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THE PRECISION OF RETRIEVING TEMPORAL INFORMATION: BEHAVIORAL 
AND ELECTROPHYSIOLOGICAL STUDIES 

John E. Scofield, M.S. 

Dr. Jeffrey D. Johnson, Dissertation Supervisor 

ASTRACT 

The knowledge of when an event took place provides benefits to episodic 

memory, such as distinguishing among multiple traces and learning event 

sequences. As a tool for understanding memory, time is appealing given its ever-

changing quality, and the ease with which it is targeted at retrieval. Whereas 

studies of episodic retrieval typically employ categorical measures of retrieval, 

characterizing a continuous feature such as time warrants measures sensitive to 

the precision of retrieved information. Through four experiments, we adapted a 

paradigm for assessing the fine-grained precision of retrieval to understand the 

nature of judging the time at which a memory was encoded. Subjects studied a 

series of pictures and were subsequently tested on when they previously studied 

items. Temporal judgments were less accurate with passing time, with negligible 

guessing. Neurally, ERP amplitudes in left parietal electrodes tracked the 

precision of temporal judgments, with higher ERP amplitudes associated with 

better precision. Additionally, frequency power in both the alpha and theta bands 

were associated with temporal precision. Finally, while testing spatial retrieval, a 

correspondence emerged between spatial and temporal precision on a trial to 

trial basis, but a dissociation was found in which the recency effects found in 

temporal judgments was not present in spatial judgments. Together, these 

findings elucidate the role of time and space in episodic memory retrieval.
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1. GENERAL INTRODUCTION 

Episodic memory refers to the cognitive and neural processes that allow for the 

encoding and retrieval of memories for events and experiences that constitute 

our personal histories. A well-functioning episodic memory ability is additionally 

integral to a variety of cognitive abilities, enabling us, for instance, to flexibly 

navigate through familiar environments (Doeller, Barry, & Burgess, 2010), 

preserve a sense of autonoetic awareness of being able to remember the past 

(Tulving, 1983, 1985), and make predictions about the likelihood of future events 

taking place (Schacter, Addis, & Buckner, 2007; Tulving, 2002). One central 

feature of episodic memories is that they are thought to represent each individual 

event in a unique manner. This “uniqueness” can be supported by several 

factors, including the rich and distinct details surrounding the event, subjective 

aspects of retrieval such as vividness and confidence, and the ever-changing 

contextual information that situates events along both spatial and temporal 

dimensions. Whereas considerable effort has been devoted to characterizing 

many of these factors (for reviews, see Howard, 2017; Spaniol et al., 2009), the 

experiments comprising this dissertation were aimed at further understanding the 

role and characteristics of temporal information in episodic encoding and 

retrieval. 

Experimental studies of episodic memory have predominantly relied on 

paradigms that require subjects to make categorical judgments about the basis of 

retrieval. For instance, the commonly employed remember/know task involves 

distinguishing with a binary judgment items on a memory test that are 
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accompanied by the qualitative recollection of specific details (“remembering”) 

from those items that merely elicit an acontextual sense of familiarity (“knowing”; 

e.g., Mandler, 1980; Rajaram, 1993; Tulving, 1985; for reviews, see Skinner & 

Fernandes, 2007; Yonelinas, 2002). Such categorical responding is also the 

basis for the source memory paradigm (Johnson & Raye, 1981), in which the 

presence versus absence of retrieving a specific, experimentally-manipulated 

detail associated with test items is designated with forced-choice judgments (for 

reviews, see Johnson, Hashtroudi, & Lindsay, 1993; Mitchell & Johnson, 2009). 

Recent iterations of these tasks have moved toward incorporating measures that 

are more graded in nature, as is the case with having subjects indicate item 

familiarity by providing confidence ratings on a Likert-type scale (e.g., Montaldi, 

Spencer, Roberts, & Mayes, 2006; Yonelinas, Otten, Shaw, & Rugg, 2005). 

However, experimental investigations of the nature of recollection, and in 

particular whether it also has continuous properties, are much less common. A 

few notable exceptions to this come from studies that have probed subjects to 

indicate the amount of information they are able to retrieve for a given test item 

(e.g., Vilberg & Rugg, 2007; Wilding, 2000) or their graded level of confidence for 

making a source memory judgment (e.g., Hayes, Buchler, Stokes, Kragel, & 

Cabeza, 2011; Mickes, Wais, & Wixted, 2009; Woroch & Gonsalves, 2010).  

The continuous variation with which we can retrieve and differentiate episodic 

memories has the potential to be of great utility, and is thus of growing interest, 

as it has been recently in the field of working memory research (e.g., Wilken & 

Ma, 2004; Zhang & Luck, 2008; for reviews of working memory and related 
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issues, see Adams, Nguyen, & Cowan, 2018; Ma, Husain, & Bays, 2014). Bays, 

Catalao, and Husain (2009) have shown that when subjects use a continuous 

report task to judge the precise color of a previously studied item, memory 

precision exhibits graded effects with increases in working memory load. 

Moreover, within individuals, the precision of visual working memory 

representations can change from trial to trial, even in the absence of any 

particular experimental manipulation (Fougnie, Sucho, & Alvarez, 2012). These 

and other studies from the working memory have inspired other domains of 

memory research that the resolution, or precision, with which information can be 

retrieved has been demonstrated to vary continuously. 

The continuous report task has recently been adopted in long-term memory 

studies to further understand the precision (or fidelity) with which episodic 

recollection occurs (e.g., Brady, Konkle, Gill, Oliva, & Alvarez, 2013; Harlow & 

Donaldson, 2013; Harlow & Yonelinas, 2016; Murray, Howie, & Donaldson, 

2015). Many of these studies use tasks where spatial information serves as the 

continuous dimension of interest. In one initial study by Harlow and Donaldson 

(2013), subjects first encoded a series of words that were each presented along 

with a mark denoting a spatial position on a circle. Upon presentation of the word 

cue during a subsequent memory test, subjects were to mark the corresponding 

spatial position as precisely as possible. The main result was that the precision of 

the judgment varied continuously around the correct position (for similar findings, 

see Harlow & Yonelinas, 2016; Murray et al., 2015). Other researchers have 

conceptually replicated those findings using tasks in which spatial judgments 
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across a two-dimensional area are estimated (Nilakatan, Bridge, Gagnon, 

VanHaerents, & Voss, 2017; Nilakatan, Bridge, VanHaerents, & Voss, 2018) and 

where color-wheel judgments as described above for working memory are 

employed (Brady et al., 2013). While the emerging pattern of findings from these 

studies points to declining precision while transitioning from shorter-term 

(working) to longer-term tasks, they importantly have moved episodic memory 

research from away from a solely thresholded treatment of recollection (see 

Parks & Yonelinas, 2009; Wixted, 2007). 

Besides having the ability to detect more sensitively the finer changes in the 

quality of retrieved information, the continuous report task has also been 

beneficial in advancing a statistical modeling approach that can be used to 

characterize multiple decision processes involved in memory retrieval. This 

approach involves mixture modeling, which separates a distribution of memory 

responses into multiple components. The main component describes a 

distribution that represents the precision of memory retrieval that varies 

continuously around zero. This distribution is often a von Mises distribution with 

tasks requiring subjects to make judgments along a circular display, and can be 

other distributions depending on what scale is used (e.g., normal distributions 

can be used with linear scales). The width, or shape of this initial distribution 

generally characterizes the fidelity, or precision, in which subjects were able to 

retrieve items from memory. The other critical component of mixture-modeling is 

a secondary distribution that is superimposed on the distribution of test 

responses. This is a guessing parameter and is characterized by estimating the 
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number of trials that best fit within a uniform distribution, such that there is equal 

probability that judgments are close or further away from the target. The 

guessing parameter represents the rate, or percentage of trials that subjects 

were estimated to have guessed on the trial, suggesting that retrieval had failed 

for a particular test item. Mixture-modeling following this framework is beneficial 

in that it not only yields continuous estimations of memory precision but can 

identify trials in which retrieval precision was irrelevant in the case of random 

guessing. 

1.1 The Current Experiments 

The set of four experiments reported on here were conducted to further 

characterize the processes supporting the retrieval of temporal information in 

episodic memory. Experiment 1 first provides an introduction on the importance 

and benefits of understanding temporal information retrieval. The experimental 

design is then described, constituting a novel adaptation of the continuous report 

task to responses made along a linear timeline. Subjects incidentally encoded an 

uninterrupted series of pictures and subsequently judged each item according to 

when, along the series, it was presented. This task, along with the associated 

mixture-modeling approach described above, allows for estimation of the 

precision of temporal retrieval judgments and the involvement of other decision 

processes (e.g., guessing and bias) in making such judgments. Furthermore, this 

analysis approach is used to test novel predictions about how temporal precision 

changes across the encoding period. A manuscript based on the results of 

Experiment 1 is available at https://psyarxiv.com/kfhqx/.  
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Experiments 2 and 3 next employed experimental designs that were largely 

similar to that of Experiment 1, but with a respective decrease and increase in 

the number of encoded and tested items. The primary aim of Experiment 2 was 

to provide a conceptual replication of the novel effects of recency on temporal 

precision observed in Experiment 1, with an a priori power analysis allowing for a 

reduction in the numbers of trials and subjects. Additionally, the stimuli employed 

in Experiment 2 were balanced across animate and inanimate categories (a 

design feature that was not considered at the time Experiment 1 was conducted), 

as previous research has indicated that memory performance can differ 

according to this distinction, which thereby could have affected our earlier 

estimation of temporal retrieval.  

As outlined in the introduction for Experiment 3, the length of the encoding phase 

used during each of the preceding experiments raises the potential issue that 

responses are truncated by the start and end boundaries of the encoding list. 

This truncation could both limit the accuracy of estimating temporal retrieval 

precision and affect the degree to which effects of recency and bias are 

observed. Experiment 3 thus expanded on the first two experiments by 

considerably increasing the number of trials presented during the encoding 

phase. Due to the corresponding increase in the amount of time subjects were in 

the laboratory, a typical sample size was not practical. Instead, a small-N design 

was employed, and the opportunity was taken to acquire 

electroencephalographic (EEG) data from these subjects. Analysis of the EEG 

data, both in terms of event-related potentials (ERPs) and oscillatory activity, 
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allowed for the novel investigation of the neural correlates of temporal memory 

precision. 

Finally, Experiment 4 constituted a switch from the aforementioned laboratory 

protocols to an online behavioral setting, due to COVID-19. This study 

investigated the retrieval of temporal information in much the same way as 

previously described but also included an analogous task that probed the more 

commonly researched phenomenon of spatial memory retrieval. By having 

concurrent judgments for each of these tasks on every trial, dependencies 

between temporal and spatial retrieval, as well as similarities in precision and 

decision-making, could be directly tested. 
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2. EXPERIMENT 1 

As described earlier, studies using continuous report tasks to investigate long-

term retrieval precision have for the most part relied either on spatial judgments, 

where subjects might be required to encode and retrieve studied items 

associated with a marker positioned on a circle (e.g., Harlow & Donaldson, 2013; 

Harlow & Yonelinas, 2016; Murray et al., 2015; Richter, Cooper, Bays, & Simons, 

2016), or on judgments placed along a continuous color wheel (e.g., Brady et al., 

2013). The degree to which temporal information is precisely retrieved, however, 

is much less understood. Whereas several classic memory studies involved 

asking subjects to estimate the time at which items were previously studied, such 

judgments were often relatively coarse in that they only distinguished between 

multiple encoding lists or between rather large sections of a single list (e.g., 

Hintzman & Block, 1971; McCormack, 1984). Some recent studies advanced this 

work by assessing temporal estimation at a higher resolution — that is, at the 

level of seconds or trials — for stimuli that were presented across a continuous 

encoding list (Jenkins & Ranganath, 2010; Lositsky et al., 2016; Montchal, 

Reagh, & Yassa, 2019). In one study, Montchal, Reagh, and Yassa (2019) used 

a rather unique experimental design in which subjects watched a half-hour 

popular television show and were later asked to place still-frames extracted from 

the show along a timeline indicating when it had occurred. Montchal et al. (2019) 

observed that subjects were highly accurate in their temporal judgments and that 

performance correlated, based on functional magnetic resonance imaging (fMRI) 

data, with activity in regions of the entorhinal cortex previously linked to 
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processing temporal contextual information (Lositsky et al., 2016; Tsao et al., 

2018). One notable aspect of these findings was that even subjects who did not 

watch the television show also exhibited some degree of accuracy at scene 

placement, suggesting that natural progression of the show’s plot may have 

provided informative cues about time.  

We built on the aforementioned findings in the current experiment by using an 

encoding phase that consisted of a series of pictures chosen randomly and 

presented at consistent intervals, thus minimizing the presence of any 

informative cues. This approach is somewhat comparable to that used in the 

study by Jenkins and Ranganath (2010), in which subjects were shown a series 

of pictures presented in the context of a working memory task and then later 

placed some of the items on a timeline corresponding to the encoding phase. 

The authors found that the items presented more recently (i.e. occurring later in 

the encoding phase) were associated with lower error rates in temporal 

estimation compared to the more remote items. However, based on the 

behavioral results, it is unclear whether other decision processes were involved 

in making the temporal judgments, as could be elucidated with mixture modeling. 

Additionally, because this study and Montchal et al. (2019) both involved the 

analysis of fMRI data, the neural correlates of temporal retrieval were identified in 

a relatively coarse manner by comparing groups of high- versus low-accuracy 

trials. It thus remains to be determined whether and how continuous changes in 

the precision of temporal retrieval would be borne out in neural differences. 
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Using a mixture-modeling approach with continuous behavioral judgments along 

a timeline corresponding to encoding, Experiment 1 was focused first on 

characterizing any changes in the precision of temporal retrieval across remote 

versus recent memories. Second, the modeling procedure allowed us to test for 

the influence of guessing on temporal memory. As noted earlier, guessing in the 

context of long-term memory studies employing continuous report tasks has 

been well described as uniform over a circular response scale (e.g., Harlow & 

Donaldson, 2013; Harlow & Yonelinas, 2016; Murray et al., 2015; Richter et al., 

2016). Because judgments about time require switching to a linear scale, 

particularly where one end of the scale does not lead continuously into the other 

end, it is an open question as to whether guessing plays a similar role in 

responding. Finally, we tested for the involvement of bias in temporal judgments 

which would take the form of a shift in the mean of the error distribution, 

reflecting a tendency to respond more recently or remotely relative to an item’s 

actual encoding time. Given that judgments on the typically-employed circular 

scales have been shown to be largely unaffected by bias, the use of a linear 

scale in the present experiment might reveal a novel characteristic of decision-

related processing when time is the response dimension. 

2.1 METHOD 

2.1.1 Subjects 

Thirty-two University of Missouri (MU) students participated for partial course 

credit. Inclusion criteria were: 18-30 years old, native-English speaking, and no 
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history of neurological disease. Informed consent was obtained in accordance 

with the MU Institutional Review Board. Data were initially screened to confirm 

each subject’s active engagement with the task, defined as moving the computer 

mouse from the starting position on >95% of test trials (see Harlow & Yonelinas, 

2016). Two subjects were excluded by this criterion, with an additional subject 

removed for having a high percentage (28%) of fast (< 500 ms) temporal 

judgments. The final sample of subjects (20 females, 9 males) were 18-22 years 

old (M = 19.1, SD = 1.1). 

2.1.2 Stimuli 

The stimulus pool consisted of 300 color pictures of common, nameable objects. 

Each picture subtended a visual angle of about 3.1° and was presented centrally 

on a light gray (~70% white) background. Stimuli were displayed on a 24-inch 

widescreen LCD monitor (1024×768 resolution) viewed at a distance of 

approximately 1 meter. Stimulus presentation was controlled with the 

Cogent2000 toolbox (v.1.32; http://www.vislab.ucl.ac.uk) in MATLAB (R2012a; 

MathWorks, Natick, MA). 

2.1.3 Procedure 

The experimental session (~45 minutes) consisted of an encoding phase 

followed by a test phase. Instructions and practice on encoding were 

administered first, keeping subjects naive about the nature of the test phase until 

immediately prior to its start. The encoding phase comprised a single block of 

300 pictures, with each displayed for 3000 ms and followed by a central plus sign 
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presented for 500 ms. Subjects were informed of the number of trials and total 

time of the encoding phase (17.5 minutes) prior to its start. Subjects were 

instructed to rate the pleasantness of each picture on a 4-point scale (very 

pleasant, somewhat pleasant, somewhat unpleasant, and very unpleasant) via 

key presses mapped to their left little through index fingers. The response 

options were displayed at the bottom of the screen throughout the encoding 

phase. 

Following encoding, subjects received instructions and practice on the test 

phase, which consisted of all study pictures being presented in a randomized 

order. Each test trial began with a picture presented above a horizontal time 

scale. The time scale ranged from trial 1 on the left to trial 300 on the right, with 

labels marking every 50 trials. On each trial, an arrow was initially displayed at 

the midpoint of the scale (trial 150). Subjects were instructed to use the computer 

mouse to move the arrow, as precisely as possible, to the position at which they 

thought the picture occurred at study, and to click the left mouse button to finalize 

their response. A vertical confidence scale, ranging from 0% at the bottom to 

100% at the top (with labels marking 20% increments), then replaced both the 

picture and time scale. An arrow next to the scale was initialized at 50% on each 

trial, and subjects were to rate their confidence about correctly retrieving the 

picture’s study position, irrespective of precision (also see Harlow & Yonelinas, 

2016). After the confidence judgment was made by pressing the left mouse 

button, a central plus sign was displayed for 1000 ms until the next trial began. 

Figure 1 shows a visualization of the experiment. 
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Figure 1. Task Schematic for Experiment 1 
(A) Subjects first incidentally encoded 300 common objects that were each shown for 3000 ms. 
(B) During the test phase, subjects were shown all pictures again, along with a continuous scale 
representing the encoding phase timeline. Subjects moved the computer mouse horizontally to 
indicate, as precisely as possible, when the picture occurred. Subjects then rated their confidence 
about the preceding temporal judgment by moving the computer mouse vertically between 0 and 
100 percent. 

 

2.1.4 Data Analysis 

The behavioral data and analysis scripts are available at https://osf.io/c7nge. 

Primary analyses were conducted using MemToolbox (v. 1.0.0; Suchow, Brady, 

Fougnie, & Alvarez, 2013) in MATLAB (R2012a), with modifications made to the 

toolbox to model responses along a linear (time) scale. Prior to analysis, study 

trials on which subjects failed to respond or did so outside a predefined interval 

of 500-3000 ms after picture onset were removed (2.9% of trials; SD = 3.0). 

Although the temporal position and confidence judgments during the test phase 

were self-paced, trials on which subjects made the temporal response faster than 

500 ms or made either response slower than 10 s were removed (2.4% of trials; 

SD = 3.6). Given the infrequency of responses near the start and end of the 

scale, and due to the potential for temporal judgments to be affected by these 
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boundaries, data for the first 50 and last 50 study trials were excluded from all 

analyses (for analogous approaches, see Montchal et al., 2019; Nilakantan et al., 

2017, 2018). 

Trials were scored in terms of error distance (in number of trials) between the 

actual study position of the picture and its judged position on the test. The 

temporal (position) scale was 600 pixels wide, providing a resolution of every .5 

trial. The confidence scale was 500 pixels tall, giving a resolution of .2%. The 

posterior distribution of each parameter was estimated with an adaptive Markov 

Chain Monte Carlo (MCMC) algorithm (see Andrieu, De Freitas, Doucet, & 

Jordan, 2003) in which three separate chains were run (based on different 

starting values) and convergence was checked after every 200 samples (Gelman 

& Rubin, 1992). For the group- and subject-based models, the respective 

numbers of post-convergence samples collected were 4500 and 6000. Model 

comparison was based on Bayesian Information Criterion (BIC; Schwarz, 1978). 

Bayes factors (BFs) were computed with a set of MATLAB functions 

(Schwarzkopf, 2015), using a default scaling factor (r) of .707 (see Rouder, 

Speckman, Sun, Morey, & Iverson, 2009; Morey, Rouder, & Jamil, 2018). All BFs 

are reported as BF10, where values >1 indicate evidence favoring the alternative 

hypothesis, and positive values <1 indicate evidence favoring the null hypothesis. 

2.2 RESULTS AND DISCUSSION 

During the encoding phase, the mean response time (RT) for making 

pleasantness judgments was 1424 ms (SD = 246). For the test phase, the mean 
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RTs for the temporal and confidence judgments were 2720 (SD = 794) and 1064 

ms (SD = 386), respectively. Figure 2A displays the group-level error distribution 

of temporal responses. For completeness, the scatterplot between the correct 

and responded locations across trials is reported for this and all other 

experiments in the Appendix (Figures A1-4). Centered on each study trial, the 

mean absolute error was 7.69 trials (SD = 13.51). To further parameterize 

temporal precision, the error distribution was modeled by a normal function with a 

mean of zero and the standard deviation corresponding to precision error 

(hereafter, σ). The resulting maximum a posterior probability (MAP) estimate of σ 

was 75.32 (95% highest density interval [HDI] = [73.93, 76.80]). Modeling 

individual subjects gave rise to a similar level of precision error: M = 74.95 and 

SD = 8.32 (see Figure 2B). 
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Figure 2. Behavioral Results for Temporal Judgments in Experiment 1 
(A) Histogram of the group-level distribution of temporal response errors, centered (at 0) on each 
study trial. Positive/negative values respectively reflect responses that are more recent/remote 
than the correct position. The line corresponds to the estimated normal function of the 1-
parameter (precision-only) model: μ = 0 and σ = 75.32.  
(B) The precision (σ) results for all, halved, and quartiled trials. For each pair of box plots, the left 
one indicates the MAP estimate and 95% HDI for the group analysis, and the right one indicates 
the mean±SEM for the subject-wise analysis. The results for individual subjects are plotted with 
circles.  
(C) Histograms of the group-level distributions of temporal errors, separated according to the first 
(remote) and second (recent) halves of the study list. The line plots indicate the best-fitting normal 
functions for each condition (μ = 0; remote σ = 79.19; recent σ = 71.23). Data for the recent half is 
arbitrarily plotted downward for clarity. 

 

2.2.1 Changes in Temporal Precision Across Time  

Next, we investigated whether temporal precision changes with passing time by 

dividing the encoding list in half and applying the modeling procedure described 
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above to the error distribution for each half. As displayed in Figures 2B and 2C, 

group-level precision error was higher for the first half (hereafter, remote; σ = 

79.19 [77.24, 81.28]) than the second half (recent; σ = 71.23 [69.48, 73.22]). 

Subject-wise modeling confirmed this difference was significantly different 

(remote: M = 78.59, SD = 11.38; recent: M = 70.21, SD = 11.70), t(28) = 2.84, p 

= .008, BF10 = 3.78.  

Closer examination of the temporal response distributions revealed that precision 

error was not only lower for recent compared to remote trials, but was 

considerably lower for the middle of the encoding list. Figure 2B displays this 

pattern for trials binned into quartiles. To better isolate the remote-recent effect 

from the difference in precision for the middle versus extreme quartiles, the 

subject-wise σ estimates of the quartiled data were submitted to a 2 (remote, 

recent) × 2 (middle, end) ANOVA. The analysis revealed main effects of both 

factors (respectively, F1,28 = 8.72 and 227.56, p = .006 and p < .001) but no 

interaction (F < 1). Planned contrasts confirmed the remote-recent difference in 

precision for both the first versus fourth quartiles (M = 88.60 and 79.02, SD = 

14.17 and 16.15), t(28) = 2.20, p = .036, BF10 = 1.57, and the second versus third 

quartiles (M = 66.78 and 59.75, SD = 10.63 and 9.50), t(28) = 3.64, p = .001, 

BF10 = 30.82.  

2.2.2 Response Bias in Temporal Judgments  

By comparing the temporal error distributions to the corresponding model fits 

(see Figures 2A and 2C), it becomes apparent that errors overall tended to be 
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more recent than remote. We therefore tested this effect by adding a bias 

parameter (μ), corresponding to a shift in the mean of the normal distribution, to 

the modeling procedure. The resulting fit of the 2-parameter (μ, σ) model, 

alongside that of the σ-only model, is shown in Figure 3A. The group-based μ 

estimate of 7.48 [5.62, 9.16] was consistent with the subject-based results (M = 

7.70, SD = 13.49; see Figure 3B), which were statistically greater than zero, t(28) 

= 3.07, p = .004, BF10 = 8.72. Moreover, the estimates of σ for the 2-parameter 

model resembled those of the original model (group: 74.96, [73.69, 76.32]; 

subjects: M = 73.34, SD = 8.33). Highlighting the importance of bias, despite it 

adding complexity, model comparison indicated that including it was preferable to 

excluding it (BIC = 63,502.01 and 63,457.38, respectively). 
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Figure 3. Effects of Response Bias on Temporal Judgments in 
Experiment 1 
(A) Group-level distribution and 1-parameter model fit (dotted line) of temporal 
response errors, as shown in Figure 1A, along with the fit of the 2-parameter 
model (solid line)—precision (σ = 74.96) and bias (μ = 7.48).  
(B) Box plots indicating the group-wise (MAP, HDI) and subject-wise (M±SEM) 
results for the bias parameter, with data for individual subjects also plotted.  
(C) Bias parameter results corresponding to separate modeling of trials in which 
low vs. high confidence was designated (with a 50% cutoff). 

 

2.2.3 Guessing in Temporal Judgments 

In keeping with prior studies that have often used continuous response 

paradigms to dissociate precision from guessing (e.g., Brady et al., 2013; Harlow 

& Yonelinas, 2016; Zhang & Luck, 2008), we next fit the temporal error 



 

20 

 

distribution with a 3-parameter model that included σ and μ (as above) and 

parameterized the proportion of guessing trials (hereafter, λ) with a uniform 

distribution. The estimates for precision error and bias were similar to those 

reported above: σ = 74.81 [73.33, 76.49] (M = 72.69, SD = 8.16) and μ = 7.68 

[5.37, 9.43] (M = 7.82, SD = 13.57). Guessing, however, was near zero for both 

group- (5.0e-5 [5.0e-5, .009]) and subject-based models (M = .0075, SD = .016). 

To further test that guessing was negligible, we directly compared the 2- and 3-

parameter models, the results of which favored the former (respectively, BIC = 

63,457.38 and 63,467.84). 

To ensure that any subtle differences in guessing across the encoding list were 

not missed, we additionally included it in modeling the data binned into halves. 

Notably, we excluded the bias parameter for these analyses, as preliminary 

analyses showed that it varied widely across halves of the encoding list (likely 

due to the boundaries of the list). The λ estimates were again near zero for both 

the first (1.6e-4 [1.7e-4, .014]) and second halves (3.6e-4 [4.2e-4, .015]), with the 

subject-wise means suggesting that there is no strong evidence for guessing rate 

changes across time (respectively, M = .0088 and .014, SD = .020 and .030), 

t(28) = .73, p = .47, BF10 = 0.73. 

2.2.4 Confidence Judgments 

Although confidence judgments were included in the design to follow previous 

studies (e.g., Harlow & Donaldson, 2013; Harlow & Yonelinas, 2016), we 

suspected from the outset that subjects might be unable to treat them distinctly 
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from temporal judgments, and we thus had no specific hypotheses regarding 

differences in confidence. For completeness, though, we summarize the 

confidence results and then consider them in the context of the modeling 

approach described above.  

Confidence judgments were spread considerably across the 0-100% scale (M = 

53.44, SD = 9.74). Contrary to what might be expected if confidence tracked 

temporal precision, it was not correlated with the absolute value of error (r = 

.0088, p = .51; cf. Harlow & Yonelinas, 2016). Nonetheless, the ratings were 

binned into high and low confidence (using a 50% cutoff), and the 3-parameter 

(σ, μ, and λ) modeling procedure was applied separately to the data from each 

bin. Across high versus low confidence, no decisive evidence of any differences 

emerged for precision (respectively, σ = 75.75 [73.76, 77.600] and 74.02 [71.62, 

76.24]; M = 71.12 and 71.52, SD = 10.09 and 11.42), t(28) = .18, p = .86, BF10 = 

0.67, or guessing (λ = 6.6e-6 [9.8e-5, .013] and 3.9e-4 [1.8e-4, .015]; M = .020 

and .016, SD = .047 and .044), t(28) = .27, p = .79, BF10 = 0.67. However, bias 

was higher—such that recent responses were favored more—for high compared 

to low confidence (respectively, μ = 10.41 [8.17, 12.81] and 3.39 [.68, 7.09]; M = 

13.24 and -.016, SD = 18.70 and 17.77), t(28) = 3.73, p < .001, BF10 = 16.12. 
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3. EXPERIMENT 2 

As Experiment 1 novelly extended the traditional continuous report task and 

mixture-modeling approach to the domain of temporal judgments in episodic 

retrieval, we next attempted to provide a conceptual replication of its main 

findings. To this end, Experiment 2 involved having subjects again encode a 

continuous series of pictures and then make successive responses about each 

picture’s temporal position and the corresponding level of confidence in that 

judgment. Additionally, there were two noteworthy departures from the previous 

experiment — one related to a design modification and the other related to an 

advance in the analysis approach — which we describe in turn below. 

In Experiment 1, the pictures that served as stimuli were randomly selected from 

a pool that contained unequal numbers of pictures from animate versus 

inanimate categories. Prior research has demonstrated, however, that animate 

stimuli are often remembered better than inanimate stimuli, in line with the idea 

that there is an adaptive aspect to human memory in which survival-relevant 

stimuli have an advantage (Laurino & Kaczer, 2019; Nairne, VanArsdall, 

Pandeirada, Cogdill, & LeBreton, 2013; Nairne, VanArsdall, & Cogdill, 2017; 

VanArsdall, Nairne, Pandeirada, & Blunt, 2013; VanArsdall, Nairne, Pandeirada, 

& Cogdill, 2015). In addition to this difference potentially affecting memory, it is 

possible that the unequal trial numbers could have caused some stimuli to 

appear more salient, thereby interfering with our estimation of retrieval precision. 

Experiment 2 therefore equated the numbers of pictures from the two categories, 

allowing for an extension of the findings on adaptive memory to our measure of 
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temporal precision, with the straightforward prediction that animate stimuli would 

be remembered with greater precision. 

One consequence of equating trials on animacy was that the length of the 

encoding phase had to be reduced (from 300 trials in Experiment 1 to 140 trials 

here) due to the limited size of the stimulus pool. To accommodate having fewer 

observations, trial-level multilevel modeling was employed to capitalize on the 

continuous nature of the predictor corresponding to recency (i.e. encoding 

position), while also being statistically more powerful than the trial binning 

procedure used in Experiment 1. 

3.1 METHOD 

3.1.1 Subjects  

Twenty-two MU students (13 females, 9 males), 18-22 years of age (M = 19.1, 

SD = 1.15), participated for course credit. Inclusion criteria for this experiment 

were the same as in Experiment 1, with the additional criterion that subjects did 

not participate in that experiment. Written informed consent was obtained in 

accordance with the MU Institutional Review Board. 

3.1.2 Stimuli and Procedure  

The stimuli and procedure for Experiment 2 were largely the same as Experiment 

1, with the critical exception of the number and type of stimuli used. Serving two 

purposes, a subset of stimuli (140) from the original pool of 300 pictures were 

chosen both to shorten the overall encoding duration and to match the number of 
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pictures depicting animate and inanimate objects (as determined by the author). 

With this smaller pool of 140 pictures, the study duration was 8.2 minutes. A 

continuous timeline response scale with the same dimensions as that in 

Experiment 1 was used. However, the labels on the scale only ranged from 1 to 

140, with tick marks placed corresponding to every 23 trials. 

3.1.3 Data Analysis  

Statistical analyses were conducted in R (v.3.5.1; R Core Team, 2018) using the 

lme4, and brms packages (Bates, Maechler, Bolker, & Walker, 2015; Burkner, 

2017). To assess evidence for predictor variables in the multilevel analyses, a 

model comparison approach was used. Omnibus effects were first contrasted 

with an intercept only model, based on comparing the Bayes Factors (BFs) 

calculated with a bridge sampling technique (bridgesampling package; Gronau & 

Singmann, 2017). All models were fit using random intercepts for individual 

subjects and weakly informative priors [β ~ N(0,1); σ ~ Cauchy(0,2)]. For each of 

four separate chains, 2000 samples were estimated (the first 1000 being warm-

up samples). Following guidelines from Rouder, Engelhardt, McCabe, and Morey 

(2016), ratios of BFs were taken to assess evidence for main effects. Statistical 

interpretations were based solely on Bayesian estimates, although frequentist 

statistics are also reported (Valentine, Buchanan, Scofield, & Beauchamp, 2019). 

3.2 RESULTS AND DISCUSSION 

At study, subjects failed to respond on average to 2.24% of trials (around 3 out of 

140 trials). As in Experiment 1, study items with missing responses were not 



 

25 

 

analyzed during the test phase. The overall mean study RT was 1421 ms (SD = 

525). There was no difference in the average study RTs between animate (M = 

1460 ms, SD = 521) and inanimate (M = 1394, SD = 526) trials, t(1853) = 0.03, p 

= .973. 

Test items that occurred in the first and last 25 study positions were excluded 

from analysis. Additionally, test trials for which subjects took more than 10 

seconds to make the temporal judgment were omitted. The average RT for the 

remaining temporal judgments was 3129 ms (SD = 1728). Again, there were no 

differences in test RTs between the animate (M = 3289 ms, SD = 1816) and 

inanimate (M = 3015 ms, SD = 1655) categories, t(1892.16) = 0.08, p = .939.  

Temporal judgments were widely distributed across most of the study period, 

with a clear reduction in the frequency with which subjects respond near the ends 

of the scale. Figure 4A shows a histogram of judgments at each study position, 

whereas Figure 4B displays the distribution of confidence ratings. The majority of 

temporal judgment trials were associated with higher confidence ratings (M = 

59.80, SD = 23.63), as evident by the distribution shift in Figure 4B above 50%. 

There was no difference in confidence ratings between animate (M = 60.31, SD = 

25.86) and inanimate (M = 59.44, SD = 21.93) trials, t(1892.5) = 0.85, p = .395. 

Figure 5A displays the distribution of errors in temporal judgment, showing a 

distribution similar to Experiment 1. On average, the error between where 

subjects responded and the correct study position was 27.9 items (SD = 20.6). 
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Figure 4. Summary of Temporal and Confidence Judgments in Experiment 
2 
(A) Histogram of temporal judgments, collapsed over the whole group of subjects, at each 
position along the timeline representing the study phase.  
(B) Histogram of the group-level confidence ratings at test, indicating a general bias to respond 
with higher confidence (e.g., > 50%). 
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Figure 5. Behavioral Results for Temporal Judgments in Experiment 2 
(A) Distribution of errors in temporal judgments across all subjects, with zero indicating 
responding at the precise location of a previously studied item.  
(B) Regression lines showing the negative relationship between study position and the precision 
of temporal judgments. The group-level line is displayed in black, and the lines for individual 
subjects are gray.  

 

3.2.1 Standard Mixture-Modeling 

The standard mixture-modeling approach used in Experiment 1 was first applied 

to the current data to assess the replication of the primary effects found in 

Experiment 1 — namely the negligible guessing rate and the response bias in 

temporal responses. Using a model comparison approach, the 1-parameter 

normal distribution mixture model (without any additional parameters) was first fit 

(σ = 34.68, 95% HDI [33.54, 35.83]) and compared to a 2-parameter model (σ = 

33.91 [32.93, 35.06]) that included the recency bias parameter (μ = 7.10 [5.45, 

8.72]). The 2-parameter model had a lower BIC (18815.54) than the 1-parameter 
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model (BIC = 18886.61), indicating that including the recency bias term was 

preferred.  

Next, to examine the role of guessing with this shortened task, the 2-parameter 

(σ, μ) model was compared to a 3-parameter model (σ, μ, λ). The resulting MAP 

estimates for the 3-parameter model were as follows: σ = 33.98 [33.03, 35.23]; μ 

= 7.41 [5.73, 8.73]); and λ < 0.001 [0.000, 0.002]. The 2-parameter model again 

gave rise to a lower BIC (18815.54) than the full model (BIC = 18824.93). These 

modeling results thus replicate Experiment 1 by demonstrating a recency bias in 

temporal judgments as well as negligible guessing. 

To assess how model estimates varied as a function of recency, we divided the 

encoding list into recent and remote halves. Based on modeling the group-level 

data, precision was similar across the recent (27.68 [26.63, 28.69]) and remote 

halves (27.77 [26.52, 28.86]). When repeating this procedure for each subject, a 

similar pattern emerged. That is, there was no significant difference in precision 

between the recent (M = 26.42, SD = 4.17) and remote halves (M = 26.78, SD = 

4.34), t(20) = 0.54, p = .592. The corresponding bias and guessing results are 

provided in Figure 6. Interestingly, we observed that the recent half data elicited 

a higher bias parameter (8.17 [8.04, 8.35]) than that for the remote data (7.42 

[7.05, 7.40]). This pattern was confirmed via subject-level modeling (recent: M = 

8.15, SD = 0.89; remote: M = 7.24, SD = 0.70; t(20) = 5.27, p < .001). Study half, 

here used as a rough proxy for elapsed time, therefore appears to influence the 

degree that subjects tend to overestimate the recency of an item. Lastly, 

guessing remained at near-zero levels across the study halves (recent: <0.001 
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[0.00, 0.004], M = 0.001, SD = 0.001; remote: <0.001 [0.00, 0.003], M = 0.001, 

SD = 0.001), t(20) = 0.37, p = .715. 

As this experiment additionally equated the study items according to animacy 

category, we also tested for differences in the mixture-modeling parameters 

across this factor. Specifically, although precision estimates based on the group 

data were lower for animate (28.99 [27.86, 30.75]) versus inanimate stimuli 

(27.07 [25.73, 28.36]), the subject-level data gave rise to no significant difference 

between the two categories (animate: M = 27.33, SD = 4.85; inanimate: M = 

26.55, SD = 4.20), t(18) = 0.98, p = .340. Similarly, the bias parameter was also 

found to differ across categories based on the group data (animate: 7.58 [7.38, 

7.76]; inanimate: 7.79 [7.67, 7.95]) but not based on the subject-wise data 

(animate: M = 7.41, SD = 0.93; inanimate: M = 7.77, SD = 0.79), t(18) = 1.25, p = 

.229. Finally, guessing remained near zero in all cases (animate: <0.001 [0.00, 

0.004], M = 0.001, SD = 0.001; inanimate: <0.001 [0.00, 0.002], M = 0.001, SD = 

0.001; t(18) = 0.93, p = .366). The bias and guessing estimates according to 

animacy are provided in Figure 6 for completeness. 
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Figure 6. Mixture-Modeling Results for Experiment 2 
The left and right columns provide estimates of response bias (μ) and guessing (λ), respectively. 
The top row provides estimates from mixture-models that were applied separately to the first 
(remote) and second (recent) halves of the study list. The bottom row provides modeling results 
separated for the animate and inanimate categories. The box plots display the median and 
quartile values, along with individual subject results shown by the dots.  

 

3.2.2 Trial-level Modeling of Recency Effects 

The foregoing analysis strategy, as well as that of Experiment 1, assessed 

recency effects in temporal precision via binning the encoding position into 

discrete halves and quartiles. While this approach revealed consistent precision 

estimates both at the subject and group level, it is also advantageous to analyze 

precision differences using the continuous variable of encoding position in its 

natural form. To do this, trial-level response errors — i.e. the actual temporal 

position of a trial along the timeline minus the response location — were 

analyzed using Bayesian multilevel regression models (trials nested within 



 

31 

 

subjects), allowing us to track changes in precision across the entire encoding 

period instead of relying on binning into recent and remote periods.  

Our main prediction for the trial-level analyses was that the basic recency effects 

found in Experiment 1 would be replicated. That is, we would observe evidence 

in favor of an encoding period effect where more recent items are associated 

with better temporal precision. To assess this, four separate models were fit. The 

first model included all relevant predictors (study position, confidence rating, 

animacy), whereas the remaining three models each excluded one of the 

predictor variables. BFs were calculated as the ratio of evidence for the addition 

of a certain predictor, controlling for the effects of the other (e.g., the comparison 

of the full model which includes study position to the model with every other 

predictor except study position). Table 1 shows parameter estimates for all 

models. Replicating Experiment 1, but contrary to the binned results reported 

above for the current experiment, there was strong evidence for an effect of 

study position, BF10 = 1.66e+12, F(1,1873.59) = 65.57, p < .001. Specifically, 

every increase in study position (i.e., more recent) was associated with an 

improvement (i.e. decrease) in precision of 0.14 items. Figure 5B displays the 

negative relationship between precision and study position based on the group- 

and subject-level analyses. 
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Table 1. Summary of Trial-Level Modeling Estimates for Experiment 2 
For each predictor (study position, confidence, animacy), slope estimates, error, 95% Highest 
Density Intervals (HDI), and Bayes Factors (BF) are presented. 
 

Predictor Estimate Est. Error 95% HDI BF10 

Study Position -0.14 1.91 [-0.18, -0.11] 1.66e+12 

Confidence 0.01 0.02 [-0.03, 0.05] 0.02 

Animacy 0.28 0.02 [-1.08, 1.65] 0.73 

 

We next applied the trial-level modeling approach to further test for potential 

differences in precision according to the animacy category of the stimuli. Figure 7 

plots the precision results for each category. As with the standard mixture-

modeling results, there was no significant difference in temporal memory 

precision between animate and inanimate stimuli, BF10 = 0.73, F(1, 1238.86) = 

0.30, p = .587. From a methodological standpoint, this invariance is useful as it 

may not be necessary for researchers to control for animacy characteristics while 

constructing stimuli lists in this type of task, as researchers often need to in terms 

of frequency of use, imageability, and stimulus meaningfulness.  
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Figure 7. Trial-Level Modeling of Precision According to Animacy in 
Experiment 2 
Group median and quartile box plots of the trial-level estimates in temporal precision, split across 
animate and inanimate categories. The individual data points, along with the corresponding 
density plots, are also shown.  
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4. EXPERIMENT 3 

Having established behavioral evidence for the precise retrieval of temporal 

information in the foregoing experiments, as well as effects of bias and recency 

on precision, Experiment 3 sought to elucidate the neural correlates of temporal 

memory precision. As a starting point for hypothesizing about these correlates, 

we can turn to the extensive neural evidence related to retrieving qualitative (i.e. 

detailed) episodic information. Such retrieval has been consistently associated 

with activation in a distributed network of brain regions — sometimes termed the 

“core recollection network” — including the hippocampus and surrounding medial 

temporal lobe cortex, medial and lateral parietal cortex, and medial prefrontal 

cortex (Ekstrom & Yonelinas, 2020; Johnson & Rugg, 2007; Kim, 2010; Rugg & 

Vilberg, 2013; Spaniol et al., 2009). More recently, these regions have been 

further divided into separate posterior medial (PM) and anterior temporal (AT) 

subsystems, comprising what is known as the PMAT framework (Ranganath & 

Ritchey, 2012; Ritchey, Libby, & Ranganath, 2015). The hippocampus here 

serves as an integrative hub between the two subnetworks, with the anterior and 

posterior hippocampus preferentially connected with the AT and PM regions, 

respectively. The AT subsystem, which consists of the amygdala, anterior ventral 

temporal cortex, perirhinal cortex, and lateral orbitofrontal cortex, has been 

observed to be sensitive to changes in general aspects of memory such as 

familiarity and semantic information. Conversely, activity in the PM subsystem, 

including the posterior parahippocampal cortex, retrosplenial cortex, angular 

gyrus, precuneus, and medial prefrontal cortex, correlates with memories that are 
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more episodic-like in nature, accompanied typically by the recollection of details 

and spatio-temporal context. The precise retrieval of temporal information that is 

of interest here, therefore, may rely largely on regions within the PM subsystem. 

As described in the General Introduction, tests of episodic retrieval typically lack 

the sensitivity to probe whether general success versus failure is functionally 

distinct from memory precision. Studies that have employed continuous 

measures to capture finer fluctuations in the quality of retrieved information have 

begun to overcome this ambiguity and reveal distinct neural correlates. In one 

such study, Richter et al. (2016) had subjects retrieve and estimate the location 

of items positioned along the perimeter of a circle during encoding. The 

acquisition of fMRI data during a later retrieval phase provided insight into how 

the neural correlates of retrieval precision could be dissociated from those of 

other aspects of retrieval, such as success and subjective vividness. Whereas 

activity in the hippocampus covaried with retrieval success, and precuneus 

activity correlated with vividness, memory precision was uniquely tracked by a 

lateral parietal region known as the angular gyrus. In another study, activity in the 

angular gyrus was again shown to correspond with the precise retrieval of 

multimodal details, and was dissociated from hippocampal activity (Bonnici, 

Richter, Yazar, & Simons, 2016). These findings are consistent with prior models 

of the involvement of cortico-hippocampal networks in memory in which, although 

the retrieval process might initially rely on hippocampal and medial temporal lobe 

function (see McClelland, McNaughton, & O’Reilly, 1995; Staresina & Wimber, 

2019), it is subsequently supplemented by cortical regions within the broader 
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network (Rugg et al., 2012). Here, the fact that the angular gyrus is part of the 

PM subsystem is consistent with the idea that judgments of precision are 

supported by aspects of processing spatio-temporal contextual information. 

The notion that retrieval precision is supported by the angular gyrus is also 

consistent with evidence from event-related potential (ERP) studies that have 

related episodic retrieval to an effect known as the late parietal effect (LPE; 

Smith, 1993; Friedman & Johnson, 2000). The LPE is perhaps the most widely 

studied ERP correlate of memory retrieval, usually occurs in the post-stimulus 

interval of 500-800 ms, and is topographically maximal over left parietal electrode 

sites (for a review, see Rugg & Curran, 2007). The successful retrieval of specific 

details or source information (i.e. recollection) is typically associated with 

enhanced positivity in this ERP waveform compared to familiarity-based 

judgments or failed retrieval (i.e. misses). For instance, Wilding (2000) 

demonstrated that the LPE covaried with the number of correct source judgments 

associated with a given memory, suggesting that recollection may be better 

thought of as a graded rather than ‘all-or-none’ process (Rugg, Cox, Doyle, & 

Wells, 1995). More recently, Murray et al. (2015) used a continuous report task 

as retrieval and showed that the magnitude of the LPE correlated with precision 

estimates in a graded manner. Consistent with the idea that the LPE reflects 

activity in left lateral parietal cortex, Nilakantan et al. (2017) used repetitive 

transcranial magnetic stimulation (rTMS) to suggest a causal role of angular 

gyrus in retrieval precision. Specifically, targeting the stimulation to this region led 
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to facilitation in the precision of spatial memory estimates as well as a decrease 

in the LPE, compared to sham stimulation. 

In addition to studies that have employed traditional ERP measures, several 

others have turned to analysis of the rhythmic oscillatory activity present in EEG 

data to understand episodic memory retrieval. In particular, changes in activity 

power in the alpha (8-12 Hz) and theta (4-8 Hz) frequency bands has been 

previously associated with both the maintenance of items in working memory 

(e.g., Foster, Sutterer, Serences, Vogel, & Awh, 2016) and performance on long-

term retrieval tasks (e.g., Waldhauser, Braun, & Hanslmayr, 2016; for review, see 

Nyhus & Curran 2010), although the direction of these effects can depend on 

methodological factors. Building on these basic findings, Sutterer, Foster, 

Serences, Vogel, and Awh (2019) recently used the circular variant of the 

continuous report task to investigate spatial memory and demonstrated that 

alpha activity corresponded to the precision of retrieval. This finding suggests 

that, in addition to assessing ERP correlates, activity in the alpha frequency 

band, and perhaps the theta band, could provide further insight into the neural 

processes involved in retrieving precise information from episodic memory. 

Together, the EEG/ERP studies described here — although employing a variety 

of experimental procedures and neural analyses — serve as a starting point for 

further investigating the electrophysiological correlates of retrieval precision as 

they relate particularly to temporal information. The purpose of Experiment 3 was 

thus to extend our novel temporal judgment paradigm to this domain. 

Additionally, to more robustly test the influence of guessing and bias on temporal 
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judgments, the length of the encoding list in the current experiment was 

increased considerably. Doing so was intended to allow for truncating trials at the 

ends of the list, while still including enough of a range of the timeline so as to 

minimally affect responding. One consequence of considerably increasing the 

number of trials is the corresponding increase in the duration of the experimental 

session for each subject. Given that our modeling approach can be applied to the 

group and subject-level data, increasing the number of trials per subject provides 

an enhancement in statistical power that allows us to test a smaller sample of 

subjects (Rouder & Haaf, 2018; Smith & Little, 2018), and is additionally cohesive 

to an individualized precision-based neuroscience approach (see Gordon et al., 

2017). 

4.1 METHOD 

4.1.1 Subjects 

Seven MU students participated in this experiment (six students participated 

voluntarily and one subject participated for course credit). Inclusion criteria for 

this experiment included being at least 18 years of age, right-handed, native-

English speakers who had normal or corrected vision, and no history of 

neurological disease. Written informed consent was obtained in accordance with 

the MU Institutional Review Board. The data from one subject was excluded from 

analysis due to a technical error that occurred during the experiment. The final 

sample of six subjects (3 females, 3 males) were 19 to 29 years of age (M = 

23.83, SD = 3.92). 
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4.1.2 Stimuli and Procedure 

As overall memory performance was expected to be poorer than in Experiments 

1 and 2 due to the considerably increase in number of study trials, a different 

stimulus pool, the Large-scale Image Memorability (LaMem) dataset, was used 

(Khosla, Raju, Torralba, & Oliva, 2015). Originally containing 60,000 diverse 

images, the LaMem dataset was created with the intention of understanding and 

predicting visual memorability. To mitigate potential low memory performance, a 

subset of images (15,794) with memorability ratings above 0.8 (with a rating of 

0.8 indicating that 80 percent of subjects remembered that respective item) were 

used. Each colored picture, randomly selected from the larger subset of images, 

was presented centrally on a light gray (~70% white) background. Stimuli were 

displayed on a 24-inch widescreen LCD monitor (1024×768 resolution) viewed at 

an approximate distance of 1 meter. Stimulus presentation was controlled using 

PsychoPy3 (Peirce, 2007).  

The experimental session consisted of an encoding phase (~30 minutes) 

followed by a test phase (~50 minutes). Instructions and practice on the encoding 

phase were administered first. This phase comprised a single block of 1,500 

pictures, with each image displayed for 1,250 ms with no inter-trial interval. Given 

the relatively fast trial pace, subjects did not make study judgments on each item. 

Instead, the study instructions were to pay attention to each image for the entire 

time it was presented and to try and remember as many details about the image 

as possible for an upcoming memory task. Subjects were informed of the number 

of trials and total time of the encoding phase (31.25 minutes) prior to its start.  



 

40 

 

Following the encoding phase, subjects received instructions and practice on the 

test phase. A random subset of the study trials (500) selected from evenly 

dispersed bins across the study period, were presented in a randomized order. 

Each test trial began with a picture centrally presented for 2,500 ms. The picture 

then disappeared, and the time scale was presented. The time scale indicated 

Trial 1 on its left and Trial 1,500 on its right, with unlabeled tick marks across the 

scale. On each trial, the subject used the computer mouse to move a marker 

across the scale to judge, as precisely as possible, the position at which they 

thought the picture occurred at study. To finalize their response, subjects used 

the left mouse button to click the position on the scale and then click a button 

labelled accept located beneath the scale. After subjects responded, a central 

plus sign was displayed for 500 ms until the next trial began. 

4.1.3 EEG Acquisition and Processing 

EEG data were acquired during both the study and test phase of the experiment 

from 59 Ag/AgCl electrodes using a BrainAmp Standard system (Brain Vision 

LLC; Durham, NC, http://www.brainvision.com). Electrodes were embedded in an 

elastic cap (Easycap, Herrsching, Germany, http://www.easycap.de) at the 

following locations of the 10-20 system; Fpz/1/2, AFz/3/4/7/8, Fz/1/2/3/4/5/6/7/8, 

FC1/2/3/4/5/6, FT7/8, Cz/1/2/3/4/5/6, T7/8, CPz/1/2/3/4/5/6, TP7/8, 

Pz/1/2/3/4/5/6/7/8, POz/3/4/7/8, and O1/2. Data were acquired in reference to an 

electrode placed at FCz, and a ground electrode was located at FT10. Two 

electrodes were placed to the left and right mastoids (M1 and M2) for offline re-

referencing. Vertical and horizontal EOG were recorded with electrodes placed 

http://www.brainvision.com/
http://www.easycap.de/
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on the outer canthi (LO1 and LO2) and below the left eye (IO1). Electrode 

impedances were adjusted to below 5 kΩ prior to the start of encoding. Data 

were recorded at a sampling rate of 1 kHz with an amplifier bandwidth of .01-100 

Hz. 

Offline processing of the EEG data was implemented using the MNE module 

(Gramfort et al., 2014) in Python v. 3.6.4. The continuous data were band-pass 

filtered from .05 Hz to 50 Hz, down-sampled to 200 Hz, re-referenced to the 

mastoid average, and then epoched from -200 ms to 2,000 ms relative to 

stimulus (picture) onset. Independent components analysis (ICA) was used to 

manually identify and remove artifacts (e.g., due to blinks and eye/head 

movements) in the data based on scalp topography and spectral composition 

(Jung et al., 2000). To create the time-frequency representations, EEG 

decomposition was performed using Morlet wavelets. Specifically, frequency (Hz) 

estimates were extracted at each electrode × time point for the alpha (8-12 Hz) 

and theta (3-8 Hz) ranges.  

4.1.4 Data Analysis 

The behavioral analysis strategy, following Experiment 1, utilized mixture-

modeling to assess temporal precision at the group and subject level. Multi-

parameter models were tested to examine guessing and recency bias factors. 

This is an informative test compared to Experiments 1 and 2, considering the 

mitigated stimuli truncation issue described previously. We predicted that at the 

individual-level, temporal precision would closely match the group precision 
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estimates. We also predicted that guessing would be negligible and that subjects 

would still show a recency bias in temporal judgments. Neurally, ERP amplitudes 

were tested across several bins of lower- to higher-precision, as well as using 

trial-level regression analyses. In addition to the regression analyses examined in 

the a-priori selected left parietal old/new effect, regression models were 

additionally run across all electrode × time combinations (binned into 25 ms 

intervals) to assess if any potential effects exist outside of the LPE in an 

exploratory fashion. To accomplish this, we adopted a regression heatmap 

approach. At each electrode × time point combination, a regression model was 

fitted. From each resulting regression analysis, both the p values and slope 

coefficients were stored, producing a table (e.g., electrodes as rows and time 

points as columns), or heatmap, of p values and slope coefficients, where each 

cell is the result of a separate regression analysis. The benefit of this exploratory 

approach is to visually inspect these heatmaps to identify which electrodes and 

at what time points there appear to be ERP effects relating to behavioral 

precision. This serves as a critical first step in formulating a-priori hypotheses for 

future studies. In further exploratory analyses, we adopted this multilevel 

regression strategy to the oscillatory alpha and theta frequency data. No 

predictions were made as to where or when potential effects might have 

occurred.  

4.2 RESULTS AND DISCUSSION 

4.2.1 Behavioral Results  
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Given that subjects made no responses to items during the encoding phase, the 

behavioral analyses focused exclusively on the test phase. Test items that came 

from the first and last 100 positions of the 1,500-item encoding phase were 

excluded from analysis to mitigate primacy and recency effects as well as any 

issues with responding near the ends of the temporal scale. Test trials for which 

RTs were greater than 10 s were also removed (accounting for only 2.5% of trials 

on average per subject; SD = 2.3). Of the remaining trials, the average RT was 

3050 ms (SD = 1616; Figure 8B).  

Turning to the error associated with making temporal judgments, Figures 8A and 

8C respectively display the group- and subject-level error distributions centered 

on each item’s correct position. The average absolute error distance for the 

group data was 392.7 trials (SD = 282.4), with the subject data exhibiting mean 

values ranging from 344.1 to 437.1 trials. Temporal precision was first modeled 

by a normal function with a mean of zero and standard deviation representing 

precision error (σ). The resulting model fits are also displayed in Figure 8. The 

MAP estimate of σ based on the group data was 483.36 (95% HDI = [471.35, 

495.90]). Applying this mixture model to individual subjects revealed a similar 

level of precision error: M = 483.00, SD = 37.95.  
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Figure 8. Behavioral Results for Temporal Judgments in Experiment 3 
(A) Density plot representing the group-level distribution of error in temporal judgments, along 
with the best-fitting normal curve (in red).  
(B) Box plot of response times during the testing phase, along with a density plot representing the 
distribution of RTs, showing that the majority of responses were at the lower end around the 
median value.  
C) Density plots representing the distribution of precision error judgments, along with the fitted 
curve in red for each of the six subjects in the experiment. While the distribution varied slightly 
from subject to subject, the fitted curves point to a similar normal distributional shape in temporal 
memory retrieval. 

 

Following the analysis approach of the first two experiments, the encoding list 

was next divided in half to test for changes in precision with passing time. 

Applying the same modeling procedure described above to the errors for each 
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half revealed that, based on the group-level data, remote trials (466.50 [449.02, 

486.28]) were associated with better precision than recent trials (499.85 [480.88, 

520.73]; see Figure 9). When modeling errors at the subject-level across remote 

(M = 466.28, SD = 42.64) and recent (M = 498.38, SD = 56.16) trials, there was 

no statistically significant difference in mixture-modeling precision estimates, t(5) 

= 1.21, p = .281. However, analyzing these data using the more sensitive 

technique of trial-level multilevel modeling resulted in a significant difference in 

precision across the recent and remote halves, t(2525) = 3.19, p = .001. 

Importantly, as with the results of standard mixture modeling applied to the group 

data, this difference was in the opposite direction as that observed for 

Experiments 1 and 2. 

 

Figure 9. Effects of Recency on Temporal Precision in 
Experiment 3 
Box plots corresponding to the group-level precision estimates for the remote and recent halves 
of the study phase. Dots indicate each subject’s precision estimate. 
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Based on visual inspection of the overall error distribution in Figure 8A, there was 

no apparent pattern of response errors showing the recency bias that was 

evident in the first two experiments. To confirm this statistically, a bias parameter 

(μ) corresponding to a shift in the overall mean of the fitted normal distribution 

was added to the modeling procedure. This 2-parameter (μ, σ) model gave rise 

to a group-based μ estimate of 20.37 [15.9, 37.36]. While the group level 

estimate suggests a recency bias similar to that in Experiments 1 and 2 (e.g., the 

highest density interval does not overlap with zero), when considering the 

subject-based results, average bias estimates were not statistically greater than 

zero (M = 20.63, SD = 55.87, t(5) = 0.90, p = .204). Moreover, half (3 out of 6) of 

the subjects showed a negative bias effect, in the opposite direction of the group 

level bias estimate, indicating a tendency to respond more remotely. Additionally, 

using a model comparison approach, the 1-parameter model (σ; BIC = 26837.14) 

was preferred over the 2-parameter model (σ, μ; BIC = 26842.21), confirming the 

subject-based analyses that the recency bias effect found in the first two 

experiments was not a significant contributor in the current experiment.  

Similar to Experiment 2, we also tested for differences in response bias across 

the two halves of the encoding period. From the group level mixture-modeling, a 

dichotomy emerged where remote trials were associated with a tendency for 

subjects to respond that items were more remote than what they were (μ = -

27.83 [-29.90, -26.36]). Trials from the recent half, however, showed the typical 

recency bias effect found in Experiments 1 and 2 (μ = 31.06 [29.35, 33.01]). This 

difference was confirmed at the subject level, with a significant difference evident 



 

47 

 

between remote (M = -27.89, SD = 5.19) and recent trials (M = 31.81, SD = 

7.64), t(5) = 49.53, p < .001. Figure 10 shows this opposing relationship between 

encoding half and response bias estimates, and is likely the reason why bias 

estimates at the group level (agnostic to encoding half) revealed bias estimates 

that were not significantly greater than zero, and why model comparison favored 

the model that excluded the bias parameter. Recency bias estimates were more 

pronounced with more recent trials in Experiment 2, and combined with the data 

in this Experiment suggest that response biases in temporal judgment are 

vulnerable to when an item was studied. 

Lastly, the role of guessing was examined by estimating an additional 2-

parameter model that included precision and a uniform guessing parameter (λ). 

The group-level mixture model estimated λ at near zero (<.001 [0.00, 0.03]). 

Likewise, the subject-based estimates were also near zero (M = 0.002, SD = 

0.004), mirroring the results found in Experiments 1 and 2. Comparing the 1-

parameter model (precision only; BIC = 26837.14) to this 2-parameter model 

(including guessing; BIC = 26846.81) again revealed a preference for the former. 

Finally, contrasting the guessing rates across the two halves of the encoding list 

also did not reveal any differences (Remote: MAP < 0.001 [0.00, 0.004], subject-

level M < 0.001, SD < 0.001; Recent: MAP < 0.001 [0.00, 0.004], subject-level M 

= 0.001, SD = 0.001), t(5) = 1.35, p = .235. The results of this comparison are 

provided in Figure 10. 
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Figure 10. Effects of Response Bias and Guessing in Experiment 3 
The box plot on the left displays the group-level estimates of response bias for each half of the 
encoding phase, whereas the plot on the right provides the corresponding estimates of guessing. 
Dots indicate the corresponding estimates for each subject. 

 

4.2.2 Event-Related Potentials 

Event-related potentials (ERP) were first examined in the context of the left 

parietal positivity that has been associated with retrieval success and, more 

specifically, recollection (for reviews, see Friedman & Johnson, 2000; Rugg & 

Curran, 2007). For this analysis, the ERP amplitudes between 500 and 800 ms 

after test-item onset were averaged over a group of six left posterior electrodes 

(CP3/CP1/CPz and P3/P1/Pz) where this effect is typically maximal (e.g., Murray 

et al., 2015; Rugg & Curran, 2007; also see Scofield et al., 2020). As a first pass, 

trials were median-split according to better and worse precision (i.e. lower and 
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higher error values, respectively). The resulting ERPs are shown in Figure 11. 

Using trial-level mixed effects modeling, we did not observe a significant 

amplitude difference between the better (M = 5.78 μV, SD = 9.12) and worse (M 

= 5.26 μV, SD = 9.35) precision groups, F(1, 2861) = 2.52, p = .113. To test for 

more fine-grained differences, the ERP data were grouped into quartiles, ranging 

from best (hereafter, Group 1) to worst (Group 4) precision (Group 1: 0-161 trials 

away from the correct position; Group 2: 162-360; Group 3: 361-609; Group 4: 

610-1,448). There was a marginally significant group effect, F(3, 2859) = 2.56, p 

= .053. As can be seen in Figure 12, there appeared to be little variation within 

the first three groups, with a noticeable drop in ERP amplitude with the worst 

precision group. Pairwise comparisons of the quartiled data revealed no 

differences among the three groups with the best precision (Group 1: M = 5.88, 

SD = 9.20; Group 2: M = 5.67, SD = 9.04; Group 3: M = 5.77, SD = 9.20; p’s > 

.05), but the difference between the best and worst (Group 4: M = 4.76, SD = 

9.47) quartiles reached significance, t(2859) = 2.48, p = .013.  
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Figure 11. Left Parietal ERPs According to Precision Level in Experiment 3 
ERPs averaged over a group of left parietal electrode sites (CP3, CP1, CPz, P3, P1, and Pz) 
according to four levels of behavioral precision for temporal judgments. Groups 1 through 4 
correspond to trials the best through worst precision. 

 

To capitalize on the continuous nature of our precision predictor and as an 

alternative to binning trials into discrete groups, we next ran a trial-level mixed 

effects regression model between LPE ERP amplitudes and the continuous 

precision predictor. The results of this analysis are displayed in Figure 12. 

Specifically, there was evidence for a significant relationship between ERP 

amplitude and precision, b = -0.095, t(687.69) = 2.62, p = .009. This result 

indicated that, as precision values decreased (i.e., corresponding to better 

precision), ERP amplitudes likewise tended to increase. 
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Figure 12. Left Parietal ERP Amplitudes by Precision Level in Experiment 3 
The left plot displays average left parietal ERP amplitudes across four binned levels of precision 
(1 = best; 4 = worst). At right, the regression lines are plotted for the relationship between ERP 
amplitude and the continuous form of behavioral precision. In both plots, the black and gray lines 
correspond, respectively, to group and individual subject results. 

 

To widen our scope beyond the a priori group of six electrodes and the 500-800 

ms time range, mixed effects regression models were estimated in an iterative 

fashion across all electrode × time point combinations. For each combination, a 

separate regression model was fitted, from which the betas and p-values were 

stored in matrix form to visually indicate which electrodes and at which time 

points indicated a precision-amplitude effect. Figure 13 shows the resulting betas 

and p-values as “heatmaps”, where significant effects were evident primarily in 

about the 600-900 ms latency period, consistent with the timing of the LPE 

described above. In addition to the significant effects in left parietal electrodes, 

clusters of significant cells in this 600-900 ms time frame were also apparent in 
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right central electrodes. This may indicate that beyond the more traditionally 

studied LPE, effects of this nature could be more widespread. 

 

 

Figure 13. Regression Results of Precision and ERP Amplitude in 
Experiment 3 
Heatmaps displaying the beta (top) and (p-values) from fitting regression models between 
behavioral precision and ERP amplitude at each electrode and time bin (25-ms) combination.  

 

4.2.3 Oscillatory Activity 

In two sets of exploratory analyses, both alpha and theta power were considered 

in the context of their potential relationship to temporal retrieval precision, as 

these two EEG frequency bands have been implicated in recognition memory 

(Herweg, Solomon, & Kahana, 2020; Sutterer et al., 2019; Waldhauser et al., 

2016). Average alpha (8-12 Hz) and theta (3-8 Hz) power were computed for 
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each time point and electrode, yielding results in a similar format to those of the 

foregoing exploratory ERP amplitude analyses (subjects × trials × electrodes × 

time points). A similar mixed effects multilevel analysis approach was adopted, 

fitting regressions at each electrode x time point combination (nesting trials within 

subjects and specifying random slopes for the predictors) for each of the two 

frequency bands.  

Figure 14 shows the significance heatmap for the relationship between alpha 

power and behavioral precision. Averaging across the group of six electrodes 

associated with the LPE within the 500-800 ms range, there was no significant 

association between alpha power and memory precision, b = 0.057, t(1.399) = 

00.69, p = .588. Upon visual inspection of the significance heatmap, two clusters 

were visually evident at the p < .01 threshold. One cluster (for convenience: right 

frontal cluster) included electrodes Fpz/2, AFz/4, F1/z/2/4/6, and FC2/4/6 

between 950 - 1,100 ms post stimulus onset. Averaging across this cluster, the 

subject-level regression coefficients can be seen in Figure 15, in which all 

subjects showed positive slopes above zero. The second cluster (for 

convenience: left parietal cluster) included electrodes P3/1/z, PO7/3/z, and O1 

between 1,175 - 1,400 ms post stimulus onset, in which we did see again 

positive regression coefficients across all subjects above zero. For both of these 

observed clusters (right frontal and left parietal cluster), the range of positive 

slope coefficients indicated higher alpha power were associated with higher (i.e. 

worse) precision. 
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Figure 14. Regression Results of Precision and Frequency Power in the 
Alpha Band in Experiment 3 
Heatmaps displaying the beta (top) and (p-values) from fitting regression models between 
behavioral precision and alpha (8-12 Hz) power at each electrode and time bin (25-ms) 
combination.  
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Figure 15. Clustered Regression of Precision and Frequency Power in 
Experiment 3 
Forest plots describe the results of clusters exhibiting a relationship between alpha (left) or theta 
(right) power and behavioral precision. In each cluster (row), the black square indicates the mean 
regression coefficient (beta), the error bars correspond to the standard deviation, and the red dots 
indicate subject-specific regression coefficients.  

 

Figure 16 shows the significance heatmap for the relationship between theta 

power and behavioral precision. Again, first looking at the 500-800 ms LPE 

effect, there was no significant precision effect with theta power, b = 0.086, 

t(2.59) = 0.89, p = .449 (Figure 15 shows subject-level regression coefficients 

overlapping with zero). Upon further visual inspection of the heatmap, two 

clusters were also evident based on the p <.01 threshold. The first cluster (for 

convenience: left central cluster) included the T7, C5, TP7, and CP5 electrodes 

between 925-1,125 ms post-stimulus onset. The left central theta cluster was 

positively associated with precision, and Figure 15 shows all subjects with 

positive regression coefficients that do not overlap with zero. The second cluster 

(for convenience: left frontal cluster) included electrodes Fp1, AF7/3, F7/5, FT7, 
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and FC5 between 1,600-1,700 ms post-stimulus onset, and also showed a 

positive relationship with precision, as the regression slopes in Figure 15 indicate 

as they are likewise greater than zero. In a similar fashion to alpha power, 

increases in theta power were associated with higher/worse behavioral precision. 

 

Figure 16. Regression Results of Precision and Frequency Power in the 
Theta Band in Experiment 3 
Heatmaps displaying the beta (top) and (p-values) from fitting regression models between 
behavioral precision and theta (3-8 Hz) power at each electrode and time bin (25-ms) 
combination.   
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5. EXPERIMENT 4 

In addition to the novel findings of recency and bias on retrieval precision 

observed in the three previous experiments, one of the more compelling results 

is that guessing appeared to play no role in temporal judgments. As studies using 

continuous report tasks to test spatial memory have consistently indicated the 

involvement of guessing (e.g., Harlow & Donaldson, 2013; Harlow & Yonelinas, 

2016; Murray et al., 2015), one explanation of the discrepant results pertains to 

our use of a linear instead of circular response scale. Indeed the choice of a 

linear scale was intentional, given that the start and end of the encoding list are 

maximally distinct in time, contrary to how they would be represented if the scale 

was circular. It is thus unclear whether the characteristics of temporal and spatial 

retrieval would remain distinct if they are probed with analogous tasks in the 

same sample of subjects, thereby allowing for direct comparison. 

Numerous studies have shown that retrieving spatial and temporal aspects of 

episodic memory relies on similar neural circuitry within the hippocampus and 

medial temporal lobe (e.g., Eichenbaum, 2017; Kraus, Robinson, White, 

Eichenbaum, & Hasselmo, 2013; Salz et al., 2016) that has also been linked to 

spatial navigation and representations (Herweg et al., 2020; Kjelstrup et al., 

2008; Poppenk, Evensmoen, Moscovitch, & Nadel, 2013). The main motivation 

of this final experiment was to further understand the behavioral components of 

retrieval precision for both temporal and spatial information and, specifically, to 

determine the extent to which processes relating to precision and decision-

making covary or functionally dissociate across these domains. Whereas the 
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encoding phases of the previous three experiments reported here included no 

manipulations, as temporal retrieval could be tested with just a standard list of 

items, the critical manipulation introduced in Experiment 4 was that each picture 

was presented at a random location on the computer screen during encoding. On 

a surprise memory test, subjects were then required to judge both when and 

where each item was previously presented.  

Using a multilevel mixture-modeling approach, performance on the temporal and 

spatial components of the retrieval task were directly contrasted. In addition, 

because subjects provided both types of responses on each test trial, our 

analyses additionally made use of conditionalized data. Our main prediction from 

these analyses was that there would be significant correspondence, in terms of 

precision and guessing rates, between the temporal and spatial judgments for a 

given item. The two judgments were expected to diverge, however, in terms of 

recency effects. That is, temporal retrieval should be able to rely uniquely on 

memory strength as a source of information, such that the greater strength of 

recent items should lead to more precise judgments (Hintzman & Block, 1971). 

Such strength-based information is uninformative as to the spatial location of the 

item, given that location was randomly chosen. 

5.1 METHOD 

5.1.1 Subjects  

Two-hundred and one MU undergraduate students were recruited to participate 

in an online experiment for course credit. Of the original sample, 87 subjects did 
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not complete the experiment and three subjects experienced technological 

errors, and thus their data were excluded from analysis. The final sample of 111 

subjects (85 “female”, 21 “male”, and 5 “other” responses) were between 18 and 

51 years of age (M = 19.51, SD = 5.00). The inclusion criterion for this 

experiment was only being at least 18 years of age, and informed consent was 

obtained electronically in accordance with the MU Institutional Review Board. 

5.1.2 Stimuli and Procedure  

The stimulus pool consisted of 100 color pictures of common, nameable objects, 

randomly chosen out of a pool of 400 images. These were the same stimuli used 

in Experiments 1 and 2. Pictures were presented relative to the aspect ratio of 

each subject’s computer monitor (as subjects were instructed to complete the 

experiment on either a laptop or desktop computer). For instance, in a standard 

widescreen monitor with an aspect ratio of 16:10 and a screen resolution of 

1650x1050, images were 300 by 300 pixels in size. These presentation 

characteristics could not be controlled due to subjects completing the experiment 

on their own device, but the ratios remained constant relative to each screen. 

Pictures were presented on a light gray (~70% white) background. Stimulus 

presentation was controlled and behavioral responses were collected using 

PsychoPy3 (Peirce, 2007), and the experiment was hosted on Pavlovia 

(pavlovia.org). 

The experimental session (~45 minutes) consisted of an encoding phase 

followed by a test phase. Instructions and practice on encoding were 
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administered first, keeping subjects naïve about the nature of the test phase until 

immediately prior to its start. The encoding phase comprised a single block of 

100 pictures. The images were restricted to be presented within a red bordered 

rectangle that comprised 92.8% of the screen width and 89.4% of the screen 

height. In keeping with our example of a 16:10 aspect ratio and screen resolution 

of 1650x1050, this would imply that images were restricted to a centered 

rectangular section of the screen with a size of 1531 by 938 pixels. Each 

encoding trial began with a plus sign presented for 500 ms in a randomized 

location within the rectangular section on the screen to prepare subjects where 

the image was presented on the screen. Then, centered at the same location of 

the plus sign, the image was presented for 3000 ms. Subjects were instructed to 

rate the pleasantness of each picture on a 4-point scale (very pleasant, 

somewhat pleasant, somewhat unpleasant, and very unpleasant) via key presses 

mapped to their left little through index fingers (keys H, J, K, and L, respectively). 

The next trial then proceeded using a new, random location on the screen. 

Subjects were informed of the number of trials and the total time of the encoding 

phase (about 6 minutes) prior to its start.  

Following the encoding phase, subjects received instructions and practice on the 

test phase, which consisted of one single block of 100 trials. All pictures from 

encoding were presented in a newly randomized order during the test phase. On 

each trial, subjects made two separate judgments. On each judgment, the 

studied image was centrally presented for 2500 ms. One of the judgments was 

the temporal judgment used in the first three experiments. A time scale was 
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presented, ranging from trial 1 on the left to trial 100 on the right, with no label 

markers between the endpoints. The subject used the computer mouse to click 

on the scale, as precisely as possible, the position at which they thought the 

picture occurred at encoding. The second type of judgment was a spatial 

judgment. On each trial, subjects used the computer mouse to click, as precisely 

as possible, the spatial location on the screen where they thought the picture 

occurred at encoding. After subjects provided both retrieval judgments, the next 

trial began. The order of the judgments was randomized and manipulated 

between-subjects, with half of subjects providing the temporal judgment first on 

each trial (n = 52), and the other half providing the spatial judgment first on each 

trial (n = 59). 

5.1.3 Data Analysis  

The behavioral analysis strategy was similar to Experiment 2. To assess the 

relationships between temporal and spatial precision specifically at a trial/item 

level, and to capture the continuous nature of both judgment predictors, 

multilevel modeling of the response errors were used instead of the mixture-

modeling approach first used in Experiment 1. We predicted that trials in which 

the temporal context is precisely retrieved would also be accompanied by better 

spatial precision as well, manifesting as significant correlations/regression 

coefficients between the two judgments. Additionally, recency effects in both 

temporal and spatial judgments were examined (e.g., changes in precision 

across the study period). We predicted that both temporal and spatial judgments 

would show similar recency effects like those found in Experiments 1 and 2. 
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5.2 RESULTS AND DISCUSSION 

5.2.1 Response Times 

During encoding, the pleasantness judgments were made with an average RT of 

1.38 s (SD = 0.47). At test, subjects gave two separate judgments for each 

picture. To avoid issues related to responding near the edges of the temporal 

and spatial scales, the first and last five trials of the 100-item encoding list were 

trimmed, and the pictures presented along the borders of the screen (5% of the 

pixels away from each edge) were excluded from analysis, leaving on average 

72 viable trials per subject (SD = 3 trials). Trials in which subjects did not respond 

within a predefined 10 s range were excluded. For the remaining trials, subjects 

responded to the temporal and spatial tasks with respective mean RTs of 2.39 s 

(SD = 1.24) and 1.23 s (SD = 0.47), with spatial judgments occurring significantly 

faster than temporal judgments, F(1,87) = 238.51, p < .001. The between-

subjects order in which subjects completed the judgments interacted with the 

type of judgment, F(1,87) = 38.17, p < .001. That is, temporal judgments were 

significantly slower when they were made first (M = 2.81, SD = 0.68), compared 

to when they were made after a spatial judgment (M = 1.93, SD = 0.55), t(77.13) 

= 6.71, p < .001. There was no significant difference in spatial judgment RTs 

depending on whether it was performed first (M = 1.24, SD = 0.46) or second (M 

= 1.21, SD = 0.35), t(85.81) = 0.34, p = .738. Figure 17 shows RT values across 

the two judgment types as well as the order in which subjects provided their 

judgments. 
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Figure 17. Behavioral Response Times in Experiment 4 
Box plots indicate the median and quartile ranges of response times (RTs) associated with 
temporal and spatial judgments, dependent on whether the temporal or spatial judgment was 
made first (between-subjects).  

 

5.2.2 Relating Spatial and Temporal Precision 

Spatial errors were calculated as the Euclidean distance between the correct 

location and the responded location. As raw temporal judgments were calculated 

to include both positive and negative values, we first needed to transform the 

temporal errors to its absolute values to enable the comparison of errors across 

the two judgment tasks. Next, judgments (temporal and spatial) were 

standardized to a mean of zero and unit variance to ensure each judgment was 

on the same scale for testing. Figure 18 shows distributions of both tasks to 

visualize this transformation process. To provide a cursory examination of 
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whether the scaled temporal and spatial judgments were correlated, RTs for the 

two were first averaged for each subject. Figure 19 shows a scatterplot between 

spatial and temporal precision, along with the estimated line of best fit. There 

was a significant positive correlation between the two types of judgments, r = .38, 

t(109) = 4.27, p < .001. As it was important to confirm this statistical relationship 

at the trial level, we confirmed this relationship was significant when correlating 

spatial and temporal RTs in an unaveraged multilevel modeling framework, 

t(7839.86) = 2.92, p = .003.  

 

Figure 18. Error Distributions of Temporal and Spatial Judgments in 
Experiment 4 
(A) Density plot displaying the distributions of error in temporal judgments, centered on each 
item’s correct position.  
(B) Distribution of absolute-valued temporal judgment errors, which were computed for better 
comparison with the spatial judgments.  
(C) Density plot displaying the distributions of error (Euclidean distance) in spatial judgments, 
centered on each item’s correct position.  
(D) Temporal and spatial error distributions are superimposed after standardizing each judgment 
to a mean of zero with unit variance. 
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Figure 19. Regression Results of Temporal and Spatial Precision in 
Experiment 4 
The fitted regression line indicates the relationship between temporal and spatial precision. Each 
dot corresponds to data for an individual subject. 

 

Next, we tested for any differences in the errors associated with judging temporal 

and spatial memory. To compare errors across the two tasks, the absolute 

values of temporal errors were calculated, and then each judgment (temporal 

and spatial) was scaled to a mean of zero and unit variance. In the process of 

comparing temporal and spatial memory, a factor corresponding to the between-

subjects manipulation of judgment order (temporal first or spatial first) was also 

included in the analysis. (We had no predictions regarding the latter factor, as it 

merely served for counterbalancing.) Figure 20 shows the medians of the scaled 

error distributions for each condition. The resulting 2 × 2 mixed ANOVA revealed 
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no main effect of spatial versus temporal errors, F(1, 15843.3) = 0.04, p = .839, 

as well as no main effect of judgment order (e.g., spatial versus temporal first), 

F(1, 109.3) = 3.02, p = .085. There was, however, a significant interaction 

between judgment type and order, F(1, 15843.3) = 7.99, p = .005. Whereas 

temporal error did not change depending on whether subjects made this 

judgment first (M = 0.02, SD = 1.02) or second (M = -0.01, SD = 0.98), t(110.04) 

= 0.69, p = .493, spatial error was lower when made first (M = -0.05, SD = 0.97) 

versus second (M = 0.06, SD =1.03), t(109.08) = 2.00, p = .048, suggesting that 

subjects had difficulties precisely retrieving the spatial location of an object after 

making a retrieval judgment in a different domain. 

 

Figure 20. Transformed Temporal and Spatial Precision Results in 
Experiment 4  
Box plots show the median and quartile range of precision values for temporal and spatial 
judgments, which have been transformed (z-scaled) for comparison. The results are also 
separated according to whether subjects completed the temporal or spatial judgment first.  
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Considering this interaction difference, we further assessed whether the second 

judgment made by a subject was correlated with the first judgment, dependent on 

the order in which subjects completed them. In subjects that made the spatial 

judgment first, spatial error was positively correlated, and significantly so, with 

the error for the subsequent temporal judgment, b = 0.04, t(57.66) = 2.58, p = 

.013, which could indicate that precisely retrieving the spatial location of an 

object facilitated its temporal retrieval, or involved an ease of switching between 

these two modes of episodic retrieval. Alternatively, conditions where temporal 

judgments were provided first, temporal errors did not significantly predict the 

immediately following spatial judgment, b = 0.02, t(48.24) = 0.90, p = .371. Figure 

21 shows scatter plots between temporal and spatial precision, split on which 

judgment was provided first. Figure 21, along with the group level regression 

coefficients revealed that both conditions showed a positive relationship. 

However, the inference tests, along with Figure 22 showing regression 

coefficients at the subject level suggests that this relationship was not evident for 

when temporal judgments were provided first. This could suggest that spatial 

judgments are not influenced by retrieving other aspects of an item, or that 

subjects experienced more difficulty in switching into the mode required to 

precisely retrieve spatial information. 
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Figure 21. Regression Results of Temporal and Spatial Precision by 
Judgment Order in Experiment 4 
The fitted regression lines indicating the relationship between temporal and spatial precision, 
separate according to which judgment subjects made first. Each dot corresponds to data for an 
individual subject. 
 

 

Figure 22. Subject-Wise Regression Results of Temporal and Spatial 
Precision by Judgment Order in Experiment 4  
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Forest plot displaying regression coefficients of temporal and spatial precision, according to which 
judgment was first. Black circles represent the group-level estimate, the error bars correspond to 
the standard deviation, and the subject-wise estimates are in grey.  

 

5.2.3 Recency Effects on Temporal and Spatial Precision 

In line with the first three experiments, we finally assessed how precision for both 

temporal and spatial judgments changed according to how long ago an item was 

studied. Recall that in the first two of three experiments, we observed strong 

evidence of a recency effect in temporal precision. Here, recency effects were 

statistically tested through trial level regressions using encoding position as a 

predictor. The results of these analyses are shown in Figure 23. Similar to the 

first two experiments, we replicated the temporal recency effects using a 

comparable length of encoding list. Items studied further in the past were 

associated with worse temporal precision, t(7879) = 2.30, p = .022. The critical 

test was to novelly assess if, like temporal precision, spatial precision showed the 

same type of degradation over time. Strikingly, this was not the case for spatial 

precision. Across the encoding period, spatial precision remained at similar 

levels, t(7872) = 0.34, p = .733, and did not show the typical recency patterns 

found in temporal precision. As observed in prior experiments, subjects are 

retrieving temporal information with higher precision for items that were more 

recently studied, but this information is vulnerable to degradation with passing 

time. Spatial precision appears to remain more stable and consistent across the 

study period, and may not be vulnerable to the same types of disruption that 

influences precise retrieval. 



 

70 

 

 

 

Figure 23. Recency Effects of Temporal and Spatial Precision in 

Experiment 4 
The group-level regression lines are plotted for temporal (blue) and spatial (red) precision as a 

function of recency (study position).  
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6. GENERAL DISCUSSION 

The overall aim of the experiments reported here was to further understand the 

precision with which temporal information about past experiences is retrieved. 

Retrieval precision, whether it is of interest in the context of short-term/working 

memory or long-term memory, is commonly investigated with the continuous 

report task. A common version of this task, as described in the General 

Introduction, involves having subjects associate a series of items during 

encoding with spatial positions designated along a circle. Then, on a later 

memory test, the items are used as cues to recall and judge, as precisely as 

possible, the corresponding location. Importantly, the retrieval task provides a 

continuous distribution of errors between the correct and judged locations, 

allowing for statistical mixture-modeling the precision of retrieval, along with the 

involvement of other decision-related (i.e. non-mnemonic) factors. Across four 

experiments, we adapted this approach of assessing retrieval precision to the 

domain of temporal information, which is a ready target for investigation given its 

prevalent association with episodic memory and its ever-changing nature. The 

general task employed here involved having subjects incidentally encode a 

series of items and then subsequently estimate the temporal position of each 

item. By novelly applying mixture-modeling to continuous temporal judgments, 

and expanding this approach to multilevel (hierarchical) regression, the findings 

of recent studies on temporal memory were extended to not only characterize 

precision and how it changes with passing time, but to also test for the influence 

of decision-making processes such as guessing and bias. Below, we summarize 
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and interpret the main results that are specific to each experiment, while drawing 

more general theoretical conclusions from the consistent findings across 

experiments when possible. 

Experiment 1 introduced the paradigm for continuously judging encoding time 

and provided motivation for the utility of investigating the precision of retrieving 

temporal information in service of episodic memory. Most relevant to our main 

hypothesis was the finding that temporal precision, parameterized as the 

standard deviation of a normal function fit to the error distribution, was better for 

items encoded more recently. This recency effect is especially notable given its 

reliability within the bounds of the encoding list, which lasted only 17.5 minutes. 

The effect was apparent both from our main analysis that divided the list in half—

giving rise to an average remote-recent time difference of about 6 minutes, 

based on the midpoint of each half—and from a secondary, quartile-based 

analysis. While the latter analysis is less optimal in terms of trial numbers per bin, 

it afforded the ability to distinguish differences in precision between the middle 

and ends of the list from the recency effect, which was evident even between the 

middle quartiles (~3 minutes between midpoints). Together, this evidence 

extends that of previous studies in which estimates of retrieval precision, for 

either continuous color (Brady et al., 2013) or spatial location (Harlow & 

Donaldson, 2013; Sutterer et al., 2019), have also been shown to decline, but 

with considerably longer delays between encoding and retrieval. The 

convergence across these domains also informs a much more expansive 

literature on forgetting (Singh, Oliva, & Howard, 2017; for reviews, see Friedman, 
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1993; Wixted, 2004; Howard et al., 2015), further specifying the decline in 

accuracy with remoteness as diminished precision rather than increased 

guessing. 

The involvement of random guessing, a non-mnemonic factor, in temporal 

judgments was tested in Experiment 1 by including a uniform distribution in the 

mixture-modeling procedure. We observed minimal influence of guessing of this 

sort, contrary to that found in numerous prior studies (e.g., Zhang & Luck, 2008; 

Brady et al., 2013; Harlow & Donaldson, 2013; Harlow & Yonelinas, 2016), which 

could be explained in multiple but likely related ways. On one hand, whereas 

guessing along circular representations of location and color has been 

successfully modeled this way, our subjects tended to respond less frequently 

near the ends of the list, similar to previous observations using a timeline 

(Jenkins & Ranganath, 2010) and near the edges of two-dimensional space (e.g., 

Nilakantan et al., 2018). Thus, there might be something unique about 

responding along a linear scale, as is the case with time. On the other hand, an 

alternative explanation for the discrepancy is that, beyond any property of our 

response method, memory for time is inherently distinct from that for other 

features. That is, for any given memory, there could invariably be some temporal 

information that can be retrieved, albeit vague; for instance, it might always be 

possible to place a memory in the correct as opposed to incorrect half of an 

encoding list, even when precision is rather low. The nature of cognitive 

processes underlying these vague (i.e. acontextual) memories, as well as 
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whether guessing is better captured by other (nonuniform) functions, are critical 

issues to address in future studies. 

The final set of findings from Experiment 1 worthy of discussion are related to 

response bias. First, there was an overall tendency to judge encoded items as 

occurring more recently than they actually did. This finding is consistent with 

some studies of judgments of recency (e.g., Hintzman & Block, 1971; 

McCormack, 1984), including a subset using absolute judgments that are 

analogous to our task (Hinrichs & Buschke, 1968; Lockhart, 1969; Linton, 1975; 

Underwood, 1977). Notably, whereas those studies primarily tested memory over 

either short or very long periods (i.e. seconds versus months/years), our design 

aligns better with the vast majority of modern studies of long-term memory, 

where encoding-retrieval delay is typically on the order of tens of minutes. In the 

context of modeling retrieval precision in long-term memory, the current study is 

to our knowledge novel in testing for response bias. A design such as this could 

thus provide an important bridge for integrating temporal judgments, as well as 

their associated biases, into existing episodic memory theories. The second 

finding was that temporal judgments made with high confidence were associated 

with an elevated level of recency bias compared to those made with low 

confidence. Admittedly, there were no a priori predictions about how subjects 

might arrive at judging confidence. Whereas the instructions emphasized that it 

should be treated separately from precision (Harlow & Yonelinas, 2016), it 

seemed possible that subjects would resort to relying on precision in the absence 

of any other evidence. Alternatively, the basis for confidence could have varied 
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from subject to subject, resulting in the measure being just a noisier version of 

the precision judgment (also see Harlow & Donaldson, 2013). Nonetheless, it is 

plausible that the bias effect we observed is due to some subjective factor, such 

as familiarity strength, that gives rise to increases in both confidence and a 

feeling of recency. 

Experiment 2 served primarily as a conceptual replication of the main, and for the 

most part novel, findings from the first experiment. The experimental paradigm 

was largely the same, with one notable change corresponding to the encoding 

period being roughly halved (140 items compared to the 300 used previously). 

Regarding the findings from the mixture-modeling analyses that were analogous 

to those of Experiment 1, the effect of response bias and the negligible role of 

guessing were both replicated. Moreover, the analysis approach of the previous 

experiment was extended by employing a hierarchical regression-based version 

of the mixture-modeling procedure. This allowed us to capitalize on statistical 

power afforded by assessing continuous changes across the encoding phase, as 

opposed to relying on the binning of trials into discrete groups. The latter analysis 

indicated that precision decreased linearly on a trial-by-trial basis with passing 

time, providing converging support for the recency effects observed in 

Experiment 1.  

An additional purpose of Experiment 2 was to test for differences in temporal 

retrieval precision according to whether the tested pictures came from animate 

versus inanimate categories. As has been demonstrated in several recent 

studies employing a range of tasks, there is a growing body of evidence that 
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animate stimuli (e.g., a bear, bird, or child) are successfully retrieved at a higher 

rate than inanimate stimuli (e.g., a chair, hammer, or bowl), consistent with an 

evolutionary view in which human memory is functionally adaptive (Laurino & 

Kaczer, 2019; Nairne et al., 2013; Nairne et al., 2017; VanArsdall et al., 2013; 

VanArsdall et al., 2015). However, when testing for such categorical differences 

with the current paradigm, we observed an invariance with respect to the 

precision of temporal judgments. While it remains to be determined whether our 

experimental design represents a boundary condition for adaptive memory, the 

findings are nonetheless informative in terms of replicating the results of 

Experiment 1 across two stimulus categories. Thus, while researchers often aim 

to control stimulus factors such as imageability, frequency, and meaningfulness 

when choosing experimental stimuli, animacy does not appear to be of concern 

when considering temporal information. 

For Experiment 3, the main differences in methodology from the first two 

experiments was that a much longer encoding list was employed and EEG data 

were acquired to identify neural correlates of temporal retrieval precision. In 

particular, this experiment increased the number of encoding trials five-fold 

relative to Experiment 1 and over ten-fold compared to Experiment 2. One finding 

that replicated with the longer encoding list was the negligible role of guessing in 

response errors. In particular, the results from model comparison pointed to a 

better fit when excluding the uniform guessing component. As laid out in the 

Introduction to Experiment 3, this additional test of guessing was important, as 

the longer length of the encoding phase allowed for analyzing enough trials near 
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the middle of the list that were not affected by the reduced response rates at the 

ends. Thus, consistent with the findings of the previous experiments, guessing 

appears to minimally influence judgments of temporal retrieval. 

One other notable aspect of Experiment 3’s findings was that the recency effect 

on precision was not observed when binned trials were modeled separately, 

contrasting with the findings from the first two experiments. Further, the 

hierarchical trial-level analyses revealed an effect in the opposite direction as 

expected, such that more recent items were associated with worse precision than 

remote items. While the main difference between experiments was the length of 

the encoding period, one explanation of the discrepant findings is that there was 

an effect of fatigue in the current experiment, where any benefit to recency was 

washed out by the substantially longer list. Some evidence for this idea comes 

from the fact that precision was much worse in the current than previous 

experiments. Alternatively, it is also possible that the switch to more memorable 

picture stimuli, as opposed to simple object pictures, had an effect on recency. In 

particular, the pictures used in Experiment 3 might have resulted in an increase 

in the saliency of their inherent details, thus enhancing item memorability at the 

expense of memory for temporal context. 

Turning to the electrophysiological data from Experiment 3, the analyses initially 

focused on the late parietal effect (LPE), a positive ERP component that typically 

appears around 500-800 ms post-stimulus onset over left-lateralized parietal 

electrodes, and which has been studied extensively in the context of episodic 

memory retrieval (Smith, 1993; Friedman & Johnson, 2000; Rugg & Curran, 
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2007). While splitting test trials into two groups corresponding to high and low 

precision resulted in no difference in the LPE, binning into quartiles according to 

precision revealed a marginal effect in which ERP amplitude was positively 

correlated with precision. This finding is consistent with that of a previous study 

by Murray et al. (2015) in which the LPE amplitude changed with retrieval 

precision on a spatial (circular) task. Building on this result, we next tested for 

precision-related modulation of ERP effects in a more continuous and exploratory 

manner using a multilevel regression approach that was applied separately to 

each electrode and 25-ms time bin across the recording epoch. Again, we 

observed a significant effect of precision around the 500-800 ms interval, but this 

effect was more prominent over right central as opposed to left parietal scalp. 

Although we extend the evidence for ERP correlates of retrieval precision to 

temporal information, since this experiment constitutes the first such test of this 

effect, it remains to be determined whether it replicates in a larger sample of 

subjects and if its topographic distribution is indeed distinct from that for spatial 

memory. 

In two additional sets of analyses of the EEG data, frequency power in the alpha 

and theta bands were examined in relation to the behavioral measures of 

temporal precision. Regression-based analyses revealed a late-onsetting (1100-

1400 ms) effect in the alpha band over left parietal sites, whereas there were two 

effects in the theta band: one over left central scalp at 900-1100 ms and the 

other over left frontal scalp at 1600-1700 ms. Since these results come from 

exploratory analyses, it is important to be cautious in making any inferences 
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about their functional significance. Perhaps one interesting aspect of the results, 

however, is that they largely occur beyond the time frame of typical effects of 

episodic retrieval such as the 500-800 ms interval of the LPE. Instead, the timing 

of these oscillatory effects aligns better with EEG correlates of post-retrieval 

monitoring (Koriat & Goldsmith, 1996; Wilding & Rugg, 1996; Hayama et al., 

2008), suggesting that they might reflect the maintenance or further evaluation of 

the temporal information retrieved.  

In the final experiment reported here, we sought to place our findings for 

precisely retrieving temporal information in the larger context of analogous 

studies that more commonly test spatial retrieval. After encoding a series of 

pictures that were displayed at random locations on the computer screen, 

subjects made both a temporal and spatial judgment for each stimulus at test. In 

one series of analyses, we sought to investigate the correspondence between 

these two types of judgment. Overall, the judgments were positively correlated at 

the trial level, such that trials on which temporal accuracy was high also exhibited 

accurate spatial retrieval. In addition, when the distributions of temporal and 

spatial errors were z-adjusted for comparison, there was no observable 

difference in precision between the two. Finally, although we did not expect prior 

to conducting Experiment 4 that counterbalancing the order of temporal and 

spatial judgments would have an effect on dependencies, the temporal-spatial 

relationship was stronger for subjects who made spatial judgments first. 

Nevertheless, when considered together, these findings provide initial and 
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somewhat consistent evidence that temporal and spatial retrieval might share 

some underlying neurocognitive processes.  

Experiment 4 also provided a further test of the recency effects on temporal 

precision that were evident in Experiments 1 and 2 (cf. Experiment 3). Using a 

shorter encoding list compared to those experiments (100 versus 300 and 140 

items), we again replicated the result that temporal judgments were more precise 

for recent compared to remote trials. However, while precision was largely 

correlated across domains, as described above, spatial judgments did not exhibit 

the recency effect that temporal judgments did. One possible explanation of this 

dissociation is that the retrieval of temporal information is uniquely supported by 

a vague sense of relative item strength, whereby the strength of recent items 

declines as those items become more remote. The same sort of strength-based 

signal is uninformative, though, to judgments of spatial retrieval, as that factor 

varied randomly across the changing temporal context of the encoding phase. As 

this study provides only a starting data point in contrasting the dynamics of 

spatial and temporal memory, further investigations are clearly necessary to test 

the explanation put forth here, as well as alternative ideas about whether 

forgetting differs across domains. 

In conclusion, just as recent studies investigating memory precision have 

advanced working memory theories beyond a predominant focus on capacity (for 

reviews, see Cowan, 2001; Luck & Vogel, 2013), the continuous report paradigm 

is also proving to be instrumental in moving episodic memory research past the 

“all-or-none”, thresholded form of recollection (Parks & Yonelinas, 2009; Wixted, 
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2007). In the set of experiments reported here, the employment of this paradigm, 

along with the corresponding mixture-modeling approach to analysis, was 

intended to capitalize on subtle changes in the precision of memory retrieval. 

Characterizing these changes with statistically-sensitive techniques is the first 

step to understanding how continuous retrieval judgments are the result of neural 

processes that might also operate in a graded manner (e.g., Johnson et al., 

2009; Murray et al., 2015). Understanding and characterizing the way in which 

we retrieve temporal information has several potential applications. As we 

elucidate these processes in healthy young adults, it will likewise be informative 

to begin to understand these processes in healthy ageing, as well as if temporal 

memory precision is affected in neurodegenerative disorders such as 

Alzheimer’s, and to the extent temporal retrieval is damaged compared to other 

types of memory (e.g., basic recognition, spatial memory). For example, if signs 

of temporal memory degradation occurs earlier than say, spatial memory or basic 

recognition, this could be informative in early detection of aforementioned 

neurodegenerative disorders. Similarly, future research could aim at assessing 

the importance and relationship between temporal memory precision and 

educational achievement. Memory performance has been correlated with other 

cognitive factors that contribute to educational achievement. It would be fruitful to 

investigate how these types of memory paradigms can influence and direct 

aspects of educational programs, and ultimately, academic achievement. 

Generally speaking, as we have demonstrated here, time has the potential to be 

a useful dimension for investigating such phenomena, given its ever-present 



 

82 

 

association with encoded events, even in the absence of any overt experimental 

manipulations, and its changing dynamics even within single-session laboratory 

tests of episodic memory. 
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Appendix 

 

Figure A1. Scatterplot from Experiment 1 of the temporal judgments of each trial (y-axis) 
compared to its correct temporal study position (x-axis) across all subjects. 
 
 

 

Figure A2. Scatterplot from Experiment 2 of the temporal judgments of each trial (y-axis) 
compared to its correct temporal study position (x-axis) across all subjects. 
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Figure A3. Scatterplot from Experiment 3 of the temporal judgments of each trial (y-axis) 
compared to its correct temporal study position (x-axis) across all subjects. 
 
 

 
Figure A4. Scatterplot from Experiment 4 of the temporal judgments of each trial (y-axis) 
compared to its correct temporal study position (x-axis) across all subjects. 
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