions are for lead SNP in peak. Closest gene is identified as a candidate (if < 250 

kb from lead SNP).  

CHR POS 

Nearest Annotated 

Gene (Distance) 

Univariate 

association  

(if p < 1×10-5) Adaptation- related associations References Breed(s) 

2 7,571,508 DIRC1 (110.3 kb), 

COL5A2 (212.7 kb) 

Temperature Sweep region (human), blood 

pressure (human) 

[17,151] RAN 

2 16,014,918 No genes < 200 kb Temperature   RAN 

4 32,945,494 ABCB1 (within) Temperature Drug resistance, human adaptation, 

cattle health traits 

[171–173] RAN 

5 6,551,121 E2F7 (68.592 kb)  Body weight, bone density 

(human) 

[174,175] RAN 

6 57,392,860 TBC1D1 (within)  Selection (cattle, chickens), body 

size (chickens, mice), immune 

traits (lymphocytes, etc.), obesity 

(humans) 

[176–182] RAN 

7 106,527,874 EFNA5 (within) Precipitation   RAN 

10 69,692,497 AP5M1 (within)  Selection (humans) [183] RAN 

10 84,307,302 DPF3 (within) Precipitation   RAN 

15 2,232,970 GRIA4 (within) Elevation Cold tolerance (cattle) [184] RAN 

15 71,402,156 LRRC4C (within)  Altitude adaptation (humans) [185] RAN 

https://paperpile.com/c/nQfGtx/cvpu+IWG3n
https://paperpile.com/c/nQfGtx/OXl99+F0w9Z+syTyi
https://paperpile.com/c/nQfGtx/SxEnI+hYLsF
https://paperpile.com/c/nQfGtx/sR5K9+WEv1d+iiQvW+B0MPh+A9d6z+mqtsr+erRJm
https://paperpile.com/c/nQfGtx/xiA2w
https://paperpile.com/c/nQfGtx/X9xBX
https://paperpile.com/c/nQfGtx/BUJhc
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22 4,815,225 RBMS3 (156.7 kb) Precipitation Tropical adaptation (humans), 

Sweep region (humans), 

Pleiotropic QTL (cattle) 

[17,186,187] RAN 

22 5,297,061 GADL1 (within)  Associated with climate variables 

in Mediterranean cattle, blood 

metabolites, human adaptation 

[188–190] RAN 

24 10,628,280 CDH7 (150.58 kb)    RAN 

24 35,718,635 ADCYAP1 (14.3 kb)  Circadian rhythm (birds), 

chronotype (humans) 

[191–193] RAN 

25 35,085,041 CUX1 (67.8 kb)  Hair phenotypes (goats, mice) [100,101] RAN 

25 39,464,325 LOC101904513  Precipitation ncRNA  RAN 

28 28,979,090 PLA2G12B (16.0 kb) Temperature and 

Elevation 

Local adaptation (humans) [194,195] RAN 

29 44,555,972 BBS1 (within)  Obesity, energy homeostasis 

(human) 

[107,108,196] RAN 

1 26,621,249 ROBO1 (within)  Neuron development (dogs, cattle, 

pigs), selection signature (cattle), 

sporting dogs, temperature 

acclimation (pigs) 

[109,155,169,

197] 

SIM 

1 134,777,473 CEP63 (within)  Height (human), thermal 

adaptation (fish) 

[198,199] SIM 

3 2,966,062 UCK2 (18.65 kb)  Osmoregulation (fish), disease 

response (cattle) 

[200,201] SIM 

8 64,286,414 ENSBTAG00000054262  lncRNA  SIM 

10 16,366,200 KIF23 (24.83 kb)  Hepatic function (cattle)  [202,203] SIM 

https://paperpile.com/c/nQfGtx/trGoD+cvpu+k1Xki
https://paperpile.com/c/nQfGtx/2jqFr+gjidS+I92DQ
https://paperpile.com/c/nQfGtx/Q12D3+XHr4f+rcGtw
https://paperpile.com/c/nQfGtx/wSsUZ+NFQBO
https://paperpile.com/c/nQfGtx/UGeA4+42Yje
https://paperpile.com/c/nQfGtx/tz6dL+Mvwll+0eOgG
https://paperpile.com/c/nQfGtx/fnkrm+XKN9Z+mI38M+d0qAW
https://paperpile.com/c/nQfGtx/fnkrm+XKN9Z+mI38M+d0qAW
https://paperpile.com/c/nQfGtx/joLGw+1OtKh
https://paperpile.com/c/nQfGtx/B0Wj4+hugoH
https://paperpile.com/c/nQfGtx/LTa7j+trIlx
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17 51,685,973 LOC100847522 (88.07 

kb) 

 ncRNA  SIM 

20 54,365,387  Precipitation, 

Elevation 

  SIM 

23 1,768,070 LOC782044 Precipitation, 

Elevation 

  SIM 

26 34,125,126 NRAP (within)  Meat traits (cattle), under selection 

in Eastern Finncattle, neuron 

development 

[204–206] SIM 

28 640,998 RHOU (56.34 kb) Elevation   SIM 

29 36,766,544 LOC112444895 (137.67 

kb) 

Precipitation, 

Elevation 

ncRNA  SIM 

2 116,117,760 SPHKAP (within) Elevation Insulin secretion, kidney disease 

susceptibility (human) 

[207,208] GEL 

3 65,627,833 ADGRL4 (39.34 kb) Temperature   GEL 

4 35,457,854 SEMA3D (within)  Calving ease, neuron/axon 

guidance 

[209–211] GEL 

4 95,515,907 LOC785077 (30.81 kb) Precipitation   GEL 

11 81,911,781 FAM49A (26.09 kb) Temperature   GEL 

14 73,663,377 CALB1 (within) Elevation Selection signature (pigs) 

 

[212] GEL 

23 1,760,296 LOC782044 (17.22 kb)    GEL 

25 663,051 LOC531296 

(within)/MSLN 

Temperature Feed intake (cattle) [149] GEL 

https://paperpile.com/c/nQfGtx/Iziy9+XzizP+aUXlp
https://paperpile.com/c/nQfGtx/exUIp+9YXhZ
https://paperpile.com/c/nQfGtx/ht3GJ+7K4Hn+eIqqN
https://paperpile.com/c/nQfGtx/060xn
https://paperpile.com/c/nQfGtx/XA5xg
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Table 3.18. Gene enrichment analysis of envGWAS candidate genes in Red Angus, 

Simmental, and Gelbvieh populations. Candidate genes were annotated genes < 10 kb 

to significant envGWAS SNPs (p-value < 1×10-5). A single gene list for each breed was 

generated using significant SNPs from all combinations of univariate/multivariate, 

continuous/discrete envGWAS. Significant (FDR-corrected p-values < 0.1) KEGG 

pathways and GO biological processes are reported, along with the associated genes.  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S17 in text] [Tab S17 in above linked spreadsheet] 

  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.19. TissueEnrich analysis using envGWAS gene sets from Red Angus, 

Simmental, and Gelbvieh populations. TSEA from TissueEnrich software using 

Human Protein Atlas gene expression data. Enrichment analysis carried out for candidate 

genes within 10 kb of significant envGWAS SNPs. For each test, we report the number 

of tissue specific genes, their average fold change, and the FDR-corrected log10 p-value 

for tissue enriched expression.  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S18 in text] [Tab S18 in linked spreadsheet above]  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.20. Tissue enrichment analysis results from envGWAS gene sets in Red 

Angus, Simmental, and Gelbvieh populations using the pSI R package and human 

GTEx expression data. Enrichment significance values for four specificity index 

thresholds (pSI) of 25 human tissues types. Each combination of  stringency for 

enrichment (pSI) and tissue reports a p-value for Fisher’s Exact Test and a Benjamini 

Hochberg corrected p-value reported in parentheses. Tissue-gene-set combinations that 

are significant (Benjamini-Hochberg p-value < 0.1) are highlighted in red, those that are 

suggestive (raw p-value < 0.1) are highlighted in green. 

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S19 in text] [Tab S19 in above linked spreadsheet] 

  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.21. Brain region and cell-type enrichment analysis results from envGWAS 

gene sets in Red Angus, Simmental, and Gelbvieh populations using the pSI R 

package with expression data from the Allen Brain Atlas. Enrichment significance 

values for four specificity index thresholds (pSI) of six brain regions and 35 brain cell 

types. Each combination of  stringency for enrichment (pSI) and brain region/cell type 

reports a p-value for Fisher’s Exact Test and a Benjamini Hochberg corrected p-value 

reported in parentheses. Combinations that are significant (Benjamini-Hochberg p-value 

< 0.1) are highlighted in red, those that are suggestive (raw p-value < 0.1) are highlighted 

in green. 

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S20 in text] [Tab S20 in above linked spreadsheet]  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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Table 3.22. Cell-type specific expression of homologous C. elegans genes derived 

from envGWAS candidate gene lists of Red Angus, Simmental, and Gelbvieh 

populations. C. elegans gene homologs were generated from Ortholist2, requiring that 

genes be present in at least three data sources to be included in enrichment analysis. For 

each breed’s gene list, we include a list of worm tissues with significant enrichment of 

listed genes (q-value < 0.1). 

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-

Im8n/view?usp=sharing 

[Table S21 in text] [Tab S21 in above linked spreadsheet]  

https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
https://drive.google.com/file/d/1ZMVEYhND9WmvvrBhbyK7IKI3-hU-Im8n/view?usp=sharing
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SUPPLEMENTARY TEXT 

 

Motivation for mapping polygenic selection 

Though the first cattle genotyping assay was developed just over a decade ago 

[80], influential individuals from deep within the pedigree have been genotyped, 

providing a temporal distribution of samples at least ten generations deep for most 

numerically large breeds. Under directional selection, alleles will be at significantly 

different frequencies in more recent generations compared with distant ones. This creates 

a statistical association between allele frequencies at a selected locus and an individual’s 

generation number. With multiple generations sampled and genotyped, we can 

disentangle small shifts in allele frequency due to directional selection from stochastic 

small changes from drift. Historical selective sweeps on simple traits in many species, 

including cattle, has been successfully studied, but recent and ongoing selection for 

complex traits is more difficult to characterize. Most methods used to identify selection 

rely on allele frequency differences between diverged populations (e.g. FST, FLK, XP-

CLR) [213–215], or on the disruption of normal LD patterns (iHS, EHH, etc.) [216–218]. 

In cattle, these methods have successfully identified genomic regions under selection that 

control a handful of Mendelian and simple traits like coat color, the absence of horns, or 

large-effect genes involved in domestication [18,219–221] [77,155,176][18,219–221].  

However, the traits actively under the strongest selection pressure in cattle are 

highly complex. This means that genomic changes due to selection are more likely to be 

subtle shifts (polygenic selection) at many loci rather than selective sweeps. Cattle 

producers are selecting on various combinations of growth, maternal, and carcass traits, 

https://paperpile.com/c/nQfGtx/PPHO
https://paperpile.com/c/nQfGtx/cl5f1+un50d+vj5g1
https://paperpile.com/c/nQfGtx/VwXUQ+bXwNT+25zF8
https://paperpile.com/c/nQfGtx/su7ax+4pRP+3FFI6+a2qdn
https://paperpile.com/c/nQfGtx/bXQ68+sR5K9+XKN9Z
https://paperpile.com/c/nQfGtx/su7ax+4pRP+3FFI6+a2qdn
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but the genomic changes that result from this selection are not well-understood. 

Numerous genome-wide association studies have been undertaken on individual traits, 

but do not say anything about the underlying genomic changes that populations are 

experiencing. Our method, Generation Proxy Selection Mapping (GPSM) searches for 

allele frequency changes in a trait-agnostic manner by identifying statistical associations 

with an individual’s generation (or some proxy). Cattle registered in herdbooks have 

recorded birth dates, making it a logical generation proxy to fit as the dependent variable 

in a linear mixed model (LMM)[13]. Generally, registered cattle populations have high 

levels of relatedness. Using a linear mixed model approach explicitly controls for 

confounding family and population structure with a genomic relationship matrix [3]. This 

allows GPSM to detect recent and ongoing polygenic selection within homogeneous 

populations (like breeds or smaller related groups).  

 

Motivation for mapping local adaptation 

Beef cattle are one of the few livestock species in the United States whose 

production environments remain largely unaltered by humans. Cattle are distributed 

across almost every possible environment in the continental United States [222], and 

virtually none are raised in controlled confinement like pigs or chickens. Local adaptation 

and genotype-by-environment (GxE) interactions exist in closely related cattle 

populations [223,224]. Previous work has identified the presence of extensive GxE in 

beef cattle populations [29,30,32,33,225], but limited work exploring the genomic basis 

of local adaptation has occurred [226]. 

https://paperpile.com/c/nQfGtx/Ovhl
https://paperpile.com/c/nQfGtx/Qoad
https://paperpile.com/c/nQfGtx/98aBB
https://paperpile.com/c/nQfGtx/yRhaQ+Or8HB
https://paperpile.com/c/nQfGtx/oWxL+rqPmS+zpTy+ex76+0Avc
https://paperpile.com/c/nQfGtx/fxtFA
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Local adaptation has driven the development of environmentally adapted breeds 

and populations of cattle around the world. Well-adapted animals better express their 

genetic potential in their local environment, and thus are more likely to be selected as 

parents than their poorly-adapted counterparts. This leads to changes in allele frequency 

at loci that modulate adaptation in this local population compared to the full population. 

In the past 30 years, the use of artificial insemination has increased in U.S. beef cattle 

populations. This technology has allowed elite germplasm to be propagated ubiquitously 

across environments and has led to dramatic increases in production efficiency. However, 

as a consequence has made populations more homogeneous. We are interested in 

identifying whether detectable allele frequency differences exist between environments, 

and how human-imposed selection and mating has changed the magnitude of these 

differences.  

To identify genomic regions potentially contributing to local adaptation, we used 

continuous environmental variables as quantitative phenotypes or discrete ecoregions as 

case-control phenotypes in a linear mixed model framework. We refer to these 

approaches as “environmental genome-wide association studies”, or envGWAS. Using a 

genomic relationship matrix in a LMM allows us to control the high levels of relatedness 

between spatially close individuals, and more confidently identify true signatures of local 

adaptation. This method builds on the theory of the Bayenv approach from Coop et al. 

(2010) [36,94] that uses allele frequency correlations along environmental gradients to 

identify potential local adaptation. Using genome-wide LMMs allowed us to extend the 

Bayenv method to extremely large datasets (eventually hundreds of thousands of animals 

https://paperpile.com/c/nQfGtx/s5ImN+A050
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with millions of SNPs). A GWAS model in conjunction with a GRM controls for cryptic 

family and population structure that frequently obscures these studies. 

We use two definitions of environmental dependent variables in our envGWAS 

studies. First, we directly fit 30-year normal values for temperature, precipitation, and 

elevation for the zip code attached to a genotyped animal. Additionally, we create 9 

discrete statistically-derived ecoregions based on K-means clustering of these three 

environmental variables. Using discrete environments as dependent variables in a case-

control manner allows us to capture unique combinations of these three measures of 

environment. These regions recapitulate known production environment differences for 

beef cattle. For instance, the “Fescue Belt”, the region of the US where tall fescue 

(Festuca arundinacea) is the most common forage, is almost perfectly defined using only 

these three environmental variables. Fescue is a major source of forage, but harbors a 

fungal endophyte, Epichloë coenophiala, that produces ergot alkaloids that cause 

multiple physiological challenges for cattle that graze it [28]. Beyond fescue’s 

endophytes, we know that local and regional parasite and pathogen loads differ [227], 

and we anticipate that using these discrete definitions of climate will serve as a proxy for 

these and similar environmental and ecological phenomena.  

 

Simulations 

To ensure that GPSM signal detected in our three real datasets was being driven 

by selection and not genetic drift, we performed two major sets of simulations, stochastic 

and gene drop. First, we performed a set of stochastic simulations to demonstrate how 

selection in the context of different effective population sizes, selection intensities, 

https://paperpile.com/c/nQfGtx/hkEs
https://paperpile.com/c/nQfGtx/SQjpH
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generational sampling, and genomic architectures produce GPSM signal. In each test 

case, using the same starting population, we perform parallel regimes of selection; one 

where the selection of parents is random, and the other where selection is based on an 

animal’s true breeding value. In the random selection regime, we expect drift would be 

the sole driver of allele frequency changes.  

Second, we performed multi-locus gene dropping simulations with a full pedigree 

containing the 63,122 registered animals related to the 15,323 genotyped purebred Red 

Angus individuals to test whether drift in the context of biased sampling could produce a 

GPSM signal. Additionally, we used these same gene drop experiments, but with 

continuous environmental phenotypes to test whether genetic drift can create significant 

envGWAS associations (. However, this simulation cannot distinguish between drift, 

pedigree structure, and founder effects.  This is a function of only elite, influential sires 

having cryopreserved semen available for genotyping. Further, early in the 

implementation of genomic prediction in the beef industry, high ranking animals were 

preferentially genotyped.  

All simulations were performed in AlphaSimR [228]. Stochastic simulations were 

performed in 10 replicate sets using 10 sets of founder haplotypes as starting points. We 

generated founder haplotypes using the AlphaSimR wrapper around MaCS [229]. Using 

an approximation of the demographic history of cattle, we simulated 10 chromosomes 

with 20,000 segregating sites each for 2,000 founder individuals (1,000 males and 1,000 

females). This resulted in a starting effective population size (Ne) of approximately 100, 

similar to estimates of U.S. beef cattle populations [13]. To test other Ne, we simulated 

populations with effective population sizes of 50 and 250. Based on the chosen genomic 

https://paperpile.com/c/nQfGtx/sjrEG
https://paperpile.com/c/nQfGtx/tmMmA
https://paperpile.com/c/nQfGtx/Ovhl
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architecture, 1000, 500, or 200 purely additive QTL were randomly assigned to 

segregating sites. Effect sizes for simulated QTL were drawn from either a normal (mean 

= 0, variance = 1) or a gamma (shape = 0.42) distribution [230]. Prior to the two 

divergent selection regimes, we performed five generations of burn-in selection to 

establish LD in our populations.  

After burn-in (generation 0), we performed selection of parents for the next 

generation in two parallel manners: randomly or truncation selection on true breeding 

value. In each scenario, we held the effective population size by selecting appropriate 

numbers of males and females to be parents each generation. Selection intensity was 

altered by increasing or decreasing the number of crosses performed (1000, 2000, 4000, 

8000). We also varied the number of generations of selection post-burn-in (20, 10, and 5 

generations). For each scenario, we extracted 10,000 total simulated individuals for 

analysis in GPSM. To test the effects of uneven generation sampling that we see in real 

data, we performed two different strategies for sampling simulated genomes. In one case, 

we sample an equal number of individuals each generation. In the other, we sample more 

animals from the most recent generations. The number of sampled individuals is based on 

a negative exponential distribution that approximates the of ages observed in our real 

datasets (Fig S1). Sampled individuals were chosen at random, and were not more or less 

likely to become parents in the next generation. In addition to sampling genotypes each 

generation, we calculated the allele frequency of simulated QTL each generation to track 

observed allele frequency changes over the course of selection. This process was 

performed in replicates of 10 for each scenario, allowing us to calculate descriptive 

statistics and compare GPSM’s performance across scenarios.  

https://paperpile.com/c/nQfGtx/r9ZIE
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After sampling genotypes, we created a standardized genomic relationship matrix 

(GRM) in GEMMA (v0.98.1) with all SNPs that had a MAF > 0.01. Using GEMMA, we 

fit the individuals’ true generation number as the dependent variable in a genome-wide 

linear mixed model. Outputs from GPSM were read, manipulated, and plotted in R using 

multiple tidyverse packages [231].  

Stochastic simulations under multiple selection intensities, time periods, and trait 

architectures showed consistently that GPSM is able to map polygenic selection (Table 

S2). Across all simulated scenarios and architectures, we identify an average of 38.5 

simulated QTL (min 5.2, max 64.1) with GPSM. In many of these scenarios, we observe 

that significant hits are not the largest effect simulated QTL, but the loci that have 

undergone the greatest allele frequency shifts over the course of genotype sampling. In 

many cases the largest effect QTL had been fixed in the population during burn-ins, 

making their detection by GPSM impossible. GPSM’s ability to detect selection relies on 

the selection occurring during the period of sampling.   

Simulations also suggest that GPSM is able to effectively distinguish allele 

frequency changes due to selection from those associated with drift. Across 10 replicates 

of 36 scenarios of random selection, we detect an average of only 0.7 GPSM false 

positive SNPs (sd = 0.85). These rare false positives do not appear to be driven by 

changes in any single component of the simulations.  

We simulated haplotypes in MaCS for our 5,223 founder individuals. Founder 

haplotypes spanned 10 chromosomes, each with 20,000 segregating sites for a total of 

200,000 SNPs. These founder haplotypes were then randomly dropped through the Red 

https://paperpile.com/c/nQfGtx/jYtMh
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Angus pedigree, restricted to ancestors of genotyped individuals, in a Mendelian fashion, 

with recombinations occurring at a rate of one crossover per Mb.  

Gene dropping simulations using the Red Angus pedigree generated an average of 

6.7 (sd = 4.14) significant GPSM SNPs per 200K markers tested, equating to what would 

be ~27 markers in our 850K data (Table S1). These SNPs represent, on average 3.9 (sd = 

1.37) genomic regions per 200K SNPs. This means that pedigree structure is responsible 

for a small portion of the significant SNPs that we detect in our real datasets. That said, 

the pedigree structure of these cattle populations is largely created through directional 

selection over time, meaning that we cannot completely disentangle the drift and 

selection components here. Further, these 27 markers would make up ~ 10% of the total 

GPSM SNPs identified in the Red Angus dataset, suggesting that selection pressure 

independent of nonrandom sampling is generating the majority of observed GPSM 

signals.  

 

GPSM detects signatures of polygenic selection across and within three populations of 

U.S. Beef Cattle 

In addition to the locus undergoing a massive allele frequency shift on BTA28 

(lead SNP rs1762920), we identify 6 other loci under selection in all three populations. 

(Table S7). These shared GPSM signals suggest that not only are there similar selection 

pressures, but common genomic architectures under selection in these three populations . 

While we identify significantly more population-specific GPSM signatures, shared 

signatures are of interest as they are likely serving an important role in all breeds of beef 



      

143 

 

cattle. We discuss these loci and their potential functions in beef cattle that are driving 

allele frequency changes.  

The largest genomic region detected by GPSM lies at the end of BTA1 (157.5 Mb 

- 158.5 Mb). The lead SNP in this peak (rs1755753) lies within the long non-coding 

RNA (lncRNA) LOC112448253. This lncRNA has not been previously associated with 

any traits or function in cattle. This region contains dozens of other potential candidate 

genes. This selected region is also immediately upstream of PRDM9, a modulator of 

recombination in most mammalian species, including cattle [87,232,233]. While no 

variants within PRDM9 reach genome-wide significance, variants ~10.7 kb from the TSS 

are responding to selection. Selection on PRDM9 could increase average recombination 

rate or allow novel motif binding in order to create novel favorable haplotype 

combinations [234].  

We identified six other common genomic regions under strong selection in all 

three populations, encompassing 106 statistically significant markers. Another 90 SNPs 

overlap in at least two populations, corresponding to 15 additional genomic regions under 

selection (Table S7). All three populations have been selected for increased growth traits 

over the last 50 years [84], and GPSM identifies two genomic regions that have been 

previously associated with feed efficiency and growth traits. The common peak on 

BTA12 (lead SNP rs1389713) is ~182 kb upstream of the DACH1 (Dachshund homolog 

1), a transcription factor associated with post-weaning gain, various indicators of feed 

efficiency [139,235], and backfat thickness [236] in cattle. The shared GPSM peak on 

BTA14 resides near a known QTL for post-weaning gain near the gene LRP12 (LDL 

receptor related protein 12) [53]. 

https://paperpile.com/c/nQfGtx/iB1AB+AH62R+Gsr7H
https://paperpile.com/c/nQfGtx/MH8Cy
https://paperpile.com/c/nQfGtx/6QHsb
https://paperpile.com/c/nQfGtx/yVZmB+ksriI
https://paperpile.com/c/nQfGtx/vuq4J
https://paperpile.com/c/nQfGtx/NmrO
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In addition to selection on loci that appear directly involved in growth and 

efficiency, we identify multiple selection targets likely involved in aspects of immune 

function. A shared significant peak on BTA2 (lead SNP rs1080110) resides within the 

ARHGAP15 gene (Rho GTPase Activating Protein 15) that is essential for 

Trypanosomiasis resistance in African cattle populations [136–138]. Though 

Trypanosomiasis and other tsetse fly-transmitted diseases are restricted to Africa, genetic 

tolerance to similar immune disturbances may account for the positive selection observed 

in these three American cattle populations. Variants within ADORA1 (Adenosine A1 

Receptor) are also detected as being under selection by GPSM. In cattle, ADORA1 plays 

a role in the activation of polymorphonuclear neutrophilic leukocytes, which are 

important for peripartial immune responses in cattle [141], and likely play roles in other 

immune functions. ADORA1 and other purinergic receptors play an important role in 

bone metabolism [237] and likely growth in cattle. This signature within ADORA1 also 

spans a potentially regulatory region for MYBPH, an important gene in muscle formation 

and development, and another potential target of selection [142]. In this case and others, 

we identify multiple logical candidate genes within regions undergoing selection. We 

report a complete listing of significant SNPs and candidate genes from GPSM analyses of 

each population in (Table S5).  

We observe 22 genomic regions that are changing in frequency in at least two of 

our datasets. In addition to these shared loci, we identify evidence of shared networks and 

genetic architectures under selection (Table S8). To discern common biological 

pathways and processes under selection across multiple populations, we identified genes 

within 10 kb of SNPs identified by GPSM in at least two populations and performed a 

https://paperpile.com/c/nQfGtx/hF49p+fs7iu+4jK8t
https://paperpile.com/c/nQfGtx/2VNA8
https://paperpile.com/c/nQfGtx/j6iVM
https://paperpile.com/c/nQfGtx/jTIcC
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gene enrichment analysis in ClueGO. Using the 46 genes residing in or near the 29 shared 

GPSM signatures identified by at least two datasets identified multiple biological 

processes undergoing selection. The most significant pathways involved G-protein 

coupled signaling (Benjamini–Hochberg adjusted p-value = 0.038) and purinergic 

receptor signaling pathways (Benjamini–Hochberg adjusted p-value = 0.034, associated 

genes ADORA1 and P2RY8). Purinergic receptors have been identified as important 

drivers of immune responses in cattle [141]. Selection on immune pathways is likely 

driven by the increased production efficiency of healthy calves [85,238]. Shared selection 

on SLC2A5 and BIRC5 point towards biological pathways involved in sensing 

carbohydrate, hexose, and monosaccharide stimuli (Benjamini-Hochberg adjusted p-

value = 0.01). We also expect that an enhanced metabolic response to carbohydrates 

would result in increased animal efficiency. Finally, genes involved in the regulation of 

arterial blood pressure (Benjamini–Hochberg adjusted p-value = 0.045: ADORA1, 

SLC2A5) made up the lone other significant gene class under selection across all three 

populations. Gene enrichment analysis within populations also identified population-

specific pathways and processes under selection. In Simmental cattle we detect 23 GPSM 

candidate genes involved in olfactory transduction. While not related directly to growth 

traits, olfactory receptors have been identified as selection targets in many mammalian 

species, including cattle [156,176,239]. This rapidly-evolving class of genes is also 

associated with growth and carcass traits, suggesting a wide range of functions that are 

not limited to detecting smell [53,240].  

 

Principal Component Analysis  

https://paperpile.com/c/nQfGtx/2VNA8
https://paperpile.com/c/nQfGtx/j8KUL+QK63z
https://paperpile.com/c/nQfGtx/sR5K9+0qbiM+un275
https://paperpile.com/c/nQfGtx/NmrO+ME60D
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While we expect modest allele frequency differences in these populations, we 

assume that they are largely panmictic due to extensive gene flow via artificial 

insemination. We performed a principal component analysis (PCA) in each dataset to 

make sure that existing population structure is not driven by ecoregion-of-origin. We see 

minimal evidence that ecoregion-of-origin is a major source of structure in these 

populations (Fig S5). This suggests that genetic variation is significantly greater within 

ecoregions than between. This is in contrast with the estimates of genetic variation 

explained by environment (Table S12-S13). Taken together, we observe that these 

populations are largely panmictic, but still have genetic associations with the 

environment. Some of these environmental associations are driven by family relatedness, 

but others are strong even after accounting for familial relationships with a genomic 

relationship matrix (envGWAS signatures). 

 

envGWAS identifies adaptive pathways and processes.  

Local adaptation is likely highly complex and controlled by many areas of the 

genome. Though we detected minimal overlap in candidate genes across datasets, we 

identified multiple conserved biological processes and pathways that appear to play roles 

in local adaptation across populations. 

Though there was minimal candidate gene overlap between continuous and 

discrete envGWAS (19 of 187 total envGWAS candidate genes in Red Angus), we 

identified many shared pathways and gene ontologies. In most cases where we observed 

GO or pathway overlap, statistical significance was greater for the discrete envGWAS 

analysis, simply due to the difference in number of provided genes (168 vs 38). Most of 
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the shared terms and pathways were driven by the genes BAD, EFNA5, LRRC4C, 

MARK2, PLCB3, and PRKG2 detected in both analyses. In these overlapping terms, 

additional genes from the discrete zone envGWAS further supplemented the identified 

terms. 

We performed gene enrichment analyses with gene lists from all univariate and 

multivariate, discrete and continuous envGWAS analysis in each population. This 

allowed sufficiently large gene lists to identify potentially adaptive pathways and 

processes. We were particularly interested in identifying shared pathways and processes 

between populations since the number of shared genomic regions was low. Across all 

three populations, we consistently identified the “axon guidance” pathway, and numerous 

GO terms relating to axon development and guidance under region-specific selection. Ai 

et al. (2015) [109] suggested that axon development and migration in the central nervous 

system is essential for the maintenance of homeostatic temperatures by modulating heat 

loss or production [241]. The direction and organization of axons is an essential 

component of the olfactory system which is frequently implicated in environmental 

adaptation through the recognition of local environmental cues [17,242]. Other pathways 

identified across all three datasets include “cholinergic synapse”, “glutamatergic 

synapse”, and “platelet activation”. Cholinergic signaling drives cutaneous vascular 

responses to heat stress in humans [243–245]. Additionally, cholinergic receptors act as 

the major neural driver of sweating in humans [246]. Glutamatergic synapses are 

involved in neural vasoconstriction [247,248]. “Retrograde endocannabinoid signaling”, 

“dopaminergic synapse”, “GABAergic synapse”, and “serotonergic synapse” pathways 

are also significantly enriched by envGWAS candidate genes. Nearly all of these 

https://paperpile.com/c/nQfGtx/d0qAW
https://paperpile.com/c/nQfGtx/2HWP0
https://paperpile.com/c/nQfGtx/bjWIU+cvpu
https://paperpile.com/c/nQfGtx/dxfBi+eFMG7+NsxtR
https://paperpile.com/c/nQfGtx/NBszG
https://paperpile.com/c/nQfGtx/JRAZd+25oxW
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important neural signaling pathways are also enriched in a series of gene-by-environment 

interaction GWAS for birth weight, weaning weight, and yearling weight in Simmental 

cattle by [33]. Taken together, these results suggest that pathways involved in neuron 

development and neurotransmission are essential components of local adaptation in 

cattle. Temperature homeostasis is largely controlled by the central nervous system [110], 

making environment-specific selection on these pathways an efficient way for 

populations to adapt. 

Other pathways identified by envGWAS appear to play important roles in 

vasodilation and vasoconstriction. Relaxin signaling was identified in both Red Angus 

and Simmental populations as a locally adaptive pathway under selection. Relaxin, 

initially identified as a pregnancy-related hormone, is an important modulator of 

vasodilation [249]. In Simmental this pathway association originates from local 

adaptation signatures near the genes COL1A1, MAPK10, and PRKACA identified both in 

our discrete multivariate envGWAS and in the Desert ecoregion univariate analysis. 

Relaxin signaling was also identified in Red Angus, but with four entirely different genes 

(LOC529425, PLCB3, PRKACB, VEGFB). While all four of the Red Angus genes were 

identified in multivariate analyses, we identify two of them in the Desert ecoregion 

univariate envGWAS. Vasodilation is an essential component of physiological 

temperature adaptation in cattle and other species [111,250,251]. The ability to mount a 

physiological response to heat stress has a direct impact on cattle performance. Heat 

stressed cattle have decreased feed intake, slower growth rates, and decreased fertility 

[252]. The Renin secretion pathway, which is also directly involved in vasoconstriction 

was identified in Red Angus (ADRB1, PLCB3, PRKACB, PRKG2), and has also been 

https://paperpile.com/c/nQfGtx/0Avc
https://paperpile.com/c/nQfGtx/xEXAC
https://paperpile.com/c/nQfGtx/MTUGW
https://paperpile.com/c/nQfGtx/ltpF7+8U0gP+0G04J
https://paperpile.com/c/nQfGtx/YdJBa
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previously implicated in physiological responses to heat stress in cattle [253]. In each 

population we identify multiple biological processes related to the regulation of insulin 

secretion. Insulin secretion is elevated in heat stressed cattle [254] and pigs [255], 

suggesting that it plays a role in metabolism and thermoregulation. Insulin secretion in 

response to the presence of glucose may also be related to different diets and forage 

availability along these continuous environmental gradients [256].  

Other pathways identified by envGWAS candidate genes from Simmental point 

towards the immune system’s role in local adaptation. “Th1 and Th2 cell differentiation” 

and “Th17 cell differentiation” were significant in a KEGG pathway analysis. The 

development of these cell types is essential for adaptive immune responses [257,258]. 

These signals were driven in part by region-specific allele frequency differences in or 

near MAPK10 an innate immunity gene identified in human studies as an adaptive target 

of selection [259]. We also identify multiple cardiac-related pathways from Simmental 

envGWAS genes (“Dilated cardiomyopathy”, “Arrhythmogenic right ventricular 

cardiomyopathy”, “Hypertrophic cardiomyopathy”) driven by a pair of related genes 

SGCA and SGCD. Like other circulatory-related pathways, the alleles driving this signal 

were identified in both multivariate and Desert ecoregion envGWAS. We expect that 

these cardiac-related pathways, like renin secretion and relaxin signaling affect the 

efficiency of circulation and improved temperature homeostasis when exposed to heat or 

cold stress. Selection on cardiovascular function is also likely a central component of 

adaptation to high altitude [260]. 

 

Tissue Set Enrichment Analysis 

https://paperpile.com/c/nQfGtx/88jA5
https://paperpile.com/c/nQfGtx/xvBOX
https://paperpile.com/c/nQfGtx/JyblA
https://paperpile.com/c/nQfGtx/9qVxF
https://paperpile.com/c/nQfGtx/za8Ou+biNB7
https://paperpile.com/c/nQfGtx/cX1VH
https://paperpile.com/c/nQfGtx/EQYiL
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To further disentangle the biological basis of GPSM and envGWAS adaptive 

signatures, we performed a series of Tissue Set Enrichment Analyses (TSEA) based on 

gene expression data from humans and worms (C. elegans). These analyses identified 

tissues in which our envGWAS candidate genes were preferentially expressed. Our 

candidate gene lists for each population consisted of annotated cattle genes within 10 kb 

of a significant GPSM SNPs or SNPs identified in any of our multivariate or univariate 

envGWAS analysis. In using expression data from other species, non-orthologous cattle 

genes are not included in enrichment analyses. 

Using GPSM candidate genes in TSEA identified enriched tissues that correspond 

to population-specific production traits known to be under selection. Using gene 

expression measures from the GTEx pilot dataset [131] in the pSI R package [132] we 

identify suggestive enriched expression in various reproductive-related tissues from the 

Red Angus GPSM candidate gene set. We observe suggestive enrichments (p < 0.1) for 

human breast, ovary, pituitary, and uterus tissues (Table S9-S10) among others. An 

analysis of this gene list with gene expression data from the Human Protein Atlas also 

identified significantly enriched expression in cervix, uterus, and brain tissues (FDR-

corrected p-value < 0.1) and suggestive expression fold change in the ovary. These 

results provide further evidence that selection on fertility and reproductive traits have 

been ongoing in the Red Angus population over the last ~10 generations (Red Angus 

Association of America EPD trends https://redangus.org/genetics/epd-trends/). Further, 

using Gelbvieh GPSM candidate gene sets, we identify enriched expression in numerous 

tissues including skeletal muscle, nerve, thyroid and adipose tissue. These enriched 

tissues align with known ongoing selection for increased growth and carcass quality. 

https://paperpile.com/c/nQfGtx/QMMLW
https://paperpile.com/c/nQfGtx/9mx3S
https://redangus.org/genetics/epd-trends/
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Despite the numerous enriched pathways and processes from the Simmental GPSM gene 

lists, we identified minimal tissue-specific expression. We did not identify significant or 

suggestive tissue enrichments in the Simmental GPSM gene set using the Human Protein 

Atlas in TissueEnrich. Uterine tissue was the only tissue showing suggestive enrichment. 

Pathway analyses of envGWAS candidate gene sets in all three populations pointed 

towards a role in neural development and signaling in modulating adaptation. We used 

TSEA in humans and C. elegans to provide further evidence of brain and nervous system 

tissues involvement in environmental adaptation. Using C. elegans tissues allowed us to 

refine the expression of conserved genes to individual neuron resolution. Using gene 

expression data from the Human Protein Atlas in the TissueEnrich software, we identify 

the cerebral cortex to be the lone significant tissue among our candidate gene sets from 

Red Angus and Gelbvieh envGWAS analyses (Table S18-S19). These results agreed 

with TSEA using GTEx data. Despite identifying similar neural pathways in the 

Simmental population, we did not observe enriched expression in brain tissue in either 

human TSEA.  

To further probe the specific brain regions expressing envGWAS candidate genes, 

we performed a brain-specific expression enrichment analysis using the pSI tool with 

human brain expression data from BrainSpan and the Allen Brain Atlas [261]. Complete 

results are reported in Supplementary Tables 20-21. The only brain region significantly 

enriched for envGWAS candidate genes was the cortex in Simmental (p = 1.525x10-4). 

Interestingly, Simmental was the only population in which Brain tissue did not show 

enriched expression in the GTEx data. The envGWAS candidate genes from Red Angus 

and Gelbvieh showed suggestive enrichments in expression in the Cerebellum (p = 0.096) 

https://paperpile.com/c/nQfGtx/tpLB7
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and Striatum, respectively (p = 0.059). While some suggestive cell-type specific 

expression differences existed with each gene list, we did not observe any tissues with 

conserved expression across populations.   

  

GPSM meta-analysis identifies loci responding to selection in an ecoregion-specific 

manner.  

We use a combination of our discrete ecoregions and GPSM to identify region-

specific signatures of selection. This approach draws on the GxE interpretation of 

metaGWAS analyses from Kang et al. (2014) [262], where a heterogeneity of effect sizes 

at a locus between “treatments”, or in our case ecoregions, is indicative of an 

environment-specific association. This analysis identified variants undergoing region-

specific changes in allele frequency. If selection on locally adaptive variants is ongoing, 

we would expect this analysis to identify variants actively diverging from the population 

mean in a particular ecoregon. The converse, an erosion of allele frequency differences 

back to the population mean, would suggest that selection for locally adaptive variants is 

not strong enough to overcome the influx of alleles from the outside population via 

artificial insemination (Fig S 9-11). We performed a meta-analysis in METASOFT [124] 

by incorporating individual GPSM analyses for each ecoregion with more than 1,000 

sampled individuals. For each marker tested in the meta-analysis, a Cochran’s Q value is 

assigned based on the heterogeneity of effects between ecoregion. Variants with high Q 

values are experiencing directional selection in one or more regions and little to no 

directional selection in other regions.. The test also generates within-region GPSM p-

values, an across-study p-value optimized for detecting associations in contexts of 

https://paperpile.com/c/nQfGtx/HuqGO
https://paperpile.com/c/nQfGtx/HQXWT
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increased heterogeneity [124], and within-region m-values, the posterior probability that 

an effect exists within that region. We perform this test for all three populations using 

ecoregion cohorts with > 1,000 animals to ensure adequate sample sizes in GPSM. 

  

https://paperpile.com/c/nQfGtx/HQXWT
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Abstract 

Mapping polygenic selection on complex traits is difficult because it does not 

leave clear signatures on the genome like a selective sweep. In cattle populations with 

temporally-stratified genotypes, we can use genome-wide linear mixed models to identify 

allelic associations with an individual’s generation (or some proxy) with the Generation 

Proxy Selection Mapping (GPSM) method to identify those variants that have 

experienced the greatest allele frequency changes. Here, we use GPSM on two large 

datasets of beef cattle to detect associations between an animal’s generation and 11 

million SNPs using imputed genotypes. Using these datasets with high power and base-

pair mapping resolution, GPSM detected a total of 1,015 unique loci actively under 

selection in the Simmental and Red Angus breeds. We observed that GPSM has a high 

power to detect selection in the very recent past (< 10 years), even when allele frequency 

changes are relatively small. Variants identified by GPSM reside in genomic regions 

associated with known breed characteristics and selection goals, such as fertility and 

maternal ability in Red Angus, and carcass and coat color in Simmental. Greater than 

60% of the selected loci reside in or near (<50 kb) annotated genes. Many more selected 

loci overlap known epigenetic marks or genomic regions that are likely to be functional. 

Selected loci have little overlap with historically selected loci identified by selective 

sweep mapping methods, making it a complementary approach to sweep detection 

methods when temporal genotype data are available. We demonstrate that GPSM is a 

powerful strategy for understanding the genetic architectures on which polygenic 

selection acts.  

 



      

156 

 

Introduction 

Since their initial domestication in the Fertile Crescent ~10,500 years ago [263] 

cattle have been exposed to intense selection for increased tameness, production, and 

fecundity leading to substantial changes in these phenotypes. While selection occurs on 

phenotypes, and more recently on estimated breeding values, the phenotypic changes 

generated in a population are due to changes in the trait’s underlying genotype 

frequencies. Occasionally, selection on beneficial mutations of very large phenotypic 

effect can lead to very rapid changes in allele frequency at a locus. The resulting 

“selective sweep” not only increases the frequency of the beneficial variant, but also 

reduces genetic variation in the genomic region surrounding the selected locus [16]. In 

cattle populations, multiple sweeps have been mapped to genomic regions, many of 

which are related to simple Mendelian traits such as polledness (the absence of horns) 

[219] and coat color [155] or large-effect quantitative trait loci (QTL) influencing 

production traits [77].  

While sweeps at Mendelian loci have played an important role in the 

domestication and improvement processes of cattle, it is becoming increasingly apparent 

that the majority of both historical and ongoing selection is on highly complex traits 

[264,265]. Complex traits are controlled by many mutations of relatively small effect 

spread throughout the genome [266]. Under complex trait architectures, selection can 

generate substantial changes to a phenotype without necessarily generating large allele 

frequency shifts [21]. These modest directional allele frequency changes at selected loci 

make mapping selection on polygenic traits over short timescales is difficult. However, 

by leveraging large commercially-generated datasets that include influential founder 

https://paperpile.com/c/nQfGtx/zfZQZ
https://paperpile.com/c/nQfGtx/sjpn
https://paperpile.com/c/nQfGtx/su7ax
https://paperpile.com/c/nQfGtx/XKN9Z
https://paperpile.com/c/nQfGtx/bXQ68
https://paperpile.com/c/nQfGtx/MeMLw+FnEsy
https://paperpile.com/c/nQfGtx/WhIX0
https://paperpile.com/c/nQfGtx/5Psn
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individuals, cattle populations offer intriguing opportunities for mapping the loci exposed 

to polygenic selection over time [50]. The Generation Proxy Selection Mapping (GPSM) 

method uses a proxy for the number of meioses that separate an individual from the 

beginning of the pedigree as the dependent variable in a genome-wide linear mixed 

model to detect significant associations between generation and allele frequency [13,25]. 

When applied to cattle populations, it is effective at detecting subtle ongoing shifts in 

allele frequency across the genome of multiple cattle populations [14].   

Genome-wide association studies have motivated extensive work attempting to 

dissect the genetic architecture of complex traits in many species [267]. We expect that 

selection on these complex traits occurs on similarly unique architectures [21]. Here, we 

expand on previous work exploring the selection landscape in cattle with one of the 

largest non-human selection mapping datasets explored to date. By using sequence-

imputed genotypes for over 124,000 individuals in two beef cattle populations, we 

identify subtle ongoing shifts in allele frequency due to selection at the base-pair level of 

resolution. With these high-resolution data, we can discern the underlying functional 

genomics on which selection acts in cattle populations. Additionally, we use subsets of 

these data to explore recent and ongoing selective sweeps using both haplotype and site 

frequency spectrum (SFS)-based approaches. This combination of selection mapping 

approaches provides a detailed report of the genetic architectures on which strong 

directional selection acts in cattle populations, and a blueprint for leveraging temporally-

distributed genotypes to understand the selection architectures of other species. 

 

 

https://paperpile.com/c/nQfGtx/4ZSJ
https://paperpile.com/c/nQfGtx/Ovhl+9F78
https://paperpile.com/c/nQfGtx/uTVl
https://paperpile.com/c/nQfGtx/oJBPi
https://paperpile.com/c/nQfGtx/5Psn
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Results 

Quantitative Genetic Signals of Polygenic Selection 

In each population, we used genomic restricted maximum likelihood (GREML) 

[268] to estimate the proportion of variance explained (PVE) by 811,967 imputed SNPs 

in various subsets of our Simmental (SIM) and Red Angus (RAN) datasets 

(Supplementary Tables 1 & 2). Using an individual’s date of birth as a generation 

proxy, we estimated the PVE to be 0.523 (se = 0.007) and 0.619 (SE = 0.005) in RAN (n 

= 46,454) and SIM (n = 78,787), respectively). This suggests that even while controlling 

for relatedness, selection makes the most recently born individuals more similar 

genomically than those born at early time points. Due to the non-normality of sampled 

birth dates in both datasets (Supplementary Figure 1), we observe a large divergence 

from expectation in individual breeding values and residuals in GREML analyses, 

particularly for the earliest born individuals (Supplementary Figure 2). To help 

normalize residuals and potentially boost our power to detect selected variants, we 

performed a series of transformations to birth date (Supplementary Tables 1 & 2, 

Supplementary Figure 3). When using log-transformed birth date as the dependent 

variable in Red Angus, PVE increased to 0.657 (se = 0.006). Using log-transformed birth 

date in Simmental decreased PVE to 0.600 (se = 0.005). Other transformations and their 

impacts on PVE are reported in Supplementary Tables 1 & 2. 

We explored the effects of various statistical transformations on our ability to 

detect GPSM signatures in Red Angus using the 811K SNP dataset. The number of 

significant SNPs identified using an identical dataset, but with different statistical 

transformations performed on the generation proxy provides a measure of statistical 

https://paperpile.com/c/nQfGtx/fBlhz
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power. In Red Angus, we observed an increase in the number of variants detected at 

multiple significance thresholds (nominal: p < 10-5, Bonferroni: p < 7.55x10-7, and FDR-

corrected q-values < 0.1 and < 0.05). At all significance thresholds, log-transformed birth 

date detected between 61% to 79% more significant SNPs and at least 12 additional 

significant loci (Supplementary Table 3, Supplementary Figure 4). A GPSM analysis 

using birth dates of animals born since 2012 detected almost all of the same loci one that 

used log-transformed birth date (Supplementary Figure 4). The same transformations 

applied to the Simmental dataset led to a reduction in the number of identified SNPs and 

loci, compared to using raw birth date (Supplementary Table 4). Interestingly when 

analyzing data only for animals born since 2012, GPSM identified almost all of the same 

loci as did the log-transformed birth date GPSM on the full Red Angus dataset.  

While the Red Angus dataset was composed of almost entirely purebred 

individuals, the Simmental dataset contained large numbers of crossbred animals. The 

numbers of animals with non-Simmental ancestry that have been genotyped by the breed 

association have significantly increased in recent generations (Supplementary Figure 5). 

Consequently, we divided the Simmental dataset into subsets based on pedigree-reported 

ancestry and/or birth date. This allowed us to examine the selection that is occurring 

within different subsets of the population. The PVE for birth date remained moderately 

high, ranging from 0.619 (SE = 0.005) for all animals with > 5% SIM ancestry to 0.436 

(SE = 0.021) for animals born before 2008. A complete accounting of variance 

components estimated from these subsets is in Supplementary Table 2.  

 

Generation Proxy Selection Mapping (Red Angus) 
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Based on results from the 811K GPSM analyses described above, we performed 

three separate sequence-level analyses (11,759,568 imputed SNPs) in Red Angus using 

birth date as the dependent variable for all individuals, for animals born before 2012, and 

animals born after 2012, referred to hereafter as full Red Angus, old Red Angus, and 

young Red Angus, respectively.  

GPSM identified 2,914 SNPs, 9,065, and 0 SNPs (Bonferroni-corrected threshold 

p < 4.29 x 10-9) significantly associated with birth date in the full and young Red Angus 

datasets, respectively. (Figure 1). A less stringent p-value threshold of 5 x 10-8 identified 

3,617, 10,939 and 0 SNPs associated with birth date in the full, young, and old Red 

Angus datasets, respectively. The old dataset, which contained only 1,984 individuals, 

was likely underpowered to detect signals of selection using GPSM. There were 3,240 

SNPs identified in the full dataset that were also significant in the young Red Angus data, 

a near-complete overlap. A stepwise conditional & joint analysis (COJO) [269] of these 

results further refined lead SNPs in significant loci and identified additional independent 

associations (COJO p < 5x10-8). COJO identified 248 independent associations with birth 

date in the full dataset and 417 in the young dataset. Despite these datasets being largely 

comprised of the same individuals and sharing a large proportion of common GPSM 

SNPs, only 25 SNPs identified by COJO were shared between both datasets.  

Using COJO SNPs from the sequence-level GPSM analysis, we annotated genes, 

known quantitative trait loci (QTL), and other genomic features to help understand the 

biological pathways and phenotypes that selection targets in these populations. In all 

datasets, the majority of COJO SNPs resided within, or adjacent to (within 50 kb) 

annotated genes (Table 1). Depending on the dataset, 46-56% of these genes with a clear 

https://paperpile.com/c/nQfGtx/CsqK8
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positional candidate gene resided in regions immediately upstream or downstream of 

transcription start sites, insinuating that a high proportion of selective pressure is on cis-

regulatory regions of the genome. A complete accounting of positional candidate genes 

for COJO SNPs in the full and young Red Angus datasets is provided in Supplementary 

Tables 5 & 6, respectively.  

In many cases, GPSM in young Red Angus animals detects novel signatures of 

recent ongoing selection that are not significant in the full dataset. Chromosome 2 offers 

an interesting example of these differences. In addition to the two major peaks identified 

by both the full and young Red Angus datasets, at least eight additional major peaks are 

identified in the young data, accounting for 48 unique COJO associations (Figure 2 A & 

B). The strongest unique associations identified in the young Red Angus dataset reside 

within the gene ARHGAP15. This association contains seven unique COJO SNPs within 

the gene. ARHGAP15 is a major gene involved in trypanotolerance in African cattle 

[136,138], and likely has wider effects on immune function in worldwide cattle 

populations. Further, ARHGAP15 is almost exclusively expressed in immune tissues 

[270]. 

Using previously identified and annotated QTL for cattle, allowed us to interpret 

the biological and production impact of selection decisions reflected in the GPSM results. 

A QTL-enrichment analysis identified 12 QTL classes significantly enriched near GPSM 

COJO associations (Supplementary Tables 7 & 8). The largest QTL enrichment in Red 

Angus was for metabolic body weight (FDR-corrected p = 4.13 x 10-82) , driven primarily 

by GPSM signals on chromosomes 14 (23.3 Mb) and 6 (38.5 Mb). Other enriched QTL 

pointed towards ongoing selection for increased fertility and calving ease, known 

https://paperpile.com/c/nQfGtx/hF49p+4jK8t
https://paperpile.com/c/nQfGtx/QGw9o
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selection goals in the breed (https://redangus.org/about-red-angus/history/ ). Calving 

ease, birth weight, stillbirth (maternal & direct), and sexual precocity QTL were each 

enriched among QTL tagged by GPSM COJO SNPs across the genome (FDR-corrected p 

< 7.056 x 10-7).  

We used a meta-assembly of selection signatures in cattle by Randhawa et al. 

(2016) [24] to quantify the proportion of genomic regions identified by GPSM that had 

previously been identified as harboring selection signatures in cattle. Despite the different 

underlying strengths and goals of traditional selection mapping and GPSM, we found that 

GPSM identified multiple regions of the genome that had previously been identified as 

under selection in cattle populations using a variety of methods. Of the 208 positional 

candidate genes (<50 kb from GPSM COJO hit) in our full Red Angus dataset, 105 were 

also present in the selected loci in the selection signature meta-assembly. In the young 

Red Angus dataset, 142 of the total 272 GPSM identified genes were also identified by 

Randhawa et al. (2016). 

 

Generation Proxy Selection Mapping (Simmental) 

 We individually analyzed the purebred Simmentals (100% Simmental ancestry) 

in our dataset to identify ongoing selection restricted to the breed. We performed an 

additional sequence-level GPSM on the full Simmental dataset (all animals with > 5% 

reported Simmental ancestry), representing selection within the entire herdbook, 

including the full spectrum of admixed animals.  

GPSM analysis of purebred Simmental animals (n = 13,379) identified 513 

significant SNPs (Figure 3 A & B) (Bonferroni-corrected p-value threshold p < 4.29 x 

https://redangus.org/about-red-angus/history/
https://paperpile.com/c/nQfGtx/5OnE
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10-9), led by a strong signal on chromosome 5, centered at a locus containing PMEL and 

ERBB3, genes known to control coat color in Fleckvieh populations (European 

Simmental) [82]. This locus, coupled with a GPSM signature immediately upstream of 

KIT [271], suggest that the strongest selection pressures in the purebred American 

Simmental population have been on changing coat color and external appearance, making 

them appear less like European Simmental and more like American Angus. The next 

most significant locus resides in a cluster of olfactory receptors on chromosome 28. 

Another strong signal exists on chromosome 15 near beta-carotene oxygenase 2 (BCO2) 

and interleukin-18 (IL-18), a locus likely involved in immune functions [272]. Within 

these 513 genome-wide significant SNPs, COJO identified 33 independent associations, 

13 of which were located at the center of chromosome 5 in the PMEL/ERBB3 locus. 

A GPSM analysis of all registered Simmental animals with at least 5% Simmental 

pedigree ancestry (n = 78,787) identified 1,008 genome-wide significant SNPs 

(Bonferroni-corrected p < 2.29 x 10-9) (Figure 3 A & B). A COJO analysis found 334 

independently-associated SNPs (COJO p < 5 x 10-8), two of which were identified in the 

purebred analysis (14:28004:G:T, 8:61247:T:C). An additional 4 loci were shared 

between datasets, despite different COJO SNPs being identified within these loci. These 

include the same significant coat color-associated regions on chromosomes 5 and 6 and 

olfactory receptor cluster on chromosome 28 mentioned above.  

By subsetting these data, we identified recent Simmental-specific selection in the 

purebred dataset and contrasted it with signatures identified in the full dataset where 

introgression from other breeds is also responsible for changing allele frequencies. In the 

full dataset, the most significant COJO SNP (9:66692267:C:T, COJO p < 10-310) is 

https://paperpile.com/c/nQfGtx/Yrxw8
https://paperpile.com/c/nQfGtx/KpUr6
https://paperpile.com/c/nQfGtx/Ezc1x
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located immediately upstream of PTPRK, a gene associated with marbling and tenderness 

measures in beef cattle [273,274]. Another strong GPSM signature (9:75790346, COJO p 

< 10-310) was found within the TNFAIP3 gene, which has been implicated in multiple 

studies of bovine and human immune function [275–278]. We also identified strong 

selection on variants (4:94308044:A:G, COJO p = 2.17 x 10-170) in the imprinted gene 

COPG2 [279]. As in Red Angus, the majority of GPSM COJO SNPs were either in, or 

proximal to, (< 50 kb from) genes (Table 1). In both the full and purebred datasets 30% 

of COJO SNPs resided within genes. An additional 35% and 40% of COJO SNPs resided 

in close proximity to genes in the full and purebred datasets, respectively. A complete 

accounting of Simmental GPSM COJO detected SNPs and their positional candidate 

genes are in Supplementary Tables 9 & 10. 

In the purebred Simmental dataset, two of the five significant QTL enrichments 

were involved with the appearance-based traits eye pigmentation (FDR-corrected p = 10-

4) and coat color (FDR-corrected p = 5.47 x 10-3), largely driven by the selected loci on 

chromosomes 5 and 6 (Supplementary Table 11). While the same significant loci were 

also identified in the full Simmental GPSM analysis, the enriched QTL classes under 

selection in the full dataset included carcass (longissimus muscle area , carcass weight, 

and meat color), production (metabolic body weight, average daily gain, dry matter 

intake), and reproduction (Inhibin level, luteal activity) (Supplementary Table 12). 

 

Ongoing selection at functional loci 

The Functional Annotation of Animal Genomes (FAANG) project has generated 

genome-wide data for multiple epigenetic marks (CTCF, ATAC, H3K4me1, H3K4me3, 

https://paperpile.com/c/nQfGtx/snAIC+VN9g2
https://paperpile.com/c/nQfGtx/22366+AhpCn+12v7K+fjLVx
https://paperpile.com/c/nQfGtx/kgYV0
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H3K27me3, and H3K27ac), in multiple tissues (adipose, cerebellum, cortex, 

hypothalamus, liver, lung, muscle and spleen) in a pair of biological replicates [280]. 

These data, coupled with sequence-level GPSM results allowed us to predict how 

selection has acted on functional regions of the genome. Previous selection mapping 

studies could generally resolve significant loci to positional candidate genes, but GPSM 

combined with COJO allowed us to refine the selected variant to the single base pair 

driving the signal. Eighty-seven COJO SNPs (35%) from the full Red Angus dataset 

resided in at least one of these epigenetic classes in at least one tissue. In the young Red 

Angus dataset, 166 of the COJO SNPs resided in one of these regions (40%). Certain 

GPSM SNPs clearly represent selection on regulatory variation. For example, a 

significant COJO SNP on chromosome 26 at 49,432,811 bp is immediately downstream 

of the gene Glutaredoxin-3 (GLRX3). The region containing this SNP harbors all six 

types of epigenetic marks, and these marks appear in all eight tissue types. Regulation of 

GLRX3 has been postulated to play roles in feed efficiency [53] and calving ease [281]. 

While the regulatory site near GLRX3 is highly diverse, most other regions are more 

specialized in their mark type and tissue context.  

To determine if selected loci were more likely to play functional roles in the 

genome, we annotated COJO SNPs with their Functional and Evolutionary Trait 

Heritability (FAETH) scores as described in in Xiang et al. (2019) [282]. SNPs in the top 

⅓ of the FAETH score distribution (per-variant score > 1.607 x 10-8) were considered 

likely to be functional, as in Xiang et al. In Red Angus, 48% and 45% of COJO SNPs had 

FAETH scores in the top ⅓ of the FAETH score distribution for the full and young Red 

Angus datasets, respectively. A similar pattern existed in both Simmental datasets, where 

https://paperpile.com/c/nQfGtx/BSlxb
https://paperpile.com/c/nQfGtx/NmrO
https://paperpile.com/c/nQfGtx/M36r4
https://paperpile.com/c/nQfGtx/ceE6O
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46% and 39% of FAETH-annotated COJO SNPs were likely functional in the purebred 

and full dataset, respectively. This suggests that COJO SNPs identified by GPSM are 

more likely to be functional than SNPs chosen at random (t-test p = 0.017).  

 

GPSM identifies breed-specific balancing selection in KHDRBS2 regulatory regions 

The most significant GPSM locus in both Red Angus datasets resided between 1 

and 2 Mb on Chromosome 23 (Figure 4A-B). The locus contains multiple sub-

associations with birth date. In the young dataset, SNPs throughout the proximal 2 Mb of 

chromosome 23 are genome-wide significant. In this locus, 117 SNPs had p-values < 10-

310, reported by GCTA as zero. This included the most significant SNP in the full dataset 

(23:1,768,070, p = 3.86 x 10-94). This SNP was also the most significant COJO SNP in 

the young Red Angus dataset, suggesting that it is the variant responsible for the signal at 

this locus in both Red Angus datasets. Interestingly, it was not the most significant COJO 

SNP in the full Simmental dataset. Rather a SNP ~70 kb away (23:1,032,665, p = 1.70 x 

10-247) had the strongest association (Figure 4C).  

Forty-one SNPs within this locus were also significant in the full Simmental 

dataset, including 6 independent COJO associations. The lead Simmental SNP at this 

locus resides in a secondary association identified in the young Red Angus dataset. As in 

Red Angus, the most significant COJO SNP (23:1215338:G:T, COJO p = 4.98 x 10-238, 

raw p = 4.28 x 10-30) was not the most significant raw GPSM p-value (23:1364693:A:T, 

raw p = 9.66 x 10-38). Additionally, the strongest Simmental association for this locus 

(between 1.2 and 1.3 Mb) differed from the strongest association identified in Red Angus 
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(~1.7 Mb) (Figure 4D). This region does, however, overlap with one of the significant 

sub-associations found in Red Angus.  

The closest protein coding gene to this signature is KHDRBS2, a gene involved in 

reproduction in goats [283], and calving ease in cattle [284]. KHDRBS2 has also been 

identified as possessing a selection signature that differs between Bos taurus and Bos 

indicus cattle [285,286]. While our most significant COJO SNPs do not reside directly 

within known epigenetic mark regions (Figure 4E), dozens of marks exist within this 1 

Mb segment and contain multiple genome-wide significant SNPs, suggesting strong 

ongoing selection for the regulation of  KHDRBS2 expression. Further, the annotated and 

expressed pseudogene LOC782044 is 24,991 base pairs from the most significant GPSM 

association in Red Angus at 1,768,070 base pairs and 38,847 base pairs from a significant 

COJO SNP in Simmental. While LOC782044 does not have any known functions in 

cattle, we hypothesize that it may be an enhancer RNA, aimed at altering the expression 

of KHDRBS2 or other nearby genes [287].  

The observed allele frequencies at significant COJO SNPs in this locus show two 

major patterns. First, we observe small directional changes in frequency, consistent with 

the polygenic selection that we observe at other GPSM loci (Figure 4 F). Second, for 

some Red Angus COJO SNPs, we observe allele frequencies oscillating around an 

intermediate value, a pattern consistent with balancing selection [288].  

 

Sweep mapping identifies known and novel selected loci 

GPSM and traditional selective sweep methods are both focused on identifying 

allele frequency changes and/or the signatures that they leave on surrounding neutral 

https://paperpile.com/c/nQfGtx/uhYTs
https://paperpile.com/c/nQfGtx/EOlvH
https://paperpile.com/c/nQfGtx/pZ1UA+xRCec
https://paperpile.com/c/nQfGtx/eM6Wu
https://paperpile.com/c/nQfGtx/xMFE1
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sites. We used two selection mapping methods, a haplotype-based statistic, number of 

segregating loci (nSL), and a composite statistic (μ) implemented by the software 

RAiSD. For nSL, we defined windows using the GenWin R package [289] which uses a 

spline function to observe changes in test statistics, and called the top 0.5% of windows 

significant, provided they contained at least three SNPs. Our nSL analysis in Red Angus 

identified 365 significant windows on all but three chromosomes (17,27, and 28) 

(Supplementary Table 13, Supplementary Figure 6). The correlation between nSL 

scores and GPSM effect sizes for 811K SNPs was -0.007. None of the significant GPSM 

COJO SNPs resided in outlier nSL windows. These significant nSL windows contained 

134 annotated genes, 78 of which were identified by the selection signature meta-

assembly in Randhawa et al. (2016). We used RAiSD to look for site frequency spectrum 

differences indicative of selection. RAiSD calculates μ in 50 SNP sliding windows (mean 

length = 39,139 bp), and we consider windows with the top 0.5% of μ values significant 

(Supplementary Table 14). The RAiSD analysis of sequenced Red Angus animals in the 

Thousand Bulls Project (n = 14) [290] identified 3,740 significant windows, many of 

which were overlapping, that encompassed dozens of loci exhibiting sweep-like 

signatures.  

We found that 50% of significant nSL windows and 53% of significant RAiSD 

windows contained annotated genes (Table 2), a considerably higher proportion than 

identified by GPSM (between 30% and 34% across datasets). Of the 3,740 significant 

windows identified by RAiSD, 17 showed overlap with three distinct COJO associations 

in the young Red Angus dataset, but we did not observe any overlap with COJO SNPs in 

the full Red Angus dataset. We expect that  In Red Angus, there were at least 12 sweep 

https://paperpile.com/c/nQfGtx/FEqD6
https://paperpile.com/c/nQfGtx/vaKd
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regions identified by both RAiSD and nSL. These included a locus on chromosome 6 

(~78.95 Mb) that is a pleiotropic QTL for stayability, calving ease, and udder structure in 

dairy cattle, traits all under selection in the Red Angus breed [284]. Another shared 

sweep region on chromosome 11 (18.1 Mb) is associated with multiple carcass quality 

traits [236].  

While the associated regions were largely different from those identified by 

GPSM analysis, we identified twelve GPSM COJO SNPs (4 in full, 8 in young Red 

Angus datasets, respectively) that reside within 50 kb of a significant nSL window. Two 

of these loci reside on chromosome 14 (23.0 Mb and 58.1 Mb). The locus at 23.0 Mb was 

also identified as a significant sweep region by RAiSD. This locus resides within the 

gene TMEM68 which has previously been identified as a driver of feed intake and growth 

phenotypes in cattle [291], and height in human [174]. This locus also resides within a 

QTL for Insulin-like growth factor 1 level [292]. The locus at 58.1 Mb lies within the 

gene Oxidation Resistance 1 (OXR1), which is also known regulator of carcass weight in 

cattle [293] and neutrophil counts in humans [294]. A final shared region on chromosome 

12 includes a region located immediately downstream of the gene DNAJC15, a heat 

shock protein with multiple reproductive associations in cattle [295,296] and human birth 

weight [297].  

We expect that selective sweeps assert different pressures on neighboring neutral 

sites compared with polygenic selection. To quantify these differences, we calculated 

linkage disequilibrium r2 statistics for all imputed SNPs within 100 kb of the lead SNP in 

significant RAiSD (n = 35) and nSL (n = 40) windows and significant GPSM COJO 

SNPs (n = 49) on chromosome 2 (Figure 2E). On average the r2 in regions surrounding 

https://paperpile.com/c/nQfGtx/EOlvH
https://paperpile.com/c/nQfGtx/vuq4J
https://paperpile.com/c/nQfGtx/zOH9U
https://paperpile.com/c/nQfGtx/SxEnI
https://paperpile.com/c/nQfGtx/y975x
https://paperpile.com/c/nQfGtx/y2JpR
https://paperpile.com/c/nQfGtx/3pQId
https://paperpile.com/c/nQfGtx/wJhov+tonKx
https://paperpile.com/c/nQfGtx/kkwV5
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sweep loci (nSL loci mean r2 = 0.155 [sd = 0.205], RAiSD loci mean r2 = 0.223 [sd = 

0.324]) were significantly higher (Tukey HSD p-value < 2 x 10-16) than those around 

GPSM loci (mean r2 = 0.105 [sd = 0.206]). 

Similarly, low levels of overlap between GPSM and sweep-detection methods 

existed in Simmental. A single GPSM COJO SNP resided within a significant RAiSD 

window (chromosome 26, 637,478 base pairs). The lone overlap between nSL and GPSM 

COJO SNPs in Simmental was on chromosome 5 at 57,701,350 base pairs. This is 

approximately 500 kb from the PMEL/ERBB3 coat color candidate locus, and resides 

within a cluster of olfactory-associated genes. RAiSD and nSL analyses in Simmental 

identified at least 14 shared regions of selection (significant windows < 50 kb apart). This 

complementary evidence our confidence that an actual sweep occurred at a locus. The 

most notable shared locus between nSL and RAiSD is located at the POLLED locus [43] 

on chromosome 1, responsible for the presence or absence of horns. This locus has been 

under strong selection in most cattle populations, and is frequently identified in selection 

mapping studies [23,264]. Another shared region of selection on chromosome 16 at ~42.6 

Mb near the genes MASP2 and TARDBP has been identified in numerous other sweep 

mapping studies of Simmental cattle [18,176,219,220].   

While overlapping nSL and RAiSD signatures can help bolster confidence in 

candidate selective sweeps. Most windows are uniquely identified by a single method 

(Supplementary Tables 13-16). For example, the most significant locus identified by 

RAiSD (Supplementary Figure 7) is located between two major clusters of T cell 

receptors on chromosome 10 at ~24.2 Mb. This sweep region was also identified in 

European Simmental populations by Qanbari et al. (2014) and Zhao et al. (2015) 

https://paperpile.com/c/nQfGtx/2TzJ
https://paperpile.com/c/nQfGtx/MeMLw+f6qf
https://paperpile.com/c/nQfGtx/4pRP+su7ax+3FFI6+sR5K9
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[18,176], illustrating the long-lasting signatures created by some selective sweeps. The 

next most significant RAiSD windows in Simmental are located immediately upstream of 

MC1R, the gene responsible for red versus black coat color in cattle [298].  

 

Ongoing polygenic selection acts on networks and pathways to drive complex trait 

changes 

Using annotated positional candidate genes from each of our analyses, we 

performed protein-protein interaction network analysis to understand how selected 

candidate genes interacted with one another in a network. In both Red Angus datasets, 

networks had significantly more “edges” (protein-protein interactions, co-expression, co-

localizations, and text-mining hits) than expected by chance (full Red Angus p = 0.034 , 

young Red Angus p = 5.84 x 10-6). Networks were similarly enriched in the full (protein-

protein interaction p = 0.00399) and purebred (protein-protein interaction p = 0.00903) 

Simmental datasets. In all cases, these networks had high average node degrees (the 

number of interactions per protein in the network), ranging from 1.05 (full Red Angus) to 

2.34 (full Simmental) These imply relatively strong biological connections between 

candidate genes near loci actively under selection. STRING networks built with genes in 

significant nSL windows were not significant in Red Angus (p = 0.205), and marginally 

significant in Simmental (p = 0.027), though with significantly lower average node 

degrees (Red Angus = 0.985, Simmental = 0.962) than the GPSM networks. Networks of 

RAiSD candidate genes were the most significant (Red Angus p = 1.2 x 10-11, Simmental 

p = 2.25 x 10-6) and had high average node degrees (Red Angus = 2.37, Simmental = 

3.35).  

https://paperpile.com/c/nQfGtx/4pRP+sR5K9
https://paperpile.com/c/nQfGtx/RP8XS
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Discussion 

In this study we further demonstrate the power of linear mixed models applied to 

a novel dependent variable to detect ongoing selection in populations with temporal 

genotype data. The Generation Proxy Selection Mapping (GPSM) method [13,14] is 

unique among selection mapping methods because it does not rely on outlier definitions, 

and significance is calculated on a per-marker basis, allowing us to pinpoint selection to 

the base pair level of resolution. Building on the work of Rowan et al. (2020), we expand 

GPSM to significantly larger datasets (46,454 and 78,787 animals) with imputed 

sequence level variants (> 11 million SNPs) [14]. This boost in power and resolution 

allowed us to map hundreds of small directional shifts in allele frequency, consistent with 

polygenic selection [299]. Further, by using a genomic relationship matrix, we are better 

able to control for the extensive population and family structure that exist in populations.  

Due to the non-normality of generation proxy phenotypes in genotyped livestock 

populations, we explored the effects of transformations and data subsetting on GPSM’s 

ability to detect selection. Large residuals for individuals born in the distant past led to a 

reduced power to detect selection in the full Red Angus dataset. When subsetting this 

dataset to individuals born very recently, or log-transforming the “birth date” generation 

proxy, we detected three times as many birth date-associated SNPs. In populations with 

low effective sizes (Ne), we might expect that stochastic changes in allele frequency due 

to drift could generate detectable changes in frequency [300], but simulations performed 

in our previous work have shown that GPSM is effectively able to distinguish between 

drift and selection [14]. While a log -transformed birth date generation proxy boosted the 

https://paperpile.com/c/nQfGtx/Ovhl+uTVl
https://paperpile.com/c/nQfGtx/uTVl
https://paperpile.com/c/nQfGtx/ts0K8
https://paperpile.com/c/nQfGtx/5JhgO
https://paperpile.com/c/nQfGtx/uTVl
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significance of signals in Red Angus, it did not have the same effect when applied to 

Simmental animals. As a result, for sequence-level analyses we used untransformed birth 

date as our dependent variable but partitioned the data into subsets to probe different 

components of selection. 

Identifying selection at the base pair-level with conditional-joint analysis (COJO) 

allowed us to overlay functional data generated by the Functional Annotation of Animal 

Genomes (FAANG) project onto the independently associated GPSM SNPs. We map 

hundreds of selected loci with predicted epigenetic marks in cattle [280]. This selection 

on SNPs within epigenetic marks and other likely cis-regulatory regions suggests that 

selection on complex phenotypes is altering gene expression in complex networks [301–

303]. Further, protein-protein interaction analyses showed significantly enriched 

biological connectedness, both for GPSM candidate genes and genes residing with nSL 

and RAiSD signatures.  

While most other tests of polygenic selection explicitly test for correlations 

between allele frequencies and phenotypes over sampled time periods [304–306], or 

between distinct diverged populations [215,306], GPSM operates agnostic to phenotype 

and population label. This expands the odds of detecting polygenic selection signatures 

but can make interpreting signals difficult. Fortunately, hundreds of QTL-mapping 

studies have been performed in cattle, providing an extensive database of loci associated 

with economically-important complex traits [307]. We queried the Animal QTL Database 

for QTL near GPSM associations and performed enrichment tests to understand the traits 

under selection in these populations. In Red Angus, we identified significant QTL 

enrichments for several production traits such as body weight, average daily gain, and 

https://paperpile.com/c/nQfGtx/BSlxb
https://paperpile.com/c/nQfGtx/Hpnud+pg75V+TZ2e5
https://paperpile.com/c/nQfGtx/Hpnud+pg75V+TZ2e5
https://paperpile.com/c/nQfGtx/z4iDa+qBSMi+FtB1V
https://paperpile.com/c/nQfGtx/FtB1V+vj5g1
https://paperpile.com/c/nQfGtx/4WkNP
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carcass weight, all traits that we would expect to find under selection in beef populations. 

We also identified multiple QTL classes influencing maternal traits and calving ease, two 

major recent selection emphases in the Red Angus breed. By analyzing both the full 

Simmental dataset and a subset of purebred animals, we could disentangle which allele 

frequencies were changing due to Simmental-specific selection versus selection on 

variation introgressed from other breeds. In purebred Simmental, we found limited 

selection on traits that were not explicitly involved in appearance characteristics. Strong 

selection at the PMEL/ERBB3 and KIT loci have been a major focus of the breed as it 

aimed at making animals appear more like Angus cattle. As a result, less selection on 

complex production traits was detected by GPSM in the purebred dataset compared to the 

full dataset where we detected an excess of associations with carcass, production, and 

reproductive traits, consistent with ongoing selection in the cattle industry at large. 

Differences in the enriched carcass and production traits are consistent with traits that 

show appreciable average phenotypic differences between Angus and Simmental 

animals. While these QTL databases are far from comprehensive due to their biases 

towards loci with detectable effect sizes in frequently-measured traits, they provide a 

valuable first step to identifying the production traits driving genomic changes in these 

populations.  

While some overlap between selective sweep mapping outlier windows (nSL and 

RAiSD) and GPSM hits existed, they are largely identifying different genomic loci. 

Sweep mapping methods consistently identify important Mendelian loci, such as 

POLLED, coat color genes (MC1R, KIT, etc.), and large-effect QTL where selection has 

for all intents and purposes been completed. GPSM’s strength is in detecting subtle, 
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directional shifts in allele frequency over short periods of time where selection is on-

going. In contrast, nSL, RAiSD, and other sweep-mapping methods identify 

characteristics of sweeps such as extended haplotype homozygosity, long-range LD, and 

changes to the local site frequency spectrum. We observed significantly less LD between 

GPSM SNPs and neighboring sites compared to the lead SNPs in sweep peaks identified 

by nSL and RAiSD. In general, most sweep mapping strategies search for signatures at 

neighboring neutral sites, whereas GPSM tracks actual allele frequency changes over 

time.  

 

Conclusions 

Using large, commercially-generated cattle genotype datasets imputed to 11 

million SNPs and the Generation Proxy Selection Mapping method we mapped hundreds 

of loci undergoing subtle directional shifts in frequency at the base pair level of 

resolution. These reside overwhelmingly in, or nearby, genes, which suggests that 

selection on complex traits is likely concerned with perturbing gene expression patterns 

in complex networks. As expected, GPSM detected largely different sets of selected loci 

than the selective sweep mapping methods. When longitudinally-sampled genotypes are 

available, GPSM is a powerful method for detecting ongoing changes to the genome. 

This makes it a complementary approach to sweep-mapping strategies as we work to 

understand the impacts of all types of selection on the genome.  

 

Methods 
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Genotype data and imputation 

We used commercially-generated assay genotypes from two populations of Bos 

taurus beef cattle. These data, made up of assays ranging in density from 25K to 777K 

SNPs were filtered, phased, then imputed using the approach described in Rowan et al. 

(2019) [7]. Briefly, prior to phasing and imputation we removed individuals with low call 

rates (< 0.90) and SNPs with low call rates (< 0.90) or extreme Hardy-Weinberg p-values 

(< 10-50, indicative of genotyping errors) in PLINK (version 1.9) [61]. Genotypes were 

phased using a high-density reference in Eagle v2.4.1 [64] and imputed using Minimac4 

[66]. The resulting high-density chip-imputed dataset contained 811,967 autosomal SNPs 

for 90,580 Simmental and 46,454 Red Angus animals. We refer to this dataset as 811K 

throughout. High-density imputed genotypes were then imputed to 43,214,290 SNPs 

from whole-genome resequencing data using 4,931 reference individuals from the 

Thousand Bulls Project Run8 [290]. We restricted the imputation reference to high 

quality (Variant Quality Score Recalibration [308] Tranche 90), biallelic variants with 

minor allele counts greater than 20. Following imputation, we further filtered imputed 

SNPs based on internally-calculated imputation R2 (> 0.4) and minor allele frequency (> 

0.01), leaving 11,759,568 imputed sequence variants for downstream analysis. Genomic 

coordinates for all array and sequence genotypes were based on positions in the ARS-

UCD1.2 assembly [62].  

 

Generation Proxy Phenotypes 

We use the breeder-reported birth date to calculate birth date as the number of 

days of each animal’s birth from the first-born animal within each dataset (as of October 

https://paperpile.com/c/nQfGtx/Jg7S
https://paperpile.com/c/nQfGtx/O1Ak
https://paperpile.com/c/nQfGtx/2tBz
https://paperpile.com/c/nQfGtx/gsZB
https://paperpile.com/c/nQfGtx/vaKd
https://paperpile.com/c/nQfGtx/ZTa9T
https://paperpile.com/c/nQfGtx/lWto
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19, 2020) for each animal to use as a continuous generation proxy in GPSM. In addition, 

due to the extreme left-skewness of animal birth dates in the dataset, we performed 

square root, cube root, and log transformations on animal birth date to test the effects of 

transforming the data for normality. 

 

Generation Proxy Selection Mapping (GPSM) 

Generation proxy selection mapping uses an individual’s generation number, or a 

proxy for generation number as the dependent variable in a genomic variance component 

analysis or a genome-wide linear mixed model. To control for shared ancestry between 

individuals and to estimate variance components we used autosomal SNP markers in our 

811K imputed dataset with MAF > 0.01 to construct a genomic relationship matrix 

(GRM) with the method in Yang et al. (2011) [121] for each population. Variance 

components were estimated using a genomic restricted maximum-likelihood (GREML) 

approach implemented in GCTA (version 1.92.3) [121,268]. To evaluate the impact of 

transformations to generation proxy phenotypes, we predicted random genetic effects 

(breeding values) and residuals for individuals using GCTA’s “--reml-pred-rand” 

function.  

The model used for selection mapping was as follows: 

 

𝑦 = 𝜇 +  𝑏𝑥 +  𝑎 +  𝜖 

 

Here, 𝑦 is a vector of animal generation numbers or generation proxies, 𝜇 is the sample 

mean, 𝑏𝑥 is a the vector of regression coefficients 𝑏 on an M x N matrix of animal 

https://paperpile.com/c/nQfGtx/XQunm
https://paperpile.com/c/nQfGtx/fBlhz+XQunm
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genotypes 𝑥, 𝑎 is a random vector of polygenic terms ∼ 𝑁(0, 𝐺𝜎𝑔
2 ) where 𝐺 is a 

genomic relationship matrix, and 𝜖is a random error term ∼ 𝑁(0, 𝐼𝜎𝑒
2 ) . All GPSM 

analyses were performed using the “--mlma” function in GCTA. When testing the impact 

of generation proxy transformations on statistical power, we used 811K imputed 

genotypes. We performed GPSM on sequence-imputed genotypes on four total datasets 

with GRMs calculated with 811K genotypes. The four datasets were as follows: the full 

Red Angus dataset (n = 46,454), Red Angus animals born on or after January 1st, 2012 (n 

= 44,470), all Simmental animals with at least 5% pedigree-reported Simmental ancestry 

(n = 78,787) and all purebred Simmental animals (n = 13,379).  

To further refine GPSM signals and detect additional associations, we performed 

a within-analysis conditional and joint analysis (COJO) [269] in GCTA (v 1.92.3). COJO 

utilized summary data and genotypes from each of our sequence-level GPSM runs. The 

COJO model was conditioned on SNPs with GPSM p-values < 10-5. We controlled for 

SNP collinearity by setting conditional p-values of highly-correlated variants (r2 > 0.9) to 

1. 

 

Haplotype-based scans for selection 

To map genomic regions that underwent strong selection in the distant-to-

intermediate past, we used the number of segregating loci (nSL) method [309] on phased 

haplotypes from our full Red Angus and Simmental 811K datasets (MAF > 0.01), as well 

as on a subset of purebred Simmental animals. The nSL statistic was implemented in 

selscan [310] where per-SNP scores were also normalized in 100 frequency bins. As 

opposed to calculating significance in fixed windows, we fit a smoothing spline for each 

https://paperpile.com/c/nQfGtx/CsqK8
https://paperpile.com/c/nQfGtx/lNa7U
https://paperpile.com/c/nQfGtx/JKIqM
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chromosome over normalized nSL scores using the GenWin R package [289]. This 

allowed us to define variable-length windows in which we calculated the mean nSL 

scores. We considered the top 0.5% of these windows to be significant outliers for 

downstream annotation and analysis.  

 

Site frequency spectrum (SFS) scan for selection 

We performed SFS-based scans for selection using called sequence genotypes 

from 14 American Red Angus and 32 registered Simmental animals, some of which may 

be crossbred, in the 1,000 Bull Genomes Project [290] in RAiSD (v2.9) [311]. RAiSD 

calculates a composite selection statistic, μ, aimed at detecting various signatures of 

selective sweeps. To preserve the full site frequency spectrum, we did not filter on any 

quality or frequency-based metrics. Rather, we restricted our analysis to only biallelic 

SNPs. SNPs in the top 0.5% of RAiSD μ values were considered significant outliers.  

 

Gene & QTL annotation and enrichment 

We annotated positional candidate genes and QTL using the GALLO R package 

with gene lists from ENSEMBL(Version 101) [312] and known Bos taurus QTL curated 

in the Animal QTL Database [307]. We annotated all genes and QTL within 50 kb of 

significant (p < 5 x 10-8) COJO SNPs or sweep outlier regions (based on lead SNP). We 

performed QTL enrichment analysis with GALLO, using an FDR-corrected p-value 

threshold of 0.05 to identify traits whose known QTL were significantly enriched in 

GPSM signatures.. We also annotated these SNPs with their Functional-And-

Evolutionary Trait Heritability (FAETH) score as calculated in [282], with coordinates 

https://paperpile.com/c/nQfGtx/FEqD6
https://paperpile.com/c/nQfGtx/vaKd
https://paperpile.com/c/nQfGtx/40K7y
https://paperpile.com/c/nQfGtx/r6q4G
https://paperpile.com/c/nQfGtx/4WkNP
https://paperpile.com/c/nQfGtx/ceE6O
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lifted over from the UMD3.1.1 assembly to ARS-UCD1.2 using the UCSC LiftOver tool 

[313].  

 

  

https://paperpile.com/c/nQfGtx/2Orx
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FIGURES 

 

 

 

Figure 4.1. Red Angus GPSM Manhattan plots for the (A) full dataset, (B) truncated at p 

= 10-5 and (C) young dataset also truncated (D) at p = 10-5. Genome-wide significance is 

indicated by the red line (Bonferroni-corrected p-value = 4.29 x 10-9) and blue line (p-

value = 5 x 10-8). Blue points are significant COJO SNPs (COJO p < 5 x 10-5) in the full 

Red Angus dataset. Red points are significant COJO SNPs in young Red Angus datasets.  

[Figure 1 in text] 
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Figure 4.2. Methods identify largely different regions of selection on chromosome 2 in 

Red Angus. Chromosome 2 Manhattan plots for (A) full and (B) young Red Angus 

datasets. Red line is a Bonferroni-corrected significance threshold (4.29 x 10-9). (C) 

Genomic distribution of |nSL|scores for windows defined by GenWin and (D) RAiSD μ 

statistics. Horizontal red lines indicate 0.5% outlier thresholds. Vertical red and blue lines 

represent the positions of full Red Angus and young Red Angus GPSM COJO SNPs, 

respectively. (E) Pairwise linkage disequilibrium (r2) values for SNPs within 100 kb of 
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COJO SNPs for GPSM, SNPs closest to the center of significant nSL windows, or lead 

SNPs in significant RAiSD peaks. (F) Allele frequency trajectories over time for the five 

most significant SNPs in each analysis.  

[Figure 2 in text]  
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Figure 4.3. GPSM Manhattan plots for the (A) purebred Simmental dataset, (B) 

truncated at p = 10-5 and (C) full Simmental dataset also truncated (D) at p = 10-5. 

Genome-wide significance is indicated by the red line (Bonferroni-corrected p-value = 

4.29 x 10-9) and blue line (p-value = 5 x 10-8). Purple points indicate significant COJO 

SNPs (COJO p < 5 x 10-5) in the purebred Simmental dataset. Green points are 

significant COJO SNPs in the full Simmental dataset.    

[Figure 3 in text] 
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Figure 4.4. Manhattan plots for chromosome 23 in full (A) Red Angus and (B) 

Simmental datasets. Focused Manhattan plots at significant locus from 1-2 Mb on 

Chromosome 23 in full (C) Red Angus and (D) Simmental datasets. Red SNPs are 
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significant GPSM COJO associations (COJO p < 5 x 10-8). In A-D, the red line indicates 

a Bonferroni-corrected significance threshold. (E) Chromosome 23 (1-2 Mb) annotated 

with genes (orange) and epigenetic marks in eight tissues from two bovine samples in the 

FAANG project, colored by mark type. (F) Allele frequency trajectories represented by 

smoothened regression lines of birth year versus allele frequency for significant COJO 

SNPs in this region in the young Red Angus and full Simmental datasets. Lines are 

colored by the SNP’s -log10(p) value from GPSM.  

[Figure 4 in text]  
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Figure 4.5. Distributions of birth dates in the full (A) Red Angus and (B) Simmental 

datasets. Faceted zoom on distant past individuals: 1975-2012 in Red Angus, 1965-2008 

in Simmental. 

[Supplementary Figure 1 in text]  
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Figure 4.6. Residuals and breeding values for birth date GREML analysis. For Red 

Angus, estimated (A) residual error and (B) breeding values for each genotyped 

individual, colored by the number of years since birth. (C) Residual error and (D) 

breeding values for birth date in the full Simmental dataset. 

[Supplementary Figure 2 in text]
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Figure 4.7. Residuals and breeding values for log-transformed years since birth date 

GREML analysis. For Red Angus, estimated (A) residual error and (B) breeding values 

for each genotyped individual, colored by the number of years since birth. (C) Residual 

error and (D) breeding values for birth date in the full Simmental dataset. 

[Supplementary Figure 3 in text]  
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Figure 4.8. GPSM Manhattan plots comparing effects of transformation and data 

subsetting. 811K SNP Manhattan plots for Red Angus dataset using (A) raw birth date 

((B) truncated at -log10(p) = 15), (C) log-transformed birth date ((D) truncated at -log10(p) 

= 15), or (E) raw birth dates for animals born since 2012 ((F) truncated at -log10(p) = 15) 

as dependent variables in GPSM analysis.  Genome-wide significance is indicated by the 

red line (Bonferroni-corrected p-value = 6.17 x 10-8). Green points in A,B, E, and F 

represent genome-wide significant SNPs from the log-transformed age GPSM analysis.  

[Supplementary Figure 4 in text]  
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Figure 4.9. The changing breed composition of registered Simmental. Counts of 

Simmental ancestry percentages over time in all genotyped animals in American 

Simmental dataset. Points represent birth year/% Simmental ancestry combinations in the 

data, sized by the number of animals in each of those classes. The red line is a smoothed 

mean, surrounded by a 95% confidence interval in grey.   

[Supplementary Figure 5 in text]  
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Figure 4.10. Selective sweep mapping in Red Angus. (A) Number of segregating loci 

(nSL) statistic windows across the genome. Window boundaries were defined by 

GenWin R package. Points represent the average |nSL| values within a window, with the 

genomic position defined as the genomic center of the window. Red line delineates 0.5% 

outliers deemed significant. (B) Manhattan plot of RAiSD μ statistics calculated from 

sequenced American Red Angus animals in the 1000 Bull Genomes Project. Red line 

delineates 0.5% outliers.  

[Supplementary Figure 6 in text] 
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Figure 4.11. Selective sweep mapping in Simmental. (A) Number of segregating loci 

(nSL) statistic windows across the genome. Window boundaries were defined by 

GenWin R package. Points represent the average |nSL| values within a window, with the 

genomic position defined as the genomic center of the window. Red line delineates 0.5% 

outliers deemed significant. (B) Manhattan plot of RAiSD μ statistic calculated from 

sequenced American Simmental animals in the 1000 Bull Genomes Project. Red line 

delineates 0.5% outliers.  

[Supplementary Figure 7 in text] 
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TABLES 

 

Table 4.1. Number of significant (p < 5 x 10-8) COJO SNPs within, proximal, or outside 

of genic regions in each sequence-level dataset.  

Breed Dataset Total 

COJO 

SNPs 

Within 

Gene  

Gene 

Proximal 

(< 50kb to 

nearest) 

Intergenic 

Red Angus Full 248 76 (31%) 70 (28%) 102 (41%) 

Red Angus Young 417 142 (34%) 123 (29%) 152 (36%) 

Simmental Full 344 106 (30%) 119 (35%) 119 (35%) 

Simmental Purebred 33 10 (30%) 13 (40%) 10 (30%) 
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Table 4.2. Number of significant windows within, proximal, or outside of genic regions 

identified by nSL and RAiSD in each dataset.  

Breed Analysis Total 

Windows 

Within Gene  Gene 

Proximal 

(< 50kb to 

nearest) 

Intergenic 

Red Angus nSL 365 183 (50%) 73 (20%) 109 (30%) 

Red Angus RAiSD 6,502 3,453 (53%) 811 (13%) 2,238 (34%) 

Simmental nSL 347 188 (54%) 60 (17%) 99 (29%) 

Simmental RAiSD 6,497 3,030 (47%) 1108 (17%) 2,359 (36%) 
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Table 4.3. Genomic restricted maximum likelihood (GREML) estimates of proportion 

variance explained (PVE) for various statistical transformations to birth date used as 

generation proxy in Red Angus.  

Subset n(animals) Dependent 

Variable 

PVE (SE) 

FULL  46,454 Birth date 0.523 (0.007) 

FULL  46,454 √𝑏𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒 0.616 (0.006) 

FULL  46,454 √𝑏𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒 
3

 0.637 (0.006) 

FULL  46,454 𝑙𝑜𝑔(𝑏𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒) 0.657 (0.006) 

Young Only1 44,470 Birth date 0.773 (0.004) 

Old Only2 1,984 Birth date 0.557 (0.031) 

1 Animals born on or after January 1, 2012 
2 Animals born prior to January 1, 2012 

 

[Supplementary Table 1 in text]  
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Table 4.4. Genomic restricted maximum likelihood (GREML) estimates of proportion 

variance explained (PVE) for various subsets of the Simmental dataset.     

Dataset n (animals) 

Dependent 

Variable 

PVE (Standard 

Error) 

Full1 78,787 Birth date 0.619 (0.005) 

Full1 78,787 𝑙𝑜𝑔(𝑏𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒) 0.600 (0.005) 

Young Only2 73,811 Birth date 0.540 (0.005) 

Old Only3 4,976 Birth date 0.436 (0.021) 

<30% SIM, >50% AN4 11,429 Birth date 0.665 (0.011) 

>20% SIM, <70%SIM5 46,136 Birth date 0.642 (0.006) 

>70% SIM6 31,225 Birth date 0.558 (0.008) 

>70% SIM6 31,225 𝑙𝑜𝑔(𝐵𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒) 0.561 (0.008) 

Purebred7 13,379 Birth date 0.555 (0.011) 

Purebred Young8 11,148, Birth date 0.497 (0.013) 

Purebred Old9 2,231 Birth date 0.462 (0.030) 
1 Animals with at least 5% Simmental ancestry 
2 Animals with at least 5% Simmental ancestry, born on or after January 1, 2008 
3 Animals with at least 5% Simmental ancestry, born prior to January 1, 2008 
4 Animals with less than 30% Simmental ancestry and more than 50% Angus ancestry 
5 Animals with more than 20%, but less than 70% Simmental ancestry 
6 Animals with more than 70% Simmental ancestry 
7 Animals with 100% Simmental ancestry 
8 Animals with 100% Simmental ancestry, born on or after January 1, 2008 
9 Animals with 100% Simmental ancestry, born prior to January 1, 2008 

 

[Supplementary Table 2 in text]  



      

198 

 

Table 4.5. Counts of significant SNPs identified in each GPSM analysis of the Red 

Angus population using different transformations to generation proxy as dependent 

variable in 811K SNPs. The four significance cutoffs are reported: 1) A nominal 

significance (p < 10-5), 2) a Bonferroni-adjusted threshold (p < 7.55 x 10-7), and FDR-

corrected q-values 3) < 0.10 or 4) < 0.05. 

Dataset n 

(animals) 

Dependent 

Variable 

nSNPs  

p > 10-5 

(nloci) 

nSNPs 

p < 7.55 

x 10-7 

(nloci) 

nSNPs 

q < 

0.10 

(nloci) 

nSNPs 

q < 

0.05 

(nloci) 

Full 46,454 Birth date 315 214 509 398 

Full 46,454 √𝐵𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒 453 333 729 559 

Full 46,454 √𝐵𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒 
3

 471 357 817 596 

Full 46,454 𝑙𝑜𝑔(𝐵𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒) 513 377 822 715 

Young Only1 44,470 Birth date 762 555 1210 1042 

Old Only2 1,984 Birth date 18 1 1 1 

Old Only2 1,984 𝑙𝑜𝑔(𝐵𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒) 3 0 0 0 

1 Animals born on or after January 1, 2012 
2 Animals born prior to January 1, 2012 

 

[Supplementary Table 3 in text]  
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Table 4.6. Counts of significant SNPs identified in each GPSM analysis of the 

Simmental population using different population subsets and transformations to 

generation proxy with 811K SNPs. Ancestry proportions are pedigree estimates reported 

by American Simmental Association. The four significance thresholds are reported: 1) A 

nominal significance (p < 10-5), 2) a Bonferroni-adjusted threshold (p < 7.55 x 10-7), and 

FDR-corrected q-values 3) < 0.10 or 4) < 0.05. 

Dataset 

n 

(animals) 

Dependent 

Variable 

Nominal  

(p < 10-5) Bonferroni q < 0.1 q < 0.05 

Full1 78,787 Birth date 120 70 137 117 

Full1 78,787 𝑙𝑜𝑔(𝐵𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒) 109 77 130 105 

Young Only2 73,811 Birth date 94 68 100 89 

Old Only3 4,976 Birth date 119 72 171 115 

<30% SIM, 

>50% AN4 11,429 Birth date 14 3 3 0 

>20% SIM, 

<70%SIM5 46,136 Birth date 46 31 39 38 

>70% SIM6 31,225 Birth date 100 61 107 88 

>70% SIM6 31,225 𝑙𝑜𝑔(𝐵𝑖𝑟𝑡ℎ 𝑑𝑎𝑡𝑒) 51 24 44 32 

Purebred7 13,379 Birth date 92 50 111 85 

Purebred 

Young8 11,148, Birth date 11 4 4 3 

Purebred Old9 2,231 Birth date 60 34 59 48 
1 Animals with at least 5% Simmental ancestry 
2 Animals with at least 5% Simmental ancestry, born on or after January 1, 2008 
3 Animals with at least 5% Simmental ancestry, born prior to January 1, 2008 
4 Animals with less than 30% Simmental ancestry and more than 50% Angus ancestry 
5 Animals with more than 20%, but less than 70% Simmental ancestry 
6 Animals with more than 70% Simmental ancestry 
7 Animals with 100% Simmental ancestry 
8 Animals with 100% Simmental ancestry, born on or after January 1, 2008 
9 Animals with 100% Simmental ancestry, born prior to January 1, 2008 

 

[Supplementary Table 4 in text] 
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Supplementary Tables 4.7-4.18 are located here: 

https://docs.google.com/spreadsheets/d/1bxf9Cl3ZCsgkzycLu8MFYg6YyWPegwYVMn

tpqCydvJo/edit?usp=sharing  

 

Table 4.7. Significant (p < 5 x 10-8) conditional and joint (COJO) SNPs from full Red 

Angus GPSM analysis and their annotated positional candidate genes (< 50 kb) 

[Supplementary Table 5 in text].  

 

Table 4.8. Significant (p < 5 x 10-8) conditional and joint (COJO) SNPs from young Red 

Angus GPSM analysis and their annotated positional candidate genes (< 50 kb).  

[Supplementary Table 6 in text] 

 

Table 4.9. Significantly enriched QTL in regions (< 50 kb) from significant GPSM 

COJO SNPs identified in the full Red Angus dataset (n SNPs = 248) . 

[Supplementary Table 7 in text] 

 

Table 4.10. Significantly enriched QTL in regions (< 50 kb) from significant GPSM 

COJO SNPs identified in the young Red Angus dataset (n SNPs = 417). 

[Supplementary Table 8] 

 

Table 4.11. Significant (p < 5 x 10-8) conditional and joint (COJO) SNPs from full 

Simmental GPSM analysis and their annotated positional candidate genes (< 50 kb).  

[Supplementary Table 9 in text] 

https://docs.google.com/spreadsheets/d/1bxf9Cl3ZCsgkzycLu8MFYg6YyWPegwYVMntpqCydvJo/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1bxf9Cl3ZCsgkzycLu8MFYg6YyWPegwYVMntpqCydvJo/edit?usp=sharing
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Table 4.12. Significant (p < 5 x 10-8) conditional and joint (COJO) SNPs from purebred 

Simmental GPSM analysis and their annotated positional candidate genes (< 50 kb).  

[Supplementary Table 10 in text] 

 

Table 4.13. Significantly enriched QTL in regions (< 50 kb) from significant GPSM 

COJO SNPs identified in full Simmental dataset (n SNPs = 344) . 

[Supplementary Table 11 in text] 

 

Table 4.14. Significantly enriched QTL in regions (< 50 kb) from significant GPSM 

COJO SNPs identified in purebred Simmental dataset (n SNPs = 33) . 

[Supplementary Table 12 in text] 

 

Table 4.15. Red Angus outlier nSL windows (top 0.5%) as defined by GenWin R 

package. Genes that fell within significant windows are reported with their corresponding 

window.  

[Supplementary Table 13 text] 

 

Table 4.16. Unique genes within Red Angus outlier RAiSD windows (top 0.5%). 

Reported window is the window with the highest μ value that overlaps with the gene. 

[Supplementary Table 14 in text] 
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Table 4.17. Red Angus outlier nSL windows (top 0.5%) as defined by GenWin R 

package. Genes that fell within significant windows are reported with their corresponding 

window.  

[Supplementary Table 15] 

 

Table 4.18. Unique genes within Simmental outlier RAiSD windows (top 0.05%). 

Reported window is the window with the highest μ value that overlaps with the gene. 

[Supplementary Table 16 in text] 

 

 

 

 

 

  



      

203 

 

REFERENCES 

1.  Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using 

genome-wide dense marker maps. Genetics. 2001;157: 1819–1829. 

2.  Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, et al. 

Development and characterization of a high density SNP genotyping assay for cattle. 

PLoS One. 2009;4: e5350. 

3.  VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 

2008;91: 4414–4423. 

4.  Taylor JF, Taylor KH, Decker JE. Holsteins are the genomic selection poster cows. 

Proceedings of the National Academy of Sciences of the United States of America. 

2016. pp. 7690–7692. 

5.  García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell 

CP. Changes in genetic selection differentials and generation intervals in US 

Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci U S A. 

2016;113: E3995–4004. 

6.  Genomic Evaluations. [cited 12 Nov 2020]. Available: 

https://www.uscdcb.com/what-we-do/genomics/ 

7.  Rowan TN, Hoff JL, Crum TE, Taylor JF, Schnabel RD, Decker JE. A multi-breed 

reference panel and additional rare variants maximize imputation accuracy in cattle. 

Genet Sel Evol. 2019;51: 77. 

8.  Rolf MM, Taylor JF, Schnabel RD, McKay SD, McClure MC, Northcutt SL, et al. 

Impact of reduced marker set estimation of genomic relationship matrices on 

genomic selection for feed efficiency in Angus cattle. BMC Genet. 2010;11: 24. 

9.  Su G, Brøndum RF, Ma P, Guldbrandtsen B, Aamand GP, Lund MS. Comparison of 

genomic predictions using medium-density (∼54,000) and high-density (∼777,000) 

single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy 

Cattle populations. J Dairy Sci. 2012;95: 4657–4665. 

10.  Marchini J, Howie B. Genotype imputation for genome-wide association studies. 

Nat Rev Genet. 2010;11: 499–511. 

11.  MacLeod IM, Bowman PJ, Vander Jagt CJ, Haile-Mariam M, Kemper KE, 

Chamberlain AJ, et al. Exploiting biological priors and sequence variants enhances 

QTL discovery and genomic prediction of complex traits. BMC Genomics. 2016;17: 

144. 

12.  Köster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine. 

Bioinformatics. 2012;28: 2520–2522. 

http://paperpile.com/b/nQfGtx/52vQ
http://paperpile.com/b/nQfGtx/52vQ
http://paperpile.com/b/nQfGtx/0kWJ
http://paperpile.com/b/nQfGtx/0kWJ
http://paperpile.com/b/nQfGtx/0kWJ
http://paperpile.com/b/nQfGtx/Qoad
http://paperpile.com/b/nQfGtx/Qoad
http://paperpile.com/b/nQfGtx/RQ5M
http://paperpile.com/b/nQfGtx/RQ5M
http://paperpile.com/b/nQfGtx/RQ5M
http://paperpile.com/b/nQfGtx/JkLt
http://paperpile.com/b/nQfGtx/JkLt
http://paperpile.com/b/nQfGtx/JkLt
http://paperpile.com/b/nQfGtx/JkLt
http://paperpile.com/b/nQfGtx/KGek
http://paperpile.com/b/nQfGtx/KGek
https://www.uscdcb.com/what-we-do/genomics/
http://paperpile.com/b/nQfGtx/Jg7S
http://paperpile.com/b/nQfGtx/Jg7S
http://paperpile.com/b/nQfGtx/Jg7S
http://paperpile.com/b/nQfGtx/veNV
http://paperpile.com/b/nQfGtx/veNV
http://paperpile.com/b/nQfGtx/veNV
http://paperpile.com/b/nQfGtx/4WSC
http://paperpile.com/b/nQfGtx/4WSC
http://paperpile.com/b/nQfGtx/4WSC
http://paperpile.com/b/nQfGtx/4WSC
http://paperpile.com/b/nQfGtx/CPTM
http://paperpile.com/b/nQfGtx/CPTM
http://paperpile.com/b/nQfGtx/wgNF
http://paperpile.com/b/nQfGtx/wgNF
http://paperpile.com/b/nQfGtx/wgNF
http://paperpile.com/b/nQfGtx/wgNF
http://paperpile.com/b/nQfGtx/XV5K
http://paperpile.com/b/nQfGtx/XV5K


      

204 

 

13.  Decker JE, Vasco DA, McKay SD, McClure MC, Rolf MM, Kim J, et al. A novel 

analytical method, Birth Date Selection Mapping, detects response of the Angus 

(Bos taurus) genome to selection on complex traits. BMC Genomics. 2012;13: 606. 

14.  Rowan TN, Durbin HJ, Seabury CM, Schnabel RD, Decker JE. Powerful detection 

of polygenic selection and environmental adaptation in US beef cattle. 2020. p. 

2020.03.11.988121. doi:10.1101/2020.03.11.988121 

15.  Falconer DS. Introduction to quantitative genetics. Oliver And Boyd; Edinburgh; 

London; 1960. 

16.  Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 

1974;23: 23–35. 

17.  Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R. 

Localizing recent adaptive evolution in the human genome. PLoS Genet. 2007;3: 

e90. 

18.  Qanbari S, Pausch H, Jansen S, Somel M, Strom TM, Fries R, et al. Classic selective 

sweeps revealed by massive sequencing in cattle. PLoS Genet. 2014;10: e1004148. 

19.  Nair S, Williams JT, Brockman A, Paiphun L, Mayxay M, Newton PN, et al. A 

selective sweep driven by pyrimethamine treatment in southeast asian malaria 

parasites. Mol Biol Evol. 2003;20: 1526–1536. 

20.  Eyre-Walker A. Evolution in health and medicine Sackler colloquium: Genetic 

architecture of a complex trait and its implications for fitness and genome-wide 

association studies. Proc Natl Acad Sci U S A. 2010;107 Suppl 1: 1752–1756. 

21.  Barghi N, Hermisson J, Schlötterer C. Polygenic adaptation: a unifying framework 

to understand positive selection. Nat Rev Genet. 2020. doi:10.1038/s41576-020-

0250-z 

22.  Höllinger I, Pennings PS, Hermisson J. Polygenic adaptation: From sweeps to subtle 

frequency shifts. PLoS Genet. 2019;15: e1008035. 

23.  Xu L, Bickhart DM, Cole JB, Schroeder SG, Song J, Van Tassell CP, et al. Genomic 

signatures reveal new evidences for selection of important traits in domestic cattle. 

Mol Biol Evol. 2015;32: 711–725. 

24.  Randhawa IAS, Khatkar MS, Thomson PC, Raadsma HW. A Meta-Assembly of 

Selection Signatures in Cattle. PLoS One. 2016;11: e0153013. 

25.  Walsh B, Lynch M. Evolution and selection of quantitative traits. 2018. Available: 

https://books.google.ca/books?hl=en&lr=&id=L2liDwAAQBAJ&oi=fnd&pg=PP1&

ots=y9dWVmdg1F&sig=pOREAZIAXXiV3gcMJ2WO-qKSEkc 

26.  St-Pierre NR, Cobanov B, Schnitkey G. Economic Losses from Heat Stress by US 

http://paperpile.com/b/nQfGtx/Ovhl
http://paperpile.com/b/nQfGtx/Ovhl
http://paperpile.com/b/nQfGtx/Ovhl
http://paperpile.com/b/nQfGtx/uTVl
http://paperpile.com/b/nQfGtx/uTVl
http://paperpile.com/b/nQfGtx/uTVl
http://dx.doi.org/10.1101/2020.03.11.988121
http://paperpile.com/b/nQfGtx/CXRa
http://paperpile.com/b/nQfGtx/CXRa
http://paperpile.com/b/nQfGtx/sjpn
http://paperpile.com/b/nQfGtx/sjpn
http://paperpile.com/b/nQfGtx/cvpu
http://paperpile.com/b/nQfGtx/cvpu
http://paperpile.com/b/nQfGtx/cvpu
http://paperpile.com/b/nQfGtx/4pRP
http://paperpile.com/b/nQfGtx/4pRP
http://paperpile.com/b/nQfGtx/LL9p
http://paperpile.com/b/nQfGtx/LL9p
http://paperpile.com/b/nQfGtx/LL9p
http://paperpile.com/b/nQfGtx/TXZo
http://paperpile.com/b/nQfGtx/TXZo
http://paperpile.com/b/nQfGtx/TXZo
http://paperpile.com/b/nQfGtx/5Psn
http://paperpile.com/b/nQfGtx/5Psn
http://dx.doi.org/10.1038/s41576-020-0250-z
http://dx.doi.org/10.1038/s41576-020-0250-z
http://paperpile.com/b/nQfGtx/Ba3v
http://paperpile.com/b/nQfGtx/Ba3v
http://paperpile.com/b/nQfGtx/f6qf
http://paperpile.com/b/nQfGtx/f6qf
http://paperpile.com/b/nQfGtx/f6qf
http://paperpile.com/b/nQfGtx/5OnE
http://paperpile.com/b/nQfGtx/5OnE
http://paperpile.com/b/nQfGtx/9F78
http://paperpile.com/b/nQfGtx/9F78
https://books.google.ca/books?hl=en&lr=&id=L2liDwAAQBAJ&oi=fnd&pg=PP1&ots=y9dWVmdg1F&sig=pOREAZIAXXiV3gcMJ2WO-qKSEkc
https://books.google.ca/books?hl=en&lr=&id=L2liDwAAQBAJ&oi=fnd&pg=PP1&ots=y9dWVmdg1F&sig=pOREAZIAXXiV3gcMJ2WO-qKSEkc
http://paperpile.com/b/nQfGtx/fQqw


      

205 

 

Livestock Industries1. J Dairy Sci. 2003;86: E52–E77. 

27.  Ahlberg CM, Allwardt K, Broocks A, Bruno K, Taylor A, Mcphillips L, et al. 

Characterization of water intake and water efficiency in beef cattle1,2. J Anim Sci. 

2019;97: 4770–4782. 

28.  Strickland JR, Aiken GE, Spiers DE, Fletcher LR, Oliver JW. Physiological Basis of 

Fescue Toxicosis. In: Fribourg HA, Hannaway DB, West CP, editors. Tall Fescue 

for the Twenty-first Century. Madison, WI, USA: American Society of Agronomy, 

Crop Science Society of America, Soil Science Society of America; 2009. pp. 203–

227. 

29.  Bradford HL, Fragomeni BO, Bertrand JK, Lourenco DAL, Misztal I. Genetic 

evaluations for growth heat tolerance in Angus cattle. J Anim Sci. 2016;94: 4143–

4150. 

30.  Carvalheiro R, Costilla R, Neves HHR, Albuquerque LG, Moore S, Hayes BJ. 

Unraveling genetic sensitivity of beef cattle to environmental variation under 

tropical conditions. Genet Sel Evol. 2019;51: 29. 

31.  Hayes BJ, Daetwyler HD, Goddard ME. Models for genome× environment 

interaction: Examples in livestock. Crop Sci. 2016;56: 2251–2259. 

32.  Smith JL, Wilson ML, Nilson SM, Rowan TN, Oldeschulte DL, Schnabel RD, et al. 

Genome-wide association and genotype by environment interactions for growth 

traits in U.S. Gelbvieh cattle. BMC Genomics. 2019;20: 926. 

33.  Braz CU, Rowan TN, Schnabel RD, Decker JE. Extensive genome-wide association 

analyses identify genotype-by-environment interactions of growth traits in 

Simmental cattle. doi:10.1101/2020.01.09.900902 

34.  Butts WT, Koger M, Pahnish OF, Burns WC, Warwick EJ. Performance of two lines 

of Hereford cattle in two environments. J Anim Sci. 1971;33: 923–932. 

35.  Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat 

Rev Genet. 2013;14: 807–820. 

36.  Günther T, Coop G. Robust identification of local adaptation from allele 

frequencies. Genetics. 2013;195: 205–220. 

37.  Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: Genomic 

selection in dairy cattle: progress and challenges. J Dairy Sci. 2009;92: 433–443. 

38.  VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor 

JF, et al. Invited review: reliability of genomic predictions for North American 

Holstein bulls. J Dairy Sci. 2009;92: 16–24. 

39.  Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, et al. Positional 

http://paperpile.com/b/nQfGtx/fQqw
http://paperpile.com/b/nQfGtx/xEzi
http://paperpile.com/b/nQfGtx/xEzi
http://paperpile.com/b/nQfGtx/xEzi
http://paperpile.com/b/nQfGtx/hkEs
http://paperpile.com/b/nQfGtx/hkEs
http://paperpile.com/b/nQfGtx/hkEs
http://paperpile.com/b/nQfGtx/hkEs
http://paperpile.com/b/nQfGtx/hkEs
http://paperpile.com/b/nQfGtx/oWxL
http://paperpile.com/b/nQfGtx/oWxL
http://paperpile.com/b/nQfGtx/oWxL
http://paperpile.com/b/nQfGtx/zpTy
http://paperpile.com/b/nQfGtx/zpTy
http://paperpile.com/b/nQfGtx/zpTy
http://paperpile.com/b/nQfGtx/ikR5
http://paperpile.com/b/nQfGtx/ikR5
http://paperpile.com/b/nQfGtx/ex76
http://paperpile.com/b/nQfGtx/ex76
http://paperpile.com/b/nQfGtx/ex76
http://paperpile.com/b/nQfGtx/0Avc
http://paperpile.com/b/nQfGtx/0Avc
http://paperpile.com/b/nQfGtx/0Avc
http://dx.doi.org/10.1101/2020.01.09.900902
http://paperpile.com/b/nQfGtx/xQLc
http://paperpile.com/b/nQfGtx/xQLc
http://paperpile.com/b/nQfGtx/xLeo
http://paperpile.com/b/nQfGtx/xLeo
http://paperpile.com/b/nQfGtx/A050
http://paperpile.com/b/nQfGtx/A050
http://paperpile.com/b/nQfGtx/TPiQ
http://paperpile.com/b/nQfGtx/TPiQ
http://paperpile.com/b/nQfGtx/6ILV
http://paperpile.com/b/nQfGtx/6ILV
http://paperpile.com/b/nQfGtx/6ILV
http://paperpile.com/b/nQfGtx/jEhk


      

206 

 

candidate cloning of a QTL in dairy cattle: identification of a missense mutation in 

the bovine DGAT1 gene with major effect on milk yield and composition. Genome 

Res. 2002;12: 222–231. 

40.  Grisart B, Farnir F, Karim L, Cambisano N, Kim J-J, Kvasz A, et al. Genetic and 

functional confirmation of the causality of the DGAT1 K232A quantitative trait 

nucleotide in affecting milk yield and composition. Proc Natl Acad Sci U S A. 

2004;101: 2398–2403. 

41.  Kambadur R, Sharma M, Smith TP, Bass JJ. Mutations in myostatin (GDF8) in 

double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997;7: 910–

916. 

42.  McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin 

gene. Proc Natl Acad Sci U S A. 1997;94: 12457–12461. 

43.  Wiedemar N, Tetens J, Jagannathan V, Menoud A, Neuenschwander S, Bruggmann 

R, et al. Independent polled mutations leading to complex gene expression 

differences in cattle. PLoS One. 2014;9: e93435. 

44.  Ron M, Weller JI. From QTL to QTN identification in livestock--winning by points 

rather than knock-out: a review. Anim Genet. 2007;38: 429–439. 

45.  Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Large-effect pleiotropic or closely 

linked QTL segregate within and across ten US cattle breeds. BMC Genomics. 

2014;15: 442. 

46.  Hoff JL, Decker JE, Schnabel RD, Taylor JF. Candidate lethal haplotypes and causal 

mutations in Angus cattle. BMC Genomics. 2017;18: 799. 

47.  Wiggans GR, Cooper TA, VanRaden PM, Van Tassell CP, Bickhart DM, 

Sonstegard TS. Increasing the number of single nucleotide polymorphisms used in 

genomic evaluation of dairy cattle. J Dairy Sci. 2016;99: 4504–4511. 

48.  Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkel 

FS, et al. Meta-analysis of genome-wide association studies for cattle stature 

identifies common genes that regulate body size in mammals. Nat Genet. 2018;50: 

362–367. 

49.  Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS. Genomic Selection in Dairy 

Cattle: The USDA Experience. Annu Rev Anim Biosci. 2017;5: 309–327. 

50.  Decker JE. Agricultural Genomics: Commercial Applications Bring Increased Basic 

Research Power. PLoS Genet. 2015;11: e1005621. 

51.  Pausch H, MacLeod IM, Fries R, Emmerling R, Bowman PJ, Daetwyler HD, et al. 

Evaluation of the accuracy of imputed sequence variant genotypes and their utility 

for causal variant detection in cattle. Genet Sel Evol. 2017;49: 24. 

http://paperpile.com/b/nQfGtx/jEhk
http://paperpile.com/b/nQfGtx/jEhk
http://paperpile.com/b/nQfGtx/jEhk
http://paperpile.com/b/nQfGtx/nxOX
http://paperpile.com/b/nQfGtx/nxOX
http://paperpile.com/b/nQfGtx/nxOX
http://paperpile.com/b/nQfGtx/nxOX
http://paperpile.com/b/nQfGtx/Iq1J
http://paperpile.com/b/nQfGtx/Iq1J
http://paperpile.com/b/nQfGtx/Iq1J
http://paperpile.com/b/nQfGtx/c1uT
http://paperpile.com/b/nQfGtx/c1uT
http://paperpile.com/b/nQfGtx/2TzJ
http://paperpile.com/b/nQfGtx/2TzJ
http://paperpile.com/b/nQfGtx/2TzJ
http://paperpile.com/b/nQfGtx/j4d1
http://paperpile.com/b/nQfGtx/j4d1
http://paperpile.com/b/nQfGtx/EUfv
http://paperpile.com/b/nQfGtx/EUfv
http://paperpile.com/b/nQfGtx/EUfv
http://paperpile.com/b/nQfGtx/AY2s
http://paperpile.com/b/nQfGtx/AY2s
http://paperpile.com/b/nQfGtx/NAau
http://paperpile.com/b/nQfGtx/NAau
http://paperpile.com/b/nQfGtx/NAau
http://paperpile.com/b/nQfGtx/crWC
http://paperpile.com/b/nQfGtx/crWC
http://paperpile.com/b/nQfGtx/crWC
http://paperpile.com/b/nQfGtx/crWC
http://paperpile.com/b/nQfGtx/iOx4
http://paperpile.com/b/nQfGtx/iOx4
http://paperpile.com/b/nQfGtx/4ZSJ
http://paperpile.com/b/nQfGtx/4ZSJ
http://paperpile.com/b/nQfGtx/BMI5
http://paperpile.com/b/nQfGtx/BMI5
http://paperpile.com/b/nQfGtx/BMI5


      

207 

 

52.  Frischknecht M, Pausch H, Bapst B, Signer-Hasler H, Flury C, Garrick D, et al. 

Highly accurate sequence imputation enables precise QTL mapping in Brown Swiss 

cattle. BMC Genomics. 2017;18: 999. 

53.  Seabury CM, Oldeschulte DL, Saatchi M, Beever JE, Decker JE, Halley YA, et al. 

Genome-wide association study for feed efficiency and growth traits in U.S. beef 

cattle. BMC Genomics. 2017;18: 386. 

54.  Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM, et al. 

Improving accuracy of genomic predictions within and between dairy cattle breeds 

with imputed high-density single nucleotide polymorphism panels. J Dairy Sci. 

2012;95: 4114–4129. 

55.  Fang L, Sahana G, Ma P, Su G, Yu Y, Zhang S, et al. Use of biological priors 

enhances understanding of genetic architecture and genomic prediction of complex 

traits within and between dairy cattle breeds. BMC Genomics. 2017;18: 604. 

56.  Zhang Q, Sahana G, Su G, Guldbrandtsen B, Lund MS, Calus MPL. Impact of rare 

and low-frequency sequence variants on reliability of genomic prediction in dairy 

cattle. Genet Sel Evol. 2018;50: 62. 

57.  Whalen A, Gorjanc G, Ros-Freixedes R, Hickey JM. Assessment of the performance 

of hidden Markov models for imputation in animal breeding. Genet Sel Evol. 

2018;50: 44. 

58.  van Binsbergen R, Bink MC, Calus MP, van Eeuwijk FA, Hayes BJ, Hulsegge I, et 

al. Accuracy of imputation to whole-genome sequence data in Holstein Friesian 

cattle. Genet Sel Evol. 2014;46: 41. 

59.  Kreiner-Møller E, Medina-Gomez C, Uitterlinden AG, Rivadeneira F, Estrada K. 

Improving accuracy of rare variant imputation with a two-step imputation approach. 

Eur J Hum Genet. 2015;23: 395–400. 

60.  Pausch H, Emmerling R, Schwarzenbacher H, Fries R. A multi-trait meta-analysis 

with imputed sequence variants reveals twelve QTL for mammary gland 

morphology in Fleckvieh cattle. Genet Sel Evol. 2016;48: 14. 

61.  Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 

PLINK: a tool set for whole-genome association and population-based linkage 

analyses. Am J Hum Genet. 2007;81: 559–575. 

62.  Rosen BD, Bickhart DM, Schnabel RD, Koren S, Elsik CG, Tseng E, et al. De novo 

assembly of the cattle reference genome with single-molecule sequencing. 

Gigascience. 2020;9. doi:10.1093/gigascience/giaa021 

63.  Crum TE, Schnabel RD, Decker JE, Regitano LCA, Taylor JF. CRUMBLER: A tool 

for the Prediction of Ancestry in Cattle. bioRxiv. 2018. p. 396341. 

doi:10.1101/396341 

http://paperpile.com/b/nQfGtx/eNp8
http://paperpile.com/b/nQfGtx/eNp8
http://paperpile.com/b/nQfGtx/eNp8
http://paperpile.com/b/nQfGtx/NmrO
http://paperpile.com/b/nQfGtx/NmrO
http://paperpile.com/b/nQfGtx/NmrO
http://paperpile.com/b/nQfGtx/eKun
http://paperpile.com/b/nQfGtx/eKun
http://paperpile.com/b/nQfGtx/eKun
http://paperpile.com/b/nQfGtx/eKun
http://paperpile.com/b/nQfGtx/r9g7
http://paperpile.com/b/nQfGtx/r9g7
http://paperpile.com/b/nQfGtx/r9g7
http://paperpile.com/b/nQfGtx/7Uaa
http://paperpile.com/b/nQfGtx/7Uaa
http://paperpile.com/b/nQfGtx/7Uaa
http://paperpile.com/b/nQfGtx/FAVS
http://paperpile.com/b/nQfGtx/FAVS
http://paperpile.com/b/nQfGtx/FAVS
http://paperpile.com/b/nQfGtx/E0W1
http://paperpile.com/b/nQfGtx/E0W1
http://paperpile.com/b/nQfGtx/E0W1
http://paperpile.com/b/nQfGtx/DmGJ
http://paperpile.com/b/nQfGtx/DmGJ
http://paperpile.com/b/nQfGtx/DmGJ
http://paperpile.com/b/nQfGtx/5ABg
http://paperpile.com/b/nQfGtx/5ABg
http://paperpile.com/b/nQfGtx/5ABg
http://paperpile.com/b/nQfGtx/O1Ak
http://paperpile.com/b/nQfGtx/O1Ak
http://paperpile.com/b/nQfGtx/O1Ak
http://paperpile.com/b/nQfGtx/lWto
http://paperpile.com/b/nQfGtx/lWto
http://paperpile.com/b/nQfGtx/lWto
http://dx.doi.org/10.1093/gigascience/giaa021
http://paperpile.com/b/nQfGtx/vgDO
http://paperpile.com/b/nQfGtx/vgDO
http://paperpile.com/b/nQfGtx/vgDO
http://dx.doi.org/10.1101/396341


      

208 

 

64.  Loh P-R, Danecek P, Palamara PF, Fuchsberger C, A Reshef Y, K Finucane H, et al. 

Reference-based phasing using the Haplotype Reference Consortium panel. Nat 

Genet. 2016;48: 1443–1448. 

65.  Li H. A statistical framework for SNP calling, mutation discovery, association 

mapping and population genetical parameter estimation from sequencing data. 

Bioinformatics. 2011;27: 2987–2993. 

66.  Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation 

genotype imputation service and methods. Nat Genet. 2016;48: 1284–1287. 

67.  Lin P, Hartz SM, Zhang Z, Saccone SF, Wang J, Tischfield JA, et al. A new statistic 

to evaluate imputation reliability. PLoS One. 2010;5: e9697. 

68.  Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association 

studies. Nat Genet. 2012;44: 821–824. 

69.  Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum RF, 

et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and 

complex traits in cattle. Nat Genet. 2014;46: 858–865. 

70.  Ramnarine S, Zhang J, Chen L-S, Culverhouse R, Duan W, Hancock DB, et al. 

When Does Choice of Accuracy Measure Alter Imputation Accuracy Assessments? 

PLoS One. 2015;10: e0137601. 

71.  Hancock DB, Levy JL, Gaddis NC, Bierut LJ, Saccone NL, Page GP, et al. 

Assessment of genotype imputation performance using 1000 Genomes in African 

American studies. PLoS One. 2012;7: e50610. 

72.  Hartl DL, Clark AG, Clark AG. Principles of population genetics. Sinauer associates 

Sunderland; 1997. 

73.  Druet T, Schrooten C, de Roos APW. Imputation of genotypes from different single 

nucleotide polymorphism panels in dairy cattle. J Dairy Sci. 2010;93: 5443–5454. 

74.  VanRaden PM, Null DJ, Sargolzaei M, Wiggans GR, Tooker ME, Cole JB, et al. 

Genomic imputation and evaluation using high-density Holstein genotypes. J Dairy 

Sci. 2013;96: 668–678. 

75.  Brøndum RF, Guldbrandtsen B, Sahana G, Lund MS, Su G. Strategies for 

imputation to whole genome sequence using a single or multi-breed reference 

population in cattle. BMC Genomics. 2014;15: 728. 

76.  Bovine HapMap Consortium, Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, 

Eversole KA, et al. Genome-wide survey of SNP variation uncovers the genetic 

structure of cattle breeds. Science. 2009;324: 528–532. 

77.  Gutiérrez-Gil B, Arranz JJ, Wiener P. An interpretive review of selective sweep 

http://paperpile.com/b/nQfGtx/2tBz
http://paperpile.com/b/nQfGtx/2tBz
http://paperpile.com/b/nQfGtx/2tBz
http://paperpile.com/b/nQfGtx/O1oS
http://paperpile.com/b/nQfGtx/O1oS
http://paperpile.com/b/nQfGtx/O1oS
http://paperpile.com/b/nQfGtx/gsZB
http://paperpile.com/b/nQfGtx/gsZB
http://paperpile.com/b/nQfGtx/y1O8
http://paperpile.com/b/nQfGtx/y1O8
http://paperpile.com/b/nQfGtx/53Ex
http://paperpile.com/b/nQfGtx/53Ex
http://paperpile.com/b/nQfGtx/OLLF
http://paperpile.com/b/nQfGtx/OLLF
http://paperpile.com/b/nQfGtx/OLLF
http://paperpile.com/b/nQfGtx/f3Ij
http://paperpile.com/b/nQfGtx/f3Ij
http://paperpile.com/b/nQfGtx/f3Ij
http://paperpile.com/b/nQfGtx/8wdt
http://paperpile.com/b/nQfGtx/8wdt
http://paperpile.com/b/nQfGtx/8wdt
http://paperpile.com/b/nQfGtx/qd47
http://paperpile.com/b/nQfGtx/qd47
http://paperpile.com/b/nQfGtx/UiP7
http://paperpile.com/b/nQfGtx/UiP7
http://paperpile.com/b/nQfGtx/a1Gu
http://paperpile.com/b/nQfGtx/a1Gu
http://paperpile.com/b/nQfGtx/a1Gu
http://paperpile.com/b/nQfGtx/wb02
http://paperpile.com/b/nQfGtx/wb02
http://paperpile.com/b/nQfGtx/wb02
http://paperpile.com/b/nQfGtx/167o
http://paperpile.com/b/nQfGtx/167o
http://paperpile.com/b/nQfGtx/167o
http://paperpile.com/b/nQfGtx/bXQ68


      

209 

 

studies in Bos taurus cattle populations: identification of unique and shared selection 

signals across breeds. Front Genet. 2015;6: 167. 

78.  Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, McVean G, et al. 

Classic selective sweeps were rare in recent human evolution. Science. 2011;331: 

920–924. 

79.  Ma Y, Ding X, Qanbari S, Weigend S, Zhang Q, Simianer H. Properties of different 

selection signature statistics and a new strategy for combining them. Heredity . 

2015;115: 426–436. 

80.  Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, et al. 

Development and characterization of a high density SNP genotyping assay for cattle. 

PLoS One. 2009;4: e5350. 

81.  Sham PC, Purcell SM. Statistical power and significance testing in large-scale 

genetic studies. Nat Rev Genet. 2014;15: 335–346. 

82.  Mészáros G, Petautschnig E, Schwarzenbacher H, Sölkner J. Genomic regions 

influencing coat color saturation and facial markings in Fleckvieh cattle. Anim 

Genet. 2015;46: 65–68. 

83.  Fontanesi L, Tazzoli M, Russo V, Beever J. Genetic heterogeneity at the bovine KIT 

gene in cattle breeds carrying different putative alleles at the spotting locus. Anim 

Genet. 2010;41: 295–303. 

84.  Kuehn LA, Thallman RM. Across-Breed EPD Tables For The Year 2016 Adjusted 

To Breed Differences For Birth Year Of 2014. 2016 [cited 9 Feb 2020]. Available: 

https://digitalcommons.unl.edu/hruskareports/380/ 

85.  Weber KL, Welly BT, Van Eenennaam AL, Young AE, Porto-Neto LR, Reverter A, 

et al. Identification of Gene Networks for Residual Feed Intake in Angus Cattle 

Using Genomic Prediction and RNA-seq. PLoS One. 2016;11: e0152274. 

86.  Oliver PL, Goodstadt L, Bayes JJ, Birtle Z, Roach KC, Phadnis N, et al. Accelerated 

evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet. 

2009;5: e1000753. 

87.  Ma L, O’Connell JR, VanRaden PM, Shen B, Padhi A, Sun C, et al. Cattle Sex-

Specific Recombination and Genetic Control from a Large Pedigree Analysis. PLoS 

Genet. 2015;11: e1005387. 

88.  Guo B, Greenwood PL, Cafe LM, Zhou G, Zhang W, Dalrymple BP. Transcriptome 

analysis of cattle muscle identifies potential markers for skeletal muscle growth rate 

and major cell types. BMC Genomics. 2015;16: 177. 

89.  Rolf MM, Taylor JF, Schnabel RD, McKay SD, McClure MC, Northcutt SL, et al. 

Genome-wide association analysis for feed efficiency in Angus cattle. Anim Genet. 

http://paperpile.com/b/nQfGtx/bXQ68
http://paperpile.com/b/nQfGtx/bXQ68
http://paperpile.com/b/nQfGtx/8hzLq
http://paperpile.com/b/nQfGtx/8hzLq
http://paperpile.com/b/nQfGtx/8hzLq
http://paperpile.com/b/nQfGtx/RZybr
http://paperpile.com/b/nQfGtx/RZybr
http://paperpile.com/b/nQfGtx/RZybr
http://paperpile.com/b/nQfGtx/PPHO
http://paperpile.com/b/nQfGtx/PPHO
http://paperpile.com/b/nQfGtx/PPHO
http://paperpile.com/b/nQfGtx/p29cu
http://paperpile.com/b/nQfGtx/p29cu
http://paperpile.com/b/nQfGtx/Yrxw8
http://paperpile.com/b/nQfGtx/Yrxw8
http://paperpile.com/b/nQfGtx/Yrxw8
http://paperpile.com/b/nQfGtx/vYzcs
http://paperpile.com/b/nQfGtx/vYzcs
http://paperpile.com/b/nQfGtx/vYzcs
http://paperpile.com/b/nQfGtx/6QHsb
http://paperpile.com/b/nQfGtx/6QHsb
https://digitalcommons.unl.edu/hruskareports/380/
http://paperpile.com/b/nQfGtx/j8KUL
http://paperpile.com/b/nQfGtx/j8KUL
http://paperpile.com/b/nQfGtx/j8KUL
http://paperpile.com/b/nQfGtx/OQmjz
http://paperpile.com/b/nQfGtx/OQmjz
http://paperpile.com/b/nQfGtx/OQmjz
http://paperpile.com/b/nQfGtx/Gsr7H
http://paperpile.com/b/nQfGtx/Gsr7H
http://paperpile.com/b/nQfGtx/Gsr7H
http://paperpile.com/b/nQfGtx/bQsrg
http://paperpile.com/b/nQfGtx/bQsrg
http://paperpile.com/b/nQfGtx/bQsrg
http://paperpile.com/b/nQfGtx/xocku
http://paperpile.com/b/nQfGtx/xocku


      

210 

 

2012;43: 367–374. 

90.  Breeds - Red Angus. In: The Cattle Site [Internet]. [cited 28 Feb 2020]. Available: 

https://www.thecattlesite.com/breeds/beef/99/red-angus/ 

91.  Gareis NC, Huber E, Hein GJ, Rodríguez FM, Salvetti NR, Angeli E, et al. Impaired 

insulin signaling pathways affect ovarian steroidogenesis in cows with COD. Anim 

Reprod Sci. 2018;192: 298–312. 

92.  Davis SL, Hossner KL, Ohlson DL. Endocrine Regulation of Growth in Ruminants. 

In: Roche JF, O’Callaghan D, editors. Manipulation of Growth in Farm Animals: A 

Seminar in the CEC Programme of Coordination of Research on Beef Production, 

held in Brussels December 13–14, 1982. Dordrecht: Springer Netherlands; 1984. pp. 

151–178. 

93.  Hill WG. Applications of population genetics to animal breeding, from wright, 

fisher and lush to genomic prediction. Genetics. 2014;196: 1–16. 

94.  Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations 

to identify loci underlying local adaptation. Genetics. 2010;185: 1411–1423. 

95.  Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P. Genomic 

signature of adaptation to climate in Medicago truncatula. Genetics. 2014;196: 

1263–1275. 

96.  Li J, Chen G-B, Rasheed A, Li D, Sonder K, Zavala Espinosa C, et al. Identifying 

loci with breeding potential across temperate and tropical adaptation via 

EigenGWAS and EnvGWAS. Mol Ecol. 2019;28: 3544–3560. 

97.  Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, et al. 

Genome-environment associations in sorghum landraces predict adaptive traits. Sci 

Adv. 2015;1: e1400218. 

98.  Sathiaraj D, Huang X, Chen J. Predicting climate types for the Continental United 

States using unsupervised clustering techniques. Environmetrics. 2019. p. e2524. 

doi:10.1002/env.2524 

99.  Wellcome Trust Case Control Consortium. Genome-wide association study of 

14,000 cases of seven common diseases and 3,000 shared controls. Nature. 

2007;447: 661–678. 

100.  Sansregret L, Nepveu A. The multiple roles of CUX1: insights from mouse 

models and cell-based assays. Gene. 2008;412: 84–94. 

101.  Bertolini F, Servin B, Talenti A, Rochat E, Kim ES, Oget C, et al. Signatures of 

selection and environmental adaptation across the goat genome post-domestication. 

Genet Sel Evol. 2018;50: 57. 

http://paperpile.com/b/nQfGtx/xocku
http://paperpile.com/b/nQfGtx/0spuw
http://paperpile.com/b/nQfGtx/0spuw
https://www.thecattlesite.com/breeds/beef/99/red-angus/
http://paperpile.com/b/nQfGtx/Y1Dfw
http://paperpile.com/b/nQfGtx/Y1Dfw
http://paperpile.com/b/nQfGtx/Y1Dfw
http://paperpile.com/b/nQfGtx/NKDH8
http://paperpile.com/b/nQfGtx/NKDH8
http://paperpile.com/b/nQfGtx/NKDH8
http://paperpile.com/b/nQfGtx/NKDH8
http://paperpile.com/b/nQfGtx/NKDH8
http://paperpile.com/b/nQfGtx/xVJor
http://paperpile.com/b/nQfGtx/xVJor
http://paperpile.com/b/nQfGtx/s5ImN
http://paperpile.com/b/nQfGtx/s5ImN
http://paperpile.com/b/nQfGtx/6HLLo
http://paperpile.com/b/nQfGtx/6HLLo
http://paperpile.com/b/nQfGtx/6HLLo
http://paperpile.com/b/nQfGtx/JPBst
http://paperpile.com/b/nQfGtx/JPBst
http://paperpile.com/b/nQfGtx/JPBst
http://paperpile.com/b/nQfGtx/vnDax
http://paperpile.com/b/nQfGtx/vnDax
http://paperpile.com/b/nQfGtx/vnDax
http://paperpile.com/b/nQfGtx/HX3UX
http://paperpile.com/b/nQfGtx/HX3UX
http://paperpile.com/b/nQfGtx/HX3UX
http://dx.doi.org/10.1002/env.2524
http://paperpile.com/b/nQfGtx/qckUO
http://paperpile.com/b/nQfGtx/qckUO
http://paperpile.com/b/nQfGtx/qckUO
http://paperpile.com/b/nQfGtx/NFQBO
http://paperpile.com/b/nQfGtx/NFQBO
http://paperpile.com/b/nQfGtx/wSsUZ
http://paperpile.com/b/nQfGtx/wSsUZ
http://paperpile.com/b/nQfGtx/wSsUZ


      

211 

 

102.  Aiken GE, Klotz JL, Looper ML, Tabler SF, Schrick FN. Disrupted hair follicle 

activity in cattle grazing endophyte-infected tall fescue in the summer insulates core 

body temperatures1. The Professional Animal Scientist. 2011;27: 336–343. 

103.  León CD, De León C, Manrique C, Martínez R, Rocha JF. Research Article 

Genomic association study for adaptability traits in four Colombian cattle breeds. 

Genetics and Molecular Research. 2019. doi:10.4238/gmr18373 

104.  Guo J, Tao H, Li P, Li L, Zhong T, Wang L, et al. Whole-genome sequencing 

reveals selection signatures associated with important traits in six goat breeds. Sci 

Rep. 2018;8: 10405. 

105.  Gurgul A, Jasielczuk I, Ropka-Molik K, Semik-Gurgul E, Pawlina-Tyszko K, 

Szmatoła T, et al. A genome-wide detection of selection signatures in conserved and 

commercial pig breeds maintained in Poland. BMC Genet. 2018;19: 95. 

106.  Medugorac I, Graf A, Grohs C, Rothammer S, Zagdsuren Y, Gladyr E, et al. 

Whole-genome analysis of introgressive hybridization and characterization of the 

bovine legacy of Mongolian yaks. Nat Genet. 2017;49: 470–475. 

107.  Guo D-F, Cui H, Zhang Q, Morgan DA, Thedens DR, Nishimura D, et al. The 

BBSome Controls Energy Homeostasis by Mediating the Transport of the Leptin 

Receptor to the Plasma Membrane. PLoS Genet. 2016;12: e1005890. 

108.  Davis RE, Swiderski RE, Rahmouni K, Nishimura DY, Mullins RF, Agassandian 

K, et al. A knockin mouse model of the Bardet–Biedl syndrome 1 M390R mutation 

has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc Natl Acad Sci U S 

A. 2007;104: 19422–19427. 

109.  Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, et al. Adaptation and possible 

ancient interspecies introgression in pigs identified by whole-genome sequencing. 

Nat Genet. 2015;47: 217–225. 

110.  Morrison SF. Central control of body temperature. F1000Res. 2016;5. 

doi:10.12688/f1000research.7958.1 

111.  Garner JB, Douglas ML, Williams SRO, Wales WJ, Marett LC, Nguyen TTT, et 

al. Genomic Selection Improves Heat Tolerance in Dairy Cattle. Sci Rep. 2016;6: 

34114. 

112.  Davies VJ, Hollins AJ, Piechota MJ, Yip W, Davies JR, White KE, et al. Opa1 

deficiency in a mouse model of autosomal dominant optic atrophy impairs 

mitochondrial morphology, optic nerve structure and visual function. Hum Mol 

Genet. 2007;16: 1307–1318. 

113.  Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose K, et 

al. OPA1-dependent cristae modulation is essential for cellular adaptation to 

metabolic demand. EMBO J. 2014;33: 2676–2691. 

http://paperpile.com/b/nQfGtx/GQRxc
http://paperpile.com/b/nQfGtx/GQRxc
http://paperpile.com/b/nQfGtx/GQRxc
http://paperpile.com/b/nQfGtx/WotGK
http://paperpile.com/b/nQfGtx/WotGK
http://paperpile.com/b/nQfGtx/WotGK
http://dx.doi.org/10.4238/gmr18373
http://paperpile.com/b/nQfGtx/w9VqU
http://paperpile.com/b/nQfGtx/w9VqU
http://paperpile.com/b/nQfGtx/w9VqU
http://paperpile.com/b/nQfGtx/qZy2h
http://paperpile.com/b/nQfGtx/qZy2h
http://paperpile.com/b/nQfGtx/qZy2h
http://paperpile.com/b/nQfGtx/h3NPG
http://paperpile.com/b/nQfGtx/h3NPG
http://paperpile.com/b/nQfGtx/h3NPG
http://paperpile.com/b/nQfGtx/tz6dL
http://paperpile.com/b/nQfGtx/tz6dL
http://paperpile.com/b/nQfGtx/tz6dL
http://paperpile.com/b/nQfGtx/0eOgG
http://paperpile.com/b/nQfGtx/0eOgG
http://paperpile.com/b/nQfGtx/0eOgG
http://paperpile.com/b/nQfGtx/0eOgG
http://paperpile.com/b/nQfGtx/d0qAW
http://paperpile.com/b/nQfGtx/d0qAW
http://paperpile.com/b/nQfGtx/d0qAW
http://paperpile.com/b/nQfGtx/xEXAC
http://paperpile.com/b/nQfGtx/xEXAC
http://dx.doi.org/10.12688/f1000research.7958.1
http://paperpile.com/b/nQfGtx/0G04J
http://paperpile.com/b/nQfGtx/0G04J
http://paperpile.com/b/nQfGtx/0G04J
http://paperpile.com/b/nQfGtx/bQ3dF
http://paperpile.com/b/nQfGtx/bQ3dF
http://paperpile.com/b/nQfGtx/bQ3dF
http://paperpile.com/b/nQfGtx/bQ3dF
http://paperpile.com/b/nQfGtx/tFXjj
http://paperpile.com/b/nQfGtx/tFXjj
http://paperpile.com/b/nQfGtx/tFXjj


      

212 

 

114.  Gopalakrishnan K, Kumarasamy S, Abdul-Majeed S, Kalinoski AL, Morgan EE, 

Gohara AF, et al. Targeted disruption of Adamts16 gene in a rat genetic model of 

hypertension. Proc Natl Acad Sci U S A. 2012;109: 20555–20559. 

115.  Dong K, Yao N, Pu Y, He X, Zhao Q, Luan Y, et al. Genomic scan reveals loci 

under altitude adaptation in Tibetan and Dahe pigs. PLoS One. 2014;9: e110520. 

116.  Fraser HB. Gene expression drives local adaptation in humans. Genome Res. 

2013;23: 1089–1096. 

117.  Castric V, Bechsgaard J, Schierup MH, Vekemans X. Repeated adaptive 

introgression at a gene under multiallelic balancing selection. PLoS Genet. 2008;4: 

e1000168. 

118.  Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for 

genome-wide association studies. Nat Methods. 2014;11: 407–409. 

119.  R Core Team R, Others. R: A language and environment for statistical computing. 

R foundation for statistical computing Vienna, Austria; 2013. 

120.  Wickham H. ggplot2. Wiley Interdisciplinary Reviews: Computational. 2011. 

Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.147 

121.  Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide 

complex trait analysis. Am J Hum Genet. 2011;88: 76–82. 

122.  PRISM Climate Group. PRISM 30-year Normal Climate Data. Available: 

http://prism.oregonstate.edu 

123.  Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide 

association scans. Genet Epidemiol. 2008;32: 227–234. 

124.  Han B, Eskin E. Random-effects model aimed at discovering associations in 

meta-analysis of genome-wide association studies. Am J Hum Genet. 2011;88: 586–

598. 

125.  Han B, Eskin E. Interpreting meta-analyses of genome-wide association studies. 

PLoS Genet. 2012;8: e1002555. 

126.  Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. 

ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and 

pathway annotation networks. Bioinformatics. 2009;25: 1091–1093. 

127.  Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 

Cytoscape: a software environment for integrated models of biomolecular 

interaction networks. Genome Res. 2003;13: 2498–2504. 

128.  Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et 

http://paperpile.com/b/nQfGtx/I5MfH
http://paperpile.com/b/nQfGtx/I5MfH
http://paperpile.com/b/nQfGtx/I5MfH
http://paperpile.com/b/nQfGtx/p72ym
http://paperpile.com/b/nQfGtx/p72ym
http://paperpile.com/b/nQfGtx/xlJFb
http://paperpile.com/b/nQfGtx/xlJFb
http://paperpile.com/b/nQfGtx/MG9S6
http://paperpile.com/b/nQfGtx/MG9S6
http://paperpile.com/b/nQfGtx/MG9S6
http://paperpile.com/b/nQfGtx/Zred4
http://paperpile.com/b/nQfGtx/Zred4
http://paperpile.com/b/nQfGtx/6elUM
http://paperpile.com/b/nQfGtx/6elUM
http://paperpile.com/b/nQfGtx/7MkCN
http://paperpile.com/b/nQfGtx/7MkCN
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.147
http://paperpile.com/b/nQfGtx/XQunm
http://paperpile.com/b/nQfGtx/XQunm
http://paperpile.com/b/nQfGtx/xs2pf
http://paperpile.com/b/nQfGtx/xs2pf
http://prism.oregonstate.edu/
http://paperpile.com/b/nQfGtx/xhrpT
http://paperpile.com/b/nQfGtx/xhrpT
http://paperpile.com/b/nQfGtx/HQXWT
http://paperpile.com/b/nQfGtx/HQXWT
http://paperpile.com/b/nQfGtx/HQXWT
http://paperpile.com/b/nQfGtx/ZyGD0
http://paperpile.com/b/nQfGtx/ZyGD0
http://paperpile.com/b/nQfGtx/NlD3A
http://paperpile.com/b/nQfGtx/NlD3A
http://paperpile.com/b/nQfGtx/NlD3A
http://paperpile.com/b/nQfGtx/8axUe
http://paperpile.com/b/nQfGtx/8axUe
http://paperpile.com/b/nQfGtx/8axUe
http://paperpile.com/b/nQfGtx/ecfqO


      

213 

 

al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347: 

1260419. 

129.  Mouse ENCODE Consortium, Stamatoyannopoulos JA, Snyder M, Hardison R, 

Ren B, Gingeras T, et al. An encyclopedia of mouse DNA elements (Mouse 

ENCODE). Genome Biol. 2012;13: 418. 

130.  Jain A, Tuteja G. TissueEnrich: Tissue-specific gene enrichment analysis. 

Bioinformatics. 2019;35: 1966–1967. 

131.  The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: 

Multitissue gene regulation in humans. Science. 2015;348: 648–660. 

132.  Xu X, Wells AB, O’Brien DR, Nehorai A, Dougherty JD. Cell type-specific 

expression analysis to identify putative cellular mechanisms for neurogenetic 

disorders. J Neurosci. 2014;34: 1420–1431. 

133.  Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: A New 

Comparative Genomic Analysis of Human and Caenorhabditis elegans Genes. 

Genetics. 2018;210: 445–461. 

134.  Angeles-Albores D, N Lee RY, Chan J, Sternberg PW. Tissue enrichment 

analysis for C. elegans genomics. BMC Bioinformatics. 2016;17: 366. 

135.  Angeles-Albores D, Lee RYN, Chan J, Sternberg PW. Two new functions in the 

WormBase Enrichment Suite. microPublication Biology: https://doi. org/10.17912. 

W17925Q17912N; 2018. 

136.  Noyes H, Brass A, Obara I, Anderson S, Archibald AL, Bradley DG, et al. 

Genetic and expression analysis of cattle identifies candidate genes in pathways 

responding to Trypanosoma congolense infection. Proc Natl Acad Sci U S A. 

2011;108: 9304–9309. 

137.  Smetko A, Soudre A, Silbermayr K, Müller S, Brem G, Hanotte O, et al. 

Trypanosomosis: potential driver of selection in African cattle. Front Genet. 2015;6: 

137. 

138.  Álvarez I, Pérez-Pardal L, Traoré A, Fernández I, Goyache F. African Cattle do 

not Carry Unique Mutations on the Exon 9 of the ARHGAP15 Gene. Anim 

Biotechnol. 2016;27: 9–12. 

139.  Serão NV, González-Peña D, Beever JE, Faulkner DB, Southey BR, Rodriguez-

Zas SL. Single nucleotide polymorphisms and haplotypes associated with feed 

efficiency in beef cattle. BMC Genet. 2013;14: 94. 

140.  Müller M-P, -P. Müller M, Rothammer S, Seichter D, Russ I, Hinrichs D, et al. 

Genome-wide mapping of 10 calving and fertility traits in Holstein dairy cattle with 

special regard to chromosome 18. Journal of Dairy Science. 2017. pp. 1987–2006. 

http://paperpile.com/b/nQfGtx/ecfqO
http://paperpile.com/b/nQfGtx/ecfqO
http://paperpile.com/b/nQfGtx/fEwBS
http://paperpile.com/b/nQfGtx/fEwBS
http://paperpile.com/b/nQfGtx/fEwBS
http://paperpile.com/b/nQfGtx/DEqvM
http://paperpile.com/b/nQfGtx/DEqvM
http://paperpile.com/b/nQfGtx/QMMLW
http://paperpile.com/b/nQfGtx/QMMLW
http://paperpile.com/b/nQfGtx/9mx3S
http://paperpile.com/b/nQfGtx/9mx3S
http://paperpile.com/b/nQfGtx/9mx3S
http://paperpile.com/b/nQfGtx/oXoeY
http://paperpile.com/b/nQfGtx/oXoeY
http://paperpile.com/b/nQfGtx/oXoeY
http://paperpile.com/b/nQfGtx/Qqebn
http://paperpile.com/b/nQfGtx/Qqebn
http://paperpile.com/b/nQfGtx/lOI7n
http://paperpile.com/b/nQfGtx/lOI7n
http://paperpile.com/b/nQfGtx/lOI7n
http://paperpile.com/b/nQfGtx/hF49p
http://paperpile.com/b/nQfGtx/hF49p
http://paperpile.com/b/nQfGtx/hF49p
http://paperpile.com/b/nQfGtx/hF49p
http://paperpile.com/b/nQfGtx/fs7iu
http://paperpile.com/b/nQfGtx/fs7iu
http://paperpile.com/b/nQfGtx/fs7iu
http://paperpile.com/b/nQfGtx/4jK8t
http://paperpile.com/b/nQfGtx/4jK8t
http://paperpile.com/b/nQfGtx/4jK8t
http://paperpile.com/b/nQfGtx/yVZmB
http://paperpile.com/b/nQfGtx/yVZmB
http://paperpile.com/b/nQfGtx/yVZmB
http://paperpile.com/b/nQfGtx/FYvHU
http://paperpile.com/b/nQfGtx/FYvHU
http://paperpile.com/b/nQfGtx/FYvHU


      

214 

 

doi:10.3168/jds.2016-11506 

141.  Seo J, Osorio JS, Loor JJ. Purinergic signaling gene network expression in bovine 

polymorphonuclear neutrophils during the peripartal period. J Dairy Sci. 2013;96: 

7675–7683. 

142.  Chelh I, Picard B, Hocquette J-F, Cassar-Malek I. Myostatin inactivation induces 

a similar muscle molecular signature in double-muscled cattle as in mice. Animal. 

2011;5: 278–286. 

143.  Seo J, Osorio JS, Schmitt E, Corrêa MN, Bertoni G, Trevisi E, et al. Hepatic 

purinergic signaling gene network expression and its relationship with inflammation 

and oxidative stress biomarkers in blood from peripartal dairy cattle. J Dairy Sci. 

2014;97: 861–873. 

144.  Espigolan R, Baldi F, Boligon AA, Souza FRP, Fernandes Júnior GA, Gordo 

DGM, et al. Associations between single nucleotide polymorphisms and carcass 

traits in Nellore cattle using high-density panels. Genet Mol Res. 2015;14: 11133–

11144. 

145.  Derks MFL, Gjuvsland AB, Bosse M, Lopes MS, van Son M, Harlizius B, et al. 

Loss of function mutations in essential genes cause embryonic lethality in pigs. 

PLoS Genet. 2019;15: e1008055. 

146.  Meade KG, Gormley E, O’Farrelly C, Park SD, Costello E, Keane J, et al. 

Antigen stimulation of peripheral blood mononuclear cells from Mycobacterium 

bovis infected cattle yields evidence for a novel gene expression program. BMC 

Genomics. 2008;9: 447. 

147.  Cassar-Malek I, Boby C, Picard B, Reverter A, Hudson NJ. Molecular regulation 

of high muscle mass in developing Blonde d’Aquitaine cattle foetuses. Biol Open. 

2017;6: 1483–1492. 

148.  Höglund JK, Guldbrandtsen B, Lund MS, Sahana G. Analyzes of genome-wide 

association follow-up study for calving traits in dairy cattle. BMC Genet. 2012;13: 

71. 

149.  Chen Y, Gondro C, Quinn K, Herd RM, Parnell PF, Vanselow B. Global gene 

expression profiling reveals genes expressed differentially in cattle with high and 

low residual feed intake. Anim Genet. 2011;42: 475–490. 

150.  Marete AG, Guldbrandtsen B, Lund MS, Fritz S, Sahana G, Boichard D. A Meta-

Analysis Including Pre-selected Sequence Variants Associated With Seven Traits in 

Three French Dairy Cattle Populations. Front Genet. 2018;9: 522. 

151.  Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. 

Genetic analysis of over 1 million people identifies 535 new loci associated with 

blood pressure traits. Nat Genet. 2018;50: 1412–1425. 

http://paperpile.com/b/nQfGtx/FYvHU
http://dx.doi.org/10.3168/jds.2016-11506
http://paperpile.com/b/nQfGtx/2VNA8
http://paperpile.com/b/nQfGtx/2VNA8
http://paperpile.com/b/nQfGtx/2VNA8
http://paperpile.com/b/nQfGtx/jTIcC
http://paperpile.com/b/nQfGtx/jTIcC
http://paperpile.com/b/nQfGtx/jTIcC
http://paperpile.com/b/nQfGtx/Vn6ao
http://paperpile.com/b/nQfGtx/Vn6ao
http://paperpile.com/b/nQfGtx/Vn6ao
http://paperpile.com/b/nQfGtx/Vn6ao
http://paperpile.com/b/nQfGtx/kkfnp
http://paperpile.com/b/nQfGtx/kkfnp
http://paperpile.com/b/nQfGtx/kkfnp
http://paperpile.com/b/nQfGtx/kkfnp
http://paperpile.com/b/nQfGtx/b8tGg
http://paperpile.com/b/nQfGtx/b8tGg
http://paperpile.com/b/nQfGtx/b8tGg
http://paperpile.com/b/nQfGtx/rsgRL
http://paperpile.com/b/nQfGtx/rsgRL
http://paperpile.com/b/nQfGtx/rsgRL
http://paperpile.com/b/nQfGtx/rsgRL
http://paperpile.com/b/nQfGtx/tnPd2
http://paperpile.com/b/nQfGtx/tnPd2
http://paperpile.com/b/nQfGtx/tnPd2
http://paperpile.com/b/nQfGtx/TQMLx
http://paperpile.com/b/nQfGtx/TQMLx
http://paperpile.com/b/nQfGtx/TQMLx
http://paperpile.com/b/nQfGtx/XA5xg
http://paperpile.com/b/nQfGtx/XA5xg
http://paperpile.com/b/nQfGtx/XA5xg
http://paperpile.com/b/nQfGtx/TNeua
http://paperpile.com/b/nQfGtx/TNeua
http://paperpile.com/b/nQfGtx/TNeua
http://paperpile.com/b/nQfGtx/IWG3n
http://paperpile.com/b/nQfGtx/IWG3n
http://paperpile.com/b/nQfGtx/IWG3n


      

215 

 

152.  Hussin J, Nadeau P, Lefebvre J-F, Labuda D. Haplotype allelic classes for 

detecting ongoing positive selection. BMC Bioinformatics. 2010;11: 65. 

153.  Wang G, Yang E, Smith KJ, Zeng Y, Ji G, Connon R, et al. Gene expression 

responses of threespine stickleback to salinity: implications for salt-sensitive 

hypertension. Front Genet. 2014;5: 312. 

154.  Barbaux S, Gascoin-Lachambre G, Buffat C, Monnier P, Mondon F, Tonanny M-

B, et al. A genome-wide approach reveals novel imprinted genes expressed in the 

human placenta. Epigenetics. 2012;7: 1079–1090. 

155.  Boitard S, Boussaha M, Capitan A, Rocha D, Servin B. Uncovering Adaptation 

from Sequence Data: Lessons from Genome Resequencing of Four Cattle Breeds. 

Genetics. 2016;203: 433–450. 

156.  Gautier M, Moazami-Goudarzi K, Levéziel H, Parinello H, Grohs C, Rialle S, et 

al. Deciphering the Wisent Demographic and Adaptive Histories from Individual 

Whole-Genome Sequences. Mol Biol Evol. 2016;33: 2801–2814. 

157.  Andrade WA, Silva AM, Alves VS, Salgado APC, Melo MB, Andrade HM, et al. 

Early endosome localization and activity of RasGEF1b, a toll-like receptor-inducible 

Ras guanine-nucleotide exchange factor. Genes Immun. 2010;11: 447–457. 

158.  Lopez M, Choin J, Sikora M, Siddle K, Harmant C, Costa HA, et al. Genomic 

Evidence for Local Adaptation of Hunter-Gatherers to the African Rainforest. Curr 

Biol. 2019;29: 2926–2935.e4. 

159.  Wang MD, Dzama K, Hefer CA, Muchadeyi FC. Genomic population structure 

and prevalence of copy number variations in South African Nguni cattle. BMC 

Genomics. 2015;16: 894. 

160.  Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di 

Rienzo A. The genetic architecture of adaptations to high altitude in Ethiopia. PLoS 

Genet. 2012;8: e1003110. 

161.  Delgado-Benito V, Rosen DB, Wang Q, Gazumyan A, Pai JA, Oliveira TY, et al. 

The Chromatin Reader ZMYND8 Regulates Igh Enhancers to Promote 

Immunoglobulin Class Switch Recombination. Mol Cell. 2018;72: 636–649.e8. 

162.  Gong F, Chiu L-Y, Cox B, Aymard F, Clouaire T, Leung JW, et al. Screen 

identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-

associated DNA damage that promotes homologous recombination. Genes Dev. 

2015;29: 197–211. 

163.  Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Sakashita M, et al. 

Genome-wide association study identifies eight new susceptibility loci for atopic 

dermatitis in the Japanese population. Nat Genet. 2012;44: 1222–1226. 

http://paperpile.com/b/nQfGtx/BgfoW
http://paperpile.com/b/nQfGtx/BgfoW
http://paperpile.com/b/nQfGtx/XWMHp
http://paperpile.com/b/nQfGtx/XWMHp
http://paperpile.com/b/nQfGtx/XWMHp
http://paperpile.com/b/nQfGtx/Vvth0
http://paperpile.com/b/nQfGtx/Vvth0
http://paperpile.com/b/nQfGtx/Vvth0
http://paperpile.com/b/nQfGtx/XKN9Z
http://paperpile.com/b/nQfGtx/XKN9Z
http://paperpile.com/b/nQfGtx/XKN9Z
http://paperpile.com/b/nQfGtx/un275
http://paperpile.com/b/nQfGtx/un275
http://paperpile.com/b/nQfGtx/un275
http://paperpile.com/b/nQfGtx/c7bFp
http://paperpile.com/b/nQfGtx/c7bFp
http://paperpile.com/b/nQfGtx/c7bFp
http://paperpile.com/b/nQfGtx/PlTis
http://paperpile.com/b/nQfGtx/PlTis
http://paperpile.com/b/nQfGtx/PlTis
http://paperpile.com/b/nQfGtx/0eofl
http://paperpile.com/b/nQfGtx/0eofl
http://paperpile.com/b/nQfGtx/0eofl
http://paperpile.com/b/nQfGtx/QO6Rf
http://paperpile.com/b/nQfGtx/QO6Rf
http://paperpile.com/b/nQfGtx/QO6Rf
http://paperpile.com/b/nQfGtx/ilfCQ
http://paperpile.com/b/nQfGtx/ilfCQ
http://paperpile.com/b/nQfGtx/ilfCQ
http://paperpile.com/b/nQfGtx/s8tHR
http://paperpile.com/b/nQfGtx/s8tHR
http://paperpile.com/b/nQfGtx/s8tHR
http://paperpile.com/b/nQfGtx/s8tHR
http://paperpile.com/b/nQfGtx/S5c7V
http://paperpile.com/b/nQfGtx/S5c7V
http://paperpile.com/b/nQfGtx/S5c7V


      

216 

 

164.  Srikanth K, Kwon A, Lee E, Chung H. Characterization of genes and pathways 

that respond to heat stress in Holstein calves through transcriptome analysis. Cell 

Stress Chaperones. 2017;22: 29–42. 

165.  Rahman MB, Kamal MM, Rijsselaere T, Vandaele L, Shamsuddin M, Van Soom 

A. Altered chromatin condensation of heat-stressed spermatozoa perturbs the 

dynamics of DNA methylation reprogramming in the paternal genome after in vitro 

fertilisation in cattle. Reprod Fertil Dev. 2014;26: 1107–1116. 

166.  Aramaki M, Kimura T, Udaka T, Kosaki R, Mitsuhashi T, Okada Y, et al. 

Embryonic expression profile of chicken CHD7, the ortholog of the causative gene 

for CHARGE syndrome. Birth Defects Res A Clin Mol Teratol. 2007;79: 50–57. 

167.  Nakajima T, Wooding S, Satta Y, Jinnai N, Goto S, Hayasaka I, et al. Evidence 

for natural selection in the HAVCR1 gene: high degree of amino-acid variability in 

the mucin domain of human HAVCR1 protein. Genes Immun. 2005;6: 398–406. 

168.  McLoughlin KE, Nalpas NC, Rue-Albrecht K, Browne JA, Magee DA, Killick 

KE, et al. RNA-seq Transcriptional Profiling of Peripheral Blood Leukocytes from 

Cattle Infected with Mycobacterium bovis. Front Immunol. 2014;5: 396. 

169.  Kim J, Williams FJ, Dreger DL, Plassais J, Davis BW, Parker HG, et al. Genetic 

selection of athletic success in sport-hunting dogs. Proc Natl Acad Sci U S A. 

2018;115: E7212–E7221. 

170.  Rodríguez A, Rusciano T, Hamilton R, Holmes L, Jordan D, Wollenberg Valero 

KC. Genomic and phenotypic signatures of climate adaptation in an Anolis lizard. 

Ecol Evol. 2017;7: 6390–6403. 

171.  Wang H, Ding K, Zhang Y, Jin L, Kullo IJ, He F. Comparative and evolutionary 

pharmacogenetics of ABCB1: complex signatures of positive selection on coding 

and regulatory regions. Pharmacogenet Genomics. 2007;17: 667–678. 

172.  Wang Z, Wang J, Tantoso E, Wang B, Tai AYP, Ooi LLPJ, et al. Signatures of 

recent positive selection at the ATP-binding cassette drug transporter superfamily 

gene loci. Hum Mol Genet. 2007;16: 1367–1380. 

173.  López Herráez D, Bauchet M, Tang K, Theunert C, Pugach I, Li J, et al. Genetic 

variation and recent positive selection in worldwide human populations: evidence 

from nearly 1 million SNPs. PLoS One. 2009;4: e7888. 

174.  Kichaev G, Bhatia G, Loh P-R, Gazal S, Burch K, Freund MK, et al. Leveraging 

Polygenic Functional Enrichment to Improve GWAS Power. Am J Hum Genet. 

2019;104: 65–75. 

175.  Tachmazidou I, Süveges D, Min JL, Ritchie GRS, Steinberg J, Walter K, et al. 

Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for 

Anthropometric Traits. Am J Hum Genet. 2017;100: 865–884. 

http://paperpile.com/b/nQfGtx/sY4ua
http://paperpile.com/b/nQfGtx/sY4ua
http://paperpile.com/b/nQfGtx/sY4ua
http://paperpile.com/b/nQfGtx/Jhsz8
http://paperpile.com/b/nQfGtx/Jhsz8
http://paperpile.com/b/nQfGtx/Jhsz8
http://paperpile.com/b/nQfGtx/Jhsz8
http://paperpile.com/b/nQfGtx/CgZSS
http://paperpile.com/b/nQfGtx/CgZSS
http://paperpile.com/b/nQfGtx/CgZSS
http://paperpile.com/b/nQfGtx/qH4Aq
http://paperpile.com/b/nQfGtx/qH4Aq
http://paperpile.com/b/nQfGtx/qH4Aq
http://paperpile.com/b/nQfGtx/lQxVD
http://paperpile.com/b/nQfGtx/lQxVD
http://paperpile.com/b/nQfGtx/lQxVD
http://paperpile.com/b/nQfGtx/fnkrm
http://paperpile.com/b/nQfGtx/fnkrm
http://paperpile.com/b/nQfGtx/fnkrm
http://paperpile.com/b/nQfGtx/47Uls
http://paperpile.com/b/nQfGtx/47Uls
http://paperpile.com/b/nQfGtx/47Uls
http://paperpile.com/b/nQfGtx/OXl99
http://paperpile.com/b/nQfGtx/OXl99
http://paperpile.com/b/nQfGtx/OXl99
http://paperpile.com/b/nQfGtx/F0w9Z
http://paperpile.com/b/nQfGtx/F0w9Z
http://paperpile.com/b/nQfGtx/F0w9Z
http://paperpile.com/b/nQfGtx/syTyi
http://paperpile.com/b/nQfGtx/syTyi
http://paperpile.com/b/nQfGtx/syTyi
http://paperpile.com/b/nQfGtx/SxEnI
http://paperpile.com/b/nQfGtx/SxEnI
http://paperpile.com/b/nQfGtx/SxEnI
http://paperpile.com/b/nQfGtx/hYLsF
http://paperpile.com/b/nQfGtx/hYLsF
http://paperpile.com/b/nQfGtx/hYLsF


      

217 

 

176.  Zhao F, McParland S, Kearney F, Du L, Berry DP. Detection of selection 

signatures in dairy and beef cattle using high-density genomic information. Genet 

Sel Evol. 2015;47: 49. 

177.  Cardoso DF, de Albuquerque LG, Reimer C, Qanbari S, Erbe M, do Nascimento 

AV, et al. Genome-wide scan reveals population stratification and footprints of 

recent selection in Nelore cattle. Genet Sel Evol. 2018;50: 22. 

178.  Rubin C-J, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, et al. 

Whole-genome resequencing reveals loci under selection during chicken 

domestication. Nature. 2010;464: 587–591. 

179.  Stone S, Abkevich V, Russell DL, Riley R, Timms K, Tran T, et al. TBC1D1 is a 

candidate for a severe obesity gene and evidence for a gene/gene interaction in 

obesity predisposition. Hum Mol Genet. 2006;15: 2709–2720. 

180.  Chadt A, Leicht K, Deshmukh A, Jiang LQ, Scherneck S, Bernhardt U, et al. 

Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-

induced obesity. Nat Genet. 2008;40: 1354–1359. 

181.  Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The Allelic 

Landscape of Human Blood Cell Trait Variation and Links to Common Complex 

Disease. Cell. 2016;167: 1415–1429.e19. 

182.  Northrup JM, Shafer ABA, Anderson CR, Coltman DW, Wittemyer G. Fine-scale 

genetic correlates to condition and migration in a wild cervid. Evol Appl. 2014;7: 

937–948. 

183.  Duforet-Frebourg N, Bazin E, Blum MGB. Genome scans for detecting footprints 

of local adaptation using a Bayesian factor model. Mol Biol Evol. 2014;31: 2483–

2495. 

184.  Igoshin AV, Yurchenko AA, Belonogova NM, Petrovsky DV, Aitnazarov RB, 

Soloshenko VA, et al. Genome-wide association study and scan for signatures of 

selection point to candidate genes for body temperature maintenance under the cold 

stress in Siberian cattle populations. BMC Genet. 2019;20: 26. 

185.  Wang B, Zhang Y-B, Zhang F, Lin H, Wang X, Wan N, et al. On the origin of 

Tibetans and their genetic basis in adapting high-altitude environments. PLoS One. 

2011;6: e17002. 

186.  Amorim CEG, Daub JT, Salzano FM, Foll M, Excoffier L. Detection of 

convergent genome-wide signals of adaptation to tropical forests in humans. PLoS 

One. 2015;10: e0121557. 

187.  Granka JM, Henn BM, Gignoux CR, Kidd JM, Bustamante CD, Feldman MW. 

Limited evidence for classic selective sweeps in African populations. Genetics. 

2012;192: 1049–1064. 

http://paperpile.com/b/nQfGtx/sR5K9
http://paperpile.com/b/nQfGtx/sR5K9
http://paperpile.com/b/nQfGtx/sR5K9
http://paperpile.com/b/nQfGtx/WEv1d
http://paperpile.com/b/nQfGtx/WEv1d
http://paperpile.com/b/nQfGtx/WEv1d
http://paperpile.com/b/nQfGtx/iiQvW
http://paperpile.com/b/nQfGtx/iiQvW
http://paperpile.com/b/nQfGtx/iiQvW
http://paperpile.com/b/nQfGtx/B0MPh
http://paperpile.com/b/nQfGtx/B0MPh
http://paperpile.com/b/nQfGtx/B0MPh
http://paperpile.com/b/nQfGtx/A9d6z
http://paperpile.com/b/nQfGtx/A9d6z
http://paperpile.com/b/nQfGtx/A9d6z
http://paperpile.com/b/nQfGtx/mqtsr
http://paperpile.com/b/nQfGtx/mqtsr
http://paperpile.com/b/nQfGtx/mqtsr
http://paperpile.com/b/nQfGtx/erRJm
http://paperpile.com/b/nQfGtx/erRJm
http://paperpile.com/b/nQfGtx/erRJm
http://paperpile.com/b/nQfGtx/xiA2w
http://paperpile.com/b/nQfGtx/xiA2w
http://paperpile.com/b/nQfGtx/xiA2w
http://paperpile.com/b/nQfGtx/X9xBX
http://paperpile.com/b/nQfGtx/X9xBX
http://paperpile.com/b/nQfGtx/X9xBX
http://paperpile.com/b/nQfGtx/X9xBX
http://paperpile.com/b/nQfGtx/BUJhc
http://paperpile.com/b/nQfGtx/BUJhc
http://paperpile.com/b/nQfGtx/BUJhc
http://paperpile.com/b/nQfGtx/trGoD
http://paperpile.com/b/nQfGtx/trGoD
http://paperpile.com/b/nQfGtx/trGoD
http://paperpile.com/b/nQfGtx/k1Xki
http://paperpile.com/b/nQfGtx/k1Xki
http://paperpile.com/b/nQfGtx/k1Xki


      

218 

 

188.  Flori L, Moazami-Goudarzi K, Alary V, Araba A, Boujenane I, Boushaba N, et al. 

A genomic map of climate adaptation in Mediterranean cattle breeds. Mol Ecol. 

2019;28: 1009–1029. 

189.  Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, et al. An 

atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46: 543–

550. 

190.  Key FM, Fu Q, Romagné F, Lachmann M, Andrés AM. Human adaptation and 

population differentiation in the light of ancient genomes. Nat Commun. 2016;7: 

10775. 

191.  Mueller JC, Pulido F, Kempenaers B. Identification of a gene associated with 

avian migratory behaviour. Proc Biol Sci. 2011;278: 2848–2856. 

192.  Bazzi G, Galimberti A, Hays QR, Bruni I, Cecere JG, Gianfranceschi L, et al. 

Adcyap1 polymorphism covaries with breeding latitude in a Nearctic migratory 

songbird, the Wilson’s warbler (Cardellina pusilla). Ecol Evol. 2016;6: 3226–3239. 

193.  Jones SE, Lane JM, Wood AR, van Hees VT, Tyrrell J, Beaumont RN, et al. 

Genome-wide association analyses of chronotype in 697,828 individuals provides 

insights into circadian rhythms. Nat Commun. 2019;10: 343. 

194.  Sjöstrand AE, Sjödin P, Jakobsson M. Private haplotypes can reveal local 

adaptation. BMC Genet. 2014;15: 61. 

195.  Pemberton TJ, Absher D, Feldman MW, Myers RM, Rosenberg NA, Li JZ. 

Genomic patterns of homozygosity in worldwide human populations. Am J Hum 

Genet. 2012;91: 275–292. 

196.  Rouabhi M, Guo DF, Rahmouni K. Bardet-Biedl Syndrome 1 Gene in the 

Ventromedial Hypothalamus is Required for Energy Homeostasis. The FASEB 

Journal. 2016;30: 750.4–750.4. 

197.  Dickinson RE, Duncan WC. The SLIT-ROBO pathway: a regulator of cell 

function with implications for the reproductive system. Reproduction. 2010;139: 

697–704. 

198.  Wu D-D, Zhang Y-P. Positive selection drives population differentiation in the 

skeletal genes in modern humans. Hum Mol Genet. 2010;19: 2341–2346. 

199.  Chen Z. Physiological, transcriptomic and genomic mechanisms of thermal 

adaptation in Oncorhynchus mykiss. University of British Columbia. 2017. 

doi:10.14288/1.0340726 

200.  do Prado FD, Vera M, Hermida M, Bouza C, Pardo BG, Vilas R, et al. Parallel 

evolution and adaptation to environmental factors in a marine flatfish: Implications 

for fisheries and aquaculture management of the turbot (Scophthalmus maximus). 

http://paperpile.com/b/nQfGtx/2jqFr
http://paperpile.com/b/nQfGtx/2jqFr
http://paperpile.com/b/nQfGtx/2jqFr
http://paperpile.com/b/nQfGtx/gjidS
http://paperpile.com/b/nQfGtx/gjidS
http://paperpile.com/b/nQfGtx/gjidS
http://paperpile.com/b/nQfGtx/I92DQ
http://paperpile.com/b/nQfGtx/I92DQ
http://paperpile.com/b/nQfGtx/I92DQ
http://paperpile.com/b/nQfGtx/Q12D3
http://paperpile.com/b/nQfGtx/Q12D3
http://paperpile.com/b/nQfGtx/XHr4f
http://paperpile.com/b/nQfGtx/XHr4f
http://paperpile.com/b/nQfGtx/XHr4f
http://paperpile.com/b/nQfGtx/rcGtw
http://paperpile.com/b/nQfGtx/rcGtw
http://paperpile.com/b/nQfGtx/rcGtw
http://paperpile.com/b/nQfGtx/UGeA4
http://paperpile.com/b/nQfGtx/UGeA4
http://paperpile.com/b/nQfGtx/42Yje
http://paperpile.com/b/nQfGtx/42Yje
http://paperpile.com/b/nQfGtx/42Yje
http://paperpile.com/b/nQfGtx/Mvwll
http://paperpile.com/b/nQfGtx/Mvwll
http://paperpile.com/b/nQfGtx/Mvwll
http://paperpile.com/b/nQfGtx/mI38M
http://paperpile.com/b/nQfGtx/mI38M
http://paperpile.com/b/nQfGtx/mI38M
http://paperpile.com/b/nQfGtx/joLGw
http://paperpile.com/b/nQfGtx/joLGw
http://paperpile.com/b/nQfGtx/1OtKh
http://paperpile.com/b/nQfGtx/1OtKh
http://paperpile.com/b/nQfGtx/1OtKh
http://dx.doi.org/10.14288/1.0340726
http://paperpile.com/b/nQfGtx/B0Wj4
http://paperpile.com/b/nQfGtx/B0Wj4
http://paperpile.com/b/nQfGtx/B0Wj4


      

219 

 

Evol Appl. 2018;11: 1322–1341. 

201.  Twomey AJ, Berry DP, Evans RD, Doherty ML, Graham DA, Purfield DC. 

Genome-wide association study of endo-parasite phenotypes using imputed whole-

genome sequence data in dairy and beef cattle. Genet Sel Evol. 2019;51: 15. 

202.  Li RW, Li C. Butyrate induces profound changes in gene expression related to 

multiple signal pathways in bovine kidney epithelial cells. BMC Genomics. 2006;7: 

234. 

203.  Ringseis R, Zeitz JO, Weber A, Koch C, Eder K. Hepatic transcript profiling in 

early-lactation dairy cows fed rumen-protected niacin during the transition from late 

pregnancy to lactation. J Dairy Sci. 2019;102: 365–376. 

204.  Williams JL, Dunner S, Valentini A, Mazza R, Amarger V, Checa ML, et al. 

Discovery, characterization and validation of single nucleotide polymorphisms 

within 206 bovine genes that may be considered as candidate genes for beef 

production and quality. Anim Genet. 2009;40: 486–491. 

205.  Weldenegodguad M, Popov R, Pokharel K, Ammosov I, Ming Y, Ivanova Z, et 

al. Whole-Genome Sequencing of Three Native Cattle Breeds Originating From the 

Northernmost Cattle Farming Regions. Front Genet. 2018;9: 728. 

206.  Lei N, Mellem JE, Brockie PJ, Madsen DM, Maricq AV. NRAP-1 Is a 

Presynaptically Released NMDA Receptor Auxiliary Protein that Modifies Synaptic 

Strength. Neuron. 2017;96: 1303–1316.e6. 

207.  Wang Y, Harashima S-I, Liu Y, Usui R, Inagaki N. Sphingosine kinase 1-

interacting protein is a novel regulator of glucose-stimulated insulin secretion. Sci 

Rep. 2017;7: 779. 

208.  Cañadas-Garre M, Anderson K, Cappa R, Skelly R, Smyth LJ, McKnight AJ, et 

al. Genetic Susceptibility to Chronic Kidney Disease - Some More Pieces for the 

Heritability Puzzle. Front Genet. 2019;10: 453. 

209.  Purfield DC, Bradley DG, Evans RD, Kearney FJ, Berry DP. Genome-wide 

association study for calving performance using high-density genotypes in dairy and 

beef cattle. Genet Sel Evol. 2015;47: 47. 

210.  Ang CE, Ma Q, Wapinski OL, Fan S, Flynn RA, Lee QY, et al. The novel 

lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental 

disorders. Elife. 2019;8. doi:10.7554/eLife.41770 

211.  Lu W-C, Zhou Y-X, Qiao P, Zheng J, Wu Q, Shen Q. The protocadherin alpha 

cluster is required for axon extension and myelination in the developing central 

nervous system. Neural Regeneration Res. 2018;13: 427–433. 

212.  Yang R, Fang S, Wang J, Zhang C, Zhang R, Liu D, et al. Genome-wide analysis 

http://paperpile.com/b/nQfGtx/B0Wj4
http://paperpile.com/b/nQfGtx/hugoH
http://paperpile.com/b/nQfGtx/hugoH
http://paperpile.com/b/nQfGtx/hugoH
http://paperpile.com/b/nQfGtx/LTa7j
http://paperpile.com/b/nQfGtx/LTa7j
http://paperpile.com/b/nQfGtx/LTa7j
http://paperpile.com/b/nQfGtx/trIlx
http://paperpile.com/b/nQfGtx/trIlx
http://paperpile.com/b/nQfGtx/trIlx
http://paperpile.com/b/nQfGtx/Iziy9
http://paperpile.com/b/nQfGtx/Iziy9
http://paperpile.com/b/nQfGtx/Iziy9
http://paperpile.com/b/nQfGtx/Iziy9
http://paperpile.com/b/nQfGtx/XzizP
http://paperpile.com/b/nQfGtx/XzizP
http://paperpile.com/b/nQfGtx/XzizP
http://paperpile.com/b/nQfGtx/aUXlp
http://paperpile.com/b/nQfGtx/aUXlp
http://paperpile.com/b/nQfGtx/aUXlp
http://paperpile.com/b/nQfGtx/exUIp
http://paperpile.com/b/nQfGtx/exUIp
http://paperpile.com/b/nQfGtx/exUIp
http://paperpile.com/b/nQfGtx/9YXhZ
http://paperpile.com/b/nQfGtx/9YXhZ
http://paperpile.com/b/nQfGtx/9YXhZ
http://paperpile.com/b/nQfGtx/ht3GJ
http://paperpile.com/b/nQfGtx/ht3GJ
http://paperpile.com/b/nQfGtx/ht3GJ
http://paperpile.com/b/nQfGtx/7K4Hn
http://paperpile.com/b/nQfGtx/7K4Hn
http://paperpile.com/b/nQfGtx/7K4Hn
http://dx.doi.org/10.7554/eLife.41770
http://paperpile.com/b/nQfGtx/eIqqN
http://paperpile.com/b/nQfGtx/eIqqN
http://paperpile.com/b/nQfGtx/eIqqN
http://paperpile.com/b/nQfGtx/060xn


      

220 

 

of structural variants reveals genetic differences in Chinese pigs. PLoS One. 

2017;12: e0186721. 

213.  Wright S. THE GENETICAL STRUCTURE OF POPULATIONS. Ann Eugen. 

1949;15: 323–354. 

214.  Bonhomme M, Chevalet C, Servin B, Boitard S, Abdallah J, Blott S, et al. 

Detecting selection in population trees: the Lewontin and Krakauer test extended. 

Genetics. 2010;186: 241–262. 

215.  Chen H, Patterson N, Reich D. Population differentiation as a test for selective 

sweeps. Genome Res. 2010;20: 393–402. 

216.  Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. 

Genome-wide detection and characterization of positive selection in human 

populations. Nature. 2007;449: 913–918. 

217.  Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, et al. 

Detecting recent positive selection in the human genome from haplotype structure. 

Nature. 2002;419: 832–837. 

218.  Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive 

selection in the human genome. PLoS Biol. 2006;4: e72. 

219.  Ramey HR, Decker JE, McKay SD, Rolf MM, Schnabel RD, Taylor JF. Detection 

of selective sweeps in cattle using genome-wide SNP data. BMC Genomics. 

2013;14: 382. 

220.  Rothammer S, Seichter D, Förster M, Medugorac I. A genome-wide scan for 

signatures of differential artificial selection in ten cattle breeds. BMC Genomics. 

2013;14: 908. 

221.  Utsunomiya YT, Pérez O’Brien AM, Sonstegard TS, Van Tassell CP, do Carmo 

AS, Mészáros G, et al. Detecting loci under recent positive selection in dairy and 

beef cattle by combining different genome-wide scan methods. PLoS One. 2013;8: 

e64280. 

222.  Drouillard JS. Current situation and future trends for beef production in the 

United States of America — A review. Asian-Australasian Journal of Animal 

Sciences. 2018. pp. 1007–1016. doi:10.5713/ajas.18.0428 

223.  Burns WC, Koger M, Butts WT, Pahnish OF, Blackwell RL. Genotype by 

Environment Interaction in Hereford Cattle: II. Birth and Weaning Traits. J Anim 

Sci. 1979;49: 403–409. 

224.  Hohenboken W, Jenkins T, Pollak J, Bullock D, Radakovich S. Genetic 

improvement of beef cattle adaptation in America. Proceedings of the Beef 

Improvement Federation’s 37th annual research symposium and annual meeting. 

http://paperpile.com/b/nQfGtx/060xn
http://paperpile.com/b/nQfGtx/060xn
http://paperpile.com/b/nQfGtx/cl5f1
http://paperpile.com/b/nQfGtx/cl5f1
http://paperpile.com/b/nQfGtx/un50d
http://paperpile.com/b/nQfGtx/un50d
http://paperpile.com/b/nQfGtx/un50d
http://paperpile.com/b/nQfGtx/vj5g1
http://paperpile.com/b/nQfGtx/vj5g1
http://paperpile.com/b/nQfGtx/VwXUQ
http://paperpile.com/b/nQfGtx/VwXUQ
http://paperpile.com/b/nQfGtx/VwXUQ
http://paperpile.com/b/nQfGtx/bXwNT
http://paperpile.com/b/nQfGtx/bXwNT
http://paperpile.com/b/nQfGtx/bXwNT
http://paperpile.com/b/nQfGtx/25zF8
http://paperpile.com/b/nQfGtx/25zF8
http://paperpile.com/b/nQfGtx/su7ax
http://paperpile.com/b/nQfGtx/su7ax
http://paperpile.com/b/nQfGtx/su7ax
http://paperpile.com/b/nQfGtx/3FFI6
http://paperpile.com/b/nQfGtx/3FFI6
http://paperpile.com/b/nQfGtx/3FFI6
http://paperpile.com/b/nQfGtx/a2qdn
http://paperpile.com/b/nQfGtx/a2qdn
http://paperpile.com/b/nQfGtx/a2qdn
http://paperpile.com/b/nQfGtx/a2qdn
http://paperpile.com/b/nQfGtx/98aBB
http://paperpile.com/b/nQfGtx/98aBB
http://paperpile.com/b/nQfGtx/98aBB
http://dx.doi.org/10.5713/ajas.18.0428
http://paperpile.com/b/nQfGtx/yRhaQ
http://paperpile.com/b/nQfGtx/yRhaQ
http://paperpile.com/b/nQfGtx/yRhaQ
http://paperpile.com/b/nQfGtx/Or8HB
http://paperpile.com/b/nQfGtx/Or8HB
http://paperpile.com/b/nQfGtx/Or8HB


      

221 

 

2005. pp. 115–120. 

225.  Fennewald DJ, Weaber RL, Lamberson WR. Genotype by environment 

interaction for stayability of Red Angus in the United States. Journal of Animal 

Science. 2018. pp. 422–429. doi:10.1093/jas/skx080 

226.  Blackburn HD, Krehbiel B, Ericsson SA, Wilson C, Caetano AR, Paiva SR. A 

fine structure genetic analysis evaluating ecoregional adaptability of a Bos taurus 

breed (Hereford). PLoS One. 2017;12: e0176474. 

227.  Hoff JL, Decker JE, Schnabel RD, Seabury CM, Neibergs HL, Taylor JF. QTL-

mapping and genomic prediction for bovine respiratory disease in U.S. Holsteins 

using sequence imputation and feature selection. BMC Genomics. 2019;20: 555. 

228.  Faux A-M, Gorjanc G, Gaynor RC, Battagin M, Edwards SM, Wilson DL, et al. 

AlphaSim: Software for Breeding Program Simulation. Plant Genome. 2016;9. 

doi:10.3835/plantgenome2016.02.0013 

229.  Chen GK, Marjoram P, Wall JD. Fast and flexible simulation of DNA sequence 

data. Genome Res. 2009;19: 136–142. 

230.  Hayes B, Goddard ME. The distribution of the effects of genes affecting 

quantitative traits in livestock. Genet Sel Evol. 2001;33: 209–229. 

231.  Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. 

Welcome to the Tidyverse. JOSS. 2019;4: 1686. 

232.  Berg IL, Neumann R, Lam K-WG, Sarbajna S, Odenthal-Hesse L, May CA, et al. 

PRDM9 variation strongly influences recombination hot-spot activity and meiotic 

instability in humans. Nat Genet. 2010;42: 859–863. 

233.  Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, et al. PRDM9 

is a major determinant of meiotic recombination hotspots in humans and mice. 

Science. 2010;327: 836–840. 

234.  Gonen S, Battagin M, Johnston SE, Gorjanc G, Hickey JM. The potential of 

shifting recombination hotspots to increase genetic gain in livestock breeding. Genet 

Sel Evol. 2017;49: 55. 

235.  Snelling WM, Allan MF, Keele JW, Kuehn LA, McDaneld T, Smith TPL, et al. 

Genome-wide association study of growth in crossbred beef cattle. J Anim Sci. 

2010;88: 837–848. 

236.  Mateescu RG, Garrick DJ, Reecy JM. Network Analysis Reveals Putative Genes 

Affecting Meat Quality in Angus Cattle. Front Genet. 2017;8: 171. 

237.  Mediero A, Cronstein BN. Adenosine and bone metabolism. Trends Endocrinol 

Metab. 2013;24: 290–300. 

http://paperpile.com/b/nQfGtx/Or8HB
http://paperpile.com/b/nQfGtx/rqPmS
http://paperpile.com/b/nQfGtx/rqPmS
http://paperpile.com/b/nQfGtx/rqPmS
http://dx.doi.org/10.1093/jas/skx080
http://paperpile.com/b/nQfGtx/fxtFA
http://paperpile.com/b/nQfGtx/fxtFA
http://paperpile.com/b/nQfGtx/fxtFA
http://paperpile.com/b/nQfGtx/SQjpH
http://paperpile.com/b/nQfGtx/SQjpH
http://paperpile.com/b/nQfGtx/SQjpH
http://paperpile.com/b/nQfGtx/sjrEG
http://paperpile.com/b/nQfGtx/sjrEG
http://paperpile.com/b/nQfGtx/sjrEG
http://dx.doi.org/10.3835/plantgenome2016.02.0013
http://paperpile.com/b/nQfGtx/tmMmA
http://paperpile.com/b/nQfGtx/tmMmA
http://paperpile.com/b/nQfGtx/r9ZIE
http://paperpile.com/b/nQfGtx/r9ZIE
http://paperpile.com/b/nQfGtx/jYtMh
http://paperpile.com/b/nQfGtx/jYtMh
http://paperpile.com/b/nQfGtx/iB1AB
http://paperpile.com/b/nQfGtx/iB1AB
http://paperpile.com/b/nQfGtx/iB1AB
http://paperpile.com/b/nQfGtx/AH62R
http://paperpile.com/b/nQfGtx/AH62R
http://paperpile.com/b/nQfGtx/AH62R
http://paperpile.com/b/nQfGtx/MH8Cy
http://paperpile.com/b/nQfGtx/MH8Cy
http://paperpile.com/b/nQfGtx/MH8Cy
http://paperpile.com/b/nQfGtx/ksriI
http://paperpile.com/b/nQfGtx/ksriI
http://paperpile.com/b/nQfGtx/ksriI
http://paperpile.com/b/nQfGtx/vuq4J
http://paperpile.com/b/nQfGtx/vuq4J
http://paperpile.com/b/nQfGtx/j6iVM
http://paperpile.com/b/nQfGtx/j6iVM


      

222 

 

238.  Alexandre PA, Kogelman LJA, Santana MHA, Passarelli D, Pulz LH, Fantinato-

Neto P, et al. Liver transcriptomic networks reveal main biological processes 

associated with feed efficiency in beef cattle. BMC Genomics. 2015;16: 1073. 

239.  Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, et al. Genomic analyses identify 

distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 

2013;45: 1431–1438. 

240.  Magalhães AFB, de Camargo GMF, Fernandes GA Junior, Gordo DGM, Tonussi 

RL, Costa RB, et al. Genome-Wide Association Study of Meat Quality Traits in 

Nellore Cattle. PLoS One. 2016;11: e0157845. 

241.  Boulant JA, Dean JB. Temperature receptors in the central nervous system. Annu 

Rev Physiol. 1986;48: 639–654. 

242.  Mombaerts P. Axonal wiring in the mouse olfactory system. Annu Rev Cell Dev 

Biol. 2006;22: 713–737. 

243.  Kellogg DL Jr, Pérgola PE, Piest KL, Kosiba WA, Crandall CG, Grossmann M, 

et al. Cutaneous active vasodilation in humans is mediated by cholinergic nerve 

cotransmission. Circ Res. 1995;77: 1222–1228. 

244.  Kellogg DL Jr, Hodges GJ, Orozco CR, Phillips TM, Zhao JL, Johnson JM. 

Cholinergic mechanisms of cutaneous active vasodilation during heat stress in cystic 

fibrosis. J Appl Physiol. 2007;103: 963–968. 

245.  Joyner MJ, Dietz NM. Sympathetic vasodilation in human muscle. Acta Physiol 

Scand. 2003;177: 329–336. 

246.  Smith CJ, Johnson JM. Responses to hyperthermia. Optimizing heat dissipation 

by convection and evaporation: Neural control of skin blood flow and sweating in 

humans. Auton Neurosci. 2016;196: 25–36. 

247.  Takemoto Y. Amino acids that centrally influence blood pressure and regional 

blood flow in conscious rats. J Amino Acids. 2012;2012: 831759. 

248.  Meng W, Tobin JR, Busija DW. Glutamate-induced cerebral vasodilation is 

mediated by nitric oxide through N-methyl-D-aspartate receptors. Stroke. 1995;26: 

857–62; discussion 863. 

249.  Conrad KP. Unveiling the vasodilatory actions and mechanisms of relaxin. 

Hypertension. 2010;56: 2–9. 

250.  Daanen HAM, Van Marken Lichtenbelt WD. Human whole body cold adaptation. 

Temperature (Austin). 2016;3: 104–118. 

251.  Choshniak I, McEwan-Jenkinson D, Blatchford DR, Peaker M. Blood flow and 

catecholamine concentration in bovine and caprine skin during thermal sweating. 

http://paperpile.com/b/nQfGtx/QK63z
http://paperpile.com/b/nQfGtx/QK63z
http://paperpile.com/b/nQfGtx/QK63z
http://paperpile.com/b/nQfGtx/0qbiM
http://paperpile.com/b/nQfGtx/0qbiM
http://paperpile.com/b/nQfGtx/0qbiM
http://paperpile.com/b/nQfGtx/ME60D
http://paperpile.com/b/nQfGtx/ME60D
http://paperpile.com/b/nQfGtx/ME60D
http://paperpile.com/b/nQfGtx/2HWP0
http://paperpile.com/b/nQfGtx/2HWP0
http://paperpile.com/b/nQfGtx/bjWIU
http://paperpile.com/b/nQfGtx/bjWIU
http://paperpile.com/b/nQfGtx/dxfBi
http://paperpile.com/b/nQfGtx/dxfBi
http://paperpile.com/b/nQfGtx/dxfBi
http://paperpile.com/b/nQfGtx/eFMG7
http://paperpile.com/b/nQfGtx/eFMG7
http://paperpile.com/b/nQfGtx/eFMG7
http://paperpile.com/b/nQfGtx/NsxtR
http://paperpile.com/b/nQfGtx/NsxtR
http://paperpile.com/b/nQfGtx/NBszG
http://paperpile.com/b/nQfGtx/NBszG
http://paperpile.com/b/nQfGtx/NBszG
http://paperpile.com/b/nQfGtx/JRAZd
http://paperpile.com/b/nQfGtx/JRAZd
http://paperpile.com/b/nQfGtx/25oxW
http://paperpile.com/b/nQfGtx/25oxW
http://paperpile.com/b/nQfGtx/25oxW
http://paperpile.com/b/nQfGtx/MTUGW
http://paperpile.com/b/nQfGtx/MTUGW
http://paperpile.com/b/nQfGtx/ltpF7
http://paperpile.com/b/nQfGtx/ltpF7
http://paperpile.com/b/nQfGtx/8U0gP
http://paperpile.com/b/nQfGtx/8U0gP


      

223 

 

Comp Biochem Physiol C. 1982;71C: 37–42. 

252.  Rhoads ML, Rhoads RP, VanBaale MJ, Collier RJ, Sanders SR, Weber WJ, et al. 

Effects of heat stress and plane of nutrition on lactating Holstein cows: I. 

Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci. 

2009;92: 1986–1997. 

253.  El-Nouty FD, Elbanna IM, Davis TP, Johnson HD. Aldosterone and ADH 

response to heat and dehydration in cattle. J Appl Physiol. 1980;48: 249–255. 

254.  Itoh F, Obara Y, Rose MT, Fuse H, Hashimoto H. Insulin and Glucagon Secretion 

in Lactating Cows During Heat Exposure1. Available: 

https://academic.oup.com/jas/article-abstract/76/8/2182/4643238 

255.  Sanz Fernandez MV, Stoakes SK, Abuajamieh M, Seibert JT, Johnson JS, Horst 

EA, et al. Heat stress increases insulin sensitivity in pigs. Physiol Rep. 2015;3. 

doi:10.14814/phy2.12478 

256.  Keogh K, Kenny DA, Kelly AK, Waters SM. Insulin secretion and signaling in 

response to dietary restriction and subsequent re-alimentation in cattle. Physiol 

Genomics. 2015;47: 344–354. 

257.  Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol 

Rev. 2008;223: 87–113. 

258.  Romagnani S. T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol. 

2000;85: 9–18; quiz 18, 21. 

259.  Deschamps M, Laval G, Fagny M, Itan Y, Abel L, Casanova J-L, et al. Genomic 

Signatures of Selective Pressures and Introgression from Archaic Hominins at 

Human Innate Immunity Genes. Am J Hum Genet. 2016;98: 5–21. 

260.  Crawford JE, Amaru R, Song J, Julian CG, Racimo F, Cheng JY, et al. Natural 

Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted 

Andeans. Am J Hum Genet. 2017;101: 752–767. 

261.  Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, et al. Allen 

Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous 

system. Nucleic Acids Res. 2013;41: D996–D1008. 

262.  Kang EY, Han B, Furlotte N, Joo JWJ, Shih D, Davis RC, et al. Meta-analysis 

identifies gene-by-environment interactions as demonstrated in a study of 4,965 

mice. PLoS Genet. 2014;10: e1004022. 

263.  Bradley DG, MacHugh DE, Cunningham P, Loftus RT. Mitochondrial diversity 

and the origins of African and European cattle. Proc Natl Acad Sci U S A. 1996;93: 

5131–5135. 

http://paperpile.com/b/nQfGtx/8U0gP
http://paperpile.com/b/nQfGtx/YdJBa
http://paperpile.com/b/nQfGtx/YdJBa
http://paperpile.com/b/nQfGtx/YdJBa
http://paperpile.com/b/nQfGtx/YdJBa
http://paperpile.com/b/nQfGtx/88jA5
http://paperpile.com/b/nQfGtx/88jA5
http://paperpile.com/b/nQfGtx/xvBOX
http://paperpile.com/b/nQfGtx/xvBOX
https://academic.oup.com/jas/article-abstract/76/8/2182/4643238
http://paperpile.com/b/nQfGtx/JyblA
http://paperpile.com/b/nQfGtx/JyblA
http://paperpile.com/b/nQfGtx/JyblA
http://dx.doi.org/10.14814/phy2.12478
http://paperpile.com/b/nQfGtx/9qVxF
http://paperpile.com/b/nQfGtx/9qVxF
http://paperpile.com/b/nQfGtx/9qVxF
http://paperpile.com/b/nQfGtx/za8Ou
http://paperpile.com/b/nQfGtx/za8Ou
http://paperpile.com/b/nQfGtx/biNB7
http://paperpile.com/b/nQfGtx/biNB7
http://paperpile.com/b/nQfGtx/cX1VH
http://paperpile.com/b/nQfGtx/cX1VH
http://paperpile.com/b/nQfGtx/cX1VH
http://paperpile.com/b/nQfGtx/EQYiL
http://paperpile.com/b/nQfGtx/EQYiL
http://paperpile.com/b/nQfGtx/EQYiL
http://paperpile.com/b/nQfGtx/tpLB7
http://paperpile.com/b/nQfGtx/tpLB7
http://paperpile.com/b/nQfGtx/tpLB7
http://paperpile.com/b/nQfGtx/HuqGO
http://paperpile.com/b/nQfGtx/HuqGO
http://paperpile.com/b/nQfGtx/HuqGO
http://paperpile.com/b/nQfGtx/zfZQZ
http://paperpile.com/b/nQfGtx/zfZQZ
http://paperpile.com/b/nQfGtx/zfZQZ


      

224 

 

264.  Kemper KE, Saxton SJ, Bolormaa S, Hayes BJ, Goddard ME. Selection for 

complex traits leaves little or no classic signatures of selection. BMC Genomics. 

2014;15: 246. 

265.  Zhang F, Wang Y, Mukiibi R, Chen L, Vinsky M, Plastow G, et al. Genetic 

architecture of quantitative traits in beef cattle revealed by genome wide association 

studies of imputed whole genome sequence variants: I: feed efficiency and 

component traits. BMC Genomics. 2020;21: 36. 

266.  Mackay TFC, Stone EA, Ayroles JF. The genetics of quantitative traits: 

challenges and prospects. Nat Rev Genet. 2009;10: 565–577. 

267.  Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, Richards JB. Genetic 

architecture: the shape of the genetic contribution to human traits and disease. Nat 

Rev Genet. 2018;19: 110–124. 

268.  Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. 

Common SNPs explain a large proportion of the heritability for human height. Nat 

Genet. 2010;42: 565–569. 

269.  Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of 

ANthropometric Traits (GIANT) Consortium, DIAbetes Genetics Replication And 

Meta-analysis (DIAGRAM) Consortium, et al. Conditional and joint multiple-SNP 

analysis of GWAS summary statistics identifies additional variants influencing 

complex traits. Nat Genet. 2012;44: 369–75, S1–3. 

270.  Fang L, Cai W, Liu S, Canela-Xandri O, Gao Y, Jiang J, et al. Comprehensive 

analyses of 723 transcriptomes enhance genetic and biological interpretations for 

complex traits in cattle. Genome Res. 2020;30: 790–801. 

271.  Durkin K, Coppieters W, Drögemüller C, Ahariz N, Cambisano N, Druet T, et al. 

Serial translocation by means of circular intermediates underlies colour sidedness in 

cattle. Nature. 2012;482: 81–84. 

272.  He M, Cornelis MC, Kraft P, van Dam RM, Sun Q, Laurie CC, et al. Genome-

wide association study identifies variants at the IL18-BCO2 locus associated with 

interleukin-18 levels. Arterioscler Thromb Vasc Biol. 2010;30: 885–890. 

273.  Gao H, Wu Y, Li J, Li H, Li J, Yang R. Forward LASSO analysis for high-order 

interactions in genome-wide association study. Brief Bioinform. 2014;15: 552–561. 

274.  Braz CU, Taylor JF, Bresolin T, Espigolan R, Feitosa FLB, Carvalheiro R, et al. 

Sliding window haplotype approaches overcome single SNP analysis limitations in 

identifying genes for meat tenderness in Nelore cattle. BMC Genet. 2019;20: 8. 

275.  Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 

(TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30: 

383–391. 

http://paperpile.com/b/nQfGtx/MeMLw
http://paperpile.com/b/nQfGtx/MeMLw
http://paperpile.com/b/nQfGtx/MeMLw
http://paperpile.com/b/nQfGtx/FnEsy
http://paperpile.com/b/nQfGtx/FnEsy
http://paperpile.com/b/nQfGtx/FnEsy
http://paperpile.com/b/nQfGtx/FnEsy
http://paperpile.com/b/nQfGtx/WhIX0
http://paperpile.com/b/nQfGtx/WhIX0
http://paperpile.com/b/nQfGtx/oJBPi
http://paperpile.com/b/nQfGtx/oJBPi
http://paperpile.com/b/nQfGtx/oJBPi
http://paperpile.com/b/nQfGtx/fBlhz
http://paperpile.com/b/nQfGtx/fBlhz
http://paperpile.com/b/nQfGtx/fBlhz
http://paperpile.com/b/nQfGtx/CsqK8
http://paperpile.com/b/nQfGtx/CsqK8
http://paperpile.com/b/nQfGtx/CsqK8
http://paperpile.com/b/nQfGtx/CsqK8
http://paperpile.com/b/nQfGtx/CsqK8
http://paperpile.com/b/nQfGtx/QGw9o
http://paperpile.com/b/nQfGtx/QGw9o
http://paperpile.com/b/nQfGtx/QGw9o
http://paperpile.com/b/nQfGtx/KpUr6
http://paperpile.com/b/nQfGtx/KpUr6
http://paperpile.com/b/nQfGtx/KpUr6
http://paperpile.com/b/nQfGtx/Ezc1x
http://paperpile.com/b/nQfGtx/Ezc1x
http://paperpile.com/b/nQfGtx/Ezc1x
http://paperpile.com/b/nQfGtx/snAIC
http://paperpile.com/b/nQfGtx/snAIC
http://paperpile.com/b/nQfGtx/VN9g2
http://paperpile.com/b/nQfGtx/VN9g2
http://paperpile.com/b/nQfGtx/VN9g2
http://paperpile.com/b/nQfGtx/22366
http://paperpile.com/b/nQfGtx/22366
http://paperpile.com/b/nQfGtx/22366


      

225 

 

276.  Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, et al. 

Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus 

erythematosus. Nat Genet. 2008;40: 1059–1061. 

277.  Doherty R, Whiston R, Cormican P, Finlay EK, Couldrey C, Brady C, et al. The 

CD4(+) T cell methylome contributes to a distinct CD4(+) T cell transcriptional 

signature in Mycobacterium bovis-infected cattle. Sci Rep. 2016;6: 31014. 

278.  Jensen K, Paxton E, Waddington D, Talbot R, Darghouth MA, Glass EJ. 

Differences in the transcriptional responses induced by Theileria annulata infection 

in bovine monocytes derived from resistant and susceptible cattle breeds. Int J 

Parasitol. 2008;38: 313–325. 

279.  Khatib H, Zaitoun I, Kim E-S. Comparative analysis of sequence characteristics 

of imprinted genes in human, mouse, and cattle. Mamm Genome. 2007;18: 538–

547. 

280.  Giuffra E, Tuggle CK, FAANG Consortium. Functional Annotation of Animal 

Genomes (FAANG): Current Achievements and Roadmap. Annu Rev Anim Biosci. 

2019;7: 65–88. 

281.  Purfield DC, Evans RD, Berry DP. Breed- and trait-specific associations define 

the genetic architecture of calving performance traits in cattle. J Anim Sci. 2020;98. 

doi:10.1093/jas/skaa151 

282.  Xiang R, van den Berg I, MacLeod IM, Hayes BJ, Prowse-Wilkins CP, Wang M, 

et al. Quantifying the contribution of sequence variants with regulatory and 

evolutionary significance to 34 bovine complex traits. Proc Natl Acad Sci U S A. 

2019;116: 19398–19408. 

283.  Islam R, Liu X, Gebreselassie G, Abied A, Ma Q, Ma Y. Genome-wide 

association analysis reveals the genetic locus for high reproduction trait in Chinese 

Arbas Cashmere goat. Genes Genomics. 2020;42: 893–899. 

284.  Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ Jr, Crooker BA, et al. 

Genome-wide association analysis of thirty one production, health, reproduction and 

body conformation traits in contemporary U.S. Holstein cows. BMC Genomics. 

2011;12: 408. 

285.  Paim T do P, Hay EHA, Wilson C, Thomas MG, Kuehn LA, Paiva SR, et al. 

Genomic Breed Composition of Selection Signatures in Brangus Beef Cattle. Front 

Genet. 2020;11: 710. 

286.  Pérez O’Brien AM, Utsunomiya YT, Mészáros G, Bickhart DM, Liu GE, Van 

Tassell CP, et al. Assessing signatures of selection through variation in linkage 

disequilibrium between taurine and indicine cattle. Genet Sel Evol. 2014;46: 19. 

287.  Sartorelli V, Lauberth SM. Enhancer RNAs are an important regulatory layer of 

http://paperpile.com/b/nQfGtx/AhpCn
http://paperpile.com/b/nQfGtx/AhpCn
http://paperpile.com/b/nQfGtx/AhpCn
http://paperpile.com/b/nQfGtx/12v7K
http://paperpile.com/b/nQfGtx/12v7K
http://paperpile.com/b/nQfGtx/12v7K
http://paperpile.com/b/nQfGtx/fjLVx
http://paperpile.com/b/nQfGtx/fjLVx
http://paperpile.com/b/nQfGtx/fjLVx
http://paperpile.com/b/nQfGtx/fjLVx
http://paperpile.com/b/nQfGtx/kgYV0
http://paperpile.com/b/nQfGtx/kgYV0
http://paperpile.com/b/nQfGtx/kgYV0
http://paperpile.com/b/nQfGtx/BSlxb
http://paperpile.com/b/nQfGtx/BSlxb
http://paperpile.com/b/nQfGtx/BSlxb
http://paperpile.com/b/nQfGtx/M36r4
http://paperpile.com/b/nQfGtx/M36r4
http://paperpile.com/b/nQfGtx/M36r4
http://dx.doi.org/10.1093/jas/skaa151
http://paperpile.com/b/nQfGtx/ceE6O
http://paperpile.com/b/nQfGtx/ceE6O
http://paperpile.com/b/nQfGtx/ceE6O
http://paperpile.com/b/nQfGtx/ceE6O
http://paperpile.com/b/nQfGtx/uhYTs
http://paperpile.com/b/nQfGtx/uhYTs
http://paperpile.com/b/nQfGtx/uhYTs
http://paperpile.com/b/nQfGtx/EOlvH
http://paperpile.com/b/nQfGtx/EOlvH
http://paperpile.com/b/nQfGtx/EOlvH
http://paperpile.com/b/nQfGtx/EOlvH
http://paperpile.com/b/nQfGtx/pZ1UA
http://paperpile.com/b/nQfGtx/pZ1UA
http://paperpile.com/b/nQfGtx/pZ1UA
http://paperpile.com/b/nQfGtx/xRCec
http://paperpile.com/b/nQfGtx/xRCec
http://paperpile.com/b/nQfGtx/xRCec
http://paperpile.com/b/nQfGtx/eM6Wu


      

226 

 

the epigenome. Nat Struct Mol Biol. 2020;27: 521–528. 

288.  Orozco-terWengel P, Kapun M, Nolte V, Kofler R, Flatt T, Schlötterer C. 

Adaptation of Drosophila to a novel laboratory environment reveals temporally 

heterogeneous trajectories of selected alleles. Mol Ecol. 2012;21: 4931–4941. 

289.  Beissinger TM, Rosa GJM, Kaeppler SM, Gianola D, de Leon N. Defining 

window-boundaries for genomic analyses using smoothing spline techniques. Genet 

Sel Evol. 2015;47: 30. 

290.  Hayes BJ, Daetwyler HD. 1000 Bull Genomes Project to Map Simple and 

Complex Genetic Traits in Cattle: Applications and Outcomes. Annu Rev Anim 

Biosci. 2018. doi:10.1146/annurev-animal-020518-115024 

291.  Lindholm-Perry AK, Kuehn LA, Smith TPL, Ferrell CL, Jenkins TG, Freetly HC, 

et al. A region on BTA14 that includes the positional candidate genes LYPLA1, 

XKR4 and TMEM68 is associated with feed intake and growth phenotypes in 

cattle(1). Anim Genet. 2012;43: 216–219. 

292.  Fortes MRS, Reverter A, Kelly M, McCulloch R, Lehnert SA. Genome-wide 

association study for inhibin, luteinizing hormone, insulin-like growth factor 1, 

testicular size and semen traits in bovine species. Andrology. 2013;1: 644–650. 

293.  Zhang R, Miao J, Song Y, Zhang W, Xu L, Chen Y, et al. Genome-wide 

association study identifies the PLAG1-OXR1 region on BTA14 for carcass meat 

yield in cattle. Physiol Genomics. 2019;51: 137–144. 

294.  Chen M-H, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, et al. 

Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals 

from 5 Global Populations. Cell. 2020;182: 1198–1213.e14. 

295.  Zhang B, Peñagaricano F, Driver A, Chen H, Khatib H. Differential expression of 

heat shock protein genes and their splice variants in bovine preimplantation 

embryos. J Dairy Sci. 2011;94: 4174–4182. 

296.  Cochran SD, Cole JB, Null DJ, Hansen PJ. Single nucleotide polymorphisms in 

candidate genes associated with fertilizing ability of sperm and subsequent 

embryonic development in cattle. Biol Reprod. 2013;89: 69. 

297.  Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA, et al. 

Novel genetic loci identified for the pathophysiology of childhood obesity in the 

Hispanic population. PLoS One. 2012;7: e51954. 

298.  Gutiérrez-Gil B, Wiener P, Williams JL. Genetic effects on coat colour in cattle: 

dilution of eumelanin and phaeomelanin pigments in an F2-Backcross Charolais x 

Holstein population. BMC Genet. 2007;8: 56. 

299.  Rosenberg NA, Edge MD, Pritchard JK, Feldman MW. Interpreting polygenic 

http://paperpile.com/b/nQfGtx/eM6Wu
http://paperpile.com/b/nQfGtx/xMFE1
http://paperpile.com/b/nQfGtx/xMFE1
http://paperpile.com/b/nQfGtx/xMFE1
http://paperpile.com/b/nQfGtx/FEqD6
http://paperpile.com/b/nQfGtx/FEqD6
http://paperpile.com/b/nQfGtx/FEqD6
http://paperpile.com/b/nQfGtx/vaKd
http://paperpile.com/b/nQfGtx/vaKd
http://paperpile.com/b/nQfGtx/vaKd
http://dx.doi.org/10.1146/annurev-animal-020518-115024
http://paperpile.com/b/nQfGtx/zOH9U
http://paperpile.com/b/nQfGtx/zOH9U
http://paperpile.com/b/nQfGtx/zOH9U
http://paperpile.com/b/nQfGtx/zOH9U
http://paperpile.com/b/nQfGtx/y975x
http://paperpile.com/b/nQfGtx/y975x
http://paperpile.com/b/nQfGtx/y975x
http://paperpile.com/b/nQfGtx/y2JpR
http://paperpile.com/b/nQfGtx/y2JpR
http://paperpile.com/b/nQfGtx/y2JpR
http://paperpile.com/b/nQfGtx/3pQId
http://paperpile.com/b/nQfGtx/3pQId
http://paperpile.com/b/nQfGtx/3pQId
http://paperpile.com/b/nQfGtx/wJhov
http://paperpile.com/b/nQfGtx/wJhov
http://paperpile.com/b/nQfGtx/wJhov
http://paperpile.com/b/nQfGtx/tonKx
http://paperpile.com/b/nQfGtx/tonKx
http://paperpile.com/b/nQfGtx/tonKx
http://paperpile.com/b/nQfGtx/kkwV5
http://paperpile.com/b/nQfGtx/kkwV5
http://paperpile.com/b/nQfGtx/kkwV5
http://paperpile.com/b/nQfGtx/RP8XS
http://paperpile.com/b/nQfGtx/RP8XS
http://paperpile.com/b/nQfGtx/RP8XS
http://paperpile.com/b/nQfGtx/ts0K8


      

227 

 

scores, polygenic adaptation, and human phenotypic differences. Evol Med Public 

Health. 2019;2019: 26–34. 

300.  Nei M, Tajima F. Genetic drift and estimation of effective population size. 

Genetics. 1981;98: 625–640. 

301.  Chan EKF, Rowe HC, Corwin JA, Joseph B, Kliebenstein DJ. Combining 

genome-wide association mapping and transcriptional networks to identify novel 

genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol. 2011;9: 

e1001125. 

302.  Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From 

Polygenic to Omnigenic. Cell. 2017;169: 1177–1186. 

303.  Liu X, Li YI, Pritchard JK. Trans Effects on Gene Expression Can Drive 

Omnigenic Inheritance. Cell. 2019;177: 1022–1034.e6. 

304.  Beissinger T, Kruppa J, Cavero D, Ha N-T, Erbe M, Simianer H. A Simple Test 

Identifies Selection on Complex Traits. Genetics. 2018;209: 321–333. 

305.  Turchin MC, Chiang CWK, Palmer CD, Sankararaman S, Reich D, Genetic 

Investigation of ANthropometric Traits (GIANT) Consortium, et al. Evidence of 

widespread selection on standing variation in Europe at height-associated SNPs. Nat 

Genet. 2012;44: 1015–1019. 

306.  Szpiech ZA, Novak TE, Bailey NP, Stevison LS. High-altitude adaptation in 

rhesus macaques. 2020. p. 2020.05.19.104380. doi:10.1101/2020.05.19.104380 

307.  Hu Z-L, Park CA, Reecy JM. Building a livestock genetic and genomic 

information knowledgebase through integrative developments of Animal QTLdb 

and CorrDB. Nucleic Acids Res. 2019;47: D701–D710. 

308.  McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 

The Genome Analysis Toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Res. 2010;20: 1297–1303. 

309.  Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. On detecting incomplete 

soft or hard selective sweeps using haplotype structure. Mol Biol Evol. 2014;31: 

1275–1291. 

310.  Szpiech ZA, Hernandez RD. selscan: an efficient multithreaded program to 

perform EHH-based scans for positive selection. Mol Biol Evol. 2014;31: 2824–

2827. 

311.  Alachiotis N, Pavlidis P. RAiSD detects positive selection based on multiple 

signatures of a selective sweep and SNP vectors. Commun Biol. 2018;1: 79. 

312.  Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. 

http://paperpile.com/b/nQfGtx/ts0K8
http://paperpile.com/b/nQfGtx/ts0K8
http://paperpile.com/b/nQfGtx/5JhgO
http://paperpile.com/b/nQfGtx/5JhgO
http://paperpile.com/b/nQfGtx/Hpnud
http://paperpile.com/b/nQfGtx/Hpnud
http://paperpile.com/b/nQfGtx/Hpnud
http://paperpile.com/b/nQfGtx/Hpnud
http://paperpile.com/b/nQfGtx/pg75V
http://paperpile.com/b/nQfGtx/pg75V
http://paperpile.com/b/nQfGtx/TZ2e5
http://paperpile.com/b/nQfGtx/TZ2e5
http://paperpile.com/b/nQfGtx/z4iDa
http://paperpile.com/b/nQfGtx/z4iDa
http://paperpile.com/b/nQfGtx/qBSMi
http://paperpile.com/b/nQfGtx/qBSMi
http://paperpile.com/b/nQfGtx/qBSMi
http://paperpile.com/b/nQfGtx/qBSMi
http://paperpile.com/b/nQfGtx/FtB1V
http://paperpile.com/b/nQfGtx/FtB1V
http://dx.doi.org/10.1101/2020.05.19.104380
http://paperpile.com/b/nQfGtx/4WkNP
http://paperpile.com/b/nQfGtx/4WkNP
http://paperpile.com/b/nQfGtx/4WkNP
http://paperpile.com/b/nQfGtx/ZTa9T
http://paperpile.com/b/nQfGtx/ZTa9T
http://paperpile.com/b/nQfGtx/ZTa9T
http://paperpile.com/b/nQfGtx/lNa7U
http://paperpile.com/b/nQfGtx/lNa7U
http://paperpile.com/b/nQfGtx/lNa7U
http://paperpile.com/b/nQfGtx/JKIqM
http://paperpile.com/b/nQfGtx/JKIqM
http://paperpile.com/b/nQfGtx/JKIqM
http://paperpile.com/b/nQfGtx/40K7y
http://paperpile.com/b/nQfGtx/40K7y
http://paperpile.com/b/nQfGtx/r6q4G


      

228 

 

Ensembl 2020. Nucleic Acids Res. 2020;48: D682–D688. 

313.  Kuhn RM, Haussler D, Kent WJ. The UCSC genome browser and associated 

tools. Brief Bioinform. 2013;14: 144–161.  

http://paperpile.com/b/nQfGtx/r6q4G
http://paperpile.com/b/nQfGtx/2Orx
http://paperpile.com/b/nQfGtx/2Orx


      

229 

 

VITA 

 Troy Neal Rowan was born September 3, 1993 in Bedford, Iowa. From a young 

age, Troy was immediately taken with his family’s purebred Charolais cows. He spent 

much of his youth tagging along to custom artificial insemination projects with his father, 

Kurt. By 4th grade, Troy was an active member in the Taylor County Iowa 4-H program, 

first as a member of the Lucky 4 club, then as a founding member of the Ross Wranglers. 

He successfully exhibited home-raised animals at the county, state, and national level. 

Throughout elementary, middle, and high school Troy attended the Charolais Junior 

National Show and Conference. There he exhibited home-raised heifers and steers and 

participated in a variety of public speaking contests. 

 After graduating from Bedford Community High School in 2012, Troy attended 

Creighton University in Omaha, Nebraska where he majored in Biology. His initial intent 

was to follow in his mother Theresa’s footsteps and become a pharmacist. Early on 

though, he began undergraduate research in Dr. Karin van Dijk’s lab, first studying 

epigenetic modifications due to bacterial infections in Arabidopsis thaliana, then 

studying algal lipid production under the supervision of Dr. Mike McConnell. After Dr. 

van Dijk’s lab moved to the University of Nebraska, Troy began work with Dr. Carol 

Fassbinder-Orth, studying viral dynamics in an arthropod-avian system.  

 These research experiences, and an interest in returning to the agricultural 

community led Troy to a Ph.D. at the University of Missouri as a part of their Genetics 

Area Program. Troy began his Ph.D. work with Dr. Jared Decker in the Fall of 2016. 

During his time at Mizzou, Troy used commercially-generated genotypes from beef cattle 

to understand the population genetics phenomena of polygenic selection and local 



      

230 

 

adaptation. Troy published multiple peer-reviewed journal articles and delivered podium 

presentations at four international genetics conferences. Additionally, Troy took an active 

role in Extension programming, delivering 12 presentations to cattle producers and allied 

industry professionals.  

 


