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ABSTRACT

Density-functional theory (DFT), in its various forms, has become a near ubiqui-

tous form of theoretical research used to benchmark and prototype solutions to many

finite and extended state system. This is largely because DFT can both capture the

rich physics that is present in these electronic systems, while remaining computation-

ally cost-effective and interpretable. However, DFT also has the requirement that the

density functional being used to iteratively converge towards a solution must be ac-

curate and correct. While on the surface such a stipulation seems benign, in practice

the density functionals can be overwhelmingly complex and error can be introduced

that comes from either the density functional that is chosen or the approximations

used to make a system more calculationally tenable.

In this work, our focus is on the use of model systems to calculate and deter-

mine the usefulness and shortcomings of DFT. By simplifying the underlying system,

while also retaining enough physical quantities from real systems, we can focus on how

the approximations affect the outcomes that are produced. To begin, we show that

charge-transfer dynamics can be described in unique and enlightening ways through

the use of the particle-hole map (PHM). Using a one-dimensional, multi-well sys-

tem, we effectively demonstrate how interesting electron dynamics can be uncovered

by applying unitary transformations to the wavefunctions. By spatially localizing

the electronic wavefunctions through the Foster-Boys method, which is analogous to

Wannier localization in extended systems, the intermediating components of charge-

transfer systems can be examined to determine their effect on the system-at-large.

From the simple one-dimensional system, we could quickly infer real molecular sys-

xv



tems that could potentially be examined using the same method to surmise the role

charge-transfer intermediaries play in such systems as organic photovoltaics.

Beyond electron dynamics, the role of exchange-correlation (xc) scalar potentials

and magnetic fields that are features of noncollinear spin Kohn-Sham (KS) and DFT

was explored by comparing the exact Schrödinger solution to the KS and DFT ap-

proximations. By extending the Hubbard model to four sites, we can both solve the

system exactly, while allowing for on-site and nearest-neighbor interactions. We were

able to obtain benchmark solutions across a wide range of interaction strengths, de-

termining that there are regimes where the xc magnetic fields play an increasingly

larger role as the system becomes more correlated. In fact, there is a regime where the

xc magnetic fields become larger than the external magnetic fields that are applied

on the system. Through the model system, we could additionally compare the exact

solutions against the approximated xc functionals and demonstrate that the weakly

correlated regime can be adequately described by the xc functional approximations

common to many real-systems.

Moving beyond steady state observations, we can also describe time-dependent

electron dynamics through real-time TDDFT and use a model system to compare

the time-evolution of the exact and KS solutions. By allowing the xc potentials

to propagate in real time, we could explore the role the xc torques played during

the evolution of a triangular lattice under an applied, time-varying magnetic field.

Additionally, by controlling the spin-orbit coupling present in the small model system,

we determined that the spin orbit coupling plays a substantial role in keeping the spins

more closely aligned with the exact system. In part, this was due to the spin-orbit

coupling serving as a time-varying magnetic field, which tended to be larger than

xvi



the xc potentials that were also present. The trimer can also be quickly and easily

expanded with the added spin-orbit coupling and compared to real model systems

through computational physics software, such as Octopus.

xvii



Chapter 1

Introduction

The purpose and direction of this thesis is to sufficiently describe and characterize

how model systems can be used to observe the behavior of electrons in finite and

extended systems. As such, this work seeks to compare well-established theoretical

results and expound upon them to uncover areas in the many-body canon where

current methods in Time-Dependent Density-Functional Theory (TDDFT) can be

improved. Experimental results are still vitally important to any scientific endeavor

so all results and theoretical conjectures rely on observable quantities that could be

captured in experiment.

Model systems serve an important role, especially in the field of many-body physics

because of their ability to be solved analytically, or at least with computational ef-

ficiency. Since density-functional theory (DFT) is an ab initio theory, we can easily

and directly compare the results with those of the analytic, or numeric, solutions of

the many-body Schrödinger Equation, if available. In this sense, having the model

solution provides us with relevant physical insight and a basis of comparison that we
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would be unable to procure otherwise.

By removing the intricacies of a realistic system, we are able to focus on the

component parts of a system. Using mathematically rigorous analogues for their real

counterparts, we can tweak and control the influence of particular physical quantities.

Finally, with that control at our disposal, we inform ourselves as to what physical

processes are most responsible for the behavior we are witnessing in our model system.

Then, because we have controlled and carefully selected our quantities, we can infer

what physical behavior we would expect to take place when we reintroduce all of the

competing complexities of a real system.

Importantly, we can directly compare observables for the exact solutions with

the observables of our approximations. By doing this, we can immediately recover

where theory falters and quickly correct how we might build a solution. Since we

are performing research on physical materials, we focus on calculating and comparing

physical observables.

To get to our model systems, we must first lay the ground work of how our systems

can be created. In Chapter 2, we will discuss the theoretical framework on which

this thesis is built, DFT, and introduce some model systems that have been used

throughout physics with sometimes surprising accuracy. After a thorough review of

what preceded and shaped this thesis, we will expand from ground-state DFT into the

calculation of excited states and electron dynamics in Chapter 3. While in Chapter

3, we will introduce the localized particle-hole map and discuss intuitive ways to take

a simple one-dimensional potential model and apply it within a molecular framework

to explore charge transfer excitation processes.

Once we are thoroughly familiar with excitation dynamics and linear response

2



TDDFT, we will maintain our theme of optimizing Kohn-Sham quantities in Chapter

4 by exploring exchange-correlation fields via a generalized Hubbard model frame-

work. Because we choose to use a generalized Hubbard model, we can exactly diago-

nalize the many-body Schrödinger equation through a creative basis set selection. We

will see that this exact solution allows us to compare our KS and exact potentials di-

rectly and identify regimes where the calculated exchange-correlation fields will have

large effects.

In Chapter 5, we will again revisit the Hubbard model. Again, because we are

afforded the luxury of solving the Hubbard model exactly, we can apply a small mag-

netic perturbation to our system and watch the magnetizations evolve in time. Now,

rather than exploring the exchange-correlation effects with a static field, we can apply

a time-dependent magnetic field and focus on the evolution of the magnetizations.

Consistent with Chapter 4, we will see that there is a regime where the exchange-

correlation torques must be accounted for and can draw comparisons to more complex

and realistic systems.

Following our final Hubbard model example, we will conclude this thesis with a

conclusion in Chapter 6. In addition to wrapping up the primary accomplishments of

this thesis, we will also postulate new directions for research. Unsurprisingly, much of

the ideas and future directions are formulated around expanding upon the interesting

foundations that were built by distilling the essence of the physics into more tractable

and well-behaved model systems.
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Chapter 2

Background and theory: the
many-body problem

One of the favorite anecdotes of my advisor is the idea that physicists learn quantum

mechanics in kindergarten. More precisely, physicists learn how to solve quantum

mechanical systems for electrons in kindergarten. The first system physicists learn

is the particle-in-a-box, primarily because of the ability to be able to solve a system

analytically, easily see quantization, and see how rich the physics can be in a simple

system.

Importantly, when we approach a particle-in-a-box, we are dealing with a free

electron, devoid of some of the physics that we readily see in daily life. In nature,

there are not many cases where we deal with a well-defined space with a particle

contained in it that is absent of any other external potentials.

One might naively think that there should be no way that such a simple idea

could apply to real systems, given the large assumptions being made. But, there is
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some important physics belying that simple assumptions, being that electrons usually

move quickly when compared to other objects. This is especially true when we look

at electrons when compared to their fundamental brethren: protons and neutrons.

Electrons, being lighter in mass than protons or neutrons, dart and dash in the well-

defined energy levels around a nucleus because of the disparity in mass. This darting

and dashing relative to the nucleons makes the nucleus appear as though they are

stationary from the electron reference frame.

What turns out to be important and fundamental is the presence the nucleons have

on the potentials the electrons feel. To that end, our assumption actually turns out to

be far more reasonable than when initially postulated. By uncoupling the nucleons

from the electrons, we are able to focus on the electron dynamics exclusively and

explore the interesting phenomena that can be described in the following chapters.

2.1 Separating the systems

It is important to state that the difference in movement is more specifically a difference

in the timescale of the associated movements of our two particle types. While the

nucleons are still moving, vibrating and wandering around in space, just as electrons

are, the timescale of their associated motions are much longer. We thus say that,

compared to the electrons, the timescales of the nuclear motion is adiabatic and that

their motion is essentially frozen-in-place, allowing us to decouple the nuclear and

electronic equations of motion.
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2.1.1 The Born-Oppenheimer Approximation

Quickly after modern quantum mechanics was starting to establish itself [1–3], Born

and Oppenheimer proposed an ingenious solution to deal with the complexities of

physical systems [4]. As was previously mentioned, Born and Oppenheimer real-

ized the nuclear and electronic parts of physical systems belonged to different time-

response regimes. When in the electronic wavefunction’s, Ψ, reference frame, the

nuclear wavefunctions, Φ, appear stationary.

In particular, extended state systems, such as common solids, where the nuclei

create a more-or-less repetitive and stationary structure, are an obviously applicable

case where the separation of the two degrees of freedom is intuitive. Less intuitively,

but equally as applicable, are finite systems at relatively low temperatures. Away from

hot temperatures, where nuclei begin to vibrate and translate with greater magnitude,

the nuclei move slowly enough that electrons have ample amounts of time to react to

any change in the nuclear coordinates. That leads to a steady-state approximation,

where the movements of the nucleons are adiabatic, or sufficiently slowly varying in

time that the system remains in an equilibrium state [5].

By using this assumption, we can decouple the electronic and nuclear Schrödinger

equations, leaving us with a simplified manner in which to handle the energies of the

system. After decoupling the equations, it is explicitly assumed that the energies of

the system are simply the sum of the energy eigenstates of nuclear and electronic

regimes,

Etotal = Eelectronic + En,vibrational + En,rotational . (2.1)
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Then, we recover the Schrödinger equation for the electronic system,

(
Ĥe(r1, · · · , rN) +

∑
i,α

veN(|ri −Rα|)
)

Ψ{Rα}
s (r1, · · · , rN)

= E{Rα}
s Ψ{Rα}

s (r1, · · · , rN) . (2.2)

Here, Ĥe is the electronic Hamiltonian and is dependent only on the position of the

N electrons of the system. The veN term is the Coulombic repulsion from the α-th

nucleon on the i-th electron at positions Rα and ri, respectively. Finally, Ψ
{Rα}
s is

the many-body electronic wavefunction that describes the N electrons at positions

r1, · · · , rN for the nuclear configuration with the nucleus at Rα, where s specifies the

complete set of quantum numbers for the electronic system.

We are also left with the nuclear Schrödinger equation,

(
ĤN({Rα}) + E{Rα}

s

)
Φρ,s({Rα}) = E totρ,sΦρ,s({Rα}) . (2.3)

Above, ĤN represents the purely nuclear Hamiltonian, so Φρ,s({Rα}) represents the

nuclear wavefunction with E totρ,s being the total electronic and nuclear energy of the

system. It is important to note that the electron-nucleus Coulombic repulsion enters

into the equation through the E
{Rα}
s term, which is essentially the effective electronic

energy term that determines the nuclear configuration and effective potential energy

surface that the particles move across.

Now, we have two equations that define the two parts of our system. We see

that the electron configuration enters as a parameter within the nuclear Schrödinger

equation, giving us well-defined equations that will only break down as the dynamics
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of the nuclei begin to approach the time-scales on which the electrons operate. As long

as the nuclear dynamics do not induce transitions between electronic states (E
{Rα}
s →

E
′{Rα}
s ), then the decoupling will allow us to determine the nuclear dynamics, and

thus the full many-body wavefunction, after we solve for the dynamics of the electrons.

It turns out in many systems, it is the electronic dynamics that are the most difficult

proposition to answer, as nuclei are fairly straightforward and simple to account for

in the temperature and potential field regimes that we are interested in. As such, this

thesis will focus on the methods used to calculate and determine the effect of these

electronic dynamics.

2.2 Introducing the problem

From Eq. (2.2), we see that we can fully describe the electron dynamics of the

system through the many-body wavefunction, Ψ
{Rα}
s . For clarity, let us define the

Hamiltonian that enters in Eq. (2.2),

Ĥ =
N∑
i

(
−∇

2
i

2
+ vext(ri)

)
+

1

2

N∑
i 6=j

1

|ri − rj|
, (2.4)

where the electron-nucleus interaction, veN(|ri − Rα|), has been replaced by a gen-

eralized vext(ri). Here, and in the rest of this thesis, we will use atomic units

(~ = e = a0 = me = 1). By defining our Hamiltonian in this way, we clearly and

quickly recover the Schrödinger equation that would describe the electron dynamics

of any system,

ĤΨs(r1, · · · , rN) = EsΨs(r1, · · · , rN) . (2.5)
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We cannot jump up in elation yet, though, as we still have some major hurdles

to cover in dealing with the many-body wavefunction, Ψs. Below, we will discuss the

two main reasons why the wavefunction is difficult to deal with, and then introduce

a big reason why we want to find a different way of describing our system.

1. The initial reason that we must be hesitant with our wavefunction is that we

have many electrons to deal with in our system. While this thesis focuses on

finite systems and models, we also want the features and physics discovered

within the studies to be broadly applicable to larger systems. As such, we want

to be able to accurately describe a system with any number of electrons, even

solid state systems, where even small samples contain on the order of ∼ 1023

electrons. That number is exceptionally large on its own, but let’s trim it back

and go to a system that is closer to the model systems we will be discussing

later.

Imagine we take only 100 electrons and throw them into a system that can

be described by a single potential (this would be analagous to an atom with

100 electrons). We can perform a quick, back-of-the-envelope estimate on the

amount of information that we will have to store to fully describe the wave-

function of this system. First, we describe the location of each electron in the

system with its Cartesian coordinates. Using these coordinates, we have 3 ·N -

dimensional space complexity. Suppose we want to look at spin-dependent

phenomena though? Now, we must take account of two additional coordinates,

bringing our total tally up to (3 · 2 · N -coordinates. Quickly, we see that if

we only worry about 3 entries for each electron of each spin, we have 33·2·N

entries that we must keep in memory in order to correctly calculate the full
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wavefunction. If we assume we can fully describe each entry by a single byte,

we have 3600 ≈ 10285 bytes to worry about. So, we could accurately describe

this system if we were to have roughly four times the number of atoms in the

known universe. While this initially seems extremely disturbing, in many cases,

symmetry can help reduce the degrees of freedom (and thus dimensionality of

the solution), but there is one huge caveat to this that is addressed in the second

difficulty with dealing with the full many-body wavefunction.

2. The second, and more pressing, reason to be hesitant to simply stop with the

formulation and calculation of the many-body wavefunction is that we must

determine the electron-electron interactions and take them into account. Im-

portantly, it is the interactions between electrons and nucleons and between the

electrons in a system that determine and describe the physics taking place in

them. Without accounting for the interactions, we would simply be unable to

fully describe the physics in many realistic systems - at least without making

some corrections that we will discuss in later chapters [6–8].

But, accounting for these interactions isn’t free. Because of these correlated

interactions, the Hamiltonian, Ĥ of our system cannot be separated into a

summation of one-particle Hamiltonians, ĥi. This adds another layer of com-

putational cost to the system, and that cost can be calculated as 1
2
N(N − 1)

interactions that we must now account for (in a spin-independent scenario).

These two issues are paramount to our desire to develop another method to suc-

cessfully computationally, and even analytically, characterize physical systems. Ad-

ditionally, these two issues arise from simply trying to solve for the many-body wave-

function of the system of interest. One key caveat to solving for the many-body
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wavefunction is that the wavefunction itself is not an observable of the system. In

this sense, we are directly identifying the key ingredient of our system, without being

able to experimentally verify its accuracy.

The last statement is perhaps more provactive than it ought be. Experimental-

ists can use other observables that are derived from the wavefunction to determine

whether their results follow the solutions of the many-body Schrödinger equation. So,

in truth, what we are actually in pursuit of is not the wavefunction itself, but rather

the observable quantities that can be derived from it.

2.2.1 Observable quantities

In any exploration of a physical system, what we pursue - and what particularly

matters - is a verifiable signature that can be used to justify the underlying description

of that system. Essentially, we are searching for quantities that are illustrative of the

wavefunction itself, while being both easier to handle computationally and physically

verifiable via experimental methods. In this thesis, there are a few key observables

and quantities that will be necessary to form the foundation of all the subsequent

work.

Total energy

The first key quantity that we need to introduce is the total energy. We can easily

capture the total energy by rearranging Eq. (2.5) and solving with respect to Es.

After rearranging, we get

Es =

∫
d3r1 · · · d3rNΨ∗s(r1, · · · , rN)ĤΨs(r1, · · · , rN) . (2.6)
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We can see that Es is now defined as a functional of the wavefunction.

The minimum value of Es, the ground state - E0, is vitally important to many

different areas of physics research. The reason for this is that it is the lowest possible

energy state that a material or molecule may be in. It usually constitutes the reference

state of system upon which we can explore the influences of various kinds of pertur-

bations. Also, in many cases, the ground state is usually the occupied state, even at

finite temperatures near room temperature. While we will not be dealing with any

finite-temperature effects here, much of the physics taking place in condensed matter

research can be captured with low-temperature calculations.

Density

Even simpler perhaps than the total energy is the electronic density of the system,

n(r). While the wavefunction contains all of the information needed to fully char-

acterize a system, we can quickly simplify the wavefunction while retaining a large

amount of knowledge about the system that we can leverage in the future. We begin

by defining the electronic density as

n(r) = N

∫
d3r2 · · · d3rNΨ∗s(r1, r2, · · · , rN)Ψs(r1, r2, · · · , rN) , (2.7)

which we can decipher as n(r) being the number of electrons per unit volume. This

quantity is directly related to the probabililty amplitude of finding an electron at r.

Additionally, the density reduces the number of variables we must concern ourselves

with from 3N to just 3. We will see in the next section that this plays an incredibly

important role in being able to handle calculations that can be performed on real
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systems and larger numbers of electrons. Finally, we will see that this quantity can

be nicely expanded when we enter into a spin-dependent basis, and captures the

magentic dyanmics of the system.

2.3 Recasting the problem

As mentioned above, working with the full many-body wavefunction of the system

is unwieldy and unmanageable for even small systems. To even begin to approach

real systems, we must reformulate our problem to solve for quantities other than the

wavefunction. To accomplish this, we will use the two observables we discussed above

and construct an effective theory in terms of them. Remember, our observables have

reduced the storage cost of our many-body wavefunction and that storage efficiency

will give us leverage as we scale up to more-and-more electrons.

2.3.1 Variational method

Above we described the total energy of the system and specifically focused on one

key quantity, E0, which corresponds to the energy of the ground state of the system.

That is, E0 is the lowest possible energy state, and thus eigenstate, that our system

can be in. According to the Rayleight-Ritz variational principle, E0 is obtained as

the variational minimum of the functional

E0[Φ] =

∫
Φ∗(r1, · · · , rN)ĤΦ(r1, · · · , rN) . (2.8)
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In other words, we have defined E0 in a way that any other function we choose

for Φ that satisfies the boundary conditions of our system cannot be less than E0.

Put another way, if we expand our function Φ into another basis, such as: |ψ〉 =∑
n cn |φn〉, we have set a lower bound on our system which we cannot go below.

This pricinple is the key idea for using such method as configuration interaction or

variational Monte Carlo. Advantageously, it also sets a basis with which we can

expand into and finally begin broaching the subject of Hartree-Fock (HF), Kohn-

Sham (KS), and density-functional theory (DFT), but before we get there, we visit

one more idea.

2.3.2 Functionals and reformulating the many-body Schrödinger
equation

Recall that our end goal is not to simply calculate the many-body wavefunction.

While that would allow us to completely determine our system, the difficulty lies in

actually calculating that quantity. What we might do instead is recast the problem:

where instead of worrying about the wavefunction, we are concerned with how the

observables change for systems with differing potentials. We can hypothesize that

the electronic density might depend only on the underlying external potential that

is present and influencing the electronic behavior. So, what we would like to be able

to show is that a specific external potential uniquely determines the density of the

system. That is, we want to know that there is a one-to-one mapping from an external

potential to a density.

First, we must ask what are the potentials and expectation values we are dealing

with. After all, we must be able to correctly characterize our system before we go
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about reinterpreting the Schrödinger equation. We see that the energy expectation

value is just 〈Ψ| Ĥ |Ψ〉, which from Eq. (2.4), can be broken down as

〈Ψ| Ĥ |Ψ〉 = 〈Ψ|
N∑
i

vext(ri) + T̂ + V̂ee |Ψ〉 , (2.9)

where V̂ee = 1
2

∑N
i 6=j

1
|ri−rj | and T̂ is the kinetic energy operator.

If we apply our expectation values on the first term, we recover

〈Ψ|
N∑
i

vext(ri) |Ψ〉 = N 〈Ψ| vext(r) |Ψ〉 =

∫
vext(r)n(r)dr . (2.10)

We also remember that the ground state of the system, according to Eq. (2.8), is

the state corresponding to the minimization of the energy, E0. But, recall, we don’t

want to use the wavefunction because of its complexity, so what if we reformulate to

minimize our energy with respect to an observable? How could we solve this system

for that observable, but still accurately capture the ground state? We would need to

find

EGS = min
n

{∫
vext(r)n(r)dr + FHK[n]

}
, (2.11)

where FHK[n] is a functional of the density that describes the electron-electron inter-

actions and kinetic energy. If we fully expose F , we find

FHK[n] = 〈ψHK| T̂ + V̂ee |ψHK〉 . (2.12)

While, Hohenberg and Kohn originally showed that the minimization only holds for

nondegenerate ground states, Levy and Lieb later generalized this idea through con-

strained search [9–11]. Notably, ψHK can be the many-body wavefunction, but as
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defined, it can also be any wavefunction whose density is identical to the density that

minimizes Eq. (2.11).

2.3.3 Noninteracting particles

Previously, it was mentioned that we lose some of the information contained within

the wavefunction if we make some assumptions about the system we are working

with. However, we can recapture it in a way that preserves most of the physics

while allowing us to more easily solve the system of equations before us. To do

this, we move away from the interacting, many-body framework and instead make a

simple ansatz that our observables can be described by noninteracting single-particle

orbitals. While our assumption unrealistic, we will see that our substitution gives

us more tractable equations that allow us to leverage computational tools to solve

realistic physical systems.

Effective electronic interaction and Hartree approximation

To begin, we assume that we can approximate the electronic interactions through an

effective single particle potential that is caused only by the Coulombic term. Our

electron-electron potential term, Vee, can now be written as,

Vee =

∫
dr′

n(r′)− nj(r′)
|r− r′| , (2.13)

where the first term is the Hartree Potential, while the second term is the self-

interaction correction, preventing an electron from feeling a Coulombic repulsion to
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itself. Here, we define our densities as

n(r) =
N∑
j

nj(r) =
N∑
j

|φj(r)|2 . (2.14)

It is also clear that our electron-electron term depends on the effective electron den-

sity of the j-th state. We shall see that this state dependence is a defining feature

of Hartree-Fock theory and one key differentiator from Kohn-Sham (and Density-

Functional) theory. To derive Eq. (2.13), we assume our N -particle wavefunctions

are a simple product of the single particle orbitals,

Ψ(r1, · · · , rN) = φ1(r1) · · ·φN(rN) . (2.15)

Now, let us revisit our Hamiltonian in Eq. (2.9) and derive our Hartree-Fock

equations from the variational principle. Instead of minimizing our Hamiltonian with

respect to the many-body Schrödinger wavefunctions, we will minimize with respect

to our noninteracting electronic wavefunctions. Using Eq. (2.15), we can carry out

the variation of the expectation of the many-body Hamiltonian, Eq. (2.9). Through

some straighforward calculus and algebra, one captures the Hartree equation,

[
−∇

2

2
+ vext(r) +

∫
dr′

n(r′)− nj(r′)
|r− r′|

]
φHi (r) = εiφ

H
i (r) . (2.16)

The Slater determinant and Hartree-Fock equation

While Eq. (2.16) is very close to where we want to go, there is an incredibly important

feature that is missed in Eq. (2.16) due to our many-body wavefunction approxima-
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tion in Eq. (2.15). It’s clear on inspection that the Hartree Product expansion of our

wavefunctions in Eq. (2.15) is symmetric. Because we are dealing with fermions, we

necessarily need antisymmetric wavefunctions. To capture the antisymmetric nature

of fermionic wavefunctions, we can instead approximate our many-body wavefunction

as a Slater determinant of our single particle orbitals, [12]

Ψ(r1, · · · , rN) =
1√
N !

det

∣∣∣∣∣∣∣∣∣∣
φ1(r1) · · · φ1(rN)

...
. . .

...

φN(r1) · · · φN(rN)

∣∣∣∣∣∣∣∣∣∣
. (2.17)

Once again, we can plug these new wavefunction approximations into Eq. (2.9)

and carry out another variation of the expectation value of the Hamiltonian. This

time, due to our new single particle expansion that preserves the antisymmetry of

fermionic wavefunctions, we capture the Hartree-Fock Equation:

[
−∇

2

2
+ vext(r) +

∫
dr′

n(r′)− nj(r′)
|r− r′|

]
φj(r)−

N∑
i

∫
dr′

φ∗i (r
′)φi(r)

|r− r′| φj(r
′) = εjφj(r) .

(2.18)

Here, we note that the HF equation features a nonlocal potential - the final term

on the left-hand side of Eq. (2.18) - which is mathematically seen as an integral

over r′. However, this term can also be interpretted as an operator acting on the

single particle orbtial at position r, φj(r), such that the result is dependent on the r′

integration. One important note is that the Hartree potential, the last term on the

left-hand side of Eq. (2.16), is only multiplied onto the single particle orbital φj(r).
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Kohn-Sham Equations

While Hohenberg and Kohn built upon Hartree and Fock’s idea that one can use

simpler, noninteracting particles to recreate the exact many-body density, the HF

computational method was ill-equipped to efficiently and accurately perform compu-

tations on real systems. In HF, the presence of the nonlocal potential we discussed

above, in Eq. (2.18), is a hefty computational challenge to solving the system of

equations. So, what are we to do? What we can do is redefine our system, such that

we have an all encompassing effective potential, vKS(r) - known as the Kohn-Sham

potential, that accounts for both our external and electron-electron potentials [13],

(
−1

2
∇2 + vKS(r)

)
ϕi(r) = εiϕi(r) . (2.19)

After defining the effective potential for our system, the density is given by

n(r) =
N∑
i

|ϕi(r)|2 , (2.20)

which is clearly just the density of the wavefunctions that are the eigenfunctions of

our effective potential system. Regardless of our choice of ϕ(r), we will be able to

iteratively proceed towards our exact density, guaranteed by the variational principle

to have a minimum at our exact ground state density. It is difficult to overstate the

idea that we’ve created a solution to the many-body problem by using noninteracting

particles, yet in a scenario where the exact functional is known, we can produce the

exact ground state density with a corresponding noninteracting potential. In Figure

2.1, we clearly see that if we know our solution is the ground state of our system,

we recover the exact density (albeit from our KS potential rather than the exact
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Figure 2.1: Exact radial density (red) for Helium. The calculated Kohn-Sham poten-
tial (purple) for two non-interacting electrons produces the same density as the exact
potential (blue). Adapted from [14]

potential).

The total energy is then defined as a functional of the density,

E[n] = T̂ [n] +

∫
drvext(r)n(r) + EH[n] + Exc[n] . (2.21)

Here, the kinetic term is defined as in the Hartree-Fock Eq. (2.18) and EH is the

Hartree energy as before

EH[n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′| . (2.22)

The difference is that we now have a collected energy term, Exc that contains the

exchange energy from the Hartree-Fock equation. This Exc is essentially our catch all
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that accounts for the electron exchange potential, but also takes into account some

of the Coulombic repulsion that lost by simply approximating that repulsion over the

electronic densities rather than through the exact electron locations.

To some extent, this feels almost sacriligious, however, we have done nothing

to lose generality. On the contrary, we have actually improved our computational

outlook, as now, we don’t have to worry about the nonlocal exchange potential. To

that end, when we match terms from Eq. (2.21) and vary them with respect to the

set of orbitals subject to the constraint that those orbitals must reproduce the exact

ground state density, we see that

vKS(r) = vext(r) +

∫
n(r′)

|r− r′|dr
′ +

δExc[n]

δn(r)
. (2.23)

Here, we can see that the second term is just the Hartree potential, vH, while we

define the final term as the exchange-correlation potential vxc. Upon inspection of vH

in Eq. (2.23), we see that the Kohn-Sham Hartree potential is defined identically to

Eq. (2.13) from the Hartree-Fock approximation. The difference between Eqs. (2.23)

and (2.13) comes from the definition of the wavefunctions, where vH from Eq. (2.23)

uses the KS wavefunctions, ϕKS, and corresponding nKS.

By creating this definition of the exchange-correlation potential, we have simplified

the computational task of solving for the noninteracting wavefunctions, ϕi which

exactly recreate our many-body density. Our sacrifice in rewriting our equations in

this way is that we lose some clarity into the exchange and correlation terms that are

collected within vxc. While the exact KS equations are self-interaction free, it is not

explicitly obvious how the self-interaction exactly cancels in the KS formalism. By

contrast, in HF there is a clear and explicit cancellation of the self-interaction error.
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2.4 Functional approximations and time-dependence

Calculating the time-independent steady state of an electronic system is extremely

important. By altering the Schrödinger equation and turning it into a system of func-

tional equations with noninteracting wavefunctions, we have allowed for the compu-

tation of the energetics and electronic observables from first principle methods.

From this point, there are many branches that can be taken out into the world of

DFT. One could stay in the steady state and calculate the ground state properties for

solids and extended systems. Once the ground state is solved self-consistently after

the proper choice of functional, a theorist can explore numerous avenues such as cal-

culating the dielectric constant or the electronic response function [15]. Importantly,

these quantities can be verified through the use of optical absorption spectroscopy

or electron energy loss spectroscopy. By transforming those equations into reciprocal

space, a theorist would be able to calculate the band structures and other excitation

effects for many materials [16,17]. While extended systems are worthwhile to explore

and there are numerous parallels to finite systems, we will not spend time exploring

this rich ecosystem.

Instead, we will focus on finite systems, and more specifically model systems,

to determine what role the choice of basis and exchange-correlation approximation

plays on the calculations of those systems. In finite systems, we can also calculate

energetics, force fields, and geometries using the principles mentioned above, and

explore the effects of varying the functional approximations that are used for vxc in

Eq. (2.23). Unsurprisingly, the choice of functional plays a large role in the ability of

DFT to accurately calculate energy levels and densities.
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2.4.1 The exchange-correlation potential

We have defined the xc potential as the functional derivative of some exchange-

correlation energy. What is that energy? Previously, we waved our hands a bit

and said it is simply the energy difference between our exact system and the system

that is satisfied by noninteracting wavefunctions/particles. But, there is more to it,

and for that we can glance back at Hartree-Fock for an explanation.

We saw when we derived the HF equation that when we chose to have noninteract-

ing wavefunctions, there was a term that was the manifestation of the Pauli exclusion

principle. That is to say, the exchange term is the repulsive term that we know elec-

trons physically display: if they have the same spin state, they cannot occupy the

same energy state. But, what is the correlation term and how do we reconcile it?

Recall that our Hartree term is actually the electronic density-density Coulombic

term. We need the Coulombic term to obviously maintain the electrostatic forces that

are present in our system, but by losing the exact location of the electron and using

the density in its stead, we are using some amount of approximation on the Coulombic

repulsion. To correct this, we must take into account that the electronic density is

being used to calculate the elecrostatic repulsion of the particles. This correction

is what defines the correlation term in our xc potential. Rather than defining the

exchange outright (immediately), we group the terms together, knowing that the

exchange term can be defined in a similar fashion to HF, while the correlation must

be determined a posteriori. Once our density is calculated and known, we know that

the correlation must account for the difference between our exact total energy and
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our calculated EKS. Thus, the correlation energy can be defined as

Ec = Eexact − EHF . (2.24)

Defining our exchange and correlation energies as separable quantities allows us

to devise treatment of the terms separately. In addition to being able to separate the

exchange and correlation potentials, we notice that there must be some difference in

our kinetic energy terms that comes from our switch to noninteracting particles. As

we’ve done before, it is easy to collect this term inside of our correlation potential,

as we’ve already defined it to be the energy difference between our exact solution

and the HF, noninteracting system. Using this definition, our correlation energy

must depend on potential and kinetic terms. Gathering the kinetic term within the

correlation potential, vc, we define the correlation potential as,

vc = vext − vH − vx . (2.25)

The separability of exchange and correlation means we can derive functionals that

account for each term independently and provides us a segue into the world of func-

tionals.

2.4.2 The world of functionals

Up to this point in our story, there has been no true approximation. Indeed, we have

altered our exact wavefunction such that we can use more computationally efficient

observables such as the density. We also used a more advantageous definition of our

particles so we could remove the many electronic interaction terms that would also
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add computationally inefficient terms. Those adjustments could be captured directly

within our exchange-correlation term, leading to exact solutions.

The exact solution is dependent on an exact exchange-correlation functional,

though. Unfortunately, the xc functional that broadly applies to all materials is

too complex to solve for and hasn’t been determined analytically (yet...), so we must

approach our systems with an approximate functional that will satisfactorily solve

for the energetics of our chosen systems. While there is no single approximation that

accurately captures the physics of all systems, we have many methods and approxi-

mations that work well in specific cases. Here, we will briefly explore the breadth of

different functional flavors and types.

Functional flavors

Within the world of functionals there are two primary flavors of approximations.

One can be thought of as derived from first principles, satisfying certain known exact

conditions of the exchange-correlation functional. The other can be thought of as

using experimental data as the basis from which parameter tuning and fitting form

the basis of the approximation.

• Orbital dependent and non-empirical functionals The orbital dependent

functionals are the primary focus of this research as they allow for broad applica-

tion as long as the KS wavefunctions can be easily maintained and calcultated.

They have the additional flexibilty of being directly expandable by moving into

noncollinear spin-dependent systems without any loss of generalization. It is

primarily for this reason in Chapters 4 and 5 that we use the approximation to

exact exchange known as the Slater potential. By sidestepping the parameter
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fitting, we can broadly take account of how orbital based measures perform

while also inspecting the effects that correlation has on our approximations.

One important area where the orbital dependent functionals tend to underper-

form are in energy calculations due to noninteracting electron approximation.

This underperformance is across many extended, atomic, and molecular system

calculations.

• Empirical functionals Through inspection of common elements/systems we

could fit functionals that most accurately characterize those systems. Obvi-

ously, the generalizability of these empirical functionals is not nearly as broad

as orbital-dependent functionals. That said, empirical functionals tend to have

lower errors for the energetics that they are trying to describe when compared

to their orbital dependent counterparts. If the empirical parameters and quan-

tities are well chosen, such that they accurately fit a broad base of systems,

they can have fairly broad and accepted applicability. Unfortunately, empirical

functionals tend to be unsystematic in their error as they are created to suc-

ceed in a defined environment and are thus difficult to interpret generally across

systems where they may behave erratically.

In this thesis we will focus entirely on the orbital dependent flavors of functional

approximations as they tend to have the broadest applicability. Additionally, their

errors can be examined through inspection of the calculated observables and com-

pare them to the exact solutions to derive systematic errors due to our functional

approximations.
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Functional types

We touched upon the different flavors of functionals that are commonly used in DFT

calculations, but there are overarching types of functionals that are grouped by the

method used to create the approximation. Some types are very simple, relying on

the density at a single point in space or assuming that the density is uniformly

distributed across the system, while other methods rely on the density gradients

in an effort to more accurately capture the density while sacrificing computational

efficiency. Generally, there are four basic groups and they grow in complexity and

should reduce the error as the complexity grows.

• The first and most basic type are those of the local density approximations

(LDA). The LDA functionals generally either rely on the observed density at a

single point in space and assume a slowly varying density (to account for this

change) or they assume a uniformly distributed density (such as the uniform

electron gas). While simplistic, LDA functionals can capture the electron dy-

namics and electrostatics of the system. However, LDA functionals also tend to

be poor estimators of energy levels and energy gaps, leaving their most useful

properties their computational and memory efficiencies.

• The next step up in complexity are the generalized gradient approximation

(GGA) functionals. In a GGA functional, rather than assuming uniform distri-

bution of the density, or slowly differing enough to be calculable via localized

operations, the functional also uses the gradient of the density. Obviously, by

including the gradient, the change of the density is properly accounted for and

more accurately characterizes the density space of the system. A more accurate
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account of the density space leads to more accurate observables and GGAs do a

better job of calculating the energetics of extended systems. Some of the most

widely used functionals, PBE or BLYP for example, are GGA functionals and

they are a popular workhorse throughout the DFT community [18–20]. The

trade-off for accuracy, though, is the requirement that the gradient must be

calculated and stored for each point in the calculation space, adding computa-

tional heft and complexity. Using GGAs for spin-independent or spin-polarized

systems is still easy to attain in practice, but the added complexity of non-

collinear spin systems, where the single wavefunction is now a spinor, a length

two spin vector, makes GGAs much more difficult calculate (or construct) for

real-time and time-dependent propagations.

• Going one step beyond GGAs brings us to the land of meta-GGAs. As with

normal GGAs, meta-GGAs rely on both the density and the density gradient

at each point in the functional space. However, meta-GGAs also depend on the

Laplacian of the electron and/or kinetic energy density. As one can imagine,

the additional computed quantity allows for more accurate calculations, but the

problems with storage and computation from a single gradient is exacerbated

due to a second set of gradients that must be stored for the entire functional

space. One more difficulty posed by meta-GGAs are the difficulties posed in

calculating the functional derivative of the kinetic energy density.

• Finally, we reach the most widely applied type of functional approximations: hy-

brids. Hybrids, generally utilize the separation of the exchange and correlation

functions to apply different techniques on each term. To reduce the compu-

tational heft of calculating the nonlocal exchange term, some amount of the

28



exchange term is generally approximated with a local density approximation,

while the rest is calculated fully nonlocally. The percentage of the exchange

that is still fully nonlocally calculated is still a large amount of computational

heft, regardless. Still, hybrid functionals give very good results when used on

systems they were designed for and one of the most popular functionals, B3LYP

(a favorite among organic chemists), is a hybrid functional [19–21].

These functional types are not all encompassing and with the popularity of DFT,

many of the listed functionals will probably be obsolete by the time we have finished

typing this sentence. In addition to the overarching types of functionals, there is much

research in long-range corrections to the functionals above to better characterize

electron characteristics in large r regions and charge transfer systems that will be

discussed in chapter 3. In our work, we focus primarily on the exact exchange (EXX)

functional, which will be discussed in more depth in chapter 4, along with the KLI

approximation to the EXX functional. Finally, we will briefly discuss and cover the

STLS method, which includes correlation effects through the unoccupied orbitals, and

creates a self-consistent way to calculate Exc.

2.4.3 Dynamic systems and time dependence

Previously, we discussed that Hartree and Fock presented a variational method to

solve for the exact ground state density of any system that was later expanded and

further developed by Hohenberg and Kohn. Once placed within a self-consistent

framework by Kohn and Sham, we reached a point where large, many-electron sys-

tems could be calculated straightforwardly and within hours on almost any laptop

computer. Having a basis for the ground state and a variational framework that
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shows we can theoretically attain exact solutions, we turn our gaze towards time-

dependence.

While a large amount of physics can be calculated and explored in just the ground

state and static situations, the world of electron dynamics is even richer. In today’s

modern world, we interact daily with electronics, primarily made up of inorganic

semiconductors. Such materials have extremely advantageous properties that allow

for the manipulation of the band gaps through doping, allowing us to use them

as transistors, storage devices, and photovoltaics. So, these different materials have

characteristics that we have become accustomed to taking advantage of in this modern

world, but all of those properties can be calculated and refined using time-dependent

density-functional theory (TDDFT) techniques.

To properly characterize these systems and be confident in our results though,

we must ensure our ground state formalism is generalizable to characterize electronic

dynamics and time dependence. In order to do this, we must approach the time-

dependent case much in the same way as the time-independent (re: ground state)

case. Our problem will be to determine the following: given a time-dependent density,

n(r, t), show that there is a one-to-one correspondence to a time-dependent external

potential, vext(r, t), for a given initial state.

The Runge-Gross Theorem

We begin in largely the same place that we began for the HK theorem, which is useful

since we are making an analogous argument to that steady state situation. Since

we are in time-dependent quantum regime, we are governed by the time-dependent
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Schrödinger equation,

Ĥ(t)Ψ(t) = i
dΨ(t)

dt
, (2.26)

where we have begun in some prepared eigenstate of the Hamiltonian, Ĥ (i.e. -

Ψ(t = 0) is known). Here, Ĥ is defined in the same was as Eq. (2.9), where V̂ext is

now defined

V̂ext =
N∑
i

vext(ri, t) , (2.27)

so our external potential is now time varying and changes according to the system

being investigated.

To prove that our time-dependent potential maps one-to-one to a time-dependent

density, we consider two external potentials, vext(r, t) and v′ext(r, t), that differ by

more than an additive constant. Instead of using the density of the system, we use

the current density, defined as

j(r, t) = N

∫
dr2 · · ·

∫
drN Im{Ψ(r1, · · · , rN ; t)∇Ψ∗(r1, · · · , rN ; t)} , (2.28)

where Im{f} denotes the imaginary part of f . Using the continuity equation from

the Schrödinger equation

∂n(r, t)

∂t
= −∇ · j(r, t) , (2.29)

we can examine the equation of motion of the difference between two current densities,

j(r, t) and j′(r, t).

After working through the equation of motion, we discover a∇{vext(r, 0)−v′ext(r, 0)}

term. We can clearly see, then, that if our external potentials that define our current

densities differ by more than an additive constant, the first order derivative of the
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currents must differ as well. Expanding the differentiation of j(r, t) to the k-th term

and evaluating at t = 0, we find

∂k+1

∂tk+1
{j(r, t)− j′(r, t)}t=0 = −n0(r)∇ ∂k

∂tk
{vext(r, t)− v′ext(r, t)}t=0 . (2.30)

As long as the potentials, v and v′, differ by more than an additive constant and can

be expanded as a Taylor series about t = 0, there must be a finite k where the right

hand side of Eq. (2.30) is nonzero. That obviously implies that j(r, t) 6= j′(r, t) which

shows that a current density is uniquely determined by a given external potential.

All that is left is to show that the currents are unique to a given density, n(r, t).

This follows by applying the gradient to Eq. (2.30). I will leave the final pieces of

that proof to Runge and Gross, but suffice it to say, the current densities are uniquely

determined by our electronic density, giving us a one-to-one map from time-dependent

potentials to time-dependent densities [22,23]. This allows us to easily generalize the

KS equations to a time-dependent system as

i
∂ϕi(r, t)

∂t
=

[
−∇

2

2
+ vKS[n](r, t)

]
ϕi(r, t) . (2.31)

Here, we have a differential equation that is of the exact same form as the Schrödinger

equation, and we can propagate our states forward in time the exact same way. We

now have shown that we can time evolve our KS orbitals, knowing that we have a

direct one-to-one relationship between the time-evolving external potential and time-

evolving wavefunctions. Again, we have shown that our formalism is mathematically

well-defined for our potential experiments, but we again have computational hurdles

that must be overcome. In particular, there are two primary methods that we will
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discuss that are commonly applied within the TDDFT framework: real-time propa-

gation and linear response approximation. Both methods are applied to our model

systems to examine how these approximations and approximate functionals compare

to exact solutions and their corresponding propagations.

Real-time propagation

Previously, we discussed how we assume our nuclei move on a slow enough time scale

when compared to the electron that they can be approximated as being stationary. We

called this an adiabatic approximation, due to the slowly varying nature of the nuclei

allowing us to assume that we never leave an equilibrium state. In the same way, when

we are time-evolving our electronic density, we can make a similar assumption that

stabilizes our problem as we continue in time. Using the adiabatic approximation,

we are able to make the statement that by assuming that the system is only slowly

varying in time, our instantaneous potential reduces to the ground-state counterpart,

vxc(r, t)→ vxc[n(t)](r, t) . (2.32)

Assuming our Hamiltonian is not explicitly time-dependent, we can apply the

time-evolution operator onto our KS ground state wavefunctions. Defining the time-

evolution operator in the usual way,

Û(t) = e−iHt =⇒ |ϕi(t)〉 = e−iHt |ϕi(0)〉 , (2.33)

we have a prescription to observe how our density changes under a time-dependent

external potential. In practice, appying the time-evolution operator as prescribed in
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Figure 2.2: Time evolution of the magnetization integrated around Ni atoms for
varying driving intesities in an NiO extended system. Adapted from [28]

Eq. (2.33) is extremely unstable. To fix this, we apply the Crank-Nicolson algorithm,

defined as

(1− iHdt/2)ϕ(k+1) = (1− iHdt/2)ϕ(k) . (2.34)

This can be interpreted as a ”half-step” forward in time to average the difference

between the previous half-step and the next time-evolved state, ϕ(k+1).

The model systems are stable under the use of Eq. (2.34), so we can stop there,

however there are more sophisticated reformalized versions of the time-evolution op-

erator that perform more efficiently in more complex systems [24–27]. That being

said, real-time propagation is extensively used within the field of TDDFT with wide-

ranging applications. Because we are directly recovering and monitoring the density,

we can recover many observable quantities and directly monitor the density response

to the perturbation. As we shall see in Chapters 4 and 5, by including spin depen-

dence, one such quantity we can monitor is the magnetization of our system as it

evolves in real time due to the perturbative laser field.
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Using these real-time methods gives then allows us to explore ultra-fast phenom-

ena as they happen. For example, we can watch the real-time demagnetization and

saturation of the magnetization of the Ni atoms in NiO shown in Figure 2.2. Although

there are many uses of RT-TDDFT, real-time propagation in DFT is often used to

calculate nonlinear excitation phenomena, such as high-harmonic generation [28–30].

Additionally, RT-TDDFT is commonly used to investigate stopping power and elec-

tron dynamics in solids and to explore electron dynamics in real-space grid model-

ing [31–33]. In this work, as mentioned in the introduction, we will focus on exploring

the magnetization dynamics of our system using real-time propagation techniques to

explore laser pulses hitting a triangular lattice system. A more thorough discussion

of real-time applications and approaches can be found in Time-Dependent Density

Functional Theory [34].

Linear Response TDDFT

Real-time propagation is undoubtedly useful and applicable to many systems, but

physicists and chemists have a second method if they are seeking information about

excited-state properties. In this way, a researcher doesn’t have to worry about deter-

mining the correct time step that will be most computationally efficient, while not

self-immolating in the process. Additionally, the electronic excitations are of par-

ticular interest in many molecular systems where calculating absorption spectra and

the like are key to identifying the mechanisms of the reaction of the system to the

external stimulus. The formulation comes from a transformation of variables from

the time domain to the frequency domain. From this transformation, rather than

directly monitoring the change in density through time, we immediately recover the
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excitation energies of our system and can recover the exact density difference between

the states that are participating in a given excitation.

Suppose we have calculated our system’s ground state, n0(r) =⇒ ϕKS
i (r). We

have eigenvalues for the energy levels for the occupied and unoccupied states. The key

is to determine an equation or system of equations that can use those energy eigen-

values as input to allow us to calculate the orbital contributions to our excitations.

To begin, we note we can invert our functionals such that:

Veff [n](r, t)→ n[Veff ](r, t) (2.35)

Expanding the density and truncating to first order, we get the linear density response:

n1(r, t) =

∫
dt′
∫
d3r′χs(r, t, r

′, t′)Veff,1(r′, t′) (2.36)

Where, χs is the density-density response function and Veff,1 is the linearized effective

potential. Now, if we Fourier Transform our linear density response equation, we see

that all terms become frequency dependent. Once the equation is transformed, we find

that the density-density response function can be recast with frequency dependence

below.

χs(r, r
′, ω) =

∞∑
j,k=1

(fk − fj)
ϕ0
j(r)ϕ0∗

k (r)ϕ0∗
j (r′)ϕ0

k(r
′)

ω − ωjk + iη
(2.37)

Here, fj and fk denote KS ground-state orbitals (with 0 and 1 corresponding to

unoccupied and occupied states, respectively) and ωjk is the difference between KS

energy eigenvalues. Clearly, this tells us that the excitation energies correspond to

the poles of Eq. (2.37).
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Now that we know what our density-density response function looks like, we can

take a step back into our linear response equation. After transforming into the fre-

quency domain, we are left with the equation below, where Ω relates to the exact

energy eigenmode of the system.

n1(r,Ω) =

∫
d3r′χs(r, r

′,Ω)

∫
d3r′′fHxc(r

′, r′′,Ω)n1(r′′,Ω) (2.38)

Above, fHxc is Hartree exchange-correlation kernel. Here, the Hartree term is just

added to fxc as seen below.

fHxc(r, r
′, ω) =

1

|r− r′| + fxc(r, r
′, ω) (2.39)

Additionally, we can write the linear response in matrix form. Now, making a few

clever substitutions and doing some algebra, we can rewrite our linear density response

in the form of an eigenvalue problem.

∑
i′a′

([
δii′δaa′ωa′i′ −Kia,i′a′

]
Xi′a′ +Kia,a′i′Yi′a′

)
= −ΩXia (2.40)

∑
i′a′

(
Kai,i′a′Xi′a′ +

[
δaa′δii′ωa′i′ +Kai,a′i′

]
Yi′a′

)
= ΩYia (2.41)

Importantly, if our KS orbitals are real, we can recast these eigenvalue equations into

a compact matrix formalism, also known as the Casida Equation.

A B

B A


X

Y

 = Ω

−I 0

0 I


X

Y

 (2.42)
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Here, matrices A and B are given by the following equations, which come from sim-

plifying Eq. (2.36).

Aia,i′a′(Ω) = δii′δaa′ωai′ +Kia,i′a′(Ω) (2.43)

Bia,i′a′(Ω) = Kia,i′a′(Ω) (2.44)

Here, our Kia,i′a′ matrix is equivalent to the following integration, where fHxc is as-

sumed to be frequency independent,

Kia,i′a′ = 2

∫
d3r

∫
d3r′ Φ∗ia(r

′)fHxc(r, r
′)Φi′a′(r) , (2.45)

where Φia(r) = ϕ∗i (r)ϕa(r) where i and a run over the occupied and unoccupied

orbitals, respectively. Solving the system of Eqs. (2.40) and (2.41) or Eq. (2.42), we

solve for our eigenmodes, associated with a given frequency Ω.

n1(r,Ω) =
∑
ia

[Φ∗ia(r)Xia(Ω) + Φia(r)Yia(Ω)] (2.46)

Importantly, the density response is also known as the transition density associated

with the frequency Ω. In TDDFT the Kohn-Sham TDM is obtained as a superposition

of TDMs associated with single particle excitations. Therefore, we can rewrite our

transition density equation as a matrix for each of these transition states.

Γn(r, r′) =
∑
ia

[
ϕi(r)ϕ∗a(r

′)X
(n)
ia + ϕ∗i (r

′)ϕa(r)Y
(n)
ia

]
(2.47)

Now, we see that Γn is the Kohn-Sham transition density matrix associated with

the nth excitation of the system. Again, X and Y are the eigenvectors of the n-th
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excitation that are found from solving for the frequency eigenmodes, Ω, of the system.

Importantly, when r = r′ we recover the density response of the transition state, Eq.

(2.46). As we will see, using this Casida formalism will be advantageous to quickly

calculate excitation energies for our model system. Additionally, we can manipulate

and transform the transition density, n1(r,Ω), through unitary transformations on

the underlying Kohn-Sham basis.

2.5 Bringing it all together: model systems

As can be seen from the previous sections, the metaphorical house we are building has

been framed, the foundation has been poured, and the roof tarred and thatched. With

this sturdy structure created, we can now begin to paint the interior and decorate

our rooms to upgrade a simple habitat into a home. To that end, we must connect

where we’ve been to where we will go.

Physicists are reviled and praised for their ability to shape a problem: taking a

complex and almost untenable task and simplifying it to the point that mathemati-

cians would blush and scream concomittantly. Here, we will show that this is not

an altogether despicable thing. Rather, we aim to show that simple model systems,

where complexity has been reduced through careful parameter selection or physical

assumptions, can in fact elucidate and illuminate the path towards understanding our

physical world.
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2.5.1 Returning to the quantum world

Here, we begin by going back the building blocks of every physicists journey into the

subject matter: introductory quantum mechanics. What we will now venture into is

both the first lesson most students experience in those quantum classes and one of

the most simplistic models possible. Because of its simplicity and approachability,

the quantum well and its extensions become an ideal starting place to understand the

impact model systems can have on our study of physics.

The quantum well

Surprisingly, the humble quantum well that each physicist learns is one area of re-

search that has become nearly ubiquitous in modern life, and few people other than

physicists realize it. In America, at least during times that are removed from the

events of 2020 (see: Coronavirus), enter into the average citizen’s home, and one

would likely find some sort of television in the house. Perhaps even more likely, if

their phone number were requested, they would pull out a cell phone, perhaps lever-

aging the technology that takes advantage of the physics that every current graduate

student learned prior to matriculating into their program.

What the two technologies above share are screens, and the ability to emit light

from their components. In modern day society, one area of physics that is popular

and constantly present are the use of quantum dots, especially in the aforementioned

screens for many electronic devices. While that is the most readily visible application

of quantum dots, Figure 2.3 shows that there are many avenues in which quantum dots

have been applied or their use is currently being investigated. The reason for their

popularity is their relative cost and tunability, but perhaps surprisingly, the physics
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Figure 2.3: Current areas of research where quantum dots are being applied or actively
explored. Adapted from [35]

taking place in quantum dots is studied by every physics major across the world in

the form of the particle-in-a-box problem. While the particle-in-a-box model could

never fully capture all of the intricacies of material selection or device efficiency that

are crucial to create a product that sells well to the masses, it admirably and easily

explains the physics of the system in a way that is easily generalized and understood.

To begin, we start with the stereotypical particle-in-a-box, where the well is de-

fined with infinite potential walls and is of length L. By defining our potential in this

way, we are left with a Hamiltonian that looks like the following,

Ĥ = −1

2

∂2

∂x2
+ V (x) . (2.48)

Traditionally, V (x) is set to 0 for 0 < x < L, else V (x) = ∞. The Schrödinger

equation that we get from Eq. (2.48) is straightforward and when we solve for the
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Figure 2.4: The Kronig-Penney potential. A repeating set of finite potential wells
with a potential of V0 of width a and barrier widths of b for each well. Note that the
wells extend on into infinity in x.

boundary conditions and the energy, we get

En =
(nπ)2

2L2
. (2.49)

So, we have arrived at the solution that every physicist knows and loves, but how

does this get us anything as physically rich as a quantum dot?

To do that we must apply more realistic boundary conditions to our system by

using finite potentials. Again, we have a box of identical shape to the particle-in-a-box

example, but replace our infinite boundaries with finite counterparts. The solution

is left as an exercise for the reader, but what is important is by introducing finite

potentials, our electron now has some nonzero probability density outside of our box.

This means our particle can now ”tunnel” through the barrier and escape our region

of confinement. Put another way, our electronic wavefunction now has some overlap

with the barrier.
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If we expand this idea further and create periodic wells that are regularly dis-

tributed along our axis, we can see that we’ve begun to create something similar to a

periodic solid. Solving this repeating system of wells, which is known colloquially as

the Kronig-Penney model and is visualized in Figure 2.4, we can generalize a simple

particle-in-a-box up to a model of a one-dimensional solid. Rather than a wavefunc-

tion where our distribution is only within the well or exponentially decaying through

across our barrier, we now have a function that will repeat with the periodicity of our

wells. This solution is known as a Bloch wavefunction and can be mathematically

written as

ψ(x) = eik·xu(x) . (2.50)

After inserting the Bloch function into our Schrödinger equation, we can solve our

differential equation and match up our functions at the boundaries as in the finite

well problem. Once that is done, we are left with the following equation,

V0ab
sin(αa)

αa
+ cos(αa) = cos(ka) , (2.51)

where a is the width of the well and b is the separation between two wells. Also, α is

defined to be
√

2E.

Immediately, we see that there are quantizations of the values which αa is allowed

to take because of the cos(ka) term on the right hand side of Eq. (2.51). Rather

than discrete values, as we saw was the case for the particle-in-a-box example, we

instead of have quantized areas (bands), where we have allowed energetic solutions.

If we imagine increasing the barrier height, V0, we can see that we would get sharper

(smaller) bands of allowed values and the counterpositive also holds. As V0 approaches
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Figure 2.5: Schematic plots showing (left) allowed energy levels for (a) single, infinite
wells, (b) free particles, and (c) periodic finite potential wells (the Kronig-Penney po-
tential). (Right) how energy dispersion changes with increasing interatomic distance.
We go from the (a) continuous, free particle region to (b) discrete bands, and finally
to (c) discrete, quantized energy levels [36].
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infinity, we also approach the quantized results that we saw in our particle-in-a-box

example. Thus, our extended system leaves its energy band configuration and appears

to approach the behavior of a finite, confined particle behavior. Schematically, we

can draw this like Figure 2.5, where our band dispersions diminish towards quantized

energy levels with increasing interatomic distance.

Now that we’ve laid the table with the basics, we can see that if we can effec-

tively confine the electrons in space, by either increasing the potential barrier or by

increasing the interatomic distance, we approach what looks like discretized atomic

energy levels. So, as we quantum mechanically confine the electron to a small space,

we should expect to get behavior that is similar to what we see in the well-defined

energy levels seen in molecules and atoms. Indeed, this is why quantum dots are of-

ten referred to as artificial atoms: we are confining electrons spatially such that they

behave in the same way energetically that they would in an atom. An example of the

discretized energy states can be seen for a GaAs quantum dot in Fig. 2.6, and it can

be seen that adding a magnetic field, the energy needed to introduce a new electron

increases and generally overlaps with the energy needed to add an additional electron

with no magnetic field. Theoretically and experimentally, this behavior begins to

display whenever the size of the system being explored is on the same order as the

exciton Bohr radius,

rn =

(
m0εraH

µ

)
n2 , (2.52)

where m0 is the electron mass, εr is the relative permittivity of the material, and µ

is the reduced mass of the electron-hole pair - m∗em
∗
h/(m

∗
e +m∗h).

In practice, this means that if a researcher is able to confine an electron in some

way, we can actually fairly accurately predict what the electron dynamics will be.
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Figure 2.6: Single-electron capacitance spectroscopy experiment measuring the energy
to add an electron to an artificial atom made of GaAs. The yellow lines correspond
to the energy needed to add an electron into the quantum dot. The first six energy
levels are numbered and the white dots correspond to spontaneous spin alignment of
the electrons in the quantum dot. Adapted from [37].
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Figure 2.7: Schematic depiction (a) of the paraboloid potential of a quantum dot.
An experimental sample quantum dot (b) created by sandwiching GaAs between two
AlGaAs layers with an artificial atom represented by the black disk. Finally, the
measured capacitance (c) of the experimental GaAs sample measured as a function
of the plate voltage. The peaks in the capacitance correspond to electrons entering
the atom. Adapted from [37]
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Obviously, real life corrections must be made and there has been extensive study on

the shape of confinement and magnetic field effects on energy levels and electronic

behavior, but on a basic level quantum dots can be approached as an application of

a particle-in-a-box [38]. Still, quantum dots are extremely popular areas of research

because of their broad applicability and relative ease with which they can be fabricated

[35]. For example, we can see a GaAs quantum well created by sandwiching the GaAs

between AlGaAs in Figure 2.7. Single electrons can be added to the dot by adjusting

the gate voltage and the electron is confined in this system to the GaAs layer, which

is subject to a two dimensional paraboloid potential. While simplistic in nature, and

only a small step removed from the one-dimensional particle-in-a-box example we

solved previously, the potential compares favorably to experiments [37,39–41].

The tight-binding model

Taking a step beyond the applications of a quantum well, we can move to a lattice

system. Underlying the study of all of condensed matter, as we made clear in Section

2.1.1, is the idea that nuclei are close to stationary when compared to the movement of

electrons, especially within a solid. It was fairly easy to reconcile the idea of clamping

the nuclei in place because of their relative mass compared to electrons, and thus the

time scales of their movements are long in the reference frame of the electron. But,

could we simplify and restrict the motion of the electrons as well? After all, we know

the potential fields exerted on our small, negatively charged friends are what define

their motion.

We might assume then, that with the relatively vast difference in size between elec-

trons and nuclei that the electrons are more strongly influenced by the presence and
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placement of the nuclei when compared to their fellow electrons. To mathematically

implement this idea, we assert that electrons prefer to stay isolated and in close prox-

imity to their atomic centers, occasionally jumping to another atom, while neglecting

the electron-electron interactions. Assuming we have a crystal/lattice structure, we

can formulate our Hamiltonian as

Ĥ = Ĥatom + ∆U , (2.53)

where Ĥatom is defined as a Hamiltonian describing an independent atom and ∆U

is the potential difference due to the crystal/lattice structure. As we approach an

atomic center, we expect that the potential from that local atom will dominate the

potential coming from other atomic sites, which implies ∆U → 0 as the electronic

position r approaches Rj (the location of our j-th nuclei).

Having defined our global Hamiltonian, we should investigate how we define our

atomic Hamiltonian. If we assume that our lattice sites can be separated far enough in

space, that is that the potential wells between lattice/atomic sites do not overlap, we

can define our atomic Hamiltonian such that the eigenstates of each atomic site are the

atomic eigenstates/wavefunctions. Mathematically, we are left with the Schrödinger

equation that describes are atomic states,

Ĥatomφi(r) = εiφi(r) . (2.54)

By defining our wavefunctions as atomic orbitals, we can describe our system with

wavefunctions that are separated in space, meaning the overlap of wavefunctions
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Figure 2.8: Diagram of the atomic orbitals in a one-dimensional crystal separated by
units of a0. The atomic orbitals are described by the solid and dashed lines. The
vertical dashed line demarcate the edges of the unit cell of our one-dimensional lattice
and τ is the vector denoting the nearest neighbor to site 0. Equation (2.55) denotes
the area contained beneath the solid and dashed wavefunctions in the region between
the 0-th and 1-st lattice sites. Schematic reproduced from [42].
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between neighboring lattice sites/atoms are small. We define this overlap integral as

∫
φ∗i (r)Ĥφi(r + R)dr , (2.55)

where φi(r + R) is the i-th wavefunction of the atom located a distance R from our

origin atom. In other words, we assume that R 6= 0 in this formulation. Schematically,

we can visualize this equation as Figure 2.8, where we have wavefuctions emanating

radially from the atomic centers and overlapping slightly with neighboring atomic

wavefunctions. By using these local atomic orbitals as our basis, we can still satisfy

Eq. (2.50), retrieving wavefunctions that can describe the periodic nature of a solid

and capture band calculations.

Indeed, even a simplistic model such as the tight-binding model provides the

theoretical framework of interesting phenomena currently being discussed in physics.

Perhaps the best known example of this would be the material graphene. We begin

where we left off above, we have Bloch wavefunctions describing our tight-binding

system, which are explicitly written as

Φj(k, r) =
1√
(N)

N∑
i=1

eik·Rj,iφj(r−Rj,i) , (2.56)

where our φj are the atomic wavefunctions for each site located in our unit cell.

Redefining our basis, we can get the electronic wavefunction as a linear combination

of our Bloch functions,

Ψj(k, r) =
n∑
l=1

cj,l(k)Φl(k, r) . (2.57)

That leaves us with our Schrödinger equation from which we can calculate the energy

of each electron band. Solving our energy, and substituting the wavefunctions from
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our new Bloch wave basis, we recover

Ej(k) =

∑n
i,lHilc

∗
jicjl∑n

i,l Silc
∗
jicjl

, (2.58)

where Hil = 〈Φi| Ĥ |Φl〉 and Sil = 〈Φi|Φl〉 is the overlap integral. For graphene,

specifically, we have two orbitals per unit cell, which means we are left with the

following equation

Hψj = EjSψj , (2.59)

which we can diagonalize to solve for the wavefunctions of our system.

It is important to note that H and S are still matrices in this case, each with 4

quantities, which can be calculated by plugging Eq. (2.57) into the definition of our

matrices from Eq. (2.58). By assuming a tight-binding framework, we can assume

that our wavefunctions only overlap slightly with the nearest neighbor orbitals. That

means, there are no contributions in our overlap integrals from any wavefunctions

other than the 3 sites that surround each sublattice point in the customary A-B

sublattice definition of graphene visualized in Figure 2.9. Calculating the energies

from these equations is mainly an exercise in geometry and once calculated, we recover

our band equation equations for graphene,

E± =
ε2p ± γ0|f(k)|
1∓ s0|f(k)| , (2.60)

where ε2p = 〈φj| Ĥ |φj〉, γ0 are the AB overlap integrals, and f(k) = eikya/
√

(3) +

2e−ikya/2
√

(3) cos(kxa/2).

So, we can determine the band structure of graphene in the tight-binding frame-
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Figure 2.9: Schematic of a graphene lattice with A-B sublattice labeling and corre-
sponding colors, red and blue, respectively. The unit primatives are labeled a1 and
a2 with the unit cell shown as the shaded region. Adapted from [43]
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Figure 2.10: Band structure calculations of graphene with spin-orbit coupling for
an atomic orbital basis for tight-binding calculations (gray lines) and with density-
functional theory (colored markers) using a linearized augmented plane-wave basis.
The DFT calculations were done with Wien2k using the PBE functional. The bands
are colored according to their atomic orbital and the Dirac cones can be seen at the
K points on the edges of the plot. Adapted from [44].

work, but how does that compare to experimental results? In Figure 2.11, the exper-

imental results confirm the Dirac cones that are predicted by tight-binding model.

Likewise, Figure 2.10 shows that the band structure calculated with more complex

DFT methods using including spin-orbit coupling compare favorably to tight-binding

model results (with spin-orbit coupling included).

We have shown that the tight-binding model has good predictive power and is

in good agreement with both calculation and experiment, as we displayed in Figures

2.11 and 2.10, but it is also an important foundation for other theories. One of those

theories and models forms the basis and foundation upon which this thesis is built.

Recall that in Eq. (2.55), we wrote the overlap integral in the single, atomic orbital

basis. Beginning from this localized basis, we can then reorganize Eq. (2.56) in terms

of creation and annihilation operators in the second quantization formalism, leaving
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us with

ckσ =
1√
(N)

∑
i

eik·Riciσ , c
†
kσ =

1√
(N)

∑
i

e−ik·Ric†iσ . (2.61)

Here, the creation operator c†iσ creates an electron in the corresponding φ(r − Ri)

orbital with spin σ, while ciσ annihilates the electron from the same i-th orbital with

spin σ. By reformulating our equations in terms of our second quantization operators

and including the Coulombic repuslion term between electrons, we are able to recover

(with some hidden algebra) the Hamiltonian in terms of our operators as

H =
∑
i,j

∑
σ(tijc

†
iσcjσ + h.c.) +

∑
i,σ

Uc†iσciσc
†
i−σci−σ +

∑
i

∑
σσ′

vext
iσσ′c

†
iσciσ′ . (2.62)

Recall that previously, we defined the overlap integral in Eq. (2.55) and showed

that in the highly localized limit, this quantity is small when we get far away from

the atomic centers. If we examine that equation, we can see that when we switch

to the second quantization formalism, that overlap integral is precisely equal to our

tij term. So, tij behaves as our overlap integral between atomic sites, serving as a

hopping term that a defines the likelihood that a particle will (or can) jump from

site i→ j. That means, going from the extended system formalism, we can actually

describe a finite system, where the lattice sites are locally defined quantities (like

atomic orbitals or Wannier functions). The Hubbard Hamiltonian also ignores all

electron-electron interactions (as the energies of those actions are small) except for

the Coulombic repulsion term between electrons at the same lattice sites. This term

is described by the U term in Eq. (2.62) and is the quintessential approximation that

makes the Hubbard model.

This profound idea means that we now have a simple model system that can be
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Figure 2.11: ARPES measurement of energy bands in graphene with increasing doping
of Potassium along the K point and parallel to the ΓM direction. The electron density
per cm2 is given on the bottom of each doping level. Clearly visible is the Dirac point
where the conduction and valence bands meet for single layer graphene near the Fermi
level. Adapted from [45].

viewed as discrete lattice sites with entirely localized quantities where the electronic

density only sits on the defined sites, with no spatial distribution outside of those dis-

crete sites. Interestingly, this definition came from an extended state formalism where

the discrete sites can also be interpreted as band interactions within an extended sys-

tem and the Hubbard model can be interpreted as systems where only the band near

the Fermi energy participates in the electronic dynamics of the system. In practice

the Hubbard model has been used to model Mott insulators and high-temperature

superconductors [46]. And as the impetus for what a model system can and should

be, I will leave the importance of the Hubbard model to the world of physics left said

by the editors of Nature Physics [46]:

Although the Hubbard model secured its place in (condensed-matter)

physics textbooks many decades ago, it is very likely that it will continue

to play an important role in fundamental research as well. In particular,

the continuing experimental progress in artificial lattices of cold atoms

and superconductivity, where the Hubbard model and its modifications

play a prominent role, should be a stimulus for further explorations.
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Simply put, the Hubbard still enjoys status as an influential model being studied and

exposing interesting physical phenomena even today. The proceeding chapters will

build upon the Hubbard formalism, adding interesting physical quantities such as

the next-nearest neighbor interaction terms and spin-orbit coupling, but the model

remains the simple and beautiful system that has spawned research and illuminated

physical intuition. To finish with one final quote from Nature Physics again [46]:

Ever since its inception, the model has spawned new lines of research

in theoretical physics; the development of dynamical mean-field theory

is a noteworthy example. Although the model quickly became a firm

favourite of theorists, it twice experienced a sudden rise in popularity due

to breakthroughs in experimental physics . . . Part of the legacy of Hub-

bard’s model is that it launched the field of strongly correlated systems

— it is undoubtedly the archetypal model of many-body physics.

And with that, we build upon the models that have illuminated the field of condensed

matter physics and look to add a few more lumens that will make the world around

us just a little more clear.
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Chapter 3

The Localized Particle-hole Map

As a disclaimer, much of this chapter is taken verbatim from the work of E. A. Pluhar

and C. A. Ullrich, EPJB 91, 137 (2018) [47].

3.1 Introduction

Recent years have witnessed a proliferation of highly efficient organic semiconduct-

ing materials for use in photovoltaics and other areas of optoelectronics. Importantly,

these devices rely on charge-transfer characteristics that are either inherent to the ma-

terial or are emergent from the combination of two materials [48]. While many of the

organic materials that display these characteristics have been known for years, time-

dependent density-functional theory (TDDFT) [22,34,49,50] has now been established

as the standard theoretical tool to analyze and predict their optical properties.

Since many of the organic materials of interest are quite complex, the question of

visualizing the electron dynamics within these system remains a challenge. To this
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end, many tools to visualize charge dynamics have been developed in the literature,

such as the time-dependent electron localization function [51] or the transition density

matrix (TDM) [52–55]. The TDM is an approach based on the reduced one-body

density matrix [56–59]; it can be used to isolate each transition state and generate

a matrix representation that describes the density dynamics of the system in real

space. Because of the nonlocal variables introduced in calculating the TDM, exciton

coherence and delocalization lengths can be extracted from it [60]. Additionally, the

TDM is the basis used to construct natural transition orbitals [61].

Previously, the particle-hole map (PHM) was introduced as a tool that eluci-

dates even more electron dynamic information from a system, especially when used

in conjunction with the TDM [62–65]. The PHM’s key feature is that it is created

by projecting the orbital fluctuations associated with excited states onto the ground

state orbital densities. With the PHM defined via a projection operator acting on the

particle-hole reduced two-body density matrix [65], the PHM is non-invariant under

any unitary transformation into a different orbital basis, as we will show here. Con-

versely, the TDM is invariant under such transformations, as would be expected for

any observable. While this may sound like a shortcoming of the PHM, it can become

an asset, as we will discuss.

In principle, we can consider arbitrary unitary transformations, but here we specif-

ically focus on transformations that lead to localized orbitals. In this work we choose

the Foster-Boys orbital localization procedure [66] over the Edmiston-Ruedenberg

scheme [67], primarily due to the analogous definition of Foster-Boys orbitals to max-

imally localized Wannier functions in periodic systems [68–70].

Beyond the connection between Foster-Boys orbitals and Wannier functions, lo-
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calized orbitals generally recreate general chemical intuition stemming from Lewis

structures, chemical bonds, and the model geometry of the system [68,71]. Likewise,

it can also provide clarity as to the electron dynamics expected under excitation, since

the chemical bonds of the system are better characterized by the localized orbitals.

We also recall that noninvariance under unitary transformations is a key feature

of the self-interaction correction (SIC) approach in DFT [72], and it was recognized

early on that an unambiguous implementation of SIC can be achieved with localized

orbitals [73,74].

This chapter is organized as follows. In Section 3.2 we will present the formal

background: first, we show how the linear-response TDDFT formalism for excitation

energies [75, 76] behaves under unitary transformation to localized orbitals, and how

this affects the TDM and PHM. We will then introduce an approximation called the

localized PHM. We then proceed to show how to use simple tools of metric space

analysis [77–80] to quantify the differences between canonical and localized PHM.

In Section 3.3 we illustrate these concepts using simple one-dimensional (1D) model

systems with noninteracting spinless electrons. Section 3.4 gives our conclusions.

3.2 Formal background

3.2.1 Excitation energies with TDDFT: the Casida equation

The standard approach for calculating excitation energies with TDDFT is via the

Casida equation [75], which we briefly summarize here (see [34] for more details). For

simplicity, let us consider closed-shell systems that are not spin polarized, and limit
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ourselves to the singlet excitation channel; spin indices are then not needed.

We define the product of Kohn-Sham orbitals as

Φia(r) = ϕi(r)ϕ∗a(r) (3.1)

and the difference of Kohn-Sham orbital energies as

ωai = εa − εi. (3.2)

Here and in the following, i, j, k, ... run over occupied orbitals, and a, b, c, ... run over

unoccupied orbitals. We assume, mainly for notational simplicity, that the Hartree-

exchange-correlation kernel of TDDFT, fHxc, is frequency-independent, and we define

the coupling matrix elements

Kia,i′a′ = 2

∫
dr

∫
dr′ Φ∗ia(r)fHxc(r, r

′)Φi′a′(r
′). (3.3)

In terms of these quantities, the Casida equation is

[δii′δaa′ωa′i′ +Kia,i′a′ ]Xi′a′ +Kia,a′i′Yi′a′ = −ΩXia (3.4)

Kai,i′a′Xi′a′ + [δaa′δii′ωa′i′ +Kai,a′i′ ]Yi′a′ = ΩYia, (3.5)

where here and throughout the chapter, summation over repeated indices is implied.

Equations (3.4) and (3.5) are formally a non-Hermitian eigenvalue problem whose

eigenvalues come in pairs, i.e., (−Ωn,Ωn), where Ωn is the nth excitation energy of the

interacting system. The associated eigenvectors X
(n)
ia , Y

(n)
ia yield the density response
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of the excitation as

δn(r,Ωn) = Φia(r)X
(n)
ia + Φ∗ia(r)Y

(n)
ia . (3.6)

Furthermore, the eigenvectorsX
(n)
ia , Y

(n)
ia can be used to construct the oscillator strengths

[34,75].

3.2.2 Transition density matrix and particle-hole map

Formally, the TDM is defined via the one-particle reduced density matrix operator

acting between the many-body ground state and the n-th excited state wavefunctions

of the system [53]:

Γexact
n (r, r′) = 〈Ψn|ρ̂(r, r′)|Ψ0〉. (3.7)

However, in order to apply the TDM to real-life systems, we must formulate the

Kohn-Sham TDM, which is simply a superposition of the TDMs associated with

single particle excitations. From the Casida formalism, we obtain

Γn(r, r′) = ϕi(r)ϕ∗a(r
′)X

(n)
ia + ϕ∗i (r

′)ϕa(r)Y
(n)
ia . (3.8)

We then have a function, Γn(r, r′), that approximates the many-body TDM, Eq.

(3.7), associated with the n-th excitation of our system. Importantly, we recover the

exact density response of the system when r = r′:

Γn(r, r) = δn(r,Ωn) . (3.9)

The TDM is not complete, however, as has been discussed previously [62–65]. No-

tably, the TDM is defined via the one-particle density matrix and only encodes prop-
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erties about particle-hole correlations that can be derived therefrom. If we instead

consider the two-body particle-hole density matrix, and then apply a projector onto

those excitations, we recover the PHM [65], which contains information about the

individual particles and holes created during and excitation. The explicit form of the

PHM is

Ξn(r, r′) = Φia(r
′)|ϕi(r)|2X(n)

ia + Φia(r
′)|ϕi(r)|2Y (n)

ia . (3.10)

Equation (3.10) has two important sum rules. First, we can clearly infer from the

definition of the PHM that in an orthonormal basis, summation over r′ gives zero:

∫
dr′Ξn(r, r′) = 0 . (3.11)

Physically, this result is important, as it guarantees charge conservation in our system.

The second sum rule over r leaves us with

∫
drΞn(r, r′) = δn(r′,Ωn) . (3.12)

Importantly, this is the exact density density response associated with the n-th excited

state of our system.

Usefully, the PHM allows users to graphically interpret that the sum rules are

satisfied. By visually summing the red and blue areas along the r and r′ axes (see

below), one can quickly make predictions and determine the electronic nature of a

given system, making the tool easy to understand and interpret for all readers.
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3.2.3 Casida equation for localized orbitals

One noticeable difference between the equations defining the TDM and the PHM is

the non-invariance contained within the PHM. Because the TDM is constructed as the

expectation value of an operator, the TDM will thus be invariant under any unitary

transformation of the orbital basis. The PHM, however, has no similar operator, and

thus cannot be described in the same fashion under a transformation.

Let us introduce a set of orbitals ξµ(r) which are related to the canonical Kohn-

Sham orbital via a unitary transformation:

ϕν(r) = Mνµξµ(r) (3.13)

(here, the indices ν and µ run over all states). We now assume that the unitary

transformation matrix M is block diagonal, so that the transformations are restricted

to rotations within the occupied and unoccupied subspaces, respectively:

ϕi(r) = Mo
ijξj(r), ϕa(r) = Mv

abξb(r). (3.14)

Here, Mo
ij and Mv

ab are submatrices of M which operate within the occupied and

virtual subspaces.

We define our ξj and ξb to be the set of orbitals which are localized according to

the Foster-Boys (FB) method; however, any localization procedure could be used in

principle, as long as the PHM sum rules are satisfied. That necessitates the require-

ment that the localization procedure must impose orthonormality on the transformed

orbitals. Our choice of localized orbital definition stems from the well known con-

cept that the FB localization method is analogous to Wannier Functions in periodic
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systems. As stated, we chose to optimize our orbitals through the Foster-Boys (FB)

method precisely because of this analogue. More explicitly, we chose to transform

our orbitals according to the following rotations

I(ϕ) =
n∑
i=1

∫
ϕi(r1)ϕi(r1)r2

12ϕi(r2)ϕi(r2)d3r1d
3r2

J(ϕ) =
n∑

i>j=1

[
〈ϕi|~r |ϕi〉 − 〈ϕj|~r |ϕj〉

]2
D(ϕ) =

n∑
i=1

[
〈ϕi|~r |ϕi〉

]2
(3.15)

All three of these equations are optimized equivalently. Since the final form is the

most convenient, that was the equation that was used to transform the canonical

orbitals into their localized counterparts; however, the second equation is the most

useful to conceptually understand what how the FB method works.

Given a non-interacting system of n particles, we can solve the many-body Schrödinger

equation to find the energy eigenstates of the system and their corresponding wave-

functions. Those wavefunctions, since they were solved in the non-interacting limit,

are our Kohn-Sham or canonical orbitals. By minimizing J(ϕ) we are maximizing

the least-squares distance between the orbital centroids of each state. In other words,

we are reducing the orbital overlap between states in real-space, thus localizing our

orbitals to a particular region of space. This is equivilent to maximizing D(ϕ), which

in practice takes much less time to calculate.

Initially, this seems a mathematical sleight of hand. Since we are simply changing

the system by unity, we have done nothing to change the actual physics of the system.

In some sense this is true, but LMOs have significant chemical meaning attached
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Figure 3.1: (Top) The energy degenerate molecular orbitals for H2O calculated by
Oña, et al [71]. (Bottom) The Lewis structure for water. Noticeably, the localized
orbitals mirror the lewis structure.

to them. While canonical orbitals are generally spread across an entire molecule,

localized molecular orbitals tend to follow the description of Lewis structures and

interaction sites. This can clearly be seen in Figure 3.1, which shows the calculated

localized orbitals, plotted as isosurfaces, compared to the Lewis structure for H2O

that every introductory chemistry student is familiar with [71].

We will now transform the Casida equation and the resulting TDM and PHM.

The first step is to apply our transformation onto the orbital products (3.1):

Φia(r) = Mo
ijM

v∗
ab Πjb(r), Πjb(r) = ξj(r)ξ∗b (r) . (3.16)

The coupling matrix (3.3) thus becomes

Kia,i′a′ = Mo∗
ij M

v
abM

o
i′j′M

v∗
a′b′ Ljb,j′b′ , (3.17)

where

Ljb,j′b′ = 2

∫
dr

∫
dr′ Π∗jb(r)fHxc(r, r

′)Πj′b′(r
′). (3.18)
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Substituting this into the Casida equation, Eq. (3.4) and (3.5), we obtain

[
δii′δaa′ωa′i′ +Mo∗

ij M
v
abM

o
i′j′M

v∗
a′b′Ljb,j′b′

]
Xi′a′ +

Mo∗
ij M

v
abM

o∗
i′j′M

v
a′b′Ljb,b′j′Yi′a′ = −ΩXia

(3.19)

Mo
ijM

v∗
abM

o
i′j′M

v∗
a′b′Lbj,j′b′Xi′a′ +[

δaa′δii′ωa′i′ +Mo
ijM

v∗
abM

o∗
i′j′M

v
a′b′Lbj,b′j′

]
Yi′a′ = ΩYia.

(3.20)

We can now rearrange some of the summations, and define the transformed eigenvec-

tors Uj′b′ and Vj′b′ as

Uj′b′ = Mo
i′j′M

v∗
a′b′Xi′a′ Vj′b′ = Mo∗

i′j′M
v
a′b′Yi′a′ . (3.21)

Because we have defined M to be a unitary matrix, we can exploit the property

M−1 = M †, and thus obtain the inverse transformation

Xi′a′ = Mo∗
i′j′M

v
a′b′Uj′b′ Yi′a′ = Mo

i′j′M
v∗
a′b′Vj′b′ . (3.22)

Substituting this into Eqs. (3.19) and (3.20) gives the transformed Casida equation:

[Mo
kiM

v∗
ca ωckM

o∗
ki′M

v
ca′ + Lia,i′a′ ]Ui′a′ + Lia,a′i′Vi′a′

= −ΩUia (3.23)

Lia,i′a′Ui′a′ + [Mo
kiM

v∗
ca ωckM

o
ki′M

v∗
ca′ + Lia,a′i′ ]Vi′a′

= ΩVia. (3.24)
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We can see that after inserting our rotated eigenvectors, the system of equations looks

largely similar to the original Casida equations. However, a noticeable difference is

that the equation elements containing the Kohn-Sham orbital energy differences, ωai,

are no longer diagonal but a full matrix. The difference is subtle, but it clearly makes

the eigenvalue equations somewhat more difficult to handle, in addition to mixing the

states within our eigenvectors. This was to be expected though, as we were given a

warning when we transformed our original orbitals. In that case, the rotation causes

a mixing of the canonical orbitals according to the constraints of the localization

method being used to find the rotated orbitals, ξj or ξb.

3.2.4 Localized PHM and metric

As stated previously, the TDM is invariant under any unitary transformation. By

applying the transformation prescribed in Eqs. (3.14) and (3.22), we can then simply

transform the TDM by utilizing the fact that M is unitary. The result is

Γn(r, r′) = ξj(r)ξ∗b (r
′)U

(n)
jb + ξ∗j (r

′)ξb(r)V
(n)
jb . (3.25)

As we can see, we are left with the same mathematical form as Eq. (3.8), with

rotated orbitals replacing their canonical counterparts, which implies that the TDM

is invariant as expected.

Applying the orbital transformation onto our PHM, and exploiting the unitarity
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of the rotation matrix, we obtain the following expression:

Ξn(r, r′) = Mo
ijM

o∗
ij′ξj(r

′)ξ∗b (r
′)Mo

ikM
o∗
ik′ξk(r)ξ∗k′(r)U

(n)
j′b

+ Mo∗
ij M

o
ij′ξ
∗
j (r
′)ξb(r

′)Mo
ikM

o∗
ik′ξk(r)ξ∗k′(r)V

(n)
j′b .

(3.26)

Comparison with Eq. (3.10) clearly shows that the expression for the PHM is not

formally invariant under unitary transformation of the orbitals, as we anticipated.

This, of course, is not a problem in and by itself, since the actual values for Ξn(r, r′)

can in principle be exactly computed from the knowledge of the eigenvectors of the

transformed Casida equation and from the transformation matrices.

As mentioned above, the PHM is derived by projecting excited-states orbital den-

sity fluctuations onto ground-state orbital densities. Obviously, the density response

of the system will be conserved; however, the amplitude of the rotated states that are

being projected onto our ground-state, will change depending on the rotation being

applied. With this in mind, we define a new quantity using the same framework of

our canonical PHM. By applying our rotation to the canonical orbitals, the localized

orbitals can be used to calculate the electron-hole dynamics of a given system, which

we term the localized particle-hole map (LPHM):

Ξloc
n (r, r′) = Πjb(r

′)|ξj(r)|2U (n)
jb + Π∗jb(r

′)|ξj(r)|2V (n)
jb . (3.27)

It is easy to see that the localized PHM Ξloc
n (r, r′) still satisfies the sum rules (3.10)

and (3.11).

It is important that, like the density, the density response is conserved with the
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definition of the LPHM. Additionally, all quantities used to calculate the LPHM

can be easily obtained. From the canonical orbitals, ϕi(r) and ϕa(r), then using

any rotation method that preserves the orthonormality of the orbitals, the Casida

eigenvectors can be calculated. Preserving orthonormality is a key caveat of the

LPHM, as some localization procedures only keep orbitals pseudo-orthonormalized.

The LPHM is another tool in the toolbox to evaluate and visualize electronic

excitations. Used in concert with the TDM and the canonical PHM, the LPHM offers

a complementary method that can help decipher the electronic dynamics in a system.

To that end, it is well known that the Foster-Boys localization method is analogous

to Wannier Functions in periodic systems. While the TDM offers no difference in

viewpoint of these two environments, the PHM and LPHM could potentially scrub

away at some of the electron dynamics within a periodic system and provide additional

insight into real-space electron analysis. Our simple 1D examples will shed some light

on this notion.

We can go further and quantify the differences between the canonical PHM, Ξn,

and the LPHM, Ξloc
n , using an appropriate metric. We will use the definition of the

metric space developed by D’Amico and coworkers [77–80]. To be specific, we define

DΞ =

∫
dr

∫
dr′
∣∣Ξn(r, r′)− Ξloc

n (r, r′)
∣∣ . (3.28)

In essence, we thus take the vector norm between the canonical and the localized

PHM. It is convenient to have a metric that lives in the interval [0, 1], so we redefine

D̃Ξ =
DΞ∫

dr

∫
dr′
{
|Ξn(r, r′)|+ |Ξloc

n (r, r′)|
} . (3.29)
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It can easily be seen that D̃Ξ lies on our desired interval through triangular inequality.

As we will see below, D̃ is a useful descriptor for the excitation processes we are

interested in, but we will also employ another, more direct way to quantify the impact

of localization. Having defined our rotation matrices in Eq. (3.14), we can clearly

see that in the case of no orbital rotation the rotation matrices Mo,v are simply the

identity. Using this, we can quantify how much our localization procedure transforms

the orbitals. We define the localization number M̄ as

M̄ =
1

NoccNvirt

‖Mo
ij − δij‖‖Mv

ab − δab‖, (3.30)

where ‖M‖ is the Frobenius norm of the matrix M and Nocc and Nvirt are the number

of occupied and virtual states being localized in the calculation. M̄ is a measure for

how much the canonical orbitals are being localized.

However, not all orbitals are relevant for a particular excitation, and, in fact, an

excitation is usually dominated by one or few Kohn-Sham orbital transitions i → a.

To quantify this in a simple descriptor, we define the transition localization number:

M̄t =
∑
ia

(|Xia|+ |Yia|)

√∑
j |Mo

ij − δij|2
∑

b |Mv
ab − δab|2

NoccNvirt

(3.31)

where the summations are explicitly indicated for clarity. The quantity M̄t measures

the extent to which the Kohn-Sham transition densities are affected by the localiza-

tion.

Upon calculating M̄ , M̄t and D̃Ξ, we can use these to analyze and quantify the

effects of localization for various types of systems. We expect that the differences

will be largest in systems where the excitations have a strong charge-transfer charac-
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Figure 3.2: The potentials used for the calculations are a single well system (a), a
double well system (b), and two triple well systems, labeled as A and B in Table 3.1,
respectively (c and d).

ter. We anticipate that the metric analysis tool will allow us to define a “region of

usefulness”, where the differences are neither too small nor too large.

3.3 Results

Having formulated and defined both the LPHM and our metric to quantify the dif-

ferences between the canonical and localized cases, we can use simple 1D systems to

demonstrate the utility of our methods. Figure 3.2 shows four different potentials,

each of them defined on a 200-point numerical grid with hard-wall boundaries. We
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Figure 3.3: Canonical orbitals for the double well potential, see Fig. 3.2b. Four of
the five occupied states are in the deep well, while only one state occupies the shallow
right well. States are colored as follows: Lowest - blue, 2 - red, 3 - purple, 4 - orange,
highest - green.

Figure 3.4: The canonical (top) and localized PHM (bottom) for a deep double well
potential (Fig. 3.2b). The two PHMs are nearly identical, primarily due to the
localized nature of the canonical orbitals prior to applying the localization procedure.
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System M̄ M̄t D̃Ξ

Single Well 0.553 0.230 0.583
Double Well 0.570 8.92× 10−3 2.91× 10−4

Triple Well A 0.685 0.252 0.921
Triple Well B1 0.508 0.196 0.507
Triple Well B4 0.508 0.197 0.967

Table 3.1: Various descriptors for the PHMs for different excitations: localization
number M̄ , Eq. (3.30), transition localization number M̄t, Eq. (3.31), and PHM
metric D̃Ξ, Eq. (3.29). B1 and B4 stands for the first and the fourth excitation of the
Triple Well B system, respectively.

solve the 1D noninteracting Schrödinger equation in each case, where it is implic-

itly assumed that the given potential is the Kohn-Sham potential. We then solve the

Casida equation to obtain the excitation energies and eigenvectors, using the random-

phase approximation (RPA), i.e., only the Hartree kernel, with a soft-Coulomb po-

tential [63]. The occupied orbitals are then localized using the Foster-Boys method,

and the PHMs are computed. For simplicity, we did not localize the virtual orbitals,

but this does not affect our conclusions and requires only trivial modifications of the

formulas for the metric and localization numbers.

We begin with a deep two-well system populated with 10 electrons. There is no

spin-dependence, so we calculate five orbitals that are assumed to be doubly occupied

by spin up and spin down electrons. As shown in Fig. 3.2b, the wells are deep (the

left one more so than the right one) and well separated from one another. Because

of the depth and separation of the wells, the orbitals for the canonical case are well

localized prior to applying any localization procedure onto the orbitals. Additionally,

we can see in Fig. 3.3 that the highest occupied orbital in this case is the only state

located in the right, shallower well.

The associated canonical and localized PHMs are plotted in Fig. 3.4, for the
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Figure 3.5: The lowest five canonical orbitals (top) and localized orbitals (bottom)
for the single well system with ten spin-independent electrons. Lowest state - blue, 2
- red, 3 - purple, 4 - orange, highest - green.

lowest excitation. In our earlier work [63–65] we had explained in detail how to

read PHMs: the horizontal coordinate indicates where electrons or holes are coming

from, and the vertical coordinate tells us where they are going to. Blue and red

pixels in the resulting map indicate electrons and holes, respectively. Thus, we see a

highly localized excitation in Fig. 3.4, with charge staying in the same spatial region.

Employing Eqs. (3.28) and (3.29), we get a very small D̃Ξ value on the order of 10−4,

see Table 3.1. The localization number, M̄ , is quite high, as this includes the mixing of

the lowest 4 states which, however, do not contribute to this excitation. On the other

hand, the transition localization number, M̄t, is very small, which shows that this

excitation involves canonical states that are already strongly localized. Consistent

with the values of these descriptors, there is nearly no discernible difference between

the LPHM and PHM in Fig. 3.4. Again, this is not surprising: the relevant states for

this particular excitation in this system were already localized before the localization

procedure was employed.

Going further, we now look at systems where the localization has a more profound

75



Figure 3.6: The canonical PHM (top) and the LPHM (bottom) for the lowest exci-
tation of the single well system, with 5 doubly occupied orbitals.

effect. Our first case is the single well system depicted in Fig. 3.2a. We begin by

looking at the effect of localization on the orbitals, which can be seen in Fig. 3.5.

Very clearly, we can see the effect of the localization, shifting the orbitals to avoid

overlapping with one another as much as is possible in a 1D system. Since the well is

relatively shallow, these changes occur across the entire well. As we can see from the

localization numbers for this system given in Table 3.1, both localization numbers

are sizable, and so is DΞ for the excitation under consideration. In accordance with

these numbers, we can see in Fig. 3.6 that there is a large difference between the

PHM and LPHM. From the PHM, we can see a very diffuse general density response

that distributes electrons and holes from all regions of the well. The LPHM, on the

other hand, suggests a response that proceeds in steps between neighboring regions,

eliminating any long-range charge transfer.

Now, both of the previous excitations demonstrate two different processes. The

double well demonstrated a localized excitation, giving us essentially identical canon-

ical and localized PHMs. The shallow single well, however, was a system that demon-
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strated a largely delocalized excitation behavior where electrons and holes do not have

distinctly localized origins. The LPHM tends to collapse this excitation into short-

range “hops”, which clearly contradicts the picture given by the canonical PHM.

For the final examples, we want to look at systems where our states show some

localization, but still have a very specific, delocalized excitation character. To do this,

we use two triple well systems, shown in Figs. 3.2c and d.

We begin with the Triple Well B system, where we compare the first and the fourth

excitations. M̄ and M̄t are similar in both cases, indicating moderate amounts of

orbital localization. The top panels of Figs. 3.7 and 3.8 suggest that both excitations

are largely localized, primarily being the exchange of holes and electrons between

the plateaus adjacent to the small middle well. The PHM of the first excitation is

more faint than that of the fourth one, suggesting a larger oscillator strength of the

latter. Interestingly, this is reflected in the metric DΞ, which is almost twice as large

for the fourth excitation, which shows that the metric is a rather sensitive indicator

of subtle differences between PHM and LPHM that would be difficult to discern by

mere inspection.

For both excitations of the Triple Well B, the LPHM shifts the emphasis from the

two central plateaus, involving the potential well in the middle. The LPHM suggests

that the middle well emits holes to the left plateau and electrons to the right one,

which seems more in accordance with physical intuition than what is displayed in

the canonical PHM. However, some of the charge-transfer features of the canonical

PHM are preserved in the LPHM, although there is clearly a stronger emphasis on

the diagonal region of the map.

Finally, in the Triple Well A system, we analyze a clear case of charge-transfer. In
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Figure 3.7: (The canonical PHM (top) and the LPHM (bottom) of the first excitation
in the Triple Well B system.

Figure 3.8: The canonical PHM (top) and the LPHM (bottom) of the fourth excita-
tion in the Triple Well B system.
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Fig. 3.9, we can see a large transfer of electron density from the rightmost well, across

the center well, and ending in the leftmost well. Largely the same characteristics are

found in the LPHM, although a bit more emphasis is placed on the diagonal (these

features are too faint to be seen in the canonical PHM). Thus, the charge transfer

characteristic of the system is preserved upon localization, despite reducing the orbital

overlap and, hence, a rather large value of D̃Ξ.

There is additional information, such as the subtle redistribution of holes and elec-

trons through the central well, that are potentially interesting for three-dimensional

(3D) systems. For example, one could imagine a system where a charge transfer is me-

diated by some functional unit. Clearly, one could capture the charge transfer across

the system through the PHM or TDM, but the LPHM could provide additional in-

sight into the role the functional unit plays in mediating the charge transfer across the

molecule. Thus, the localization procedure could identify functional units that play

a large role in charge transfer. For example, many organic polymers and molecules,

which are commonly used in organic photovoltaics and other organic electronics, will

have delocalized canonical orbitals that are essentially created from the pz orbitals

in the molecule, but some systems, notably those with intramolecular charge-transfer

character, will have sizable degrees of localization already at the level of canonical

orbitals. These features can be made more explicit when the LPHM is used.

3.4 Conclusions

In this chapter, we have investigated the effects of orbital localization on visualizing

excitations with the PHM. As we have demonstrated with four different 1D model
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Figure 3.9: The canonical PHM (top) and the LPHM (bottom) of the first excitation
in the Triple Well A system.

systems, the localization of each system can be characterized quantitatively in two

ways. First, we can calculate localization numbers (defined via the orbital rotation

matrices), thus quantifying the changes to the relevant orbitals. Second, using the

canonical PHM and the LPHM in tandem, we can calculate an appropriate metric

that describes the character of the system. Combining those descriptors, we are able

to quantitatively categorize systems and discover if any discernible information can

be gained from the LPHM. However, as the example with the shallow single well has

taught us, one should not overly rely on the descriptors alone: if the system is very

delocalized to begin with, the LPHM tends to overshoot and suggest a collapse of

any long-range charge transfer. Whether this is physical or not remains to be further

investigated, for instance by comparison with accurate benchmark calculations.

On the other hand, for systems and excitations that have a mixed localized-

delocalized character to begin with, the LPHM tends to enhance and sharpen the

role of individual functional units. This clearly helps in identifying and visualizing

the underlying excitation mechanisms.
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While this study did not rigorously test the limits of our metric, our 1D examples

at least suggest that the LPHM used in tandem with our quantitative schemes can

help gain useful insight into molecular excitation dynamics. High values of the metric,

as demonstrated in the Triple Well A system, appear to be be interesting for exam-

ining charge transfer systems: here, the LPHM performs well, providing an indicator

of the robustness of the charge transfer character. A main reason for this is that the

LPHM is constrained by sum rules, and gives the exact same density response as in

the canonical system.

Further testing must be undertaken to refine these predictions. The 1D systems

studied here are hampered by the unrealistic hard well walls at the boundaries of the

numerical grid; work is currently in progress towards realizing a 3D version of the

LPHM for real molecular systems. Another fruitful direction of study would be to

apply the LPHM to excitonic effects in periodic solids.
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Chapter 4

Exchange-correlation torque
effects:
exact comparison via the Hubbard
Lattice

As a disclaimer, much of this chapter has been written verbatim and readapted from

the work and supplemental materials in E. A. Pluhar and C. A. Ullrich, Phys. Rev.

B 100, 125135 (2019) [81].

4.1 Introduction

Spin-density-functional theory (SDFT) [82–84] is an in principle exact framework for

systems of N interacting electrons subject to the many-body Hamiltonian

Ĥ =
N∑
j

[
−∇

2
j

2
+ V (rj) + σj ·B(rj)

]
+

1

2

N∑
j 6=k

1

|rj − rk|
. (4.1)
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Here, σj is the vector of Pauli matrices acting on the spin of the jth electron, V (r)

is an external scalar potential, and B(r) is an external magnetic field which can

be noncollinear, i.e., whose magnitude and direction can vary in space. The Bohr

magneton, µB = e~/2m, has been absorbed in the definition of the magnetic field,

and we use atomic units (e = m = ~ = 4πε0 = 1) throughout.

The corresponding noninteracting system in SDFT obeys the Kohn-Sham equation

[(
−∇

2

2
+ VKS(r)

)
I + σ ·BKS(r)

]
Ψi(r) = εiΨi(r) , (4.2)

where I is the 2×2 unit matrix and the Kohn-Sham orbitals Ψi(r) are two-component

spinors. The scalar Kohn-Sham potential is the sum of external, Hartree, and exchange-

correlation (xc) potentials, VKS = V + VH + Vxc, and the Kohn-Sham magnetic field

contains external and xc contributions, BKS = B + Bxc. In general, Bxc can be

nonvanishing even if B = 0, i.e., for open-shell or spontaneously magnetized systems.

The effects of Bxc are present in a wide variety of systems, including materials with

noncollinear magnetism, canted or spiral magnetization, or frustrated spins [85–87].

In these examples, spin-orbit coupling often plays an important role. The SDFT

formalism can be generalized to include spin-orbit coupling [87, 88]; in this chapter

we ignore spin-orbit coupling to keep the discussion simple.

Formally, Vxc and Bxc are defined as functionals of the electronic density n(r) =∑N
i tr[Ψi(r)Ψ†i (r)] and the magnetization [89] m(r) =

∑N
i tr[σΨi(r)Ψ†i (r)]; in prac-

tice, Vxc and Bxc need to be approximated. Almost all approximations used in SDFT

for noncollinear magnetism are based on common local and semilocal xc functionals

such as the local spin-density approximation, LSDA [13,90], or the generalized gradi-

ent approximations, GGAs [18,91]. The standard implementation of LSDA or GGAs
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assumes a local spin quantization axis which is aligned with the local m(r) [92, 93];

this produces a Bxc(r) that is parallel to m(r) everywhere.

In general, Bxc(r) can have components perpendicular to m(r), which give rise to

local xc torques,

τxc(r) = m(r)×Bxc(r) . (4.3)

The zero-torque theorem [94] mandates that

∫
dr τxc(r) = 0 , (4.4)

since a system cannot exert a net torque on itself. For the LSDA and GGAs, the local

xc torque is zero everywhere, so the zero-torque theorem is trivially satisfied. As we

will see, other approximations may not satisfy the zero-torque theorem a priori, but

there are ways in which it can be enforced.

Several approximations for Bxc that include xc torque effects have been proposed

in the literature, based on the spin-spiral state of the electron gas [95–98], modified

GGAs [99–102], the exchange-only optimized effective potential (OEP) [103], or a

source-free construction [104]. These methods were applied to a variety of noncollinear

spin systems; however, a rigorous assessment has been hampered by the absence of

exact or at least highly accurate reference calculations.

In this chapter, we perform benchmark studies for a simple model system, namely,

two electrons on a linear 4-point extended Hubbard lattice (1/4 filled Hubbard tetra-

mer) with noncollinear magnetic fields. In Section 4.2 we will give the details of the

model, and explain why it is an appropriate choice for studying xc torques.

Results will be presented for two scenarios: a lattice Hamiltonian without any
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symmetries (Sec. 4.3), and a Hamiltonian with C2 symmetry (Sec. 4.4). In both cases,

we obtain the exact ground-state energy, densities, and magnetizations from the exact

solutions, and compare with approximate Kohn-Sham results [105,106]. We reverse-

engineer the exact xc potentials and magnetic fields for interaction strengths from

the weakly to the strongly correlated regime, and discuss how the Kohn-Sham system

mimics the behavior of the many-body system as the electrons begin to localize. We

summarize our results in Section 4.5 and conclude with a general outlook.

4.2 SDFT for the extended Hubbard model with

noncollinear magnetic fields

We consider P -point Hubbard chains with on-site (o.s.) and nearest-neighbor (n.n.)

interactions and with external scalar potentials and magnetic fields, Vk and Bk, where

k denotes the lattice sites. The continuum Hamiltonian (4.1) is thus replaced by the

extended Hubbard model Hamiltonian [107–110]

Ĥlat = −t
∑
〈k,l〉σ

(ĉ†kσ ĉlσ + ĉ†lσ ĉkσ) + U0

∑
k

ĉ†k↑ĉk↑ĉ
†
k↓ĉk↓

+ U1

∑
〈k,l〉

(ĉ†kĉk)(ĉ
†
l ĉl) +

∑
k

[
Vkĉ

†
kĉk + Bk · ĉ†kσĉk

]
. (4.5)

Here, ĉ†kσ and ĉkσ are creation and annihilation operators for electrons with spin

σ =↑, ↓ on site k, and ĉ†k and ĉk are these operators arranged as two-component row

and column vectors. 〈k, l〉 denotes nearest-neighbor lattice sites. We fix the hopping

parameter as t = 0.5, following Carrascal et al. [111]. The o.s. interaction strength

U0 will be varied, and the n.n. interaction strength will be taken as U1 = U0/2, which
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is typical for many materials of interest [112].

We obtain the two-electron ground state of Ĥlat, using nonperiodic boundary

conditions, by diagonalization within a complete basis of P (P + 1)/2 singlet states

and 3P (P − 1)/2 triplet states, which yields the exact ground-state energy Egs and

the exact ground-state density and magnetization, nk and mk, on each lattice site.

The extended Hubbard model described above can be treated using SDFT [113];

the corresponding Kohn-Sham lattice Hamiltonian follows from Ĥlat by setting U0 =

U1 = 0 and replacing Vk and Bk by the Kohn-Sham scalar potential and magnetic

field VKS,k and BKS,k, respectively. We invert the lattice analog of the Kohn-Sham

equation, Eq. (4.2), to obtain those VKS,k and BKS,k which reproduce the exact nk

and mk on the P -point lattice. Since the external potential and magnetic field are

given, and the Hartree potential is easily obtained as

VH,k = U0nk + U1(nk−1 + nk+1) (4.6)

(defining n0 = nP+1 = 0 to account for the nonperiodic boundary conditions), this

immediately yields the exact Vxc,k and Bxc,k. There exist a variety of algorithms to

invert Kohn-Sham equations [114]; here, we use a conjugate-gradient minimization.

4.2.1 Inverting the Kohn-Sham equation in noncollinear spin-
DFT

The inverse problem in Kohn-Sham density-functional theory (KS DFT) can be stated

as follows: what is the local effective potential which generates a given density as the

ground-state density of a KS system? Often, the given density is the exact (or highly
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accurate) density of a many-body system in a prescribed external potential, which

was obtained by other means (such as highly accurate and expensive many-body

techniques); by inversion, one can then construct the exact exchange-correlation (xc)

potential associated with this density. The exact xc potential can then be compared

with approximations. There are various numerical techniques to reverse-engineer the

KS potential for a given density, as reviewed by Jensen and Wasserman [114].

Here, the task is to construct that KS system which reproduces a target 4-density

~mt
k, k = 1, . . . , P , on a P -site Hubbard chain, where the 4-vector notation ~mt

k =

(nk,mk) means that the zeroth component is the scalar density (or site occupation),

followed by the three components of the magnetization on site k. This vector notation

was introduced in Ref. [105].

The KS system which reproduces ~m
(t)
k is characterized by a 4-potential ~vKS,k =

(VKS,k,BKS,k), k = 1, . . . , P , where the zeroth component is the KS scalar potential

and the remaining three components are those of the KS magnetic field [105].

Once the target 4-density ~mt
k has been calculated via exact diagonalization of the

interacting Hamiltonian, we define an iterative procedure to construct ~vKS,k by means

of a cost functional F [~v
(i)
KS], where the superscript denotes the ith iteration step:

F [~v
(i)
KS] =

P∑
k=1

∣∣∣~m(i)
k [~v

(i)
KS]− ~mt

k

∣∣∣2 . (4.7)

This cost functional is positive definite, and, thanks to the Hohenberg-Kohn theorem,

there is a single, unique minimum that occurs when ~m
(i)
k , the density configuration in

the ith iteration step, agrees with the target density ~mt
k. At the minimum, the cost

functional has the value zero. In practice, the search is declared a success when the

value of F falls below an appropriately chosen small threshold.
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To implement a conjugate gradient (CG) search algorithm [115], we need the

derivative of the cost functional:

∂F

∂v
(i)
KS,jq

=
P∑
k=1

2
(
~m

(i)
k − ~mt

k

)
· ∂ ~m

(i)
k

∂v
(i)
KS,jq

, (4.8)

where the index j runs over all P lattice sites, and the index q = 0, 1, 2, 3 runs over

the 4 components of ~v
(i)
KS,j. We have

~m =



m0

m1

m2

m3


=



n↑↑ + n↓↓

n↑↓ + n↓↑

i(n↑↓ − n↓↑)

n↑↑ − n↓↓


, (4.9)

where the KS spin-density matrix follows by summing over the occupied KS orbitals:

 n↑↑ n↑↓

n↓↑ n↓↓

 =
occ∑
a=1

 |ψa↑|2 ψa↑ψ
∗
a↓

ψa↓ψ
∗
a↑ |ψa↓|2

 . (4.10)

Hence, to evaluate ∂ ~m
(i)
k /∂v

(i)
KS,jq in Eq. (4.8), we need derivatives of the KS spin

orbitals with respect to v
(i)
KS,jb. These can be obtained from first-order perturbation

theory [dropping the superscript (i)]:

∂ψaσ,k
∂vKS,jq,k′

=
∑
b6=a

Ψ†b,k′σqΨa,k′

εa − εb
ψbσ,k , (4.11)

where εa and εb are KS energy eigenvalues, and Ψ†b,k′ = (ψ∗b↑,k′ , ψ
∗
b↓,k′).

The ingredients of the CG algorithm to minimize the cost function are now all

88



( ) 0?i
KS

F
v






( ) ( ) ( )
( ), , [ ],i i i

KS i
KS

Fm F v
v





 



Calculate

Initialize (1)
KSv

no CG step towards
steepest descent

( ) ( 1)i i
KS KSv v 
 

( )[ ] ?i
KSF v 


( )i tm m
 

( ) ( )i exact
KS KSv v
 

yes

yes

no

(1)
KSv

Re-initialize

Figure 4.1: Flowchart of the CG routine used to calculate the exact KS 4-potential
~vKS giving rise to a target 4-density ~mt.
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in place. As stated, we begin from an exact target solution ~mt
k, and then solve the

KS equation for a given initial choice of ~vKS (e.g., the bare external potential). The

corresponding KS density and magnetizations are fed into the CG routine frprmn of

Ref. [115], where the cost functional and gradients are calculated. After finding a step

direction, the KS equation is recalculated at the new configuration space site, where

the new density and magnetization can be used to continue towards convergence. The

scheme is illustrated as a flowchart in Fig. 4.1.

Finding a global minimum in a multidimensional parameter space is in general a

difficult task, and it often happens that a search ends up in a local minimum. We

have found that λ = F ≤ 10−16 yields a 4-density to within 10−7 of ~mt
k, where λ is

our threshold for convergence. Occasionally, however, the CG routine will get stuck

in a local minimum that is greater than λ. When this happens, we restart the CG

iteration from a slightly different initial ~vKS. At times, several restarts are needed

before the global minimum is reached.

The KS inversion routine described above is for a fixed value of U0. In practice,

we embed the algorithm shown in Fig. 4.1 in a loop where U0 is stepped over the

desired range. The solution for ~vKS at a given value of U0 is used to initialize the

search at the next value of U0.

Lastly, since the target 4-density ~mt
k was obtained by exact diagonalization, the

external 4-potential is known and the exact xc scalar potential and magnetic field

(and hence the xc torque) are immediately obtained.
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4.2.2 Nearest-neighbor interactions and the zero-torque the-
orem

Our choice to include n.n. interactions in Ĥlat is motivated by the fact that for the

usual o.s. Hubbard model (where U1 = 0) the exact exchange potential and exchange

magnetic field are given by [105,106,111]

V o.s.
x,k = −U0

2
nk , Bo.s.

x,k = −U0

2
mk . (4.12)

Evidently, Bo.s.
x,k is parallel to the magnetization; hence, for the o.s. Hubbard model,

the xc torques are a pure correlation effect which, one can expect, makes them more

difficult to approximate. For exchange effects to produce torques, more general inter-

actions than o.s. are required.

Let us first consider the half-filled Hubbard dimer (P = 2) [105]: including n.n.

interactions, one finds

V dimer
x,k = −U1 −

U0 − U1

2
nk , Bdimer

x,k = −U0 − U1

2
mk , (4.13)

which, again, does not produce any torques. We therefore need more lattice points.

For the 1/3-filled Hubbard trimer [106] (P = 3) with periodic boundary conditions

and n.n. interactions, i.e., an equilateral triangle, Eq. (4.13) holds on all three lattice

points. If one instead considers a Hubbard trimer with fixed boundaries (i.e., a short

chain), one finds that the solution (4.13) holds on the midpoint, but there is no simple

explicit solution on the first and the third point. Thus, exchange torques can arise

on points 1 and 3, but not on point 2.

The simplest case where exchange torques can occur on all lattice sites is the 1/4-
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Figure 4.2: Hubbard tetramer with noncollinear coplanar magnetic field B (blue
arrows). (a) Nonsymmetric field: Bx,1 = 0.2, Bx,2 = 0.1, Bz,3 = 0.3, Bz,4 = −0.2.
(b) C2-symmetric field: Bx,1 = Bx,2 = Bz,3 = Bz,4 = 0.1. In both cases, the scalar
potential is V1 = V4 = 1, V2 = V3 = −1. All local external and xc torques are along
the ±y-direction.

filled Hubbard tetramer (P = 4) with o.s. and n.n. interactions. In the following, we

will consider tetramers in linear configuration, see Figure 4.2. Of course, correlation

effects can produce torques in all the above systems, even without n.n. interactions.

A two-electron system without external magnetic field is always in a singlet ground

state and hence nonmagnetic. To obtain a ground state with noncollinear mag-

netization, external magnetic fields are required (in the absence of spin-orbit cou-

pling [116,117]).

In the following Sections, two cases with different symmetries will be considered.
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In both of them, the 4-point lattice is assumed to have equidistant sites, aligned along

the y-direction (notice that the Hubbard lattice Hamiltonian is not necessarily tied to

a specific real-space representation; however, assuming an explicit spatial geometry

is conceptually helpful). The scalar potential will be taken to be nonuniform but

symmetric with respect to the lattice center; we choose V1 = V4 = 1 and V2 = V3 = −1

in both cases. This will allow us explore the different regimes within the interplay

between confining scalar potential and electronic repulsion for the range of interaction

strengths 0 ≤ U0 ≤ 10.

We restrict the magnetic fields and the resulting magnetization to be coplanar,

confined to the x − z plane on each lattice point, but overall noncollinear (see Fig.

4.2). The resulting xc torques will lie along the ±y-direction.

We obtain the ground-state energy, density, and magnetization on the lattice

by exact diagonalization and via self-consistent Kohn-Sham. For the latter, we use

three approximations [105]: exact exchange using the optimized effective potential

approach (XX), exact exchange within the Slater approximation (XXS), and xc using

the Singwi-Tosi-Land-Sjölander (STLS) scheme [118,119]. The latter is implemented

within the scalar approximation, as detailed in Ref. [105].

XX is fully variational and hence satisfies the zero-torque theorem; XXS and

STLS, on the other hand, are not variational and can violate the zero-torque theo-

rem. Howver, as we will show below, the zero-torque theorem can be enforced by

constrained optimization. The torque-corrected approximations defined in this way

will be denoted as XXSc and STLSc, respectively.

Recall, the zero-torque theorem states that the xc magnetic field cannot exert a

net torque on the system itself [94]. This in essence means that an electron cannot
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impose a torque on its own spin, as this would imply an electron can cause its own spin

precession. While this is true for the exact xc magnetic field, a given approximation

may violate this requirement, so that

∫
dr m(r)×Bapp

xc (r) = T , (4.14)

where T is a spurious macroscopic torque.

Kurzweil, Baer and Head-Gordon [120,121] showed how to enforce exact conditions

on approximate local xc potentials by using constrained minimization with Lagrange

multipliers. Here, we use a similar approach (but without Lagrange multipliers) to

enforce the zero-torque theorem. The idea is to construct a counteracting field b(r)

such that ∫
dr m(r)× b(r) = T (4.15)

and

||b(r)||2 ≡
∫
dr|b(r)|2 = min. (4.16)

In other words, we are looking for a vector field which generates the same macroscopic

torque, but whose integrated vector norm is as small as possible. Once such a b(r)

has been found, we define

B̃app
xc (r) = Bapp

xc (r)− b(r) (4.17)

as a new approximation, which now satisfies the zero-torque theorem while remaining

as close as possible to the original Bapp
xc (r). We now show how to explicitly find b(r)

on a lattice, distinguishing two cases.
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Figure 4.3: Ground-state energy of the Hubbard tetramer with nonsymmetric mag-
netic fields, see Fig. 4.2a, comparing the exact result with various SDFT approxima-
tions (see text). The difference between the exact solution and the SCDF approxi-
mations are shown in the inset. The lines for XXS and XXSc, as well as STLS and
STLSc, respectively, are too close to be distinguished.
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4.3 Nonsymmetric lattice

We begin our discussion by considering a Hubbard tetramer where no distinct spatial

or spin symmetries are present. In this nonsymmetric case (see Fig. 4.2a), we set

Bx,1 = 0.2, Bx,2 = 0.1, Bz,3 = 0.3, and Bz,4 = −0.2, with all other components

zero. The external magnetic field defined in this way is coplanar in the x− z plane,

and hence all torques (external as well as xc) are along the (positive or negative)

y-direction.

4.3.1 Ground state energy

In Fig. 4.3 we compare the exact ground-state energy of the nonsymmetric lattice

with Kohn-Sham results using XX, XXS, STLS, XXSc and STLSc. The exact energy

starts out at Egs = −3.242 for the noninteracting case (U0 = 0), reaches the value

Egs = −0.754 for U0 = 10, and approaches a limiting value of Egs = −0.6107 for

U0 → ∞. The crossover between the weakly and strongly correlated regimes occurs

around U0 ∼ 4. The agreement between the exact energy and the Kohn-Sham energies

is very good for all values of U0. The inset shows that the largest errors of Egs occur

around U0 = 5, reaching around 5% for XX and XXS and slightly less for STLS.

The xc torque correction of XXS and STLS has a negligible impact on the total

energy; in Fig. 4.3, the lines for XXS and XXSc are essentially on top of each other,

as are the lines for STLS and STLSc. The reason for this is easy to see: to lowest

order perturbation theory, the energy shift caused by a magnetic field B′(r) is

∆E =

∫
dr m(r) ·B′(r) , (4.18)
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Table 4.1: Exact density and magnetization data for the nonsymmetric and C2-
symmetric lattices, in the noninteracting (U0 = 0) and strongly correlated (U0 = 10)
limit.

nonsymmetric C2-symmetric
U0 n1 n2 n3 n4 n1 n2 n3 n4

0 0.037 0.961 0.967 0.034 0.036 0.964 0.964 0.036
10 0.911 0.095 0.891 0.102 0.518 0.482 0.482 0.518

m1 m2 m3 m4 m1 m2 m3 m4

0 0.017 0.291 0.304 0.005 0.007 0.143 0.143 0.007
10 0.911 0.088 0.890 0.102 0.518 0.477 0.477 0.518

mx,1 mx,2 mx,3 mx,4 mx,1 mx,2 mx,3 mx,4

0 -0.010 -0.131 0.099 0.005 -0.005 -0.103 0.098 0.005
10 -0.911 -0.088 0.005 0.004 -0.518 -0.477 0.004 0.009

mz,1 mz,2 mz,3 mz,4 mz,1 mz,2 mz,3 mz,4

0 0.013 0.260 -0.288 -0.002 0.005 0.098 -0.103 -0.005
10 0.007 -0.006 -0.890 -0.102 0.009 0.004 -0.477 -0.518

〈Ŝx〉 〈Ŝy〉 〈Ŝz〉 〈Ŝ2〉 〈Ŝx〉 〈Ŝy〉 〈Ŝz〉 〈Ŝ2〉
0 -0.018 0 -0.008 0.100 -0.002 0 -0.002 0.023
10 -0.495 0 -0.496 1.488 -0.491 0 -0.491 1.477

where m(r) is the magnetization of the unperturbed ground state. Thus, a transverse

magnetic field [which is perpendicular to m(r) for all r] only contributes to the total

energy to second and higher order. The xc torque correction has the form of a

transverse magnetic field added to the xc magnetic field to be corrected.

4.3.2 Density and magnetization

Figure 4.4 shows the density nk (top panel) and the x- and z-components of the

magnetization, mx,k and mz,k (middle and bottom panels). At U0 = 0, the density
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Figure 4.4: Density (top) and x- and z-components (middle and bottom) of the
magnetization of the nonsymmetric Hubbard tetramer. The numbers indicate lattice
sites.
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is almost entirely concentrated on points 2 and 3. On these two points, the scalar

potential is lower than on sites 1 and 4, forming a very simple potential well. As

U0 increases, the electronic repulsion leads to a redistribution of the site occupation,

so the electrons can better avoid each other (keep in mind that our model includes

the n.n. interaction U1); the crossover clearly occurs around U0 ∼ 4. At U0 = 10,

lattice sites 1 and 3 are almost fully occupied, whereas sites 2 and 4 are almost empty,

see Table 4.1 for details. This density distribution minimizes the Coulomb repulsion

due to U0 and U1, while still taking advantage of the potential energy minimum in

the middle of the lattice; sites 1 and 3 are favored over sites 2 and 4 because the

magnetic field is largest on site 3, which gives the largest contribution of negative

Zeeman energy. This behavior is somewhat exaggerated, but overall well reproduced,

by the approximate Kohn-Sham calculations. Again, XXSc and STLSc give results

very similar to XXS and STLS, and are not shown here.

The magnetization reveals further details which illustrate the behavior of the sys-

tem as the interaction strength increases. At U0 = 0, the system is only relatively

weakly magnetized; on the other hand, at U0 = 10, the magnitude of the magnetiza-

tion vector on each lattice site is practically identical with the density. Furthermore,

Table 4.1 tells us that at U0 = 10 the magnetization vector is (anti)aligned with the

applied magnetic field on each lattice site: on sites 1 and 2, the magnetization points

almost completely in the negative x-direction, and on sites 3 and 4 it points in the

negative z-direction. Referring back to Fig. 4.2a, we see that the magnetization vec-

tor is opposite to the applied magnetic field on sites 1, 2, and 3, and parallel to it

on site 4. The physical meaning of this is that in the strongly correlated limit, the

electrons not only localize spatially, they also align their spin quantization axis with
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the local magnetic field.

Magnetic systems can be characterized by the expectation values of the total spin

operator Ŝ and its squared magnitude, Ŝ2. In collinear magnetic systems, the two-

electron wave functions are pure singlets or triplets, and one finds 〈Ŝz〉 = Ms with

Ms = 0,±1 and 〈Ŝ2〉 = S(S + 1) with S = 0, 1. In the noncollinear case, the two-

electron wave functions are of mixed spin character, and the expectation values 〈Ŝ〉

and 〈Ŝ2〉 will not be integers. The explicit numbers for our systems are given in Table

4.1. At U0 = 0, the exact two-electron wave function has 95% singlet character [122],

and 〈Ŝx〉, 〈Ŝz〉 and 〈Ŝ2〉 are very small but not zero. In the limit U0 → ∞, the

singlet-triplet ratio is 1:3, and one finds 〈Ŝx〉 = 〈Ŝz〉 = −1/2 and 〈Ŝ2〉 = 3/2. At

U0 = 10, where the exact wave function has 74% triplet character, we are close to

this limit.

4.3.3 Hartree and xc potentials and xc magnetic fields

Figure 4.5 compares the exact Hartree potential, Eq. (4.6), and the exact xc potential,

respectively, with the corresponding XX, XXS(c) and STLS(c) approximations. The

x- and z-components of the xc magnetic fields are shown in Fig. 4.6. There is some

numerical noise in the exact xc potentials and magnetic fields as U0 approaches 10,

since our inversion procedure of the Kohn-Sham equation becomes more difficult to

converge in the strongly correlated regime.

VH,k, Vxc,k, and Bxc,k are responsible for reproducing the exact density and mag-

netization in the noninteracting Kohn-Sham system. As the system passes from the

weakly to the strongly interacting regime with increasing U0, density gets shifted from

site 2 to site 1, and sites 1 and 3 become almost fully magnetized. The Kohn-Sham
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Figure 4.5: Hartree (top) and xc potential (bottom) of the nonsymmetric Hubbard
tetramer. The numbers indicate lattice sites.
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Figure 4.6: x- (top) and z-component (bottom) of the xc magnetic field of the non-
symmetric Hubbard tetramer. The numbers indicate lattice sites.
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system accomplishes this through an intricate interplay between Hartree and xc ef-

fects. For instance, comparing VH,k and Vxc,k, we see that the xc potential partially

counteracts the Hartree potential, especially on sites 1 and 4.

The xc magnetic field displays a striking enhancement over the external magnetic

field, by about an order of magnitude, in the strongly correlated regime. These large

field strengths are necessary so that the Kohn-Sham system can create the alignment

of the local magnetic moments with the external field in the strongly correlated limit.

Looking again at Table 4.1, we see that the magnetic moments are almost completely

aligned along the x-direction on sites 1 and 2, and along the z-directions on sites 3

and 4. Correspondingly, the x- and z-components of Bxc,k are very strongly enhanced

on these sites.

The approximate xc potentials and magnetic fields agree well with the exact re-

sults until about U0 = 3. For larger interaction strengths, considerable differences

appear. For example, the xc potentials on sites 1, 2, and 3 change sign, which is

not reproduced by any of the approximations, and the xc potential on site 4 has the

wrong limiting behavior for large U0. Similar discrepancies are observed for the xc

magnetic fields. This helps explain the differences between exact and approximate

densities and magnetizations in Fig. 4.4.

4.3.4 Exact and approximate xc torques

Let us now examine the xc torques of the nonsymmetric tetramer. Figure 4.7 shows

a comparison of the exact τxc,k (full lines) with the torque caused by the externally

applied magnetic field, τext,k (dashed lines). The latter is defined in analogy with Eq.

(4.3), with Bxc,k replaced by Bk. Both torques are along the y-direction on all lattice
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Figure 4.7: Comparison of xc torque τxc,k (red, full lines) and external torque τext,k

(black, dashed lines) of the nonsymmetric tetramer. All torques only have a y-
component.
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Figure 4.8: Comparison of exact xc torque τxc,k and xc torque approximations with
and without torque correction for the nonsymmetric tetramer, on the four lattice
sites. All torques only have a y-component.

sites. It can be seen that the xc torques on each lattice site add up to zero, as do the

external torques (as they must, since the system is in equilibrium).

For weak to moderate interaction strengths, the external torque dominates over

the xc torque, with maxima around U0 = 2 to 4, depending on the lattice site. This

indicates that in this regime the external magnetic field has a sizable component

perpendicular to the magnetization. As the system localizes for U0 & 4, the magneti-

zation on each lattice site aligns with the external magnetic field, as discussed in the

previous subsection, so that τext,k goes to zero.

The xc torques, on the other hand, are small for weak interactions, but become

larger than the external torque on sites 2 and 3 after the crossover into the strongly

correlated regime. This means that, on these sites, the xc magnetic field does not
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quite align with the local magnetization. Looking at Table 4.1, we see that at U0 = 10

sites 2 and 3 are almost, but not fully magnetized and aligned with the local external

fields; furthermore, as Fig. 4.6 shows, the xc magnetic fields are very large on sites 2

and 3. Together, this results in a finite τxc,k, which is necessary for the Kohn-Sham

system to reproduce all subtle details of the magnetization of the interacting system.

The xc torques obtained with XX, XXS, STLS, XXSc and STLSc are presented

in Fig. 4.8 for each lattice point. The xc torques are much smaller on sites 1 and

4 than on sites 2 and 3, which means that the performance of the approximations

is more crucial on the latter sites. Compared to the exact xc torques, the approx-

imate xc torques generally have the right order of magnitude, which is reassuring;

however, there are some important details, depending on the lattice site and the level

of approximation.

On site 1, all approximations perform well for small to moderate interactions,

but fail to reproduce the finite xc torque for large interaction strengths; XXSc and

STLSc overshoot around U0 = 5. On site 4, the quantitative agreement is quite good

throughout, for all approximations.

On sites 2 and 3, the exact xc torque changes sign between U0 = 3 and 4. This

trend is not reproduced by XX, XXS and XXSc. STLS performs much better for small

to moderate interaction strengths, including the sign change, with STLSc leading to

slight improvements over STLS. However, all approximations produce a vanishing xc

torque in the strongly correlated regime, instead of approaching a finite limit.

How important are the xc torques? We have already seen that they give only a very

small contribution to the total energy. We have carried out self-consistent calculations

with XX, XXS and STLS where we only include the longitudinal components of Bxc,k.
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We find that the magnetization on the individual sites does not change much for the

nonsymmetric case.

4.4 Lattice with C2 symmetry

We now consider a magnetic field distribution which has C2 symmetry, as illustrated

in Fig. 4.2b. The symmetry is with respect to rotation about an axis which lies at an

angle of 45o between the x and z axes. Specifically, we choose Bx,1 = Bx,2 = Bz,3 =

Bz,4 = 0.1.

Let us consider a P -point lattice, where P is an even number (the case where

P is odd will lead to similar findings, as will be briefly discussed at the end of this

Section). We assume, for now, that the system is noninteracting (i.e., U0 = U1 = 0),

and we write the single-particle wave functions as vectors of length 2P :

Ψ =



ψ1↑

ψ1↓

ψ2↑

ψ2↓

...

ψP↑

ψP↓



, (4.19)

where ψk↑,↓ are the spin-up and -down components of Ψ on the kth lattice point. The
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x, y, z-components of the magnetization vector on the kth lattice site are

mi,k = (ψ∗k↑, ψ
∗
k↓)σi

 ψk↑

ψk↓

 , k = 1, . . . , P , (4.20)

where σi are the Pauli matrices, with i = x, y, z.

The (noninteracting) Hamiltonian which determines Ψ is a 2P ×2P matrix of the

form

H = T + V +B

= −[diag+1(t) + diag−1(t)]⊗ σ0

+ diag(V1, . . . , VP )⊗ σ0

+
∑
i=x,y,z

diag(Bi1, . . . , BiP )⊗ σi . (4.21)

Here, diag(a1, . . . , aP ) denotes a P × P matrix with the diagonal elements a1, . . . , aP

and all other elements zero; diag±1(t) denotes a matrix where the first upper/lower

off-diagonal elements all have the value t. σ0 is the 2× 2 unit matrix, and ⊗ denotes

the Kronecker product.

The Hamiltonian matrix (4.21) has a block-tridiagonal form, where each diagonal

block is 2 × 2 in size and contains the scalar potentials and magnetic fields on the

respective lattice sites. The off-diagonal blocks are 2× 2 unit matrices multiplied by

the hopping parameter −t.

Now consider a unitary transformation described by a matrix M , which transforms
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the Schrödinger equation into

M HM−1MΨ = EMΨ . (4.22)

We want to determine how this transformation affects the magnetization (4.20) for

cases of special symmetry. Specifically, we consider scalar potentials that are sym-

metric about the lattice midpoint, i.e.,

Vk = VP−k+1 . (4.23)

In the following, we limit ourselves to coplanar magnetic fields; to be specific, we

consider magnetic fields in the x−z plane. Assuming that the lattice is aligned along

the y-direction, we impose C2 symmetry with respect to rotation about the x-axis;

an example is given in Fig. 4.9.

C2 symmetric magnetic fields are characterized by the two conditions

Bx,k = Bx,P−k+1 , (4.24)

Bz,k = −Bz,P−k+1 . (4.25)

This suggests the following transformation matrix:

M =


0 . . . σx
...

. . .
...

σx . . . 0

 , (4.26)

which satisfies M = M † = M−1. We need to show that this operator leaves the
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Figure 4.9: (a) Example of a magnetic field with C2 symmetry on a 4-point lattice.
(b) View along the y-axis.
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Hamiltonian (4.21) invariant, i.e.,

M HM−1 = H . (4.27)

The invariance of V and T follows immediately from

σxσ0σx = σ0 . (4.28)

For the invariance of B, the transformation must comply with the C2 symmetry of

the magnetic field. This follows immediately from

σxσxσx = σx (4.29)

σxσzσx = −σz . (4.30)

To calculate the magnetization, we insert the transformed eigenfunction, MΨ,

into Eq. (4.20), where

MΨ =



ψP↓

ψP↑
...

ψ1↓

ψ1↑


. (4.31)

This gives the final result

mx,k = mx,P−k+1 (4.32)

mz,k = −mz,P−k+1 . (4.33)
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In other words, the magnetization also has C2 symmetry, as expected.

We conclude this Section with three remarks.

• If the number of lattice sites P is odd, C2 symmetry requires that in the central

site the magnetic field and the magnetization point along the x-direction. The

definition of M must be recast by putting σ0 as the central block of M . The

proof then goes through as before.

• The symmetry property of the magnetization, Eqs. (4.32) and (4.33), remains

intact when interactions are present. This is because the Hamiltonian of the

interacting system remains invariant under C2 symmetry transformations. This

implies that the Kohn-Sham system also has a magnetization which satisfies con-

ditions (4.32) and (4.33), which is intuitively clear since the exchange-correlation

magnetic field is evaluated self-consistently with a magnetization of the C2 sym-

metry type. Our numerical results confirm this.

• Here, we considered C2 symmetry with respect to rotations about the x-axis,

which made the proof simpler. The lattice Hamiltonian has C2 symmetry with

respect to rotations about an axis that lies at a 45o angle between the x and

the z axis. Equations (4.32) and (4.33) then turn into the single condition

mx,k = mz,P−k+1 . (4.34)
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Figure 4.10: Ground-state energy of the Hubbard tetramer with C2 symmetry.
Dashed lines are symmetry enforced calculations, while the solid lines were allowed
to break the symmetry of the system. The difference between the exact solution and
the corresponding (unrestricted) approximations are plotted in the inset.
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Figure 4.11: Density (top) and x- and z-components (middle and bottom) of the
magnetization of the Hubbard tetramer with C2 symmetry. The numbers indicate
lattice sites.
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Figure 4.12: Hartree (top) and xc potential (bottom) of the C2-symmetric Hubbard
tetramer. The numbers indicate lattice sites.
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Figure 4.13: x- (top) and z-component (bottom) of the xc magnetic field of the
C2-symmetric Hubbard tetramer. The numbers indicate lattice sites.
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Figure 4.14: Comparison of xc torque τxc,k (red, full lines) and external torque
τext,k (black, dashed lines) of the C2-symmetric tetramer. All torques only have a
y-component.
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Figure 4.15: Comparison of exact xc torque τxc,k and unrestricted and restricted xc
torque approximations for the C2-symmetric tetramer, on the four lattice sites. All
torques only have a y-component.
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Figure 4.16: τxc’s for C2 symmetric system with torque corrections. Torque corrections
are only required after the system spontaneously breaks symmetry, as the solutions
satisfy the zero-torque theorem prior to breaking symmetry.
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4.4.1 Ground-state energy, density and magnetization: break-
ing and enforcing symmetry

Figure 4.10 shows the ground-state energy Egs for the C2-symmetric Hubbard tetramer

for interaction strengths U0 between 0 and 10. The behavior is similar to the non-

symmetric case discussed earlier. The exact energy starts out at Egs = −3.203 for

the noninteracting case, reaches the value Egs = −0.603 for U0 = 10, and approaches

a limiting value of Egs = −0.4247 for U0 →∞. As before, the crossover between the

weakly and strongly correlated regimes occurs around U0 ∼ 4.

The agreement between the exact energy and the (unrestricted) SDFT results is

generally good for weak and moderate interactions strengths, but a significant (∼25%)

deviation appears for large U0. The inset to Fig. 4.10 shows the difference between

approximate and exact ground-state energies. Overall, STLS performs the best; in

the limit of large U0, XX merges with STLS.

Each approximation reaches a critical U0 where it is advantageous for the system

to break C2 symmetry to reduce the total energy of the system. This does not come

as a surprise [105, 111, 123]: unrestricted Kohn-Sham calculations with approximate

xc functionals have the general tendency to break symmetries (spatial and/or spin) to

lower the energy. This is known as the symmetry dilemma of DFT. The dashed lines

in Fig. 4.10 are the restricted SDFT ground-state energies, obtained by enforcing the

C2 symmetry. The restricted energies keep increasing with U0, in contrast with the

exact Egs and with the unrestricted (symmetry-broken) Kohn-Sham Egs. However,

in spite of the overall improvement, the symmetry-broken solution still has a sizable

energy error; recall that in the nonsymmetric case no symmetry breaking was needed,

and the agreement between the exact and the approximate Kohn-Sham Egs was much
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better (see Fig. 4.3).

Figure 4.11 shows the density nk (top panel) and the x- and z-components of the

magnetization, mx,k and mz,k (middle and bottom panels). At U0 = 0, the density

is almost entirely concentrated at points 2 and 3, like in the nonsymmetric case

(see the top panel of Fig. 4.4). However, as U0 increases, differences between the

symmetric and nonsymmetric tetramers start to appear: for strong correlations, the

exact density becomes almost evenly distributed over the four lattice points, rather

than accumulating on two points as in the nonsymmetric lattice. This is because the

two configurations where the density localizes on points 1 and 3 and on points 2 and

4 are degenerate, since the magnetic field has equal strength on all points.

After breaking the symmetry, the unrestricted approximate SDFT calculations

dramatically over-localize the density in the strongly correlated limit: the density is

almost completely concentrated on points 2 and 4. The symmetry breaking occurs at

U0 = 4.72 and U0 = 4.78 for XXS and XX, respectively, and at U0 = 5.24 for STLS.

For the exact magnetization (middle and bottom panels of Fig. 4.11, and right

half of Table 4.1), the trends are very similar to the nonsymmetric case. At U0 = 0,

the system is only very weakly magnetized, with an exact wave function that has

99% singlet character. At U0 = 10, the system is fully magnetized, and the exact

wave function has 74% triplet character. As before, the exact magnetization vector

is (anti)aligned with the applied magnetic field on each lattice site, which indicates a

local spin quantization axis.

Unrestricted SDFT, on the other hand, produces a very different magnetization

after the C2 symmetry is broken. As we discussed above, the unrestricted density

localizes on points 2 and 4, and we see that mx,2 and mz,4 approach −1. As for the
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exact case, the total magnetization adds up to 2 in the U0 →∞ limit, in spite of the

wrong overall distribution.

The dashed lines in Fig. 4.11 show the density and magnetization resulting from

symmetry-restricted SDFT. Not surprisingly, the agreement with the exact results is

much better, although there are still some deviations. However, the price to pay is a

wrong behavior of the total energy, as we saw above in Fig. 4.10.

4.4.2 xc potentials, magnetic fields, and torques

Figure 4.12 shows the exact Hartree potential and the exact xc potential on each

lattice site, as a function of U0. The x- and z-components of the xc magnetic fields

are shown in Fig. 4.13. The interpretation of these results is a bit more straightfor-

ward than for the nonsymmetric case discussed earlier (see Figs. 4.5 and 4.6). The

Hartree potential approaches values close to 1 on sites 2 and 3 and close to −1 on

sites 1 and 4, which compensates the external potential. The xc potential is small

compared to the Hartree potential (the fact that it approaches zero for U0 = 10 seems

accidental). Together, the Kohn-Sham potential is close to uniform, which explains

the almost uniform density distribution in the strongly interacting limit, see Table

4.1. The strong xc magnetic fields, on the other hand, are responsible for almost fully

magnetizing the system, similar to what we discussed earlier for the nonsymmetric

case.

As before for the nonsymmetric case, the XX, XXS and STLS approximations

for Vxc,k and Bxc,k deviate significantly from the exact results, especially after the

symmetry breaking. The agreement within the restricted-symmetry formalism is

somewhat better.
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Figure 4.14 shows a comparison of the exact τxc,k (full lines) for the C2-symmetric

tetramer with the torques caused by the externally applied magnetic field, τext,k

(dashed lines). As in the nonsymmetric case (Fig. 4.7), the external torque dominates

over the xc torque for weak interactions. However, in the strongly correlated regime,

the xc torques are now considerably larger (in magnitude as well as relative to the

external torques) than in the nonsymmetric case.

The xc torques obtained with XX(r), XXS(r) and STLS(r) are presented in Figure

4.15. For small to moderate U0 the agreement with the exact xc torques is decent,

especially on sites 1 and 4. The deviations on site 2 and 3 are more significant, how-

ever. As expected, the approximate xc torques fail completely for the unrestricted

calculations after symmetry breaking. The restricted calculations (dashed lines) per-

form somewhat better in general. The excellent agreement between XXSr and the

exact results on sites 1 and 4 seems, however, fortuitous. STLSr is most successful

at capturing the general trends of the xc torques in both the weakly and strongly

correlated regimes, mainly because it produces overall the best magnetizations, as

seen in Figure 4.11.

Figure 4.16 shows the xc torques on the four sites the C2-symmetric lattice. In

addition to the results shown in Figure 4.15, we also include the torque-corrected

results. The zero-torque theorem is satisfied for the symmetry-restricted case, so the

torque-corrected results are only relevant once the C2-symmetry is broken. Some

differences between the XXS and XXSc results and between the STLS and STLSc

results can be observed, but the xc torque correction has no impact on the symmetry

breaking.

Next, to assess the significance of the xc torques, we have performed self-consistent
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Figure 4.17: x-component of the magnetization for the nonsymmetric lattice, com-
paring exact results, Kohn-Sham results with the full Bxc, and Kohn-Sham results
with the longitudinal Bxc (dashed lines).
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Figure 4.18: Same as Fig. 4.17, but for mz,k.

2

3 4

1

Figure 4.19: Same as Fig. 4.17, but for the C2-symmetric lattice.
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Figure 4.20: Same as Fig. 4.18, but for the C2-symmetric lattice.

calculations in which only the longitudinal component of the xc magnetic field is

included, defined as

Bxc,|| =
(m ·Bxc)m

m2
. (4.35)

Figures 4.17 and 4.18 show the x- and z-components of the magnetization of the

nonsymmetric tetramer, and Figs. 4.19 and 4.20 show the same for the C2-symmetric

tetramer, comparing the exact results, the Kohn-Sham results with the full Bxc, and

the Kohn-Sham results with the longitudinal Bxc (dashed lines).

Overall, the differences between the full calculations and the longitudinal-only

calculations are mostly minor, except for XX, see below. In the nonsymmetric case,

the biggest relative deviations are on sites 3 and 4 for the x-component and on

site 1 for the z-component; however, on these sites, the respective components of
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magnetization are small to begin with.

The same is the case for the C2-symmetric lattice, at least for XXS and STLS. For

XX, on the other hand, the longitudinal restriction causes some major differences for

the unrestricted solution, and seems to push the symmetry breaking along opposite

directions. Some differences, although less pronounced, also appear for the symmetry-

restricted XX solutions, which now are closer to the XXS and STLS solutions. It is

not obvious why the XX appears to be more sensitive to the presence of transverse

magnetic fields, but it is clearly related to the fact that XX produces larger xc torques

than XXS and STLS.

As for the nonsymmetric lattice, the differences are only relatively minor, except

for XX: the XX functional seems to be more sensitive to the presence of the transverse

xc magnetic field, which affects the way in which the symmetry is broken. Overall,

the longitudinal-only XX is closer to its XXS and STLS counterparts (and to the

exact solution) than when the full Bxc,k is used, which would suggest that XX does

not describe transverse xc effects very well. This is consistent with the behavior of

the xc torques shown in Fig. 4.15 (and, to some extent, also in Fig. 4.8), which shows

that the XX torques tend to be somewhat exaggerated. The behavior of XXS and

STLS comes across as more robust.

4.5 Conclusions

In this chapter we have carried out a detailed computational study of a simple model

system: two interacting electrons on a four-site extended Hubbard lattice, in the

presence of noncollinear magnetic fields. Our goal was to find out how a Kohn-Sham
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system, through its xc scalar potentials and magnetic fields, manages to reproduce the

exact ground-state density and magnetization of the interacting system, particularly

for situations where the interaction is strong. We discovered that the xc magnetic

field plays a key role in ensuring that the magnetic behavior of strongly correlated,

localized electrons is determined by local spin quantization axes on each lattice site.

We compared the exact xc potentials and magnetic fields with several orbital-

dependent approximations, and found that their performance is overall quite good,

but depends on whether the system has any symmetries. In the case where the

Hubbard lattice has C2-symmetry, we found that the approximate Kohn-Sham calcu-

lations tend to break this symmetry once the interaction strength becomes sufficiently

large, thus lowering the energy. This, of course, is no surprise: the so-called sym-

metry dilemma is a well-known side effect of using approximate xc functionals in

SDFT, which originates from a failure to describe static correlation [124] and, con-

currently, violations of the fractional spin constancy condition [125, 126]. The STLS

approach captured some of these correlation effects and performed a bit better than

the exchange-only functionals; a more complete cure of the symmetry dilemma may

be achieved via higher-level orbital functionals based on the adiabatic-connection

fluctuation-dissipation theorem [124,127].

A main outcome of this study is that the xc torques seem to have a relatively minor

importance for the ground-state energy, density and magnetization, compared to the

xc potentials and longitudinal xc magnetic fields — at least for the simple model sys-

tems considered here. This suggests that the widely used standard approximations of

noncollinear magnetism (which have no transverse magnetic xc contributions) should

be adequate in most situations, as long as they reproduce the longitudinal xc magnetic
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fields sufficiently accurately.

However, our study did not include spin-orbit coupling, which is an important

aspect of noncollinear magnetism in many materials. In particular, we needed to

enforce the noncollinear magnetic state via applied magnetic fields, whereas effects

such as canted or frustrated spins arise naturally without any applied fields. Such

systems are often characterized by a competition between degenerate or nearly degen-

erate states with different spin configurations, and it is likely that xc torque effects

then play a much more important role. To study these kinds of situations, Hubbard

models that include spin-orbit coupling are a promising approach.

A perhaps even more important question concerns the role of xc magnetic fields for

spin dynamics. While the xc torques appear less crucial in the ground state, they may

become more important as the magnetic system evolves in time, following a sudden

switching or a pulsed excitation. Such studies, again based on simple Hubbard-type

systems, are currently in progress.

Lastly, while simple lattice models serve as important benchmarks for SDFT and

can produce a wealth of new physical insight, it will be important to investigate the

performance of orbital-dependent xc functionals for noncollinear magnetic systems in

real space. The XXS approximation will be very well suited for this purpose due to its

simplicity and reasonable accuracy. The STLS approach was found to perform well

for the model systems considered here (as long as correlations are not too strong), but

would be numerically much more expensive for real-space systems. Finding orbital-

dependent correlation functionals for noncollinear magnetic materials, at a reasonable

computational cost, remains an ongoing challenge.
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Chapter 5

Spin-orbit coupling and
exchange-correlation torque effects
in real-time spin-density-functional
theory

5.1 Introduction

Spin effects and the effect of the exchange-correlation (xc) field have been explored

previously for the Hubbard dimer and generalized expansions for additional lattice

sites [105, 106]. In that preceding work, it was shown that there exist regimes where

the xc fields are on the order of magnitude as the external applied field [81]. Using

exact diagonalization and inversion of the Kohn-Sham (KS) equations, one can solve

for the full xc field effects in any situation for the Hubbard model.

Previous work only explored the effects with no spin-orbit coupling (SOC) term

and for the time-independent case only. In this final chapter, we focus on two general-
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ized Hubbard systems: the Hubbard tetramer that was explored in the previous chap-

ter and the Hubbard trimer with periodic boundary conditions. With the Hubbard

tetramer system, we continue to focus on xc-torques and their effects when they are in-

cluded in Kohn-Sham solutions. As we can continue to solve the Schrödinger equation

exactly for the tetramer system, we can propagate both the exact Schrödinger and KS

solutions and compare the spin-dynamics of our system accordingly. To simplify the

system, we leave out any SOC to focus on xc-torque and functional approximation

effects.

We are still interested in how SOC plays a role in the rich physics of our Hubbard

system, so we move to a trimer system with periodic boundary conditions. As dis-

cussed in [105], the trimer system, especially when in a periodic configuration (i.e.,

a triangular lattice), has no xc-torque in the exchange-only approximation, due to

the symmetric nature of the lattice. This was the primary reason for exploring the

tetramer (including nearest-neighbor interactions), as it lifted the symmetry of the

lattice sites, allowing for rich xc-torque effects. In this case, we have allowed ourselves

to remove some of the complexity of the xc-torques, while enabling us to use the same

Slater potential approximation with the inclusion of SOC. Importantly, the inclusion

of SOC terms allows us to prepare our lattice in a noncollinear spin configuration

where the spins on each lattice site are oriented into or out of the triangle. Addition-

ally, by tuning the kinetic (hopping) and SOC term, we can explore a rich physical

phase space with two very well defined collinear and noncollinear phases.

In 5.2, we will cover the theoretical background of our periodic trimer model and

denote some of the differences between our trimer model and the tetramer model

in Chapter 4. While discussing the theoretical differences between the trimer and
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tetramer, we examine how adjustments to the SOC and kinetic (hopping) coefficients

give rise to a phase diagram with two robust phases. Once we discuss the phase

diagram, we will explore how the system evolves under the perturbation of a mag-

netic field. Importantly, this noncollinear model can be easily extrapolated into real

physically relevant systems, such as spin ices or frustrated spin lattices [128].

After we explore the trimer system, in Section 5.3 we will return to the Hubbard

tetramer and continue exploring the real-time evolution of the electronic spins. Re-

turning to the tetramer, we will also refocus our attention on the xc-torques that

are present when using the Slater approximation with nearest-neighbor interactions.

We will end with our final conclusions in 5.4, highlighting the interesting emergent

dynamics that come from inclusion of the xc-torques and SOC coefficients.

5.2 Hubbard Trimer

In the previous chapter we explored a generalized Hubbard model, primarily focusing

on a four site, non-periodic lattice filled with two electrons. Here, we can use the

same starting point for our exploration, equations 4.1 and 4.2 from Chapter 4, where

we use half-filling on an equilateral triangular lattice. This means that our system

is now governed by periodic boundary conditions as the electron density on each site

now has allowable jumps into two sites.
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5.2.1 Theoretical Background

Similarly to our previous example, we can rewrite the spin Hamiltonian within the

complete singlet-triplet basis, giving us

Ĥlat = −t
∑
〈k,l〉σ

(ĉ†kσ ĉlσ + ĉ†lσ ĉkσ) + U0

∑
k

ĉ†k↑ĉk↑ĉ
†
k↓ĉk↓

+
∑
k

[
Vkĉ

†
kĉk + Bk · ĉ†kσĉk

]
. (5.1)

We notice in Eq. (5.1) that we no longer have any nearest-neighbor interaction, in

contrast with Eq. (4.5). Instead, for the trimer, we will add in a SOC term that is

defined within our second-quantization formalism as

ĤSO = iC
∑
i 6=j

∑
σσ′ĉ†iσ[fij · σ]σσ′ ĉjσ′ , (5.2)

where C ∈ R is the SOC interaction coefficient, which can take arbitrary values ≥ 0,

and fij is a unit vector that denotes the direction of the SOC term [116, 129]. For a

system with D3h symmetry, otherwise known as a planar triangular lattice system,

Moriya rules enforce that f12 = f23 = f31 = z, leaving us with only the z-component

in Eq. (5.2). Explicitly, this gives for the trimer

ĤSO = iC

{
[ĉ†1↑ĉ2↑ − ĉ†1↓ĉ2↓] + [ĉ†2↑ĉ3↑ − ĉ†2↓ĉ3↓] + [ĉ†3↑ĉ1↑ − ĉ†3↓ĉ1↓]

}
− iC

{
[ĉ†2↑ĉ1↑ − ĉ†2↓ĉ1↓] + [ĉ†3↑ĉ2↑ − ĉ†3↓ĉ2↓] + [ĉ†1↑ĉ3↑ − ĉ†1↓ĉ3↓]

}
, (5.3)

which shows that the SOC terms can be viewed as purely imaginary hopping terms.
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This leaves us in total with our full Hubbard Hamiltonian, with SOC, as

Ĥtotal = −t
∑
〈k,l〉σ

(ĉ†kσ ĉlσ + ĉ†lσ ĉkσ) + U0

∑
k

ĉ†k↑ĉk↑ĉ
†
k↓ĉk↓

+ iC
∑
i 6=j

∑
σσ′ĉ†iσ[fij · σ]σσ′ ĉjσ′ +

∑
k

[
Vkĉ

†
kĉk + Bk · ĉ†kσĉk

]
. (5.4)

As with the four site Hubbard system, we again have the KS equation

[(
−∇

2

2
+ VKS(r)

)
I + σ ·BKS(r)

]
Ψi(r) = εiΨi(r) , (5.5)

where I is a 2× 2 identity matrix and σ denotes the spin state of the particle. Recall

that in Chapter 4, we discussed that most calculations done when using noncollinear

spins rely on the local spin-density approximation (LSDA) which causes the local xc

magnetic field to be parallel to the local magnetization at all points. Doing so satisfies

Eq. (4.4), the so-called zero torque theorem, but the xc fields can have perpendicular

components when using functionals that do not rely on the LSDA. However, this does

not mean that all local torques must be zero. To the contrary, local torques can be

nonzero so long as the total xc torque is equivalent to zero.

In this chapter, we use the Slater approximation to the noncollinear Optimized

Effective Potential (OEP) [105]. The Slater potential for noncollinear spins, vx(r), is

defined as follows:

n vxS + vxS n = b , (5.6)

where the right-hand side b is given by

b(r) = −2

∫
dr′

|r− r′| γ(r, r′)γ(r′, r) . (5.7)
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Figure 5.1: Kohn-Sham phase diagram for the Hubbard trimer with a small in-plane
magnetic field on two lattice sites to lift the degeneracy of the system. The phase
diagram found here is nearly identical to what was published in [117].

Here, γσσ(r, r′) is the spin-resolved reduced one-particle KS density matrix:

γσσ′(r, r′) =
N∑
j

ψjσ(r)ψ∗jσ′(r′) . (5.8)

By using the Slater potential, we no longer trivially satisfy the zero-torque theorem

through a local spin density approximation. For the case of the trimer with only

on-site interactions, the symmetry of the system prohibits non-zero xc spin torques,

allowing us to focus on the effects of the inclusion of the SOC term.

5.2.2 Time-dependence

Much of the underlying theory related to the ground-state was already covered and

discussed in Chapter 4, so to save space and our readers’ sanity, we will bypass re-

visiting the nuances of the ground state solutions. As we covered above though, we
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Figure 5.2: Time-dependent magnetic field applied to the trimer system. The field is
a Gaussian pulse applied only in the x-direction.

have included SOC effects to both make our system more realistic and to allow for

noncollinear magnetization in our system. Including SOC is essentially the intro-

duction of a complex hopping term, which introduces spin effects that allow for the

precession of electron spins on each lattice site. By adjusting the SOC and kinetic

hopping terms, we are able to probe our system and explore the spin orientation phase

space of our system. It is important to note that our system is highly degenerate,

and in order to separate the degenerate states computationally, we must introduce

a very small magnetic field to lift the degeneracy of the states. For the trimer, the

magnetic field is on the order of 10−10 a.u. in the x- and y-directions on sites 1 and

2, respectively. The resultant trimer phases are extremely similar to the phase space

plotted in [117], and the adapted phase diagram can be seen in Fig. 5.1

To capture the magnetization in real-time, we use real-time TDDFT, propagating

the wavefunctions with the time operator, U(t), exciting our system with the mag-

netic pulse shown in Fig. 5.2. The pulse is applied only along the x-axis and hits each
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lattice site simultaneously. Unfortunately, simply applying our operator as an expo-

nential function is numerically unstable. To get around this, numerous methods have

been developed and some were touched upon in Chapter 2, Section 2.4.3. Here, we

employ the Crank-Nicolson algorithm which gives a numerically stable solution. Ex-

plicitly, the Crank-Nicolson algorithm, written for our particular partial-differential

equation, is defined as in Eq. (2.34). Rather than solving the partial-differential

equation analytically, where we would then be applying our time operator as an ex-

ponential function, the Crank-Nicolson method takes the finite differences between

our wavefunction and the evolved wavefunction at the next time step. To be more

precise, the Crank-Nicolson method actually evaluates our time evolution at times

t− 1
2

and t+ 1
2
, or the half-time steps.

By using this implicit differentiation method, we have a numerically stable solution

over a broad selection of time step sizes that is accurate to the order of (∆t)2. In

addition to this, our solution method maintains the unitarity of the time propagation

operator. Thus, the evolution of our wavefunctions will preserve normalization over

the course of the time evolution.

Despite the wonderful qualities that are preserved by the Crank-Nicolson method,

we now have to worry about our solution to our wavefunctions at the half time steps

of our propagation space. The solution is to perform a predictor-corrector scheme

to ensure our wavefunction is not succumbing to numerical instabilities arising from

our selected time evolution method. To ensure this is the case, we calculate the

wavefunction at our new time, t, and calculate the new density, n. We expect, given

that our excitation will not ionize our system, that we should remain at a constant

total number of electrons. Local density fluctuations are allowable in the same way
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Figure 5.3: Chromium trimer showing the noncollinear spin configuration. Addition-
ally, due to the approximation being used, there is an xc spin torque present in the
trimer, seen by the fact that the red and blue arrows are not on top of each other.
Adapted from [101].

that local magnetization and xc torques can occur, so long as the sum over all lattice

sites correctly satisfies our physical requirements. Once global density convergence

has been met, the next time step is approximated and the predictor-corrector scheme

continues.

5.2.3 Trimer results and discussion

Applying the time-propagation methods and including SOC, we can examine how

Kohn-Sham solutions near a highly degenerate phase boundary (see Fig. 5.1) behave

once allowed to propagate in time, following a short-pulse excitation. The reason

for exploring this Hubbard trimer phase space is to get a sense for how the easy-

to-compute KS potential approximations will behave in systems where different spin

phases are present. One potential place of occurrence for this is a noncollinear spin

system such as a Chromium trimer, as shown in Fig. 5.3, or a spin ice system like

Dy2Ti2O7 [128].

138



As can be clearly inferred from the phase diagram in Fig. 5.1, our trimer system

has two primary parameters that can be tuned to explore their effect on the spin

dynamics. We discussed already the SOC component, which we can control the

strength of by varying the variable C in Eq. (5.2). By setting C = 0, we turn off the

SOC, retrieving the behavior seen in Fig. 5.4, where the spins no longer precess after

the passage of the magnetic pulse. It is interesting that the spins continue to have

very small oscillations in the KS system, while the exact solution demonstrates that

once the SOC component is removed, there is no effective mechanism that continues

to cause the spins to oscillate.

We find from Fig. 5.4 that the magnetization along x is not affected by the

magnetic field pulse. There is some induced precession along y and z, and after the

end of the pulse, some finite magnetization along z persists. This is qualitatively well

reproduced by the TDDFT calculation.

The second parameter we can tune is the hopping term, t. Effectively, t is the

kinetic energy term for our trimer system. By setting t � 1, we effectively isolate

each electron to a single lattice site, as the kinetic energy will not be high enough

to allow the electrons to hop to a neighboring lattice site. As t increases, electronic

density becomes easier to transition between lattice sites.

By mapping the magnetic alignment phase space for the trimer system, we can

clearly see in Fig. 5.1a that there are two unique magnetic phases. The first phase is a

collinear spin phase where all the electronic spins are aligned, while the second phase is

where the spins become noncollinear and lie within the plane, pointing outward from

the triangular Hubbard lattice. By applying a small magnetic field, on the order of

10−10 on two sites that are in-plane (to reduce the degeneracy of the spin states), we
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Figure 5.4: Real-time magnetization precession due to a magnetic pulse along the
x-axis. The SOC has been set to zero and the hopping constant is set to 0.8. The
magnetizations react to the magnetic pulse which turns on just before t = 2, but
since there is no SOC to mediate the continued changing magnetic moment, the
magnetizations remain static after the termination of the magnetic field.
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can prepare our ground state in the generalized Hartree-Fock configuration [117]. The

Slater approximation of the OEP reduces to the Hartree-Fock solution, giving us a way

of comparing the Hartree-Fock solution to our Kohn-Sham methods. Additionally,

we also solve our system exactly for the same phase space and recover the same phase

diagram seen in Fig. 5.1.

As in Chapter 4, we can define the magnetization as

m(r) =
N∑
i

tr[σΨi(r)Ψ†i (r)] . (5.9)

Here, σ are the Pauli spin matrices. We notice that the wavefunctions, Ψi(r), are

dependent not only on position, but they are implicitly dependent upon Bxc that are

calculated self-consistently through the KS formalism. Recall that by using the Slater

approximation, our Bxc no longer trivially satisfy the zero torque theorem locally, but

due to our configuration, we have no torques that will extraneously appear.

As can be seen in Fig. 5.1, if we carefully select our hopping and SOC coefficients

we locate ourselves on the magnetic phase boundary of our trimer. By doing this, we

essentially select a degenerate solution space, leaving us with a magnetization solution

that tenuously holds to either region. Once our system is properly prepared at this

boundary, we then kick the system with our magnetic pulse to attempt to determine

the robustness of the spin state and examine how our magnetizations evolve near the

boundary.

From Fig. 5.5, we can see that if we select a point in our phase space that is just

under the phase boundary at C = 0.4 and t = 0.2309, we begin in a spin collinear

state. This is easily seen by the fact that all three colored lines for both the KS

Slater and exact solutions are on top of each other. Interestingly, when we propagate
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Figure 5.5: Magnetization differences between the exact magnetizations (dashed lines)
and Kohn-Sham magnetizations (filled lines) in the x-, y-, and z-directions for the
first (red), second (blue), and third (green) lattice sites with C = 0.4 and T = 0.2309.
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in time, the system behaves collectively, staying in a collinear state throughout the

time propagation. This could be due to the fact that the magnetic field applies the

same force on each site equally, so no spins precess differently compared to their

neighboring sites. Because of this, the spins evolve the same, with the SOC allowing

for the continuation of the precession after the pulse subsides. Still, we see that the

SOC doesn’t appear to cause any spin mixing effects, where neighboring sites might

influence the precession of another, causing electrons to influence the spin precession

of their neighbors.

Selecting a point just above the phase boundary, at C = 0.4 and t = 0.231, we

immediately see that there is a vastly different spin orientation. Quickly, we see that

we are in a noncollinear spin configuration, where each lattice site is pointed out from

the center of the triangle. Applying our magnetic pulse to this spin configuration, the

behavior of the system is very different from before. Instead of a collective evolution,

we see in Fig. 5.6 that now all three sites evolving independently. Part of the effect

could simply be due to the fact that the magnetic field is hitting each site differently

this time; more important, however, seems to be the spin configuration causing the

SOC term (which, recall, acts as a complex nearest-neighbor hopping) to allow for

spin effects that alter the precession of neighboring lattice electrons.

Regardless of the spin state in which we choose to prepare our system, we clearly

see that, at least at the start of the time propagation and through the magnetic

pulse, the KS Slater solution performs admirably well. In the transient phase after

the magnetic pulse, there is a clear divergence away from the exact solutions in both

situations though. Broadly speaking, despite quickly diverging from the exact solution

through the transient period, it appears that the phase of the precession well after
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Figure 5.6: Magnetization differences between the exact magnetizations (dashed lines)
and Kohn-Sham magnetizations (filled lines) in the x-, y-, and z-directions for the
first (red), second (blue), and third (green) lattice sites with C = 0.4 and T = 0.231.
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the pulse is similar, perhaps pointing to good agreement between the KS and exact

solutions despite the poor performance through the transient phase. In general, the

KS solution captures the oscillations associated with the precessing magnetic moments

rather well, at least qualitatively. A spectral analysis, to be performed in future work,

might be able to provide more quantitative details.

5.3 Time propagation of the tetramer

In Chapter 4, we focused on the ground state of the tetramer system and noted the

different regimes that were present where we had low and high interaction strength.

In the high interaction strength regime, we saw that we had electronic localization

and xc torques that were larger than the external torque because of the magnetization

aligning with the magnetic fields. On the opposite end, the external torques domi-

nated the xc torques in the low interaction strength regime. Between both regimes,

however, was a sizeable crossover region where the external and xc torques were on

the same order of magnitude as one another.

We postulated that this mismatch and these two regimes could lead to large

discrepancies between the exact and KS solutions, meaning that correctly accounting

for the torques would be very important. By using the same method as we used in

the trimer, we can begin to explore whether our hypothesis will bear fruit. In Fig.

5.7, we can clearly see that the low interaction strength regime has little to no change

between the full Bxc and Bxc,|| (where the transverse component of the xc magnetic

field and thus the torques have been projected out). This would follow our intuition

as the xc torques were shown to be small in this regime.
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Figure 5.7: Magnetization differences between the exact magnetizations (dash-dotted
lines) and Kohn-Sham magnetizations (Bxc,||:filled lines, Bxc,full: dashed lines) in the
x-, y-, and z-directions for the first (red), second (blue), third (green), and fourth
(grey) lattice sites with U0 = 1.0.
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Figure 5.8: Magnetization differences between the exact magnetizations (dash-dotted
lines) and Kohn-Sham magnetizations (Bxc,||:filled lines, Bxc,full: dashed lines) in the
x-, y-, and z-directions for the first (red), second (blue), third (green), and fourth
(grey) lattice sites with U0 = 3.0.
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Such is not the case in Fig. 5.8. Interestingly, as we enter the crossover regime, we

begin to see that by removing the torques, we cause a clear change in the dynamics of

the magnetizations. Throughout the magnetic pulse, the solutions, both full and with

the longitudinal xc field only, stay fairly close together and do well to recreate the

exact solution. However, once the pulse is completed, the solutions begin to separate,

becoming very different near t = 15 and showing no signs that the gap between the

two solutions will close. Clearly, this would indicate that it is necessary to account

for these torques as they can give rise to very different magnetization dynamics.

Finally, we go all the way to the high interaction strength regime, and examine

what we showed in Chapter 4 to be where the xc torques dominated over the external

torques. Here, as shown in Fig. 5.9, it is interesting that the xc torque doesn’t seem to

have an accumulative behavior when the transverse xc magnetic field is removed. We

still see large differences in the steady state solution by the difference in the starting

magnetization values, but as the magnetization time evolves, there are no notable

difference in how large the disparity is between the full and longitudinal solutions.

Despite this, there is a clear difference between the full and longitudinal solutions

throughout the time evolution of the magnetizations, demonstrating that the torques

play a role in the steady state solution, but it isn’t clear that the behavior worsens

over time.

5.4 Summary and conclusions

As mentioned previously, understanding xc torque effects on the dynamics and evo-

lution of real systems is necessary for properly characterizing a systems behavior. By
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Figure 5.9: Magnetization differences between the exact magnetizations (dash-dotted
lines) and Kohn-Sham magnetizations (Bxc,||:filled lines, Bxc,full: dashed lines) in the
x-, y-, and z-directions for the first (red), second (blue), third (green), and fourth
(grey) lattice sites with U0 = 9.0.
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exciting a trimer system with SOC, we were able to correctly capture the local, effec-

tively changing magnetic field, demonstrated by the magnetic behavior seen in Fig.

5.4. With the inclusion of the SOC term, we effectively included a local magnetic

field that continued to fluctuate after the termination of the magnetic field that was

incident on the system.

By approaching a phase boundary between two degenerate spin states, we see

that we get extremely different behavior depending on the state that was prepared.

Additionally, the states appear to be very robust, even when exposed to a magnetic

field pulse that serves as a quick and decisive kick to the system. We see that there

doesn’t appear to be a jump from one state to another, despite being near the phase

boundary. That said, the SOC term in the Kohn-Sham solution shows extremely

interesting physical properties with collective precession and independent precession

with very small fluctuations in parameter space.

When we revisited the tetramer, we saw that despite the xc torques being domi-

nant over some interaction strength regimes, it doesn’t appear that these differences

increase over time for all regimes. We saw what would be expected in the low in-

teraction strength regime, where there was little difference between the Kohn-Sham

approximations where the full xc fields were included or were projected out. Inter-

estingly, at high interaction strengths, the large xc torques don’t seem to change or

cause large differences in how the tetramer magnetizations evolve. In some sense, this

could be that KS approximations already poorly recreate exact solutions in strongly

correlated regimes, so there would be no reason to assume projecting the torques out

would cause a large change. Finally, in the crossover regime, there are clear differ-

ences in the evolutions of the longitudinal and full xc field calculations. After the
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magnetic field terminates, it is clear that the evolution of the magnetizations start

to change, warranting further investigation to determine why this crossover regime

experiences such interesting dynamic changes.

The numerical calculations presented in this Chapter are clearly not comprehen-

sive, but merely exploratory. In the ground-state calculations we had seen that xc

torques have little overall effects on the energetics of the system. What we wanted

to see was whether there are any indications that, in the dynamical regime, small

differences can dramatically accumulate over time. The results shown in this Chap-

ter indicate that there are regimes where this can happen, but in other regimes the

differences remain small.

Needless to say, our calculations used only the Slater approximation, which com-

pletely ignores any correlation effects. Thus, a full comparison with exact results can

only be performed at a qualitative level. Nevertheless, even the simple Slater approx-

imation can be useful. Further tests, including realistic first-principles calculations,

are certainly needed to arrive at a more complete picture.

Another interesting aspect of the time-dependent calculations discussed here has

to do with recent studies on ultrafast switching of ferromagnetic thin films [88]. There,

it was found that a short laser pulse can lead to a fast, permanent switching of the

magnetization of the ferromagnet. The authors of Ref. [88] argue that the main

mechanism of this ultrafast switching is due to SOC. The Hubbard trimer calculations

we have presented here are not quite comparable to this scenario, but even then we

have seen that the presence of SOC can profoundly alter the response of magnetic

systems at an ultrafast level. Again, this calls for further studies in the future.
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Chapter 6

Summary and future direction

We’ve laid bare how model systems can be used to examine the methods and ideas

used to explore and push the boundaries of physics. While simplified, a properly

chosen model can explore and target different model properties that might be obscured

by the complexities present in real materials. By boiling down the system to its

most basic components, we have shown that researchers can examine and explore the

basic underpinnings of the theories that support the wide and rich research area of

condensed matter physics.

6.1 Summary

In this dissertation we explored model systems, specifically lattice systems and one-

dimensional potential wells decorated with additional potential differences. Beginning

from the Casida formalism, we applied a unitary transformation to explore how the

particle-hole map, which is derived from the density response, can be used to examine
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functional units within excitations. While in principle any unitary transformation

could be used, we created an optimization technique that can be generalized into

extended systems.

Taking a step further into the Kohn-Sham formalism, we applied spin-dependent

density-functional theory onto a Hubbard tetramer where we were able to exactly

solve the full Schrödinger equation analytically. We also developed a conjugate gradi-

ent optimization scheme that allowed us to directly reconstruct the exact exchange-

correlation (xc) potential and magnetic field, and provide interesting insight into xc

torque regimes and their interaction strength dependencies. Building up from the

ground-state tetramer solutions, we performed an exploratory analysis on the spin

dynamics of the Hubbard tetramer when under the influence of a time-dependent

magnetic field. The torques showed extremely interesting time-dependent behavior,

warranting further study. Finally, we also examined the Hubbard trimer, exploring

how spin-orbit coupling allowed us to explore degenerate spin-states and examine the

dynamics of a small quantum system near a phase boundary.

In Chapter 3, we introduced the particle-hole map (PHM) which is a visualization

tool derived from the density response function. When compared to a similar object,

the transition density matrix (TDM), we saw that the PHM is not invariant under

a unitary transformation of the canonical orbital wavefunctions. While one could

recover the canonical PHM, we defined a new quantity that was analogous to the

PHM which used only the localized wavefunctions. Using our newly defined localized

particle-hole map (LPHM), we optimized our orbital transformation according to the

Foster-Boys method, which is analogous to Wannier orbitals in extended systems,

separating our orbital density so that there is as little overlap as possible. Applying
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our methods to a simple one-dimensional system, where we could control all inputs,

we saw that even in simplistic cases, we were able to see interesting and promising

behavior. Through the LPHM, we saw that some potential systems could be examined

according to the different potential wells present, and that the LPHM shows additional

layers of mediation in the charge excitations that the PHM simply did not show.

After optimizing orbitals spatially, in Chapter 4 we changed gears and utilized

the analytic solvability of a Hubbard system to examine and exactly solve for the

exchange-correlation term in various functional approximations. By beginning from

the two site Hubbard model, we generalized the system to exactly solve the Schrödinger

equation for an n-site system. As we discussed, we chose the four site Hubbard model

with nearest-neighbor interactions because it was the simplest system that allowed

for exchange-correlation spin torques. Also, since we could analytically solve the

fully interacting Schrödinger equation for the tetramer, we were able to explore the

differences of various functional approximations within the Kohn-Sham formalism.

By inverting the Kohn-Sham equations, we could apply computational optimization

methods to solve for the density of our system to within machine precision of the

exact analytic solution. We chose to use the conjugate gradient method and showed

that we were consistently able to converge our Kohn-Sham density to within 10−7

of the exact density given by the Schrödinger equation. Because of this, we could

directly compare the exact potentials to their Kohn-Sham counterparts and recover

the xc fields that were needed to recreate our exact density. Interestingly, exchange-

only methods are at least adequate in the weakly correlated electron regime, where

many systems of interest lie (namely those with relatively light nuclei). Additionally,

we saw that there is in fact a sort of saturation moving towards the highly correlated
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regime where electron density localizes and the electron spins align with the applied

external magnetic field. This means that the xc magnetic fields become at least on

the order of the external magnetic fields, showing that these xc fields can have large

effects in highly correlated regimes and must be accounted for in those calculations.

Continuing to examine an extension of the Hubbard model, in Chapter 5, we saw

that including spin orbit coupling (SOC) has a large effect on the real-time electron

dynamics in a Kohn-Sham system where the xc fields are allowed to lie non-parallel

to the magnetization. Once again, using the Hubbard model allowed us to solve the

Schrödinger equation via exact diagonalization of the system, where we could then

compare the exact solution and time evolution to the KS evolution over time. We

began by exploring the spin configuration phase diagram to examine the phase space

dependence on the SOC and the hopping constant (kinetic energy). By exploring

the phase space, we were able to approach the phase boundary and prepare our

initial state in collinear and noncollinear spin states, exploring the spin dynamics

of the trimer under an applied magnetic field. Even exchange-only functionals like

the Slater approximation do qualitatively well at capturing the spin dynamics of the

trimer, with well-defined spin dynamic regimes where the spins precessed in unison

or propagated independently.

Finally, we explored the time evolution of the xc torque effects in the Hubbard

tetramer system. We saw that there are regimes where we see expected behavior,

such as the low interaction limit, where the torques play little-to-no role in the spin

dynamics. However, in the crossover interaction strength regime, where the xc torques

are at least on the order of the spin torques due to the applied magnetic field, there

appears to be a qualitative accumulation effect, where the torques seem to cause
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an increasing change to the spin dynamics of the system. In the high interaction

strength regime, we also saw that despite a clear difference between torque included

and projected out solutions, the difference appears to stay constant throughout the

time evolution.

6.2 Future direction

The research that has been accomplished exposes and allows for future exploration

into interesting physics that has only just begun to be looked at in depth. From

spin dynamics and their applications in spintronics to charge transport and transfer

in semiconductors and photovoltaics, there is a rich exploration landscape that can

be developed from atop this thesis. We will briefly exlore a few different possible

directions for that research in the following sections.

6.2.1 Charge and spin transfer in finite systems

In Chapter 3, we explored a simple one-dimensional potential well and demonstrated

a visualization tool that could be used to probe possible behavior and characteristics

of organic photovoltaics. Intramolecular charge transfer is one such area where there

could be a considerable use for the LPHM to shed light on the characteristics of the

excitation. One such molecule that can be used an example is the benzothiadiazole

(BT) molecule terminated with thiophene units that act as charge donors. As can be

seen in Fig. 6.1, the canonical orbitals are extended over the entire molecule with-

out particular concentration on any units. While the Foster-Boys orbital localization

method is scalable to three dimensions, and could be used to calculate localized or-
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Figure 6.1: (a) Structure of thiophene terminated benzothiadiazole (BT) and the
canonical orbitals of the (b) HOMO–2, (c) HOMO–1, (d) HOMO, (e) LUMO, (f)
LUMO+1, (g) LUMO+2, and (h) LUMO+3 orbitals. Adapted from [63].

bitals by minimizing the orbital overlap, any proper choice of localization method

could be chosen to transform the canonical orbitals. Since the BT unit in Fig. 6.1 is

believed to play a large role in mediating the charge transfer between the thiophene

units, we could expect to localize the π-type orbitals that mediate the electron charge

transfer in these organic molecules. By doing so, one could potentially gain a finer

grained insight into the role each molecular unit plays during a charge transfer excita-

tion in general, since many organic photovoltaics are made of donor-acceptor systems

where the roles are played by different molecules or functional units [130–132].

More generally, we could expect to use localized orbitals in any situation where

we would expect electrons to have large orbital ranges that extend across ”large” dis-

tances within the system. In addition to the canonical electronic orbitals, one could

use the so-called naturally localized orbitals and use the same methods outlined in

3. Finally, simply expanding the PHM into spin-dependent quantities could provide
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some insight into spin dynamics in molecules and clusters. By using noncollinear

spin states, where we can depict the wavefunctions as spinors, we could potentially

investigate spin flip dynamics as well as spin-dependent excitations within molecu-

lar systems. With organic materials becoming popular in the fabrication of many

electronic systems, understanding and demonstrating the spin dynamics of molecu-

lar magnets could expose the underlying mechanisms that are at work within these

molecules. Once the mechanisms are more fully understood, we could potentially find

more candidates that could be used in one of the many applications of magnetics,

namely quantum computers and data storage [133,134].

Beyond clusters and finite systems, the LPHM can be easily generalized to ex-

tended systems. As we mentioned in our work exploring 1D systems, the Foster-Boys

method of orbital localization is analogous to the Wannier states in an extended sys-

tem. Because of this, the LPHM could potentially be used as a tool with Wannier

wavefunctions to see if there is localized charge transport and explore excitonic pro-

cesses in the basis of a new localized wavefunction. Additionally, the LPHM could be

generalized to give a dynamical picture of excitation processes in real time.

6.2.2 Spin dynamics in noncollinear, spin-frustrated materi-
als

As was mentioned in Chapters 4 and 5, the effects of localized xc torques on time

dependent calculations for real systems has hardly been touched by researchers. Gen-

erally, researchers tend to use the localized spin-density approximation (LSDA) to

trivially satisfy the requirement that there be no net xc torque felt by our electronic

density. From what we found in Chapter 4, this should be a good approximation
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when we are in a regime that is heavily dominated by the external magnetic field.

Unfortunately, for many systems, we are not in that large external magnetic field

either throughout the duration of our electron dynamics or at all. Even so, in weakly

correlated materials, where electronic interactions can be better approximated by our

noninteracting model, we should still be able to manage for many situations with

the LSDA method because of the tiny size of magnetization differences due to the

xc fields. When we approach a degenerate state, however, the xc fields play a much

larger role in maintaining equilibrium and thus the effects created by those xc fields

cannot be satisfied by the LSDA. What this implies is simply that when we have a

system that has possible degeneracies, we must take increased care to make sure our

xc torques are monitored and calculated as accurately as possible.

There are groups of systems where these spin degeneracies are readily apparent

and they can go by many different names: spin ice, spin glass, frustrated molecules.

In these materials, the spins of the materials are aligned or anti-aligned in such a way

that we cannot satisfy the spin orientation of each lattice site/atom simultaneously.

In other words, there will always be a single site where there is an ambiguous ori-

entation of the spin moment of the electron. The electron(s) are then in a near, or

fully, degenerate state, where there are competing magnetic forces trying to align the

electronic spin(s) into competing configurations. Knowing how these spins evolve over

time is crucial to understanding where our approximations break down and learning

the systematic ways in which our approximations might fail.

Such non-collinear, spin-frustrated materials [135] can be studied using 2D model

Hamiltonians such as triangular or Kagome lattices [128], or through first-principles

approaches to materials such as Cr monolayers [103], pyrochlores [136], or molecu-
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lar magnets [137]. Since orbital-based exchange-correlation functionals are not con-

structed based on the homogeneous electron gas as reference system, they can be used

for model and real systems alike.

6.2.3 Continued optimization of functionals and inversion
methods

While the previous sections primarily focused on new areas of research, here we will

focus on the ability to continue to incrementally improve the methods used throughout

this thesis work. Chapters 3 and 4 utilized optimization routines to calculate target

quantities with a known distribution. While the model systems involved were simple,

it allowed for the exploration of numerical routines meant to optimize these many

dimensional spaces. In our favor, the Foster-Boys method has been implemented

for programs that are commonly used throughout chemistry and physics [138, 139].

Unfortunately, our inversion technique of the KS equations is not so performant in

real situations. In the case of our inversion routine, the limitation is the number of

points for which our KS wavefunctions must be optimized.

We implemented the conjugate gradient method to converge our model system,

but there are many more potential near degeneracies in real systems, making the

solution space more complex and the odds of finding a global minimum (maximum)

more difficult. Because of the added complexity of the system, its likely that the

conjugate gradient method would be computationally poor for larger solution space

systems where there could be more local minima that in our model problem. There

are proposed methods already in use for more realistic systems [114, 140], but the

difficulty is in removing the additive constant of our scalar potential. The additive
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constant in a larger and more complex solution space gives rise to an infinite number of

solutions, making it difficult to converge towards a solution without careful selection

of a system that should behave well for the inversion. One possible method to invert

the KS equations could be to do an ensemble method where each individual starting

point moves towards a local minima. By casting a wide net to find numerous possible

solutions at one time, it could, feasibly, be possible to approach a pseudo-global

minimum (maximum) that solves for the nondegenerate ground state of our system.

Machine learning would be another possibility worth exploring. Regardless of the

method, a limiting factor would still be the grid size of the real space system we are

solving for, as we would need an N×N size matrix (without spin dependence) stored

in memory to calculate the gradient steps of our wavefunction phase space.

One primary focus in much of this thesis has been on functional selection and

functionals that are performant regardless of the system. While not there yet, the

Slater functional (or the Exact Exchange Potential (EXX) in DFT formalism) has

promising features that might allow it to take hold in many computational calcula-

tions. Even though the Slater approximation and EXX are not as simple as LSDA,

the potential only relies on local quantities, so computationally it is not terribly diffi-

cult to implement. The performance drawbacks with the EXX and other non-trivial

xc torque satisfying functionals are borne entirely out of needing to store the entire

wavefunction in memory for all lattice sites. Our approximations need these values

in memory because they rely explicitly on the wavefunction (and sometimes even its

gradient) at all points in space, whereas LSDA does not. For noncollinear systems

then, we could more accurately take into account the xc fields that are affecting our

system and more accurately approximate how those fields evolve over time.
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6.2.4 Tetramer and Trimer Conclusion

In Chapter 5, we discussed the additional analysis done on the tetramer and trimer

systems. As mentioned, much of the calculations and analysis were merely exploratory

in nature. We saw that even just scratching the surfaces of the Hubbard systems,

there is a rich and exciting area of physics research to be explored. Beyond qualitative

analysis of the time dependent magnetizations in the exact and KS solutions, we

can further perform spectral analysis on the magnetizations to quantitatively state

the similarities between the solutions. We also only explored exchange-only time-

dependent effects, leaving correlation effects for later study. By including correlation,

via the STLS method or even a Møller-Plesset perturbation, we would also be able to

explore additional dynamic effects that aren’t accounted for by simple exchange-only

methods like Slater.
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